Science.gov

Sample records for aerosol backscatter profiles

  1. Aerosol backscatter studies supporting LAWS

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1989-01-01

    Optimized Royal Signals and Radar Establishment (RSRE), Laser True Airspeed System (LATAS) algorithm for low backscatter conditions was developed. The algorithm converts backscatter intensity measurements from focused continuous-wave (CW) airborne Doppler lidar into backscatter coefficients. The performance of optimized algorithm under marginal backscatter signal conditions was evaluated. The 10.6 micron CO2 aerosol backscatter climatologies were statistically analyzed. Climatologies reveal clean background aerosol mode near 10(exp -10)/kg/sq m/sr (mixing ratio units) through middle and upper troposhere, convective mode associated with planetary boundary layer convective activity, and stratospheric mode associated with volcanically-generated aerosols. Properties of clean background mode are critical to design and simulation studies of Laser Atmospheric Wind Sounder (LAWS), a MSFC facility Instrument on the Earth Observing System (Eos). Previous intercomparisons suggested correlation between aerosol backscatter at CO2 wavelength and water vapor. Field measurements of backscatter profiles with MSFC ground-based Doppler lidar system (GBDLS) were initiated in late FY-88 to coincide with independent program of local rawinsonde releases and overflights by Multi-spectral Atmospheric Mapping Sensor (MAMS), a multi-channel infrared radiometer capable of measuring horizontal and vertical moisture distributions. Design and performance simulation studies for LAWS would benefit from the existence of a relationship between backscatter and water vapor.

  2. Vertical Profiling of Atmospheric Backscatter with a Raman-Aerosol Lidar

    NASA Astrophysics Data System (ADS)

    Deleva, Atanaska D.; Peshev, Zahary Y.; Slesar, Alexander S.; Denisov, Sergey; Avramov, Lachezar A.; Stoyanov, Dimitar V.

    2010-01-01

    Aerosols have a strong impact on the planet's thermal balance, air quality, and a variety of atmospheric processes and phenomena. In this work we present some results from a long term lidar observation of tropospheric aerosols over the city of Sofia, Bulgaria, within the framework of the European project "EARLINET-ASSOS." Vertical profiles of the aerosol backscattering coefficient and range corrected lidar signals are processed and analyzed. The temporal evolution and the spatial distribution of atmospheric aerosol fields are illustrated by 2D-colormaps in height-time coordinates. We present here several cases of aerosol loading: transport of Saharan dust (at altitudes from 3 km to 5 km), highly situated layers (from 9 km to 15 km), and anthropogenic smog (up to 2 km). All measurements were performed by using the two aerosol spectral channels of a combined Raman-aerosol lidar developed in the Laser Radar Lab, Institute of Electronics, Bulgarian Academy of Sciences. It is based on a Q-switched powerful frequency-doubled Nd:YAG laser (output pulse power: up to 1 J at 1064 nm; up to 100 mJ at 532 nm; pulse duration 15 ns FWHM; repetition rate 2 Hz). A Cassegrain telescope (35 cm diameter, 200 cm focal length) collects the backscattered radiation. The lidar receiving system is based on novel smart high sensitive photo-receiving modules. The acquisition system provides signal registration with spatial resolution of 15 m (100 MHz 14-bit ADC). It allows for detection, storage, and processing of large volume lidar data. Our observations are in good agreement with the forecasts of Barcelona Supercomputing Center, concerning Saharan dust transport.

  3. Analysis of DIAL/HSRL aerosol backscatter and extinction profiles during the SEAC4RS campaign with an aerosol assimilation system

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; da Silva, A. M., Jr.; Colarco, P. R.; Randles, C. A.

    2015-12-01

    We retrieve aerosol concentrations and optical information from vertical profiles of airborne 532 nm extinction and 532 and 1064 nm backscatter measurements made during the SEAC4RS summer 2013 campaign. The observations are from the High Spectral Resolution Lidar (HSRL) Airborne Differential Absorption Lidar (DIAL) on board the NASA DC-8. Instead of retrieving information about aerosol microphysical properties such as indexes of refraction, we seek information more directly applicable to an aerosol transport model - in our case the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module used in the GEOS-5 Earth modeling system. A joint atmosphere/aerosol mini-reanalysis was performed for the SEAC4RS period using GEOS-5. The meteorological reanalysis followed the MERRA-2 atmospheric reanalysis protocol, and aerosol information from MODIS, MISR, and AERONET provided a constraint on the simulated aerosol optical depth (i.e., total column loading of aerosols). We focus on the simulated concentrations of 10 relevant aerosol species simulated by the GOCART module: dust, sulfate, and organic and black carbon. Our first retrieval algorithm starts with the SEAC4RS mini-reanalysis and adjusts the concentration of each GOCART aerosol species so that differences between the observed and simulated backscatter and extinction measurements are minimized. In this case, too often we are unable to simulate the observations by simple adjustment of the aerosol concentrations. A second retrieval approach adjusts both the aerosol concentrations and the optical parameters (i.e., assigned mass extinction efficiency) associated with each GOCART species. We present results from DC-8 flights over smoke from forest fires over the western US using both retrieval approaches. Finally, we compare our retrieved quantities with in-situ observations of aerosol absorption, scattering, and mass concentrations at flight altitude.

  4. Simulation of Cloud-aerosol Lidar with Orthogonal Polarization (CALIOP) Attenuated Backscatter Profiles Using the Global Model of Aerosol Processes (GLOMAP)

    NASA Astrophysics Data System (ADS)

    Young, Stuart; Cope, Martin; Lee, Sunhee; Emmerson, Kathryn; Woodhouse, Matthew; Bellouin, Nicolas

    2016-06-01

    To permit the calculation of the radiative effects of atmospheric aerosols, we have linked our aerosol-chemical transport model (CTMGLOMAP) to a new radiation module (UKCARADAER). In order to help assess and improve the accuracy of the radiation code, in particular the height dependence of the predicted scattering, we have developed a module that simulates attenuated backscatter (ABS) profiles that would be measured by the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) if it were to sample an atmosphere with the same aerosol loading as predicted by the CTM. Initial results of our comparisons of the predicted ABS profiles with actual CALIOP data are encouraging but some differences are noted, particularly in marine boundary layers where the scattering is currently under-predicted and in dust layers where it is often over-predicted. The sources of these differences are being investigated.

  5. Characteristics of aerosol size distribution and vertical backscattering coefficient profile during 2014 APEC in Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaoshi; Chen, Zhenyi; Lu, Yihuai; Gui, Huaqiao; Liu, Jianguo; Liu, Wenqing; Wang, Jie; Yu, Tongzhu; Cheng, Yin; Chen, Yong; Ge, Baozhu; Fan, Yu; Luo, Xisheng

    2017-01-01

    During the 2014 Asia-Pacific Economic Cooperation (APEC) conference period, Beijing's air quality was greatly improved as a result of a series of tough emission control measures being implemented in Beijing and its surrounding provinces. However, a moderate haze occurred during the period of 4-5 November. In order to evaluate the emission control measures and study the formation mechanism of the haze, a comprehensive field observation based on a supersite and a lidar network was carried out from 25 October 2014 to 20 January 2015. By investigating the variations in aerosol number concentration and mean backscattering coefficient before, during and after the APEC period, it was found that number concentration of accumulation mode and coarse mode particles experienced the most significant decrease by 47% and 68%, and mean backscattering coefficient below 1 km decreased by 34% during the APEC period. Being characterized as "rapidly accumulating and rapidly dispersing", the moderate haze occurred during the APEC period was probably initiated by a wind direction change to south and an increase of wind speed to 4 m/s. Sulfur dioxide involved plume nucleation without growth in size as well as a burst of particles ranging between 100 and 300 nm were observed simultaneously during the haze episode. The elevation of sulfur dioxide concentration and particle number concentration was highly correlated with the southerly wind, signifying the contribution of regional transport. It was observed by the lidar network that the aerosol backscattering coefficient increased in sequence among three sites along the southwest pathway, suggesting that aerosols might be transported from the southwest to the northeast of Beijing with a speed of approximately 17 km/h, which agreed with the movement of air masses modeled by Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT). The dual-wavelength lidar (355 and 532 nm) observation suggested that transportation of fine particles

  6. Theory of CW lidar aerosol backscatter measurements and development of a 2.1 microns solid-state pulsed laser radar for aerosol backscatter profiling

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Henderson, Sammy W.; Frehlich, R. G.

    1991-01-01

    The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included.

  7. Tunable 2.1-micron Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles

    NASA Technical Reports Server (NTRS)

    Cha, Sungdo; Chan, Kin P.; Killinger, Dennis K.

    1991-01-01

    An eye-safe tunable differential-absorption lidar system has been developed for the range-resolved measurement of aerosol backscatter and water vapor in the atmosphere. The lidar uses a flash-lamp-pumped, Q-switched, 10-mJ solid-state Ho:YSGG laser that is continuously tunable over a 20/cm wavelength range near 2.084 microns. Both path-averaged and range-resolved measurements were performed with the Ho differential-absorption lidar system. Preliminary measurements have been made of the temporal variation of atmospheric aerosol backscatter and water-vapor profiles at ranges out to 1 km. These results indicate that the Ho lidar has the potential for the eye-safe remote sensing of atmospheric water vapor and backscatter profiles at longer ranges if suitably enhanced in laser power and laser linewidth.

  8. Lidar backscattering measurements of background stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Northam, G. B.; Butler, C. F.

    1979-01-01

    A comparative lidar-dustsonde experiment was conducted in San Angelo, Texas, in May 1974 in order to estimate the uncertainties in stratospheric-aerosol backscatter for the NASA Langley 48-inch lidar system. The lidar calibration and data-analysis procedures are discussed. Results from the Texas experiment indicate random and systematic uncertainties of 35 and 63 percent, respectively, in backscatter from a background stratospheric-aerosol layer at 20 km.

  9. Aerosol measurement program strategy for global aerosol backscatter model development

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.

    1985-01-01

    The purpose was to propose a balanced program of aerosol backscatter research leading to the development of a global model of aerosol backscatter. Such a model is needed for feasibility studies and systems simulation studies for NASA's prospective satellite-based Doppler lidar wind measurement system. Systems of this kind measure the Doppler shift in the backscatter return from small atmospheric aerosol wind tracers (of order 1 micrometer diameter). The accuracy of the derived local wind estimates and the degree of global wind coverage for such a system are limited by the local availability and by the global scale distribution of natural aerosol particles. The discussions here refer primarily to backscatter model requirements at CO2 wavelengths, which have been selected for most of the Doppler lidar systems studies to date. Model requirements for other potential wavelengths would be similar.

  10. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  11. Aerosol backscatter lidar calibration and data interpretation

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Menzies, R. T.

    1984-01-01

    A treatment of the various factors involved in lidar data acquisition and analysis is presented. This treatment highlights sources of fundamental, systematic, modeling, and calibration errors that may affect the accurate interpretation and calibration of lidar aerosol backscatter data. The discussion primarily pertains to ground based, pulsed CO2 lidars that probe the troposphere and are calibrated using large, hard calibration targets. However, a large part of the analysis is relevant to other types of lidar systems such as lidars operating at other wavelengths; continuous wave (CW) lidars; lidars operating in other regions of the atmosphere; lidars measuring nonaerosol elastic or inelastic backscatter; airborne or Earth-orbiting lidar platforms; and lidars employing combinations of the above characteristics.

  12. Aerosol and cloud observations with a CO2 backscatter lidar on the NASA DC-8 GLOBE Pacific Missions

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Tratt, David M.

    1991-01-01

    The paper presents an airborne backscatter lidar developed to fly multiple times on the NASA DC-8 research aircraft and measure vertical profiles of aerosol and cloud backscatter throughout the vertical extent of the troposphere, with emphasis on coverage of the range of latitudes. The lidar instrument characteristics are summarized and the calibration procedures are described. Results of aerosol and cloud observations are presented.

  13. Vertical Aerosol Backscatter Variability from an Airborne Focused Continuous Wave CO2 Lidar

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1998-01-01

    Atmospheric aerosol backscatter measurements using a continuous wave focused Doppler lidar at 9.1 micron wavelength were obtained over western North America and the Pacific Ocean during 13 - 26 September, 1995 as part of National Aeronautics and Space Administration's (NASA) Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on board the NASA DC8 aircraft. Backscatter variability was measured for approximately 52 flight hours, covering equivalent horizontal distance of approximately 25,000 km in the troposphere. Quasi-vertical backscatter profiles were also obtained during various ascents and descents which ranged between approximately 0.1 to 12.0 km altitude. Aerosol haze layers were encountered at different altitudes. Similarities and differences for aerosol loading over land and over ocean were observed. A mid-tropospheric aerosol backscatter background mode was found with modal value approximately 1O(exp -10)/m/sr, consistent with previous airborne and ground-based datasets.

  14. Global Backscatter Experiment (GLOBE) Results: Aerosol Backscatter Global Distribution and Wavelength Dependence

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.

    1992-01-01

    The GLObal Backscatter Experiment (GLOBE) was initiated by NASA in 1986 as an interagency and international research effort to characterize tropospheric backscatter properties. The primary objective of the program is to develop realistic aerosol backscatter inputs for design and simulation studies for NASA's prospective Laser Atmospheric Wind Sounder (LAWS). To achieve this, GLOBE incorporates several different types of aerosol sensors, which operate from a variety of sensor platforms, covering a wide range of spatial and temporal scales, and measure a diverse set of aerosol physical, chemical, and optical properties. The results of this analysis have provided important new information on the life cycles and physicochemical properties of global scale tropospheric aerosol systems. In addition, GLOBE analytical methods will be useful for the Earth Observing System (EOS) and other studies that involve the assimilation of large, complex atmospheric aerosol databases.

  15. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 1; Methods and Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-01-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.0 1 5 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0. I and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  16. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar

    NASA Astrophysics Data System (ADS)

    Gimmestad, Gary; Forrister, Haviland; Grigas, Tomas; O’Dowd, Colin

    2017-02-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the polar orbiter Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is an elastic backscatter lidar that produces a global uniformly-calibrated aerosol data set. Several Calibration/Validation (Cal/Val) studies for CALIOP conducted with ground-based lidars and CALIOP data showed large aerosol profile disagreements, both random and systematic. In an attempt to better understand these problems, we undertook a series of ground-based lidar measurements in Atlanta, Georgia, which did not provide better agreement with CALIOP data than the earlier efforts, but rather prompted us to investigate the statistical limitations of such comparisons. Meaningful Cal/Val requires intercomparison data sets with small enough uncertainties to provide a check on the maximum expected calibration error. For CALIOP total attenuated backscatter, reducing the noise to the required level requires averaging profiles along the ground track for distances of at least 1,500 km. Representative comparison profiles often cannot be acquired with ground-based lidars because spatial aerosol inhomogeneities introduce systematic error into the averages. These conclusions have implications for future satellite lidar Cal/Val efforts, because planned satellite lidars measuring aerosol backscatter, wind vector, and CO2 concentration profiles may all produce data requiring considerable along-track averaging for meaningful Cal/Val.

  17. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar.

    PubMed

    Gimmestad, Gary; Forrister, Haviland; Grigas, Tomas; O'Dowd, Colin

    2017-02-15

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the polar orbiter Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is an elastic backscatter lidar that produces a global uniformly-calibrated aerosol data set. Several Calibration/Validation (Cal/Val) studies for CALIOP conducted with ground-based lidars and CALIOP data showed large aerosol profile disagreements, both random and systematic. In an attempt to better understand these problems, we undertook a series of ground-based lidar measurements in Atlanta, Georgia, which did not provide better agreement with CALIOP data than the earlier efforts, but rather prompted us to investigate the statistical limitations of such comparisons. Meaningful Cal/Val requires intercomparison data sets with small enough uncertainties to provide a check on the maximum expected calibration error. For CALIOP total attenuated backscatter, reducing the noise to the required level requires averaging profiles along the ground track for distances of at least 1,500 km. Representative comparison profiles often cannot be acquired with ground-based lidars because spatial aerosol inhomogeneities introduce systematic error into the averages. These conclusions have implications for future satellite lidar Cal/Val efforts, because planned satellite lidars measuring aerosol backscatter, wind vector, and CO2 concentration profiles may all produce data requiring considerable along-track averaging for meaningful Cal/Val.

  18. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar

    PubMed Central

    Gimmestad, Gary; Forrister, Haviland; Grigas, Tomas; O’Dowd, Colin

    2017-01-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the polar orbiter Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is an elastic backscatter lidar that produces a global uniformly-calibrated aerosol data set. Several Calibration/Validation (Cal/Val) studies for CALIOP conducted with ground-based lidars and CALIOP data showed large aerosol profile disagreements, both random and systematic. In an attempt to better understand these problems, we undertook a series of ground-based lidar measurements in Atlanta, Georgia, which did not provide better agreement with CALIOP data than the earlier efforts, but rather prompted us to investigate the statistical limitations of such comparisons. Meaningful Cal/Val requires intercomparison data sets with small enough uncertainties to provide a check on the maximum expected calibration error. For CALIOP total attenuated backscatter, reducing the noise to the required level requires averaging profiles along the ground track for distances of at least 1,500 km. Representative comparison profiles often cannot be acquired with ground-based lidars because spatial aerosol inhomogeneities introduce systematic error into the averages. These conclusions have implications for future satellite lidar Cal/Val efforts, because planned satellite lidars measuring aerosol backscatter, wind vector, and CO2 concentration profiles may all produce data requiring considerable along-track averaging for meaningful Cal/Val. PMID:28198389

  19. Aerosol detection methods in lidar-based atmospheric profiling

    NASA Astrophysics Data System (ADS)

    Elbakary, Mohamed I.; Iftekharuddin, Khan M.; De Young, Russell; Afrifa, Kwasi

    2016-09-01

    A compact light detection and ranging (LiDAR) system provides aerosols profile measurements by identifying the aerosol scattering ratio as function of the altitude. The aerosol scattering ratios are used to obtain multiple aerosol intensive ratio parameters known as backscatter color ratio, depolarization ratio and lidar ratio. The aerosol ratio parameters are known to vary with aerosol type, size, and shape. Different methods in the literature are employed for detection and classification of aerosol from the measurements. In this paper, a comprehensive review for aerosol detection methods is presented. In addition, results of implemented methods of quantifying aerosols in the atmosphere on real data are compared and presented showing how the backscatter color, depolarization and lidar ratios vary with presence of aerosols in the atmosphere.

  20. Vertical distribution of near-ground aerosol backscattering coefficient measured by a CCD side-scattering lidar

    NASA Astrophysics Data System (ADS)

    Tao, Zongming; Liu, Dong; Ma, Xiaomin; Shi, Bo; Shan, Huihui; Zhao, Ming; Xie, Chenbo; Wang, Yingjian

    2015-09-01

    The near-ground aerosols have the most impact on the human beings. Its fine spatial and temporal distribution, with which the environmental and meteorological departments concern themselves most, has not been elaborated very well due to the unavailable measurement tools. We present the continuous observations of the vertical profile of near-ground aerosol backscattering coefficients by employing our self-developed side-scattering lidar system based on charge-coupled device camera. During the experimental period from April 2013 to August 2014, four catalogs of aerosol backscattering coefficient profiles are found in the near ground. The continuous measurement is revealed by the contour plots measured during the whole night. These experimental results indicate that the aerosol backscattering coefficients in near ground are inhomogeneous and vary with altitude and time, which are very useful for the model researchers to study the regional air pollution and its climate impact.

  1. Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

    1997-01-01

    During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

  2. Multiwavelength Comparison of Modeled and Measured Remote Tropospheric Aerosol Backscatter Over Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Pueschel, R. F.; Srivastava, V.; Clarke, A. D.; Rothermel, J.; Spinhirne, J. D.; Menzies, R. T.

    1996-01-01

    Aerosol concentrations and size distributions in the middle and upper troposphere over the remote Pacific Ocean were measured with a forward scattering spectrometer probe (FSSP) on the NASA DC-8 aircraft during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. The FSSP size channels were recalibrated based on refractive index estimates from flight-level aerosol volatility measurements with a collocated laser optical particle counter (LOPC). The recalibrated FSSP size distributions were averaged over 100-s intervals, fitted with lo-normal distributions and used to calculate aerosol backscatter coefficients at selected wavelengths. The FSSP-derived backscatter estimates were averaged over 300-s intervals to reduce large random fluctuations. The smoothed FSSP aerosol backscatter coefficients were then compared with LOPC-derived backscatter values and with backscatter measured at or near flight level from four lidar systems operating at 0.53, 1.06, 9.11, 9.25, and 10.59 micrometers. Agreement between FSSP-derived and lidar-measured backscatter was generally best at flight level in homogeneous aerosol fields and at high backscatter values. FSSP data often underestimated low backscatter values especially at the longer wavelengths due to poor counting statistics for larger particles (greater than 0.8 micrometers diameter) that usually dominate aerosol backscatter at these wavelengths. FSSP data also underestimated backscatter at shorter wavelengths when particles smaller than the FSSP lower cutoff diameter (0.35 micrometers) made significant contributions to the total backscatter.

  3. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2004-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of backscattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The BUV aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the BUV data collected by a series of TOMS instruments. We will also discuss how the data from the OM1 instrument launched on July 15,2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OM1 and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train". The CALIPSO satellite is expected to join this constellation in mid 2005.

  4. Aerosol profiling by calibrated ceilometer data

    NASA Astrophysics Data System (ADS)

    Geiß, Alexander; Wiegner, Matthias

    2015-04-01

    Recently, networks of automated single-wavelength backscatter lidars ("ceilometers") were implemented, primarily by weather services. As a consequence, the potential of ceilometers to quantitatively determine the spatiotemporal distribution of atmospheric aerosols was investigated, to derive mixing layer heights for air quality studies and to assess optical properties. The main issues are the limited signal-to-noise ratio and the inherent problems of the calibration. We have studied several approaches for calibrating ceilometers, based on different numerical solutions and on auxiliary data of different remote sensing techniques. As a result, the backscatter coefficient can be determined with a relative accuracy of typically 10% and a time resolution in the order of 5 minutes. This parameter is used to estimate the mixing layer height by applying different techniques of averaging and pattern recognition. In this context, it is assumed that aerosols are a good tracer for the thermodynamic stratification of the troposphere. Our algorithm is fully automated and was tested for several commercially available ceilometers. For this purpose, a simplified version for non-calibrated ceilometers, based on the so called range corrected signal, was additionally developed. We used data of the CHM15k-x ceilometer (manufactured by Jenoptik) from more than 5 years of continuous operation by the LMU-MIM in Munich (Germany) to establish climatologies of mixing layer heights (MLH), cloud cover, cloud heights and vertical profiles of the backscatter coefficient. Among others, the mean diurnal cycle and the interannual variability of the MLH for different months were determined. Ceilometer derived MLH were also used to validate different parameterization of chemistry transport models and to validate forecasts of the dispersion of aerosol layers. For the latter applications backscatter coefficients are required. That means, a calibration of the ceilometers is mandatory.

  5. The deconvolution of aerosol backscattered optical pulses to obtain system-independent aerosol signatures

    NASA Astrophysics Data System (ADS)

    McGuire, D.; Conner, M.

    1981-06-01

    Means are discussed for extracting system-independent aerosol signatures from aerosol backscatter measurements obtained with a specific pencil beam active optical detection system. Such signatures are required before the backscatter data can be applied to various proposed optical fuze designs for determining their aerosol vulnerability and to the investigation of aerosol discrimination schemes. The measurement system, which has been used in numerous experiments to probe such aerosols as weather clouds and military smokes, is a short pulse GaAs laser probe (pulse width + or - 10 nanoseconds whose range sensitivity extends from near the system to beyond 10 meters. A computationally fast numerical deconvolution algorithm is devised together with a comprehensive supporting analysis. Both indicate that severe signal-to-noise ratio constraints apply to the achievement of meaningful superresolution. While the signal-to-noise ratios typical of recent measurements are likely to satisfy the severe constraints discovered, many of the earlier data are too noisy and thus require other signature determination methods.

  6. Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers

    NASA Astrophysics Data System (ADS)

    Kotthaus, Simone; O'Connor, Ewan; Münkel, Christoph; Charlton-Perez, Cristina; Haeffelin, Martial; Gabey, Andrew M.; Grimmond, C. Sue B.

    2016-08-01

    Ceilometer lidars are used for cloud base height detection, to probe aerosol layers in the atmosphere (e.g. detection of elevated layers of Saharan dust or volcanic ash), and to examine boundary layer dynamics. Sensor optics and acquisition algorithms can strongly influence the observed attenuated backscatter profiles; therefore, physical interpretation of the profiles requires careful application of corrections. This study addresses the widely deployed Vaisala CL31 ceilometer. Attenuated backscatter profiles are studied to evaluate the impact of both the hardware generation and firmware version. In response to this work and discussion within the CL31/TOPROF user community (TOPROF, European COST Action aiming to harmonise ground-based remote sensing networks across Europe), Vaisala released new firmware (versions 1.72 and 2.03) for the CL31 sensors. These firmware versions are tested against previous versions, showing that several artificial features introduced by the data processing have been removed. Hence, it is recommended to use this recent firmware for analysing attenuated backscatter profiles. To allow for consistent processing of historic data, correction procedures have been developed that account for artefacts detected in data collected with older firmware. Furthermore, a procedure is proposed to determine and account for the instrument-related background signal from electronic and optical components. This is necessary for using attenuated backscatter observations from any CL31 ceilometer. Recommendations are made for the processing of attenuated backscatter observed with Vaisala CL31 sensors, including the estimation of noise which is not provided in the standard CL31 output. After taking these aspects into account, attenuated backscatter profiles from Vaisala CL31 ceilometers are considered capable of providing valuable information for a range of applications including atmospheric boundary layer studies, detection of elevated aerosol layers, and model

  7. First results from the aerosol lidar and backscatter sonde intercomparison campaign STRAIT'1997 at table mountain facility during February-March 1997

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Gross, M. R.; Haner, D. A.; Kjome, N. T.; McDermid, I. S.; McGee, T. J.; Rosen, J. M.; Schaefer, H. - J.; Schrems, O.

    1998-01-01

    First results of an intercomparison measurement campaign between three aerosol lidar instruments and in-situ backscatter sondes performed at Table Mountain Facility (34.4 deg N, 117.7 deg E, 2280 m asl) in February-March 1997 are presented. During the campaign a total of 414 hours of lidar data were acquired by the Aerosol-Temperature-Lidar (ATL, Goddard Space Flight Center) the Mobile-aerosol-Raman-Lidar (MARL, Alfred Wegener Institute), and the TMF-Aerosol-Lidar (TAL, Jet Propulsion Laboratory), and four backscatter sondes were launched. From the data set altitude profiles of backscatter ratio and volume depolarization of stratospheric background aerosols at altitudes between 15 and 25 km and optically thin high-altitude cirrus clouds at altitudes below 13 km are derived. On the basis of a sulfuric acid aerosol model color ratio profiles obtained from two wavelength lidar data are compared to the corresponding profiles derived from the sonde observations. We find an excellent agreement between the in-situ and ATL lidar data with respect to backscatter and color ratio. Cirrus clouds were present on 16 of 26 nights during the campaign. Lidar observations with 17 minute temporal and 120-300 m spatial resolution indicate high spatial and temporal variability of the cirrus layers. Qualitative agreement is found between concurrent lidar measurements of backscatter ratio and volume depolarization.

  8. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various

  9. Aerosol Backscatter from Airborne Continuous Wave CO2 Lidars Over Western North America and the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1999-01-01

    Atmospheric aerosol backscatter, beta, variability gives a direct indication of aerosol loading. Since aerosol variability is governed by regional sources and sinks as well as affected by its transport due to meteorological conditions, it is important to characterize this loading at different locations and times. Lidars are sensitive instruments that can effectively provide high-resolution, large-scale sampling of the atmosphere remotely by measuring aerosol beta, thereby capturing detailed temporal and spatial variability of aerosol loading, Although vertical beta profiles are usually obtained by pulsed lidars, airborne-focused CW lidars, with high sensitivity and short time integration, can provide higher resolution sampling in the vertical, thereby revealing detailed structure of aerosol layers. During the 1995 NASA Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission, NASA MSFC airborne-focused CW CO2 Doppler lidars, operating at 9.1 and 10.6-micrometers wavelength, obtained high resolution in situ aerosol beta measurements to characterize aerosol variability. The observed variability in beta at 9.1-micrometers wavelength with altitude is presented as well as comparison with some pulsed lidar profiles.

  10. Visible and near infrared observation on the Global Aerosol Backscatter Experiment (GLOBE)

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Cavanaugh, John F.; Chudamani, S.; Bufton, Jack L.; Sullivan, Robert J.

    1991-01-01

    The Global Aerosol Backscatter Experiment (GLOBE) was intended to provide data on prevailing values of atmospheric backscatter cross-section. The primary intent was predicting the performance of spaceborne lidar systems, most notably the Laser Atmospheric Wind Sounder (LAWS) for the Earth Observing System (EOS). The second and related goal was to understand the source and characteristics of atmospheric aerosol particles. From the GLOBE flights, extensive data was obtained on the structure of clouds and the marine planetary boundary layer. A notable result for all observations is the consistency of the large increases in the aerosol scattering ratio for the marine boundary layer. Other results are noted.

  11. On the Feasibility of Studying Shortwave Aerosol Radiative Forcing of Climate Using Dual-Wavelength Aerosol Backscatter Lidar

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Winker, David M.; McCormick, M. Patrick; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The current low confidence in the estimates of aerosol-induced perturbations of Earth's radiation balance is caused by the highly non-uniform compositional, spatial and temporal distributions of tropospheric aerosols on a global scale owing to their heterogeneous sources and short lifetimes. Nevertheless, recent studies have shown that the inclusion of aerosol effects in climate model calculations can improve agreement with observed spatial and temporal temperature distributions. In light of the short lifetimes of aerosols, determination of their global distribution with space-borne sensors seems to be a necessary approach. Until recently, satellite measurements of tropospheric aerosols have been approximate and did not provide the full set of information required to determine their radiative effects. With the advent of active aerosol remote sensing from space (e.g., PICASSO-CENA), the applicability fo lidar-derived aerosol 180 deg -backscatter data to radiative flux calculations and hence studies of aerosol effects on climate needs to be investigated.

  12. The change of depolarization of backscattering light from the polar stratospheric aerosol layer

    NASA Technical Reports Server (NTRS)

    Iwasaka, Y.

    1985-01-01

    The change of polarization properties of scattered light strongly depends on the non-spherisity of target particles. It should be helpful information for the study of stratospheric aerosols to know the non-spherisity of stratospheric aerosol particles. The change of the total backscatter depolarization ratio of the stratospheric aerosol layer measured at Syowa Station (69.00 deg S, 39.35 deg E), Antarctica is described.

  13. GLOBE backscatter - Climatologies and mission results. [Global Backscatter Experiment

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Post, Madison J.

    1991-01-01

    The Global Backscatter Experiment (GLOBE) goals require intensive study of the global climatology of atmospheric aerosol backscatter at IR wavelengths. Airborne and ground-based lidars have been developed to measure atmospheric backscatter profiles at CO2 laser wavelengths. Descriptions of the calibration techniques and selected measurement results are presented.

  14. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar.

    PubMed

    Ansmann, A; Wandinger, U; Riebesell, M; Weitkamp, C; Michaelis, W

    1992-11-20

    Height profiles of the extinction and the backscatter coefficients in cirrus clouds are determined independently from elastic- and inelastic- (Raman) backscatter signals. An extended error analysis is given. Examples covering the measured range of extinction-to-backscatter ratios (lidar ratios) in ice clouds are presented. Lidar ratios between 5 and 15 sr are usually found. A strong variation between 2 and 20 sr can be observed within one cloud profile. Particle extinction coefficients determined from inelastic-backscatter signals and from elastic-backscatter signals by using the Klett method are compared. The Klett solution of the extinction profile can be highly erroneous if the lidar ratio varies along the measuring range. On the other hand, simple backscatter lidars can provide reliable information about the cloud optical depth and the mean cloud lidar ratio.

  15. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Klein Baltink, H.; Beirle, S.; Clémer, K.; Hendrick, F.; Henzing, B.; Irie, H.; de Leeuw, G.; Li, A.; Moerman, M. M.; van Roozendael, M.; Shaiganfar, R.; Wagner, T.; Wang, Y.; Xie, P.; Yilmaz, S.; Zieger, P.

    2016-07-01

    A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R>0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.

  16. Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Vaughan, Mark A.

    2006-01-01

    The extinction-to-backscatter ratio (S(sub a)) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. S(sub a) for the CALIPSO lidar will either be selected from a look-up table or calculated using the lidar measurements depending on the characteristics of aerosol layer. Whenever suitable lofted layers are encountered, S(sub a) is computed directly from the integrated backscatter and transmittance. In all other cases, the CALIPSO observables: the depolarization ratio, delta, the layer integrated attenuated backscatter, beta, and the mean layer total attenuated color ratio, gamma, together with the surface type, are used to aid in aerosol typing. Once the type is identified, a look-up-table developed primarily from worldwide observations, is used to determine the S(sub a) value. The CALIPSO aerosol models include desert dust, biomass burning, background, polluted continental, polluted dust, and marine aerosols.

  17. Improving the detection of wind fields from LIDAR aerosol backscatter using feature extraction

    NASA Astrophysics Data System (ADS)

    Bickel, Brady R.; Rotthoff, Eric R.; Walters, Gage S.; Kane, Timothy J.; Mayor, Shane D.

    2016-04-01

    The tracking of winds and atmospheric features has many applications, from predicting and analyzing weather patterns in the upper and lower atmosphere to monitoring air movement from pig and chicken farms. Doppler LIDAR systems exist to quantify the underlying wind speeds, but cost of these systems can sometimes be relatively high, and processing limitations exist. The alternative is using an incoherent LIDAR system to analyze aerosol backscatter. Improving the detection and analysis of wind information from aerosol backscatter LIDAR systems will allow for the adoption of these relatively low cost instruments in environments where the size, complexity, and cost of other options are prohibitive. Using data from a simple aerosol backscatter LIDAR system, we attempt to extend the processing capabilities by calculating wind vectors through image correlation techniques to improve the detection of wind features.

  18. Use of Probability Distribution Functions for Discriminating Between Cloud and Aerosol in Lidar Backscatter Data

    NASA Technical Reports Server (NTRS)

    Liu, Zhaoyan; Vaughan, Mark A.; Winker, Davd M.; Hostetler, Chris A.; Poole, Lamont R.; Hlavka, Dennis; Hart, William; McGill, Mathew

    2004-01-01

    In this paper we describe the algorithm hat will be used during the upcoming Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission for discriminating between clouds and aerosols detected in two wavelength backscatter lidar profiles. We first analyze single-test and multiple-test classification approaches based on one-dimensional and multiple-dimensional probability density functions (PDFs) in the context of a two-class feature identification scheme. From these studies we derive an operational algorithm based on a set of 3-dimensional probability distribution functions characteristic of clouds and aerosols. A dataset acquired by the Cloud Physics Lidar (CPL) is used to test the algorithm. Comparisons are conducted between the CALIPSO algorithm results and the CPL data product. The results obtained show generally good agreement between the two methods. However, of a total of 228,264 layers analyzed, approximately 5.7% are classified as different types by the CALIPSO and CPL algorithm. This disparity is shown to be due largely to the misclassification of clouds as aerosols by the CPL algorithm. The use of 3-dimensional PDFs in the CALIPSO algorithm is found to significantly reduce this type of error. Dust presents a special case. Because the intrinsic scattering properties of dust layers can be very similar to those of clouds, additional algorithm testing was performed using an optically dense layer of Saharan dust measured during the Lidar In-space Technology Experiment (LITE). In general, the method is shown to distinguish reliably between dust layers and clouds. The relatively few erroneous classifications occurred most often in the LITE data, in those regions of the Saharan dust layer where the optical thickness was the highest.

  19. Study of MPLNET-Derived Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version 3 Backscatter and Extinction Products

    NASA Technical Reports Server (NTRS)

    Misra, Amit; Tripathi, S. N.; Kaul, D. S.; Welton, Ellsworth J.

    2012-01-01

    The level 2 aerosol backscatter and extinction profiles from the NASA Micropulse Lidar Network (MPLNET) at Kanpur, India, have been studied from May 2009 to September 2010. Monthly averaged extinction profiles from MPLNET shows high extinction values near the surface during October March. Higher extinction values at altitudes of 24 km are observed from April to June, a period marked by frequent dust episodes. Version 3 level 2 Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol profile products have been compared with corresponding data from MPLNET over Kanpur for the above-mentioned period. Out of the available backscatter profiles, the16 profiles used in this study have time differences less than 3 h and distances less than 130 km. Among these profiles, four cases show good comparison above 400 m with R2 greater than 0.7. Comparison with AERONET data shows that the aerosol type is properly identified by the CALIOP algorithm. Cloud contamination is a possible source of error in the remaining cases of poor comparison. Another source of error is the improper backscatter-to-extinction ratio, which further affects the accuracy of extinction coefficient retrieval.

  20. Wavelength dependence of coherent and incoherent satellite-based lidar measurements of wind velocity and aerosol backscatter

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Huffaker, R. M.

    1986-01-01

    The results are presented of a capability study of Earth orbiting lidar systems, at various wavelengths from 1.06 to 10.6 microns, for the measurement of wind velocity and aerosol backscatter, and for the detection of clouds. Both coherent and incoherent lidar systems were modeled and compared for the aerosol backscatter and cloud detection applications.

  1. Backscatter Modeling at 2.1 Micron Wavelength for Space-Based and Airborne Lidars Using Aerosol Physico-Chemical and Lidar Datasets

    NASA Technical Reports Server (NTRS)

    Srivastava, V.; Rothermel, J.; Jarzembski, M. A.; Clarke, A. D.; Cutten, D. R.; Bowdle, D. A.; Spinhirne, J. D.; Menzies, R. T.

    1999-01-01

    Space-based and airborne coherent Doppler lidars designed for measuring global tropospheric wind profiles in cloud-free air rely on backscatter, beta from aerosols acting as passive wind tracers. Aerosol beta distribution in the vertical can vary over as much as 5-6 orders of magnitude. Thus, the design of a wave length-specific, space-borne or airborne lidar must account for the magnitude of 8 in the region or features of interest. The SPAce Readiness Coherent Lidar Experiment under development by the National Aeronautics and Space Administration (NASA) and scheduled for launch on the Space Shuttle in 2001, will demonstrate wind measurements from space using a solid-state 2 micrometer coherent Doppler lidar. Consequently, there is a critical need to understand variability of aerosol beta at 2.1 micrometers, to evaluate signal detection under varying aerosol loading conditions. Although few direct measurements of beta at 2.1 micrometers exist, extensive datasets, including climatologies in widely-separated locations, do exist for other wavelengths based on CO2 and Nd:YAG lidars. Datasets also exist for the associated microphysical and chemical properties. An example of a multi-parametric dataset is that of the NASA GLObal Backscatter Experiment (GLOBE) in 1990 in which aerosol chemistry and size distributions were measured concurrently with multi-wavelength lidar backscatter observations. More recently, continuous-wave (CW) lidar backscatter measurements at mid-infrared wavelengths have been made during the Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment in 1995. Using Lorenz-Mie theory, these datasets have been used to develop a method to convert lidar backscatter to the 2.1 micrometer wavelength. This paper presents comparison of modeled backscatter at wavelengths for which backscatter measurements exist including converted beta (sub 2.1).

  2. Stand-off detection of aerosols using mid-infrared backscattering Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Maidment, L.; Zhang, Z.; Bowditch, M. D.; Howle, C. R.; Reid, D. T.

    2016-10-01

    The spectrum of mid-infrared light scattered from an actively illuminated aerosol was used to distinguish between different chemicals. Using spectrally broad illumination from an optical parametric oscillator covering 3.2 - 3.55 μm, characteristic absorption features of two different chemicals were detected, and two similar molecules were clearly distinguished using the spectra of backscattered light from each chemical aerosol.

  3. Intercomparison of Remote and Flight Level Measured Aerosol Backscatter Coefficient During GLOBE 2 Pacific Survey Mission

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Spinhime, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.

    1998-01-01

    Aerosol backscatter coefficient data are examined from two local flights undertaken during NASA's GLObal Backscatter Experiment (GLOBE) in May - June, 1990. During each of these two flights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provides an ideal opportunity to allow flight level measured or modeled aerosol backscafter to be compared with pulsed lidar aerosol backscafter data that were obtained at these same altitudes either earlier or later than the flight level measurements. Aerosol backscafter comparisons were made at 1.06-, 9.11- and 9.25-mm wavelengths, using data from three lidar systems and two aerosol optical counters. The best agreement between all sensor's was found in the altitude region below 7 km where backscafter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscafter data at 1.06- and 9.25-mm wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters. Possible reasons are offered to explain this discrepancy. During the Japan local flight, microphysics analysis revealed: (1) evidence of a strong advected seasalt aerosol plume from the marine boundary layer, and (2) where backscatter was low, the large lidar sampling volume included many large particles which were of different chemical composition to the small particle category sampled by the particle counters.

  4. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  5. Comparison of the water vapor and aerosol profiles

    NASA Astrophysics Data System (ADS)

    Penner, I. E.; Arshinov, M. Yu.; Balin, Yu. S.; Belan, B. D.; Voronin, B. A.; Kokhanenko, G. P.

    2014-11-01

    Analysis of the contents of water vapor and aerosol in the atmosphere measured by means of different instruments was performed based on the results of the comprehensive aerosol experiment carried out at the Institute of Atmospheric optics in May 2012. The data obtained using remote (lidar) and contact (balloon) methods were used. They are capable of obtaining the vertical profiles of the measured parameters with high spatial resolution. Lidar measurements of the water vapor content in the boundary layer of the atmosphere by Raman method have shown very good agreement with the data of measurements by balloon. Simultaneous lidar measurements of backscattering and mixing ratio of water vapor in the atmosphere give significant positive correlation of the contents of water vapor and aerosol in the layers.

  6. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2012-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of back scattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The buv aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the buv data collected by a series of TOMS instruments. We will also discuss how the data from the OMI instrument launched on July 15, 2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OMI and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train".

  7. Laser remote sensing of tropospheric aerosol over Southern Ireland using a backscatter Raman LIDAR

    NASA Astrophysics Data System (ADS)

    Ruth, Albert A.; Acheson, Karen; Apituley, Arnoud; Chaikovsky, Anatoli; Nicolae, Doina; Ortiz-Amezcua, Pablo; Stoyanov, Dimitar; Trickl, Thomas

    2016-04-01

    Raman backscatter coefficients, extinction coefficients and lidar ratios were measured with a ground based Raman lidar system at University College Cork, Ireland, during the periods of July 2012 - August 2012, April 2013 - December 2013 and March 2014 - May 2014. Statistical analysis of these parameters in this time provided information about seasonal effects of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer. The mean of the altitude of the top of the planetary boundary layer over these time periods is 950 ± 302 m. The values are larger in summer, 1206 ± 367 m, than in winter, 735 m. The altitude of the top of the planetary boundary layer measured at Cork is lower than most EARLINET stations. Raman backscatter coefficients above and altitude of 2 km are highest in summer and spring where the values are greater than 0.28 Mm-1 sr-1. Winter values of Raman backscatter coefficient are less than 0.06 Mm-1 sr-1. These seasonal effects are consistent with most EARLINET stations. Large aerosol loads were detected in July 2013 due to a Canadian forest fire event. HYSPLIT air-mass back trajectory models were used to trace the origin of the detected aerosol layers. The aerosol forecast model, MACC, was used to further investigate and verify the propagation of the smoke. The Lidar ratio values and Klett and Raman backscatter coefficients at Cork, for the 4th July, the 7th to 9th of July and the 11th July were compared with observations at Cabauw, Minsk, Granada, Bucharest, Sofia and Garmisch. Lidar ratio values for the smoke detected at Cork were determined to be between 33 sr and 62 sr. The poster will discuss the seasonal changes of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer at Cork. An investigation of a Canadian forest fire event measured at Cork will be compared with other data from the EARLINET database.

  8. Developing a portable, autonomous aerosol backscatter lidar for network or remote operations

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2013-03-01

    Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operated continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd : YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an Internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar

  9. Developing a portable, autonomous aerosol backscatter lidar for network or remote operations

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2012-11-01

    Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well-suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operate continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd:YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar network

  10. Electronic cigarette solutions and resultant aerosol profiles.

    PubMed

    Herrington, Jason S; Myers, Colton

    2015-10-30

    Electronic cigarettes (e-cigarettes) are growing in popularity exponentially. Despite their ever-growing acceptance, their aerosol has not been fully characterized. The current study focused on evaluating e-cigarette solutions and their resultant aerosol for potential differences. A simple sampling device was developed to draw e-cigarette aerosol into a multi-sorbent thermal desorption (TD) tube, which was then thermally extracted and analyzed via a gas chromatography (GC) mass spectrometry (GC-MS) method. This novel application provided detectable levels of over one hundred fifteen volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) from a single 40mL puff. The aerosol profiles from four commercially available e-cigarettes were compared to their respective solution profiles with the same GC-MS method. Solution profiles produced upwards of sixty four unidentified and identified (some only tentatively) constituents and aerosol profiles produced upwards of eighty two compounds. Results demonstrated distinct analyte profiles between liquid and aerosol samples. Most notably, formaldehyde, acetaldehyde, acrolein, and siloxanes were found in the aerosol profiles; however, these compounds were never present in the solutions. These results implicate the aerosolization process in the formation of compounds not found in solutions; have potential implications for human health; and stress the need for an emphasis on electronic cigarette aerosol testing.

  11. Retrieval of UV Aerosol Index using backscattered monochromatic radiance measured by GOSAT CAI

    NASA Astrophysics Data System (ADS)

    Go, S.; Kim, J.; KIM, M.; Park, S. S.

    2014-12-01

    UV Aerosol Index(AI) using backscattered radiance at a single channel has been retrieved. In the current UV AI algorithm, two UV channels are used to contrast the absorbing aerosol loaded atmosphere to Rayleigh scattering condition. There have been needs to retrieve information of absorbing aerosol from a single UV channel, such as GOSAT CAI. 30-day minimum composite method, however, makes the process possible to construct the condition with the use of only single UV channel. Also, absorption by aerosol changes with respect to AOD and wavelength for different aerosol types. Therefore, single channel aerosol index(SAI) can detect absorbing aerosol qualitatively. Correlation coefficient of SAI to current UV AI indicate significant value, showing possibility of detecting highly absorbing aerosols. The application of a cloud screening makes the presence of absorbing aerosols even more clear. Radiative transfer calculations using VLIDORT were performed to test the sensitivity of SAI and UV AI to aerosol optical properties, showing that highly absorbing aerosol results in meaningful SAI. Results from dust case study in East Asia show reasonable performance of SAI for the region with single scattering albedo below 0.90. This study concludes with a comparison of SAI from GOSAT lv.1b data to OMI UVAI data, where reasonable agreement and low false detection was found for dust cases in East Asia. The SAI value of -0.2 to 0.0 from GOSAT-CAI was comparable to OMI dust threshold value of 0.7. These findings corroborate the suitability of SAI as a for detecting absorbing aerosols for satellite instrument with a single UV channel.

  12. A tunable coherent CO2 lidar for measurements of atmospheric aerosol backscatter and attenuation

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.

    1983-01-01

    A coherent laser radar system using a grating-tunable, injection-locked TEA-CO2 transmitter is being used to measure the altitude dependence of atmospheric aerosol backscatter and attenuation at a variety of CO2 laser wavelengths in the 9-11 micron region. Injection control of the TEA-CO2 laser allows one to obtain Single-Longitudinal-Mode (SLM) pulses which will follow the frequency of the injected radiation if the TEA laser cavity length is adjusted so that a cavity resonance is in proximity with the injected signal frequency, and if various additional conditions are satisfied. Requirements for generation of SLM pulses in this manner from a TEA CO2 laser with an unstable resonator cavity will be discussed. Procedures used for quantitative range-gated measurements of aerosol backscatter and attenuation will also be discussed.

  13. Backscatter laser depolarization studies of simulated stratospheric aerosols: Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1988-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystallization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  14. Backscatter laser depolarization studies of simulated stratospheric aerosols - Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1989-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystalization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  15. Use of aerosol microphysical measurements to model IR backscatter in support of GLOBE

    NASA Technical Reports Server (NTRS)

    Patterson, Edward M.; Bowdle, David A.

    1991-01-01

    Data on the concentration and composition of free tropospheric aerosol over the Pacific Ocean, collected during the GAMETAG program in 1977-1978 (Davis, 1980 and Patterson et al., 1980) are used to model values of aerosol optical extinction coefficients (sigma) at two wavelengths (0.55 and 1 micron) and values of volume backscatter coefficients (beta) at four wavelengths (1 micron, 9.11 microns, 9.25 microns, and 10.6 microns) and to investigate the relationship between these parameters. The mass concentrations inferred from the GAMETAG measurements with optical particle spectrometers agreed with the results of simultaneous chemical measurements. The study of the relationships among the optical parameters indicates that visible and near-visible values of beta and sigma may be useful in predicting 9.11- and 10.6-micron backscatter.

  16. Backscatter and depolarization measurements of aerosolized biological simulants using a chamber lidar system

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Thrush, Evan P.; Thomas, Michael E.; Santarpia, Josh; Quizon, Jason; Carter, Christopher C.

    2010-04-01

    To ensure agent optical cross sections are well understood from the UV to the LWIR, volume integrated measurements of aerosolized agent material at a few key wavelengths is required to validate existing simulations. Ultimately these simulations will be used to assess the detection performance of various classes of lidar technology spanning the entire range of the optical spectrum. The present work demonstrates an optical measurement architecture based on lidar allowing the measurement of backscatter and depolarization ratio from biological aerosols released in a refereed, 1-m cubic chamber. During 2009, various upgrades have been made to the chamber LIDAR system, which operates at 1.064 μm with sub nanosecond pulses at a 120 Hz repetition rate. The first build of the system demonstrated a sensitivity of aerosolized Bacillus atrophaeus (BG) on the order of 5×105 ppl with 1 GHz InGaAs detectors. To increase the sensitivity and reduce noise, the InGaAs detectors were replaced with larger-area silicon avalanche photodiodes for the second build of the system. In addition, computer controlled step variable neutral density filters are now incorporated to facilitate calibrating the system for absolute back-scatter measurements. Calibrated hard target measurements will be combined with data from the ground truth instruments for cross-section determination of the material aerosolized in the chamber. Measured results are compared to theoretical simulations of cross-sections.

  17. Use of aerosol microphysical measurements to model IR backscatter in support of GLOBE

    SciTech Connect

    Patterson, E.M. ); Bowdle, D.A. )

    1991-03-20

    The authors have used the GAMETAG Pacific mid-tropospheric aerosol data set to calculate aerosol optical extinction coefficients ({sigma}) at two wavelengths (0.55 {mu}m and 1 {mu}m) and volume backscatter coefficients ({beta}) at 4 wavelengths (1 {mu}m, 9.11 {mu}m, 9.25 {mu}m, and 10.6 {mu}m). At an altitude of 5 km over the Pacific, northern hemispheric mean values of {beta} for 10.6 {mu} are near 10{sup {minus}10} m{sup {minus}1}sr{sup {minus}1} at an altitude of 5 km, with southern hemispheric values approximately an order of magnitude lower. The 9.11 {mu}m values are roughly a factor of 3 higher than the 10.6 {mu}m values; 9.25 {mu}m values are approximately the same as 9.11 {mu}m values. For the data averaging times of 5-10 min are necessary for the calculated {beta} values as seen by a satellite lidar system. Under the assumptions of this study the molecular form of the sulfate aerosol is not a major determining factor in the calculated {beta} values at 10.6 {mu}m but could be significant at 9.11 {mu}m. A study of relationships among the optical parameters indicates that visible and near-visible values of {beta} and {sigma} may be useful in predicting 9.11- and 10.6 {mu}m backscatter, so that short wavelength aerosol data bases form satellites and Nd-YAG lidars may be useful in extending the data base of direct backscatter measurements at CO{sub 2} wavelengths.

  18. Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Balin, I.; Serikov, I.; Bobrovnikov, S.; Simeonov, V.; Calpini, B.; Arshinov, Y.; van den Bergh, H.

    2004-10-01

    Implementation of the pure-rotational Raman (PRR) lidar method for simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients is reported. The isolation of two wavelength domains of the PRR spectrum and the suppression of the elastically scattered light is carried out by a double-grating polychromator. Experiments involving elastic backscatter from dense clouds and a solid target confirm the high level of suppression of the elastic light in the corresponding acquisition channels of the two selected PRR domains. Calibration of the temperature channel was done both by comparison with an experimentally verified atmospheric temperature model profile and by inter-comparison with radiosondes. Night-time temperature profiles with high vertical resolution were obtained up to the lower stratosphere. The PRR temperature profile combined with the water vapor mixing ratio obtained from the ro-vibrational Raman channel is used to estimate the relative humidity.

  19. Aerosol size distribution, composition, and CO sub 2 backscatter at Mauna Loa Observatory

    SciTech Connect

    Clarke, A.D.; Porter, J.N. )

    1991-03-20

    Continuous measurements of aerosol size distributions were obtained during Jan-Mar and Nov-Dec periods of 1988 at Mauna Loa Observatory, Hawaii. These periods were chosen in order to characterize aerosol physiochemistry during periods representative of low-dust atmospheric conditions and periods associated with appreciable Asian dust transport to that site. Size distributions for particles with diameters between 0.15 and 7.6 {mu}m were accumulated in 256 size bins of a laser optical particle counter for 3-hour intervals during most of the period. The aerosol sample stream was heated to selected temperatures in order to provide size-discriminated measurements of aerosol volatility. Resulting data were used to assess the variability in aerosol concentrations and properties related to aerosol backscatter values at a wavelength of 10.6 {mu}m, {beta}{sub CO{sub 2}}, in the mid-troposphere. Low aerosol concentrations, considered representative of mid-tropospheric air, occurred in downslope flow between midnight and sunrise. Measurements for these time periods suggest that {beta}{sub CO{sub 2}} varied from a low of about 5 {times} 10{sup {minus}12}m{sup {minus}1}sr{sup {minus}1} to a high of 5 {times} 10{sup {minus}8}m{sup {minus}1}sr{sup {minus}1}. Coarse particles with diameters between 1.0 and 5.0 {mu}m account for most of the derived values of {beta}{sub CO{sub 2}} at all but the highest and lowest aerosol mass concentrations. Volatile aerosol appears to dominate aerosol mass during the cleanest periods but was a small fraction of the total during dust events. The authors estimate that minimum values for {beta}{sub CO{sub 2}} at about 8 km should usually fall in the range of 1-3 {times} 10{sup {minus}12}m{sup {minus}1}sr{sup {minus}1} and be dominated by a sulfate aerosol.

  20. Use of Lidar Derived Optical Extinction and Backscattering Coefficients Near Cloud Base to Explore Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonhgua; Gross, Barry; Moshary, Fred

    2016-06-01

    Combination of microwave radiometer (MWR) and mutlifilter rotating shadowband radiometer (MFRSR) measurement data together with SBDART radiative transfer model to compute cloud optical depth (COD) and cloud droplet effective radius (Reff). Quantify the first aerosol indirect effect using calculated Reff and aerosol extinction from Raman lidar measurement in urban coastal region. Illustrate comparison between ground-based and satellite retrievals. Demonstrate relationship between surface aerosol (PM2.5) loading and Reff. We also explain the sensitivity of aerosol-cloud-index (ACI) depend on the aerosol layer from cloud base height. Potential used of less noisy elastic backscattering to calculate the ACI instead of using Raman extinction. We also present comparison of elastic backscattering and Raman extinction correlation to Reff.

  1. Airborne Lidar Observations of Tropospheric Aerosols during the GLOBE Pacific Circumnavigation Missions of 1989 and 1990

    NASA Technical Reports Server (NTRS)

    Menzies, R.; Tratt, D.

    1995-01-01

    Tropospheric and lower stratospheric aerosol backscatter profiles were obtained with an airborne backscatter lidar during the NASA Globe Backscatter Experiment (GLOBE) missions in November 1989 and May/June 1990.

  2. Aerosol backscatter measurements at 10.6 microns with airborne and ground-based CO2 Doppler lidars over the Colorado High Plains. I - Lidar intercomparison

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.; Rothermel, Jeffry; Vaughan, J. Michael; Brown, Derek W.; Post, Madison J.

    1991-01-01

    An airborne continuous-wave (CW) focused CO2 Doppler lidar and a ground-based pulsed CO2 Doppler lidar were to obtain seven pairs of comparative measurements of tropospheric aerosol backscatter profiles at 10.6-micron wavelength, near Denver, Colorado, during a 20-day period in July 1982. In regions of uniform backscatter, the two lidars show good agreement, with differences usually less than about 50 percent near 8-km altitude and less than a factor of 2 or 3 elsewhere but with the pulsed lidar often lower than the CW lidar. Near sharp backscatter gradients, the two lidars show poorer agreement, with the pulsed lidar usually higher than the CW lidar. Most discrepancies arise from a combination of atmospheric factors and instrument factors, particularly small-scale areal and temporal backscatter heterogeneity above the planetary boundary layer, unusual large-scale vertical backscatter structure in the upper troposphere and lower stratosphere, and differences in the spatial resolution, detection threshold, and noise estimation for the two lidars.

  3. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  4. Two-wavelength backscattering lidar for stand off detection of aerosols

    NASA Astrophysics Data System (ADS)

    Mierczyk, Zygmunt; Zygmunt, Marek; Gawlikowski, Andrzej; Gietka, Andrzej; Kaszczuk, Miroslawa; Knysak, Piotr; Mlodzianko, Andrzej; Muzal, Michal; Piotrowski, Wiesław; Wojtanowski, Jacek

    2008-10-01

    Following article presents LIDAR for stand off detection of aerosols which was constructed in Institute of Optoelectronics in Military University of Technology. LIDAR is a DISC type system (DIfferential SCattering) and is based on analysis of backscattering signal for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) - the first and the second harmonic of Nd:YAG laser. Optical receiving system is consisted of aspherical mirror lens, two additional mirrors and a system of interference filters. In detection system of LIDAR a silicon avalanche photodiode and two different amplifiers were used. Whole system is mounted on a specialized platform designed for possibility of LIDAR scanning movements. LIDAR is computer controlled. The compiled software enables regulation of the scanning platform work, gain control, and control of data processing and acquisition system. In the article main functional elements of LIDAR are shown and typical parameters of system work and construction are presented. One presented also first results of research with use of LIDAR. The aim of research was to detect and characterize scattering aerosol, both natural and anthropogenic one. For analyses of natural aerosols, cumulus cloud was used. For analyses of anthropogenic aerosols one used three various pyrotechnic mixtures (DM11, M2, M16) which generate smoke of different parameters. All scattering centers were firstly well described and theoretical analyses were conducted. Results of LIDAR research were compared with theoretical analyses and general conclusions concerning correctness of LIDAR work and its application were drawn.

  5. Extinction-to-Backscatter Ratios of Lofted Aerosol Layers Observed During the First Three Months of CALIPSO Measurements

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Vaughan, Mark A.; Liu, Zhaoyan; Hu, Yongxiang; Reagan, John A.; Winker, David M.

    2007-01-01

    Case studies from the first three months of the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) measurements of lofted aerosol layers are analyzed using transmittance [Young, 1995] and two-wavelength algorithms [Vaughan et al., 2004] to determine the aerosol extinction-to-backscatter ratios at 532 and 1064 nm. The transmittance method requires clear air below the layer so that the transmittance through the layer can be determined. Suitable scenes are selected from the browse images and clear air below features is identified by low 532 nm backscatter signal and confirmed by low depolarization and color ratios. The transmittance and two-wavelength techniques are applied to a number of lofted layers and the extinction-to-backscatter ratios are compared with values obtained from the CALIPSO aerosol models [Omar et al., 2004]. The results obtained from these studies are used to adjust the aerosol models and develop observations based extinction-to-backscatter ratio look-up tables and phase functions. Values obtained by these techniques are compared to Sa determinations using other independent methods with a goal of developing probability distribution functions of aerosol type-specific extinction to backscatter ratios. In particular, the results are compared to values determined directly by the High Spectral Resolution Lidar (HSRL) during the CALIPSO CloudSat Validation Experiments (CCVEX) and Sa determined by the application of the two-wavelength lidar Constrained Ratio Aerosol Model-fit (CRAM) retrieval approach [Cattrall et al., 2005; Reagan et al., 2004] to the HSRL data. The results are also compared to values derived using the empirical relationship between the multiple-scattering fraction and the linear depolarization ratio by using Monte Carlo simulations of water clouds [Hu et al., 2006].

  6. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  7. Scanning Backscatter Lidar Observations for Characterizing 4-D Cloud and Aerosol Fields to Improve Radiative Transfer Parameterizations

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.

    2005-01-01

    dimensions. HARLIE was used in a ground-based configuration in several recent field campaigns. Principal data products include aerosol backscatter profiles, boundary layer heights, entrainment zone thickness, cloud fraction as a function of altitude and horizontal wind vector profiles based on correlating the motions of clouds and aerosol structures across portions of the scan. Comparisons will be made between various cloud detecting instruments to develop a baseline performance metric.

  8. Retrieval of Aerosol Profiles using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Selami; Frieß, Udo; Apituley, Arnoud; Henzing, Bas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Adam, Mariana; Putaud, Jean-Philippe; Zieger, Paul; Platt, Ulrich

    2010-05-01

    Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) is a well established measurement technique to derive atmospheric trace gas profiles. Using MAX-DOAS measurements of trace gases with a known vertical profile, like the oxygen-dimer O4, it is possible to retrieve information on atmospheric aerosols. Based on the optimal estimation method, we have developed an algorithm which fits simultaneously measured O4 optical densities and relative intensities at several wavelengths and elevation angles to values simulated by a radiative transfer model. Retrieval parameters are aerosol extinction profile and optical properties such as single scattering albedo, phase function and Angström exponent. In 2008 and 2009 several intercomparison campaigns with established aerosol measurement techniques took place in Cabauw/Netherlands, Melpitz/Germany, Ispra/Italy and Leipzig/Germany, where simultaneous DOAS, lidar, Sun photometer and Nephelometer measurements were performed. Here we present results of the intercomparisons for cloud free conditions. The correlation of the aerosol optical thickness retrieved by the DOAS technique and the Sun photometer shows coefficients of determination from 0.96 to 0.98 and slopes from 0.94 to 1.07. The vertical structure of the DOAS retrieved aerosol extinction profiles compare favourably with the structures seen by the backscatter lidar. However, the vertical spatial development of the boundary layer is reproduced with a lower resolution by the DOAS technique. Strategies for the near real-time retrieval of trace gas profiles, aerosol profiles and optical properties will be discussed as well.

  9. Aerosol measurements over the Pacific Ocean in support of the IR aerosol backscatter program

    NASA Technical Reports Server (NTRS)

    Prospero, Joseph M.; Savoie, Dennis L.

    1995-01-01

    The major efforts under NASA contract NAG8-841 included: (1) final analyses of the samples collected during the first GLOBE survey flight that occurred in November 1989 and collections and analysis of aerosol samples during the second GLOBE survey flight in May and June 1990. During the first GLOBE survey flight, daily samples were collected at four stations (Midway, Rarotonga, American Samoa, and Norfolk Island) throughout the month of November 1989. Weekly samples were collected at Shemya, Alaska, and at Karamea, New Zealand. During the second GLOBE survey flight, daily samples were collected at Midway, Oahu, American Samoa, Rarotonga, and Norfolk Island; weekly samples were collected at Shemya. These samples were all analyzed for sodium (sea-salt), chloride, nitrate, sulfate, and methanesulfonate at the University of Miami and for aluminum at the University of Rhode Island (under a subcontract). (2) Samples continued to be collected on a weekly basis at all stations during the periods between and after the survey flights. These weekly samples were also analyzed at the University of Miami for the suite of water-soluble species. (3) In August 1990, the results obtained from the above studies were submitted to the appropriate personnel at NASA Marshall Space Flight Center to become part of the GLOBE data base for comparison with data from instruments used aboard the aircraft. In addition, the data will be compared with data previously obtained at these stations as part of the Sea-Air Exchange (SEAREX) Program. This comparison will provide valuable information on the representativeness of the periods in terms of the longer term aerosol climatology over the Pacific Ocean. (4) Several publications have been written using data from this grant. The data will continue to be used in the future as part of a continuing investigation of the long-term trends and interannual variations in aerosol species concentrations over the Pacific Ocean.

  10. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    NASA Astrophysics Data System (ADS)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  11. Intercomparison of Pulsed Lidar Data with Flight Level CW Lidar Data and Modeled Backscatter from Measured Aerosol Microphysics Near Japan and Hawaii

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Spinhirne, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.

    1998-01-01

    Aerosol backscatter coefficient data were examined from two nights near Japan and Hawaii undertaken during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. During each of these two nights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provided an ideal opportunity to allow flight level focused continuous wave (CW) lidar backscatter measured at 9.11-micron wavelength and modeled aerosol backscatter from two aerosol optical counters to be compared with pulsed lidar aerosol backscatter data at 1.06- and 9.25-micron wavelengths. The best agreement between all sensors was found in the altitude region below 7 km, where backscatter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscatter data at 1.06- and 9.25-micron wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters, suggesting sample volume effects were responsible for this. Aerosol microphysics analysis of data near Japan revealed a strong sea-salt aerosol plume extending upward from the marine boundary layer. On the basis of sample volume differences, it was found that large particles were of different composition compared with the small particles for low backscatter conditions.

  12. Thin film depth profiling using simultaneous particle backscattering and nuclear resonance profiling

    NASA Astrophysics Data System (ADS)

    Barradas, N. P.; Mateus, R.; Fonseca, M.; Reis, M. A.; Lorenz, K.; Vickridge, I.

    2010-06-01

    We report an important extension to the DataFurnace code for Ion Beam Analysis which allows users to simultaneously and self-consistently analyse Rutherford (RBS) or non-Rutherford (EBS) elastic backscattering together with particle-induced gamma-ray (PIGE) spectra. We show that the code works correctly with a well-known sample. Previously it has not been feasible to self-consistently treat PIGE and RBS/EBS data to extract the depth profiles. The PIGE data can be supplied to the code in the usual way as counts versus beam energy, but the differential cross-sections for the PIGE reaction are required. We also compared the results obtained by the new routine with high resolution narrow resonance profiling (NRP) simulations obtained with the stochastic model of energy loss.

  13. Application of HARLIE Measurements in Mesoscale Studies: Measurements of Aerosol Backscatter and Winds During A Gust Front

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Miller, David; Schwemmer, Geary; Starr, David OC (Technical Monitor)

    2001-01-01

    Lidar atmospheric systems have required large telescope for receiving atmospheric backscatter signals. Thus, the relative complexity in size and ease of operation has limited their wider use in the atmospheric science and meteorology community. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) uses a scanning holographic receiver and demonstrates that these issues can be overcome. HARLIE participated at the DOE-ARM Southern Great Plains site (CART) during the Water Vapor Intensive Operation Period (WVIOP2000) held September-October 2000. It provided exceptional high temporal and spatial resolution measurements of aerosol and cloud backscatter in three dimensions. HARLIE recorded over 110 hours of data were recorded on 16 days between 17 September and 6 October 2000. Placed in a ground-based trailer for upward looking scanning measurements of clouds and aerosols, HARLIE provided a unique record of time-resolved atmospheric backscatter at 1-micron wavelength. The conical scanning lidar measures atmospheric backscatter on the surface of an inverted 90 degree (full angle) cone up to an altitude of 20 km, 360-degree scans having spatial resolutions of 20 meters in the vertical and 1 degree in azimuth were obtained every 36 seconds during the daily, operating period. In this study we present highlights of HARLIE-based measurements of the boundary layer and cloud parameters as well as atmospheric wind vectors where there is sufficiently resolved structure in the backscatter. In particular we present data and discussions from a bore-front case observed on 23 September 2000.

  14. Elastic back-scattering patterns via particle surface roughness and orientation from single trapped airborne aerosol particles

    NASA Astrophysics Data System (ADS)

    Fu, Richard; Wang, Chuji; Muñoz, Olga; Videen, Gorden; Santarpia, Joshua L.; Pan, Yong-Le

    2017-01-01

    We demonstrate a method for simultaneously measuring the back-scattering patterns and images of single laser-trapped airborne aerosol particles. This arrangement allows us to observe how the back-scattering patterns change with particle size, shape, surface roughness, orientation, etc. The recoded scattering patterns cover the angular ranges of θ=167.7-180° (including at 180° exactly) and ϕ=0-360° in spherical coordinates. The patterns show that the width of the average speckle intensity islands or rings is inversely proportional to particle size and how the shape of these intensity rings or islands also depends on the surface roughness. For an irregularly shaped particle with substantial roughness, the back-scattering patterns are formed with speckle intensity islands, the size and orientations of these islands depend more on the overall particle size and orientation, but have less relevance to the fine alteration of the surface structure and shapes. The back-scattering intensity at 180° is very sensitive to the particle parameters. It can change from a maximum to a minimum with a change of 0.1% in particle size or refractive index. The method has potential use in characterizing airborne aerosol particles, and may be used to provide back-scattering information for LIDAR applications.

  15. Comparison of aerosol backscatter and wind field estimates from the REAL and the SAMPLE

    NASA Astrophysics Data System (ADS)

    Mayor, Shane D.; Dérian, Pierre; Mauzey, Christopher F.; Spuler, Scott M.; Ponsardin, Patrick; Pruitt, Jeff; Ramsey, Darrell; Higdon, Noah S.

    2015-09-01

    Although operating at the same near-infrared 1.5- m wavelength, the Raman-shifted Eye-safe Aerosol Lidar (REAL) and the Scanning Aerosol Micro-Pulse Lidar-Eye-safe (SAMPLE) are very different in how they generate and detect laser radiation. We present results from an experiment where the REAL and the SAMPLE were operated side-by-side in Chico, California, in March of 2015. During the non-continuous, eleven day test period, the SAMPLE instrument was operated at maximum pulse repetition frequency (15 kHz) and integrated over the interpulse period of the REAL (0.1 s). Operation at the high pulse repetition frequency resulted in second trip echoes which contaminated portions of the data. The performance of the SAMPLE instrument varied with background brightness--as expected with a photon counting receiver|--yet showed equal or larger backscatter intensity signal to noise ratio throughout the intercomparison experiment. We show that a modest low-pass filter or smooth applied to the REAL raw waveforms (that have 5x higher range resolution) results in significant increases in raw signal-to-noise ratio and image signal-to-noise ratio--a measure of coherent aerosol feature content in the images resulting from the scans. Examples of wind fields and time series of wind estimates from both systems are presented. We conclude by reviewing the advantages and disadvantages of each system and sketch a plan for future research and development activities to optimize the design of future systems.

  16. Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar measurements. I - Algorithm description

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Bowdle, David A.; Vaughan, Michael; Brown, Derek W.; Woodfield, Alan A.

    1991-01-01

    Since 1981 the Royal Signals and Radar Establishment and the Royal Aircraft Establishment, United Kindom, have made vertical and horizontal sounding measurements of aerosol backscatter coefficients at 10.6 microns, using an airborne continuous-wave-focused CO2 Doppler lidar, the Laser True Airspeed System (LATAS). In this paper, the heterodyne signal from the LATAS detector is spectrally analyzed. Then, in conjunction with aircraft flight parameters, the data are processed in a six-stage computer algorithm: set search window, search for peak signal, test peak signal, measure total signal, calculate signal-to-noise ratio, and calculate backscatter coefficient.

  17. F region electron density profile inversion from backscatter ionogram based on international reference ionosphere

    NASA Astrophysics Data System (ADS)

    Zhu, Peng; Zhou, Chen; Zhang, Yuannong; Yang, Guobin; Jiang, Chunhua; Sun, Hengqing; Cui, Xiao

    2015-07-01

    Ionospheric backscatter sounding transmits HF (3-30 MHz) radio wave obliquely into ionosphere and receives echoes backscattered from remote ground. Due to the focusing effect, the echoes form leading edge on the swept frequency backscatter ionogram (BSI). This kind of backscatter ionogram contains plentiful ionospheric information, such as electron density, radio wave propagation modes and maximum usage frequency (MUF). By inversion algorithm, the backscatter ionogram can provide two-dimensional electron density profile (EDP) down range. In this paper, we propose an ionospheric F2 region EDP inversion algorithm. By utilizing the F2 bottomside electron density profile represented by the International Reference Ionosphere (IRI) model and ray tracing techniques, this approach inverts the leading edge of the backscatter ionogram to two dimensional F region EDP. Results of validation experiments demonstrate that the inverted ionospheric EDPs show good agreement with the results of vertical ionosonde and provide reliable information of ionosphere. Thus the proposed inversion algorithm provide an effective and accurate method for achieving large scale and remote ionospheric electron density structure.

  18. On deriving the accurate aerosol extinction profiles in the troposphere and lower stratosphere using the range dependent scattering ratio

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M. V.; Radhakrishnan, S. R.; Mahadevanpillai, V. P.; Krishnakumar, V.

    2008-12-01

    Lidar has proven to be an effective instrument for obtaining high resolution profiles of atmospheric aerosols. Deriving the optical properties of aerosols from the experimentally obtained lidar data is one of the most interesting and challenging task for the atmospheric scientists. A few methods had been developed so far, to obtain the quantitative profiles of extinction and backscattering coefficient of aerosols from the pulsed backscattering lidar measurements. Most of the existing inversion methods assume a range independent value for the scattering ratio for inverting the lidar signal even though it is known that the scattering ratio depends on the nature of aerosols and as such range dependent. We used a modified Klett's method for the inversion of lidar signal that uses range dependent scattering ratio (s) for the characterization of atmospheric aerosols. This method provides the constants k and s for all the altitude regions of the atmosphere and leads to derive the aerosol extinction profile for the lidar data. In this paper we made a study on the errors involved in the extinction profiles derived using the range dependent scattering ratio and discuss the approach in this regard to obtain the accurate extinction profiles.

  19. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  20. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  1. The Cloud-Aerosol Transport System (CATS): a New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2011-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064, 532, 355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time data capability of the ISS will enable CATS to support operational applications such as air quality and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science

  2. How much information do extinction and backscattering measurements contain about the chemical composition of atmospheric aerosol?

    NASA Astrophysics Data System (ADS)

    Kahnert, Michael; Andersson, Emma

    2017-03-01

    We theoretically and numerically investigate the problem of assimilating multiwavelength lidar observations of extinction and backscattering coefficients of aerosols into a chemical transport model. More specifically, we consider the inverse problem of determining the chemical composition of aerosols from these observations. The main questions are how much information the observations contain to determine the particles' chemical composition, and how one can optimize a chemical data assimilation system to make maximum use of the available information. We first quantify the information content of the measurements by computing the singular values of the scaled observation operator. From the singular values we can compute the number of signal degrees of freedom, Ns, and the reduction in Shannon entropy, H. As expected, the information content as expressed by either Ns or H grows as one increases the number of observational parameters and/or wavelengths. However, the information content is strongly sensitive to the observation error. The larger the observation error variance, the lower the growth rate of Ns or H with increasing number of observations. The right singular vectors of the scaled observation operator can be employed to transform the model variables into a new basis in which the components of the state vector can be partitioned into signal-related and noise-related components. We incorporate these results in a chemical data assimilation algorithm by introducing weak constraints that restrict the assimilation algorithm to acting on the signal-related model variables only. This ensures that the information contained in the measurements is fully exploited, but not overused. Numerical tests show that the constrained data assimilation algorithm provides a solution to the inverse problem that is considerably less noisy than the corresponding unconstrained algorithm. This suggests that the restriction of the algorithm to the signal-related model variables suppresses

  3. Measurements of aerosol phase function and vertical backscattering coefficient using a charge-coupled device side-scatter lidar.

    PubMed

    Tao, Zongming; Liu, Dong; Wang, Zhenzhu; Ma, Xiaomin; Zhang, Qingze; Xie, Chenbo; Bo, Guangyu; Hu, Shunxing; Wang, Yingjian

    2014-01-13

    By using a charge-coupled device (CCD) as the detector, side-scatter lidar has great potential applications in the near range atmospheric detection. A new inversion method is proposed for CCD side-scatter lidar (Clidar) to retrieve aerosol phase function and vertical backscattering coefficient. Case studies show the retrieved results from Clidar are in good agreements with those obtained from other instruments. It indicates that the new proposed inversion method is reliable and feasible and that the Clidar is practicable.

  4. Atmospheric Backscatter Profiles at 765nm and 1572nm from Pulsed Lidar Measurements of CO2 and O2 Column Absorption from the 2013 ASCENDS Flight Campaign

    NASA Astrophysics Data System (ADS)

    Allan, G. R.; Riris, H.; Hasselbrack, W.; Rodriguez, M.; Ramanathan, A.; Sun, X.; Mao, J.; Abshire, J. B.

    2013-12-01

    We present height-resolved, range corrected, backscatter profiles from NASA GSFC's two-channel (CO2 & O2) sounder, an Integrated Path Differential Absorption (IPDA) lidar, which measures simultaneously both carbon dioxide & oxygen column absorptions. These backscatter profiles show clear evidence of multiple backscattering layers, clouds & aerosols, which allows for the identification of the Planetary Boundary Layer (PBL). The backscatter measurements enable sampling of the vertical distribution of CO2 in the atmosphere when broken & thin clouds are present & may help identify sources & sinks within the PBL as opposed to natural variations in the vertical distribution of CO2. The CO2 Sounder is an airborne pulsed lidar for active remote measurements of CO2 abundance & is a candidate for NASA's ASCENDS mission (Active Sensing of CO2 Emissions over Nights, Days & Seasons). The O2 channel measures atmospheric pressure in the same air column to calculate the dry mixing ratio of CO2. The lidars use a scanning, pulsed laser & fiber amplifier in a Master Oscillator Power Amplifier configuration to measure lineshape, range to scattering surface & backscatter profiles. The CO2 channel operates at 1572.335 nm. The O2 channel uses similar technology but frequency doubles the output from ~1530nm to the O2 A-band absorption around 765nm. Both lasers are scanned across the absorption feature of interest sampling the line at a fixed number of discrete wavelengths per scan around ~300 scans per second. The time-resolved return signal is detected by photon-counting detectors with a temporal resolution of a few nanoseconds. The CO2 channel uses a PMT while the O2 channel uses Single Photon Counting Modules. The detectors are fiber coupled to a 2m f10 Schmidt-Cassegrain telescope. The column density of the gas of interest is estimated from the differential optical depths of the scanned absorption using the IPDA technique & the optical path from the time of flight. A backscatter

  5. Effect of particle settling on lidar profiles of long-range transported Saharan aerosols

    NASA Astrophysics Data System (ADS)

    Gasteiger, Josef; Groß, Silke

    2016-04-01

    A large amount of desert aerosol is transported in the Saharan Air Layer (SAL) westwards from Africa over the Atlantic Ocean. Lidar profiles of transported Saharan aerosol may contain some information about the vertically-resolved aerosol microphysics that could be used to characterize processes that affected the measured aerosol during transport. We present modelled lidar profiles of long-range transported Saharan aerosol assuming that initially the SAL is well-mixed and that there is no vertical mixing of air within the SAL as soon as it reaches the Atlantic. We consider Stokes gravitational settling of aerosol particles over the ocean. The lidar profiles are calculated using optical models for irregularly-shaped mineral dust particles assuming settling-induced particle removal as function of distance from the SAL top. Within the SAL we find a decrease of both the backscatter coefficients and the linear depolarization ratios with decreasing distance from the SAL top. For example, the linear depolarization ratio at a wavelength of 532nm decreases from 0.289 at 1000m to 0.256 at 200m and 0.215 at 100m below SAL top. We compare the modelled backscatter coefficients and linear depolarization ratios to ground-based lidar measurements performed during the SALTRACE field campaign in Barbados (Caribbean) and find agreement within the estimated uncertainties. We discuss the uncertainties of our modeling approach in our presentation. Assumed mineral dust particle shapes, assumed particle mixture properties, and assumptions about processes in the SAL over the continent and the ocean are important aspects to be considered. Uncertainties are relevant for the potential of lidar measurements of transported Saharan dust to learn something about processes occuring in the SAL during long-range transport. We also compare our modeling results to modeling results previously published in the literature.

  6. Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin

    2000-01-01

    The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.

  7. Measurements of Stratospheric Pinatubo Aerosol Extinction Profiles by a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Abo, Makoto; Nagasawa, Chikao

    1992-01-01

    The Raman lidar has been used for remote measurements of water vapor, ozone and atmospheric temperature in the lower troposphere because the Raman cross section is three orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman lidar. If the precise aerosol extinction coefficients are derived, the backscatter coefficient of a Mie scattering lidar will be more accurately estimated. The Raman lidar has performed to measure density profiles of some species using Raman scattering. Here we used a frequency-doubled Nd:YAG laser for transmitter and received nitrogen vibrational Q-branch Raman scattering signal. Ansmann et al. (1990) derived tropospherical aerosol extinction profiles with a Raman lidar. We think that this method can apply to dense stratospheric aerosols such as Pinatubo volcanic aerosols. As dense aerosols are now accumulated in the stratosphere by Pinatubo volcanic eruption, the error of Ramen lidar signal regarding the fluctuation of air density can be ignored.

  8. Retrievals of Profiles of Fine And Coarse Aerosols Using Lidar And Radiometric Space Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Leon, Jean-Francois; Pelon, Jacques; Lau, William K. M. (Technical Monitor)

    2002-01-01

    In couple of years we expect the launch of the CALIPSO lidar spaceborne mission designed to observe aerosols and clouds. CALIPSO will collect profiles of the lidar attenuated backscattering coefficients in two spectral wavelengths (0.53 and 1.06 microns). Observations are provided along the track of the satellite around the globe from pole to pole. The attenuated backscattering coefficients are sensitive to the vertical distribution of aerosol particles, their shape and size. However the information is insufficient to be mapped into unique aerosol physical properties and vertical distribution. Infinite number of physical solutions can reconstruct the same two wavelength backscattered profile measured from space. CALIPSO will fly in formation with the Aqua satellite and the MODIS spectro-radiometer on board. Spectral radiances measured by MODIS in six channels between 0.55 and 2.13 microns simultaneously with the CALIPSO observations can constrain the solutions and resolve this ambiguity, albeit under some assumptions. In this paper we describe the inversion method and apply it to aircraft lidar and MODIS data collected over a dust storm off the coast of West Africa during the SHADE experiment. It is shown that the product of the single scattering albedo, omega, and the phase function, P, for backscattering can be retrieved from the synergism between measurements avoiding a priori hypotheses required for inverting lidar measurements alone. The resultant value of (omega)P(180 deg.) = 0.016/sr are significantly different from what is expected using Mie theory, but are in good agreement with recent results obtained from lidar observations of dust episodes. The inversion is robust in the presence of noise of 10% and 20% in the lidar signal in the 0.53 and 1.06 pm channels respectively. Calibration errors of the lidar of 5 to 10% can cause an error in optical thickness of 20 to 40% respectively in the tested cases. The lidar calibration errors cause degradation in the

  9. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 2; Derivation of Aerosol Real Refractive Index, Single-Scattering Albedo, and Humidification Factor using Raman Lidar and Aircraft Size Distribution

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.

    1998-01-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.

  10. Ultrasound characterization of arterial wall structures based on integrated backscatter profiles

    NASA Astrophysics Data System (ADS)

    Pedersen, Peder C.; Chakareski, Jacob; Lara-Montalvo, Ruben

    2003-05-01

    Studies suggest that the composition of atherosclerotic plaque in the carotid arteries is predictive of stroke risk. The goal of this investigation has been to explore how well the true integrated backscatter (IBS) from plaque regions can be measured non-invasively using ultrasound, based on which plaque composition may be inferred. To obtain the true arterial IBS non-invasively, the scattering and aberrating effect of the intervening tissue layers must be overcome. This is achieved by using the IBS from arterial blood as a reference backscatter, specifically the backscatter from a blood volume along the same scan line as and adjacent to the region of interest. The arterial blood IBS is obtained as an estimated mean of a stochastic process, after clutter removal. We have shown that the variance of the IBS estimate of the blood backscatter signal can be quantified and reduced to a tolerable level. The results are in the form of IBS profiles along the vessel. IBS profiles not normalized with the IBS of the blood-mimicking fluid have been measured for vessels phantom, with and without an intervening inhomogeneous medium; these results are contrasted with the corresponding normalized IBS profiles.

  11. Boundary Layer Aerosol Composition over Sierra Nevada Mountains using 9.11- and 10.59-micron CW Lidars and Modeled Backscatter from Size Distribution Data

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Jarzembski, M. A.; Srivastava, V.; Pueschel, R. F.; Howard, S. D.; McCaul, E. W., Jr.

    2003-01-01

    An inversion technique has been developed to determine volume fractions of an atmospheric aerosol composed primarily of ammonium sulfate and ammonium nitrate and water combined with fixed concentration of elemental and organic carbon. It is based on measured aerosol backscatter obtained with 9.11 - and 10.59-micron wavelength continuous wave CO2 lidars and modeled backscatter from aerosol size distribution data. The technique is demonstrated during a flight of the NASA DC-8 aircraft over the Sierra Nevada Mountain Range, California on 19 September, 1995. Volume fraction of each component and effective complex refractive index of the composite particle were determined assuming an internally mixed composite aerosol model. The volume fractions were also used to re-compute aerosol backscatter, providing good agreement with the lidar-measured data. The robustness of the technique for determining volume fractions was extended with a comparison of calculated 2.1,-micron backscatter from size distribution data with the measured lidar data converted to 2.1,-micron backscatter using an earlier derived algorithm, verifying the algorithm as well as the backscatter calculations.

  12. Dust layer profiling using an aerosol dropsonde

    NASA Astrophysics Data System (ADS)

    Ulanowski, Zbigniew; Kaye, Paul Henry; Hirst, Edwin; Wieser, Andreas; Stanley, Warren

    2015-04-01

    Routine meteorological data is obtained in the atmosphere using disposable radiosondes, giving temperature, pressure, humidity and wind speed. Additional measurements are obtained from dropsondes, released from research aircraft. However, a crucial property not yet measured is the size and concentration of atmospheric particulates, including dust. Instead, indirect measurements are employed, relying on remote sensing, to meet the demands from areas such as climate research, air quality monitoring, civil emergencies etc. In addition, research aircraft can be used in situ, but airborne measurements are expensive, and aircraft use is restricted to near-horizontal profiling, which can be a limitation, as phenomena such as long-range transport depend on the vertical distribution of aerosol. The Centre for Atmospheric and Instrumentation Research at University of Hertfordshire develops light-scattering instruments for the characterization of aerosols and cloud particles. Recently a range of low-cost, miniature particle counters has been created, intended for use with systems such as disposable balloon-borne radiosondes, dropsondes, or in dense ground-based sensor networks. Versions for different particle size ranges exist. They have been used for vertical profiling of aerosols such as mineral dust or volcanic ash. A disadvantage of optical particle counters that sample through a narrow inlet is that they can become blocked, which can happen in cloud, for example. Hence, a different counter version has been developed, which can have open-path geometry, as the sensing zone is defined optically rather than being delimited by the flow system. This counter has been used for ground based air-quality monitoring around Heathrow airport. The counter has also been adapted for use with radiosondes or dropsondes. The dropsonde version has been successfully tested by launching it from research aircraft together with the so-called KITsonde, developed at the Karlsruhe Institute of

  13. NOAA backscatter studies

    NASA Technical Reports Server (NTRS)

    Post, Madison J.

    1991-01-01

    In the past year, NOAA has measured and analyzed another year's worth of backscatter over Boulder, CO. The average profile was computed from 80 satellite observations of backscatter spread throughout the year, using NOAA's CO2 coherent lidar operating at a wavelength of 10.59 microns. The seasonal averages show a familiar trend (highest backscattering in spring, perhaps due to Asian dust or biomass burning, and lowest backscattering in fall). The 1990 average profile was not significantly different from the 1988 or 1989 profiles, except that it displays a slight increase in the upper troposphere, perhaps due to the Redoubt Volcano. The NOAA's backscatter processing program (BETA) was refined to enable the calculation of gaseous absorption effects based on rawinsonde measurements, as well as using atmospheric models. NOAA participated in two intercomparisons of aerosol measuring instruments near Boulder, called FRLAB (Front Range Lidar, Aircraft, and Balloon Experiment). Considerable effort was also put into developing a multiagency science proposal to NASA headquarters to work with both JPL and NASA-Marshall to produce an airborne Doppler lidar facility for the DC-8.

  14. Atmospheric Backscatter Profiles at 1572nm from Pulsed Lidar Measurments of CO2 Column Absorption from the 2011 ASCENDS Flight Campaign

    NASA Astrophysics Data System (ADS)

    Allan, G. R.; Riris, H.; Hasselbrack, W.; Sun, X.; Ramanathan, A.; Mao, J.; Abshire, J. B.

    2012-12-01

    We present height-resolved backscatter profiles from the NASA Goddard Space Flight Center's CO2 sounder lidar, rich in detail, which shows clear evidence of multiple backscatter layers, clouds, and aerosols allowing for the identification of the Planetary Boundary Layer (PBL). This data is recorded as a consequence of our pulsed lidar measurements of the CO2 column absorption. The CO2 Sounder is a pulsed lidar for active remote measurements of CO2 abundance from an airborne platform and is one candidate for the lidar on the NASA ASCENDS mission. The lidar uses a scanning, pulsed laser and fiber amplifier in a Master Oscillator Power Amplifier (MOPA) configuration to measure CO2 absorption at 1572.335 nm, lineshape, range to scattering surface and backscatter profiles. The laser is scanned across the absorption feature measuring at 30 discrete wavelengths/scan and ~300 scans/sec. The time-resolved return signal, with a temporal resolution of 8ns, is detected by a photon-counting PMT fiber coupled to a modified commercial, 2m focal length f10 Schmidt-Cassegrain telescope. The column density for CO2 is estimated from the differential optical depth (DOD) of the scanned absorption line using an integrated-path differential absorption (IPDA) technique and the optical path from the time of flight. A backscatter profile of the measured column is recorded for every pulse of every scan and integrated for 1 second. The backscatter profiles we will show are determined from the receivers photon counting record using a cross-correaltion technique (sliding inner product) with a vertical resolution of better than 300m, set by the 1μs pulse width from the MOPA. The range to the surface can be determined to a few meters. Major benefits of a pulsed technique using time-resolved detection to measure lineshape, is the unambiguous detection of the ground return, intervening clouds, aerosols and information on the vertical distribution of CO2. This technique can uniquely identify the

  15. Vertically-resolved profiles of mass concentrations and particle backscatter coefficients of Asian dust plumes derived from lidar observations of silicon dioxide.

    PubMed

    Noh, Youngmin; Müller, Detlef; Shin, Sung-Kyun; Shin, Dongho; Kim, Young J

    2016-01-01

    This study presents a method to retrieve vertically-resolved profiles of dust mass concentrations by analyzing Raman lidar signals of silicon dioxide (quartz) at 546nm. The observed particle plumes consisted of mixtures of East Asian dust with anthropogenic pollution. Our method for the first time allows for extracting the contribution of the aerosol component "pure dust" contained in the aerosol type "polluted dust". We also propose a method that uses OPAC (Optical Properties of Aerosols and Clouds) and the mass concentrations profiles of dust in order to derive profiles of backscatter coefficients of pure dust in mixed dust/pollution plumes. The mass concentration of silicon dioxide (quartz) in the atmosphere can be estimated from the backscatter coefficient of quartz. The mass concentration of dust is estimated by the weight percentage (38-77%) of mineral quartz in Asian dust. The retrieved dust mass concentrations are classified into water soluble, nucleation, accumulation, mineral-transported and coarse mode according to OPAC. The mass mixing ratio of 0.018, 0.033, 0.747, 0.130 and 0.072, respectively, is used. Dust extinction coefficients at 550nm were calculated by using OPAC and prescribed number concentrations for each of the 5 components. Dust backscatter coefficients were calculated from the dust extinction coefficients on the basis of a lidar ratio of 45±3sr at 532nm. We present results of quartz-Raman measurements carried out on the campus of the Gwangju Institute of Science and Technology (35.10°N, 126.53°E) on 15, 16, and 21 March 2010.

  16. Simulation of positron backscattering and implantation profiles using Geant4 code

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Juan; Pan, Zi-Wen; Liu, Jian-Dang; Han, Rong-Dian; Ye, Bang-Jiao

    2015-10-01

    For the proper interpretation of the experimental data produced in slow positron beam technique, the positron implantation properties are studied carefully using the latest Geant4 code. The simulated backscattering coefficients, the implantation profiles, and the median implantation depths for mono-energetic positrons with energy range from 1 keV to 50 keV normally incident on different crystals are reported. Compared with the previous experimental results, our simulation backscattering coefficients are in reasonable agreement, and we think that the accuracy may be related to the structures of the host materials in the Geant4 code. Based on the reasonable simulated backscattering coefficients, the adjustable parameters of the implantation profiles which are dependent on materials and implantation energies are obtained. The most important point is that we calculate the positron backscattering coefficients and median implantation depths in amorphous polymers for the first time and our simulations are in fairly good agreement with the previous experimental results. Project supported by the National Natural Science Foundation of China (Grant Nos. 11175171 and 11105139).

  17. Systematic observations of long-range transport events and climatological backscatter profiles with the DWD ceilometer network

    NASA Astrophysics Data System (ADS)

    Mattis, Ina; Müller, Gerhard; Wagner, Frank; Hervo, Maxime

    2015-04-01

    about 6 days per station, the optical depth of the dust particles was estimated to be larger than 0.4. Those events are classified as 'strong'. 'Faint', 'weak', and 'medium' events were detected at 13, 15, and 12 days per station, respectively. Almost all of the forest fire events have been classified as 'faint' and 'weak' with optical depths below 0.15. Beside this qualitative investigations on transport events, we started to obtain calibration constants for all individual ceilometers in our network within the framework of the European projects E-PROFILE and TOPROF. We are currently producing a data set of 1-hour-mean particle backscatter profiles at 1064 nm at all ceilometer stations in Germany for the period between summer 2013 and winter 2014. We will present an overview on the used methodologies of analysis of long-range transport events and of the calibration procedures. More detailed results of the event analysis, e.g. on seasonal behaviour will be presented as well. Further we will show results of a first statistical analysis of our 18-months data set of backscatter profiles over Germany.

  18. Lidar Ratios for Dust Aerosols Derived From Retrievals of CALIPSO Visible Extinction Profiles Constrained by Optical Depths from MODIS-Aqua and CALIPSO/CloudSat Ocean Surface Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.

    2010-01-01

    CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.

  19. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H.; Henry, Mike; Baden, Daniel G.

    2009-01-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1 h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5–10 μg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m3. The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. PMID:19879288

  20. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G

    2010-05-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction.

  1. Aerosol Profile Retrievals from Integrated Dual Wavelengths Space Lidar ESSP3-CENA and Spectral Radiance MODIS Data

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Mattoo, Shana; Tanre, Didier; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The ESSP3-CENA space mission (formally PICASSO-CENA) will provide continues global observations with a two wavelength lidar. The attenuated backscattering coefficients measured by the lidar, have valuable information about the vertical distribution of aerosol particles and their sizes. However the information cannot be mapped into unique aerosol physical properties. Infinite number of physical solutions with different attenuations through the atmosphere can reconstruct the same two wavelength backscattered profile measured from space. Spectral radiance measured by MODIS simultaneously with the ESSP3 data can constrain the problem and resolve this ambiguity to a large extent. Sensitivity study shows that inversion of the integrated MODIS+ESSP3 data can derive the vertical profiles of the fine and coarse modes mixed in the same atmospheric column in the presence of moderate calibration uncertainties and electronic noise (approx. 10%). We shall present the sensitivity study and results from application of the technique to measurements in the SAFARI-2000 and SHADE experiments.

  2. Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Di Liberto, Luca; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs

    2016-04-01

    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ˜ 50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ˜ 10:00 LT - local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ˜ 12:00 LT) the ML was fully developed, resulting in

  3. The Cloud-Aerosol Transport System (CATS): A New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2012-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a

  4. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    The reliability of aerosol radiative forcing estimates from climate models depends on the accuracy of simulated global aerosol distribution and composition, as well as on the models' representation of the aerosol-cloud and aerosol-radiation interactions. To help improve on previous modeling studies, we recently developed the new aerosol microphysics submodel MADE3 that explicitly tracks particle mixing state in the Aitken, accumulation, and coarse mode size ranges. We implemented MADE3 into the global atmospheric chemistry general circulation model EMAC and evaluated it by comparison of simulated aerosol properties to observations. Compared properties include continental near-surface aerosol component concentrations and size distributions, continental and marine aerosol vertical profiles, and nearly global aerosol optical depth. Recent studies have shown the specific importance of aerosol vertical profiles for determination of the aerosol radiative forcing. Therefore, our focus here is on the evaluation of simulated vertical profiles. The observational data is taken from campaigns between 1990 and 2011 over the Pacific Ocean, over North and South America, and over Europe. The datasets include black carbon and total aerosol mass mixing ratios, as well as aerosol particle number concentrations. Compared to other models, EMAC with MADE3 yields good agreement with the observations - despite a general high bias of the simulated mass mixing ratio profiles. However, BC concentrations are generally overestimated by many models in the upper troposphere. With MADE3 in EMAC, we find better agreement of the simulated BC profiles with HIPPO data than the multi-model average of the models that took part in the AeroCom project. There is an interesting difference between the profiles from individual campaigns and more "climatological" datasets. For instance, compared to spatially and temporally localized campaigns, the model simulates a more continuous decline in both total

  5. Demonstration of Aerosol Property Profiling by Multi-wavelength Lidar Under Varying Relative Humidity Conditions

    NASA Technical Reports Server (NTRS)

    Whiteman, D.N.; Veselovskii, I.; Kolgotin, A.; Korenskii, M.; Andrews, E.

    2008-01-01

    The feasibility of using a multi-wavelength Mie-Raman lidar based on a tripled Nd:YAG laser for profiling aerosol physical parameters in the planetary boundary layer (PBL) under varying conditions of relative humidity (RH) is studied. The lidar quantifies three aerosol backscattering and two extinction coefficients and from these optical data the particle parameters such as concentration, size and complex refractive index are retrieved through inversion with regularization. The column-integrated, lidar-derived parameters are compared with results from the AERONET sun photometer. The lidar and sun photometer agree well in the characterization of the fine mode parameters, however the lidar shows less sensitivity to coarse mode. The lidar results reveal a strong dependence of particle properties on RH. The height regions with enhanced RH are characterized by an increase of backscattering and extinction coefficient and a decrease in the Angstrom exponent coinciding with an increase in the particle size. We present data selection techniques useful for selecting cases that can support the calculation of hygroscopic growth parameters using lidar. Hygroscopic growth factors calculated using these techniques agree with expectations despite the lack of co-located radiosonde data. Despite this limitation, the results demonstrate the potential of multi-wavelength Raman lidar technique for study of aerosol humidification process.

  6. Phase function, backscatter, extinction, and absorption for standard radiation atmosphere and El Chichon aerosol models at visible and near-infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.

    1985-01-01

    Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.

  7. Aerosols and Precipitation Retrievals over Eureka by Remote Sensing: Validation of Space Based Profiling Retrievals

    NASA Astrophysics Data System (ADS)

    Chaubey, J. P.; O'Neill, N. T.; Hudak, D. R.; Rodriguez, P.; Ivanescu, L.; Eloranta, E.; Duck, T.

    2014-12-01

    Aerosols and precipitation are among the agents responsible for the ongoing changes in the Arctic climate and the hydrological cycle. The seasonal variations of Arctic aerosols (Arctic haze for e.g.) are linked to the transport efficiency as well as precipitation (wet) scavenging. Aside from affecting aerosol concentrations, precipitation is an important hydrological variable that affects the moisture budget of the atmosphere. Aerosols, in turn, influence the vertical distribution of clouds and this induces changes in the precipitation pattern. The spatial and temporal sparsity of precipitation measurements over the Arctic region means that satellite remote sensing techniques take on an importance that considerably exceeds their role south of the Arctic circle. Radar reflectivity and snow profiles from CloudSat (in support of cloud and precipitation analyses) and backscattering measurements from CALIOP (investigations of aerosol and small cloud particle properties) can be used to study Arctic winter clouds and precipitation and the role of aerosols in their formation. In this study we attempt to validate satellite-based profiling retrievals of precipitation parameters using AHSRL (Arctic High Spectral Resolution Lidar), CRL (CANDAC Raman Lidar) and MMCR (Milli-Meter Cloud Radar) profiles acquired at the PEARL high-Arctic site in Eureka (80 °N, 86 °W), Nunavut, Canada. As part of the process of validating the profiling retrievals we aspire to learn more about the mechanisms controlling aerosol, cloud and precipitation inter-dynamics. In addition, ground-based, high-frequency observations of precipitation will be used for characterizing precipitation totals as well as the conditional probability of the type of precipitation (rain or snow) and thus to help understand and validate comparable information extracted from the satellite retrievals. We also aim to characterize different particle types using AHSRL and CRL depolarization profiles, MMCR Doppler velocity

  8. Recent Improvements to CALIOP Level 3 Aerosol Profile Product for Global 3-D Aerosol Extinction Characterization

    NASA Astrophysics Data System (ADS)

    Tackett, J. L.; Getzewich, B. J.; Winker, D. M.; Vaughan, M. A.

    2015-12-01

    With nine years of retrievals, the CALIOP level 3 aerosol profile product provides an unprecedented synopsis of aerosol extinction in three dimensions and the potential to quantify changes in aerosol distributions over time. The CALIOP level 3 aerosol profile product, initially released as a beta product in 2011, reports monthly averages of quality-screened aerosol extinction profiles on a uniform latitude/longitude grid for different cloud-cover scenarios, called "sky conditions". This presentation demonstrates improvements to the second version of the product which will be released in September 2015. The largest improvements are the new sky condition definitions which parse the atmosphere into "cloud-free" views accessible to passive remote sensors, "all-sky" views accessible to active remote sensors and "cloudy-sky" views for opaque and transparent clouds which were previously inaccessible to passive remote sensors. Taken together, the new sky conditions comprehensively summarize CALIOP aerosol extinction profiles for a broad range of scientific queries. In addition to dust-only extinction profiles, the new version will include polluted-dust and smoke-only extinction averages. A new method is adopted for averaging dust-only extinction profiles to reduce high biases which exist in the beta version of the level 3 aerosol profile product. This presentation justifies the new averaging methodology and demonstrates vertical profiles of dust and smoke extinction over Africa during the biomass burning season. Another crucial advancement demonstrated in this presentation is a new approach for computing monthly mean aerosol optical depth which removes low biases reported in the beta version - a scenario unique to lidar datasets.

  9. MARLI: MARs LIdar for Global Wind Profiles and Aerosol Profiles from Orbit

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Guzewich, S. D.; Smith, M. D.; Riris, H.; Sun, X.; Gentry, B. M.; Yu, A.; Allan, G. R.

    2016-10-01

    Winds are the key variable to understand atmospheric transport and to answer fundamental questions about the three primary cycles of the Mars climate. We are developing a new orbital lidar to directly measure both wind profiles and aerosol profiles.

  10. Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects.

    PubMed

    Butz, André; Hasekamp, Otto P; Frankenberg, Christian; Aben, Ilse

    2009-06-20

    Retrievals of atmospheric carbon dioxide (CO2) from space-borne measurements of backscattered near-infrared sunlight are hampered by aerosol and cirrus cloud scattering effects. We propose a retrieval approach that allows for the retrieval of a few effective aerosol parameters simultaneously with the CO2 total column by parameterizing particle amount, height distribution, and microphysical properties. Two implementations of the proposed method covering different spectral bands are tested for an ensemble of simulated nadir observations for aerosol (and cirrus) loaded scenes over low- and mid-latitudinal land surfaces. The residual aerosol-induced CO(2) errors are mostly below 1% up to aerosol optical thickness 0.5. The proposed methods also perform convincing for scenes where cirrus clouds of optical thickness 0.1 overlay the aerosol.

  11. Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.

    2010-01-01

    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.

  12. A Lidar and Backscatter Sonde Aerosol Measurement Campaign at Table Mountain During February-March 1997: Observations of Stratospheric Background Aerosols and Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Gross, M.; Haner, D.; Kjome, N.; McDermid, I.; McGee, T.; Rosen, J.; Schafer, H. J.; Schrems, O.

    1999-01-01

    Altitude profiles of backscater ratio of the stratospheric background aerosol layer at altitudes between 15 and 25 km and high-altitude cirrus clouds at altitudes below 13 km are analyzed and discussed. Cirrus clouds were present on 16 of the 26 campaign nights.

  13. Measurements of profiles of aerosol/cloud in the lower atmosphere using a lidar system

    NASA Astrophysics Data System (ADS)

    Gasmi, Khaled

    2016-10-01

    Preliminary measurements of profiles of aerosol/cloud in the lower atmosphere using a homemade stationary groundbased lidar system will be presented. In addition, information on basic characteristics and performance of the lidar system will be provided. Aerosol/Cloud lidar system in monostatic coaxial configuration uses the fundamental (1064 nm) and the second harmonic (532 nm) of a pulsed solid state Nd:YAG laser to provide information on the relative concentration and spatial distribution of aerosol particles and cloud water droplets. Beam expander is used to reduce the laser beam divergence before to be transmitted into the atmosphere. In this study, high-resolution vertical profiles from the near ground up to 15 km altitude are obtained. A Newtonian telescope of diameter 400 mm with an adjustable field of view (FOV) is used to collect the elastic backscattered signal. A photomultiplier tube (PMT) is used for the 532 nm wavelength detection channel, while an avalanche photodiode (APD) is used for the 1064 nm wavelength detection channel. The optoelectronic detection channels use two similar very high frequency preamplification circuit. Data are acquired with a nominal spatial resolution of 7.5 m using a 12-bit 20 MHz analog-to-digital converter (ADC) for each channel. Many functions, such as, range determination, background subtraction, digitization, and averaging are performed by the receiver subsystem. In addition, spatial resolution and linear dynamic range were optimized during signal processing.

  14. Seasonal variation of surface and vertical profile of aerosol properties over a tropical urban station Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Sinha, P. R.; Manchanda, R. K.; Kaskaoutis, D. G.; Kumar, Y. B.; Sreenivasan, S.

    2013-01-01

    One year measurement of vertical profiles of volume backscatter and extinction coefficient, aerosol optical depth (AOD), mass concentration of black carbon (BC) and composite aerosol along with thermodynamic structure of the atmosphere has been carried out over an urban tropical location of Hyderabad(17.47°N, 78.58°E), India, during April 2009 to March 2010. The mean mixing layer height (MLH) exhibits large seasonality exceeding 4 km in pre-monsoon period whereas in winter it comes down to ~1.5 km with an annual mean value of 2.35 ± 1.02 km. Surface BC mass fraction (FBC) shows marked seasonal variation from winter (13 ± 1.9%), pre-monsoon (8.19 ± 2.16%), monsoon (7.3 ± 1.8%) to post-monsoon (11.8 ± 0.18%). The profiles of volume backscatter and extinction coefficients reveal presence of elevated aerosol layers from 2 to 4 km and strong oscillations during pre-monsoon (March-May) and monsoon (June-September) seasons, respectively, while in post-monsoon (October-November) and winter (December-February), the aerosols are well within the lower boundary layer and also exhibit a drastic decrease with increasing altitude. These elevated aerosol layers and vertical distribution appear to be closely linked to the thermodynamic structure of the atmosphere. The aerosol optical properties in conjunction with air mass back trajectory analysis indicate that the observed elevated aerosol layers during pre-monsoon and monsoon could contain significant fraction of coarse mode particles with a mix of dust and marine aerosols. Further analysis reveals that the aerosols within atmospheric boundary layer (ABL) dominate the column aerosol loading with ABL-AOD contributing to ~77.7 ± 17.0%, with significant seasonal variation from winter (86.2 ± 13.1%), pre-monsoon (76.6 ± 12.8%), monsoon (54.2 ± 15.6%) to post monsoon (80.8 ± 14.8%). Seasonal variation of ABL-AOD and BC mass fraction follows similar pattern in the ABL indicating that BC may be an important contributor to

  15. Measuring Aerosol Optical Depth (AOD) and Aerosol Profiles Simultaneously with a Camera Lidar

    NASA Astrophysics Data System (ADS)

    Barnes, John; Pipes, Robert; Sharma, Nimmi C. P.

    2016-06-01

    CLidar or camera lidar is a simple, inexpensive technique to measure nighttime tropospheric aerosol profiles. Stars in the raw data images used in the CLidar analysis can also be used to calculate aerosol optical depth simultaneously. A single star can be used with the Langley method or multiple star pairs can be used to reduce the error. The estimated error from data taken under clear sky conditions at Mauna Loa Observatory is approximately +/- 0.01.

  16. Aerosols and lightning activity: The effect of vertical profile and aerosol type

    NASA Astrophysics Data System (ADS)

    Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Amiridis, V.; Marinou, E.; Price, C.; Kazantzidis, A.

    2016-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been utilized for the first time in a study regarding lightning activity modulation due to aerosols. Lightning activity observations, obtained by the ZEUS long range Lightning Detection Network, European Centre for Medium range Weather Forecasts (ECMWF) Convective Available Potential Energy (CAPE) data and Cloud Fraction (CF) retrieved by MODIS on board Aqua satellite have been combined with CALIPSO CALIOP data over the Mediterranean basin and for the period March to November, from 2007 to 2014. The results indicate that lightning activity is enhanced during days characterized by higher Aerosol Optical Depth (AOD) values, compared to days with no lightning. This study contributes to existing studies on the link between lightning activity and aerosols, which have been based just on columnar AOD satellite retrievals, by performing a deeper analysis into the effect of aerosol profiles and aerosol types. Correlation coefficients of R = 0.73 between the CALIPSO AOD and the number of lightning strikes detected by ZEUS and of R = 0.93 between ECMWF CAPE and lightning activity are obtained. The analysis of extinction coefficient values at 532 nm indicates that at an altitudinal range exists, between 1.1 km and 2.9 km, where the values for extinction coefficient of lightning-active and non-lightning-active cases are statistically significantly different. Finally, based on the CALIPSO aerosol subtype classification, we have investigated the aerosol conditions of lightning-active and non-lightning-active cases. According to the results polluted dust aerosols are more frequently observed during non-lightning-active days, while dust and smoke aerosols are more abundant in the atmosphere during the lightning-active days.

  17. Langley mobile ozone lidar: ozone and aerosol atmospheric profiling for air quality research.

    PubMed

    De Young, Russell; Carrion, William; Ganoe, Rene; Pliutau, Denis; Gronoff, Guillaume; Berkoff, Timothy; Kuang, Shi

    2017-01-20

    The Langley mobile ozone lidar (LMOL) is a mobile ground-based ozone lidar system that consists of a pulsed UV laser producing two UV wavelengths of 286 and 291 nm with energy of approximately 0.2  mJ/pulse and repetition rate of 1 kHz. The 527 nm pump laser is also transmitted for aerosol measurements. The receiver consists of a 40 cm parabolic telescope, which is used for both backscattered analog and photon counting. The lidar is very compact and highly mobile. This demonstrates the utility of very small lidar systems eventually leading to space-based ozone lidars. The lidar has been validated by numerous ozonesonde launches and has provided ozone curtain profiles from ground to approximately 4 km in support of air quality field missions.

  18. Global profiles of the direct aerosol effect using vertically resolved aerosol data

    NASA Astrophysics Data System (ADS)

    Korras Carraca, Marios Bruno; Pappas, Vasilios; Matsoukas, Christos; Hatzianastassiou, Nikolaos; Vardavas, Ilias

    2014-05-01

    Atmospheric aerosols, both natural and anthropogenic, can cause climate change through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. In general, aerosols cause cooling of the surface and the planet, while they warm the atmosphere due to scattering and absorption of incoming solar radiation. The importance of vertically resolved direct radiative effect (DRE) and heating/cooling effects of aerosols is strong, while large uncertainties still lie with their magnitudes. In order to be able to quantify them throughout the atmosphere, a detailed vertical profile of the aerosol effect is required. Such data were made available recently by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. CALIOP is the first polarization lidar to fly in space and has been acquiring unique data on aerosols and clouds since June 2006. The aim of this study is to investigate both the vertically resolved geographic and seasonal variation of the DRE due to aerosols. The vertical profile of DRE under all-sky and clear-sky conditions is computed using the deterministic spectral radiative transfer model FORTH. From the DRE, the effect on atmospheric heating/cooling rate profiles due to aerosols can also be derived. We use CALIOP Level 2-Version 3 Layer aerosol optical depth data as input to our radiation transfer model, for a period of 3 complete years (2007-2009). These data are provided on a 5 km horizontal resolution and in up to 8 vertical layers and have been regridded on our model horizontal and vertical resolutions. We use cloud data from the International Satellite Cloud Climatology Project (ISCCP), while the aerosol asymmetry factor and single scattering albedo are taken from the Global Aerosol Data Set (GADS). The model computations are performed on a monthly, 2.5°× 2.5° resolution on global scale, at 40

  19. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    PubMed Central

    Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future. PMID:22408531

  20. Polarimetric remote sensing in oxygen A and B bands: sensitivity study and information content analysis for vertical profile of aerosols

    NASA Astrophysics Data System (ADS)

    Ding, Shouguo; Wang, Jun; Xu, Xiaoguang

    2016-05-01

    Theoretical analysis is conducted to reveal the information content of aerosol vertical profile in space-borne measurements of the backscattered radiance and degree of linear polarization (DOLP) in oxygen (O2) A and B bands. Assuming a quasi-Gaussian shape for aerosol vertical profile characterized by peak height H and half width γ (at half maximum), the Unified Linearized Vector Radiative Transfer Model (UNL-VRTM) is used to simulate the Stokes four-vector elements of upwelling radiation at the top of atmosphere (TOA) and their Jacobians with respect to H and γ. Calculations for different aerosol types and different combinations of H and γ values show that the wide range of gas absorption optical depth in O2 A and B band enables the sensitivity of backscattered DOLP and radiance at TOA to the aerosol layer at different altitudes. Quantitatively, DOLP in O2 A and B bands is found to be more sensitive to H and γ than radiance, especially over the bright surfaces (with large visible reflectance). In many O2 absorption wavelengths, the degree of freedom of signal (DFS) for retrieving H (or γ) generally increases with H (and γ) and can be close to unity in many cases, assuming that the composite uncertainty from surface and aerosol scattering properties as well as measurements is less than 5 %. Further analysis demonstrates that DFS needed for simultaneous retrieval of H and γ can be obtained from a combined use of DOLP measurements at ˜ 10-100 O2 A and B absorption wavelengths (or channels), depending on the specific values of H. The higher the aerosol layer, the fewer number of channels for DOLP measurements in O2 A and B bands are needed for characterizing H and γ. Future hyperspectral measurements of DOLP in O2 A and B bands are needed to continue studying their potential and their combination with radiance and DOLP in atmospheric window channels for retrieving the vertical profiles of aerosols, especially highly scattering aerosols, over land.

  1. ACTRIS aerosol vertical profile data and observations: potentiality and first examples of integrated studies with models

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Benedetti, Angela; D'Amico, Giuseppe; Myhre, Cathrine Lund; Schulz, Michael; Wandinger, Ulla; Laj, Paolo; Pappalardo, Gelsomina

    2016-04-01

    The ACTRIS-2 project, funded by Horizon 2020, addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases, capitalizing on the work of FP7-ACTRIS. It aims at achieving the construction of a user-oriented RI, unique in the EU-RI landscape for providing 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column) which are relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit the harmonization of collected data and their dissemination. ACTRIS secures provision and dissemination of a unique set of data and data-products that would not otherwise be available with the same level of quality and standardization. This results from a 10-year plus effort in constructing a research infrastructure capable of responding to community needs and requirements, and has been engaged since the start of the FP5 EU commission program. ACTRIS ensures compliance with reporting requirements (timing, format, traceability) defined by the major global observing networks. EARLINET (European Aerosol research Lidar NETwork), the aerosol vertical profiling component of ACTRIS, is providing since May 2000 vertical profiles of aerosol extinction and backscatter over Europe. A new structure of the EARLINET database has been designed in a more user oriented approach reporting new data products which are more effective for specific uses of different communities. In particular, a new era is starting with the Copernicus program during which the aerosol vertical profiling capability will be fundamental for assimilation and validation purposes. The new data products have been designed thanks to a strong link with EARLINET data users, first of all modeling and satellite communities, established since the beginning of EARLINET and re-enforced within ACTRIS2

  2. How well can we Measure the Vertical Profile of Tropospheric Aerosol Extinction?

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.

    2005-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (MOP, May 2003) yielded one of the best measurement sets obtained to-date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(sub ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well characterized aerosol sampling ability carrying well proven and new aerosol instrumentation, devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from 6 different instuments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, ground-based Raman lidar and 2 ground-based elastic backscatter lidars. We find the in-situ measured sigma(sub ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002 - 0.004 K/m equivalent to 12-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(sub ep)(lambda) are higher. An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP and we expect better agreement from the recently restored system looking at the collective results from 6 field campaigns conducted since 1996, airborne in situ measurements of sigma(sub ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(sub ep)(lambda). On the other hand, sigma(sub ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state of-the art instrumentation is 15-20% at visible wavelengths and potentially larger in

  3. Profiling structured beams using injected aerosols

    NASA Astrophysics Data System (ADS)

    Loh, N. D.; Starodub, Dmitri; Lomb, Lukas; Hampton, Christina Y.; Martin, Andrew V.; Sierra, Raymond G.; Barty, Anton; Aquila, Andrew; Schulz, Joachim; Steinbrener, Jan; Shoeman, Robert L.; Kassemeyer, Stephan; Bostedt, Christoph; Bozek, John; Epp, Sascha W.; Erk, Benjamin; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Rudek, Benedikt; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Hauser, Günther; Holl, Peter; Pedersoli, Emanuele; Liang, MengNing; Hunter, Mark S.; Gumprecht, Lars; Coppola, Nicola; Wunderer, Cornelia; Graafsman, Heinz; Maia, Filipe R. N. C.; Ekeberg, Tomas; Hantke, Max; Fleckenstein, Holger; Hirsemann, Helmut; Nass, Karol; White, Thomas A.; Tobias, Herbert J.; Farquar, George R.; Benner, W. Henry; Hau-Riege, Stefan; Reich, Christian; Hartmann, Andreas; Soltau, Heike; Marchesini, Stefano; Bajt, Sasa; Barthelmess, Miriam; Strueder, Lothar; Ullrich, Joachim; Bucksbaum, Philip; Hodgson, Keith O.; Frank, Mathias; Schlichting, Ilme; Chapman, Henry N.; Bogan, Michael J.

    2012-10-01

    Profiling structured beams produced by X-ray free-electron lasers (FELs) is crucial to both maximizing signal intensity for weakly scattering targets and interpreting their scattering patterns. Earlier ablative imprint studies describe how to infer the X-ray beam profile from the damage that an attenuated beam inflicts on a substrate. However, the beams in-situ profile is not directly accessible with imprint studies because the damage profile could be different from the actual beam profile. On the other hand, although a Shack-Hartmann sensor is capable of in-situ profiling, its lenses may be quickly damaged at the intense focus of hard X-ray FEL beams. We describe a new approach that probes the in-situ morphology of the intense FEL focus. By studying the translations in diffraction patterns from an ensemble of randomly injected sub-micron latex spheres, we were able to determine the non-Gaussian nature of the intense FEL beam at the Linac Coherent Light Source (SLAC National Laboratory) near the FEL focus. We discuss an experimental application of such a beam-profiling technique, and the limitations we need to overcome before it can be widely applied.

  4. In Situ Aerosol Profile Measurements and Comparisons with SAGE 3 Aerosol Extinction and Surface Area Profiles at 68 deg North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.

  5. Atmospheric aerosol profiling with a bistatic imaging lidar system.

    PubMed

    Barnes, John E; Sharma, N C Parikh; Kaplan, Trevor B

    2007-05-20

    Atmospheric aerosols have been profiled using a simple, imaging, bistatic lidar system. A vertical laser beam is imaged onto a charge-coupled-device camera from the ground to the zenith with a wide-angle lens (CLidar). The altitudes are derived geometrically from the position of the camera and laser with submeter resolution near the ground. The system requires no overlap correction needed in monostatic lidar systems and needs a much smaller dynamic range. Nighttime measurements of both molecular and aerosol scattering were made at Mauna Loa Observatory. The CLidar aerosol total scatter compares very well with a nephelometer measuring at 10 m above the ground. The results build on earlier work that compared purely molecular scattered light to theory, and detail instrument improvements.

  6. Improved identification of transition metals in airborne aerosols by SEM-EDX combined backscattered and secondary electron microanalysis.

    PubMed

    Pietrodangelo, A; Pareti, S; Perrino, C

    2014-03-01

    The SEM EDX backscattered electron (BSE) atomic number contrast has been largely used in this work, in combination with conventional secondary electron microanalysis, to investigate the presence of metal particles in airborne particulate collected at three sites (industrial, residential, and rural background) in the Po Valley (Italy). Individual particle x-ray microanalysis was used for this aim. In many cases, the presence of metal particles was not evident by secondary electron imaging and it was instead revealed by BSE detection. Metal particles were observed either as isolated (not clustered to other particles), or gathered together (homogeneous clusters). In addition, the BSE microanalysis put on evidence two main types of association of metals to other particulate components: heterogeneous clusters and metals embedded or enclosed in other materials. In this study, the first association (heterogeneous clusters) was observed mostly between Fe-bearing metallic particles and soot aggregates (or other carbonaceous particles) and it was found in the particulate matter (PM) of all studied sites. The second association, conversely, seems to be characterized by more selective relationships between composition/size of metal particles and type of other particulate components. These associations could be evidenced only when using the BSE Z-contrast and mainly concern three cases: (1) unusual silicate-carbonate mixed aggregates were observed at the industrial site only. In these aggregates, embedded Mn, Cr, Co, Bi, W, and Zr fine particles were selectively observed. (2) Ni and V rich ultrafine particles were only observed as embedded particles in the surface structure of carbon cenospheres. (3) Pb or Pb-Zn bearing fine and ultrafine particles were largely detected only in oxygenated organic aerosols in the ultrafine PM.

  7. Quality Screening Algorithms Implemented in the New CALIPSO Level 3 Aerosol Profile Product

    NASA Astrophysics Data System (ADS)

    Tackett, J. L.; Winker, D. M.; Getzewich, B. J.; Vaughan, M.

    2012-12-01

    Global observations of aerosol extinction profiles can improve the ability of climate models to properly account for aerosol radiative forcing in Earth's atmosphere. In response to this need, a new CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) level 3 aerosol profile product has been released which for the first time provides monthly, globally gridded and quality-screened aerosol extinction profiles within the troposphere for the entire 6-year mission. Level 3 aerosol extinction profiles are aggregated from CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar extinction retrievals reported in the CALIPSO level 2 aerosol profile product onto an equal-angle grid after quality screening algorithms are applied to reduce occurrences of failed retrievals, misclassified aerosol, surface contamination, and spurious outliers. Implementation of these quality screening algorithms is a substantial value to aerosol modeling groups who desire high confidence datasets without having to independently develop quality screening metrics. Furthermore, quality screening is paramount to understand the scientific content of the resultant CALIPSO level 3 aerosol profile product since classification and retrieval errors in level 2 aerosol data may lead to misinterpretation of the distribution and optical properties of aerosol in the troposphere. This presentation summarizes the averaging and quality screening algorithms implemented in the CALIPSO level 3 aerosol profile product, provides rationale for their implementation, and discusses averaging and filtering differences unique to CALIPSO data compared to level 3 products aggregated from passive satellite measurements. Examples are given that illustrate the benefits of quality screening and the dangers of improper screening CALIPSO level 2 aerosol extinction data. Sensitivity study results are presented to highlight the impact of quality screening on final level 3 statistics. Since overlying cloud

  8. Daytime aerosol extinction profiles from the combination of CALIOP profiles and AERONET products

    NASA Astrophysics Data System (ADS)

    Marcos, C.; Pedrós, R.; Gómez-Amo, J. L.; Sicard, M.; Utrillas, M. P.; Muñoz, C.; Comerón, A.; Martinez-Lozano, J. A.

    2013-04-01

    The solar background illumination has a strong effect on CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) measurements, leading to a decrease in the signal-to-noise ratio of the lidar signal. Because of this, CALIOP level 2 data algorithms might be limited in the retrieval of the properties of the aerosols in the atmosphere. In this work, we present a methodology that combines CALIOP level 1 data with AERONET (Aerosol RObotic NETwork) measurements to retrieve aerosol extinction profiles and lidar ratios in daytime conditions. In this way, we fulfill a two-fold objective: first, we obtain more accurate daytime aerosol information; second, we supplement column integrated measurements from AERONET sun photometers with information about the vertical distribution of aerosols. The methodology has been applied to Burjassot (39.30° N, 0.25° W) and Barcelona (41.39° N, 2.11° E) AERONET stations in the Mediterranean coast of Spain in the period from June 2006 to September 2011. We have found good agreement for the extinction profiles in several study cases of ground lidar measurements in Barcelona, coincident with CALIOP overpasses. Finally, the methodology has proved to be useful for the study of special episodes such as Saharan dust outbreaks.

  9. How Well do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare?

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.; Eilers, J.; Ricci, K.; Hallar, A. G.; Clayton, M.; Michalsky, J.; Smirnov, A.; Holben, B.; Barnard, J.

    2006-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated

  10. Vertical Profile of Aerosol Properties at Pico Mountain, Azores

    NASA Astrophysics Data System (ADS)

    Wright, K.; Mazzoleni, C.; Mazzoleni, L. R.; Dzepina, K.; Hueber, J.; China, S.; Sharma, N.

    2013-12-01

    Pico Mountain (2325m asl) is a dormant volcano in the archipelago of the Azores1500 km west of Lisbon, Portugal in the North Atlantic. It differs from typical mountain ranges such as the Alps or the Rockies, which are large and present a complex orography. Pico Mountain has a simple cone-like structure with only one main peak and is thousands of kilometers away from any other significant mountain range. In summer months, it is typical for air masses to move around the mountain rather than traveling up its face. This implies that often the peak of the mountain lies above the marine boundary layer in the free troposphere, while the lower part of the mountain is affected by marine clouds and marine air-masses. An atmospheric monitoring station, the Pico Mountain Observatory was established in 2001 in the summit caldera of the volcano at 2225m above sea level. The observatory is far from large populations or pollution sources, which makes the station ideal to study atmospheric gases and aerosols transported over long-ranges in the free troposphere. The station is reachable only by foot following a steep and strenuous hiking trail. In the summer of 2013 we began to collect vertical profiles of aerosol by carrying an instrumented backpack up to the summit of the mountain, with the goal of studying the vertical structure of atmospheric aerosols from the marine boundary layer to the free troposphere. The backpack was carried from the base of trail at 1200m asl. The backpack was equipped with the following instruments: 1. Nephelometer to measure light scattering from aerosol 2. 2-size optical particle counter (300-500 nm) 3. Portable micro-aethalometer to measure absorbing aerosols 4. SEM/TEM sampler to collect particles for off-line electron microscopy analysis 5. Battery powered data logger to measure relative humidity, temperature and pressure 6. GPS tracking device We provide a preliminary analysis of data collected in 2013 to gain insight on the vertical distribution

  11. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California

    USGS Publications Warehouse

    Gartner, J.W.

    2004-01-01

    The estimation of mass concentration of suspended solids is one of the properties needed to understand the characteristics of sediment transport in bays and estuaries. However, useful measurements or estimates of this property are often problematic when employing the usual methods of determination from collected water samples or optical sensors. Analysis of water samples tends to undersample the highly variable character of suspended solids, and optical sensors often become useless from biological fouling in highly productive regions. Acoustic sensors, such as acoustic Doppler current profilers that are now routinely used to measure water velocity, have been shown to hold promise as a means of quantitatively estimating suspended solids from acoustic backscatter intensity, a parameter used in velocity measurement. To further evaluate application of this technique using commercially available instruments, profiles of suspended solids concentrations are estimated from acoustic backscatter intensity recorded by 1200- and 2400-kHz broadband acoustic Doppler current profilers located at two sites in San Francisco Bay, California. ADCP backscatter intensity is calibrated using optical backscatterance data from an instrument located at a depth close to the ADCP transducers. In addition to losses from spherical spreading and water absorption, calculations of acoustic transmission losses account for attenuation from suspended sediment and correction for nonspherical spreading in the near field of the acoustic transducer. Acoustic estimates of suspended solids consisting of cohesive and noncohesive sediments are found to agree within about 8-10% (of the total range of concentration) to those values estimated by a second optical backscatterance sensor located at a depth further from the ADCP transducers. The success of this approach using commercially available Doppler profilers provides promise that this technique might be appropriate and useful under certain conditions in

  12. Use of In Situ Cloud Condensation Nuclei, Extinction, and Aerosol Size Distribution Measurements to Test a Method for Retrieving Cloud Condensation Nuclei Profiles From Surface Measurements

    NASA Technical Reports Server (NTRS)

    Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.; VanReken, Timothy; Flagan, Richard C.; Seinfeld, John H.

    2006-01-01

    If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.

  13. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    SciTech Connect

    Rosenfeld, Daniel

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  14. Novel Co:MgF2 lidar for aerosol profiler

    NASA Technical Reports Server (NTRS)

    Acharekar, M. A.

    1993-01-01

    Lidars are of great interest because of their unique capabilities in remote sensing applications in sounding of the atmosphere, meteorology, and climatology. In this small business innovative research (SBIR) phase II program, laser sources including Co:MgF2, CTH:YAG, CTH:YSGG, CT:YAG, and Er:Glass were evaluated. Modulator of fused silica and TeO2 materials with Brewster's angle end faces were used with these lasers as acousto-optical (AO) Q-switches. A higher hold-off energy and hence a higher Q-switched energy was obtained by using a high power RF driver. The report provides performance characteristics of these lasers. The tunable (1.75-2.50 microns) Co:MgF2 laser damaged the TeO2 Q-switch cell. However, the CTH:YAG laser operating at 2.09 microns provided output energy of over 300 mJ/p in 50 ns pulse width using the fused silica Q-switch. This Q-switched CTH:YAG laser was used in a breadboard vertical aerosol profiler. A 40 cm diameter telescope, InSb and InGaAs detectors were used in the receiver. The data obtained using this lidar is provided in the report. The data shows that the eye safe lidar using CTH:YAG laser for the vertical aerosol density and range measurements is the viable approach.

  15. Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars.

    PubMed

    Feiyue, Mao; Wei, Gong; Yingying, Ma

    2012-02-15

    The aerosol lidar ratio is a key parameter for the retrieval of aerosol optical properties from elastic lidar, which changes largely for aerosols with different chemical and physical properties. We proposed a method for retrieving the aerosol lidar ratio profile by combining simultaneous ground- and space-based elastic lidars. The method was tested by a simulated case and a real case at 532 nm wavelength. The results demonstrated that our method is robust and can obtain accurate lidar ratio and extinction coefficient profiles. Our method can be useful for determining the local and global lidar ratio and validating space-based lidar datasets.

  16. Comparison of aerosol extinction profiles from lidar and SAGE II data at a tropical station

    NASA Technical Reports Server (NTRS)

    Parameswaran, K.; Rose, K. O.; Murthy, B. V. K.; Osborn, M. T.; Mcmaster, L. R.

    1991-01-01

    Aerosol extinction profiles obtained from lidar data at Trivandrum (8.6 deg N, 77 deg E) are compared with corresponding Stratospheric Aerosol and Gas Experiment II extinction profiles. The agreement between the two is found to be satisfactory. The extinction profiles obtained by both the experiments showed a prominent peak at 23-24 km altitude in the stratosphere. The study revealed large variability in upper tropospheric extinction with location (latitude).

  17. Vertical profiles of cloud condensation nuclei, aerosol hygroscopicity, water uptake, and scattering across the United States

    NASA Astrophysics Data System (ADS)

    Lin, J. J.; Bougiatioti, A.; Nenes, A.; Anderson, B. E.; Beyersdorf, A. J.; Brock, C. A.; Gordon, T. D.; Lack, D.; Law, D. C.; Liao, J.; Middlebrook, A. M.; Richardson, M.; Thornhill, K. L., II; Winstead, E.; Wagner, N. L.; Welti, A.; Ziemba, L. D.

    2014-12-01

    The evolutions of vertical distributions of aerosol chemical, microphysical, hygroscopic, and optical properties present fundamental challenges to the understanding of ground-level air quality and radiative transfer, and few datasets exist to date for evaluation of atmospheric models. Data collected from recent NASA and NOAA field campaigns in the California Central Valley (DISCOVER-AQ), southeast United States (SENEX, SEAC4RS) and Texas (DISCOVER-AQ) allow for a unique opportunity to constrain vertical profiles of climate-relevant aerosol properties. This work presents in-situ aircraft measurements of cloud condensation nuclei (CCN) concentration and derivations of aerosol hygroscopicity, water uptake, and light scattering. Aerosol hygroscopicity is derived from CCN and aerosol measurements. Inorganic water uptake is calculated from aerosol composition using ISORROPIA, a chemical thermodynamic model, while organic water uptake is calculated from organic hygroscopicity. Aerosol scattering closure is performed between scattering from water uptake calculations and in-situ scattering measurements.

  18. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Ansmann, A.

    2015-12-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of number concentrations of aerosol particles with radius > 50 nm (APC50, reservoir of favorable CCN) and with radius > 250 nm (APC250, reservoir of favorable INP), as well as profiles of the aerosol particle surface area concentration (ASC, used in INP parameterization) can be retrieved from lidar-derived aerosol extinction coefficients (AEC) with relative uncertainties of a factor of around 2 (APC50), and of about 25-50 % (APC250, ASC). Of key importance is the potential of polarization lidar to identify mineral dust particles and to distinguish and separate the aerosol properties of basic aerosol types such as mineral dust and continental pollution (haze, smoke). We investigate the relationship between AEC and APC50, APC250, and ASC for the main lidar wavelengths of 355, 532 and 1064 nm and main aerosol types (dust, pollution, marine). Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures of continental pollution, mineral dust, and marine aerosol. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple relationship between APC50 and the CCN-reservoir particles (APCCCN) and published INP parameterization schemes (with APC250 and ASC as input) we finally compute APCCCN and INP concentration profiles. We apply the full methodology to a lidar observation of a heavy dust outbreak crossing Cyprus with dust up to 8 km height and to a case during which anthropogenic pollution dominated.

  19. Vertical Profiles of Aerosol Volume from High Spectral Resolution Infrared Transmission Measurements: Results

    NASA Technical Reports Server (NTRS)

    Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.

    2004-01-01

    The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.

  20. The backscatter cloud probe - a compact low-profile autonomous optical spectrometer

    NASA Astrophysics Data System (ADS)

    Beswick, K.; Baumgardner, D.; Gallagher, M.; Volz-Thomas, A.; Nedelec, P.; Wang, K.-Y.; Lance, S.

    2014-05-01

    A compact (500 cm3), lightweight (500 g), near-field, single particle backscattering optical spectrometer is described that mounts flush with the skin of an aircraft and measures the concentration and optical equivalent diameter of particles from 5 to 75 μm. The backscatter cloud probe (BCP) was designed as a real-time qualitative cloud detector primarily for data quality control of trace gas instruments developed for the climate monitoring instrument packages that are being installed on commercial passenger aircraft as part of the European Union In-Service Aircraft for a Global Observing System (IAGOS) program (http://www.iagos.org/). Subsequent evaluations of the BCP measurements on a number of research aircraft, however, have revealed it capable of delivering quantitative particle data products including size distributions, liquid-water content and other information on cloud properties. We demonstrate the instrument's capability for delivering useful long-term climatological, as well as aviation performance information, across a wide range of environmental conditions. The BCP has been evaluated by comparing its measurements with those from other cloud particle spectrometers on research aircraft and several BCPs are currently flying on commercial A340/A330 Airbus passenger airliners. The design and calibration of the BCP is described in this article, along with an evaluation of measurements made on the research and commercial aircraft. Preliminary results from more than 7000 h of airborne measurements by the BCP on two Airbus A340s operating on routine global traffic routes (one Lufthansa, the other China Airlines) show that more than 340 h of cloud data have been recorded at normal cruise altitudes (> 10 km) and more than 40% of the > 1200 flights were through clouds at some point between takeoff and landing. These data are a valuable contribution to databases of cloud properties, including sub-visible cirrus

  1. The effect of aerosol vertical profiles on satellite-estimated surface particle sulfate concentrations

    SciTech Connect

    Liu, Yang; Wang, Zifeng; Wang, Jun; Ferrare, Richard A.; Newsom, Rob K.; Welton, Ellsworth J.

    2011-02-15

    The aerosol vertical distribution is an important factor in determining the relationship between satellite retrieved aerosol optical depth (AOD) and ground-level fine particle pollution concentrations. We evaluate how aerosol profiles measured by ground-based lidar and simulated by models can help improve the association between AOD retrieved by the Multi-angle Imaging Spectroradiometer (MISR) and fine particle sulfate (SO4) concentrations using matched data at two lidar sites. At the Goddard Space Flight Center (GSFC) site, both lidar and model aerosol profiles marginally improve the association between SO4 concentrations and MISR fractional AODs, as the correlation coefficient between cross-validation (CV) and observed SO4 concentrations changes from 0.87 for the no-scaling model to 0.88 for models scaled with aerosol vertical profiles. At the GSFC site, a large amount of urban aerosols resides in the well-mixed boundary layer so the column fractional AODs are already excellent indicators of ground-level particle pollution. In contrast, at the Atmospheric Radiation Measurement Program (ARM) site with relatively low aerosol loadings, scaling substantially improves model performance. The correlation coefficient between CV and observed SO4 concentrations is increased from 0.58 for the no-scaling model to 0.76 in the GEOS-Chem scaling model, and the model bias is reduced from 17% to 9%. In summary, despite the inaccuracy due to the coarse horizontal resolution and the challenges of simulating turbulent mixing in the boundary layer, GEOS-Chem simulated aerosol profiles can still improve methods for estimating surface aerosol (SO4) mass from satellite-based AODs, particularly in rural areas where aerosols in the free troposphere and any long-range transport of aerosols can significantly contribute to the column AOD.

  2. A comparison of SAGE 1, SBUV, and Umkehr ozone profiles including a search for Umkehr aerosol effects

    NASA Technical Reports Server (NTRS)

    Newchurch, M. J.; Grams, G. W.; Cunnold, D. M.; Deluisi, J. J.

    1987-01-01

    Using a spatially weighted average for the stratospheric aerosol and gas experiment 1 (SAGE 1) events derived from an autocorrelation analysis, 337 colocated SAGE 1 and Umkehr ozone profiles are found. The total column ozone in layers two through nine measured by SAGE 1 is found to be 4.6 + or - 1.3 percent higher at the 95 percent confidence level than the approximate total column ozone measured by Umkehr. Average layer ozone differences indicate that most of this discrepancy resides in the lower layers. Intercomparison of SAGE 1, Nimbus 7 solar backscattered ultraviolet (SBUV), and Umkehr ozone at stations north of 30 deg indicates that, in layer six, Umkehr values are consistently higher than both SAGE 1 and SBUV by about 10 percent. In layer eight, SBUV ozone is higher than both SAGE 1 and SBUV by about 10 percent. In the upper stratosphere, the SAGE 1-Umkehr ozone differences are small for low stratospheric aerosol optical depth cases, but vary from -3 percent in layer six to -8 percent in layer nine for high optical depth cases.

  3. Seasonal and diurnal variations of aerosol extinction profile and type distribution from CALIPSO 5-year observations

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Jiang, Jonathan H.; Tackett, Jason L.; Su, Hui; Fu, Rong

    2013-05-01

    The new Level 3 aerosol profile data derived from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) provide a multiyear global aerosol distribution with high vertical resolution. We analyzed seasonal and diurnal variations of the vertical distributions of aerosol properties represented by 5-year CALIPSO data. Results show that dust, smoke, and polluted dust are the most frequently detected aerosol types during all seasons. Dust is the dominant type, especially in the middle to upper troposphere, over most areas during boreal spring and summer, while smoke and polluted dust tend to dominate during biomass burning seasons. The seasonal variations of dust layer top height and dust contribution to all-aerosol extinction are positively correlated with the seasonal variation of the dust occurrence frequency. The seasonal cycle of aerosol properties over west Australia is similar to that over biomass burning regime areas, despite its desert regime. In general, smoke is detected more frequently from the lower to middle troposphere; clean marine and polluted continental aerosols are detected more frequently, while polluted dust is detected less frequently, in the lower troposphere during nighttime than daytime. The all-aerosol extinction is generally larger, and the aerosol layer top is detected at high altitudes more frequently during nighttime than daytime. The diurnal changes of aerosol properties are similar within the same aerosol regime. Dust extinction shows little diurnal variation except when dust is the dominant aerosol type. The results contribute to an initial global 3-D aerosol climatology which will likely be extended and improved in the future.

  4. Aerosol Classification using Airborne High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R.; Butler, C. F.; Cook, A.; Harper, D.; Froyd, K. D.

    2011-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical thickness (AOT) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of aerosol optical thickness and inferences of aerosol types are used to apportion aerosol optical thickness to aerosol type; results of this analysis are shown for several experiments.

  5. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    PubMed

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  6. Radiosonde aerosol counter for vertical profiling of atmospheric dust layers

    NASA Astrophysics Data System (ADS)

    Ulanowski, Z.; Hirst, E.; Kaye, P. H.; Harrison, R. G.; Nicoll, K. A.; Rogers, G.

    2010-05-01

    A low-cost, miniature aerosol particle counter has been developed, intended for use with balloon-borne meteorological radiosondes. It is particularly suitable for airborne mineral dust measurements. Ambient air is drawn into the counter using a diaphragm pump at a rate of 0.5 litre per minute. The counter detects particles in the airstream using a diode laser and a photodiode. Output from the photodiode is digitised into 5 size bins, with minimum particle diameters equivalent to 0.6, 1.4, 2.6, 5.4 and 10.6 micrometers. The counter is interfaced to a Vaisala RS92 radiosonde, which transmits data from the counter together with meteorological parameters and GPS-derived position to a ground based receiver at 1 Hz rate. Statistically significant particle size distributions can be obtained once a second for number concentrations down to about 100,000 particle per litre (within the measured size range), or correspondingly less at lower temporal resolutions. At the same time, the counter is capable of measuring dust number concentrations exceeding a million per litre without incurring significant errors. Soundings during the DREAME campaign in Kuwait (Ulanowski et al. EGU 2010, AS4.7) and on Cape Verde Islands (Nicoll et al. EGU 2010, AS4.7) provided dust concentration profiles with a typical vertical resolution of 4 m. Comparisons with integrated dust column size distribution measurements from AERONET sun photometers showed good agreement in two out of three cases where near-simultaneous retrievals were available. Optical thickness calculations based on the size distributions measured in Kuwait, with the assumption that the dust particles were prolate spheroids, agreed with the AERONET optical thickness at 675 nm to within 15%.

  7. Vertical profiles of aerosol volume from high-spectral-resolution infrared transmission measurements. I. Methodology.

    PubMed

    Eldering, A; Irion, F W; Chang, A Y; Gunson, M R; Mills, F P; Steele, H M

    2001-06-20

    The wavelength-dependent aerosol extinction in the 800-1250-cm(-1) region has been derived from ATMOS (atmospheric trace molecule spectroscopy) high-spectral-resolution IR transmission measurements. Using models of aerosol and cloud extinction, we have performed weighted nonlinear least-squares fitting to determine the aerosol-volume columns and vertical profiles of stratospheric sulfate aerosol and cirrus cloud volume. Modeled extinction by use of cold-temperature aerosol optical constants for a 70-80% sulfuric-acid-water solution shows good agreement with the measurements, and the derived aerosol volumes for a 1992 occultation are consistent with data from other experiments after the eruption of Mt. Pinatubo. The retrieved sulfuric acid aerosol-volume profiles are insensitive to the aerosol-size distribution and somewhat sensitive to the set of optical constants used. Data from the nonspherical cirrus extinction model agree well with a 1994 mid-latitude measurement indicating the presence of cirrus clouds at the tropopause.

  8. Synergic estimation of columnar integrated aerosol properties and their vertical resolved profiles in respect to the scenarios of dust intrusions over Granada

    NASA Astrophysics Data System (ADS)

    Mandija, Florian; Guerrero-Rascado, Juan Luis; Lyamani, Hassan; Granados-Muñoz, María José; Alados-Arboledas, Lucas

    2016-11-01

    In this paper, we present a study of the columnar and vertically resolved aerosol optical properties over Granada (Spain) during dust events detected during July-August in the period 2012-2013. For this purpose, we classified the events according to their origins and pathways. The analyzed aerosol properties include; columnar aerosol optical properties like aerosol optical depth (AOD) and Angstrom exponent (AE), as well as the lidar products, like backscatter-related Angstrom exponent and linear particle depolarization ratio (LDPR). The lidar profiles are used for determination of the geometrical structure of dust layers and the aerosol optical parameters inside dust layers. There are identified 58 dusty days over Granada during the periods July-August, 2012-2013. In 71% of the dust, event analyzed the dust plume over Granada is located between 3000 and 4000 m a.g.l. Mean values of AOD500 according to the Atlantic and Mediterranean pathway were 0.28 ± 0.10 and 0.93 ± 0.17. Meanwhile, the mean values of AE440-870 were 0.57 ± 0.25 and 0.43 ± 0.20. Three region are identified as the main dust sources affecting the dust intrusions over Granada. Two principal pathways of air masses during dust intrusion over Granada were observed: through Atlantic (52.7%) and through Mediterranean (47.3%). Air masses which come through the Mediterranean present larger AOD and lower Angstrom exponent values than those air masses coming through Atlantic. Lidar measurements show different vertical distributions on particle backscatter coefficient, during different scenarios of dust intrusions. The lidar profiles indicate that average base and top heights of all dust during the investigation period were 2.1 ± 0.7 and 4.8 ± 0.9 km, and their center of mass and thickness were 3.3 ± 0.7 and 2.8 ± 1.0 km a.g.l. The AE355/532 profiles for the dust intrusions present some differences depending on the source regions and path followed by the dust. On the other hand, the profiles of LPDRat

  9. Sensitivity of the atmospheric temperature profile to the aerosol absorption in the presence of dust

    NASA Astrophysics Data System (ADS)

    Gómez-Amo, J. L.; di Sarra, A.; Meloni, D.

    2014-12-01

    Radiative transfer simulations in the shortwave (SW) and longwave (LW) spectral regions have been carried out to investigate the time evolution of the atmospheric heating/cooling rates and their influence on the temperature profiles under different vertical distributions of the aerosol absorption. The case study is based on measurements made at Rome, Italy, on 20 June 2007, when a dust layer was present above the urban boundary layer (BL) and the column aerosol optical depth at 550 nm was about 0.37. Column-integrated aerosol optical depth and single scattering albedo, as well as vertical profiles of aerosol extinction and meteorological variables have been derived from observations and used in the simulations. Different profiles of the aerosol absorption are considered by varying the absorption of the BL aerosols and of the desert dust, without changing the overall columnar properties. Three scenarios have been considered, with absorbing (ABL) or scattering (SBL) particles in the BL, and with a vertically homogeneous case (HL), which is taken as the reference. Calculations show that, for the selected case, about 25% of the SW heating is offset by the LW cooling within the dust layer. Different longwave/all-wave contributions are observed in the BL, depending on the BL aerosol absorption. Changes of atmospheric temperature induced by aerosol-radiation interactions only, have been investigated, while interactions with the surface through changes of the latent and sensible heat flux have been neglected. The evolution of temperature is similar for the three scenarios within the dust layer, with a daytime increase and a smaller nighttime decrease. After 24 h, the increase of the atmospheric temperature due to the aerosol radiative processes is about 1 K. In the BL, the increase of temperature is strongly dependent on the aerosol absorption capability. The oscillatory behaviour of the temperature with time in the dust layer, and the different evolution in the BL are

  10. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert

    2016-05-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of particle number concentrations n50, dry considering dry aerosol particles with radius > 50 nm (reservoir of CCN in the case of marine and continental non-desert aerosols), n100, dry (particles with dry radius > 100 nm, reservoir of desert dust CCN), and of n250, dry (particles with dry radius > 250 nm, reservoir of favorable INP), as well as profiles of the particle surface area concentration sdry (used in INP parameterizations) can be retrieved from lidar-derived aerosol extinction coefficients σ with relative uncertainties of a factor of 1.5-2 in the case of n50, dry and n100, dry and of about 25-50 % in the case of n250, dry and sdry. Of key importance is the potential of polarization lidar to distinguish and separate the optical properties of desert aerosols from non-desert aerosol such as continental and marine particles. We investigate the relationship between σ, measured at ambient atmospheric conditions, and n50, dry for marine and continental aerosols, n100, dry for desert dust particles, and n250, dry and sdry for three aerosol types (desert, non-desert continental, marine) and for the main lidar wavelengths of 355, 532, and 1064 nm. Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple CCN parameterization (with n50, dry or n100, dry as input) and available INP parameterization schemes (with n250, dry and sdry as input) we finally compute

  11. Long-term aerosol study on continental scale through EARLINET vertical profiles

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Pappalardo, Gelsomina; Linne, Holger; Wandinger, Ulla

    2015-04-01

    Lidar techniques offer the opportunity for investigating the aerosol vertical profiles, which is an important information for climatological, meteorological and air quality issues. EARLINET (European Aerosol Research Lidar Network) has been providing aerosol optical properties vertical profiles over Europe since May 2000. Long-term aerosol observations performed within EARLINET allows a climatological study of aerosol properties over Europe. All EARLINET stations perform almost simultaneously measurements three times per week following a scheduling established in 2000. Besides these climatological measurements, additional measurements are performed in order to monitor special events (as volcanic eruptions and desert dust intrusion), for satellite data evaluation and integrated studies and during intensive measurements campaigns. Aerosol optical properties vertical profiles are freely available at www.earlinet.org and through ACRIS data center http://www.actris.net/. This data are currently published on the CERA database with an associated doi number. Based mainly on Raman technique, EARLINET stations typically provide direct measurement of extinction profiles, and therefore of the aerosol optical depth (AOD), a key parameter for understanding the aerosol role on radiation budget. The free troposphere contribution to AOD and altitude of lofted layers are provided thanks to the vertical profiling capability of lidar technique. The representativeness of EARLINET regular scheduling for climatological studies is investigating through the comparison with AERONET and MODIS measurements. We find that the regular measurements schedule is typically sufficient for climatological studies. In addition lidar punctual measurements are representative for a larger area (1°x1°) in a climatological sense. Long term analysis of EARLINET profiles shows that the AOD in generally decreasing over Europe in agreement with both passive-sensors and in situ measurements. Mean vertical

  12. Investigation the optical and radiative properties of aerosol vertical profile of boundary layer by lidar and ground based measurements

    NASA Astrophysics Data System (ADS)

    Chen, W.; Chou, C.; Lin, P.; Wang, S.

    2011-12-01

    The planetary boundary layer is the air layer near the ground directly affected by diurnal heat, moisture, aerosol, and cloud transfer to or from the surface. In the daytime solar radiation heats the surface, initiating thermal instability or convection. Whereas, the scattering and absorption of aerosols or clouds might decrease the surface radiation or heat atmosphere which induce feedbacks such as the enhanced stratification and change in relative humidity in the boundary layer. This study is aimed to understand the possible radiative effect of aerosols basing on ground based aerosol measurements and lidar installed in National Taiwan University in Taipei. The optical and radiative properties of aerosols are dominated by aerosol composition, particle size, hygroscopicity property, and shape. In this study, aerosol instruments including integrating nephelometer, open air nephelometer, aethalometer are applied to investigate the relationship between aerosol hygroscopicity properties and aerosol types. The aerosol hygroscopicity properties are further applied to investigate the effect of relative humidity on aerosol vertical profiles measured by a dual-wavelength and depolarization lidar. The possible radiative effect of aerosols are approached by vertical atmospheric extinction profiles measured by lidar. Calculated atmospheric and aerosol heating effects was compared with vertical meteorological parameters measured by radiosonde. The result shows light-absorbing aerosol has the potential to affect the stability of planetary boundary layer.

  13. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  14. Airborne High Spectral Resolution Lidar Measurements of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Ferrare, R.; Hostetler, C.; Hair, J.; Cook, A.; Harper, D.; Kleinman, L.; Clarke, A.; Russell, P.; Redemann, J.; Livingston, J.; Szykman, J.; Al-Saadi, J.

    2007-05-01

    NASA Langley Research Center (LaRC) recently developed an airborne High Spectral Resolution Lidar (HSRL) to measure aerosol distributions and optical properties. The HSRL technique takes advantage of the spectral distribution of the lidar return signal to discriminate aerosol and molecular signals and thereby measure aerosol extinction and backscatter independently. The LaRC instrument employs the HSRL technique to measure aerosol backscatter and extinction profiles at 532 nm and the standard backscatter lidar technique to measure aerosol backscatter profiles at 1064 nm. Depolarization profiles are measured at both wavelengths. Since March 2006, the airborne HSRL has acquired over 215 flight hours of data deployed on the NASA King Air B200 aircraft during several field experiments. Most of the flights were conducted during two major field experiments. The first major experiment was the joint Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX B) experiment that was conducted during March 2006 to investigate the evolution and transport of pollution from Mexico City. The second major experiment was the Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) that was conducted during August and September 2006 to investigate climate and air quality in the Houston/Gulf of Mexico region. Several flights were also conducted to help validate the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) lidar on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) satellite. In February 2007, several flights were carried out as part of an Environmental Protection Agency (EPA) experiment to assess air quality in central California. Airborne HSRL data acquired during these missions were used to quantify aerosol extinction and optical thickness contributed by various aerosol types

  15. Raman Lidar Profiling of Aerosols Over the Central US; Diurnal Variability and Comparisons with the GOCART Model

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Chin, M.; Clayton, M.; Turner, D.

    2002-01-01

    We use profiles of aerosol extinction, water vapor mixing ratio, and relative humidity measured by the ARM SGP Raman lidar in northern Oklahoma to show how the vertical distributions of aerosol extinction and water vapor vary throughout the diurnal cycle. While significant (20-30%) variations in aerosol extinction occurred near the surface as well as aloft, smaller (approximately 10%) variations were observed in the diurnal variability of aerosol optical thickness (AOT). The diurnal variations in aerosol extinction profiles are well correlated with corresponding variations in the average relative humidity profiles. The water vapor mixing ratio profiles and integrated water vapor amounts generally show less diurnal variability. The Raman lidar profiles are also used to evaluate the aerosol optical thickness and aerosol extinction profiles simulated by the GOCART global aerosol model. Initial comparisons show that the AOT simulated by GOCART was in closer agreement with the AOT derived from the Raman lidar and Sun photometer measurements during November 2000 than during September 2000. For both months, the vertical variability in average aerosol extinction profiles simulated by GOCART is less than the variability in the corresponding Raman lidar profiles.

  16. Characterizing the Vertical Profile of Aerosol Particle Extinction and Linear Depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 View from CALIOP

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; Winker, David M.

    2012-01-01

    Vertical profiles of 0.532 µm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging Spectro- Radiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio ("lidar ratio") necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolvesmore smoke overwater than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of Bengal

  17. Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 view from CALIOP

    NASA Astrophysics Data System (ADS)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; Winker, David M.

    2013-03-01

    Vertical profiles of 0.532 μm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio (“lidar ratio”) necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolves more smoke over water than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of

  18. Overview of the Cumulus Humilis Aerosol Processing Study

    SciTech Connect

    Berg, Larry K.; Berkowitz, Carl M.; Ogren, John A.; Hostetler, Chris A.; Ferrare, Richard; Dubey, Manvendra K.; Andrews, Elizabeth; Coulter, Richard L.; Hair, John; Hubbe, John M.; Lee, Yin-Nan; Mazzoleni, Claudio; Olfert, Jason N.; Springston, Stephen R.

    2009-11-30

    The primary goal of the Cumulus Humilis Aerosol Processing Study (CHAPS) was to characterize and contrast freshly emitted aerosols below, above, and within fields of cumuli, and to study changes to the cloud microphysical structure within these same cloud fields. The CHAPS is one of very few studies that have had an Aerosol Mass Spectrometer (AMS) sampling downstream of a counter-flow virtual impactor (CVI) inlet on an aircraft, allowing the examination of the chemical composition of the nucleated aerosols within the cumuli. The results from the CHAPS will provide insights into changes in the aerosol chemical and optical properties as aerosols move through shallow cumuli downwind of a moderately sized city. Three instrument platforms were employed during the CHAPS, including the U.S. Department of Energy Gulfstream-1 aircraft, which was equipped for in situ sampling of aerosol optical and chemical properties; the NASA-Langley King Air B200, which carried the downward looking NASA Langley High Spectral Resolution Lidar (HSRL) to measure profiles of aerosol backscatter, extinction, and depolarization between the King Air and the surface; and a surface site equipped for continuous in situ measurements of aerosol properties, profiles of aerosol backscatter, and meteorological conditions including total sky cover and thermodynamic profiles of the atmosphere. In spite of record precipitation over central Oklahoma, a total of eight research flights were made by the G-1, and eighteen by the B200, including special satellite verification flights timed to coincide with NASA satellite A-Train overpasses.

  19. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  20. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-07-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  1. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  2. Vertical Profiles of Cloud Condensation Nuclei, Condensation Nuclei, Optical Aerosol, Aerosol Optical Properties, and Aerosol Volatility Measured from Balloons

    NASA Technical Reports Server (NTRS)

    Deshler, T.; Snider, J. R.; Vali, G.

    1998-01-01

    Under the support of this grant a balloon-borne gondola containing a variety of aerosol instruments was developed and flown from Laramie, Wyoming, (41 deg N, 105 deg W) and from Lauder, New Zealand (45 deg S, 170 deg E). The gondola includes instruments to measure the concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), optically detectable aerosol (OA.) (r greater than or equal to 0.15 - 2.0 microns), and optical scattering properties using a nephelometer (lambda = 530 microns). All instruments sampled from a common inlet which was heated to 40 C on ascent and to 160 C on descent. Flights with the CN counter, OA counter, and nephelometer began in July 1994. The CCN counter was added in November 1994, and the engineering problems were solved by June 1995. Since then the flights have included all four instruments, and were completed in January 1998. Altogether there were 20 flights from Laramie, approximately 5 per year, and 2 from Lauder. Of these there were one or more engineering problems on 6 of the flights from Laramie, hence the data are somewhat limited on those 6 flights, while a complete data set was obtained from the other 14 flights. Good CCN data are available from 12 of the Laramie flights. The two flights from Lauder in January 1998 were successful for all measurements. The results from these flights, and the development of the balloon-bome CCN counter have formed the basis for five conference presentations. The heated and unheated CN and OA measurements have been used to estimate the mass fraction of the aerosol volatile, while comparisons of the nephelometer measurements were used to estimate the light scattering, associated with the volatile aerosol. These estimates were calculated for 0.5 km averages of the ascent and descent data between 2.5 km and the tropopause, near 11.5 km.

  3. Profile of heating rate due to aerosols using lidar and skyradiometer in SKYNET Hefei site

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Liu, D.; Xie, C.

    2015-12-01

    Atmospheric aerosols have a significant impact on climate due to their important role in modifying atmosphere energy budget. On global scale, the direct radiative forcing is estimated to be in the range of -0.9 to -0.1 Wm-2 for aerosols [1]. Yet, these estimates are subject to very large uncertainties because of uncertainties in spatial and temporal variations of aerosols. At local scales, as aerosol properties can vary spatially and temporally, radiative forcing due to aerosols can be also very different and it can exceed the global value by an order of magnitude. Hence, it is very important to investigate aerosol loading, properties, and radiative forcing due to them in detail on local regions of climate significance. Haze and dust events in Hefei, China are explored by Lidar and Skyradiometer. Aerosol optical properties including the AOD, SSA, AAE and size distribution are analysed by using the SKYRAD.PACK [2] and presented in this paper. Furthermore, the radiative forcing due to aerosols and the heating rate in the ATM are also calculated using SBDART model [3]. The results are shown that the vertical heating rate is tightly related to aerosol profile. References: 1. IPCC. 2007. Climate Change 2007: The Physical Science Basic. Contribution of Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. Solomon S, Qing D H, Manning M, et al. eds., Cambridge University Press, Cambridge, United Kingdom and New York, N Y, USA. 2. Nakajima, T., G. Tonna, R. Rao, Y. Kaufman, and B. Holben, 1996: Use of sky brightness measurements from ground for remote sensing of particulate poly dispersions, Appl. Opt., 35, 2672-2686. 3. Ricchiazzi et al 1998. SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere,Bulletin of the American Meteorological Society,79,2101-2114.

  4. Profile and Morphology of Fungal Aerosols Characterized by Field Emission Scanning Electron Microscopy (FESEM)

    PubMed Central

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Skaar, Ida; Hjeljord, Linda; Skare, Øivind; Green, Brett James; Tronsmo, Arne; Eduard, Wijnand

    2016-01-01

    Fungal aerosols consist of spores and fragments with diverse array of morphologies; however, the size, shape, and origin of the constituents require further characterization. In this study, we characterize the profile of aerosols generated from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum grown for 8 weeks on gypsum boards. Fungal particles were aerosolized at 12 and 20 L min−1 using the Fungal Spore Source Strength Tester (FSSST) and the Stami particle generator (SPG). Collected particles were analyzed with field emission scanning electron microscopy (FESEM). We observed spore particle fraction consisting of single spores and spore aggregates in four size categories, and a fragment fraction that contained submicronic fragments and three size categories of larger fragments. Single spores dominated the aerosols from A. fumigatus (median: 53%), while the submicronic fragment fraction was the highest in the aerosols collected from A. versicolor (median: 34%) and P. chrysogenum (median: 31%). Morphological characteristics showed near spherical particles that were only single spores, oblong particles that comprise some spore aggregates and fragments (<3.5 μm), and fiber-like particles that regroup chained spore aggregates and fragments (>3.5 μm). Further, the near spherical particles dominated the aerosols from A. fumigatus (median: 53%), while oblong particles were dominant in the aerosols from A. versicolor (68%) and P. chrysogenum (55%). Fiber-like particles represented 21% and 24% of the aerosols from A. versicolor and P. chrysogenum, respectively. This study shows that fungal particles of various size, shape, and origin are aerosolized, and supports the need to include a broader range of particle types in fungal exposure assessment. PMID:26855468

  5. Profile and Morphology of Fungal Aerosols Characterized by Field Emission Scanning Electron Microscopy (FESEM).

    PubMed

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Skaar, Ida; Hjeljord, Linda; Skare, Øivind; Green, Brett James; Tronsmo, Arne; Eduard, Wijnand

    Fungal aerosols consist of spores and fragments with diverse array of morphologies; however, the size, shape, and origin of the constituents require further characterization. In this study, we characterize the profile of aerosols generated from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum grown for 8 weeks on gypsum boards. Fungal particles were aerosolized at 12 and 20 L min(-1) using the Fungal Spore Source Strength Tester (FSSST) and the Stami particle generator (SPG). Collected particles were analyzed with field emission scanning electron microscopy (FESEM). We observed spore particle fraction consisting of single spores and spore aggregates in four size categories, and a fragment fraction that contained submicronic fragments and three size categories of larger fragments. Single spores dominated the aerosols from A. fumigatus (median: 53%), while the submicronic fragment fraction was the highest in the aerosols collected from A. versicolor (median: 34%) and P. chrysogenum (median: 31%). Morphological characteristics showed near spherical particles that were only single spores, oblong particles that comprise some spore aggregates and fragments (<3.5 μm), and fiber-like particles that regroup chained spore aggregates and fragments (>3.5 μm). Further, the near spherical particles dominated the aerosols from A. fumigatus (median: 53%), while oblong particles were dominant in the aerosols from A. versicolor (68%) and P. chrysogenum (55%). Fiber-like particles represented 21% and 24% of the aerosols from A. versicolor and P. chrysogenum, respectively. This study shows that fungal particles of various size, shape, and origin are aerosolized, and supports the need to include a broader range of particle types in fungal exposure assessment.

  6. Comparison of Aerosol Classification from Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Omar, A. H.; Hostetler, C. A.; Hair, J. W.; Rogers, R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.

    2012-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 349 science flights in 19 field missions across North America since 2006. The extinction-to-backscatter ratio ("lidar ratio"), aerosol depolarization ratios, and backscatter color ratio measurements from HSRL-1 are scale-invariant parameters that depend on aerosol type but not concentration. These four aerosol intensive parameters are combined to qualitatively classify HSRL aerosol measurements into eight separate composition types. The classification methodology uses models formed from "training cases" with known aerosol type. The remaining measurements are then compared with these models using the Mahalanobis distance. Aerosol products from the CALIPSO satellite include aerosol type information as well, which is used as input to the CALIPSO aerosol retrieval. CALIPSO aerosol types are inferred using a mix of aerosol loading-dependent parameters, estimated aerosol depolarization, and location, altitude, and surface type information. The HSRL instrument flies beneath the CALIPSO satellite orbit track, presenting the opportunity for comparisons between the HSRL aerosol typing and the CALIPSO Vertical Feature Mask Aerosol Subtype product, giving insight into the performance of the CALIPSO aerosol type algorithm. We find that the aerosol classification from the two instruments frequently agree for marine aerosols and pure dust, and somewhat less frequently for pollution and smoke. In addition, the comparison suggests that the CALIPSO polluted dust type is overly inclusive, encompassing cases of dust combined with marine aerosol as well as cases without much evidence of dust. Qualitative classification of aerosol type combined with quantitative profile measurements of aerosol backscatter and extinction has many useful

  7. Aerosol dynamics above the water area of the Peter the Great Bay during the dust storm in the Gobi desert

    NASA Astrophysics Data System (ADS)

    Bukin, O. A.; Pavlov, A. N.; Kulchin, J. N.; Shmirko, K. A.; Salyuk, P. A.; Stoluarchuk, S. Y.

    2006-11-01

    This article presents aerosol dynamic monitoring over the Peter the Great bay during dust storms in continental areas of the China and Mongolia. Both satellite and lidar data was analyzed. Vertical profiles of aerosol backscattering coefficient and aerosol optical thickness were calculated. Aerosol optical thickness in different layers were retrieved and compared with the satellite ones. Correlation coefficient between satellite and lidar data was calculated. Aerosol layer location was compared to Brent-Vaisal criterion of stability. Aerosol layer stratification during spring - summer (April - June 2006) period was analyzed.

  8. Lidar measurements of wildfire smoke aerosols in the atmosphere above Sofia, Bulgaria

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Deleva, Atanaska D.; Dreischuh, Tanja N.; Stoyanov, Dimitar V.

    2016-01-01

    Presented are results of lidar measurements and characterization of wildfire caused smoke aerosols observed in the atmosphere above the city of Sofia, Bulgaria, related to two local wildfires raging in forest areas near the city. A lidar systems based on a frequency-doubled Nd:YAG laser operated at 532 nm and 1064 nm is used in the smoke aerosol observations. It belongs to the Sofia LIDAR Station (at Laser Radars Laboratory, Institute of Electronics, Bulgarian Academy of Sciences), being a part of the European Aerosol Lidar Network. Optical, dynamical, microphysical, and geometrical properties and parameters of the observed smoke aerosol particles and layers are displayed and analyzed, such as: range/height-resolved profiles of the aerosol backscatter coefficient; integral aerosol backscattering; sets of colormaps displaying time series of the height distribution of the aerosol density; topologic, geometric, and volumetric properties of the smoke aerosol layers; time-averaged height profiles of backscatter-related Ångström exponent (BAE). Obtained results of retrieving and profiling smoke aerosols are commented in their relations to available meteorological and air-mass-transport forecasting and modelling data.

  9. Retrieval of Aerosol Profiles using Multi Axis Differential Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Yilmaz, S.; Friess, U.; Apituley, A.; de Leeuw, G.; Platt, U.

    2009-04-01

    Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) is a well established measurement technique to derive atmospheric trace gas profiles. Using MAX-DOAS measurements of trace gases with a known vertical profile, like the oxygen-dimer O4, it is possible to retrieve information on atmospheric aerosols. Based on the optimal estimation method, we have developed an algorithm which fits simultaneously measured O4 optical densities at several wavelengths and elevation angles to values simulated by a radiative transfer model. Retrieval parameters are aerosol extinction profile and optical properties like single scattering albedo, phase function and Angström exponent. In the scope of a joint research activity of the EU funded project EUSAAR (European Supersites for Atmospheric Aerosol Research) we have developed a new kind of DOAS instrument, which uses three miniature spectrometers to cover the near-ultraviolet to visible wavelength range (290-790nm), enabling to capture all absorption bands of the oxygen-dimer O4. Additionally, it is possible to point to any direction in the sky with a 2D telescope unit which is connected to the spectrometers via fiber optics. In May 2008, an intercomparison campaign with established aerosol measurement techniques took place in Cabauw/Netherlands, where simultaneous DOAS, LIDAR, Sun photometer and Nephelometer measurements were performed. We present first results of selected days from this period. The optical properties of aerosols retrieved by the DOAS measurement technique show very promising qualitative agreement with the established measurement techniques demonstrating the progress towards our goal of establishing the MAX-DOAS technique for retrieving optical properties of atmospheric aerosols. Quantitative comparison is ongoing.

  10. Wintertime characteristics of aerosols over middle Indo-Gangetic Plain: Vertical profile, transport and radiative forcing

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Raju, M. P.; Singh, R. K.; Singh, A. K.; Singh, R. S.; Banerjee, T.

    2017-01-01

    Winter-specific characteristics of airborne particulates over middle Indo-Gangetic Plain (IGP) were evaluated in terms of aerosol chemical and micro-physical properties under three-dimensional domain. Emphases were made for the first time to identify intra-seasonal variations of aerosols sources, horizontal and vertical transport, effects of regional meteorology and estimating composite aerosol short-wave radiative forcing over an urban region (25°10‧-25°19‧N; 82°54‧-83°4‧E) at middle-IGP. Space-borne passive (Aqua and Terra MODIS, Aura OMI) and active sensor (CALIPSO-CALIOP) based observations were concurrently used with ground based aerosol mass measurement for entire winter and pre-summer months (December, 1, 2014 to March, 31, 2015). Exceptionally high aerosol mass loading was recorded for both PM10 (267.6 ± 107.0 μg m- 3) and PM2.5 (150.2 ± 89.4 μg m- 3) typically exceeding national standard. Aerosol type was mostly dominated by fine particulates (particulate ratio: 0.61) during pre to mid-winter episodes before being converted to mixed aerosol types (ratio: 0.41-0.53). Time series analysis of aerosols mass typically identified three dissimilar aerosol loading episodes with varying attributes, well resemble to that of previous year's observation representing its persisting nature. Black carbon (9.4 ± 3.7 μg m- 3) was found to constitute significant proportion of fine particulates (2-27%) with a strong diurnal profile. Secondary inorganic ions also accounted a fraction of particulates (PM2.5: 22.5%; PM10: 26.9%) having SO4- 2, NO3- and NH4+ constituting major proportion. Satellite retrieved MODIS-AOD (0.01-2.30) and fine mode fractions (FMF: 0.01-1.00) identified intra-seasonal variation with transport of aerosols from upper to middle-IGP through continental westerly. Varying statistical association of columnar and surface aerosol loading both in terms of fine (r; PM2.5: MODIS-AOD: 0.51) and coarse particulates (PM10: MODIS-AOD: 0.53) was

  11. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  12. GLObal Backscatter Experiment (GLOBE) Pacific survey mission

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.; Rothermel, Jeffry; Arnold, James E.; Williams, Steven F.

    1991-01-01

    NASA conducted the GLObal Backscatter Experiment (GLOBE) Survey Mission over the near coastal and remote Pacific Ocean during 6 to 30 Nov. 1989 (GLOBE 1) and 13 May to 5 Jun. 1990 (GLOBE 2). These missions studied the optical, physical, and chemical properties of atmospheric aerosols. Particular emphasis was given to the magnitude and spatial variability of aerosol backscatter coefficients at mid-infrared wavelengths, and to the remote middle and upper troposphere, where these aerosol properties are poorly understood. Survey instruments were selected to provide either direct beta measurements at the key wavelengths, empirical links with long term or global scale aerosol climatologies, or aerosol microphysics data required to model any of these quantities. The survey deployment included both long distance 6 to 8 hour transit flights and detailed 4 to 6 hour local flights. Several general features were observed from preliminary Survey data analyses. Validation and intercomparison results have shown good agreement, usually better than a factor of two. Atmospheric aerosols frequently exhibited a three layer vertical structure, with (1) high and fairly uniform backscatter in the shallow cloud capped marine boundary layer; (2) moderate and highly variable backscatter in a deeper overlaying cloud pumped layer; and (3) low, regionally uniform, but seasonally and latitudinally variable backscatter in the middle and upper troposphere. The survey missions represent two isolated snapshots of a small portion of the global aerosol system. Consequently, Survey results can best be understood by synthesizing them with the more comprehensive GLOBE data base, which is being compiled at NASA-Marshall.

  13. Initial assessment of space-based lidar CALIOP aerosol and cloud layer structures through inter-comparison with a ground-based back-scattering lidar and CloudSat

    NASA Astrophysics Data System (ADS)

    Kim, S.-W.; Yoon, S.-C.; Chung, E.-S.; Sohn, B.-J.; Berthier, S.; Raut, J.-C.; Chazette, P.; Dulac, F.

    2009-03-01

    This study presents results of the intercomparison of aerosol/cloud top and bottom heights obtained from a space-borne active sensor Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO, and the Cloud Profiling Radar (CPR) onboard CloudSat, and the space-borne passive sensor Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua, and ground-based 2-wavelenght polarization lidar system (532 and 1064 nm) at Seoul National University (SNU), Seoul, South Korea. This result confirms that the CALIPSO science team algorithms for the discrimination of cloud and aerosol as well as for the detection of layer top and base altitude provide reliable information both under cloud-free conditions and in cases of multiple aerosol layers underlying semi-transparent cirrus clouds. Simultaneous space-borne CALIOP, CPR and ground-based SNU lidar (SNU-L) measurements complement each other and can be combined to provide full information on the vertical distribution of aerosols and clouds, especially for thick opaque clouds. The aerosol extinction profiles from both lidars show good agreement for aerosols within the planetary boundary layer under cloud-free conditions and for the night-time CALIOP flight.

  14. Atmospheric Backscatter Model Development for CO Sub 2 Wavelengths

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Kent, G.; Yue, G. K.

    1982-01-01

    The results of investigations into the problems of modeling atmospheric backscatter from aerosols, in the lowest 20 km of the atmosphere, at CO2 wavelengths are presented, along with a summary of the relevant aerosol characteristics and their variability, and a discussion of the measurement techniques and errors involved. The different methods of calculating the aerosol backscattering function, both from measured aerosol characteristics and from optical measurements made at other wavelengths, are discussed in detail, and limits are placed on the accuracy of these methods. The effects of changing atmospheric humidity and temperature on the backscatter are analyzed and related to the actual atmosphere. Finally, the results of modeling CO2 backscatter in the atmosphere are presented and the variation with height and geographic location discussed, and limits placed on the magnitude of the backscattering function. Conclusions regarding modeling techniques and modeled atmospheric backscatter values are presented in tabular form.

  15. Autonomous Ozone and Aerosol LIDAR Profiling of the Troposphere: A Synergistic Approach

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2015-12-01

    LIDAR technology is an excellent tool to probe the complex vertical structure of the atmosphere at high spatial and temporal resolution. This provides the critical vertical context for the interpretation of ground-based chemistry measurements, airborne measurements and model/satellite verification and validation. In recent years, Environment Canada has designed several autonomous aerosol LIDAR systems for deployment across several regions of Canada. The current system builds on the successes of these autonomous LIDARS but using a synergistic approach by combining tropospheric ozone DIAL (Differential Absorption LIDAR) technology with simultaneous 3+2+1 aerosol LIDAR measurements. It operates 24 hours a day, seven days a week except during precipitation events. The system is operated remotely and the data are updated every hour to a website to allow near real-time capability. A few case studies are shown emphasizing the synergistic approach of coupling ozone and aerosol profiles to better understand air quality impacts on local and regional scales.

  16. Dominance of pollutant aerosols over an urban region and its impact on boundary layer temperature profile

    NASA Astrophysics Data System (ADS)

    Talukdar, Shamitaksha; Jana, Soumyajyoti; Maitra, Animesh

    2017-01-01

    Collocated measurements of aerosol optical depth (AOD) and black carbon at different wavelengths over Kolkata, an urban region in eastern India, have been used to calculate aerosol single-scattering albedo (SSA). The wavelength dependence of SSA and AOD has been presented to discriminate the aerosol types over this highly populated metropolitan area. The spectral pattern shows that SSA decreases with wavelength for most of the time in a year and corresponding Ångström coefficient is greater than unity. These optical properties indicate the dominance of fine-mode pollutant particles over the city. The temperature lapse rate profile within the surface boundary layer has been found to be significantly influenced by the heating effect of fine-mode pollutants, and consequently, the growth of the convective processes in the lower troposphere is notably affected. In addition, a back trajectory analysis has also been presented to indicate that transported air masses can have significant impact on spectral pattern of SSA.

  17. Initial Verification of GEOS-4 Aerosols Using CALIPSO and MODIS: Scene Classification

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Colarco, Peter R.; Hlavka, Dennis; Levy, Robert C.; Vaughan, Mark A.; daSilva, Arlindo

    2007-01-01

    A-train sensors such as MODIS and MISR provide column aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important because retrievals are often dependent upon selection of the right aerosol model. In addition, aerosol scene classification helps place the retrieved products in context for comparisons and analysis with aerosol transport models. The recent addition of CALIPSO to the A-train now provides a means of classifying aerosol distribution with altitude. CALIPSO level 1 products include profiles of attenuated backscatter at 532 and 1064 nm, and depolarization at 532 nm. Backscatter intensity, wavelength ratio, and depolarization provide information on the vertical profile of aerosol concentration, size, and shape. Thus similar estimates of aerosol type using MODIS or MISR are possible with CALIPSO, and the combination of data from all sensors provides a means of 3D aerosol scene classification. The NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-4) provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS-4 aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures along the flight track for NASA's Geoscience Laser Altimeter System (GLAS) satellite lidar. GLAS launched in 2003 and did not have the benefit of depolarization measurements or other sensors from the A-train. Aerosol typing from GLAS data alone was not possible, and the GEOS-4 aerosol classifier has been used to identify aerosol type and improve the retrieval of GLAS products. Here we compare 3D aerosol scene classification using CALIPSO and MODIS with the GEOS-4 aerosol classifier. Dust, smoke, and pollution examples will be discussed in the context of providing an initial verification of the 3D GEOS-4 aerosol products. Prior model verification has only been attempted with surface mass

  18. In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Brock, C. A.; Angevine, W. M.; Beyersdorf, A.; Campuzano-Jost, P.; Day, D. A.; de Gouw, J. A.; Diskin, G. S.; Gordon, T. D.; Graus, M. G.; Huey, G.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Mikoviny, T.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.

    2015-02-01

    Vertical profiles of submicron aerosol over the southeastern United States (SEUS) during the summertime from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10% larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10% to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary organic aerosol (SOA) aloft to explain the summertime enhancement of AOD (2-3 times greater than winter) over the southeastern United States. In contrast to this hypothesis, the modest enhancement we observed in the transition layer was not dominated by OA and was not a large fraction of the summertime AOD.

  19. Infrared backscattering

    NASA Technical Reports Server (NTRS)

    Bohren, Craig F.; Nevitt, Timothy J.; Singham, Shermila Brito

    1989-01-01

    All particles in the atmosphere are not spherical. Moreover, the scattering properties of randomly oriented nonspherical particles are not equivalent to those of spherical particles no matter how the term equivalent is defined. This is especially true for scattering in the backward direction and at the infrared wavelengths at which some atmospheric particles have strong absorption bands. Thus calculations based on Mie theory of infrared backscattering by dry or insoluble atmospheric particles are suspect. To support this assertion, it was noted that peaks in laboratory-measured infrared backscattering spectra show appreciable shifts compared with those calculated using Mie theory. One example is ammonium sulfate. Some success was had in modeling backscattering spectra of ammonium sulfate particles using a simple statistical theory called the continuous distribution of ellipsoids (CDE) theory. In this theory, the scattering properties of an ensemble are calculated. Recently a modified version of this theory was applied to measured spectra of scattering by kaolin particles. The particles were platelike, so the probability distribution of ellipsoidal shapes was chosen to reflect this. As with ammonium sulfate, the wavelength of measured peak backscattering is shifted longward of that predicted by Mie theory.

  20. Balloonborne measurements of ozone and aerosol profiles at McMurdo Station, Antarctica, during the austral spring of 1992

    SciTech Connect

    Johnson, B.J.; Deshler, T. )

    1993-01-01

    This paper reports some of the findings of an overall study of the ozone hole over Antarctica. Vertical profiles of ozone and aerosols were measured, and the inclusion of aerosols from the June 1991 eruption of Mount Pinatubo was of particular interest. 4 refs., 2 figs.

  1. Aerosol profiles determined with lidar and sun-photometer over the Pearl River Delta, China.

    NASA Astrophysics Data System (ADS)

    Heese, B.; Althausen, D.; Bauditz, M.; Deng, R.; Bao, R.; Li, Z.

    2012-04-01

    The priority program "Megacities-Megachallenge - Informal Dynamics of Global Change" is a large interdisciplinary project funded by the German Research Foundation (DFG). One of the subproject deals with mega-urbanisation in the Pearl River Delta, South-China, with special respect to particulate air pollution and public health. In the frame of this subproject the vertical distribution of aerosol optical properties are investigated by measurements with the multiwavelength-Raman-polarization lidar PollyXT of the IfT. The instrument can measure the particle backscatter coefficient at 355 nm, 532 nm, and 1064 nm, the particle extinction coefficients at 355 nm and 532 nm, and the particle linear depolarization ratio at 532 nm. These measurements are supported by a dual-polar sun photometer that provides height integrated data as the aerosol optical depth and the degree of linear depolarization. These instruments are placed at the East campus of the Sun Yat-sen University in Guangzhou, China. Guangzhou and the Pearl River Delta is a developing area with currently around 11 Million inhabitants. The measurements started in November 2011 and are supposed to continue for at least half a year covering the late autumn and winter season and parts of the spring season. Extensions of the measurements towards a whole seasonal cycle are planned. Thus, different meteorological conditions will lead to particle transport from several source regions. Different aerosol types are expected to be observed during the measurement period: urban particles from local and regional sources as well as dust from the deserts in Central Asia. The observed particles can be distinguished by analyzing their optical properties at several wavelengths. In particular, the depolarization measurements from both instruments promise a better determination of the particle shape.

  2. Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Gysel, Martin; Rubach, Florian; Mentel, Thomas F.; Goger, Brigitta; Poulain, Laurent; Schlag, Patrick; Miettinen, Pasi; Pajunoja, Aki; Virtanen, Annele; Klein Baltink, Henk; Bas Henzing, J. S.; Größ, Johannes; Gobbi, Gian Paolo; Wiedensohler, Alfred; Kiendler-Scharr, Astrid; Decesari, Stefano; Facchini, Maria Cristina; Weingartner, Ernest; Baltensperger, Urs

    2016-06-01

    Vertical profiles of the aerosol particles hygroscopic properties, their mixing state as well as chemical composition were measured above northern Italy and the Netherlands. An aerosol mass spectrometer (AMS; for chemical composition) and a white-light humidified optical particle spectrometer (WHOPS; for hygroscopic growth) were deployed on a Zeppelin NT airship within the PEGASOS project. This allowed one to investigate the development of the different layers within the planetary boundary layer (PBL), providing a unique in situ data set for airborne aerosol particles properties in the first kilometre of the atmosphere. Profiles measured during the morning hours on 20 June 2012 in the Po Valley, Italy, showed an increased nitrate fraction at ˜ 100 m above ground level (a.g.l.) coupled with enhanced hygroscopic growth compared to ˜ 700 m a. g. l. This result was derived from both measurements of the aerosol composition and direct measurements of the hygroscopicity, yielding hygroscopicity parameters (κ) of 0.34 ± 0.12 and 0.19 ± 0.07 for 500 nm particles, at ˜ 100 and ˜ 700 m a. g. l., respectively. The difference is attributed to the structure of the PBL at this time of day which featured several independent sub-layers with different types of aerosols. Later in the day the vertical structures disappeared due to the mixing of the layers and similar aerosol particle properties were found at all probed altitudes (mean κ ≈ 0.18 ± 0.07). The aerosol properties observed at the lowest flight level (100 m a. g. l.) were consistent with parallel measurements at a ground site, both in the morning and afternoon. Overall, the aerosol particles were found to be externally mixed, with a prevailing hygroscopic fraction. The flights near Cabauw in the Netherlands in the fully mixed PBL did not feature altitude-dependent characteristics. Particles were also externally mixed and had an even larger hygroscopic fraction compared to the results in Italy. The mean κ from

  3. Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.

    2012-01-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical depth (AOD) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, and spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of AOD and inferences of aerosol types are used to apportion AOD to aerosol type; results of this analysis are shown for several experiments.

  4. Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.

    2011-09-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical thickness (AOT) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, and spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of AOT and inferences of aerosol types are used to apportion AOT to aerosol type; results of this analysis are shown for several experiments.

  5. Airborne backscatter lidar measurements at three wavelengths during ELITE

    NASA Astrophysics Data System (ADS)

    Schreiber, H. G.; Wirth, Martin; Moerl, P.; Renger, Wolfgang

    1995-09-01

    The German Aerospace Establishment (DLR) operates an airborne backscatter lidar based on a Nh:YAG laser which is flashlamp-pumped at 10 Hz. It works on the wavelengths 1064, 532, and 354 nm. It is mounted downward-looking on the research aircraft Falcon 20, flying at about 12 km altitude at speeds of 200 m/s. We present airborne measurements correlated with the orbit tracks of the shuttle-borne LITE-instrument (lidar in-space technology experiment). The emphasis in data evalution is on the comparison between the airborne and the shuttle- borne lidars. First results show excellent agreement between the two instruments even on details of cirrus clouds. The results comprise cloud geometrical and optical depths, as well as profiles of aerosol backscattering coefficients at three wavelengths.

  6. Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results: AEROSOL PROFILES IN AEROCOM II GCM

    SciTech Connect

    Koffi, Brigitte; Schulz, Michael; Bréon, François-Marie; Dentener, Frank; Steensen, Birthe Marie; Griesfeller, Jan; Winker, David; Bauer, Susanne E.; Bellouin, Nicolas; Berntsen, Terje; Bian, Huisheng; Chin, Mian; Diehl, Thomas; Easter, Richard; Ghan, Steven; Hauglustaine, Didier A.; Iversen, Trond; Kirkevåg, Alf; Liu, Xiaohong; Lohmann, Ulrike; Myhre, Gunnar; Rasch, Phil; Seland, Øyvind; Skeie, Ragnhild B.; Steenrod, Stephen D.; Stier, Philip; Tackett, Jason; Takemura, Toshihiko; Tsigaridis, Kostas; Vuolo, Maria Raffaella; Yoon, Jinho; Zhang, Kai

    2016-06-27

    The ability of eleven models in simulating the aerosol vertical distribution from regional to global scales, as part of the second phase of the AeroCom model inter-comparison initiative (AeroCom II) is assessed and compared to results of the first phase. The evaluation is performed using a global monthly gridded dataset of aerosol extinction profiles built on purpose from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Layer Product 3.01. Results over 12 sub-continental regions show that five models improved whereas three degraded in reproducing the Zα 0-6 km mean extinction height diagnostic, which is computed over the 0-6 km altitude range for each studied region and season. While the models’ performance remains highly variable, it has generally improved in terms of inter-regional diversity and seasonality. The biases in Zα 0-6 km have notably decreased in the U.S. and European industrial and downwind maritime regions, whereas the timing of the Zα 0-6 km peak season has improved for all but two models. However, most of the models now show a Zα 0-6 km underestimation over land, notably in the dust and biomass burning regions in Asia and Africa. At global scale, the AeroCom II models better reproduce the Zα 0-6 km latitudinal variability over ocean than over land. Hypotheses for the (changes in the) the performance of the individual models and for the inter-model diversity are discussed. We also provide an analysis of the CALIOP limitations and uncertainties that can contribute to the differences between the simulations and observations.

  7. Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Marenco, Franco; Marinou, Eleni; Rosenberg, Phil; Solomos, Stavros; Trembath, Jamie; Allan, James; Bacak, Asan; Nenes, Athanasios

    2016-06-01

    Airborne campaigns dedicated to satellite validation are crucial for the effective global aerosol monitoring. CALIPSO is currently the only active remote sensing satellite mission, acquiring the vertical profiles of the aerosol backscatter and extinction coefficients. Here we present a method for CALIPSO evaluation from combining lidar and in-situ airborne measurements. The limitations of the method have to do mainly with the in-situ instrumentation capabilities and the hydration modelling. We also discuss the future implementation of our method in the ICE-D campaign (Cape Verde, August 2015).

  8. Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity.

    PubMed

    Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H

    2016-01-01

    Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration.

  9. In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Brock, C. A.; Angevine, W. M.; Beyersdorf, A.; Campuzano-Jost, P.; Day, D.; de Gouw, J. A.; Diskin, G. S.; Gordon, T. D.; Graus, M. G.; Holloway, J. S.; Huey, G.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Mikoviny, T.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.

    2015-06-01

    Vertical profiles of submicron aerosol from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. These vertical profiles were collected over the southeastern United States (SEUS) during the summer of 2013 as part of two separate field studies: the Southeast Nexus (SENEX) study and the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10 % larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10 % to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary aerosol aloft to explain the summertime enhancement of AOD (2-3 times greater than winter) over the southeastern United States. The first study attributes the layer aloft to secondary organic aerosol (SOA) while

  10. Airborne lidar measurements of El Chichon stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Osborn, M. T.

    1985-01-01

    A NASA Electra airplane, outfitted with a lidar system, was flown in January to February 1983 between the latitudes of 27 deg N and 76 deg N. One of the primary purposes of this mission was to determine the spatial distribution and aerosol characteristics of the El Chichon-produced stratospheric material. This report presents the lidar data from that flight mission. Representative profiles of lidar backscatter ratio, plots of the integrated backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. It addition, tables containing numerical values of the backscatter ratio and backscattering function versus altitude are supplied for each profile. The largest amount of material produced by the El Chichon eruptions of late March to early April 1982, which was measured by this flight, resided between 35 deg N and 52 deg N. Peak backscatter ratios at a wavelength of 0.6943 micro m decreased from 8 to 10 at the lower latitudes to 3 at the higher latitudes. Backscatter ratio profiles taken while crossing the polar vortex show that the high-altitude material from El Chichon arrived at the north polar region sometime after the winter polar vortex was established. This report presents the results of this mission in a ready-to-use format for atmospheric and climatic studies.

  11. Exchange-diffusion reactions in HfSiON during annealing studied by Rutherford backscattering spectrometry, nuclear reaction analysis and narrow resonant nuclear reaction profiling

    NASA Astrophysics Data System (ADS)

    Miotti, L.; Bastos, K. P.; Soares, G. V.; Driemeier, C.; Pezzi, R. P.; Morais, J.; Baumvol, I. J. R.; Rotondaro, A. L. P.; Visokay, M. R.; Chambers, J. J.; Quevedo-Lopez, M.; Colombo, L.

    2004-11-01

    HfSiON films deposited on Si (001) by reactive sputtering were submitted to rapid thermal annealing at 1000°C in vacuum, N2 and O2 atmospheres. The stability of the dielectric was evaluated by measuring the atomic transport and exchange of the chemical species, using Rutherford backscattering spectrometry, nuclear reaction analysis and narrow resonant nuclear reaction profiling. Annealing in O2 ambient reduced the N concentration mainly from near-surface regions where oxygen was incorporated in comparable amounts. Vacuum annealing, on the other hand, induced N loss preferentially from the Si/dielectric interface and O loss preferentially from near-surface regions. The results are explained in terms of exchange-diffusion reactions occurring in the HfSiON.

  12. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.; Ferrare, R. A.; Browell, E. V.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the "effective" aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar-derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  13. Evaluation of Backscatter in the northeastern Red Sea using a Lowered Acoustic Doppler Profiler, Simrad EK60 Echosounder and in situ Observations

    NASA Astrophysics Data System (ADS)

    Torres, D. J.; Klevjer, T. A.; Solberg, I.; Bower, A. S.; Kaartvedt, S.

    2010-12-01

    An oceanographic research cruise aboard the R/V Aegaeo was conducted in the Red Sea from 16-29 March 2010. The primary objective of the cruise was to undertake the first large-scale physical oceanographic survey of the northeastern quadrant of the Red Sea, including observations of top-to-bottom ocean currents and water properties such as temperature, salinity, dissolved oxygen, turbidity and fluorescence. Additional objectives were to take seawater samples throughout the water column for carbonate chemistry and microbial studies, and to survey the distribution of pelagic fishes using acoustic methods. A total of 111 casts were made during the cruise which covered nine transects ranging from 22°-28°N. A modified SeaBird 9/11+ rosette/CTD system equipped with a pair of upward and downward facing 300 kHz Lowered Acoustic Doppler Current Profilers (LADCP) from Teledyne RD Instruments was used for station sampling. The LADCP system is primarily used for measuring full water column absolute velocity profiles. However, this study focuses on using the LADCP echo intensity data to measure ocean backscatter. Complex methods are usually required for calibration of acoustic instruments to measure backscatter due to attenuation and absorption of sound in water. Here we present a method for data processing which eliminates the need for calibration by using a single bin at a fixed distance from the ADCP transducers. We also present data from a Simrad EK60 echosounder which collected underway acoustic data throughout the cruise. Diurnal migration patterns of mesopelagic fish (an abundant and important part of the Red Sea ecosystem) are clearly evident in both data sets. Although the LADCP (due to bin size settings optimized for water velocity measurements) cannot resolve the thinner layers of acoustic scatterers compared to the 38 kHz EK60 data, it can be a very useful tool for measuring fish and zooplankton distribution from ships not equipped with high end acoustic

  14. A sensitivity study on the retrieval of aerosol vertical profiles using the oxygen A-band

    NASA Astrophysics Data System (ADS)

    Fedele Colosimo, Santo; Natraj, Vijay; Sander, Stanley P.; Stutz, Jochen

    2016-04-01

    Atmospheric absorption in the O2 A-band (12 950-13 200 cm-1) offers a unique opportunity to retrieve aerosol extinction profiles from space-borne measurements due to the large dynamic range of optical thickness in that spectral region. Absorptions in strong O2 lines are saturated; therefore, any radiance measured in these lines originates from scattering in the upper part of the atmosphere. Outside of O2 lines, or in weak lines, the atmospheric column absorption is small, and light penetrates to lower atmospheric layers, allowing for the quantification of aerosols and other scatterers near the surface.

    While the principle of aerosol profile retrieval using O2 A-band absorption from space is well-known, a thorough quantification of the information content, i.e., the amount of vertical profile information that can be obtained, and the dependence of the information content on the spectral resolution of the measurements, has not been thoroughly conducted. Here, we use the linearized vector radiative transfer model VLIDORT to perform spectrally resolved simulations of atmospheric radiation in the O2 A-band for four different aerosol extinction profile scenarios: urban (urban-rural areas), highly polluted (megacity areas with large aerosol extinction), elevated layer (identifying elevated plumes, for example for biomass burning) and low extinction (representative of small aerosol extinction, such as vegetated, marine and arctic areas). The high-resolution radiances emerging from the top of the atmosphere measurements are degraded to different spectral resolutions, simulating spectrometers with different resolving powers. We use optimal estimation theory to quantify the information content in the aerosol profile retrieval with respect to different aerosol parameters and instrument spectral resolutions. The simulations show that better spectral resolution generally leads to an increase in the total amount of information that can be retrieved, with the number of

  15. The GAW Aerosol Lidar Observation Network (GALION) as a source of near-real time aerosol profile data for model evaluation and assimilation

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.; Pappalardo, G.

    2010-12-01

    In 2007, the WMO Global Atmospheric Watch’s Science Advisory Group on Aerosols described a global network of lidar networks called GAW Aerosol Lidar Observation Network (GALION). GALION has a purpose of providing expanded coverage of aerosol observations for climate and air quality use. Comprised of networks in Asia (AD-NET), Europe (EARLINET and CIS-LINET), North America (CREST and CORALNET), South America (ALINE) and with contribution from global networks such as MPLNET and NDACC, the collaboration provides a unique capability to define aerosol profiles in the vertical. GALION is designed to supplement existing ground-based and column profiling (AERONET, PHOTONS, SKYNET, GAWPFR) stations. In September 2010, GALION held its second workshop and one component of discussion focussed how the network would integrate into model needs. GALION partners have contributed to the Sand and Dust Storm Warning and Analysis System (SDS-WAS) and to assimilation in models such as DREAM. This paper will present the conclusions of those discussions and how these observations can fit into a global model analysis framework. Questions of availability, latency, and aerosol parameters that might be ingested into models will be discussed. An example of where EARLINET and GALION have contributed in near-real time observations was the suite of measurements during the Eyjafjallajokull eruption in Iceland and its impact on European air travel. Lessons learned from this experience will be discussed.

  16. Backscatter LIDAR signal simulation applied to spacecraft LIDAR instrument design

    NASA Astrophysics Data System (ADS)

    Fochesatto, J.; Ristori, P.; Flamant, P.; Machado, M. E.; Singh, U.; Quel, E.

    2004-01-01

    In the framework of the scientific cooperation between the CEILAP laboratory (Argentina) and IPSL Institut Pierre Simon Laplace (France), devoted to the development of LIDAR techniques for Atmospheric sciences, a new area of scientific research, involving LIDARs, is starting in Argentine space technology. This new research area is under consideration at CEILAP in a joint effort with CONAE, the Argentine space agency, responsible for the development of future space missions. The LIDAR technique is necessary to improve our knowledge of meteorological, dynamic, and radiative processes in the South American region, for the whole troposphere and the lower stratosphere. To study this future mission, a simple model for the prediction of backscatter LIDAR signal from a spacecraft platform has been used to determine dimensions and detection characteristics of the space borne LIDAR instrument. The backscatter signal was retrieved from a modeled atmosphere considering its molecular density profile and taking into account different aerosols and clouds conditions. Signal-to-noise consideration, within the interval of possible dimension of the instrument parameters, allows us to constrain the telescope receiving area and to derive maximum range achievable, integration time and the final spatial and temporal resolutions of backscatter profiles.

  17. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the 'effective' aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  18. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  19. Relating Aerosol Profile and Column Measurements to Surface Concentrations: What Have We Learned from Discover-AQ?

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.

    2014-12-01

    One research goal of the Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission was to determine sufficient column profile measurements to relate column integrated quantities such as Aerosol Optical Depth to surface concentrations. I will review the relationship between AOD and PM2.5 at the surface. DISCOVER-AQ in Baltimore, the San Joaquin Valley, Houston and Denver revealed quite different conditions for determining this relationship. In each case, the surface reflectivity made determination of aerosol optical depth challenging, but upward looking columns of aerosol optical depth from sunphotometers provided confirmation of the AOD results from space. In Baltimore, AOD fields reflected PM2.5 concentrations well. In California, however, the low boundary layer heights and dominance of nitrate and organic aerosols made the AOD fields less predictive of PM2.5. In California and Colorado, hydration of the aerosol varied dramatically with aerosol type (especially smoke and dust) and revealed that without an understanding of the degree of aerosol hydration with aerosol composition, the relationship between AOD and PM2.5 will continue to be a challenge. Model predictions in the Baltimore-Washington study are relatively disappointing in helping define the needed physics between the optical and microphysical properties. An overview of the measurements from DISCOVER-AQ which will help define the needed information in a more general case in the future will be given.

  20. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  1. Aerosol Optical Properties Characterization By Means Of The CNR-IMAA Multi-Wavelength Raman Lidar

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; D'Amico, G.; Pappalardo, G.

    2007-12-01

    A Raman/elastic lidar for tropospheric aerosol study is operational at CNR-IMAA (40°36'N, 15°44'E, 760 m above sea level) since May 2000 in the framework of EARLINET. Since August 2005, this system provides aerosol backscatter coefficient profiles at 1064 nm, and independent measurements of aerosol extinction and backscatter coefficient profiles at 355 and 532 nm. In this way, lidar ratio (i.e. extinction to backscatter ratio) profiles at 355 and 532 nm are also obtained. In addition, depolarization ratio measurements at 532 nm are obtained by means of detection of components of backscattered light polarized perpendicular and parallel to the direction of the linearly polarized transmitted laser beam. Depolarization ratio measurements provide information about shape and orientation of aerosolic particles, while lidar ratio measurements and wavelength dependences of both backscatter and extinction are important for aerosol characterization in terms of aerosol type and size. In addition, high quality multi-wavelength measurements (3 backscatter + 2 extinction) can allow the determination of microphysical aerosol properties (refractive index, single-scattering albedo and effective particles radii). Systematic measurements are performed three times per week according to the EARLINET schedule since May 2000, and further measurements are performed in order to investigate particular events, like dust intrusions, volcanic eruptions and forest fires. This extended dataset allows the optical characterization of aerosol located close to the surface, namely in the Planetary Boundary Layer, as well as in the free troposphere. In the free troposphere, an high occurrence of Saharan dust intrusions at CNR-IMAA (about 1 day of Saharan dust intrusion every 10 days) has been identified by means of back-trajectory analysis and in accordance with satellite images, because of the short distance from the Sahara region. In addition, CNR-IMAA is pretty close to Etna, the largest European

  2. Application of the two-stream inversion algorithm for retrieval of extinction, backscatter, and lidar ratio for clean and polluted Arctic air

    NASA Astrophysics Data System (ADS)

    Stachlewska, Iwona S.; Christoph, Ritter; Neuber, Roland

    2005-10-01

    The background aerosol conditions and the conditions contaminated with aerosol of antropogenic origin (Arctic haze) were investigated during two Arctic campaigns, the Arctic Study of Tropospheric Aerosols, Clouds and Radiation (ASTAR) in 2004 and Svalbard Experiment (SVALEX) in 2005, respectively. Results obtained by application of the two-stream inversion algorithm to the elastic lidar signals measured on two days representative for each campaign are presented. The calculations were done using signals obtained by the nadir-looking Airborne Mobile Aerosol Lidar (AMALi) probing lower troposphere from the AWI research aircraft Polar 2 overflying the stationary Koldewey Aerosol Raman Lidar (KARL) based at the AWI Koldewey Research Station in Ny Ålesund, Svalbard. The method allowed independent retrieval of extinction and backscatter coefficient profiles and lidar ratio profiles for each of the two days representative for both clean and polluted lower troposphere in Arctic.

  3. The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2013-03-01

    The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (absorption bands at 360, 477, 577, 632 nm) simultaneously in the open atmosphere. The instrument is unique as it (1) features a motion compensation system that decouples the telescope field of view from aircraft movements in real time (<0.35° accuracy), and (2) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system. Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex (California Research at the Nexus of Air Quality and Climate Change) and CARES (Carbonaceous Aerosols and Radiative Effects Study) air quality field campaigns is presented. Horizontal distributions of NO2 VCD (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground-based MAX-DOAS instruments (slope = 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O concentrations and aerosol extinction coefficients, ɛ, at 477 nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  4. Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2 years (2011-2012) of field campaigns

    NASA Astrophysics Data System (ADS)

    Ferrero, Luca; Cappelletti, David; Busetto, Maurizio; Mazzola, Mauro; Lupi, Angelo; Lanconelli, Christian; Becagli, Silvia; Traversi, Rita; Caiazzo, Laura; Giardi, Fabio; Moroni, Beatrice; Crocchianti, Stefano; Fierz, Martin; Močnik, Griša; Sangiorgi, Giorgia; Perrone, Maria G.; Maturilli, Marion; Vitale, Vito; Udisti, Roberto; Bolzacchini, Ezio

    2016-10-01

    We present results from a systematic study of vertical profiles of aerosol number size distribution and black carbon (BC) concentrations conducted in the Arctic, over Ny-Ålesund (Svalbard). The campaign lasted 2 years (2011-2012) and resulted in 200 vertical profiles measured by means of a tethered balloon (up to 1200 m a.g.l.) during the spring and summer seasons. In addition, chemical analysis of filter samples, aerosol size distribution and a full set of meteorological parameters were determined at ground. The collected experimental data allowed a classification of the vertical profiles into different typologies, which allowed us to describe the seasonal phenomenology of vertical aerosol properties in the Arctic. During spring, four main types of profiles were found and their behavior was related to the main aerosol and atmospheric dynamics occurring at the measuring site. Background conditions generated homogenous profiles. Transport events caused an increase of aerosol concentration with altitude. High Arctic haze pollution trapped below thermal inversions promoted a decrease of aerosol concentration with altitude. Finally, ground-based plumes of locally formed secondary aerosol determined profiles with decreasing aerosol concentration located at different altitude as a function of size. During the summer season, the impact from shipping caused aerosol and BC pollution plumes to be constrained close to the ground, indicating that increasing shipping emissions in the Arctic could bring anthropogenic aerosol and BC in the Arctic summer, affecting the climate.

  5. Airborne lidar measurements of El Chichon stratospheric aerosols, January 1984

    NASA Technical Reports Server (NTRS)

    Mccormick, M. Patrick; Osborn, M. T.

    1987-01-01

    A lidar-equipped NASA Electra aircraft was flown in January 1984 between the latitude of 38 and 90 deg N. One of the primary purposes of this mission was to determine the spatial distribution and aerosol characteristics of El Chichon produced stratospheric material. Lidar data from that portion of the flight mission between 38 deg N and 77 deg N is presented. Representative profiles of lidar backscatter ratio, a plot of the integral backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. In addition, tables containing numerical values of the backscatter ratio and backscattering function versus altitude are applied for each profile. These data clearly show that material produced by the El Chichon eruptions of late March-early April 1982 had spread throughout the latitudes covered by this mission, and that the most massive portion of the material resided north of 55 deg N and was concentrated below 17 km in a layer that peaked at 13 to 15 km. In this latitude region, peak backscatter ratios at a wavelength of 0.6943 microns were approximately 3 and the peak integrated backscattering function was about 15 X 10 to the -4/sr corresponding to a peak optical depth of approximately 0.07. This report presents the results of this mission in a ready-to-use format for atmospheric and climatic studies.

  6. Aerosol Products from The Future Space Lidar AEOLUS

    NASA Astrophysics Data System (ADS)

    Martinet, Pauline; Dabas, Alain; Lever, Vincent; Flamant, Pierre; Huber, Dorit

    2016-06-01

    Ready for launch by the end of 2016, the Doppler lidar mission AEOLUS from the European Space Agency (ESA) will be the first High-Spectral Resolution Lidar (HSRL) in space. Operating in the UV, it implements two detection channels for aerosol and molecular backscatter. The system is primarily designed for the measurement of winds, but the HSRL capability enables the measurement of the particulate backscatter and extinction coefficients without any a priori assumption on the aerosol type. The level-2A (L2A) processor has been developed for these measurements and tested with synthetic data. The results show good aerosol backscatter profiles can be retrieved. Extinction coefficients are reasonable but do not reach the quality of backscatter coefficients. A precise, full, radiometric calibration of the lidar is required. A major limitation of the system is a single polarization component of the light is detected leading to an underestimation of backscatter coefficients when the atmospheric particles are depolarizing. The vertical resolution goes from 250 meters in the lowest part of the atmosphere, to 2 km in the lower stratosphere. The maximum altitude can reach above 20km. The basic horizontal averaging is 90km. Averaging on shorter distances (down to a few km) are possible but require a sufficient signal to noise ratio.

  7. Influence of the vertical absorption profile of mixed Asian dust plumes on aerosol direct radiative forcing over East Asia

    NASA Astrophysics Data System (ADS)

    Noh, Young Min; Lee, Kwonho; Kim, Kwanchul; Shin, Sung-Kyun; Müller, Detlef; Shin, Dong Ho

    2016-08-01

    We estimate the aerosol direct radiative forcing (ADRF) and heating rate profiles of mixed East Asian dust plumes in the solar wavelength region ranging from 0.25 to 4.0 μm using the Santa Barbara Discrete Ordinate Atmospheric Radiative Transfer (SBDART) code. Vertical profiles of aerosol extinction coefficients and single-scattering albedos (SSA) were derived from measurements with a multi-wavelength Raman lidar system. The data are used as input parameters for our radiative transfer calculations. We considered four cases of radiative forcing in SBDART: 1. dust, 2. pollution, 3. mixed dust plume and the use of vertical profiles of SSA, and 4. mixed dust plumes and the use of column-averaged values of SSA. In our sensitivity study we examined the influence of SSA and aerosol layer height on our results. The ADRF at the surface and in the atmosphere shows a small dependence on the specific shape of the aerosol extinction vertical profile and its light-absorption property for all four cases. In contrast, at the top of the atmosphere (TOA), the ADRF is largely affected by the vertical distribution of the aerosols extinction. This effect increases if the light-absorption capacity (decrease of SSA) of the aerosols increases. We find different radiative effects in situations in which two layers of aerosols had different light-absorption properties. The largest difference was observed at the TOA for an absorbing aerosol layer at high altitude in which we considered in one case the vertical profile of SSA and in another case the column-averaged SSA only. The ADRF at the TOA increases when the light-absorbing aerosol layer is located above 3 km altitude. The differences between height-resolved SSA, which can be obtained from lidar data, and total layer-mean SSA indicates that the use of a layer-mean SSA can be rather misleading as it can induce a large error in the calculation of the ADRF at the TOA, which in turn may cause errors in the vertical profiles of heating rates.

  8. A method for retrieving vertical distribution of aerosol mass concentration in atmosphere from results of lidar sensing at Nd:YAG laser wavelengths

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2011-03-01

    A method for retrieving the vertical profiles of atmospheric aerosol concentration from the results of lidar sensing at Ng:YAG laser wavelengths is developed based on the found multiple regressions between the optical location characteristics of aerosol at wavelengths of 0.355, 0.532, and 1.064 nm, as well as between the aerosol backscattering coefficient at these wavelengths and the concentration of aerosol particles. The method does not require solving ill-posed inverse problems and minimizes the use of a priori information. The reliability and generality of regressions obtained are confirmed by their good agreement with the AERO-NET data. The method efficiency is demonstrated by numerical experiments on retrieving profiles of back-scattering coefficients and concentration that corresponds to different optical models of aerosol.

  9. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  10. Profiling aerosol optical, microphysical and hygroscopic properties in ambient conditions by combining in situ and remote sensing

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Marenco, Franco; Nenes, Athanasios; Marinou, Eleni; Solomos, Stavros; Rosenberg, Phil; Trembath, Jamie; Nott, Graeme J.; Allan, James; Le Breton, Michael; Bacak, Asan; Coe, Hugh; Percival, Carl; Mihalopoulos, Nikolaos

    2017-01-01

    We present the In situ/Remote sensing aerosol Retrieval Algorithm (IRRA) that combines airborne in situ and lidar remote sensing data to retrieve vertical profiles of ambient aerosol optical, microphysical and hygroscopic properties, employing the ISORROPIA II model for acquiring the particle hygroscopic growth. Here we apply the algorithm on data collected from the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft during the ACEMED campaign in the Eastern Mediterranean. Vertical profiles of aerosol microphysical properties have been derived successfully for an aged smoke plume near the city of Thessaloniki with aerosol optical depth of ˜ 0.4 at 532 nm, single scattering albedos of ˜ 0.9-0.95 at 550 nm and typical lidar ratios for smoke of ˜ 60-80 sr at 532 nm. IRRA retrieves highly hydrated particles above land, with 55 and 80 % water volume content for ambient relative humidity of 80 and 90 %, respectively. The proposed methodology is highly advantageous for aerosol characterization in humid conditions and can find valuable applications in aerosol-cloud interaction schemes. Moreover, it can be used for the validation of active space-borne sensors, as is demonstrated here for the case of CALIPSO.

  11. Intermediate and High-Frequency Acoustic Backscattering Cross Sections for Water-Ice Interfaces: I. Two-Component Profile Models.

    DTIC Science & Technology

    2014-09-26

    Ice Research in the Arctic Ocean via Submarine," Trans. N.Y. Acad. of Sciences 23, 662-674, 1961. [2]. R. H. Mellen, "Underwater Acoustic Scattering...Backscattenng Cross Sections for Water- Ice Interfaces: I. Two.Component Profile Models r2avid Middleton CV) (Consultant) Associate Technical Director LC...Distribution unlimited. --. Preface This work was accomplished under NUSC’s Arctic Program, Code 01Y and Code 10. The sponsoring activity is the Naval

  12. TOMS Validation Based on Profiles of Aerosol Properties in the Lower Troposphere as Obtained with Light Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Prospero, Joseph M.; Maring, Hal; Savoie, Dennis

    2003-01-01

    The goal of the University of Miami Aerosol Group (UMAG) in this project was to make measurements of vertical profiles of aerosol properties and aerosol optical depth using a light aircraft. The UMAG developed a light aircraft aerosol package (LAAP) that was used in light aircraft (Cessna 172) during the Puerto Rico Dust Experiment (PRIDE). This field campaign took place on Puerto Rico during July 2000. Design details and results from the use of the LAAP were presented at TOMS Science team meetings on April 1998, April 1999, and May 2000. Results from the LAAP collected during the PRIDE Experiment were presented at the Fall Meeting of the American Geophysical Union, December 2000. Some of the results from the LAAP collected during the PRIDE Experiment have been accepted for publication in the Journal of Geophysical Research in a "topical section" made up of papers from the PRIDE Program.

  13. Statistics of aerosol extinction coefficient profiles and optical depth using lidar measurement over Lanzhou, China since 2005-2008

    NASA Astrophysics Data System (ADS)

    Cao, X.; Wang, Z.; Tian, P.; Wang, J.; Zhang, L.; Quan, X.

    2013-06-01

    The aerosol extinction coefficient profiles and optical depth over Lanzhou in China were observed under no precipitation and dust free condition using the micropulse lidar CE370-2 from September 2005 to July 2008. The statistics of the variations of monthly average aerosol optical depth (AOD) and daily average AOD, frequency distribution of daily average AOD, and the seasonal variation of aerosol vertical distribution were analyzed based on the observation data. The results showed that the daily average AOD of Main Observatory and City Observatory was 87.8% and 78.2% ranged below 0.4 respectively with similar frequency distribution patterns. The AOD in autumn and winter were larger than that in spring and summer, and AOD in suburb was in certain extent smaller than that in city of Lanzhou. Aerosol existed in the layer below 4km, and its extinction coefficient decreased with increasing of height.

  14. Wavelength dependent near-range lidar profiling of smog aerosol over Athens

    NASA Astrophysics Data System (ADS)

    Stachlewska, Iwona S.; Marinou, Eleni; Engelmann, Ronny; Costa Surós, Montserrat; Kottas, Mickael; Baars, Holger; Janicka, Lucja; Solomos, Stavros; Heese, Birgit; Kumala, Wojciech; Tsekeri, Alexandra; Binietoglou, Ioannis; Markowicz, Krzysztof M.; Amiridis, Vassilis; Balis, Dimitris; Althausen, Dietrich; Wandinger, Ulla; Ansmann, Albert

    2016-04-01

    Recently, the ACTRIS2 JRA1 field campaign focusing on joint remote and in-situ sensing of absorbing aerosols has been conducted in Athens (http://actris-athens.eu). In the frame of the ACTRIS2 BL-Smog TNA, co-located measurements of the near-range lidar receiver (NARLa) of the University of Warsaw with the multi-wavelength PollyXT lidar of the National Observatory of Athens were performed. The excellent capacities of the PollyXT-NOA lidar, equipped with eight far-range channels (355, 355s, 387, 407, 532, 532s, 607, and 1064nm) and two near-range channels (532 and 607 nm), were enhanced by integrating the NARLa for simultaneous observations. By using the NARLa, equipped with the elastic channels (355 and 532nm) and Raman channels (387 and 607nm), the wavelength dependence of the aerosol particles properties within boundary layer was captured. The dominant conditions observed during the JRA1 period were the fresh winter smog layers occurring in lowermost boundary layer over Athens. NARLa provided profiles as close to surface as 50m, thus the data obtained in the near-range were used for the incomplete overlap region of the far-field channels. With NARLa we assessed the overlap at 355 and 532nm wavelengths and concluded on the possibility of using the single near-range 532 nm channel for the overlap correction in both VIS and UV channels of the PollyXT-NOA. As a result, the obtained lidar profiles are expected to be more consistent with the sunphotometer measurements. In the future, the GARRLiC code can be applied on the synergy of combined near and far range lidar profiles with AERONET data sets in order to study improvement on the inversion results.

  15. Optical backscatter characteristics of Arctic polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Schaffner, S. K.; Poole, L. R.; Mccormick, M. P.; Hunt, W. H.

    1990-01-01

    Airborne lidar measurements have been made of polar stratospheric clouds (PSCs) during the Airborne Arctic Stratospheric Expedition in January-February 1989. These show the existence of a systematic relationship between the backscatter depolarization ratio and the (aerosol + molecular)/molecular backscatter ratio. The data are consistent with a two population PSC particle model.

  16. Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

    2014-05-01

    Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

  17. Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Gysel, M.; Rubach, F.; Mentel, T. F.; Goger, B.; Poulain, L.; Schlag, P.; Miettinen, P.; Pajunoja, A.; Virtanen, A.; Bialek, J.; Klein Baltink, H.; Henzing, J. S.; Größ, J.; Gobbi, G. P.; Wiedensohler, A.; Kiendler-Scharr, A.; O'Dowd, C.; Decesari, S.; Facchini, M. C.; Weingartner, E.; Baltensperger, U.

    2015-03-01

    Airborne measurements of the aerosol hygroscopic and optical properties as well as chemical composition were performed in the Netherlands and northern Italy on board of a Zeppelin NT airship during the PEGASOS field campaigns in 2012. The vertical changes in aerosol properties during the development of the mixing layer were studied. Hygroscopic growth factors (GF) at 95% relative humidity were determined using the white-light humidified optical particles spectrometer (WHOPS) for dry diameters of 300 and 500 nm particles. These measurements were supplemented by an aerosol mass spectrometer (AMS) and an aethalometer providing information on the aerosol chemical composition. Several vertical profiles between 100 and 700 m a.g. were flown just after sunrise close to the San Pietro Capofiume ground station in the Po Valley, Italy. During the early morning hours the lowest layer (newly developing mixing layer) contained a high nitrate fraction (20%) which was coupled with enhanced hygroscopic growth. In the layer above (residual layer) small nitrate fractions of ~ 2% were measured as well as low GFs. After full mixing of the layers, typically around noon and with increased temperature, the nitrate fraction decreased to 2% at all altitudes and led to similar hygroscopicity values as found in the residual layer. These distinct vertical and temporal changes underline the importance of airborne campaigns to study aerosol properties during the development of the mixed layer. The aerosol was externally mixed with 22 and 67% of the 500 nm particles in the range GF < 1.1 and GF > 1.5, respectively. Contributors to the non-hygroscopic mode in the observed size range are most likely mineral dust and biological material. Mean hygroscopicity parameters (κ) were 0.34, 0.19 and 0.18 for particles in the newly forming mixing layer, residual layer and fully mixed layer, respectively. These results agree well with those from chemical analysis which found values of κ = 0.27, 0.21 and 0

  18. The 48-inch lidar aerosol measurements taken at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Woods, David C.; Osborn, M. T.; Winker, D. M.; Decoursey, R. J.; Youngbluth, Otto, Jr.

    1994-01-01

    This report presents lidar data taken between July 1991 and December 1992 using a ground-based 48-inch lidar instrument at the Langley Research Center in Hampton, Virginia. Seventy lidar profiles (approximately one per week) were obtained during this period, which began less than 1 month after the eruption of the Mount Pinatubo volcano in the Philippines. Plots of backscattering ratio as a function of altitude are presented for each data set along with tables containing numerical values of the backscattering ratio and backscattering coefficient versus altitude. The enhanced aerosol backscattering seen in the profiles highlights the influence of the Mount Pinatubo eruption on the stratospheric aerosol loading over Hampton. The long-term record of the profiles gives a picture of the evolution of the aerosol cloud, which reached maximum loading approximately 8 months after the eruption and then started to decrease gradually. NASA RP-1209 discusses 48-inch lidar aerosol measurements taken at the Langley Research Center from May 1974 to December 1987.

  19. Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; Harper, David B.

    2012-01-01

    Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

  20. Marli: Mars Lidar for Global Wind Profiles and Aerosol Profiles from Orbit

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Guzewich, S. D.; Smith, M. D.; Riris, H.; Sun, X.; Gentry, B. M.; Yu, A.; Allan, G. R.

    2016-01-01

    The Mars Exploration Analysis Group's Next Orbiter Science Analysis Group (NEXSAG) has recently identified atmospheric wind measurements as one of 5 top compelling science objectives for a future Mars orbiter. To date, only isolated lander observations of martian winds exist. Winds are the key variable to understand atmospheric transport and answer fundamental questions about the three primary cycles of the martian climate: CO2, H2O, and dust. However, the direct lack of observations and imprecise and indirect inferences from temperature observations leave many basic questions about the atmospheric circulation unanswered. In addition to addressing high priority science questions, direct wind observations from orbit would help validate 3D general circulation models (GCMs) while also providing key input to atmospheric reanalyses. The dust and CO2 cycles on Mars are partially coupled and their influences on the atmospheric circulation modify the global wind field. Dust absorbs solar infrared radiation and its variable spatial distribution forces changes in the atmospheric temperature and wind fields. Thus it is important to simultaneously measure the height-resolved wind and dust profiles. MARLI provides a unique capability to observe these variables continuously, day and night, from orbit.

  1. Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data

    NASA Technical Reports Server (NTRS)

    Su, Wenying; Schuster, Gregory L.; Loeb, Norman G.; Rogers, Raymond R.; Ferrare, Richard A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.

    2008-01-01

    Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these limitations do not exist in High Spectral Resolution Lidar (HSRL) observations; for instance, HSRL observations are not a ected by cloud adjacency effects, are less prone to cloud contamination, and offer accurate aerosol property measurements (backscatter coefficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,and aerosol optical depth) at a neospatial resolution (less than 100 m) in the vicinity of clouds. Hence, the HSRL provides an important dataset for studying aerosol and cloud interaction. In this study, we statistically analyze aircraft-based HSRL profiles according to their distance from the nearest cloud, assuring that all profile comparisons are subject to the same large-scale meteorological conditions. Our results indicate that AODs from HSRL are about 17% higher in the proximity of clouds (approximately 100 m) than far away from clouds (4.5 km), which is much smaller than the reported cloud 3D effect on AOD retrievals. The backscatter and extinction coefficients also systematically increase in the vicinity of clouds, which can be explained by aerosol swelling in the high relative humidity (RH) environment and/or aerosol growth through in cloud processing (albeit not conclusively). On the other hand, we do not observe a systematic trend in lidar ratio; we hypothesize that this is caused by the opposite effects of aerosol swelling and aerosol in-cloud processing on the lidar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does not show a consistent trend because of the complicated relationship between BAE and RH. We demonstrate that BAE should not be used as a surrogate for Angstrom

  2. Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic optical data.

    PubMed

    Kolgotin, Alexei; Müller, Detlef; Chemyakin, Eduard; Romanov, Anton

    2016-12-01

    We developed a mathematical scheme that allows us to improve retrieval products obtained from the inversion of multiwavelength Raman/HSRL lidar data, commonly dubbed "3 backscatter+2 extinction" (3β+2α) lidar. This scheme works independently of the automated inversion method that is currently being developed in the framework of the Aerosol-Cloud-Ecosystem (ACE) mission and which is successfully applied since 2012 [Atmos. Meas. Tech.7, 3487 (2014)10.5194/amt-7-3487-2014; "Comparison of aerosol optical and microphysical retrievals from HSRL-2 and in-situ measurements during DISCOVER-AQ 2013 (California and Texas)," in International Laser Radar Conference, July 2015, paper PS-C1-14] to data collected with the first airborne multiwavelength 3β+2α high spectral resolution lidar (HSRL) developed at NASA Langley Research Center. The mathematical scheme uses gradient correlation relationships we presented in part 1 of our study [Appl. Opt.55, 9839 (2016)APOPAI0003-693510.1364/AO.55.009839] in which we investigated lidar data products and particle microphysical parameters from one and the same set of optical lidar profiles. For an accurate assessment of regression coefficients that are used in the correlation relationships we specially designed the proximate analysis method that allows us to search for a first-estimate solution space of particle microphysical parameters on the basis of a look-up table. The scheme works for any shape of particle size distribution. Simulation studies demonstrate a significant stabilization of the various solution spaces of the investigated aerosol microphysical data products if we apply this gradient correlation method in our traditional regularization technique. Surface-area concentration can be estimated with an uncertainty that is not worse than the measurement error of the underlying extinction coefficients. The retrieval uncertainty of the effective radius is as large as ±0.07  μm for fine mode particles and approximately

  3. Multiple scattering wavelength dependent backscattering of kaolin dust in the IR: Measurements and theory

    NASA Technical Reports Server (NTRS)

    Ben-David, Avishai

    1992-01-01

    Knowing the optical properties of aerosol dust is important for designing electro-optical systems and for modeling the effect on propagation of light in the atmosphere. As CO2 lidar technology becomes more advanced and is used for multiwavelength measurements, information on the wavelength dependent backscattering of aerosol dust particles is required. The volume backscattering coefficient of aerosols in the IR is relatively small. Thus, only a few field measurements of backscattering, usually at only a few wavelengths, are reported in the literature. We present spectral field measurements of backscattering of kaolin dust in the 9-11 micron wavelength range. As the quantity of dust increases, multiple scattering contributes more to the measured backscattered signal. The measurements show the effect of the dust quantity of the spectral backscatter measurements. A simple analytical two stream radiative transfer model is applied to confirm the measurements and to give insight to the multiple scattering spectra of backscattering.

  4. Forty-eight-inch lidar aerosol measurements taken at the Langley Research Center, May 1974 to December 1987

    NASA Technical Reports Server (NTRS)

    Fuller, W. H., Jr.; Osborn, M. T.; Hunt, W. H.

    1988-01-01

    A ground based lidar system located at NASA Langley Research Center in Hampton, Va., was used to obtain high resolution vertical profiles of the stratospheric and upper tropospheric aerosol since 1974. More than 200 measurements obtained at a wavelength of 0.6943 microns during 1974 to 1987 are summarized. Plots of peak backscatter mixing ratio and integrated backscatter vs time are presented for the entire measurement sequence. The plots highlight the influence of several major volcanic eruptions on the long term stratospheric aerosol layer. In particular, the eruptions of El Chichon in late Mar. to early Apr. 1982, produced a massive aerosol layer. Aerosol enhancement from El Chichon reached Hampton, Va. by May 1982, with a scattering ratio of approx. 50 detected on Jul. 1, 1982. In addition, scattering ratio profiles for June 1982 to December 1987, along with tables containing numerical values of the backscatter ratio and backscattering function versus altitude, are included to further describe the upper tropospheric and stratospheric aerosol layer. A 14 year summary is presented, in a ready to use format, of lidar observations at a fixed midlatitude location to be used for further study.

  5. Vertical profiling of Asian dust with multi-wavelength aerosol depolarization Raman lidar in Gwangju, Korea during DRAGON

    NASA Astrophysics Data System (ADS)

    Shin, D.; Mueller, D.; Noh, Y.; Shin, S.; Kim, Y. J.

    2013-12-01

    The Distributed Regional Aerosol Gridded Observation Networks (DRAGON) campaign, which was carried out in Korea from March to May 2013, aimed at validating satellite remote sensing data of aerosol optical and microphysical parameters. Anthropogenic pollution and Asian dust from the East Asian Mainland prevailed over the Korean peninsula during the DRAGON campaign. Validation of the data products requires knowledge on the vertical distribution of aerosol pollution and the knowledge of aerosol types, e.g., urban haze and dust. For this purpose we operated a multi-wavelength aerosol depolarization Raman lidar on the campus of the Gwangju Institute of Science and Technology (GIST) in Gwangju, Korea (35.10° N, 126.53° E). The system provides us with particle backscatter coefficients at 355, 532 and 1064 nm, extinction coefficients at 355 and 532nm, and the linear particle depolarization ratio at 532nm. Two upgraded sun photometers of the Aerosol Robotic Network (AERONET) with improved capabilities for dust measurements were also deployed. In our contribution we will present optical properties of Asian dust on the basis of lidar and sun photometer observations. One sun photometer was equipped with a measurement channel at 1640 nm channel and the second sun photometer carried out polarization measurements. Data could be collected on thirty-eight days We analyzed the geometrical and optical properties of Asian dust on the basis of backward trajectories in order to identify the main source regions of the observed dust layers. The height resolved statistical analysis of the DRAGON dataset reveals that the geometrical depth of the Asian dust layers was between 1 km and 4 km in 72% of all cases. Geometrical depths above 4 km were found in 20% of all cases. We found geometrical depths of 10 km in 3.3% of all cases. The vertical distribution of the dust layers was typically located in two different heights. In 51.5% of the measurements we observed Asian dust between 4 and 11km

  6. Optical characterization of continental and biomass-burning aerosols over Bozeman, Montana: A case study of the aerosol direct effect

    NASA Astrophysics Data System (ADS)

    Nehrir, Amin R.; Repasky, Kevin S.; Reagan, John A.; Carlsten, John L.

    2011-11-01

    Atmospheric aerosol optical properties were observed from 21 to 27 September 2009 over Bozeman, Montana, during a transitional period in which background polluted rural continental aerosols and well-aged biomass-burning aerosols were the dominant aerosol types of extremely fresh biomass-burning aerosols resulting from forest fires burning in the northwestern United States and Canada. Aerosol optical properties and relative humidity profiles were retrieved using an eye-safe micropulse water vapor differential absorption lidar (DIAL) (MP-DIAL), a single-channel backscatter lidar, a CIMEL solar radiometer as part of the Aerosol Robotic Network (AERONET), a ground-based integrating nephelometer, and aerosol products from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua. Aerosol optical depths (AODs) measured during the case study ranged between 0.03 and 0.17 (0.015 and 0.075) at 532 nm (830 nm) as episodic combinations of fresh and aged biomass-burning aerosols dominated the optical depth of the pristinely clean background air. Here, a pristinely clean background refers to very low AOD conditions, not that the aerosol scattering and absorption properties are necessarily representative of a clean aerosol type. Diurnal variability in the aerosol extinction to backscatter ratio (Sa) of the background atmosphere derived from the two lidars, which ranged between 55 and 95 sr (50 and 90 sr) at 532 nm (830 nm), showed good agreement with retrievals from AERONET sun and sky measurements over the same time period but were consistently higher than some aerosol models had predicted. Sa measured during the episodic smoke events ranged on average from 60 to 80 sr (50 to 70 sr) at 532 nm (830 nm) while the very fresh biomass-burning aerosols were shown to exhibit significantly lower Sa ranging between 20 and 40 sr. The shortwave direct radiative forcing that was due to the intrusion of biomass-burning aerosols was calculated to be on average -10 W/m2 and was

  7. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    SciTech Connect

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-01

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to

  8. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGES

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; ...

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore » and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  9. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    SciTech Connect

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  10. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGES

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; ...

    2016-01-18

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below  ∼  2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over Southmore » Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to −0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and

  11. An Investigation of Dust Aerosols and Atmospheric Profiles Associated with North Atlantic Hurricanes Using Multi-Sensor Measurements

    NASA Astrophysics Data System (ADS)

    Kamal, Mohammed Mostafa

    MODerate resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) and the Atmospheric Infrared Sounder (AIRS) atmospheric profiles (temperature and moisture) Level 2 products are studied to investigate dust aerosol impacts on hurricanes through spatial analysis for four hurricanes Isabel (2003), Frances (2004), Katrina (2005) and Helene (2006). Spatial regions were selected based on two concentric circles (an annulus) and segmented by left and right regions of 180° each around the hurricane's eye. Statistical relationships between MODIS AOT, AIRS temperature and percent relative humidity (RH) among these four hurricanes is presented. The variation of temperature and RH values represented in static-left, static-right, dynamic-left and dynamic-right for the 500 mb, 700 mb and 850 mb pressure levels were analyzed to determine the impacts of dust aerosols on temperature and RH. For the four hurricanes' average, AOT was found highest in Helene as opposed to (0.27) Isabel (0.23), Frances (0.18) and Katrina (0.16). Dust aerosols showed negative impacts on the atmospheric moisture levels and positive on the temperature. Additionally, a systematic multivariate analysis of MODIS aerosol retrievals over the North Atlantic spanning 7 hurricane seasons combined with Statistical Hurricane Intensity Prediction Scheme (SHIPS) parameters is presented. My focus is on investigating the effects of 5 categories that include aerosol, wind, relative humidity, shear, and temperature on hurricane intensities. The primary goal is to be able to explain the same physical phenomena equally well by significantly reducing the number of parameters employed in the statistical analysis. Five categories which include, wind, aerosol, shear, relative humidity, and temperature components were established by reducing 56 variables to 20. Aerosol, wind, humidity, shear, and temperature were all contributing factors in the regression equation with the ranking for the contribution found

  12. Sensitivity Analysis on Fu-Liou-Gu Radiative Transfer Model for different lidar aerosol and cloud profiles

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Pappalardo, Gelsomina; Welton, Ellsworth J.

    2016-04-01

    The aerosol and cloud impact on climate change is evaluated in terms of enhancement or reduction of the radiative energy, or heat, available in the atmosphere and at the Earth's surface, from the surface (SFC) to the Top Of the Atmosphere (TOA) covering a spectral range from the UV (extraterrestrial shortwave solar radiation) to the far-IR (outgoing terrestrial longwave radiation). Systematic Lidar network measurements from permanent observational sites across the globe are available from the beginning of this current millennium. From the retrieved lidar atmospheric extinction profiles, inputted in the Fu-Liou-Gu (FLG) Radiative Transfer code, it is possible to evaluate the net radiative effect and heating rate of the different aerosol species and clouds. Nevertheless, the lidar instruments may use different techniques (elastic lidar, Raman lidar, multi-wavelength lidar, etc) that translate into uncertainty of the lidar extinction retrieval. The goal of this study is to assess, applying a MonteCarlo technique and the FLG Radiative Transfer model, the sensitivity in calculating the net radiative effect and heating rate of aerosols and clouds for the different lidar techniques, using both synthetic and real lidar data. This sensitivity study is the first step to implement an automatic algorithm to retrieve the net radiative forcing effect of aerosols and clouds from the long records of aerosol measurements available in the frame of EARLINET and MPLNET lidar networks.

  13. An Accuracy Assessment of the CALIOP/CALIPSO Version 2/Version 3 Daytime Aerosol Extinction Product Based on a Detailed Multi-Sensor, Multi-Platform Case Study

    NASA Technical Reports Server (NTRS)

    Kacenelenbogen, M.; Vaughan, M. A.; Redemann, J.; Hoff, R. M.; Rogers, R. R.; Ferrare, R. A.; Russell, P. B.; Hostetler, C. A.; Hair, J. W.; Holben, B. N.

    2011-01-01

    The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP s level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. spaceborne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth s Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP s low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth s surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP s extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case

  14. An accuracy assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol extinction product based on a detailed multi-sensor, multi-platform case study

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M.; Vaughan, M. A.; Redemann, J.; Hoff, R. M.; Rogers, R. R.; Ferrare, R. A.; Russell, P. B.; Hostetler, C. A.; Hair, J. W.; Holben, B. N.

    2011-04-01

    The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP's level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. space-borne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth's Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP's low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth's surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP's extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case

  15. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  16. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  17. Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Menzel, W. Paul; Kaufman, Yoram J.; Tanre, Didier; Gao, Bo-Cai; Platnick, Steven; Ackerman, Steven A.; Remer, Lorraine A.; Pincus, Robert; Hubanks, Paul A.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is an earth-viewing sensor that flies on the Earth Observing System (EOS) Terra and Aqua satellites, launched in 1999 and 2002, respectively. MODIS scans a swath width of 2330 km that is sufficiently wide to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km. MODIS provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to en- able advanced studies of land, ocean, and atmospheric properties. Twenty-six bands are used to derive atmospheric properties such as cloud mask, atmospheric profiles, aerosol properties, total precipitable water, and cloud properties. In this paper we describe each of these atmospheric data products, including characteristics of each of these products such as file size, spatial resolution used in producing the product, and data availability.

  18. LASE measurements of water vapor and aerosol profiles during the Plains Elevated Convection at Night (PECAN) field experiment

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Ferrare, R. A.; Kooi, S. A.; Butler, C. F.; Notari, A.; Hair, J. W.; Collins, J. E., Jr.; Ismail, S.

    2015-12-01

    The Lidar Atmospheric Sensing Experiment (LASE) system was deployed on the NASA DC-8 aircraft during the Plains Elevated Convection At Night (PECAN) field experiment, which was conducted during June-July 2015 over the central and southern plains. LASE is an active remote sensor that employs the differential absorption lidar (DIAL) technique to measure range resolved profiles of water vapor and aerosols above and below the aircraft. The DC-8 conducted nine local science flights from June 30- July 14 where LASE sampled water vapor and aerosol fields in support of the PECAN primary science objectives relating to better understanding nocturnal Mesoscale Convective Systems (MCSs), Convective Initiation (CI), the Low Level Jet (LLJ), bores, and to compare different airborne and ground based measurements. LASE observed large spatial and temporal variability in water vapor and aerosol distributions in advance of nocturnal MCSs, across bores resulting from MCS outflow boundaries, and across the LLJ associated with the development of MCSs and CI. An overview of the LASE data collected during the PECAN field experiment will be presented where emphasis will be placed on variability of water vapor profiles in the vicinity of severe storms and intense convection in the central and southern plains. Preliminary comparisons show good agreement between coincident LASE and radiosonde water vapor profiles. In addition, an advanced water vapor DIAL system being developed at NASA Langley will be discussed.

  19. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  20. Oxygen depth profiling by resonant backscattering and glow discharge optical emission spectroscopy of Ti-6Al-4V alloy oxidized by ion implantation and plasma based treatment

    NASA Astrophysics Data System (ADS)

    Nsengiyumva, S.; Topic, M.; Pichon, L.; Comrie, C. M.; Mtshali, C.

    2016-10-01

    Oxygen depth profiling by means of 16O(α,α)16O backscattering and glow discharge optical emission spectroscopy (GDOES) was investigated in two different sets of Ti-6Al-4V samples. The first set was made of Ti-6Al-4V samples implanted at room temperature and 550 °C with 50 and 150 keV O+ ions at fluences ranging from 1.5 × 1017 to 6.0 × 1017 ions/cm2. The second set consisted of Ti-6Al-4V samples treated at 550 °C for 7 h and 24 h under low pressure (8 Pa) oxygen, eventually with RF plasma activation. These results are part of a wider investigation on Ti-6Al-4V motivated by recent publications which have shown that an oxide layer can enhance hydrogen absorption and can then promote Ti-6Al-4V alloys as efficient hydrogen storage materials. The results obtained by the two characterization techniques were compared and discussed, enabling to adjust the dependence to the oxygen concentration of the sputtering rates to be used in the time-to-depth transformation required in GDOES analysis. Considering the low thickness of oxidized alloy, usual procedures employed in GDOES depth calculation were indeed not adapted. Once calibrated thanks to the resonant RBS, GDOES can then be easily employed as fast characterization of oxidized and/or hydrogenated surface of Ti-6Al-4V. The obtained results show that the oxygen content into the surface oxidized layer slightly increases in samples implanted at higher fluence and higher temperature. However the overall oxidized layer thickness (<200 nm) remains within the projected ion depth range and is not significantly increased by thermal diffusion at 550 °C. Taken into account the initial oxide layer, the incorporated oxygen quantity mainly corresponds to the implanted fluence but it can be slightly higher with 550 °C implantation, indicating a slight additional oxidation by residual oxygen or surface contamination. The oxygen penetrations and contents in samples oxidized by thermally activated diffusion treatments were more

  1. Aerosol chemistry in GLOBE

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Rothermel, Jeffry; Jarzembski, Maurice A.

    1993-01-01

    This task addresses the measurement and understanding of the physical and chemical properties of aerosol in remote regions that are responsible for aerosol backscatter at infrared wavelengths. Because it is representative of other clean areas, the remote Pacific is of extreme interest. Emphasis is on the determination size dependent aerosol properties that are required for modeling backscatter at various wavelengths and upon those features that may be used to help understand the nature, origin, cycling and climatology of these aerosols in the remote troposphere. Empirical relationships will be established between lidar measurements and backscatter derived from the aerosol microphysics as required by the NASA Doppler Lidar Program. This will include the analysis of results from the NASA GLOBE Survey Mission Flight Program. Additional instrument development and deployment will be carried out in order to extend and refine this data base. Identified activities include participation in groundbased and airborne experiments. Progress to date includes participation in, analysis of, and publication of results from Mauna Loa Backscatter Intercomparison Experiment (MABIE) and Global Backscatter Experiment (GLOBE).

  2. New capabilities for space-based cloud and aerosols measurements: The Cloud-Aerosol Transport System (CATS)

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Hlavka, D. L.; Palm, S. P.; Hart, W. D.; Nowottnick, E. P.; Vaughan, M.; Rodier, S. D.; Colarco, P. R.; da Silva, A.; Buchard-Marchant, V.

    2013-12-01

    Current uncertainties in cloud and aerosol properties limit our ability to accurately model the Earth's climate system and predict climate change. These limitations are due primarily to difficulties in adequately measuring aerosols and clouds on a global scale. NASA's A-Train satellites provide an unprecedented opportunity to address these uncertainties. In particular, the Cloud-Aerosol Lidar Infrared Pathfinder Spaceborne Observations (CALIPSO) satellite provides vertical profiles of cloud and aerosol properties. The CALIOP lidar onboard CALIPSO has reached its seventh year of operation, well past its expected lifetime. The ATLID lidar on EarthCARE is not expected to launch until 2016 or later. If the CALIOP lidar fails before a new mission is operational, there will be a gap in global lidar measurements. The Cloud-Aerosol Transport System (CATS), built at NASA Goddard Space Flight Center as a payload for the International Space Station (ISS), is set to launch in the summer of 2014. CATS is an elastic backscatter lidar with three wavelengths (1064, 532, 355 nm) and HSRL capability at 532 nm. Depolarization measurements will be made at all three wavelengths. The ISS orbit is a 51 degree inclination orbit at an altitude of about 405 km. This orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three day repeat cycle. Thus, science applications of CATS include cloud and aerosol climate studies, air quality monitoring, and smoke/volcanic plume tracking. The primary science objectives of CATS include: continuing the CALIPSO aerosol and cloud vertical profile data record, providing near real time data to support operational applications such as air quality modeling, and advancing technology in support of future mission development using the HSRL channel. Furthermore, the vertical profiles of cloud and aerosol properties provided by CATS will complement current and future passive satellite

  3. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  4. CALIPSO-Inferred Aerosol Direct Radiative Effects: Bias Estimates Using Ground-Based Raman Lidars

    NASA Technical Reports Server (NTRS)

    Thorsen, Tyler; Fu, Qiang

    2015-01-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at mid-latitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30â€"50%. Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.

  5. CALIPSO-Inferred Aerosol Direct Radiative Effects: Bias Estimates Using Ground-Based Raman Lidars

    NASA Technical Reports Server (NTRS)

    Thorsen, Tyler; Fu, Qiang

    2016-01-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50%. Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.

  6. Airborne lidar measurements of El Chichon stratospheric aerosols, October 1982 to November 1982

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Osborn, M. T.

    1985-01-01

    A coordinated flight mission to determine the spatial distribution and aerosol characteristics of the El Chichon produced stratospheric aerosol was flown in October to November 1982. The mission covered 46 deg N to 46 deg S and included rendezvous between balloon-, airplane-, and satellite-borne sensors. The lidar data from the flight mission are presented. Representative profiles of lidar backscatter ratio, plots of the integrated backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. In addition, tables containing numerical values of the backscatter ratio and backscattering functions versus altitude are supplied for each profile. The bulk of the material produced by the El Chichon eruptions of late March 10 to early April 1982 resided between latitudes from 5 to 7 deg S to 35 to 37 deg N and was concentrated above 21 km in a layer that peaked at 23 to 25 km. In this latitude region, peak scattering ratios at a wavelength of 0.6943 micron were approximately 24. The results of this mission are presented in a ready-to-use format for atmospheric and climatic studies.

  7. Comparison of stratospheric aerosol and gas experiment I (SAGE I) and Umkehr ozone profiles including a search for Umkehr aerosol effects

    SciTech Connect

    Newchurch, M.J.

    1986-01-01

    After briefly reviewing ozone depletion predictions from atmospheric models and results from trend analysis of Umkehr data, this paper outlines the Umkehr method for deducing the vertical profile of ozone and reviews the theoretical and empirical studies of the aerosol effect on Umkehr measurements. A brief description of the Stratospheric Aerosol and Gas Experiment I (SAGE I) is followed by a method for approximating the best representation of the conditions over the Umkehr ground site as seen by the SAGE I satellite. Using a spatially weighted average of SAGE I events derived from an autocorrelation analysis, the authors find 337 co-located SAGE I and Umkehr events. The approximate total column ozone measured by SAGE I is 5% higher than that measured by Umkehr on average. Most of this difference resides in Umkehr layer two, three, and four, while layers seven, eight, and nine contain small differences in average ozone content. Intercomparison with four other ozone studies indicates agreement between SAGE I and SBUV in most layers and at most Umkehr stations north of 30/sup 0/. However, significant differences in Umkehr layer eight between SAGE I and SBUV remain. Ozone differences between SAGE I and Umkehr are strong functions of both total column ozone and season in the lower layers but not in the upper layers.

  8. Seasonal variations in Titan's stratosphere observed with Cassini/CIRS: temperature, trace molecular gas and aerosol mixing ratio profiles

    NASA Astrophysics Data System (ADS)

    Vinatier, S.; Bézard, B.; Lebonnois, S.; Teanby, N. A.; Rannou, P.; Anderson, C. M.; Achterberg, R. K.

    2013-12-01

    Titan's northern spring equinox occurred in August 2009. General Circulation Models predict strong modifications of the global circulation in this period, with formation of two circulation cells instead of the pole-to-pole cell that occurred during northern winter. This winter single cell, which had its descending branch at the north pole, was at the origin of the enrichment of molecular abundances and high stratopause temperatures observed by Cassini/CIRS at high northern latitudes. The predicted dynamical seasonal variations after the equinox have strong impact on the spatial distributions of trace gas, temperature and aerosol abundances. We will present here an analysis of CIRS limb-geometry datasets acquired between 2009 and 2013 that we used to monitor the seasonal evolution of the vertical profiles of temperature, molecular (C2H2, C2H6, HCN, ...) and aerosol abundances.

  9. Dynamic coherent backscattering mirror

    PubMed Central

    Xu, M.

    2016-01-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation. PMID:26937296

  10. Dynamic coherent backscattering mirror

    SciTech Connect

    Zeylikovich, I.; Xu, M.

    2016-02-15

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  11. Development of a high-spectral-resolution lidar for continuous observation of aerosols in South America

    NASA Astrophysics Data System (ADS)

    Jin, Yoshitaka; Sugimoto, Nobuo; Nishizawa, Tomoaki; Ristori, Pablo; Papandrea, Sebastian; Otero, Lidia; Quel, Eduardo; Mizuno, Akira

    2016-05-01

    Continuous monitoring of aerosol profiles using lidar is helpful for a quasi-real-time indication of aerosol concentration. For instance, volcanic ash concentration and its height distribution are essential information for plane flights. Depolarization ratio and multi-wavelength measurements are useful for characterizing aerosol types such as volcanic ash, smoke, dust, sea-salt, and air pollution aerosols. High spectral resolution lidar (HSRL) and Raman scattering lidar can contribute to such aerosol characterization significantly since extinction coefficients can be measured independently from backscattering coefficients. In particular, HSRL can measure aerosol extinction during daytime and nighttime with a high sensitivity. We developed an HSRL with the iodine filter method for continuous observation of aerosols at 532nm in the northern region of Argentina in the framework of the South American Environmental Atmospheric Risk Management Network (SAVER.Net)/SATREPS project. The laser wavelength of the HSRL was controlled by a feedback system to tune the laser wavelength to the center of an iodine absorption line. The stability of the laser wavelength with the system satisfied the requirement showing very small systematic errors in the retrieval of extinction and backscatter.

  12. AMALi - the Airborne Mobile Aerosol Lidar for Arctic research

    NASA Astrophysics Data System (ADS)

    Stachlewska, I. S.; Neuber, R.; Lampert, A.; Ritter, C.; Wehrle, G.

    2010-03-01

    The Airborne Mobile Aerosol Lidar (AMALi) is an instrument developed at the Alfred Wegener Institute for Polar and Marine Research for reliable operation under the challenging weather conditions at the Earth's polar regions. Since 2003 the AMALi has been successfully deployed for measurements in ground-based installation and zenith- or nadir-pointing airborne configurations during several scientific campaigns in the Arctic. The lidar provides backscatter profiles at two wavelengths (355/532 nm or 1064/532 nm) together with the linear depolarization at 532 nm, from which aerosol and cloud properties can be derived. This paper presents the characteristics and capabilities of the AMALi system and gives examples of its usage for airborne and ground-based operations in the Arctic. As this backscatter lidar normally does not operate in aerosol-free layers special evaluation schemes are discussed, the nadir-pointing iterative inversion for the case of an unknown boundary condition and the two-stream approach for the extinction profile calculation if a second lidar system probes the same air mass. Also an intercomparison of the AMALi system with an established ground-based Koldewey Aerosol Raman Lidar (KARL) is given.

  13. Characterizing the Vertical Distribution of Aerosols Over the ARM SGP Site

    SciTech Connect

    Richard Ferrare, Connor Flynn, David Turner

    2009-05-05

    . Analysis of the aerosol and water vapor data collected by the Raman lidar during the 2003 Aerosol IOP indicated that the sensitivity of the lidar was significantly lower than when the lidar was initially deployed. A detailed analysis after the IOP of the long-term dataset demonstrated that the lidar began degrading in early 2002, and that it lost approximately a factor of 4 in sensitivity between 2002 and 2004. We participated in the development of the remediation plan for the system to restore its initial performance. We conducted this refurbishment and upgrade from May- September 2004. This remediation lead to an increase in the signal-to-noise ratio of 10 and 30 for the Raman lidar's water vapor mixing ratio and aerosol backscatter coefficient data, respectively as compared to the signal strengths when the system was first deployed. The DOE ARM Aerosol Lidar Validation Experiment (ALIVE), which was conducted during September 2005, evaluated the impact of these modifications and upgrades on the SGP Raman lidar measurements of aerosol extinction and optical thickness. The CARL modifications significantly improved the accuracy and temporal resolution of the aerosol measurements. Aerosol extinction profiles measured by the Raman lidar were also used to evaluate aerosol extinction profiles and aerosol optical thickness (AOT) simulated by aerosol models as part of the Aerosol module inter-Comparison in global models (AEROCOM) (http://nansen.ipsl.jussieu.fr/AEROCOM/aerocomhome.html) project. There was a wide range in how the models represent the aerosol extinction profiles over the ARM SGP site, even though the average annual AOT represented by the various models and measured by CARL and the Sun photometer were in general agreement, at least within the standard deviations of the averages. There were considerable differences in the average vertical distributions among the models, even among models that had similar average aerosol optical thickness. Deviations between mean

  14. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  15. Multistatic aerosol-cloud lidar in space: A theoretical perspective

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Alexandrov, Mikhail D.; Cairns, Brian; Travis, Larry D.

    2016-11-01

    Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; help relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170° can dramatically increase the information content of the

  16. Optical properties of Southern Hemisphere aerosols: Report of the joint CSIRO/NASA study

    NASA Technical Reports Server (NTRS)

    Gras, John L.; Platt, C. Martin; Huffaker, R. Milton; Jones, William D.; Kavaya, Michael J.; Gras, John L.

    1988-01-01

    This study was made in support of the LAWS and GLOBE programs, which aim to design a suitable Doppler lidar system for measuring global winds from a satellite. Observations were taken from 5 deg S to 45 deg S along and off the E and SE Australian coast, thus obtaining representative samples over a large latitude range. Observations were made between 0 and 6 km altitude of aerosol physical and chemical properties in situ from the CSIRO F-27 aircraft; of lidar backscatter coefficients at 10.6 micron wavelength from the F-27 aircraft; of lidar backscatter profiles at 0.694 microns at Sale, SE Australia; and of lidar backscatter profiles at 0.532 microns at Cowley Beach, NE Australia. Both calculations and observations in the free troposphere gave a backscatter coefficient of 1-2 x 10 to the -11/m/sr at 10.6 microns, although the accuracies of the instruments were marginal at this level. Equivalent figures were 2-8 x 10 to the -9/m/sr (aerosol) and 9 x 10 to the -9 to 2 x 10 to the -8/m/sr (lidar) at 0.694 microns wavelength at Sale; and 3.7 x 10 to the -9/m/sr (aerosol) and 10 to the -8 to 10 to the -7/m/sr (lidar) at 0.532 microns wavelength at Cowley Beach. The measured backscatter coefficients at 0.694 and 0.532 microns were consistently higher than the values calculated from aerosol size distributions by factors of typically 2 to 10.

  17. Development the EarthCARE aerosol classification scheme

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Baars, Holger; Hünerbein, Anja; Donovan, Dave; van Zadelhoff, Gerd-Jan; Fischer, Jürgen; von Bismarck, Jonas; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2015-04-01

    The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission is a joint ESA/JAXA mission planned to be launched in 2018. The multi-sensor platform carries a cloud-profiling radar (CPR), a high-spectral-resolution cloud/aerosol lidar (ATLID), a cloud/aerosol multi-spectral imager (MSI), and a three-view broad-band radiometer (BBR). Three out of the four instruments (ATLID, MSI, and BBR) will be able to sense the global aerosol distribution and contribute to the overarching EarthCARE goals of sensor synergy and radiation closure with respect to aerosols. The high-spectral-resolution lidar ATLID obtains profiles of particle extinction and backscatter coefficients, lidar ratio, and linear depolarization ratio as well as the aerosol optical thickness (AOT) at 355 nm. MSI provides AOT at 670 nm (over land and ocean) and 865 nm (over ocean). Next to these primary observables the aerosol type is one of the required products to be derived from both lidar stand-alone and ATLID-MSI synergistic retrievals. ATLID measurements of the aerosol intensive properties (lidar ratio, depolarization ratio) and ATLID-MSI observations of the spectral AOT will provide the basic input for aerosol-type determination. Aerosol typing is needed for the quantification of anthropogenic versus natural aerosol loadings of the atmosphere, the investigation of aerosol-cloud interaction, assimilation purposes, and the validation of atmospheric transport models which carry components like dust, sea salt, smoke and pollution. Furthermore, aerosol classification is a prerequisite for the estimation of direct aerosol radiative forcing and radiative closure studies. With an appropriate underlying microphysical particle description, the categorization of aerosol observations into predefined aerosol types allows us to infer information needed for the calculation of shortwave radiative effects, such as mean particle size, single-scattering albedo, and spectral conversion factors. In order to ensure

  18. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.

  19. Two-wavelength lidar characterization of atmospheric aerosol fields at low altitudes over heterogeneous terrain

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Dreischuh, Tanja N.; Toncheva, Eleonora N.; Stoyanov, Dimitar V.

    2012-01-01

    The possibilities for applying multiwavelength elastic lidar probing of the atmosphere to help monitor air-quality over large industrial and densely populated areas, based predominantly on the use and analysis of commonly obtainable backscatter-related lidar quantities, are examined. Presented are two-wavelength (1064/532 nm) lidar observations on the spatial distribution, structure, composition, and temporal evolution of close-to-surface atmospheric aerosol fields over heterogeneous orographic areas (adjacent city, plain, and mountain) near Sofia, Bulgaria. Selected winter-time evening lidar measurements are described. Range profiles, histograms, and evolutional range-time diagrams of the aerosol backscatter coefficients, range-corrected lidar signals, normalized standard deviations, and backscatter-related Ångström exponents (BAE) are analyzed. Near-perfect correlation between the aerosol density distribution and orographic differentiation of the underlying terrain is established, finding expression in a sustained horizontal stratification of the probed atmospheric domains. Distinctive features in the spatial distribution and temporal evolution of both the fine- and coarse aerosol fractions are revealed in correlation with terrain's orography. Zonal aerosol particle size distributions are qualitatively characterized by using an approach based on BAE occurrence frequency distribution analysis. Assumptions are made about the aerosol particle type, origin, and dominating size as connected (by transport-modeling data) to local pollution sources. Specifics and patterns of temporal dynamics of the fine- and coarse aerosol fraction density distributions and movements, revealed by using statistical analysis of lidar data, are discussed. The obtained results prove the capability of the used two-wavelength lidar approach to perform fast-, reliable, and self-consistent characterization of important optical-, micro-physical-, and dynamical properties of atmospheric

  20. Shortwave Radiative Fluxes, Solar-Beam Transmissions, and Aerosol Properties: TARFOX and ACE-2 Find More Absorption from Flux Radiometry than from Other Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Redemann, J.; Schmid, B.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2) made simultaneous measurements of shortwave radiative fluxes, solar-beam transmissions, and the aerosols affecting those fluxes and transmissions. Besides the measured fluxes and transmissions, other obtained properties include aerosol scattering and absorption measured in situ at the surface and aloft; aerosol single scattering albedo retrieved from skylight radiances; and aerosol complex refractive index derived by combining profiles of backscatter, extinction, and size distribution. These measurements of North Atlantic boundary layer aerosols impacted by anthropogenic pollution revealed the following characteristic results: (1) Better agreement among different types of remote measurements of aerosols (e.g., optical depth, extinction, and backscattering from sunphotometers, satellites, and lidars) than between remote and in situ measurements; 2) More extinction derived from transmission measurements than from in situ measurements; (3) Larger aerosol absorption inferred from flux radiometry than from other measurements. When the measured relationships between downwelling flux and optical depth (or beam transmission) are used to derive best-fit single scattering albedos for the polluted boundary layer aerosol, both TARFOX and ACE-2 yield midvisible values of 0.90 +/- 0.04. The other techniques give larger single scattering albedos (i.e. less absorption) for the polluted boundary layer, with a typical result of 0.95 +/- 0.04. Although the flux-based results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., unknown gas absorption). Current uncertainties in aerosol single scattering albedo are large in terms of climate effects. They also have an important influence on aerosol optical depths retrieved from satellite radiances

  1. Implementation of Raman lidar for profiling of atmospheric water vapor and aerosols at the SGP CART site

    NASA Astrophysics Data System (ADS)

    Goldsmith, J. E. M.; Blair, Forest H.; Bisson, Scott E.

    There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the SGP CART (southern great plains cloud and radiation testbed) site. Research conducted at several laboratories, including our work in a previous ARM instrument development project, has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We are in the final stages of building a ruggedized Raman lidar system that will reside permanently at the CART site, and that is computer automated to reduce the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar will provide quantitative characterization of aerosols and clouds, including depolarization measurements for particle phase studies.

  2. Saharan Desert Dust Sources: New Insights Based on Aerosol Vertical Profiles Retrieved from Thermal Infrared Measurements by IASI

    NASA Astrophysics Data System (ADS)

    Vandenbussche, S.; Kumps, N.; Vandaele, A. C.; De Maziere, M.

    2015-11-01

    Desert dust is a major actor in the climate and one of the least characterized with respect to its radiative forcing, both direct and indirect. Studies of dust atmospheric load and sources are therefore of great scientific interest. In the last years, we have developed and improved a retrieval strategy to obtain desert dust aerosols vertical profiles, from thermal infrared measurements by IASI. This strategy has been used to process significant amount of IASI data above North Africa. This dataset allows a new insight in the study of Saharan desert dust sources: it provides twice a day, at interesting times considering the dust emission diurnal cycle, vertical profiles of desert dust (not only optical depth), making possible to distinguish local emissions from transported dust.

  3. Seasonal variability of aerosol vertical profiles over east US and west Europe: GEOS-Chem/APM simulation and comparison with CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyan; Yu, Fangqun

    2014-04-01

    In this study, we employed 5 years (2007-2011) of the CALIPSO level-3 monthly aerosol extinction product to compare with the GEOS-Chem/APM simulations for the same time period over two major industrial regions (east US and west Europe). The objective is to understand which aerosol types or species significantly determine the vertical profiles by comparing the seasonal variability between the simulations and observations. Our study shows that the model successfully produces the magnitude of aerosol extinction, profile shape, and their seasonal variability observed by CALIPSO over both east US (EUS) and west Europe (WEU). The extinctions below 1 km make up 44-79% to the total, from either the model simulations or satellite retrievals, with larger percentages in winter seasons (62-79%) and smaller percentages in summer seasons (44-57%) associated with the strength of vertical transport. The shape of the vertical profiles has, therefore, a distinct seasonal variability, with a more like quasi-exponential shape in DJF (December, January, and February) and SON (September, October, and November) than in MAM (March, April, and May) and JJA (June, July, and August), which have been discerned from both measurements and simulations. Analysis of modeled aerosol species indicates that secondary particles (SP), containing sulfate, ammonia, nitrate, and secondary organic aerosols (SOAs), predominantly determine the total aerosol vertical profiles while black carbon (BC), primary organic carbon (OC), and sea salt (SS), only account for a small fraction and are also limited near the surface. Mineral dust (DS) contributes more to the total extinction over WEU than over EUS, particularly in MAM, a result of being adjacent to the North Africa desert. Secondary inorganic aerosol (SIA, i.e. sulfate, ammonia, and nitrate) contributes most of the total SP mass in DJF and SON while SOA is particularly important in MAM and JJA when the emissions from leafed plants are active. Our study also

  4. Evaluation of the effects of Mount Pinatubo aerosol on differential absorption lidar measurements of stratospheric ozone

    SciTech Connect

    Steinbrecht, W.; Carswell, A.I.

    1995-01-01

    Substantially increased aerosol backscattering and extinction after a major volcanic eruption can lead to errors in differential absorption lidar (DIAL) measurements of stratospheric ozone. Mie calculations, performed for the wavelengths 308 and 353 nm and based on size distributions measured over Laramie, Wyoming (41 deg), were used to assess size and temporal evolution of these errors. In many situations, neglecting the different aerosol backscattering at the absorption and reference wavelengths can lead to relative errors in the ozone concentration larger than 100% for the 308-, 353-nm pair. The error due to neglecting the differential aerosol extinction, however, will rarely exceed 2%. A correction for this differential extinction should only be attempted when high concentrations (greater than 100/cu cm) of small aerosol particles with radii below 0.1 micrometers are present, e.g., shortly after an eruption. A correction for the differential backscatter can be made by using additional lidar measurements at a second reference wavelength or by having general size distribution information on the aerosol. Possible corrections were tested and will usually reduce the error in the ozone concentration considerably. For the 308-, 353-nm pair, both Mie calculations and a comparison with ozone profiles from electrochemical cell sondes show, however, that even after the correction the uncertainty in the ozone concentration within some regions of the strongly enhanced Mt. Pinatubo aerosol layer can still be substantial, of the order of 10-50%. Wavelength separation smaller than 40 nm or use of wavelengths shorter than 300 nm will reduce the error. The best solution seems to be the addition of Raman channels. It avoids the large error due to the differential backscatter term.

  5. CART Raman Lidar Aerosol and Water Vapor Measurements in the Vicinity of Clouds

    NASA Technical Reports Server (NTRS)

    Clayton, Marian B.; Ferrare, Richard A.; Turner, David; Newsom, Rob; Sivaraman, Chitra

    2008-01-01

    Aerosol and water vapor profiles acquired by the Raman lidar instrument located at the Climate Research Facility (CRF) at Southern Great Plains (SGP) provide data necessary to investigate the atmospheric variability in the vicinity of clouds near the top of the planetary boundary layer (PBL). Recent CARL upgrades and modifications to the routine processing algorithms afforded the necessarily high temporal and vertical data resolutions for these investigations. CARL measurements are used to investigate the behavior of aerosol backscattering and extinction and their correlation with water vapor and relative humidity.

  6. Geometrical constraint experimental determination of Raman lidar overlap profile.

    PubMed

    Li, Jian; Li, Chengcai; Zhao, Yiming; Li, Jing; Chu, Yiqi

    2016-06-20

    A simple experimental method to determine the overlap profile of Raman lidar is presented in this paper. Based on Mie and Raman backscattering signals and a geometrically constrained condition, the overlap profile of a Raman lidar system can be determined. Our approach simultaneously retrieves the lidar ratio of aerosols, which is one of the most important sources of uncertainty in the overlap profile determination. The results indicate that the overlap factor is significantly influenced by the lidar ratio in experimental methods. A representative case study indicates that the correction of the overlap profile obtained by this method is practical and feasible.

  7. Development and demonstration of a high-altitude atmospheric backscatter Lidar system

    NASA Astrophysics Data System (ADS)

    Dolash, Thomas M.; Garvey, John; Leonelli, Joseph; Bradford, Mark; Rose, Lynn

    1994-06-01

    Battelle has designed and fabricated an upward-looking atmospheric backscatter lidar for high-altitude airborne applications. The compact, rugged system was assembled and integrated into a cupola on top of a Lear 36 aircraft to provide particle backscatter data and aerosol profile distributions of cirrus clouds occurring between 50,000 and 100,000 ft ASL. The high altitude airborne lidar system consists of a laser transmitter operating at 532 and 1064 nm simultaneously with output energy of 75 mJ at both wavelengths and a collecting telescope aperture of 10 inches in diameter. Laser backscatter energy is collected and directed via a dichroic beamsplitter to two avalanche photodetectors (APD) through narrow bandpass optical filters at 532 and 1064 nm. The outputs of the APDs are digitized by a 10-bit, 100-MHz transient digitizer before being recorded to a 1.2-Gbyte hard disk with IRIG timing for data analysis. This paper describes the lidar system design, predicted performance, and some of the operational challenges.

  8. The CU Airborne MAX-DOAS instrument: ground based validation, and vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2012-09-01

    The University of Colorado Airborne Multi Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light remote sensing to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (360 nm, 477 nm, 577 nm and 632 nm) simultaneously, and sensitively in the open atmosphere. The instrument is unique, in that it presents the first systematic implementation of MAX-DOAS on research aircraft, i.e. (1) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system, and (2) features a motion compensation system that decouples the telescope field of view (FOV) from aircraft movements in real-time (< 0.35° accuracy). Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex and CARES air quality field campaigns is presented. Horizontal distributions of NO2 VCDs (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground based CU MAX-DOAS instruments (slope 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O mixing ratios and aerosol extinction coefficients, ɛ, at 477nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  9. Retrieving the height of smoke and dust aerosols by synergistic use of VIIRS, OMPS, and CALIOP observations

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae

    2015-08-01

    This study extends the application of the previously developed Aerosol Single-scattering albedo and layer Height Estimation (ASHE) algorithm, which was originally applied to smoke aerosols only, to both smoke and dust aerosols by including nonspherical dust properties in the retrieval process. The main purpose of the algorithm is to derive aerosol height information over wide areas using aerosol products from multiple satellite sensors simultaneously: aerosol optical depth (AOD) and Ångström exponent from the Visible Infrared Imaging Radiometer Suite (VIIRS), UV aerosol index from the Ozone Mapping and Profiler Suite (OMPS), and total backscatter coefficient profile from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The case studies suggest that the ASHE algorithm performs well for both smoke and dust aerosols, showing root-mean-square error of the retrieved aerosol height as compared to CALIOP observations from 0.58 to 1.31 km and mean bias from -0.70 to 1.13 km. In addition, the algorithm shows the ability to retrieve single-scattering albedo to within 0.03 of Aerosol Robotic Network inversion data for moderate to thick aerosol loadings (AOD of ~1.0). For typical single-layered aerosol cases, the estimated uncertainty in the retrieved height ranges from 1.20 to 1.80 km over land and from 1.15 to 1.58 km over ocean when favorable conditions are met. Larger errors are observed for multilayered aerosol events, due to the limited sensitivities of the passive sensors to such cases.

  10. Atmospheric aerosol and Doppler lidar studies

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeff; Bowdle, D. A.; Srivastava, V.; Jarzembski, M.; Cutten, D.; Mccaul, E. W., Jr.

    1991-01-01

    Experimental and theoretical studies were performed of atmospheric aerosol backscatter and atmospheric dynamics with Doppler lidar as a primary tool. Activities include field and laboratory measurement and analysis efforts. The primary focus of activities related to understanding aerosol backscatter is the GLObal Backscatter Experiment (GLOBE) program. GLOBE is a multi-element effort designed toward developing a global aerosol model to describe tropospheric clean background backscatter conditions that Laser Atmospheric Wind Sounder (LAWS) is likely to encounter. Two survey missions were designed and flown in the NASA DC-8 in November 1989 and May to June 1990 over the remote Pacific Ocean, a region where backscatter values are low and where LAWS wind measurements could make a major contribution. The instrument complement consisted of pulsed and continuous-wave (CW) CO2 gas and solid state lidars measuring aerosol backscatter, optical particle counters measuring aerosol concentration, size distribution, and chemical composition, a filter/impactor system collecting aerosol samples for subsequent analysis, and integrating nephelometers measuring visible scattering coefficients. The GLOBE instrument package and survey missions were carefully planned to achieve complementary measurements under clean background backscatter conditions.

  11. Lidar Observations of Tropospheric Aerosols Over Northeastern South Africa During the ARREX and SAFARI-2000 Dry Season Experiments

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Welton, Ellsworth J.; Spinhirne, James D.; Ji, Qiang; Tsay, Si-Chee; Piketh, Stuart J.; Barenbrug, Marguerite; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    During the ARREX-1999 and SAFARI-2000 Dry Season experiments a micropulse lidar (523 nm) instrument was operated at the Skukuza Airport in northeastern South Africa. The Mar was collocated with a diverse array of passive radiometric equipment. For SAFARI-2000 the processed Mar data yields a daytime time-series of layer mean/derived aerosol optical properties, including extinction-to-backscatter ratios and vertical extinction cross-section profile. Combined with 523 run aerosol optical depth and spectral Angstrom exponent calculations from available CIMEL sun-photometer data and normalized broadband flux measurements the temporal evolution of the near surface aerosol layer optical properties is analyzed for climatological trends. For the densest smoke/haze events the extinction-to-backscatter ratio is found to be between 60-80/sr, and corresponding Angstrom exponent calculations near and above 1.75. The optical characteristics of an evolving smoke event from SAFARI-2000 are extensively detailed. The advecting smoke was embedded within two distinct stratified thermodynamic layers, causing the particulate mass to advect over the instrument array in an incoherent manner on the afternoon of its occurrence. Surface broadband flux forcing due to the smoke is calculated, as is the evolution in the vertical aerosol extinction profile as measured by the Han Finally, observations of persistent elevated aerosol during ARREX-1999 are presented and discussed. The lack of corroborating observations the following year makes these observation; both unique and noteworthy in the scope of regional aerosol transport over southern Africa.

  12. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.; Russell, P.; Livingston, J.; Schmid, B.; Holben, B.; Remer, L.; Smirnov, A.; Hobbs, P. V.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and Sun photometers during TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment). Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA/GSFC Scanning Raman Lidar (SRL) system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W), are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and rms differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a)=60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements.

  13. Retrieval of high-spectral-resolution lidar for atmospheric aerosol optical properties profiling

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Luo, Jing; Yang, Yongying; Cheng, Zhongtao; Zhang, Yupeng; Zhou, Yudi; Duan, Lulin; Su, Lin

    2015-10-01

    High-spectral-resolution lidars (HSRLs) are increasingly being developed for atmospheric aerosol remote sensing applications due to the straightforward and independent retrieval of aerosol optical properties without reliance on assumptions about lidar ratio. In HSRL technique, spectral discrimination between scattering from molecules and aerosol particles is one of the most critical processes, which needs to be accomplished by means of a narrowband spectroscopic filter. To ensure a high retrieval accuracy of an HSRL system, the high-quality design of its spectral discrimination filter should be made. This paper reviews the available algorithms that were proposed for HSRLs and makes a general accuracy analysis of the HSRL technique focused on the spectral discrimination, in order to provide heuristic guidelines for the reasonable design of the spectral discrimination filter. We introduce a theoretical model for retrieval error evaluation of an HSRL instrument with general three-channel configuration. Monte Carlo (MC) simulations are performed to validate the correctness of the theoretical model. Results from both the model and MC simulations agree very well, and they illustrate one important, although not well realized fact: a large molecular transmittance and a large spectral discrimination ratio (SDR, i.e., ratio of the molecular transmittance to the aerosol transmittance) are beneficial t o promote the retrieval accuracy. The application of the conclusions obtained in this paper in the designing of a new type of spectroscopic filter, that is, the field-widened Michelson interferometer, is illustrated in detail. These works are with certain universality and expected to be useful guidelines for HSRL community, especially when choosing or designing the spectral discrimination filter.

  14. Gene Expression Profiling of Nonhuman Primates Exposed to Aerosolized Venezuelan Equine Encephalitis Virus

    DTIC Science & Technology

    2007-12-01

    Alphavirus of the family Togaviridae. VEEV is endemic throughout Central and South America, circulating in rodent and/or avian hosts and a mosquito...helpful for the prevention and emergency preparedness against an intentional aerosol ex- posure of the virus. VEEV will readily replicate in humans, as...host responses to other alphaviruses . Johnston et al. (2001), for example, investigated the infection of the Old World alpha- virus Sindbis in murine

  15. Evaluating CALIOP Nighttime Level 2 Aerosol Profile Retrievals Using a Global Transport Model Equipped with Two-Dimensional Variational Data Assimilation and Ground-Based Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Vaughan, M.; Winker, D. M.; Welton, E. J.; Prospero, J. M.; Shimizu, A.; Sugimoto, N.

    2011-12-01

    Launched in 2006, the Cloud Aerosol Lidar with Orthogonal Polarization instrument (CALIOP) flown aboard the NASA/CNES Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite has collected the first high-resolution global, inter-seasonal and multi-year measurements of aerosol structure. Profiles for aerosol particle extinction coefficient and column-integrated optical depth (AOD) are unique and highly synergistic satellite measurements, given the limitations of passive aerosol remote sensors from resolving information vertically. However, accurate value-added (Level 2.0) CALIOP aerosol products require comprehensive validation of retrieval techniques and calibration stability. Daytime Level 2.0 CALIOP AOD retrievals have been evaluated versus co-located NASA Moderate Resolution Imaging Spectroradiometer (MODIS-AQUA) data. To date, no corresponding investigation of nighttime retrieval performance has been conducted from a lack of requisite global nighttime validation datasets. In this paper, Version 3.01 CALIOP 5-km retrievals of nighttime 0.532 μm AOD from 2007 are evaluated versus corresponding 0.550 μm AOD analyses derived with the global 1° x 1° U. S. Navy Aerosol Analysis and Prediction System (NAAPS). Mean regional profiles of CALIOP nighttime 0.532 μm extinction coefficient are assessed versus NASA Micropulse Lidar Network and NIES Skynet Lidar Network measurements. NAAPS features a two-dimensional variational assimilation procedure for quality-assured MODIS and NASA Multi-angle Imaging Spectroradiometer (MISR) AOD products. Whereas NAAPS nighttime AOD datasets represent a nominal 12-hr forecast field, from lack of MODIS/MISR retrievals for assimilation in the dark sector of the model, evaluation of NAAPS 00-hr analysis and 24-hr forecast skill versus MODIS and NASA Aerosol Robotic Network (AERONET) indicates adequate stability for conducting this study. Corresponding daytime comparisons of CALIOP retrievals with NAAPS

  16. Vertical profile of elemental concentrations in aerosol particles in the Bermuda area during GCE/CASE/WATOX

    NASA Astrophysics Data System (ADS)

    Ennis, G.; Sievering, H.

    1990-06-01

    During the 1988 Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX) joint effort, research was conducted to determine elemental concentrations in atmospheric aerosol particles near Bermuda, to construct a three-level (15, 150, and 2600 m ASL) vertical profile of these concentrations, and to ascertain the source of the particles. Samples were collected by the NOAA King Air aircraft and NOAA ship Mt. Mitchell on July 24-28, 1988. Concentration determinations were made for 16 elements through the use of an X ray fluorescence instrument designed for analysis of small-mass samples. A layering effect was found; concentrations of several elements at 150 m were more than twice their respective concentrations at 15 m and 2600 m. Enrichment factors, V/Mn ratio, and correlations between concentrations suggest a Saharan mineral source, despite air mass back trajectories that show no direct continental input for up to 10 days prior to sample collection. Estimated total mineral aerosol concentrations at 15 m, 150 m, and 2600 m are 1.5, 4.1, and 2.1 μg m-3.

  17. Seasonal Variations in Titan's Stratosphere Observed with Cassini/CIRS: Temperature, Trace Molecular Gas and Aerosol Mixing Ratio Profiles

    NASA Technical Reports Server (NTRS)

    Vinatier, S.; Bezard, B.; Anderson, C. M.; Coustenis, A.; Teanby, N.

    2012-01-01

    Titan's northern spring equinox occurred in August 2009. General Circulation Models (e.g. Lebonnois et al., 2012) predict strong modifications of the global circulation in this period, with formation of two circulation cells instead of the pole-to-pole cell that occurred during northern winter. This winter single cell, which had its descending branch at the north pole, was at the origin of the enrichment of molecular abundances and high stratopause temperatures observed by Cassini/CIRS at high northern latitudes (e.g. Achterberg et al., 2011, Coustenis et al., 2010, Teanby et al., 2008, Vinatier et al., 2010). The predicted dynamical seasonal variations after the equinox have strong impact on the spatial distributions of trace gas, temperature and aerosol abundances. We will present here an analysis of CIRS limb-geometry datasets acquired in 2010 and 2011 that we used to monitor the seasonal evolution of the vertical profiles of temperature, molecular (C2H2, C2H6, HCN, ..) and aerosol abundances.

  18. Application of an Empirical Correction to Solar Backscattered Ultraviolet (SBUV) Ozone Profiles in the Troposphere and Lower Stratosphere: A Validation Study in Support of the Development of Daily Global Tropospheric Ozone Residual (TOR) Fields

    NASA Astrophysics Data System (ADS)

    Balok, A. E.; Fishman, J.

    2001-05-01

    A comparison of solar backscattered ultraviolet (SBUV) ozone profiles with ozonesonde measurements in the troposphere and lower stratosphere reveal the SBUV algorithm accurately captures the amount of integrated column ozone from 1013 hPa to 63 hPa but incorrectly distributes the amount of ozone in the lowest three layers (1013 hPa - 253 hPa, 253 hPa - 126 hPa, and 126 hPa - 63 hPa). A new global empirical correction technique using a 3-dimensional tropospheric ozone climatology derived from ozonesonde, aircraft, and surface observations is described to redistribute the ozone in the lowest three SBUV layers. The resultant derived stratospheric ozone column can then be used with concurrent total column ozone measurements from the Total Ozone Mapping Spectrometer (TOMS) to derive nearly global (50* N - 50* S) daily tropospheric ozone residual (TOR) maps. The empirically corrected SBUV Layers 1, 2, and 3 are then compared with coincident ozonesonde profiles from Hohenpeissenberg and Natal and show a considerable improvement in the bias between the SBUV Layers and ozonesonde measurements. Additional comparisons of empirically corrected SBUV Layers 1, 2, and 3 with profiles from 6 ozonesonde stations show the bias is reduced on average by 48% 34% and 41%for Layers 1, 2, and 3 respectively.

  19. MAX-DOAS measurements in southern China: 1. automated aerosol profile retrieval using oxygen dimers absorptions

    NASA Astrophysics Data System (ADS)

    Li, X.; Brauers, T.; Shao, M.; Garland, R. M.; Wagner, T.; Deutschmann, T.; Wahner, A.

    2008-09-01

    We performed MAX-DOAS measurements during the PRiDe-PRD2006 campaign in the Pearl River Delta region 50 km north of Guangzhou, China, for 4 weeks in June 2006. We used an instrument which simultaneously sampled the wavelength range from 292 nm to 443 nm at 7 different elevation angles between 3° and 90°. Here we show that the O4 (O2 dimer) absorption at 360 nm can be used to retrieve the aerosol extinction and the height of the boundary layer. A comparison with simultaneously recorded, ground based nephelometer data shows an excellent agreement.

  20. HARLIE 3-D Aerosol Backscatter and Wind Profile Measurements During Recent Field Experiments: Background Noise Reduction with a Fabry-Perot Etalon Filter in the HARLIE System

    NASA Technical Reports Server (NTRS)

    Lee, Sangwoo; Miller, David O.; Schwemmer, Geary; Wilkerson, Thomas D.; Andrus, Ionio; Egbert, Cameron; Anderson, Mark; Starr, David OC. (Technical Monitor)

    2002-01-01

    Background noise reduction of War signals is one of the most important factors in achieving better signal to noise ratio and precise atmospheric data from Mar measurements. Fahey Perot etalons have been used in several lidar systems as narrow band pass filters in the reduction of scattered sunlight. An slalom with spectral bandwidth, (Delta)v=0.23/cm, free spectral range, FSR=6.7/cm, and diameter, d=24mm was installed in a fiber coupled box which included a 500 pm bandwidth interference Filter. The slalom box couples the telescope and detector with 200 pm core fibers and 21 mm focal length collimators. The angular magnification is M=48. The etalon box was inserted into the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) system and tested during the HARGLO-2 intercomparison campaign conducted in November 2001 at Wallops Island, Virginia. This paper presents the preliminary test results of the slalom and a complete analysis will be presented at the conference.

  1. Airborne water vapor DIAL system and measurements of water and aerosol profiles

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.

    1991-01-01

    The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.

  2. Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations.

    PubMed

    Marais, Willem J; Holz, Robert E; Hu, Yu Hen; Kuehn, Ralph E; Eloranta, Edwin E; Willett, Rebecca M

    2016-10-10

    Atmospheric lidar observations provide a unique capability to directly observe the vertical column of cloud and aerosol scattering properties. Detector and solar-background noise, however, hinder the ability of lidar systems to provide reliable backscatter and extinction cross-section estimates. Standard methods for solving this inverse problem are most effective with high signal-to-noise ratio observations that are only available at low resolution in uniform scenes. This paper describes a novel method for solving the inverse problem with high-resolution, lower signal-to-noise ratio observations that are effective in non-uniform scenes. The novelty is twofold. First, the inferences of the backscatter and extinction are applied to images, whereas current lidar algorithms only use the information content of single profiles. Hence, the latent spatial and temporal information in noisy images are utilized to infer the cross-sections. Second, the noise associated with photon-counting lidar observations can be modeled using a Poisson distribution, and state-of-the-art tools for solving Poisson inverse problems are adapted to the atmospheric lidar problem. It is demonstrated through photon-counting high spectral resolution lidar (HSRL) simulations that the proposed algorithm yields inverted backscatter and extinction cross-sections (per unit volume) with smaller mean squared error values at higher spatial and temporal resolutions, compared to the standard approach. Two case studies of real experimental data are also provided where the proposed algorithm is applied on HSRL observations and the inverted backscatter and extinction cross-sections are compared against the standard approach.

  3. Lidar observations and characterization of biomass burning aerosols over Sofia: Long-range transport of forest wildfire smoke

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Dreischuh, Tanja N.; Toncheva, Eleonora N.; Stoyanov, Dimitar V.

    2013-03-01

    Results of remote measurements and characterization of biomass burning aerosols observed in the low troposphere over Sofia, Bulgaria, are presented and discussed. Measurements are accomplished by using two-wavelength elastic-scatter lidar, operating at 1064 nm and 532 nm. The aerosols are identified as to be consisted mainly of aged smoke of wildfires raging in the USA in the last third of July 2012. The long-range transport of the smoke aerosols, taking place from 24 July to 6 August 2012, is determined to be driven by the Northern hemisphere Polar jet stream. Spatial distribution of the observed aerosols is displayed by retrieving averaged vertical profiles of the aerosol backscatter coefficients. The temporal evolution of the aerosol layers during the period of measurement is shown by height-time coordinate colormaps of range-corrected lidar data. In order to characterize qualitatively the size range of the aerosol particles, the vertical profile of the backscatter-related Ångström exponent (BAE) is also retrieved. As an accent of the work, distributions of BAE corresponding to distinguished aerosol layers, as well as the overall one, are obtained and analyzed, representing qualitative counterparts of the real particle size distributions. In the case of the fire smoke layer, BAE values vary in the range 1.0-1.3, indicating processes of considerable aggregation of the finest particle size mods during the aging period. The reliability of the results and conclusions concerning the fire smoke BAE distributions and their evolution are indirectly validated by the obtained typical distribution ranges of the observed urban- and water aerosols.

  4. North Atlantic Aerosol Radiative Impacts Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, Robert W.; Schmid, B.; Livingston, J. M.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net short-wave flux at the tropopause by combining satellite-derived aerosol optical depth (AOD) maps with model aerosol properties determined via closure analyses in TARFOX and ACE 2. We exclude African dust, primarily by restricting latitudes to 25-60 N. The analyses use in situ aerosol composition measurements and air- and ship-borne sun-photometer measurements of AOD spectra. The aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. Its midvisible single-scattering albedo is 0.9. which is in the range obtained from in situ measurements of scattering and absorption in both TARFOX and ACE 2. Combining satellite-derived AOD maps with the aerosol model yields maps of 24-hour average net radiative flux changes. For simultaneous AVHRR, radiance measurements exceeded the sunphotometer AODs by about 0.04. However. shipboard sunphotometer and AVHRR AODs agreed Within 0.02 for data acquired during satellite overflights on two other days. We discuss attempts to demonstrate column closure within the MBL by comparing shipboard sunphotometer AODs and values calculated from simultaneous shipboard in-situ aerosol size distribution measurements. These comparisons were mostly unsuccessful, but they illustrate the difficulties inherent in this type of closure analysis. Specifically, AODs derived from near-surface in-situ size distribution measurements are extremely sensitive to the assumed hygroscopic growth model that itself requires an assumption of particle composition as a function of height and size, to the radiosonde-measured relative humidity, and to the vertical profile of particle number. We investigate further the effects of hygroscopic particle growth within the MBL by using shipboard lidar aerosol backscatter profiles together with the sunphotometer AOD.

  5. Investigation of wintertime cold-air pools and aerosol layers in the Salt Lake Valley using a lidar ceilometer

    NASA Astrophysics Data System (ADS)

    Young, Joseph Swyler

    This thesis investigates the utility of lidar ceilometers, a type of aerosol lidar, in improving the understanding of meteorology and air quality in persistent wintertime stable boundary layers, or cold-air pools, that form in urbanized valley and basin topography. This thesis reviews the scientific literature to survey the present knowledge of persistent cold-air pools, the operating principles of lidar ceilometers, and their demonstrated utility in meteorological investigations. Lidar ceilometer data from the Persistent Cold-Air Pool Study (PCAPS) are then used with meteorological and air quality data from other in situ and remote sensing equipment to investigate cold-air pools that formed in Utah's Salt Lake Valley during the winter of 2010-2011. The lidar ceilometer is shown to accurately measure aerosol layer depth and aerosol loading, when compared to visual observations. A linear relationship is found between low-level lidar backscatter and surface particulate measurements. Convective boundary layer lidar analysis techniques applied to cold-air pool ceilometer profiles can detect useful layer characteristics. Fine-scale waves are observed and analyzed within the aerosol layer, with emphasis on Kelvin-Helmholz waves. Ceilometer aerosol backscatter profiles are analyzed to quantify and describe mixing processes in persistent cold-air pools. Overlays of other remote and in-situ observations are combined with ceilometer particle backscatter to describe specific events during PCAPS. This analysis describes the relationship between the aerosol layer and the valley inversion as well as interactions with large-scale meteorology. The ceilometer observations of hydrometers are used to quantify cloudiness and precipitation during the project, observing that 50% of hours when a PCAP was present had clouds or precipitation below 5 km above ground level (AGL). Then, combining an objective technique for determining hourly aerosol layer depths and correcting this

  6. Critical Evaluation of 0-30 km Profile Information in Ground-Based Zenith-Sky and Satellite-Measured Backscattered UV Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan; Petropavlovskikh, Irina; Deluishi, John; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We now have several decades of experience in deriving vertical ozone profiles from the measurements of diffuse ultraviolet radiation by both ground and satellite-based instruments using Umkehr and BUV techniques. Continuing technological advances are pushing the state-of-the-art of these measurements to high spectral resolution and broader wavelength coverage. These modern instruments include the ground-based Brewer and satellite-based Global Ozone Monitoring Experiment (GOME) instruments, as well as advanced instruments being developed by ESA(SCIAMACHY), Netherlands(OMI) and Japan(ODUS). However, one of the issues that remains unresolved is the 0-30 km ozone profile information retrievable from these measurements. Though it is commonly believed that both the Umkehr and the satellite-based BUV techniques have very limited profile information below 30 km, there are those who argue that the data from these instruments should continue to be reported in this altitude range for they compare well with ozonesondes and hence there is useful scientific information. Others claim that the limitations of the Umkehr and BUV techniques are largely due to their low spectral resolution, and that the profile information below 30 km can be greatly improved by going to high spectral resolution instruments, such as Brewer and GOME. The purpose of this paper is to provide a critical evaluation of the 0-30 km ozone profile information in the various UV remote sensing techniques. We use a database of individual ozone profiles created using ozonesondes and SAGE and 4D ozone fields generated by data assimilation techniques to simulate radiances measured by the various techniques. We then apply a common inversion approach to all the methods to systematically examine how much profile information is available simply from the knowledge of total ozone, how much additional profile information is added by the traditional Dobson Umkehr and satellite buv techniques, and how much better one can do

  7. Aerosol profiling with lidar in the Amazon Basin during the wet and dry season

    NASA Astrophysics Data System (ADS)

    Baars, H.; Ansmann, A.; Althausen, D.; Engelmann, R.; Heese, B.; Müller, D.; Artaxo, P.; Paixao, M.; Pauliquevis, T.; Souza, R.

    2012-11-01

    For the first time, multiwavelength polarization Raman lidar observations of optical and microphysical particle properties over the Amazon Basin are presented. The fully automated advanced Raman lidar was deployed 60 km north of Manaus, Brazil (2.5°S, 60°W) in the Amazon rain forest from January to November 2008. The measurements thus cover both the wet season (Dec-June) and the dry or burning season (July-Nov). Two cases studies of young and aged smoke plumes are discussed in terms of spectrally resolved optical properties (355, 532, and 1064 nm) and further lidar products such as particle effective radius and single-scattering albedo. These measurement examples confirm that biomass burning aerosols show a broad spectrum of optical, microphysical, and chemical properties. The statistical analysis of the entire measurement period revealed strong differences between the pristine wet and the polluted dry season. African smoke and dust advection frequently interrupt the pristine phases during the wet season. Compared to pristine wet season conditions, the particle scattering coefficients in the lowermost 2 km of the atmosphere were found to be enhanced, on average, by a factor of 4 during periods of African aerosol intrusion and by a factor of 6 during the dry (burning) season. Under pristine conditions, the particle extinction coefficients and optical depth for 532 nm wavelength were frequently as low as 10-30 Mm-1 and <0.05, respectively. During the dry season, biomass burning smoke plumes reached to 3-5 km height and caused a mean optical depth at 532 nm of 0.26. On average during that season, particle extinction coefficients (532 nm) were of the order of 100 Mm-1 in the main pollution layer (up to 2 km height). Ångström exponents were mainly between 1.0 and 1.5, and the majority of the observed lidar ratios were between 50-80 sr.

  8. Enhancement of aerosol characterization using synergy of lidar and sun - photometer coincident observations: the GARRLiC algorithm

    NASA Astrophysics Data System (ADS)

    Lopatin, A.; Dubovik, O.; Chaikovsky, A.; Goloub, Ph.; Lapyonok, T.; Tanré, D.; Litvinov, P.

    2013-03-01

    Currently most of experiments pursuing comprehensive characterization of atmosphere include coordinated observations by both lidar and radiometers in order to obtain important complimentary information about aerosol properties. The passive observations by radiometers from ground are mostly sensitive to the properties of aerosol in total atmospheric column and have very limited sensitivity to vertical structure of the atmosphere. Such observations are commonly used for measuring aerosol optical thickness and deriving the information about aerosol microphysics including aerosol particles shape, size distribution, and complex refractive index. In a contrast, lidar observations of atmospheric responses from different altitudes to laser pulses emitted from ground are designed to provide accurate profiling of the atmospheric properties. The interpretation of the lidar observation generally relies on some assumptions about aerosol type and loading. Here we present the GARRLiC algorithm (Generalized Aerosol Retrieval from Radiometer and Lidar Combined data) that simultaneously inverts co-incident lidar and radiometer observations and derives a united set of aerosol parameters. Such synergetic retrieval is expected to result in additional enhancements in derived aerosol properties because the backscattering observations by lidar add some sensitivity to the columnar properties of aerosol, while radiometric observations provide sufficient constraints on aerosol type and loading that generally are missing in lidar signals. GARRLiC is based on AERONET algorithm for inverting combined observations by radiometer and multi-wavelength elastic lidar observations. It is expected that spectral changes of backscattering signal obtained by multi-wavelength lidar at different altitudes provide some sensitivity to the vertical variability of aerosol particle sizes. In order to benefit from this sensitivity the algorithm is set to derive not only the vertical profile of total aerosol

  9. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions.

  10. Development of a global model for atmospheric backscatter at CO2 wavelengths

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Wang, P. H.; Farrukh, U.; Deepak, A.; Patterson, E. M.

    1986-01-01

    The variation of the aerosol backscattering at 10.6 micrometers within the free troposphere was investigated and a model to describe this variation was developed. The analysis combines theoretical modeling with the results contained within three independent data sets. The data sets used were obtained by the SAGE I/SAM II satellite experiments, the GAMETAG flight series, and by direct backscatter measurements. The theoretical work includes use of a bimodal, two component aerosol model, and the study of the microphysical and associated optical changes occurring within an aerosol plume. A consistent picture is obtained that describes the variation of the aerosol backscattering function in the free troposphere with altitude, latitude, and season.

  11. Development of global model for atmospheric backscatter at CO2 wavelengths

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Wang, P. H.; Farrukh, U.; Deepak, A.; Patterson, E. M.

    1985-01-01

    The improvement of an understanding of the variation of the aerosol backscattering at 10.6 micron within the free troposphere and the development model to describe this was undertaken. The analysis combines theoretical modeling with the results contained within three independent data sets. The data sets are obtained by the SAGE I/SAM II satellite experiments, the GAMETAG flight series and by direct backscatter measurements. The theoretical work includes use of a bimodal, two component aerosol model, and the study of the microphysical and associated optical changes occurring within an aerosol plume. A consistent picture is obtained, which describes the variation of the aerosol backscattering function in the free troposphere with altitude, latitude, and season. Most data are available and greatest consistency is found inside the Northern Hemisphere.

  12. Saharan dust event over Bucharest observed by an elastic backscatter lidar

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Nicolae, Doina; Nemuc, Anca; Belegante, Livio; Carstea, Emil

    2007-10-01

    A lidar measurements campaign took in Magurele Platform, southwestern part of Bucharest, during on June 25th, 26th and 28th of 2007 and was intended for aerosol loading characteristics over the urban area. An event of long-range Saharan dust transport to Eastern Europe, Romania) observed during this time is presented in here. We have used an elastic backscattering lidar, based on an Nd:YAG laser, at 1064nm sounding wavelength. It can detect in real time aerosols density profiles up to 10 Km high with a spatial resolution of 12 m. Origin of lidar sampled air masses arriving at various heights over Bucharest have been determined by the analytical back-trajectories from NOAA HYSPLIT model. Saharan dust layers reached the southern part of Romania predominantly by cyclonic circulation due to the strong through observed at all the levels from a cyclonic system located in northwestern part of Africa. Analysis of cloud cover and dust load was estimated by the Dust Regional Atmospheric Modeling (Dream model). The dust event presented highlights how the synergy of Lidar data together with 3-D back trajectories analysis and model calculations can improve our ability to determine accurately the source of high aerosol loading.

  13. Influence of atmospheric parameters on vertical profiles and horizontal transport of aerosols generated in the surf zone

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Tedeschi, G.; Van Eijk, A. M. J.; Piazzola, J.

    2013-10-01

    The vertical and horizontal transport of aerosols generated over the surf zone is discussed. Experimental data were collected during the second campaign of the Surf Zone Aerosol Experiment that took place in Duck NC (USA) in November 2007. The Empirical Orthogonal Function (EOF) method was used to analyze the vertical concentration gradients, and allowed separating the surf aerosols from aerosols advected from elsewhere. The numerical Marine Aerosol Concentration Model (MACMod) supported the analysis by confirming that the concentration gradients are more pronounced under stable conditions and that aerosol plumes are then more confined to the surface. The model also confirmed the experimental observations made during two boat runs along the offshore wind vector that surf-generated aerosols are efficiently advected out to sea over several tens of kilometers.

  14. LIVAS: a 3-D multi-wavelength aerosol/cloud climatology based on CALIPSO and EARLINET

    NASA Astrophysics Data System (ADS)

    Amiridis, V.; Marinou, E.; Tsekeri, A.; Wandinger, U.; Schwarz, A.; Giannakaki, E.; Mamouri, R.; Kokkalis, P.; Binietoglou, I.; Solomos, S.; Herekakis, T.; Kazadzis, S.; Gerasopoulos, E.; Balis, D.; Papayannis, A.; Kontoes, C.; Kourtidis, K.; Papagiannopoulos, N.; Mona, L.; Pappalardo, G.; Le Rille, O.; Ansmann, A.

    2015-01-01

    We present LIVAS, a 3-dimentional multi-wavelength global aerosol and cloud optical climatology, optimized to be used for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. LIVAS database provides averaged profiles of aerosol optical properties for the potential space-borne laser operating wavelengths of 355, 532, 1064, 1570 and 2050 nm and of cloud optical properties at the wavelength of 532 nm. The global climatology is based on CALIPSO observations at 532 and 1064 nm and on aerosol-type-dependent spectral conversion factors for backscatter and extinction, derived from EARLINET ground-based measurements for the UV and scattering calculations for the IR wavelengths, using a combination of input data from AERONET, suitable aerosol models and recent literature. The required spectral conversion factors are calculated for each of the CALIPSO aerosol types and are applied to CALIPSO extinction and backscatter data correspondingly to the aerosol type retrieved by the CALIPSO aerosol classification scheme. A cloud climatology based on CALIPSO measurements at 532 nm is also provided, neglecting wavelength conversion due to approximately neutral scattering behavior of clouds along the spectral range of LIVAS. Averages of particle linear depolarization ratio profiles at 532 nm are provided as well. Finally, vertical distributions for a set of selected scenes of specific atmospheric phenomena (e.g., dust outbreaks, volcanic eruptions, wild fires, polar stratospheric clouds) are analyzed and spectrally converted so as to be used as case studies for space-borne lidar performance assessments. The final global climatology includes 4-year (1 January 2008-31 December 2011) time-averaged CALIPSO data on a uniform grid of 1×1 degree with the original high vertical resolution of CALIPSO in order to ensure realistic simulations of the atmospheric variability in lidar end-to-end simulations.

  15. Observations of Stratospheric Aerosols over Sondrestrom, Greenland Injected by Russia's Sarychev Peak Volcano

    NASA Astrophysics Data System (ADS)

    Neely, R. R.; Thayer, J. P.; Hayman, M.; Barnes, J. E.; O'Neill, M.

    2009-12-01

    Volcanic stratospheric aerosols affect global climate by influencing the radiative budget and chemistry of the lower stratosphere. Presently the stratospheric aerosol levels are in a background state. This provides the opportunity for studies of stratospheric injections by small volcanic eruptions. A thin stratospheric aerosol layer was identified during the month of July, 2009 using the Arctic Lidar Technology (ARCLITE) System operated at Sondrestrom. Trajectory analysis points to the source of the aerosols being the Sarychev Peak volcano in the Russian Kuril Islands. Latitudinal observations of the layer were made by the NOAA/Earth System Research Laboratory/Global Monitoring Division’s (GMD) stratospheric lidar network (Boulder,CO; Mauna Loa, HI; and Pago Pago, American Samoa). These observations show a significant increase in aerosol backscatter levels compared to the low background levels observed prior the eruption. Profiles derived from the from the ARCLITE observations include depolarization, backscatter and temperature which allow for a characterization of the layer on a daily basis. The ARCLITE observations also provide a time series of measurements showing the evolution of the aerosol layer over the month after the injection within the context of the less frequent profiles provided by the global GMD network. From the optical qualities observed, the exact nature of the aerosols and their role in the radiative budget and stratospheric chemistry are elucidated. These types of observations are unique to ground based lidar systems like ARCLITE due to the optically thin qualities of the layer which prevent detection in the visible band by nadir looking satellites. The long-term effect of this injection of sulfur dioxide into the stratosphere may influence the formation of type 1b polar stratospheric clouds during the coming winter.

  16. A method for removing arm backscatter from EPID images

    SciTech Connect

    King, Brian W.; Greer, Peter B.

    2013-07-15

    Purpose: To develop a method for removing the support arm backscatter from images acquired using current Varian electronic portal imaging devices (EPIDs).Methods: The effect of arm backscatter on EPID images was modeled using a kernel convolution method. The parameters of the model were optimized by comparing on-arm images to off-arm images. The model was used to develop a method to remove the effect of backscatter from measured EPID images. The performance of the backscatter removal method was tested by comparing backscatter corrected on-arm images to measured off-arm images for 17 rectangular fields of different sizes and locations on the imager. The method was also tested using on- and off-arm images from 42 intensity modulated radiotherapy (IMRT) fields.Results: Images generated by the backscatter removal method gave consistently better agreement with off-arm images than images without backscatter correction. For the 17 rectangular fields studied, the root mean square difference of in-plane profiles compared to off-arm profiles was reduced from 1.19% (standard deviation 0.59%) on average without backscatter removal to 0.38% (standard deviation 0.18%) when using the backscatter removal method. When comparing to the off-arm images from the 42 IMRT fields, the mean {gamma} and percentage of pixels with {gamma} < 1 were improved by the backscatter removal method in all but one of the images studied. The mean {gamma} value (1%, 1 mm) for the IMRT fields studied was reduced from 0.80 to 0.57 by using the backscatter removal method, while the mean {gamma} pass rate was increased from 72.2% to 84.6%.Conclusions: A backscatter removal method has been developed to estimate the image acquired by the EPID without any arm backscatter from an image acquired in the presence of arm backscatter. The method has been shown to produce consistently reliable results for a wide range of field sizes and jaw configurations.

  17. THERMAL NEUTRON BACKSCATTER IMAGING.

    SciTech Connect

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  18. A compact mobile ozone lidar for atmospheric ozone and aerosol profiling

    NASA Astrophysics Data System (ADS)

    De Young, Russell; Carrion, William; Pliutau, Denis

    2014-10-01

    A compact mobile differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver with associated Licel photon counting and analog channels. The laser transmitter consists of a Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. The system has been configured to enable mobile operation from a trailer and was deployed to Denver, CO July 15-August 15, 2014 supporting the DISCOVER-AQ campaign. Ozone curtain plots and the resulting science are presented.

  19. A Compact Mobile Ozone Lidar for Atmospheric Ozone and Aerosol Profiling

    NASA Technical Reports Server (NTRS)

    De Young, Russell; Carrion, William; Pliutau, Denis

    2014-01-01

    A compact mobile differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver with associated Licel photon counting and analog channels. The laser transmitter consist of a Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. The system has been configured to enable mobile operation from a trailer and was deployed to Denver, CO July 15-August 15, 2014 supporting the DISCOVER-AQ campaign. Ozone curtain plots and the resulting science are presented.

  20. A statistical inference approach for the retrieval of the atmospheric ozone profile from simulated satellite measurements of solar backscattered ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Gordon, C. L.; Inguva, R.; Serafino, G. N.; Barnes, R. A.

    1994-01-01

    NASA's Mission to Planet Earth (MTPE) will address important interdisciplinary and environmental issues such as global warming, ozone depletion, deforestation, acid rain, and the like with its long term satellite observations of the Earth and with its comprehensive Data and Information System. Extensive sets of satellite observations supporting MTPE will be provided by the Earth Observing System (EOS), while more specific process related observations will be provided by smaller Earth Probes. MTPE will use data from ground and airborne scientific investigations to supplement and validate the global observations obtained from satellite imagery, while the EOS satellites will support interdisciplinary research and model development. This is important for understanding the processes that control the global environment and for improving the prediction of events. In this paper we illustrate the potential for powerful artificial intelligence (AI) techniques when used in the analysis of the formidable problems that exist in the NASA Earth Science programs and of those to be encountered in the future MTPE and EOS programs. These techniques, based on the logical and probabilistic reasoning aspects of plausible inference, strongly emphasize the synergetic relation between data and information. As such, they are ideally suited for the analysis of the massive data streams to be provided by both MTPE and EOS. To demonstrate this, we address both the satellite imagery and model enhancement issues for the problem of ozone profile retrieval through a method based on plausible scientific inferencing. Since in the retrieval problem, the atmospheric ozone profile that is consistent with a given set of measured radiances may not be unique, an optimum statistical method is used to estimate a 'best' profile solution from the radiances and from additional a priori information.

  1. Assessment of the CALIPSO Lidar 532 nm Attenuated Backscatter Calibration Using the NASA LaRC Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Rogers, Raymond R.; Hostetler, Chris A.; Hair, Johnathan W.; Ferrare, Richard A.; Liu, Zhaoyan; Obland, Michael D.; Harper, David B.; Cook, Anthony L.; Powell, Kathleen A.; Vaughan, Mark A.; Winker, David M.

    2011-01-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft has provided global, high-resolution vertical profiles of aerosols and clouds since it became operational on 13 June 2006. On 14 June 2006, the NASA Langley Research Center (LaRC) High Spectral Resolution Lidar (HSRL) was deployed aboard the NASA Langley B-200 aircraft for the first of a series of 86 underflights of the CALIPSO satellite to provide validation measurements for the CALIOP data products. To better assess the range of conditions under which CALIOP data products are produced, these validation flights were conducted under both daytime and nighttime lighting conditions, in multiple seasons, and over a large range of latitudes and aerosol and cloud conditions. This paper presents a quantitative assessment of the CALIOP 532 nm calibration (through the 532 nm total attenuated backscatter) using an internally calibrated airborne HSRL underflight data and is the most extensive study of CALIOP 532 nm calibration. Results show that average HSRL and CALIOP 532 nm total attenuated backscatter agree on average within 2.7% +/- 2.1% (CALIOP lower) at night and within 2.9 % +/- 3.9% (CALIOP lower) during the day., demonstrating the accuracy of the CALIOP 532 nm calibration algorithms. Additionally, comparisons with HSRL show consistency of the CALIOP calibration before and after the laser switch in 2009 as well as improvements in the daytime version 3 calibration scheme compared with the version 2 calibration scheme. Potential systematic uncertainties in the methodology relevant to validating satellite lidar measurements with an airborne lidar system are discussed and found to be less than 3.7% for this validation effort with HSRL. Results from this study are also compared to those from prior assessments of CALIOP calibration and attenuated backscatter.

  2. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  3. Variability of aerosol vertical distribution in the Sahel

    NASA Astrophysics Data System (ADS)

    Cavalieri, O.; Cairo, F.; Fierli, F.; di Donfrancesco, G.; Snels, M.; Viterbini, M.; Cardillo, F.; Chatenet, B.; Formenti, P.; Marticorena, B.; Rajot, J. L.

    2010-12-01

    months, the entire Sahelian region is under the influence of Saharan dust aerosols: the air masses in low levels arrive from West Africa crossing the Sahara desert or from the Southern Hemisphere crossing the Guinea Gulf while in the upper layers air masses still originate from North, North-East. The maximum of the desert dust activity is observed in this period which is characterized by large AOD (above 0.2) and backscattering values. It also corresponds to a maximum in the extension of the aerosol vertical distribution (up to 6 km of altitude). In correspondence, a progressive cleaning up of the lowermost layers of the atmosphere is occurring, especially evident in the Banizoumbou and Cinzana sites. Summer is in fact characterized by extensive and fast convective phenomena. Lidar profiles show at times large dust events loading the atmosphere with aerosol from the ground up to 6 km of altitude. These events are characterized by large total attenuated backscattering values, and alternate with very clear profiles, sometimes separated by only a few hours, indicative of fast removal processes occurring, likely due to intense convective and rain activity. The inter-annual variability in the three year monitoring period is not very significant. An analysis of the aerosol transport pathways, aiming at detecting the main source regions, revealed that air originated from the Saharan desert is present all year long and it is observed in the lower levels of the atmosphere at the beginning and at the end of the year. In the central part of the year it extends upward and the lower levels are less affected by air masses from Saharan desert when the monsoon flow carries air from the Guinea Gulf and the Southern Hemisphere inland.

  4. Aerosol/Cloud Measurements Using Coherent Wind Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Boquet, Matthieu; Cariou, Jean-Pierre; Sauvage, Laurent; Parmentier, Rémy

    2016-06-01

    The accurate localization and characterization of aerosol and cloud layers is crucial for climate studies (aerosol indirect effect), meteorology (Planetary Boundary Layer PBL height), site monitoring (industrial emissions, mining,…) and natural hazards (thunderstorms, volcanic eruptions). LEOSPHERE has recently developed aerosol/cloud detection and characterization on WINDCUBE long range Coherent Wind Doppler Lidars (CWDL). These new features combine wind and backscatter intensity informations (Carrier-to-Noise Ratio CNR) in order to detect (aerosol/cloud base and top, PBL height) and to characterize atmospheric structures (attenuated backscatter, depolarization ratio). For each aerosol/cloud functionality the method is described, limitations are discussed and examples are given to illustrate the performances.

  5. Transcriptional Profiling of the Circulating Immune Response to Lassa Virus in an Aerosol Model of Exposure

    PubMed Central

    Honko, Anna N.; Garamszegi, Sara; Caballero, Ignacio S.; Johnson, Joshua C.; Mucker, Eric M.; Trefry, John C.; Hensley, Lisa E.; Connor, John H.

    2013-01-01

    Lassa virus (LASV) is a significant human pathogen that is endemic to several countries in West Africa. Infection with LASV leads to the development of hemorrhagic fever in a significant number of cases, and it is estimated that thousands die each year from the disease. Little is known about the complex immune mechanisms governing the response to LASV or the genetic determinants of susceptibility and resistance to infection. In the study presented here, we have used a whole-genome, microarray-based approach to determine the temporal host response in the peripheral blood mononuclear cells (PBMCs) of non-human primates (NHP) following aerosol exposure to LASV. Sequential sampling over the entire disease course showed that there are strong transcriptional changes of the immune response to LASV exposure, including the early induction of interferon-responsive genes and Toll-like receptor signaling pathways. However, this increase in early innate responses was coupled with a lack of pro-inflammatory cytokine response in LASV exposed NHPs. There was a distinct lack of cytokines such as IL1β and IL23α, while immunosuppressive cytokines such as IL27 and IL6 were upregulated. Comparison of IRF/STAT1-stimulated gene expression with the viral load in LASV exposed NHPs suggests that mRNA expression significantly precedes viremia, and thus might be used for early diagnostics of the disease. Our results provide a transcriptomic survey of the circulating immune response to hemorrhagic LASV exposure and provide a foundation for biomarker identification to allow clinical diagnosis of LASV infection through analysis of the host response. PMID:23638192

  6. Transcriptional profiling of the circulating immune response to lassa virus in an aerosol model of exposure.

    PubMed

    Malhotra, Shikha; Yen, Judy Y; Honko, Anna N; Garamszegi, Sara; Caballero, Ignacio S; Johnson, Joshua C; Mucker, Eric M; Trefry, John C; Hensley, Lisa E; Connor, John H

    2013-01-01

    Lassa virus (LASV) is a significant human pathogen that is endemic to several countries in West Africa. Infection with LASV leads to the development of hemorrhagic fever in a significant number of cases, and it is estimated that thousands die each year from the disease. Little is known about the complex immune mechanisms governing the response to LASV or the genetic determinants of susceptibility and resistance to infection. In the study presented here, we have used a whole-genome, microarray-based approach to determine the temporal host response in the peripheral blood mononuclear cells (PBMCs) of non-human primates (NHP) following aerosol exposure to LASV. Sequential sampling over the entire disease course showed that there are strong transcriptional changes of the immune response to LASV exposure, including the early induction of interferon-responsive genes and Toll-like receptor signaling pathways. However, this increase in early innate responses was coupled with a lack of pro-inflammatory cytokine response in LASV exposed NHPs. There was a distinct lack of cytokines such as IL1β and IL23α, while immunosuppressive cytokines such as IL27 and IL6 were upregulated. Comparison of IRF/STAT1-stimulated gene expression with the viral load in LASV exposed NHPs suggests that mRNA expression significantly precedes viremia, and thus might be used for early diagnostics of the disease. Our results provide a transcriptomic survey of the circulating immune response to hemorrhagic LASV exposure and provide a foundation for biomarker identification to allow clinical diagnosis of LASV infection through analysis of the host response.

  7. Aerosol optical properties from multiwavelength lidar measurements in Romania

    NASA Astrophysics Data System (ADS)

    Nicolae, Doina; Talianu, Camelia; Carstea, Emil; Nemuc, Anca

    2009-09-01

    Vertically resolved profiles of optical properties of aerosols were measured using a multi-wavelength lidar system-RALI, set up at the scientific research center in Magurele, Bucharest area (44.35 N latitude, 26.03 E longitude) during 2008. The use of multiple laser wavelengths has enabled us to observe significant variations in backscatter profiles depending on the particle origins. An air mass backward trajectory analysis, using Hysplit-4, was carried out to track the aerosol plumes. Aerosols can serve as valuable tracers of air motion in the planetary boundary layer (PBL). The height of layers in the lower troposphere from lidar signal was calculated using the gradient method- minima of the first derivative. The Richardson number method was used to estimate PBL height from the radio-soundings. We have used pressure, temperature and dew point profiles as well as the wind direction profiles from NOAA (National Oceanic and Atmospheric Administration) data base. The results were consistent with the ones obtained from LIDAR.

  8. Estimating Mixing Heights Using Microwave Temperature Profiler

    NASA Technical Reports Server (NTRS)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  9. Pi-MAX: a new parametrized algorithm to retrieve vertical profiles of trace gases and aerosols from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Remmers, Julia; Beirle, Steffen; Doerner, Steffen; Wagner, Thomas

    2013-04-01

    Multi-Axis (MAX-) DOAS instruments observe scattered sunlight under various mostly slant elevation angles. From such observations information on tropospheric profiles of trace gases and aerosols can be retrieved. MAX-DOAS observations can be used to quantify emissions and to study chemical processes in the atmosphere. Measuring (horizontally and vertically) averaged concentrations the technique can be used as a link between in-situ and satellite measurements. Thus satellite observations of tropospheric trace gases can be validated. IMAX (Parametrized Inversion for MAX-DOAS measurements) is a parametrized method to retrieve vertical profiles of trace gases (such as H2O, NO2, HCHO, CHOCHO) and aerosols. No online calculations are necessary, since look-up tables (LUT) calculated with a Monte Carlo based radiative Transport Model are used. In this manner it is user-friendly, easy to distribute and applicable to every measurement location. The here shown measurements took place in the Maldives in March, 2012, during the CARDEX campaign. Simultaneous sun photometry-, Lidar- and UAV-measurements provide the possibility to validate the new algorithm. We present time series of profiles of trace gas concentrations and aerosol extinction We discuss the effects of clouds on the retrieved results.

  10. Aerosol content survey by mini N 2 -Raman lidar: Application to local and long-range transport aerosols

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Chazette, Patrick; Lardier, Melody; Sauvage, Laurent

    2011-12-01

    This study shows an aerosol content survey in the low and middle troposphere over Paris with a compact and light Nitrogen-Raman lidar which has been recently developed by the Commissariat à l'Energie Atomique (CEA) and LEOSPHERE company. This eye-safe and wide field-of-view system (full overlap between 150 and 200 m) is particularly well-adapted to air pollution survey in the vicinity of Megalopolis. Extinction-to-backscatter coefficient (so-called Lidar Ratio LR) profiles obtained with a Tikhonov regularization scheme are presented for long-range transport events of aerosols (volcanic ash plume LR = 48 ± 10 sr, and desert dust, LR = 45 ± 8 sr) which may contribute to the local load of aerosols emitted by traffic and industries in Megalopolis. Due to an insufficient signal to noise ratio (SNR < 30), a new dichotomous algorithm has been developed to perform daytime inversions every hour which is in accordance with the typical time evolution of aerosols within the planetary boundary layer. This inversion scheme is based on the constraint of the elastic channel with the aerosol optical depth (between typically 0.2 and 0.7 km) determined with the N 2-Raman channel and thus only gives access to an equivalent LR between 0.2 and 0.7 km with a relative uncertainty lower than 15%. This approach has been applied to retrieve diurnal cycle of LR for polluted continental aerosols over Paris and is compared with Tikhonov regularization applied during the night. We found a mean value of 85 ± 18 sr for polluted continental aerosols which is in agreement with other studies performed around the Paris urban area. Results for aerosol optical properties are presented and the error sources are discussed for each approach.

  11. Multi-year Cluster Analyses of CALIPSO Aerosol Layer Data

    NASA Astrophysics Data System (ADS)

    Omar, A. H.; Sumner, A. J.; Vaughan, M.

    2013-12-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a collaboration between NASA and Centre National d'Études Spatiales (CNES), was launched in April 2006 to provide vertically resolved measurements of cloud and aerosol distributions. The primary instrument on the CALIPSO satellite is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a near-nadir viewing two-wavelength polarization-sensitive instrument. The unique nature of CALIOP measurements make it quite challenging to validate backscatter profiles, aerosol type, and cloud phase, all of which are used to retrieve extinction and optical depth. We exploit the large data set generated by CALIPSO between 2006 - 2013 to find groups in the data from which we can infer aerosol type. We use classical clustering analyses (k-means) to group the data based on five Level 2 data parameters: integrated attenuated backscatter (532 nm), volume depolarization ratio, integrated attenuated color ratio, layer base altitude, and layer top altitude. The data are screened using standard CALIPSO quality assurance flags, cloud aerosol discrimination (CAD) scores, overlying features and layer properties. Furthermore, the data were standardized to a 'z score' in order to remove weighting bias due to arbitrary units. The k-means algorithm forms clusters by minimizing the Euclidian distance between each data point and its respective cluster centroid independently for each parameter. Silhouette coefficients, a dimensionless measure of internal cluster interrelation or consistency and external cluster separation or uniqueness were used to determine the validity of clusters. These investigations yielded optimally distinct clusters when six groups were formed similar to the result in Omar et al, 2005 which form the basis for the current CALIPSO aerosol subtypes. While the number of clusters in both studies coincide, the clusters do not match with all aerosol subtypes. Analysis of the data

  12. Quantitative retrieval of aerosol optical properties by means of ceilometers

    NASA Astrophysics Data System (ADS)

    Wiegner, Matthias; Gasteiger, Josef; Geiß, Alexander

    2016-04-01

    In the last few years extended networks of ceilometers have been established by several national weather services. Based on improvements of the hardware performance of these single-wavelength backscatter lidars and their 24/7 availability they are increasingly used to monitor mixing layer heights and to derive profiles of the particle backscatter profile. As a consequence they are used for a wide range of applications including the dispersion of volcanic ash plumes, validation of chemistry transport models and air quality studies. In this context the development of automated schemes to detect aerosol layers and to identify the mixing layer are essential, in particular as the latter is often used as a proxy for air quality. Of equal importance is the calibration of ceilometer signals as a pre-requisite to derive quantitative optical properties. Recently, it has been emphasized that the majority of ceilometers are influenced by water vapor absorption as they operate in the spectral range of 905 - 910 nm. If this effect is ignored, errors of the aerosol backscatter coefficient can be as large as 50%, depending on the atmospheric water vapor content and the emitted wavelength spectrum. As a consequence, any other derived quantity, e.g. the extinction coefficient or mass concentration, would suffer from a significant uncertainty in addition to the inherent errors of the inversion of the lidar equation itself. This can be crucial when ceilometer derived profiles shall be used to validate transport models. In this presentation, the methodology proposed by Wiegner and Gasteiger (2015) to correct for water vapor absorption is introduced and discussed.

  13. Demonstration of Aerosol Property Profiling by Multiwavelength Lidar Under Varying Relative Humidity Conditions

    NASA Technical Reports Server (NTRS)

    Veselovskii, I.; Whiteman, D. N.; Kolgotin, A.; Andrews, E.; Korenskii, M.

    2009-01-01

    During the months of July-August 2007 NASA conducted a research campaign called the Tropical Composition, Clouds and Climate Coupling (TC4) experiment. Vertical profiles of ozone were measured daily using an instrument known as an ozonesonde, which is attached to a weather balloon and launch to altitudes in excess of 30 km. These ozone profiles were measured over coastal Las Tablas, Panama (7.8N, 80W) and several times per week at Alajuela, Costa Rica (ION, 84W). Meteorological systems in the form of waves, detected most prominently in 100-300 in thick ozone layer in the tropical tropopause layer, occurred in 50% (Las Tablas) and 40% (Alajuela) of the soundings. These layers, associated with vertical displacements and classified as gravity waves ("GW," possibly Kelvin waves), occur with similar stricture and frequency over the Paramaribo (5.8N, 55W) and San Cristobal (0.925, 90W) sites of the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. The gravity wave labeled layers in individual soundings correspond to cloud outflow as indicated by the tracers measured from the NASA DC-8 and other aircraft data, confirming convective initiation of equatorial waves. Layers representing quasi-horizontal displacements, referred to as Rossby waves, are robust features in soundings from 23 July to 5 August. The features associated with Rossby waves correspond to extra-tropical influence, possibly stratospheric, and sometimes to pollution transport. Comparison of Las Tablas and Alajuela ozone budgets with 1999-2007 Paramaribo and San Cristobal soundings shows that TC4 is typical of climatology for the equatorial Americas. Overall during TC4, convection and associated meteorological waves appear to dominate ozone transport in the tropical tropopause layer.

  14. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol

  15. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  16. Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Arola, A.; Ferrare, R. A.; Hostetler, C. A.; Crumeyrolle, S. N.; Berkoff, T. A.; Welton, E. J.; Lolli, S.; Lyapustin, A.; Wang, Y.; Schafer, J. S.; Giles, D. M.; Anderson, B. E.; Thornhill, K. L.; Minnis, P.; Pickering, K. E.; Loughner, C. P.; Smirnov, A.; Sinyuk, A.

    2014-11-01

    During the July 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field experiment in Maryland, significant enhancements in Aerosol Robotic Network (AERONET) sun-sky radiometer measured aerosol optical depth (AOD) were observed in the immediate vicinity of non-precipitating cumulus clouds on some days. Both measured Ångström exponents and aerosol size distribution retrievals made before, during and after cumulus development often suggest little change in fine mode particle size; therefore, implying possible new particle formation in addition to cloud processing and humidification of existing particles. In addition to sun-sky radiometer measurements of large enhancements of fine mode AOD, lidar measurements made from both ground-based and aircraft-based instruments during the experiment also measured large increases in aerosol signal at altitudes associated with the presence of fair weather cumulus clouds. These data show modifications of the aerosol vertical profile as a result of the aerosol enhancements at and below cloud altitudes. The airborne lidar data were utilized to estimate the spatial extent of these aerosol enhancements, finding increased AOD, backscatter and extinction out to 2.5 km distance from the cloud edge. Furthermore, in situ measurements made from aircraft vertical profiles over an AERONET site during the experiment also showed large increases in aerosol scattering and aerosol volume after cloud formation as compared to before. The 15-year AERONET database of AOD measurements at the Goddard Space Flight Center (GSFC), Maryland site, was investigated in order to obtain a climatological perspective of this phenomenon of AOD enhancement. Analysis of the diurnal cycle of AOD in summer showed significant increases in AOD from morning to late afternoon, corresponding to the diurnal cycle of cumulus development.

  17. Towards depth profiling of organic aerosols in real time using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Hoffmann, Thorsten

    2014-05-01

    Organic aerosol accounts for a substantial fraction of tropospheric aerosol and has implications on the earth's climate and human health. However, the characterization of its chemical composition and transformations remain a major challenge and is still connected to large uncertainties (IPCC, 2013). Recent measurements revealed that organic aerosol particles may reside in an amorphous or semi-solid phase state which impedes the diffusion within the particles (Virtanen et al., 2010; Shiraiwa et al., 2011). This means that reaction products which are formed on the surface of a particle, e.g. by OH, NO3 or ozone chemistry, cannot diffuse into the particle's core and remain at the surface. Eventually, this leads to particles with a core/shell structure. In the particles' cores the initial compounds are preserved whereas the shells contain mainly the oxidation products. By analyzing the particles' cores and shells separately, thus, it is possible to obtain valuable information on the formation and evolution of the aerosols' particle and gas phase. Here we present the development of the aerosol flowing atmospheric-pressure afterglow (AeroFAPA) technique which allows the mass spectrometric analysis of organic aerosols in real time. The AeroFAPA is an ion source based on a helium glow discharge at atmospheric pressure. The plasma produces excited helium species and primary reagent ions which are transferred into the afterglow region where the ionization of the analytes takes place. Due to temperatures of only 80 ° C to 150 ° C and ambient pressure in the afterglow region, the ionization is very soft and almost no fragmentation of organic molecules is observed. Thus, the obtained mass spectra are easy to interpret and no extensive data analysis procedure is necessary. Additionally, first results of a combination of the AeroFAPA-MS with a scanning mobility particle sizer (SMPS) suggest that it is not only possible to analyze the entire particle phase but rather that a

  18. Spectra of Particulate Backscattering in Natural Waters

    NASA Technical Reports Server (NTRS)

    Gordon, Howard, R.; Lewis, Marlon R.; McLean, Scott D.; Twardowski, Michael S.; Freeman, Scott A.; Voss, Kenneth J.; Boynton, Chris G.

    2009-01-01

    Hyperspectral profiles of downwelling irradiance and upwelling radiance in natural waters (oligotrophic and mesotrophic) are combined with inverse radiative transfer to obtain high resolution spectra of the absorption coefficient (a) and the backscattering coefficient (bb) of the water and its constituents. The absorption coefficient at the mesotrophic station clearly shows spectral absorption features attributable to several phytoplankton pigments (Chlorophyll a, b, c, and Carotenoids). The backscattering shows only weak spectral features and can be well represented by a power-law variation with wavelength (lambda): b(sub b) approx. Lambda(sup -n), where n is a constant between 0.4 and 1.0. However, the weak spectral features in b(sub b), suggest that it is depressed in spectral regions of strong particle absorption. The applicability of the present inverse radiative transfer algorithm, which omits the influence of Raman scattering, is limited to lambda < 490 nm in oligotrophic waters and lambda < 575 nm in mesotrophic waters.

  19. Visible and near IR lidar backscatter observations on the GLOBE Pacific Survey missions

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Chudamani, S.; Cavanaugh, John F.

    1991-01-01

    Measurement techniques and initial results of the Global Backscatter Experiment (GLOBE) performed in November 1989 and May-June 1990 to provide data on prevailing values of atmospheric backscatter cross section are presented. The upper troposphere aerosol scattering cross section was low in the Southern Hemisphere for the May-June flights and low in the Northern Hemisphere for the November flights. The initial results indicate that the instrumentation and calibration techniques applied for the near IR lidar measurements were successful.

  20. Modeling LIDAR Detection of Biological Aerosols to Determine Optimum Implementation Strategy

    SciTech Connect

    Sheen, David M.; Aker, Pam M.

    2007-09-19

    This report summarizes work performed for a larger multi-laboratory project named the Background Interferent Measurement and Standards project. While originally tasked to develop algorithms to optimize biological warfare agent detection using UV fluorescence LIDAR, the current uncertainties in the reported fluorescence profiles and cross sections the development of any meaningful models. It was decided that a better approach would be to model the wavelength-dependent elastic backscattering from a number of ambient background aerosol types, and compare this with that generated from representative sporulated and vegetative bacterial systems. Calculations in this report show that a 266, 355, 532 and 1064 nm elastic backscatter LIDAR experiment will allow an operator to immediately recognize when sulfate, VOC-based or road dust (silicate) aerosols are approaching, independent of humidity changes. It will be more difficult to distinguish soot aerosols from biological aerosols, or vegetative bacteria from sporulated bacteria. In these latter cases, the elastic scattering data will most likely have to be combined with UV fluorescence data to enable a more robust categorization.

  1. Effect of CALIPSO Cloud Aerosol Discrimination (CAD) Confidence Levels on Observations of Aerosol Properties near Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Liu, Zhaoyan

    2012-01-01

    CALIPSO aerosol backscatter enhancement in the transition zone between clouds and clear sky areas is revisited with particular attention to effects of data selection based on the confidence level of cloud-aerosol discrimination (CAD). The results show that backscatter behavior in the transition zone strongly depends on the CAD confidence level. Higher confidence level data has a flatter backscatter far away from clouds and a much sharper increase near clouds (within 4 km), thus a smaller transition zone. For high confidence level data it is shown that the overall backscatter enhancement is more pronounced for small clear-air segments and horizontally larger clouds. The results suggest that data selection based on CAD reduces the possible effects of cloud contamination when studying aerosol properties in the vicinity of clouds.

  2. Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during the July 2012 ChArMEx/EMEP campaign

    NASA Astrophysics Data System (ADS)

    José Granados-Muñoz, María; Navas-Guzmán, Francisco; Guerrero-Rascado, Juan Luis; Bravo-Aranda, Juan Antonio; Binietoglou, Ioannis; Nepomuceno Pereira, Sergio; Basart, Sara; María Baldasano, José; Belegante, Livio; Chaikovsky, Anatoli; Comerón, Adolfo; D'Amico, Giuseppe; Dubovik, Oleg; Ilic, Luka; Kokkalis, Panos; Muñoz-Porcar, Constantino; Nickovic, Slobodan; Nicolae, Doina; José Olmo, Francisco; Papayannis, Alexander; Pappalardo, Gelsomina; Rodríguez, Alejandro; Schepanski, Kerstin; Sicard, Michaël; Vukovic, Ana; Wandinger, Ulla; Dulac, François; Alados-Arboledas, Lucas

    2016-06-01

    The simultaneous analysis of aerosol microphysical properties profiles at different European stations is made in the framework of the ChArMEx/EMEP 2012 field campaign (9-11 July 2012). During and in support of this campaign, five lidar ground-based stations (Athens, Barcelona, Bucharest, Évora, and Granada) performed 72 h of continuous lidar measurements and collocated and coincident sun-photometer measurements. Therefore it was possible to retrieve volume concentration profiles with the Lidar Radiometer Inversion Code (LIRIC). Results indicated the presence of a mineral dust plume affecting the western Mediterranean region (mainly the Granada station), whereas a different aerosol plume was observed over the Balkans area. LIRIC profiles showed a predominance of coarse spheroid particles above Granada, as expected for mineral dust, and an aerosol plume composed mainly of fine and coarse spherical particles above Athens and Bucharest. Due to the exceptional characteristics of the ChArMEx database, the analysis of the microphysical properties profiles' temporal evolution was also possible. An in-depth analysis was performed mainly at the Granada station because of the availability of continuous lidar measurements and frequent AERONET inversion retrievals. The analysis at Granada was of special interest since the station was affected by mineral dust during the complete analyzed period. LIRIC was found to be a very useful tool for performing continuous monitoring of mineral dust, allowing for the analysis of the dynamics of the dust event in the vertical and temporal coordinates. Results obtained here illustrate the importance of having collocated and simultaneous advanced lidar and sun-photometer measurements in order to characterize the aerosol microphysical properties in both the vertical and temporal coordinates at a regional scale. In addition, this study revealed that the use of the depolarization information as input in LIRIC in the stations of Bucharest,

  3. Joint elastic side-scattering LIDAR and Raman LIDAR measurements of aerosol optical properties in south east Colorado

    NASA Astrophysics Data System (ADS)

    Wiencke, L.; Rizi, V.; Will, M.; Allen, C.; Botts, A.; Calhoun, M.; Carande, B.; Claus, J.; Coco, M.; Emmert, L.; Esquibel, S.; Grillo, A. F.; Hamilton, L.; Heid, T. J.; Iarlori, M.; Klages, H.-O.; Kleifges, M.; Knoll, B.; Koop, J.; Mathes, H.-J.; Menshikov, A.; Morgan, S.; Patterson, L.; Petrera, S.; Robinson, S.; Runyan, C.; Sherman, J.; Starbuck, D.; Wakin, M.; Wolf, O.

    2017-03-01

    We describe an experiment, located in south-east Colorado, U.S.A., that measured aerosol optical depth profiles using two LIDAR techniques. Two independent detectors measured scattered light from a vertical UV laser beam. One detector, located at the laser site, measured light via the inelastic Raman backscattering process. This is a common method used in atmospheric science for measuring aerosol optical depth profiles. The other detector, located approximately 40 km distant, viewed the laser beam from the side. This detector featured a 3.5 m2 mirror and measured elastically scattered light in a bistatic LIDAR configuration following the method used at the Pierre Auger cosmic ray observatory. The goal of this experiment was to assess and improve methods to measure atmospheric clarity, specifically aerosol optical depth profiles, for cosmic ray UV fluorescence detectors that use the atmosphere as a giant calorimeter. The experiment collected data from September 2010 to July 2011 under varying conditions of aerosol loading. We describe the instruments and techniques and compare the aerosol optical depth profiles measured by the Raman and bistatic LIDAR detectors.

  4. Aerosol chemistry in Beijing, China: Different pollution regimes and diurnal profiles

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Brüggemann, E.; Gnauk, T.; Iinuma, Y.; Müller, K.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Herrmann, H.

    2009-04-01

    The rapid economic development during the last three decades in China has led to a severe decrease in air quality, especially in densely populated regions such as Beijing, Shanghai, and the Pearl River Delta. Although during last years a number of measures for air pollution control have been implemented especially in the capital Beijing, air pollution is still regarded to be one of the top environmental concerns in China during the next decade. To better characterize the processes leading to the frequently observed high concentrations of air pollutants on a regional scale, the international field campaign "Campaigns of Air Quality Research in Beijing 2006" (CAREBEIJING2006) was conducted in summer 2006. Organized by the Peking University, project partners from Japan, Korea, Hong Kong, Germany, and China studied the various aspects of gaseous and particulate air pollution in a megacity environment. In this contribution, we present chemical data of size-resolved particles, obtained by a 5-stage Berner impactor (0.05-10 μm) during 3 weeks at both an urban and a suburban site in the area of Beijing, China. The sampling time of the impactors was about 4-5 hours. This allowed for taking four size-resolved samples per day and obtaining rough diurnal profiles of particle components. The samples were analyzed for inorganic ions (Cl-, SO42-, NO3-, NH4+, K+, Ca2+, Na+, Mg2+), carbon sum parameters (OC, EC, WSOC), and a variety of organic compounds such as dicarboxylic acids, alkanes, PAHs and, for the first time in China, nitrooxy-organosulfates. On average, the observed PM10 mass concentrations were 133 μg m-3 and 112 μg m-3 at the urban and suburban site, respectively. In general, the observed concentrations of particulate pollutants were similarly high as reported from previous studies in the Beijing summer atmosphere. A back trajectory analysis allowed the classification of the samples into different meteorological categories with different air mass origins. A high

  5. Observing wind, aerosol particles, cloud and precipitation: Finland's new ground-based remote-sensing network

    NASA Astrophysics Data System (ADS)

    Hirsikko, A.; O'Connor, E. J.; Komppula, M.; Korhonen, K.; Pfüller, A.; Giannakaki, E.; Wood, C. R.; Bauer-Pfundstein, M.; Poikonen, A.; Karppinen, T.; Lonka, H.; Kurri, M.; Heinonen, J.; Moisseev, D.; Asmi, E.; Aaltonen, V.; Nordbo, A.; Rodriguez, E.; Lihavainen, H.; Laaksonen, A.; Lehtinen, K. E. J.; Laurila, T.; Petäjä, T.; Kulmala, M.; Viisanen, Y.

    2014-05-01

    The Finnish Meteorological Institute, in collaboration with the University of Helsinki, has established a new ground-based remote-sensing network in Finland. The network consists of five topographically, ecologically and climatically different sites distributed from southern to northern Finland. The main goal of the network is to monitor air pollution and boundary layer properties in near real time, with a Doppler lidar and ceilometer at each site. In addition to these operational tasks, two sites are members of the Aerosols, Clouds and Trace gases Research InfraStructure Network (ACTRIS); a Ka band cloud radar at Sodankylä will provide cloud retrievals within CloudNet, and a multi-wavelength Raman lidar, PollyXT (POrtabLe Lidar sYstem eXTended), in Kuopio provides optical and microphysical aerosol properties through EARLINET (the European Aerosol Research Lidar Network). Three C-band weather radars are located in the Helsinki metropolitan area and are deployed for operational and research applications. We performed two inter-comparison campaigns to investigate the Doppler lidar performance, compare the backscatter signal and wind profiles, and to optimize the lidar sensitivity through adjusting the telescope focus length and data-integration time to ensure sufficient signal-to-noise ratio (SNR) in low-aerosol-content environments. In terms of statistical characterization, the wind-profile comparison showed good agreement between different lidars. Initially, there was a discrepancy in the SNR and attenuated backscatter coefficient profiles which arose from an incorrectly reported telescope focus setting from one instrument, together with the need to calibrate. After diagnosing the true telescope focus length, calculating a new attenuated backscatter coefficient profile with the new telescope function and taking into account calibration, the resulting attenuated backscatter profiles all showed good agreement with each other. It was thought that harsh Finnish

  6. Backscattering of agglomerate particles

    NASA Astrophysics Data System (ADS)

    Zubko, Evgenij; Ovcharenko, Andrey; Bondarenko, Sergey; Shkuratov, Yuriy; Scotto, Cathy S.; Merritt, Charles; Hart, Matthew B.; Eversole, Jay D.; Videen, Gorden W.

    2004-12-01

    We examine how aggregation affects the light-scattering signatures, especially the polarization in the near-backward-scattering direction. We use the discrete dipole approximation (DDA) to study the backscatter of agglomerate particles consisting of oblong monomers. We examine the effects of monomer number and packing structure on the resulting negative polarization branch at small phase angle. We find large a dependence on the orientation of the monomers within the agglomerate and a smaller dependence on the number of monomers, suggesting that the mechanism producing the negative polarization minimum depends strongly on the interactions between the individual monomers. We also examine experimental measurements of substrates composed of biological cells. We find that the light-scattering signatures in the backward direction are not only different for different spore species, but for spores that have been prepared using different methodologies. These signatures are reproducible in different substrates composed of the spores from the same batches.

  7. A Framework for Aerosol-Cloud Interactions Monitoring

    NASA Astrophysics Data System (ADS)

    Russchenberg, H. W. J.; Sarna, K.

    2014-12-01

    A broad range of strategies have been used to study Aerosol-Cloud Interactions (ACI). However, the wide scope of methods and scales used makes it difficult to quantitatively compare result from different studies. In this paper, we propose a method of aerosol-cloud interaction monitoring based on widely available remote sensing instruments and easily applicable at many different observatories. This method provides a way of identifying cases where a change in the aerosol environment causes a change in the cloud. In this scheme we attempt to use (as far as possible) the observed signal from lidar and radar. For an aerosol proxy we use the attenuated backscatter (sensitive to aerosol concentration) and to obtain information about changes in the cloud we use the radar reflectivity factor (sensitive to cloud droplet size and concentration). Assuming a positive dependence between the number concentration of cloud droplets and the number concentration of aerosol we expect that an increase of the attenuated backscatter coefficient will correspond to a small increase of the radar reflectivity factor (due to the increase of cloud droplets concentration). However, the slope of this correlation will vary. A number of factors, such as meteorology or cloud drop microphysical properties, can influence changes in a cloud. For that reason we put a constraint on the liquid water content using liquid water path information from microwave radiometers. This limitation ensures that the variability in the cloud will be primarily due to changes in microphysical properties associated with the variation in aerosols. Further, we limit the cases only to non-precipitating, low-level stratiform and stratocumulus clouds without drizzle. Although this method is based on a synergy of instruments, we use widely available systems for an efficient evaluation of the aerosol influence on the cloud. The main advantages of this scheme are the use of direct observables from widely spread remote sensing

  8. LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET

    NASA Astrophysics Data System (ADS)

    Amiridis, V.; Marinou, E.; Tsekeri, A.; Wandinger, U.; Schwarz, A.; Giannakaki, E.; Mamouri, R.; Kokkalis, P.; Binietoglou, I.; Solomos, S.; Herekakis, T.; Kazadzis, S.; Gerasopoulos, E.; Proestakis, E.; Kottas, M.; Balis, D.; Papayannis, A.; Kontoes, C.; Kourtidis, K.; Papagiannopoulos, N.; Mona, L.; Pappalardo, G.; Le Rille, O.; Ansmann, A.

    2015-07-01

    We present LIVAS (LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies), a 3-D multi-wavelength global aerosol and cloud optical database, optimized to be used for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. The LIVAS database provides averaged profiles of aerosol optical properties for the potential spaceborne laser operating wavelengths of 355, 532, 1064, 1570 and 2050 nm and of cloud optical properties at the wavelength of 532 nm. The global database is based on CALIPSO observations at 532 and 1064 nm and on aerosol-type-dependent backscatter- and extinction-related Ångström exponents, derived from EARLINET (European Aerosol Research Lidar Network) ground-based measurements for the UV and scattering calculations for the IR wavelengths, using a combination of input data from AERONET, suitable aerosol models and recent literature. The required spectral conversions are calculated for each of the CALIPSO aerosol types and are applied to CALIPSO backscatter and extinction data corresponding to the aerosol type retrieved by the CALIPSO aerosol classification scheme. A cloud optical database based on CALIPSO measurements at 532 nm is also provided, neglecting wavelength conversion due to approximately neutral scattering behavior of clouds along the spectral range of LIVAS. Averages of particle linear depolarization ratio profiles at 532 nm are provided as well. Finally, vertical distributions for a set of selected scenes of specific atmospheric phenomena (e.g., dust outbreaks, volcanic eruptions, wild fires, polar stratospheric clouds) are analyzed and spectrally converted so as to be used as case studies for spaceborne lidar performance assessments. The final global data set includes 4-year (1 January 2008-31 December 2011) time-averaged CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) data on a uniform grid of 1

  9. Evaluating the impact of assimilating CALIOP-derived aerosol extinction profiles on a global mass transport model

    NASA Astrophysics Data System (ADS)

    Zhang, Jianglong; Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Baker, Nancy L.; Campbell, William F.; Hyer, Edward J.

    2011-07-01

    Coupled two/three-dimensional variational (2D/3DVAR) assimilation of aerosol physical properties retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR) and Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite-borne instruments is described for the U. S. Navy Aerosol Analysis and Prediction System (NAAPS) global aerosol mass transport model. Coupled 2D/3DVAR assimilation for NAAPS is evaluated for 48-hr forecast cycles, computed four times daily in six-hour intervals, versus stand-alone 2DVAR assimilation of MODIS and MISR aerosol optical depths (AOD). Both systems are validated against AERONET ground-based sun photometer measurements of AOD. Despite a narrow nadir viewing swath and more than 2700 km of equatorial separation between orbits, satellite lidar data assimilation elicits a positive model response. Improvements in analysis and forecast AOD absolute errors are found over both land and maritime AERONET sites. The primary impact to the model from 3DVAR assimilation is the redistribution of aerosol mass into the boundary layer, though the process is sensitive to parameterization of vertical error correlation lengths.

  10. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Hu, Yongxiang; Ismail, Syed; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Anderson, Bruce E.

    2010-01-01

    We determine the aerosol extinction-to-backscatter (Sa) ratios of dust using airborne in-situ measurements of microphysical properties, and CALIPSO observations during the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The NAMMA field experiment was conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. Using this method, we found dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa ratios at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile.

  11. A New Approach to Inverting and De-Noising Backscatter from Lidar Observations

    NASA Astrophysics Data System (ADS)

    Marais, Willem; Hen Hu, Yu; Holz, Robert; Eloranta, Edwin

    2016-06-01

    Atmospheric lidar observations provide a unique capability to directly observe the vertical profile of cloud and aerosol scattering properties and have proven to be an important capability for the atmospheric science community. For this reason NASA and ESA have put a major emphasis on developing both space and ground based lidar instruments. Measurement noise (solar background and detector noise) has proven to be a significant limitation and is typically reduced by temporal and vertical averaging. This approach has significant limitations as it results in significant reduction in the spatial information and can introduce biases due to the non-linear relationship between the signal and the retrieved scattering properties. This paper investigates a new approach to de-noising and retrieving cloud and aerosol backscatter properties from lidar observations that leverages a technique developed for medical imaging to de-blur and de-noise images; the accuracy is defined as the error between the true and inverted photon rates. Hence non-linear bias errors can be mitigated and spatial information can be preserved.

  12. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  13. 1064 nm rotational Raman lidar for particle extinction and lidar-ratio profiling: cirrus case study

    NASA Astrophysics Data System (ADS)

    Haarig, Moritz; Engelmann, Ronny; Ansmann, Albert; Veselovskii, Igor; Whiteman, David N.; Althausen, Dietrich

    2016-09-01

    For the first time, vertical profiles of the 1064 nm particle extinction coefficient obtained from Raman lidar observations at 1058 nm (nitrogen and oxygen rotational Raman backscatter) are presented. We applied the new technique in the framework of test measurements and performed several cirrus observations of particle backscatter and extinction coefficients, and corresponding extinction-to-backscatter ratios at the wavelengths of 355, 532, and 1064 nm. The cirrus backscatter coefficients were found to be equal for all three wavelengths keeping the retrieval uncertainties in mind. The multiple-scattering-corrected cirrus extinction coefficients at 355 nm were on average about 20-30 % lower than the ones for 532 and 1064 nm. The cirrus-mean extinction-to-backscatter ratio (lidar ratio) was 31 ± 5 sr (355 nm), 36 ± 5 sr (532 nm), and 38 ± 5 sr (1064 nm) in this single study. We further discussed the requirements needed to obtain aerosol extinction profiles in the lower troposphere at 1064 nm with good accuracy (20 % relative uncertainty) and appropriate temporal and vertical resolution.

  14. Requirements For Lidar Aerosol and Ozone Measurements

    NASA Astrophysics Data System (ADS)

    Frey, S.; Woeste, L.

    Laser remote sensing is the preferable method, when spatial-temporal resolved data is required. Data from stationary laser remote sensing devices at the earth surface give a very good impression about daily, annual and in general time trends of a measurand and can be compared sometimes to airborne instruments to get a direct link between optical and other methods. Space borne measurements on the other hand are the only possibility for obtaining as much data, as modeller wish to have to initialise, compare or validate there computation. But in this case it is very difficult to get the input in- formation, which is necessary for good quantitative analysis as well as to find points for comparison. In outer space and other harsh field environments only the simplest and most robust equipment for the respective purpose should be applied, to ensure a long-term stable operation. The first question is: what do we have to know about the properties of the atmosphere to get reliable data from instruments, which are just simple enough?, and secondly: how to set-up the instruments? Even for the evaluation of backscatter coefficients a density profile and the so-called Lidar-ratio, the ratio of backscatter to total volume scatter intensity, is necessary. Raman Lidar is a possibility to handle this problem by measuring aerosol extinction profiles. But again a density profile and in addition a guess about the wavelength dependence of the aerosol extinc- tion between the Raman and laser wavelength are required. Unfortunately the tech- nique for Raman measurements is much more sensible and less suited for space borne measurements, because of the much smaller back scatter cross sections and the result- ing weak signals. It becomes worth, when we will have to maintain special laser with colours at molecular absorption bands in outer space, to measure gas concentration. I want to present simulation of optical systems for laser remote sensing, experimental experiences and compare air

  15. Analysis of the Impact of Major Dust Events on the Aerosols Characteristics over Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Farahat, Ashraf; El-Askary, Hesham; Al-Shaibani, Abdulaziz; Hariri, Mustafa M.

    2015-04-01

    The Kingdom of Saudi Arabia is a major source of atmospheric dust. Frequent dust storms blow up and significantly affect human activities, airports and citizens' health. Aerosols optical and physical characteristics are influenced by major dust storms outbreaks. In this, paper, ground based AERONET measurements are integrated with space-borne sensors, namely MODIS and CALIPSO to analyze aerosols' characteristics during March - May of 2009 where a massive dust storm blew up and caused a widespread heavy atmospheric dust load over Saudi Arabia and the same period during 2010, where less dust activities were reported. The MODIS Deep Blue AOD analysis showed similar aerosols pattern over the land, however a substantial variance in aerosol loading during March - May 2009 compared with the same period in 2010 was observed. The angstrom exponent analysis showed that the majority of aerosol measurements in 2009 and 2010 are dominated by coarse-mode particles with angstrom exponent < 0.5. Detailed analysis of aerosol optical properties shows significant influence of coarse mode particles in the enhanced aerosol loading in 2009. The volume depolarization rations (VDR) derived from CALIPSO backscattering measurements is used to find latitudinal profile of mean aerosol optical depth to indicate the type of particles and to discriminate spherical aerosols with non-spherical particles. Acknowledgement The authors would like to acknowledge the support provided by the King Abdel Aziz City for Science & Technology (KACST) for funding this work under grant No. (MT-32-76). The support provided by the Deanship of Research at King Fahd University of Petroleum & Minerals (KFUPM) is gratefully acknowledged.

  16. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  17. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  18. Lidar beams in opposite directions for quality assessment of Cloud-Aerosol Lidar with Orthogonal Polarization spaceborne measurements.

    PubMed

    Cuesta, Juan; Flamant, Pierre H

    2010-04-20

    We present the "lidar beams in opposite directions" (LIBOD) technique and applications for quality assessment of spaceborne observations made by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite. LIBOD is applicable to standard total backscatter lidar because it does not require a priori knowledge of the particle extinction-to-backscatter ratio. In this paper, we present (i) an objective assessment of the lidar signal quality and representativity of correlative ground-based lidar and CALIOP measurements only using normalized range-corrected lidar signals and (ii) a numerical filtering and optimization technique for reducing the spurious oscillations induced by noisy signal differentiation as needed for retrieval of particle extinction coefficients and extinction-to-backscatter ratio profiles. Numerical simulations and Monte Carlo tests are conducted for assessing the performance of the LIBOD technique. The applications are illustrated with examples of actual correlative 532 nm lidar profiles from CALIOP and a ground-based lidar deployed in Tamanrasset in the heart of Sahara in 2006 and near Strasbourg, France, in 2007.

  19. Continental pollution in the western Mediterranean basin: vertical profiles of aerosol and trace gases measured over the sea during TRAQA 2012 and SAFMED 2013

    NASA Astrophysics Data System (ADS)

    Di Biagio, C.; Doppler, L.; Gaimoz, C.; Grand, N.; Ancellet, G.; Raut, J.-C.; Beekmann, M.; Borbon, A.; Sartelet, K.; Attié, J.-L.; Ravetta, F.; Formenti, P.

    2015-08-01

    In this study we present airborne observations of aerosol and trace gases obtained over the sea in the western Mediterranean basin during the TRAQA (TRansport and Air QuAlity) and SAFMED (Secondary Aerosol Formation in the MEDiterranean) campaigns in summer 2012 and 2013. A total of 23 vertical profiles were measured up to 5000 m above sea level over an extended area (40-45° N and 2° W-12° E) including the Gulf of Genoa, southern France, the Gulf of Lion, and the Spanish coast. During TRAQA and SAFMED the study area experienced a wide range of meteorological conditions which favoured pollution export from different sources located around the basin. Also, several events of dust outflows were measured during the campaigns. Observations from the present study show that continental pollution largely affects the western Mediterranean both close to coastal regions and in the open sea as far as ~ 250 km from the coastline. The measured aerosol scattering coefficient varies between ~ 20 and 120 Mm-1, while carbon monoxide (CO) and ozone (O3) mixing ratios are in the range of 60-165 and 30-85 ppbv, respectively. Pollution reaches 3000-4000 m in altitude and presents a very complex and highly stratified structure characterized by fresh and aged layers both in the boundary layer and in the free troposphere. Within pollution plumes the measured particle concentration in the Aitken (0.004-0.1 μm) and accumulation (0.1-1.0 μm) modes is between ~ 30 and 5000-6000 scm-3 (standard cm-3), which is comparable to the aerosol concentration measured in continental areas under pollution conditions. Additionally, our measurements indicate the presence of highly concentrated Aitken layers (10 000-15 000 scm-3) observed both close to the surface and in the free troposphere, possibly linked to the influence of new particle formation (NPF) episodes over the basin.

  20. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  1. Temperatures and aerosol opacities of the Mars atmosphere at aphelion: Validation and inter-comparison of limb sounding profiles from MRO/MCS and MGS/TES

    NASA Astrophysics Data System (ADS)

    Shirley, James H.; McConnochie, Timothy H.; Kass, David M.; Kleinböhl, Armin; Schofield, John T.; Heavens, Nicholas G.; McCleese, Daniel J.; Benson, Jennifer; Hinson, David P.; Bandfield, Joshua L.

    2015-05-01

    We exploit the relative stability and repeatability of the Mars atmosphere at aphelion for an inter-comparison of Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES) and Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) nighttime temperature profiles and aerosol opacity profiles in Mars years 25, 26, 29, 30, and 31. Cross-calibration of these datasets is important, as they together provide an extended climatology for this planetary atmosphere. As a standard of comparison we employ temperature profiles obtained by radio occultation methods during the MGS mission in Mars years 24, 25, and 26. We first compare both zonal mean TES limb sounding profiles and zonal mean MCS limb sounding profiles with zonal means of radio occultation temperature profiles for the same season (Ls = 70-80°) and latitudes (55-70°N). We employ a statistical z test for quantifying the degree of agreement of temperature profiles by pressure level. For pressures less than 610 Pa (altitudes > 3 km), the ensemble mean temperature difference between the radio occultation and TES limb sounding profiles found in these comparisons was 1.7 ± 0.7 K. The ensemble mean temperature difference between radio occultation and MCS profiles was 1.4 ± 1.0 K. These differences fall within the formal error estimates for both TES and MCS, validating the accuracy of the instruments and their respective retrieval algorithms. In the second phase of our investigation, we compare aphelion season zonal mean TES limb sounding temperature, water ice opacity, and dust opacity profiles with those obtained at the same latitudes in different years by MCS. The ensemble mean temperature difference found for three comparisons between TES and MCS zonal mean temperature profiles was 2.8 ± 2.1 K. MCS and TES temperatures between 610 Pa and 5 Pa from 55 to 70°N are largely in agreement (with differences < 2 K) when water ice aerosol opacities are comparable. Temperature differences increase when the opacities

  2. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent

  3. Mediterranean aerosol typing by integrating three-wavelength lidar and sun photometer measurements.

    PubMed

    Perrone, M R; Burlizzi, P

    2016-07-01

    Backscatter lidar measurements at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sun photometer measurements collocated in space and time were used to retrieve the vertical profiles of intensive and extensive aerosol parameters. Then, the vertical profiles of the Ångström coefficients for different wavelength pairs (Å(λ1, λ2, z)), the color ratio (CR(z)), the fine mode fraction (η(z)) at 532 nm, and the fine modal radius (R f (z)), which represent aerosol characteristic properties independent from the aerosol load, were used for typing the aerosol over the Central Mediterranean. The ability of the Ångström coefficients to identify the main aerosol types affecting the Central Mediterranean with the support of the backward trajectory analysis was first demonstrated. Three main aerosol types, which were designed as continental-polluted (CP), marine-polluted (MP), and desert-polluted (DP), were identified. We found that both the variability range and the vertical profile structure of the tested aerosol intensive parameters varied with the aerosol type. The variability range and the altitude dependence of the aerosol extinction coefficients at 355, 532, and 1064 nm, respectively, also varied with the identified aerosol types even if they are extensive aerosol parameters. DP, MP, and CP aerosols were characterized by the Å(532, 1064 nm) mean values ± 1 standard deviation equal to 0.5 ± 0.2, 1.1 ± 0.2, 1.6 ± 0.2, respectively. η(%) mean values ± 1SD were equal to 50 ± 10, 73 ± 7, and 86 ± 6 for DP, MP, and CP aerosols, respectively. The R f and CR mean values ± 1SD were equal to 0.16 ± 0.05 μm and 1.3 ± 0.3, respectively, for DP aerosols; to 0.12 ± 0.03 μm and 1.8 ± 0.4, respectively, for MP aerosols; and to 0.11 ± 0.02 μm and 1.7 ± 0.4, respectively, for CP aerosols. CP and DP aerosols were on average responsible for greater AOT and LR values, but

  4. Intercomparison of aerosol physical and physical properties derived from surface radiometers and in-situ aircraft profiles over six Maryland sites during the DRAGON and DISCOVER-AQ campaign

    NASA Astrophysics Data System (ADS)

    Schafer, J. S.; Thornhill, K. L.; Holben, B. N.; Anderson, B. E.; Eck, T. F.; Giles, D. M.; Winstead, E. L.; Ziemba, L. D.; Beyersdorf, A. J.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Kenny, P.

    2011-12-01

    The Aerosol Robotic Network (AERONET) project and international collaborators deployed more than 40 Cimel sunphotometers in the Baltimore-Washington, DC region for the summer 2011 DRAGON-USA (Distributed Regional Aerosol Gridded Observational Network) campaign. This unprecedented mesoscale network was comprised of automatic sun/sky radiometers distributed with roughly 10km grid spacing (covering an area of ~60km x 120km) which operated continuously for more than two months. The DRAGON-USA campaign was concurrent with the NASA sponsored DISCOVER-AQ air quality experiment which performed 14 days of research flights in July concentrating on repeated multiple daily profile measurements of gaseous and particulate pollution over 6 primary sun photometer sites. Atmospheric conditions varied from clean and dry to extremely hazy and humid on flight days with corresponding aerosol optical depth (AOD) at 500 nm ranging from ~0.06 to ~0.90 and precipitable water (PW) ranging from ~1.5 cm to ~4.5 cm. In-situ aerosol properties were measured on the NASA P-3B by the NASA Langley Aerosol Group Experiment (LARGE) team using a suite of instruments to characterize ambient aerosol optical and microphysical properties. Size distributions were made with a custom scanning mobility particle sizer (SMPS), an Ultrahigh Sensitivity Aerosol Spectrometer (UHSAS) from Droplet Measurement Technologies, and Aerosol Particle Sizer (APS) from TSI. Aerosol optical measurements were made with a TSI-3563 3-wavelength integrating nephelometer and a 3-wavelength Radiance Research Particle Soot Absorption Photometer (PSAP). We present preliminary comparisons of coincident single scattering albedo (at three wavelengths) and column integrated size distributions retrieved from the surface Cimel sunphotometer almucantar sky radiances and from aircraft in-situ observations during flight profiles at key sites.

  5. Comparison of SAGE II and lidar stratospheric aerosol extinction datasets after the Mt Pinatubo eruption

    NASA Astrophysics Data System (ADS)

    Antuna Marrero, Juan Carlos

    Both observations and modeling demonstrate that stratospheric aerosols from intense explosive volcanic eruptions cause several different effects on weather and climate. The main effect is the cooling of the earth's surface between one and three years after the eruption. Stratospheric heating, winter warming on the Northern Hemisphere continental areas, ozone depletion and cirrus cloud seeding are several other effects attributed to stratospheric aerosols. Studying the stratospheric aerosol features and their effects on weather and climate requires a precise knowledge of their physical and optical properties. Accurate volcanic climate effects simulations using state of the art general circulation models require detailed and precise information about stratospheric aerosol concentration, distribution in space and time, and optical properties. Satellite aerosol extinction measurements are the main source of information for such studies, however they have gaps because of missing data and time and space coverage. Although lidar aerosol backscattering measurements have been recognized for a long time as a valuable complementary source to the satellite information, they have not been used so far for such a goal. A necessary step for combining both sources of information is the comparison between them, but only very few and limited ones have been conducted. I conducted the most comprehensive comparison ever between lidar and SAGE II aerosol extinction, covering the two and half years after the 1991 Mount Pinatubo eruption. I address the crucial issue of the aerosol extinction variability at the daily scale and I calculated its quantitative magnitudes for the first time. Using both SAGE II coincident sunrise-sunset measurements and lidar measurements one and two days apart I determine it ranges between 50 and 150%. I compared extinction-derived profiles from five lidars with space and time coincident SAGE II extinction measurements. Three lidars are in the tropics and two in

  6. Boundary Layer Observations of Water Vapor and Aerosol Profiles with an Eye-Safe Micro-Pulse Differential Absorption Lidar (DIAL)

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Repasky, K. S.; Carlsten, J.; Ismail, S.

    2011-12-01

    Measurements of real-time high spatial and temporal resolution profiles of combined water vapor and aerosols in the boundary layer have been a long standing observational challenge to the meteorological, weather forecasting, and climate science communities. To overcome the high reoccurring costs associated with radiosondes as well as the lack of sufficient water vapor measurements over the continental united states, a compact and low cost eye-safe all semiconductor-based micro-pulse differential absorption lidar (DIAL) has been developed for water vapor and aerosol profiling in the lower troposphere. The laser transmitter utilizes two continuous wave external cavity diode lasers operating in the 830 nm absorption band as the online and offline seed laser sources. An optical switch is used to sequentially injection seed a tapered semiconductor optical amplifier (TSOA) with the two seed laser sources in a master oscillator power amplifier (MOPA) configuration. The TSOA is actively current pulsed to produce up to 7 μJ of output energy over a 1 μs pulse duration (150 m vertical resolution) at a 10 kHz pulse repetition frequency. The measured laser transmitter spectral linewidth is less than 500 kHz while the long term frequency stability of the stabilized on-line wavelength is ± 55 MHz. The laser transmitter spectral purity was measured to be greater than 0.9996, allowing for simultaneous measurements of water vapor in the lower and upper troposphere. The DIAL receiver utilizes a commercially available full sky-scanning capable 35 cm Schmidt-Cassegrain telescope to collect the scattered light from the laser transmitter. Light collected by the telescope is spectrally filtered to suppress background noise and is coupled into a fiber optic cable which acts as the system field stop and limits the full angle field of view to 140 μrad. The light is sampled by a fiber coupled APD operated in a Geiger mode. The DIAL instrument is operated autonomously where water vapor and

  7. Extinction and backscatter cross sections of biological materials

    NASA Astrophysics Data System (ADS)

    Thomas, M. E.; Hahn, D. V.; Carr, A. K.; Limsui, D.; Carter, C. C.; Boggs, N. T.; Jackman, J.

    2008-04-01

    Aerosol backscatter and extinction cross-sections are required to model and evaluate the performance of both active and passive detection systems. A method has been developed that begins with laboratory measurements of thin films and suspensions of biological material to obtain the complex index refraction of the biological material from the UV to the LWIR. Using that result with particle size distribution and shape information as inputs to T-matrix or discrete dipole approximation (DDA) calculations yields the extinction cross-section and backscatter cross section as a function of wavelength. These are important inputs to the lidar equation. In a continuing effort to provide validated optical cross-sections, measurements have been made on a number of high purity biological species in the laboratory as well as measurements of material released at recent field tests. The resulting observed differences between laboratory and field measurements aid in distinguishing between intrinsic and extrinsic effects, which can affect the characteristic signatures of important biological aerosols. A variety of biological and test aerosols are examined, including Bacillus atrophaeus (BG), and Erwina, ovalbumin, silica and polystyrene.

  8. Continental pollution in the Western Mediterranean Basin: vertical profiles of aerosol and trace gases measured over the sea during TRAQA 2012 and SAFMED 2013

    NASA Astrophysics Data System (ADS)

    Di Biagio, C.; Doppler, L.; Gaimoz, C.; Grand, N.; Ancellet, G.; Raut, J.-C.; Beekmann, M.; Borbon, A.; Sartelet, K.; Attié, J.-L.; Ravetta, F.; Formenti, P.

    2015-03-01

    In this study we present airborne observations of aerosol and trace gases obtained over the sea in the Western Mediterranean Basin during the TRAQA (TRansport and Air QuAlity) and SAFMED (Secondary Aerosol Formation in the MEDiterranean) campaigns in summers 2012 and 2013. A total of 23 vertical profiles were measured up to 5000 m a.s.l. over an extended area (40-45° N latitude and 2° W-12° E longitude) including the Gulf of Genoa, Southern France, the Gulf of Lion, and the Spanish coast. TRAQA and SAFMED successfully measured a wide range of meteorological conditions which favoured the pollution export from different sources located around the basin. Also, several events of dust outflows were measured during the campaigns. Observations from the present study indicate that continental pollution largely affects the Western Mediterranean both close to coastal regions and in the open sea as far as ~250 km from the coastline. Aerosol layers not specifically linked with Saharan dust outflows are distributed ubiquitously which indicates quite elevated levels of background pollution throughout the Western Basin. The measured aerosol scattering coefficient varies between ~20 and 120 M m-1, while carbon monoxide (CO) and ozone (O3) mixing ratios are in the range of 60-170 and 30-85 ppbv, respectively. Pollution reaches 3000-4000 m in altitude and presents a very complex and highly stratified structure characterized by fresh and aged layers both in the boundary layer and in the free troposphere. Within pollution plumes the measured particle concentration in the Aitken (0.004-0.1 μm) and accumulation (0.1-1.0 μm) modes is between ˜ 100 and 5000-6000 s cm-3 (standard cm-3), which is comparable to the aerosol concentration measured in continental urban areas. Additionally, our measurements indicate the presence of highly concentrated Aitken layers (10 000-15 000 s cm-3) observed both close to the surface and in the free troposphere, possibly linked to the influence of new

  9. Thresholds of Raman backscatter: effects of collisions and Landau damping

    SciTech Connect

    Estabrook, K.; Kruer, W.L.

    1983-11-03

    We present 1.5 dimensional simulations and theory of the threshold of Raman backscatter for a variety of density profiles, background temperatures and collision frequencies, nu/sub ei/. The simulations show Raman backscatter of approx. 4 x 10/sup -4/ at intensities approx. 30 times below the del n threshold which we suggest is due to light scattering off of noise electron plasma waves. The absorption drops significantly and the threshold rises as the Landau damping ..omega../sub i/ and/or nu/sub ei/ approach the growth rate ..gamma../sub 0/. Many experiments are already in the collisional regime.

  10. High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar Aerosol Optical Property Retrieval Intercomparison During the 2012 7-SEAS Field Campaign at Singapore

    NASA Technical Reports Server (NTRS)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boon Ning; Salinas, Santo V.

    2014-01-01

    From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.

  11. High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar aerosol optical property retrieval intercomparison during the 2012 7-SEAS field campaign at Singapore

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boom Ning; Salinas, Santo V.

    2014-10-01

    From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.

  12. Distribution of stratospheric column ozone (SCO) determined from satellite observations: Validation of solar backscattered ultraviolet (SBUV) measurements in support of the tropospheric ozone residual (TOR) method

    NASA Astrophysics Data System (ADS)

    Wozniak, Amy E.; Fishman, Jack; Wang, Pi-Huan; Creilson, John K.

    2005-10-01

    The global (50°N-50°S) distribution of stratospheric column ozone (SCO) is derived using solar backscattered ultraviolet (SBUV) profiles and compared with SCO amounts derived from Stratospheric Aerosol and Gas Experiment (SAGE) and ground-based measurements. An evaluation of archived SBUV (version 6) ozone profiles with ozonesonde profiles shows that the low resolution of the SBUV instrument in the troposphere and lower stratosphere leads to a low bias in the SBUV profile in the troposphere and a high bias in the lower stratosphere in regions where anthropogenic tropospheric ozone production influences the climatology. An empirical correction applied to the SBUV profile prior to separating the stratosphere from the troposphere reduces the bias in the lower stratosphere and results in a SCO distribution in good agreement with SCO derived from SAGE ozone profiles. Because the empirical correction is most pronounced at northern middle latitudes, we compare these resultant SCO values with those measured at two northern middle latitude sites (Wallops Island and Hohenpeissenberg) using concurrent measurements from Dobson spectrophotometers and ozonesondes. Our analysis shows that the empirically corrected SCO at these sites captures the seasonal cycle of SCO as well as the seasonal cycle derived from SAGE stratospheric ozone profiles. These results have important implications for the derivation of tropospheric ozone from SBUV ozone profiles in conjunction with Total Ozone Mapping Spectrometer (TOMS) total ozone measurements using the tropospheric ozone residual (TOR) methodology.

  13. Moving Toward Continuous Satellite Monitoring of PM2.5 Using the GOES Aerosol/Smoke Product (GASP) and Aircraft Profiles

    NASA Astrophysics Data System (ADS)

    Stehr, J. W.; Kondragunta, S.; Anderson, D. C.; Arkinson, H.; Brent, L. C.; Goldberg, D.; He, H.; Liaskos, C.; Ring, A.; Dickerson, R. R.; Carpenter, S.; Ciren, P.; Xu, C.

    2012-12-01

    The NOAA Geostationary Operational Environmental Satellite (GOES) makes measurements of aerosol optical depth (AOD) every 30 minutes during daylight hours. Those measurements then feed the Automated Smoke Detection and Tracking algorithm that uses fire counts, trajectory modeling and pattern recognition to identify fire plumes, especially in the western U.S. Tying these satellite measurements to surface measurements of fine particles (PM2.5) would be a considerable benefit to the air quality community and to people who live in areas with elevated fine particle concentrations. Currently, these retrievals are useful in identifying areas of elevated PM2.5 concentrations and in forecasting PM2.5 by federal, state and local agencies, but are largely limited to qualitative measures of fine particle loading. Among other issues, layers of fine particles well above ground level, cloud contamination, and particle growth by addition of water in areas of high relative humidity are examples of barriers to a direct relationship between surface PM2.5 and satellite AOD. We have identified a path forward by using aircraft profiles to determine the vertical distribution of aerosol scattering in the atmosphere. In addition, long-term measurements of scattering and rapid measurements of PM2.5 at ground-based field sites have provided a relationship between scattering and mass. Simultaneous measurements of relative humidity and temperature allow one to calculate scattering the particles would have in a dry environment and relate that to fine particle mass measurements. A relationship between rapid scattering measurements and much slower PM2.5 mass measurements is then developed, which is used to tie rapid aircraft measurements of scattering to mass. In turn, aircraft profiles are then used to tie column measurements to those at the ground and to identify cases when satellite retrievals are likely to fail. The resulting algorithm should apply throughout much of the eastern U.S., so long

  14. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2016-06-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).

  15. Effective Lidar Ratios of Dense Dust Aerosol Layers over North Africa Observed by the CALIPSO Lidar

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Winker, D. M.; Omar, A. H.; Vaughan, M.; Trepte, C. R.; Hu, Y.; Hostetler, C. A.; Sun, W.; Lin, B.

    2009-12-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, a joint US and French mission, was launched three years ago to provide new insight into the role that clouds and aerosols play in regulating Earth's weather, climate, and air quality. A key instrument on board the CALIPSO payload is a two-wavelength, polarization-sensitive backscatter lidar. With its capabilities of depolarization ratio measurement and high resolution profiling, the CALIPSO lidar provides a unique opportunity to study the dust aerosol globally. Currently, a cloud and aerosol discrimination (CAD) algorithm that incorporates five-dimensional probability distribution function (5D-PDF) is being developed for implementation in future data releases. This new 5D-PDF approach allows nearly unambiguous identification of dense dust layers over/near their source regions and therefore enables the study of these layers using a large amount of the CALIPSO data. Lidar ratio (i.e., extinction-to-backscatter ratio) is an intrinsic optical property of aerosols and a key parameter necessary in the lidar signal inversion to retrieve profiles of aerosol extinction and backscatter coefficients, which are two primary products of the CALIPSO level 2 data. This parameter is usually selected in the CALIPSO lidar level 2 data processing based on the aerosol type identified. (Six types of aerosols have been modeled: dust, polluted dust, marine, continental, polluted continental, and smoke.) As more data is being collected by the CALIPSO lidar, validation studies with the CALIPSO measurements are being performed and are now becoming available. For opaque dust layers, the effective lidar ratio (the product of lidar ratio and multiple scattering factor) can be determined easily from integrated attenuated backscatter over the layer top and apparent base. We have performed an extensive analysis based on the first two and a half years (June 2006 - December 2008) of the CALIPSO lidar nighttime

  16. Aerosol remote sensing in polar regions

    SciTech Connect

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Mazzola, Mauro; Lanconelli, Christian; Vitale, Vito; Stebel, Kerstin; Aaltonen, Veijo; de Leeuw, Gerrit; Rodriguez, Edith; Herber, Andreas B.; Radionov, Vladimir F.; Zielinski, Tymon; Petelski, Tomasz; Sakerin, Sergey M.; Kabanov, Dmitry M.; Xue, Yong; Mei, Linlu; Istomina, Larysa; Wagener, Richard; McArthur, Bruce; Sobolewski, Piotr S.; Kivi, Rigel; Courcoux, Yann; Larouche, Pierre; Broccardo, Stephen; Piketh, Stuart J.

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i) a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei

  17. Aerosol remote sensing in polar regions

    DOE PAGES

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; ...

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i)more » a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei

  18. Aerosol Remote Sensing in Polar Regions

    NASA Technical Reports Server (NTRS)

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Wehrli, Christoph

    2014-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness tau(lambda) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent alpha were calculated. Analyzing these data, the monthly mean values of tau(0.50 micrometers) and alpha and the relative frequency histograms of the daily mean values of both parameters were determined for winter-spring and summer-autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of alpha versus tau(0.50 micrometers) showed: (i) a considerable increase in tau(0.50 micrometers) for the Arctic aerosol from summer to winter-spring, without marked changes in alpha; and (ii) a marked increase in tau(0.50 micrometer) passing from the Antarctic Plateau to coastal sites, whereas alpha decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of tau(lambda) and alpha at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterize vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of tau(lambda) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were

  19. Criteria of backscattering in chiral one-way photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Pi-Ju; Chang, Shu-Wei

    2016-03-01

    Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.

  20. Some results of water vapor, ozone and aerosol balloon borne measurements during EASOE

    NASA Astrophysics Data System (ADS)

    Khattatov, V.; Yushkov, V.; Khaplanov, M.; Zaitzev, I.; Rosen, J.; Kjome, N.

    As part of the European Arctic Stratospheric Ozone Experiment (EASOE) in the northern winter of 1991/92, regular measurements of the vertical distribution of ozone and aerosols were carried out from two Russian polar stations, Heiss Island (81N, 58E) and Dikson Island (73N, 81E). In addition measurements of the vertical distribution of water vapor and aerosols were made from Esrange (68N, 21E), near Kiruna in Sweden. The instruments used were electrochemical ozone sondes (ECC-4A), a fluorescence hygrometer, and the University of Wyoming backscattersonde. Following the eruption of Mt.Pinatubo, in the Philippines, in June 1991, volcanic aerosol had reached Arctic latitudes at altitudes below 19 km by September. At all three sites it was observed on every flight. Polar stratospheric clouds were encountered above the volcanic aerosol on two flights from Esrange. There were no indications of dehydration in the Arctic stratosphere. On all flights the minimum mixing ratio of water vapor was observed 2 to 3 km above the tropopause. Total ozone was much lower than the climatological mean, over Dikson Island from the January 27, and over Heiss Island from mid-February, until the end of EASOE. Ozone profiles over these stations showed rapid increases in partial pressure immediately above the peak values of backscatter ratio when the volcanic aerosol was especially dense.

  1. 3D Backscatter Imaging System

    NASA Technical Reports Server (NTRS)

    Turner, D. Clark (Inventor); Whitaker, Ross (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  2. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  3. Photoelectron backscattering in vacuum phototubes

    NASA Astrophysics Data System (ADS)

    Lubsandorzhiev, B. K.; Vasiliev, R. V.; Vyatchin, Y. E.; Shaibonov, B. A. J.

    2006-11-01

    In this article we describe results of studies of a photoelectron backscattering effect in vacuum phototubes: classical photomultipliers (PMT) and hybrid phototubes (PH). Late pulses occurring in PMTs are attributed to the photoelectron backscattering and distinguished from pulses due to an anode glow effect. The late pulses are measured in a number of PMTs and HPs with various photocathode sizes covering 1 50 cm range and different types of the first dynode materials and construction designs. It is shown that the late pulses are a generic feature of all vacuum photodetectors—PMTs and PHs—and they do not deteriorate dramatically amplitude and timing responses of vacuum phototubes.

  4. Airborne Sunphotometry of African Dust and Marine Boundary Layer Aerosols in PRIDE

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Redemann, Jens; Russell, Philip; Schmid, Beat; Reid, Jeff; Pilewskie, Peter; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during summer 2000 to study the radiative, microphysical and transport properties of Saharan dust in the Caribbean region. During PRIDE, NASA Ames Research Center's six-channel airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane based at Roosevelt Roads Naval Station on the northeast coast of Puerto Rico. AATS-6 measurements were taken during 21 science flights off the coast of Puerto Rico in the western Caribbean. Data were acquired within and above the Marine Boundary Layer (MBL) and the Saharan Aerosol Layer (SAL) up to 5.5 km altitude tinder a wide range of dust loadings. Aerosol optical depth (AOD) spectra and columnar water vapor (CWV) values have been calculated from the AATS-6 measurements by using sunphotometer calibration data obtained at Mauna Loa Observatory (3A kin ASL) before (May) and after (October) PRIDE. Mid-visible AOD values measured near the surface during PRIDE ranged from 0.07 on the cleanest day to 0.55 on the most turbid day. Values measured above the MBL were as high as 0.35; values above the SAL were as low as 0.01. The fraction of total column AOD due to Saharan dust cannot be determined precisely from AATS-6 AOD data alone due to the uncertainty in the extent of vertical mixing of the dust down through the MBL. However, analyses of ground-based and airborne in-situ aerosol sampling measurements and ground-based aerosol lidar backscatter data should yield accurate characterization of the vertical mixing that will enable calculation of the Saharan dust AOD component from the sunphotometer data. Examples will be presented showing measured AATS-6 AOD spectra, calculated aerosol extinction and water vapor density vertical profiles, and aerosol size distributions retrieved by inversion of the AOD spectra. Near sea-surface AOD spectra acquired by AATS-6 during horizontal flight legs at 30 m ASL are available for validation of AOD derived from coincident

  5. Visibility related to backscatter at 1.54 micron

    NASA Technical Reports Server (NTRS)

    Barber, T. L.; Larson, D. R.

    1986-01-01

    The lidar process was shown to have the necessary potential to fulfill the need for a remote measurement of visibility. Visibility can be inferred from a lidar return optical extinction. The wavelength 1.54 micron was chosen, being near the visible wavelength region and having a high eye safety threshol, 200,000 times higher than 1.06 micron; 1.54 is the erbium laser wavelength. This research utilized 105 measured height profiles of natural droplet size distributions data, taken in clouds, fog, and haze. These profiles were examined to determine the completeness of the droplet counting data. It was found that the particle spectrometer data were incomplete in the very light ford and haze so this portion of the data was eliminated. Utilizing the Mie theory, these droplet size distribution profiles were converted to backscatter at 1.54 micron and extinction in the visible region, 0.55 micron. Using Koschmeider's relationship, the extinction profiles were converted to visibility. The visibility and backscatter profiles were compared to develop a relationship between visibility and backscatter at 1.54 micron.

  6. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Thornhill, Kenneth L., II; Kittaka, Chieko; Ismail, Syed; Chen, Gao; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Trepte, Charles R.; Winstead, Edward L.; Anderson, Bruce E.

    2010-01-01

    We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in-situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly seasalt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (plus or minus uncertainty) of 39.4 (plus or minus 5.9) sr and 56.5 (plus or minus 16.5) sr at 532 nm and 1064 nm, respectively, corresponding to percent uncertainties of 15% and 29%. These results will provide a measurements

  7. Comparing mixing-length models of the diabatic wind profile over homogeneous terrain

    NASA Astrophysics Data System (ADS)

    Peña, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte Bay

    2010-05-01

    Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performed within a wide range of atmospheric stability conditions, which allows a comparison of the models with the average wind profile computed in seven stability classes, showing a better agreement than compared to the traditional surface-layer wind profile. The wind profile is measured by combining cup anemometer and lidar observations, showing good agreement at the overlapping heights. The height of the boundary layer, a parameter required for the wind profile models, is estimated under neutral and stable conditions using surface-layer turbulence measurements, and under unstable conditions based on the aerosol backscatter profile from ceilometer observations.

  8. Early-spring aerosol characterization across multiple Arctic stations

    NASA Astrophysics Data System (ADS)

    Baibakov, Konstantin; O'Neill, Norm; Ivanescu, Liviu; Perro, Chris; Ritter, Christoph; Herber, Andreas; Duck, Tom J.; Schulz, Karl-Heinz; Schrems, Otto

    2013-04-01

    The Arctic region is characterized by complex interactions between aerosols, clouds and precipitation. Ground-based observations of atmospheric optical properties are usually comprised of photometric aerosol optical depth (AOD) measurements and lidar extinction and backscatter profiles. The night-time AODs obtained with star- and moonphotometry have been extremely limited in the Arctic region. The first part of the paper is based on the synchronous starphotometry and lidar measurements obtained at Eureka (Canada, 80°N, 86°W) and Ny Alesund (Spitsbergen, 79°N, 12°E) in late winter-early spring periods of 2011 and 2012. We present several examples of process-level events as well as the winter to spring climatological dynamics of cloud-screened optical depths. The particular cases include aerosol, thin-cloud, ice crystals and polar stratospheric cloud events. An integral part of the process-level analysis, which ultimately informs the seasonal analysis, is the synergistic interpretation of the spectral, temporal and spatial information content of the passive and active data. In the second part of the paper we present the preliminary results obtained from the intercomparison field campaign at Barrow (Alaska, 71°N,156°W) that took place in spring 2013. The instrumentation suit included high-spectral resolution lidar, a starphotometer and a moonphotometer.

  9. Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, M. J.; Bravo-Aranda, J. A.; Baumgardner, D.; Guerrero-Rascado, J. L.; Pérez-Ramírez, D.; Navas-Guzmán, F.; Veselovskii, I.; Lyamani, H.; Valenzuela, A.; Olmo, F. J.; Titos, G.; Andrey, J.; Chaikovsky, A.; Dubovik, O.; Gil-Ojeda, M.; Alados-Arboledas, L.

    2015-09-01

    In this work we present an analysis of mineral dust optical and microphysical properties obtained from different retrieval techniques applied to active and passive remote sensing measurements, including a comparison with simultaneous in-situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak a Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on the 27 June 2011. Column-integrated properties are provided by sun- and star-photometry which allows a continuous evaluation of the mineral dust optical properties during both day and night-time. Both the Linear Estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically-resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during night-time. LIRIC retrievals reveal several dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 μm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in-situ measurements. This study presents for the first time a comparison of both volume concentration and dust particle polarization ratios measured with in-situ and remote sensing techniques. Results for the depolarization measurements in the dust layer indicate reasonable agreement within the

  10. Dust aerosol emission over the Sahara during summertime from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations

    NASA Astrophysics Data System (ADS)

    Todd, Martin C.; Cavazos-Guerra, Carolina

    2016-03-01

    Dust aerosols are an important component of the climate system and a challenge to incorporate into weather and climate models. Information on the location and magnitude of dust emission remains a key information gap to inform model development. Inadequate surface observations ensure that satellite data remain the primary source of this information over extensive and remote desert regions. Here, we develop estimates of the relative magnitude of active dust emission over the Sahara desert based on data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Utilising the unique vertical profile of aerosol characteristics provided by CALIOP our algorithm identifies emission from aerosol extinction and lidar backscatter in the near surface layers. From the long-term CALIOP archive of day and night-time orbits over 2006-13 we construct coarse resolution maps of a new dust emission index (DEI) for the Sahara desert during the peak summer dust season (June to September). The spatial structure of DEI indicates highest emission over a broad zone focused on the border regions of Southern Algeria, Northern Mali and northwest Niger, displaced substantially (∼7°) to the east of the mean maximum in satellite-derived aerosol optical depth. In this region night-time emission exceeds that during the day. The DEI maps substantially corroborate recently derived dust source frequency count maps based on back-tracking plumes in high temporal resolution SEVIRI imagery. As such, a convergence of evidence from multiple satellite data sources using independent methods provides an increasingly robust picture of Saharan dust emission sources. Various caveats are considered. As such, quantitative estimates of dust emission may require a synergistic combined multi-sensor analysis.

  11. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Xia, X.; Che, H.; Wang, J.; Zhang, J.; Duan, Y.

    2016-03-01

    Seasonal variation of aerosol optical properties and dominant aerosol types at Kunming (KM), an urban site in southwest China, is characterized. Substantial influences of the hygroscopic growth and long-range transport of biomass burning (BB) aerosols on aerosol optical properties at KM are revealed. These results are derived from a detailed analysis of (a) aerosol optical properties (e.g. aerosol optical depth (AOD), columnar water vapor (CWV), single scattering albedo (SSA) and size distribution) retrieved from sunphotometer measurements during March 2012-August 2013, (b) satellite AOD and active fire products, (c) the attenuated backscatter profiles from the space-born lidar, and (d) the back-trajectories. The mean AOD440nm and extinction Angstrom exponent (EAE440 - 870) at KM are 0.42 ± 0.32 and 1.25 ± 0.35, respectively. Seasonally, high AOD440nm (0.51 ± 0.34), low EAE440 - 870 (1.06 ± 0.34) and high CWV (4.25 ± 0.97 cm) during the wet season (May - October) contrast with their counterparts 0.17 ± 0.11, 1.40 ± 0.31 and 1.91 ± 0.37 cm during the major dry season (November-February) and 0.53 ± 0.29, 1.39 ± 0.19, and 2.66 ± 0.44 cm in the late dry season (March-April). These contrasts between wet and major dry season, together with the finding that the fine mode radius increases significantly with AOD during the wet season, suggest the importance of the aerosol hygroscopic growth in regulating the seasonal variation of aerosol properties. BB and Urban/Industrial (UI) aerosols are two major aerosol types. Back trajectory analysis shows that airflows on clean days during the major dry season are often from west of KM where the AOD is low. In contrast, air masses on polluted days are from west (in late dry season) and east (in wet season) of KM where the AOD is often large. BB air mass is found mostly originated from North Burma where BB aerosols are lifted upward to 5 km and then subsequently transported to southwest China via prevailing westerly winds.

  12. Rutherford backscattering analysis of contaminants in PET

    NASA Astrophysics Data System (ADS)

    Pierce, D. E.; Pfeffer, R. L.; Sadler, G. D.

    1997-05-01

    Rutherford Backscattering Spectrometry (RBS) was used to understand the sorption and desorption of organic contaminants in the polymer Poly(ethylene terephthalate), or PET. Samples were exposed to a range of organics to simulate contamination of PET that can take place in the post-consumer waste stream. From RBS analysis, concentration depth profiles were shown to vary from a monolayer regime surface layer to a saturation level, depending on the contaminant. Heat treatments were also applied to contaminated polymer to simulate thermal processing steps in the recycling of PET. Heating caused a dramatic decrease in contaminants and in some cases a complete removal of contamination was achieved to the limit of RBS detectability.

  13. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel.

    PubMed

    Sapcariu, Sean C; Kanashova, Tamara; Dilger, Marco; Diabaté, Silvia; Oeder, Sebastian; Passig, Johannes; Radischat, Christian; Buters, Jeroen; Sippula, Olli; Streibel, Thorsten; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Krebs, Tobias; Karg, Erwin; Gröger, Thomas; Weiss, Carsten; Dittmar, Gunnar; Hiller, Karsten; Zimmermann, Ralf

    2016-01-01

    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the

  14. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel

    PubMed Central

    Sapcariu, Sean C.; Kanashova, Tamara; Dilger, Marco; Diabaté, Silvia; Oeder, Sebastian; Passig, Johannes; Radischat, Christian; Buters, Jeroen; Sippula, Olli; Streibel, Thorsten; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Krebs, Tobias; Karg, Erwin; Gröger, Thomas; Weiss, Carsten; Dittmar, Gunnar; Hiller, Karsten; Zimmermann, Ralf

    2016-01-01

    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the

  15. Rayleigh-backscattering doppler broadening correction for differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Fan, Lanlan; Zhang, Yinchao; Chen, Siying; Guo, Pan; Chen, He

    2015-11-01

    The spectral broadening by Rayleigh backscattering can cause large changes in water vapor echo signals, causing errors when the water vapor concentration is inversed by differential absorption lidar (DIAL). A correction algorithm is proposed to revise the errors due to the effect of laser spectral broadening. The relative errors of water vapor are calculated in cases of different aerosol distribution and temperature changes before and after correction. The results show that measurement errors due to the Doppler broadening are more than 5% before correction and a 2% measurement error after corrected for the case of a smooth, background aerosol distribution. However, due to the high aerosol gradients and strong temperature inversion, errors can be up to 40% and 10% with no corrections for this effect, respectively. The relative errors can reduce to less than 2% after correction. Hence, the correction algorithm for Rayleigh Doppler broadening can improve detection accuracy in H2O DIAL measurements especially when it is applied to high aerosol concentration or strong temperature inversion.

  16. New Lidar Capabilities in Space: An Overview of the Cloud-Aerosol Transport System (CATS)

    NASA Astrophysics Data System (ADS)

    McGill, M. J.; Yorks, J. E.; Hlavka, D. L.; Selmer, P. A.; Hart, W. D.; Palm, S. P.; Nowottnick, E. P.; Vaughan, M.; Rodier, S. D.; Colarco, P. R.; da Silva, A.; Buchard, V.

    2014-12-01

    The Cloud-Aerosol Transport System (CATS), built at NASA Goddard Space Flight Center as a payload for the International Space Station (ISS), is set to launch in the late 2014. CATS is an elastic backscatter lidar operating in one of three science modes with three wavelengths (1064, 532, 355 nm) and HSRL capability at 532 nm. Depolarization measurements will be made at the 532 and 1064 nm wavelengths. The CATS science modes are described in Figure 1. The ISS orbit is a 51 degree inclination orbit at an altitude of about 405 km. This orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three day repeat cycle. Thus, science applications of CATS include cloud and aerosol climate studies, air quality monitoring, and smoke/volcanic plume tracking. Current uncertainties in cloud and aerosol properties limit our ability to accurately model the Earth's climate system and predict climate change. These limitations are due primarily to difficulties in adequately measuring aerosols and clouds on a global scale. A primary science objectives of CATS is to provide global aerosol and cloud vertical profile data in near real time to for assimilation in aerosol transport models such as the NASA GEOS-5 model. Furthermore, the vertical profiles of cloud and aerosol properties provided by CATS will complement current and future passive satellite sensors. Another important science objective of CATS is to advance technology in support of future mission development. CATS will employ 355 nm and HSRL capabilities, as well as depolarization at multiple wavelengths. These expanded measurement capabilities will provide the science community with new and improved global data products that have yet to be retrieved from space-based lidar. In preparation for launch, simulations of the CATS lidar signal are produced using GEOS5 model data to develop and test future data products. An example of the simulated CATS attenuated

  17. Vertical profiles of aerosol black carbon in the atmospheric boundary layer over a tropical coastal station: Perturbations during an annular solar eclipse

    NASA Astrophysics Data System (ADS)

    Babu, S. Suresh; Sreekanth, V.; Moorthy, K. Krishna; Mohan, Mannil; Kirankumar, N. V. P.; Subrahamanyam, D. Bala; Gogoi, Mukunda M.; Kompalli, Sobhan Kumar; Beegum, Naseema; Chaubey, Jai Prakash; Kumar, V. H. Arun; Manchanda, Ravi K.

    2011-03-01

    Altitude profiles of aerosol black carbon (BC) in the atmospheric boundary layer (ABL) over a tropical coastal station, Trivandrum have been examined on two days using an aethalometer attached to a tethered balloon. One of these days (15th January, 2010) coincided with a (annular) solar eclipse, the longest of this century at this location, commenced at 11:05 local time and ended by 15:05, lasting for 7 min and 15 s (from 13:10:42), with its maximum contact occurring at ~ 13:14 IST with ~ 92% annularity, thereby providing an opportunity to understand the eclipse induced perturbations. Concurrent measurements of the ABL parameters such as air temperature, relative humidity and pressure were also made on these days to describe the response of the ABL to the eclipse. BC profiles, in general, depicted similar features up to an altitude of ~ 200 m on the eclipse day and control day, above which it differed conspicuously with profiles on eclipse day showing increasingly lower concentration as we moved to higher altitudes. Examination of the meteorological profiles showed that the altitude of maximum convection rapidly fell down during the eclipse period compared to that on control day indicating a rather shallow convection on eclipse day. Comparison of diurnal variations of BC at the surface level showed that the rate of decrease in BC during daytime on the eclipse day was smaller than that on the control day due to the reduced convection, shallow ABL and consequent reduction in the ventilation coefficient. Moreover the time of the nocturnal increase has advanced by ~ 1:30 h on the eclipse day, occurred at around 19:30 IST in contrast to all the other days of January 2010, where this increase usually occur well after 20:30 IST, with a mean value of 21:00 IST. This is attributed to the weak sea-breeze penetration during the eclipse day, which led to an early onset of the land breeze.

  18. A Ground-Based 2-Micron DIAL System to Profile Tropospheric CO2 and Aerosol Distributions for Atmospheric Studies

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Koch, Grady; Abedin, Nurul; Refaat, Tamer; Rubio, Manuel; Davis, Kenneth; Miller, Charles; Singh, Upendra

    2006-01-01

    System will operate at a temperature insensitive CO2 line (2050.967 nm) with side-line tuning and off-set locking. Demonstrated an order of magnitude improvement in laser line locking needed for high precision measurements, side-line operation, and simultaneously double pulsing and line locking. Detector testing of phototransistor has demonstrated sensitivity to aerosol features over long distances in the atmosphere and resolve features approx. 100m. Optical systems that collect light onto small area detectors work well. Receiver optical designs are being optimized and data acquisition systems developed. CO2 line parameter characterization in progress In situ sensor calibration in progress for validation of DIAL CO2 system.

  19. MPL-Net Measurements of Aerosol and Cloud Vertical Distributions at Co-Located AERONET Sites

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Tsay, Si-Chee; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    In the early 1990s, the first small, eye-safe, and autonomous lidar system was developed, the Micropulse Lidar (MPL). The MPL acquires signal profiles of backscattered laser light from aerosols and clouds. The signals are analyzed to yield multiple layer heights, optical depths of each layer, average extinction-to-backscatter ratios for each layer, and profiles of extinction in each layer. In 2000, several MPL sites were organized into a coordinated network, called MPL-Net, by the Cloud and Aerosol Lidar Group at NASA Goddard Space Flight Center (GSFC) using funding provided by the NASA Earth Observing System. tn addition to the funding provided by NASA EOS, the NASA CERES Ground Validation Group supplied four MPL systems to the project, and the NASA TOMS group contributed their MPL for work at GSFC. The Atmospheric Radiation Measurement Program (ARM) also agreed to make their data available to the MPL-Net project for processing. In addition to the initial NASA and ARM operated sites, several other independent research groups have also expressed interest in joining the network using their own instruments. Finally, a limited amount of EOS funding was set aside to participate in various field experiments each year. The NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project also provides funds to deploy their MPL during ocean research cruises. All together, the MPL-Net project has participated in four major field experiments since 2000. Most MPL-Net sites and field experiment locations are also co-located with sunphotometers in the NASA Aerosol Robotic Network. (AERONET). Therefore, at these locations data is collected on both aerosol and cloud vertical structure as well as column optical depth and sky radiance. Real-time data products are now available from most MPL-Net sites. Our real-time products are generated at times of AERONET aerosol optical depth (AOD) measurements. The AERONET AOD is used as input to our

  20. Backscatter measurements for NIF ignition targets (invited).

    PubMed

    Moody, J D; Datte, P; Krauter, K; Bond, E; Michel, P A; Glenzer, S H; Divol, L; Niemann, C; Suter, L; Meezan, N; MacGowan, B J; Hibbard, R; London, R; Kilkenny, J; Wallace, R; Kline, J L; Knittel, K; Frieders, G; Golick, B; Ross, G; Widmann, K; Jackson, J; Vernon, S; Clancy, T

    2010-10-01

    Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of ∼15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

  1. Arctic aerosol and cloud measurements performed during IAOOS 2014

    NASA Astrophysics Data System (ADS)

    Mariage, Vincent; Pelon, Jacques; Blouzon, Frédéric; Geyskens, Nicolas; Amarouche, Nadir; Drezen, Christine; Calzas, Michel; Victori, Stéphane; Garracio, Magali; Desautez, Alain; Pascal, Nicolas; Foujols, Thomas; Sarkissian, Alain; Pommereau, Jean-Pierre; Sennechael, Nathalie; Provost, Christine

    2015-04-01

    Better understanding of atmosphere-ice-ocean interactions and in particular of the role of aerosols and clouds in this Earth system is of prime importance in the Arctic. In the frame of the French IAOOS Equipex project, a new observational network is planned to be developed for ocean-ice-atmosphere climate survey over the Arctic, starting in 2015, to complement satellite observations. Eye-safe lidar measurements will allow us to profile aerosols and clouds for the atmospheric part, with the objective to perform regular measurements and characterize the vertical structure and optical properties. Radiation and meteorological parameters will be measured at the surface. A first buoy has been prototyped and deployed in April 2014 at the Barneo site set by the Russian teams at the North Pole. Measurements with the first autonomous backscatter lidar ever deployed in the arctic have been taken from April to end of November 2014 before the buoy was lost. Four profiles a day have been performed allowing a good sampling of cloud variability. Observations have shown that the occurrence of low level clouds was higher than 90% during summer. The project is presented, instrument performance is described and first results are discussed.

  2. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  3. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  4. Electromagnetic backscattering by corner reflectors

    NASA Technical Reports Server (NTRS)

    Balanis, C. A.; Griesser, T.

    1986-01-01

    The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors.

  5. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis.

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Govindaraju, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). In this presentation we show comparisons of model produced AI with the corresponding OMI measurements during several months of 2007 characterized by a good sampling of dust and biomass burning events. In parallel, model produced Absorption Aerosol Optical Depth (AAOD) were compared to OMI AAOD for the same period, identifying regions where the model representation of absorbing aerosols were deficient. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain misplacement of plume height by the model.

  6. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  7. Backscatter Lidar Observations of Lower Tropospheric Dynamics during Southern California Wildfires

    NASA Astrophysics Data System (ADS)

    Beck, S. M.; Stoker, D. S.; Hecht, J. H.; Walterscheid, R.

    2008-12-01

    Wave-like features suggesting gravity waves were revealed by lidar observations of smoke layers produced by large wild fires in the Southern California region during a Santa Ana event. Lidar scattering from aerosols, which act as tracers of air motion, is perhaps the most sensitive and direct means of observing details of atmospheric oscillations in the lower troposphere. Over a period of five hours on October 25th and eight hours on October 26th in 2007 smoke from large fires in Southern California allowed such observations. Lidar backscatter profiles of multiple smoke layers, averaged over 1.5 minutes and with a vertical resolution of 3 meters were obtained up to 5 km altitude using a 355nm backscatter lidar located in El Segundo CA. Vertical profiles of temperature and winds were obtained for the lidar operational period from the ACARS system of commercial aircraft data. These profiles obtained from aircraft departing Los Angeles International Airport (LAX) were selected for temporal and spatial coincidence with the lidar observations. In addition, satellite images of the smoke distribution over the Los Angeles Basin and the coastal areas (including coastal waters) to the south were obtained from MODIS data from overflights 5.5 hours prior to the lidar observation window. The lidar data revealed persistent wavelike oscillations that showed no phase variation with altitude, and an amplitude of 20 m and a period near 12 minutes. The MODIS images show wavelike features with horizontal wavelengths of ~ 10 km or less. The temperature data showed an inversion layer topped at 500 m altitude. The wind data showed weak onshore flow below ~ 500 m and weak offshore flow above, consistent with a residual sea breeze near the surface and Santa Ana easterlies above. The Brunt-Vaisala frequency was nearly discontinuous near 500 m with a buoyancy period of ~ 3.5 minutes below and ~ 20 minutes above. This suggests the possibility that the observed waves were the evanescent

  8. Observations of Smoke Aerosol from Biomass Burning in Mexico: Effect of Particle Aging on Radiative Forcing and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Bruintjes, Roelof; Holben, Brent N.; Christopher, Sundar

    1999-01-01

    We take advantage of the May 1998 biomass burning event in Southern Mexico to test the global applicability of a smoke aerosol size model developed from data observed in South America. The Mexican event is an unique opportunity to observe well-aged, residual smoke. Observations of smoke aerosol size distribution made from vertical profiles of airborne in situ measurements show an inverse relationship between concentration and particle size that suggests the aging process continues more than a week after the smoke is separated from its fire sources. The ground-based radiometer retrievals show that the column-averaged, aged, Mexican smoke particles are larger (diameter = 0.28 - 0.33 micrometers) than the mean smoke particles in South America (diameter = 0.22 - 0.30 micrometers). However, the difference (delta - 0.06 micrometer) translates into differences in backscattering coefficient of only 4-7% and an increase of direct radiative forcing of only 10%.

  9. Solution of multifrequency lidar inverse problem for a pre-set marine aerosol size-distribution formula

    SciTech Connect

    Piskozub, J.

    1994-12-31

    The multifrequency lidar inverse problem discussed consists of calculating the size distribution of sol particles from backscattered lidar data. Sea-water (marine) aerosol is particularly well suited for this kind of study as its scattering characteristics can be accurately represented by Mie theory as its particles are almost spherical and their complex index of refraction is well known. Here, a solution of the inverse problem concerning finding aerosol size distribution for a multifrequency lidar system working on a small number of wavelengths is proposed. The solution involves a best-fit method of finding parameters in a pre-set formula of particle size distribution. A comparison of results calculated with the algorithm from experimental lidar profiles with PMS data collected in Baltic Sea coastal zone is given.

  10. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE PAGES

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; ...

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore » sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.« less

  11. Project Overview: Cumulus Humilis Aerosol Processing Study (CHAPS): Proposed Summer 2007 ASP Field Campaign

    SciTech Connect

    Berkowitz, Carl M.; Berg, Larry K.; Ogren, J. A.; Hostetler, Chris A.; Ferrare, Richard

    2006-05-18

    This white paper presents the scientific motivation and preliminary logistical plans for a proposed ASP field campaign to be carried out in the summer of 2007. The primary objective of this campaign is to use the DOE Gulfstream-1 aircraft to make measurements characterizing the chemical, physical and optical properties of aerosols below, within and above large fields of fair weather cumulus and to use the NASA Langley Research Center’s High Spectral Resolution Lidar (HSRL) to make independent measurements of aerosol backscatter and extinction profiles in the vicinity of these fields. Separate from the science questions to be addressed by these observations will be information to add in the development of a parameterized cumulus scheme capable of including multiple cloud fields within a regional or global scale model. We will also be able to compare and contrast the cloud and aerosol properties within and outside the Oklahoma City plume to study aerosol processes within individual clouds. Preliminary discussions with the Cloud and Land Surface Interaction Campaign (CLASIC) science team have identified overlap between the science questions posed for the CLASIC Intensive Operation Period (IOP) and the proposed ASP campaign, suggesting collaboration would benefit both teams.

  12. Aerosol Optical Thickness comparisons between NASA LaRC Airborne HSRL and AERONET during the DISCOVER-AQ field campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Hoff, R. M.; Holben, B. N.; Schafer, J.; McGill, M. J.; Yorks, J. E.; Lantz, K. O.; Michalsky, J. J.; Hodges, G.

    2013-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD and during January and February 2013 over the San Joaquin Valley (SJV) of California and also a scheduled deployment during September 2013 over Houston, TX. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the Mixing Layer Height (MLH). HSRL AOT is compared to AOT measured by the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) and long-term AERONET sites. For the 2011 campaign, comparisons of AOT at 532nm between HSRL-1 and AERONET showed excellent agreement (r = 0.98, slope = 1.01, intercept = 0.037) when the King Air flights were within 2.5 km of the ground site and 10 min from the retrieval time. The comparison results are similar for the 2013 DISCOVER-AQ campaign in the SJV. Additional ground-based (MPL) and airborne (CPL) lidar data were used to help screen for clouds in the AERONET observations during the SJV portion. AOT values from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) located at the Porterville, CA site during the SJV campaign are also compared to HSRL-2 AOT. Lastly, using the MLH retrieved from HSRL aerosol backscatter profiles, we describe the distribution of AOT relative to the MLH.

  13. Comparison of the aerosol optical properties and size distribution retrieved by sun photometer with in situ measurements at midlatitude

    NASA Astrophysics Data System (ADS)

    Chauvigné, Aurélien; Sellegri, Karine; Hervo, Maxime; Montoux, Nadège; Freville, Patrick; Goloub, Philippe

    2016-09-01

    Aerosols influence the Earth radiative budget through scattering and absorption of solar radiation. Several methods are used to investigate aerosol properties and thus quantify their direct and indirect impacts on climate. At the Puy de Dôme station, continuous high-altitude near-surface in situ measurements and low-altitude ground-based remote sensing atmospheric column measurements give the opportunity to compare the aerosol extinction measured with both methods over a 1-year period. To our knowledge, it is the first time that such a comparison is realised with continuous measurements of a high-altitude site during a long-term period. This comparison addresses to which extent near-surface in situ measurements are representative of the whole atmospheric column, the aerosol mixing layer (ML) or the free troposphere (FT). In particular, the impact of multi-aerosol layers events detected using lidar backscatter profiles is analysed. A good correlation between in situ aerosol extinction coefficient and aerosol optical depth (AOD) measured by the Aerosol Robotic Network (AERONET) sun photometer is observed with a correlation coefficient around 0.80, indicating that the in situ measurements station is representative of the overall atmospheric column. After filtering for multilayer cases and correcting for each layer optical contribution (ML and FT), the atmospheric structure seems to be the main factor influencing the comparison between the two measurement techniques. When the site lies in the ML, the in situ extinction represents 45 % of the sun photometer ML extinction while when the site lies within the FT, the in situ extinction is more than 2 times higher than the FT sun photometer extinction. Moreover, the assumption of a decreasing linear vertical aerosol profile in the whole atmosphere has been tested, significantly improving the instrumental agreement. Remote sensing retrievals of the aerosol particle size distributions (PSDs) from the sun photometer

  14. Spatial and temporal distribution of Arctic aerosols: new insights from the CALIPSO satellite

    NASA Astrophysics Data System (ADS)

    Di Pierro, Maurizio

    The Arctic is a receptor of pollution transported from distant regions. Pollution reaches the Arctic both in gaseous and aerosol form, both of which have important climatic and ecological implications. This dissertation focuses on aerosols in the Arctic, specifically their transport to and their distribution in space and time within the arctic troposphere. The cornerstone of this thesis is the analysis of the retrievals made by the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a two-wavelength polarization-sensitive lidar that measures the atmospheric attenuated backscatter return and provides high-resolution vertical profiles of aerosols and clouds. Chapter 2 uses CALIOP observations to follow the evolution of pollution aerosols transported from East Asia to the Arctic. The transport pathway is elucidated with backtrajectories and aerosol simulations with the GEOS-Chem chemical transport model. The polluted air mass experiences strong ascent within a cyclonic circulation near the source region. Once in the free troposphere, a block in the upper-air flow forces the circulation to take on a strongly southerly route. Since the air mass reaches the Arctic very rapidly (3-5 days), the aerosol scavenging is incomplete. Transport is nearly-isentropic except in its initial phase. Once in the Arctic, the aerosol plume slowly subsides due to radiative cooling. Using six years of CALIOP observations, Chapter 3 focuses on the horizontal, vertical and temporal distribution of Arctic aerosols. At low altitudes in the High Arctic (poleward of 70°N), aerosol extinctions maximize in winter/early spring and reach their lowest values during summer. In the lower troposphere in the Low Arctic, in addition to the winter/early spring maximum, aerosol extinctions also display a secondary maximum in summer due to boreal forest fires. CALIOP measurements show that a major low-level Eurasian pollution transport pathway occurs on the western flank of the

  15. Development of a global backscatter model for NASA's laser atmospheric wind sounder

    NASA Technical Reports Server (NTRS)

    Bowdle, David; Collins, Laurie; Mach, Douglas; Mcnider, Richard; Song, Aaron

    1992-01-01

    During the Contract Period April 1, 1989, to September 30, 1992, the Earth Systems Science Laboratory (ESSL) in the Research Institute at the University of Alabama in Huntsville (UAH) conducted a program of basic research on atmospheric backscatter characteristics, leading to the development of a global backscatter model. The ESSL research effort was carried out in conjunction with the Earth System Observing Branch (ES43) at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, as part of NASA Contract NAS8-37585 under the Atmospheric Dynamics Program at NASA Headquarters. This research provided important inputs to NASA's GLObal Backscatter Experiment (GLOBE) program, especially in the understanding of global aerosol life cycles, and to NASA's Doppler Lidar research program, especially the development program for their prospective space-based Laser Atmospheric Wind Sounder (LAWS).

  16. Lidar Measurements of Aerosol and Ozone Distributions During the 1992 Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Butler, C. F.; Fenn, M. A.; Grant, W. B.; Carter, A. F.

    1992-01-01

    The LaRC airborne lidar system was operated from the ARC DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition (ASEE-2) to investigate the distribution of stratospheric aerosols and O3 across the Arctic vortex from Jan. to Mar. 1992. Monthly flights were made across the Arctic vortex from Anchorage, Alaska, to Stavanger, Norway, and then back to Bangor, Maine, and additional round-trip flights north into the vortex were made each month from either Stavanger or Bangor depending on the location of the vortex that month. The airborne lidar system uses the differential absorption lidar (DIAL) technique at laser wavelengths of 301.5 and 310.8 nm to measure O3 profiles above the DC-8 over the 12-25 km altitude range. Lidar measurements of aerosol backscatter and depolarization profiles over the 12-30 km altitude range are made simultaneously with the O3 measurements using infrared (IR) and visible (VIS) laser wavelengths of 603 and 1064 nm, respectively. The measurements of Pinatubo aerosols, polar stratospheric clouds, and O3 made with the airborne DIAL system during the AASE-2 expedition and to chemical and dynamical process that contribute to O3 depletion in the wintertime Arctic stratosphere.

  17. Vertical Profiles of Light Scattering, Light Absorption, and Single Scattering Albedo during the Dry, Biomass Burning Season in Southern Africa and Comparisons of In Situ and Remote Sensing Measurements of Aerosol Optical Depths

    NASA Technical Reports Server (NTRS)

    Magi, Brian I.; Hobbs, Peter V.; Schmid, Beat; Redermann, Jens

    2003-01-01

    Airborne in situ measurements of vertical profiles of aerosol light scattering, light absorption, and single scattering albedo (omega (sub 0)) are presented for a number of locations in southern Africa during the dry, biomass burning season. Features of the profiles include haze layers, clean air slots, and marked decreases in light scattering in passing from the boundary layer into the free troposphere. Frequency distributions of omega (sub 0) reflect the strong influence of smoke from biomass burning. For example, during a period when heavy smoke was advected into the region from the north, the mean value of omega (sub 0) in the boundary layer was 0.81 +/- 0.02 compared to 0.89 +/- 0.03 prior to this intrusion. Comparisons of layer aerosol optical depths derived from the in situ measurements with those measured by a Sun photometer aboard the aircraft show excellent agreement.

  18. Cloud-Aerosol Interactions: Retrieving Aerosol Ångström Exponents from Calipso Measurements of Opaque Water Clouds

    NASA Astrophysics Data System (ADS)

    Vaughan, Mark; Liu, Zhaoyan; Hu, Yong-Xiang; Powell, Kathleen; Omar, Ali; Rodier, Sharon; Hunt, William; Kar, Jayanta; Tackett, Jason; Getzewich, Brian; Lee, Kam-Pui

    2016-06-01

    Backscatter and extinction from water clouds are well-understood, both theoretically and experimentally, and thus changes to the expected measurement of layer-integrated attenuated backscatter can be used to infer the optical properties of overlying layers. In this paper we offer a first look at a new retrieval technique that uses CALIPSO measurements of opaque water clouds to derive optical depths and Ångström exponents for overlying aerosol layers.

  19. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  20. A self-directing elastic backscatter lidar system for debris cloud tracking and characterization

    SciTech Connect

    Clark, D.A.; Dighe, K.A.; Tunnell, T.W.

    1996-06-01

    An elastic backscatter lidar that utilizes the lidar signal itself to direct the system towards fast moving isolated aerosol clouds has been developed. However, detecting and tracking invisible transient effluents from unknown locations, though conceptually straightforward, has still remained experimentally challenging. Accurate cloud volume, cloud density distribution, and track information have been obtained on small, fast moving, subvisible debris clouds resulting from above ground tests in which conventional explosives were detonated.

  1. Lidar Measurements of Tropospheric Wind Profiles with the Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Mathur, Savyasachee; Chen, Huailin

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. A variety of direct detection Doppler wind lidar measurements have recently been reported indicating the growing interest in this area. Our program at Goddard has concentrated on the development of the edge technique for lidar wind measurements. Implementations of the edge technique using either the aerosol or molecular backscatter for the Doppler wind measurement have been described. The basic principles have been verified in lab and atmospheric lidar wind experiments. The lidar measurements were obtained with an aerosol edge technique lidar operating at 1064 nm. These measurements demonstrated high spatial resolution (22 m) and high velocity sensitivity (rms variances of 0.1 m/s) in the planetary boundary layer (PBL). The aerosol backscatter is typically high in the PBL and the effects of the molecular backscatter can often be neglected. However, as was discussed in the original edge technique paper, the molecular contribution to the signal is significant above the boundary layer and a correction for the effects of molecular backscatter is required to make wind measurements. In addition, the molecular signal is a dominant source of noise in regions where the molecular to aerosol ratio is large since the energy monitor channel used in the single edge technique measures the sum of the aerosol and molecular signals. To extend the operation of the edge technique into the free troposphere we

  2. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  3. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  4. CALIPSO Observations of Volcanic Aerosol in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Pitts, Michael C.

    2008-01-01

    In the stratosphere, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) has observed the presence of aerosol plumes associated with the eruptions several volcanoes including Montserrat (May 2006), Chaiten (May 2008), and Kasatochi (August 2008). While the dense ash plumes from these eruptions dissipate relatively quickly, CALIPSO continued to detect an enhanced aerosol layer from the Montserrat eruption from the initial observations in June 2006 well into 2008. Solar occultation missions were uniquely capable of monitoring stratospheric aerosol. However, since the end of long-lived instruments like the Stratospheric Aerosol and Gas Experiment (SAGE II), there has been no clear space-based successor instrument. A number of active instruments, some employing new techniques, are being evaluated as candidate sources of stratospheric aerosol data. Herein, we examine suitability of the CALIPSO 532-nm aerosol backscatter coefficient measurements.

  5. Profiles.

    ERIC Educational Resources Information Center

    School Arts, 1979

    1979-01-01

    Profiles seven Black, Native American, and Chicano artists and art teachers: Hale A. Woodruff, Allan Houser, Luis Jimenez, Betrand D. Phillips, James E. Pate, I, and Fernando Navarro. This article is part of a theme issue on multicultural art. (SJL)

  6. Inter-comparison of MAX-DOAS Retrieved Vertical Profiles of Aerosol Extinction, SO2 and NO2 in the Alberta Oil Sands with LIDAR Data and GEM-MACH Air Quality Model.

    NASA Astrophysics Data System (ADS)

    Davis, Zoe; Friess, Udo; Strawbridge, Kevin; Whiteway, James; Aggarwal, Monika; Makar, Paul; Li, Shao-Meng; O'Brien, Jason; Baray, Sabour; Schnitzler, Elijah; Olfert, Jason S.; Osthoff, Hans D.; Lobo, Akshay; McLaren, Robert

    2016-04-01

    Understanding industrial emissions of trace gas pollutants in the Alberta oil sands is essential to maintaining air quality standards and informing public policy. Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of trace gases can improve knowledge of pollutant levels, vertical distribution and chemical transformation. During an intensive air measurement campaign to study emissions, transport, transformation and deposition of oil sands air pollutants from August to September of 2013, a MAX-DOAS instrument was deployed at a site north of Fort McMurray, Alberta to determine the vertical profiles of aerosol extinction, NO2 and SO2 through retrieval from the MAX-DOAS spectral measurements using an optimal estimation method. The large complement of data collected from multiple instruments deployed during this field campaign provides a unique opportunity to validate and characterize the performance of the MAX-DOAS vertical profile retrievals. Aerosol extinction profiles determined from two Light Detection and Ranging (LIDAR) instruments, one collocated and the other on a Twin Otter aircraft that flew over the site during the study, will be compared to the MAX-DOAS aerosol extinction profile retrievals. Vertical profiles of NO2 and SO2 retrieved from the MAX-DOAS measurements will be further compared with the composite vertical profiles measured from the flights of a second aircraft, the NRC-Convair 580, over the field site during the same measurement period. Finally, the MAX-DOAS retrieved tropospheric vertical column densities (VCDs) of SO2 and NO2 will be compared to the predicted VCDs from Environment and Climate Change Canada's Global Environmental Multi-scale - Modelling Air quality and Chemistry (GEM-MACH) air quality model over the grid cell containing the field site. Emission estimates of SO2 from the major oil mining facility Syncrude Mildred Lake using the MAX-DOAS VCD results, validated through the detailed characterization above

  7. Stimulated Raman backscattering of laser radiation in deep plasma channels

    NASA Astrophysics Data System (ADS)

    Kalmykov, S. Yu.; Shvets, G.

    2004-10-01

    Stimulated Raman backscattering (RBS) of intense laser radiation confined by a single-mode plasma channel with a radial variation of plasma frequency greater than a homogeneous-plasma RBS bandwidth is characterized by a strong transverse localization of resonantly driven electron plasma waves (EPW). The EPW localization reduces the peak growth rate of RBS and increases the amplification bandwidth. The continuum of nonbound modes of backscattered radiation shrinks the transverse field profile in a channel and increases the RBS growth rate. Solution of the initial-value problem shows that an electromagnetic pulse amplified by the RBS in the single-mode deep plasma channel has a group velocity higher than in the case of homogeneous-plasma Raman amplification. Implications to the design of a RBS pulse compressor in a plasma channel are discussed.

  8. On retrieval of lidar extinction profiles using Two-Stream and Raman techniques

    NASA Astrophysics Data System (ADS)

    Stachlewska, I. S.; Ritter, C.

    2010-03-01

    The Two-Stream technique employs simultaneous measurements performed by two elastic backscatter lidars pointing at each other to sample into the same atmosphere. It allows for a direct retrieval of the extinction coefficient profile from the ratio of the two involved lidar signals. During a number of Alfred-Wegener-Institute (AWI) campaigns dedicated to Arctic research, the AWI's Polar 2 aircraft with the integrated onboard nadir-pointing Airborne Mobile Aerosol Lidar (AMALi) was utilised. The aircraft flew over a vicinity of Ny Ålesund on Svalbard, where the zenith-pointing Koldewey Aerosol Raman Lidar (KARL) has been located. This experimental approach gave the unique opportunity to retrieve the extinction profiles with a rarely used Two-Stream technique against a well established Raman technique. Both methods were applied to data obtained for clean Arctic conditions during the Arctic Study of Tropospheric clouds and Radiation (ASTAR 2004) campaign, and slightly polluted Arctic conditions during the Svalbard Experiment (SvalEx 2005) campaign. Successful comparison of both evaluation tools in different measurement conditions demonstrates sensitivity and feasibility of the Two-Stream method to obtain particle extinction and backscatter coefficients profiles without assumption of their relationship (lidar ratio). The method has the potential to serve as an extinction retrieval tool for KARL or AMALi simultaneous observations with the space borne CALIPSO lidar overpasses during the ASTAR 2007.

  9. An evaluation of CALIOP/CALIPSO's aerosol-above-cloud detection and retrieval capability over North America

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M.; Redemann, J.; Vaughan, M. A.; Omar, A. H.; Russell, P. B.; Burton, S.; Rogers, R. R.; Ferrare, R. A.; Hostetler, C. A.

    2014-01-01

    Assessing the accuracy of the aerosol-above-cloud (AAC) properties derived by CALIOP (the Cloud-Aerosol Lidar with Orthogonal Polarization) is challenged by the shortage of accurate global validation measurements. We have used measurements of aerosol vertical profiles from the NASA Langley airborne High Spectral Resolution Lidar (HSRL-1) in 86 CALIOP-coincident flights to evaluate CALIOP AAC detection, classification, and retrieval. Our study shows that CALIOP detects ~23% of the HSRL-detected AAC. According to our CALIOP-HSRL data set, the majority of AAC aerosol optical depth (AOD) values are < 0.1 at 532 nm over North America. Our analyses show that the standard CALIOP retrieval algorithm substantially underestimates the occurrence frequency of AAC when optical depths are less than ~0.02. Those aerosols with low AOD values can still have a consequent radiative forcing effect depending on the underlying cloud cover and overlying aerosol absorption properties. We find essentially no correlation between CALIOP and HSRL AAC AOD (R2 = 0.27 and N = 151). We show that the CALIOP underestimation of AAC is mostly due to tenuous aerosol layers with backscatter less than the CALIOP detection threshold. The application of an alternate CALIOP AAC retrieval method (depolarization ratio) to our data set yields very few coincident cases. We stress the need for more extensive suborbital CALIOP validation campaigns to acquire a process-level understanding of AAC implications and further evaluate CALIOP's AAC detection and retrieval capability, especially over the ocean and in different parts of the world where AAC are more frequently observed and show higher values of AOD.

  10. Estimation of volcanic ash emission profiles using ceilometer measurements and transport models

    NASA Astrophysics Data System (ADS)

    Chan, Ka Lok; Geiß, Alexander; Gasteiger, Josef; Wagner, Frank; Wiegner, Matthias

    2016-04-01

    In recent years, the number of active remote sensing systems grows rapidly, since several national weather services initiated ceilometer networks. These networks are excellent tools to monitor the dispersion of volcanic ash clouds and to validate chemical transport models. Moreover, it is expected that the can be used to refine model calculations to better predict situations that might be dangerous for aviation. As a ceilometer can be considered as a simple single-wavelength backscatter lidar, quantitative aerosol profile information, i.e., the aerosol backscatter coefficient (βp) profile, can be derived provided that the ceilometer is calibrated. Volcanic ash concentration profile can then be estimated by using prior optical properties of volcanic ash. These profiles are then used for the inverse calculation of the emission profile of the volcanic eruption, thus, improving one of the most critical parameters of the numerical simulation. In this study, the Lagrangian particle dispersion model FLEXPART (FLEXible PARTicle dispersion model) is used to simulate the dispersion of volcanic ash. We simulate the distribution of ash for a given time/height grid, in order to compute the sensitivity functions for each measurements. As an example we use ceilometer measurements of the German weather service to reconstruct the temporal and spatial emission profile of Eyjafjallajökull eruption in April 2010. We have also examined the sensitivity of the retrieved emission profiles to different measurement parameters, e.g., geolocation of the measurement sites, total number of measurement sites, temporal and vertical resolution of the measurements, etc. The first results show that ceilometer measurements in principle are feasible for the inversion of volcanic ash emission profiles.

  11. New Examination of the Traditional Raman Lidar Technique II: Evaluating the Ratios for Water Vapor and Aerosols

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.

  12. Beta Backscatter Measures the Hardness of Rubber

    NASA Technical Reports Server (NTRS)

    Morrissey, E. T.; Roje, F. N.

    1986-01-01

    Nondestructive testing method determines hardness, on Shore scale, of room-temperature-vulcanizing silicone rubber. Measures backscattered beta particles; backscattered radiation count directly proportional to Shore hardness. Test set calibrated with specimen, Shore hardness known from mechanical durometer test. Specimen of unknown hardness tested, and radiation count recorded. Count compared with known sample to find Shore hardness of unknown.

  13. Application of the LIRIC algorithm for the characterization of aerosols during the Airborne Romanian Measurements of Aerosols and Trace gases (AROMAT) campaign

    NASA Astrophysics Data System (ADS)

    Stefanie, Horatiu; Nicolae, Doina; Nemuc, Anca; Belegante, Livio; Toanca, Florica; Ajtai, Nicolae; Ozunu, Alexandru

    2015-04-01

    The ESA/ESTEC AROMAT campaign (Airborne Romanian Measurements of Aerosols and Trace gases) was held between 1st and 14th of September 2014 with the purpose to test and inter-compare newly developed airborne and ground-based instruments dedicated to air quality studies in the context of validation programs of the forthcoming European Space Agency satellites (Sentinel 5P, ADM-Aeolus and EarthCARE). Ground-based remote sensing and airborne in situ measurements were made in southern Romania in order to assess the level and the variability of NO2 and particulate matter, focusing on two areas of interest: SW (Turceni), where many coal based power plants are operating, and SE (Bucharest), affected by intense traffic and partially by industrial pollution. In this paper we present the results obtained after the application of the Lidar - Radiometer Inversion Code (LIRIC) algorithm on combined lidar and sunphotometer data collected at Magurele, 6 km South Bucharest. Full lidar data sets in terms of backscatter signals at 355, 532 and 1064 nm, as well as depolarization at 532 nm were used and combined with Aerosol Robotic Network (AERONET) data, in order to retrieve the profiles of aerosol volume concentrations, separated as fine, spherical and spheroidal coarse modes. Preliminary results showed that aerosols generated by traffic and industrial activities were present in the Planetary Boundary Layer, while biomass burning aerosols transported from the Balkan Peninsula were detected in the upper layers. Acknowledgements: ***This work has been supported by Programme for Research- Space Technology and Advanced Research - STAR, project number 55/2013 - CARESSE. ***The financial support by the European Community's FP7 - PEOPLE 2011 under ITaRS Grant Agreement n° 289923 is gratefully acknowledged.

  14. Validation of automated supervised segmentation of multibeam backscatter data from the Chatham Rise, New Zealand

    NASA Astrophysics Data System (ADS)

    Hillman, Jess I. T.; Lamarche, Geoffroy; Pallentin, Arne; Pecher, Ingo A.; Gorman, Andrew R.; Schneider von Deimling, Jens

    2017-01-01

    Using automated supervised segmentation of multibeam backscatter data to delineate seafloor substrates is a relatively novel technique. Low-frequency multibeam echosounders (MBES), such as the 12-kHz EM120, present particular difficulties since the signal can penetrate sever