Science.gov

Sample records for aerosol backscatter-to-extinction ratio

  1. Iterative method to determine an averaged backscatter-to-extinction ratio in cirrus clouds.

    PubMed

    Elouragini, S; Flamant, P H

    1996-03-20

    An iterative method to determine an average backscatter-to-extinction ratio and extinction coefficient simultaneously in cirrus clouds is proposed. The method is based on Klett's inversion, which is constrained by the total optical depth. A signal-to-noise ratio greater than 3 at the cloud top is required for an error in the backscatter-to-extinction ratio lower than 20% to result. The method has been tested with simulated lidar signals. An application to an experimental lidar signal is discussed.

  2. Retrieval of aerosol aspect ratio from optical measurements in Vienna

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Horvath, H.; Gangl, M.

    The phase function and extinction coefficient measured simultaneously are interpreted in terms of surface distribution function and mean effective aspect ratio of aerosol particles. All optical data were collected in the atmosphere of Vienna during field campaign in June 2005. It is shown that behavior of aspect ratio of Viennese aerosols has relation to relative humidity in such a way, that nearly spherical particles (with aspect ratio ɛ≈1) might became aspherical with ɛ≈1.3-1.6 under low relative humidity conditions. Typically, >80% of all Viennese aerosols have the aspect ratio <1.4, so the morphology of these particles behaves like perturbed spheres. The ɛ, exceptionally, can reach the value about 2, but these situations occur with probability <2%. Most typically, the aspect ratio peaks at ɛ≈1.2 in the atmosphere of Vienna.

  3. Characterisation of regional ambient biomass burning organic aerosol mixing ratios

    NASA Astrophysics Data System (ADS)

    Jolleys, M.; Coe, H.; McFiggans, G.; Capes, G.; Allan, J. D.; Crosier, J.; Williams, P.; Allen, G.; Bower, K.; Jimenez, J. L.; Russell, L. M.; Grutter, M.; Baumgardner, D.

    2012-12-01

    No evidence for a regional additional source of secondary organic aerosol (SOA) has been identified in measurements of biomass burning-influenced ambient air masses. Measurements included in this study were obtained from the deployment of an Aerodyne Quadrupole Aerosol Mass Spectrometer during four field campaigns, involving both research aircraft flights and ground-based measurements. OA concentrations normalised to excess CO (OA/dCO) show strong regional and local scale variability, with a difference of almost a factor of five across fresh OA emissions between campaigns. Average OA/dCO is typically higher in the near-field than at a greater distance from source, indicating an absence of significant SOA formation, despite evidence to suggest OA becomes increasingly oxidized with age. This trend is in contrast with observations of anthropogenic OA in urban environments, where OA/dCO is consistently shown to increase with distance from source. There is no such agreement in the case of biomass burning OA (BBOA) amongst the literature base, with conflicting examples relating to the influence of SOA on aerosol loadings. A wide range of average initial emission ratios (ERs) close to source are observed both within the datasets analysed here and within the literature, together with considerable variability in individual OA/dCO values throughout fresh biomass burning plumes. The extent of this variability far outweighs any increase in OA/dCO in the few instances it is observed here, suggesting that source conditions are of greater importance for the propagation of BBOA loadings within the ambient atmosphere. However, the implications of ageing on OA/dCO variability appear to be highly uncertain, with little consistency between observed trends for different locations. Furthermore, the exact effects of the fire conditions influencing emissions from biomass burning events remain poorly constrained. These uncertainties regarding the evolution of biomass burning emissions

  4. New Examination of the Traditional Raman Lidar Technique II: Temperature Dependence Aerosol Scattering Ratio and Water Vapor Mixing Ratio Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman water vapor signal and the lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here we use those results to derive the temperature dependent forms of the equations for the aerosol scattering ratio, aerosol backscatter coefficient, extinction to backscatter ratio and water vapor mixing ratio. Pertinent analysis examples are presented to illustrate each calculation.

  5. Temporal consistency of lidar observations during aerosol transport events in the framework of the ChArMEx/ADRIMED campaign at Minorca in June 2013

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Totems, Julien; Ancellet, Gérard; Pelon, Jacques; Sicard, Michaël

    2016-03-01

    We performed synergetic daytime and nighttime active and passive remote-sensing observations at Minorca (Balearic Islands, Spain), over more than 3 weeks during the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Effect in the Mediterranean (ChArMEx/ADRIMED) special observation period (SOP 1a, June-July 2013). We characterized the aerosol optical properties and type in the low and middle troposphere using an automated procedure combining Rayleigh-Mie-Raman lidar (355, 387 and 407 nm) with depolarization (355 nm) and AERONET Cimel® sun-photometer data. Results show a high variability due to varying dynamical forcing. The mean column-averaged lidar backscatter-to-extinction ratio (BER) was close to 0.024 sr-1 (lidar ratio of ˜ 41.7 sr), with a large dispersion of ±33 % over the whole observation period due to changing atmospheric transport regimes and aerosol sources. The ground-based remote-sensing measurements, coupled with satellite observations, allowed the documentation of (i) dust particles up to 5 km (above sea level) in altitude originating from Morocco and Algeria from 15 to 18 June with a peak in aerosol optical thickness (AOT) of 0.25 ± 0.05 at 355 nm, (ii) a long-range transport of biomass burning aerosol (AOT = 0.18 ± 0.16) related to North American forest fires detected from 26 to 28 June 2013 by the lidar between 2 and 7 km and (iii) mixture of local sources including marine aerosol particles and pollution from Spain. During the biomass burning event, the high value of the particle depolarization ratio (8-14 %) may imply the presence of dust-like particles mixed with the biomass burning aerosols in the mid-troposphere. For the field campaign period, we also show linearity with SEVIRI retrievals of the aerosol optical thickness despite 35 % relative bias, which is discussed as a function of aerosol type.

  6. Temporal consistency of lidar observables during aerosol transport events in the framework of the ChArMEx/ADRIMED campaign at Menorca Island in June 2013

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Totems, J.; Ancellet, G.; Pelon, J.; Sicard, M.

    2015-11-01

    We performed synergetic daytime and night-time active and passive remote sensing observations at Menorca (Balearic Island, Spain), over more than 3 weeks during the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Effect in the Mediterranean (ChArMEx/ADRIMED) special observation period (SOP 1a, June-July 2013). We characterized the aerosol optical properties and type in the low and middle troposphere using an automated procedure combining Rayleigh-Mie-Raman lidar (355, 387 and 407 nm) with depolarization (355 nm) and AERONET Cimel® sun-photometer data. Results show a high variability due to varying dynamical forcing. The mean column-averaged lidar backscatter-to-extinction ratio (BER) was close to 0.024 sr-1 (lidar ratio of ∼ 41.7 sr), with a large dispersion of ±33 % over the whole observation period due to changing atmospheric transport regimes and aerosol sources. The ground-based remote sensing measurements, coupled with satellite observations, allowed to document (i) dust particles up to 5 km a.s.l. in altitude originating from Morocco and Algeria from 15 to 18 June with a peak in aerosol optical thickness (AOT) of 0.25 ± 0.05 at 355 nm, (ii) a long-range transport of biomass burning aerosol (AOT = 0.18 ± 0.16) related to North American forest fires detected from 26 to 28 June 2013 by the lidar between 2 and 7 km and (iii) mixture of local sources including marine aerosol particles and pollution from Spain. During the biomass burning event, the high value of the particle depolarization ratio (8-14 %) may imply the presence of dust-like particles mixed with the biomass burning aerosols in the mid troposphere. We show also linearity with SEVIRI retrievals of the aerosol optical thickness within 35 % relative bias, which is discussed as a function of aerosol type.

  7. Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars.

    PubMed

    Feiyue, Mao; Wei, Gong; Yingying, Ma

    2012-02-15

    The aerosol lidar ratio is a key parameter for the retrieval of aerosol optical properties from elastic lidar, which changes largely for aerosols with different chemical and physical properties. We proposed a method for retrieving the aerosol lidar ratio profile by combining simultaneous ground- and space-based elastic lidars. The method was tested by a simulated case and a real case at 532 nm wavelength. The results demonstrated that our method is robust and can obtain accurate lidar ratio and extinction coefficient profiles. Our method can be useful for determining the local and global lidar ratio and validating space-based lidar datasets.

  8. New approach for aerosol profiling with a lidar onboard an ultralight aircraft: application to the African Monsoon Multidisciplinary Analysis.

    PubMed

    Chazette, Patrick; Sanak, Joseph; Dulac, François

    2007-12-15

    A new airborne instrumental payload has been designed for an ultralight aircraft to determine the vertical profile of aerosol optical properties. It is based on Lidar Aérosols UltraViolet Aéroporté (LAUVA), a compact backscattering lidar system emitting at the wavelength of 355 nm. We operated this airborne configuration in the Sahel from the city of Niamey (Niger) during the first campaign of the African Monsoon Multidisciplinary Analysis (AMMA) in January-February 2006, when aerosols from both soil dust and savannah fires cause large visibility reductions. We take advantage of the lidar capability of pointing in different directions for retrieving the vertical profile of the aerosol backscatter to extinction ratio (BER). A synergy with a scatterometer (880 nm) and a ground-based sunphotometer allows us to further determine the vertical profile of Angström exponent (a). We identify three types of aerosol layers up to about 5 km below the free troposphere, dominated by biomass burning (BB) particles, mineral dust (D) particles, and a mixing between BB and D particles, respectively, associated with BER (a) values close to 0.008 sr(-1) (1.5), 0.025 sr(-1) (0), and 0.015 sr(-1) (0.4-1).

  9. Predicted modification of the O/C ratio of SOA due to cloud and aerosol processing

    NASA Astrophysics Data System (ADS)

    Carlton, A. G.; Ervens, B.

    2011-12-01

    The formation of secondary organic aerosol formation in cloud and aerosol water (aqSOA) has attracted great attention over the past years and many laboratory data are available to describe such processes in detail. While it has been recognized that aqSOA formation might significantly contribute to the total SOA budget in humid and cloudy regions, the modification of individual aerosol properties, such as oxygenation state (O/C ratio), size (distribution), and light-absorbing properties has not been explored by means of model studies. Precursors of aqSOA are more highly oxidized and water-soluble than those for traditional (gas)SOA and thus aqSOA products have also distinctly higher O/C ratio. Since aqSOA occurs in clouds and in aerosol water at elevated RH, aerosols modified by such processes exhibit a unique vertical profile as compared to gasSOA and add to the organic carbon budget aloft. In this process model study, we will show the extent to which the O/C ratio of aerosols is modified due to aqSOA formation in cloud and aerosol water. The O/C ratio can be considered as a proxy for other aerosol properties such as hygroscopicity (particle growth and CCN activity) and interactions with light (scattering/absorption) which affect the direct and indirect aerosol effects on radiation. Implications of aqSOA formation on these aerosol properties as a function of vertical profile will be discussed.

  10. Study of MPLNET-Derived Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version 3 Backscatter and Extinction Products

    NASA Technical Reports Server (NTRS)

    Misra, Amit; Tripathi, S. N.; Kaul, D. S.; Welton, Ellsworth J.

    2012-01-01

    The level 2 aerosol backscatter and extinction profiles from the NASA Micropulse Lidar Network (MPLNET) at Kanpur, India, have been studied from May 2009 to September 2010. Monthly averaged extinction profiles from MPLNET shows high extinction values near the surface during October March. Higher extinction values at altitudes of 24 km are observed from April to June, a period marked by frequent dust episodes. Version 3 level 2 Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol profile products have been compared with corresponding data from MPLNET over Kanpur for the above-mentioned period. Out of the available backscatter profiles, the16 profiles used in this study have time differences less than 3 h and distances less than 130 km. Among these profiles, four cases show good comparison above 400 m with R2 greater than 0.7. Comparison with AERONET data shows that the aerosol type is properly identified by the CALIOP algorithm. Cloud contamination is a possible source of error in the remaining cases of poor comparison. Another source of error is the improper backscatter-to-extinction ratio, which further affects the accuracy of extinction coefficient retrieval.

  11. Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations

    NASA Astrophysics Data System (ADS)

    Cattrall, Christopher; Reagan, John; Thome, Kurt; Dubovik, Oleg

    2005-05-01

    The lidar (extinction-to-backscatter) ratios at 0.55 and 1.02 μm and the spectral lidar, extinction, and backscatter ratios of climatically relevant aerosol species are computed on the basis of selected retrievals of aerosol properties from 26 Aerosol Robotic Network (AERONET) sites across the globe. The values, obtained indirectly from sky radiance and solar transmittance measurements, agree very well with values from direct observations. Low mean values of the lidar ratio, Sa, at 0.55 μm for maritime (27 sr) aerosols and desert dust (42 sr) are clearly distinguishable from biomass burning (60 sr) and urban/industrial pollution (71 sr). The effects of nonsphericity of mineral dust are shown, demonstrating that particle shape must be taken into account in any spaceborne lidar inversion scheme. A new aerosol model representing pollution over Southeast Asia is introduced since lidar (58 sr), color lidar, and extinction ratios in this region are distinct from those over other urban/industrial centers, owing to a greater number of large particles relative to fine particles. This discrimination promises improved estimates of regional climate forcing by aerosols containing black carbon and is expected to be of utility to climate modeling and remote sensing communities. The observed variability of the lidar parameters, combined with current validated aerosol data products from Moderate Resolution Imaging Spectroradiometer (MODIS), will afford improved accuracy in the inversion of spaceborne lidar data over both land and ocean.

  12. Multiply scattered aerosol lidar returns: inversion method and comparison with in situ measurements.

    PubMed

    Bissonnette, L R; Hutt, D L

    1995-10-20

    A novel aerosol lidar inversion method based on the use of multiple-scattering contributions measured by a multiple-field-of-view receiver is proposed. The method requires assumptions that restrict applications to aerosol particles large enough to give rise to measurable multiple scattering and depends on parameters that must be specified empirically but that have an uncertainty range of much less than the boundary value and the backscatter-to-extinction ratio of the conventional single-scattering inversion methods. The proposed method is applied to cloud measurements. The solutions obtained are the profiles of the scattering coefficient and the effective diameter of the cloud droplets. With mild assumptions on the form of the function, the full-size distribution is estimated at each range position from which the extinction coefficient at any visible and infrared wavelength and the liquid water content can be determined. Typical results on slant-path-integrated optical depth, vertical extinction profiles, and fluctuation statistics are compared with in situ data obtained in two field experiments. The inversion works well in all cases reported here, i.e., for water clouds at optical depths between ~0.1 and ~4.

  13. Organic Mass to Organic Carbon ratio in Atmospheric Aerosols: Observations and Global Simulations

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Kanakidou, M.; Daskalakis, N.

    2012-12-01

    Organic compounds play an important role in atmospheric chemistry and affect Earth's climate through their impact on oxidants and aerosol formation (e.g. O3 and organic aerosols (OA)). Due to the complexity of the mixture of organics in the atmosphere, the organic-mass-to-organic-carbon ratio (OM/OC) is often used to characterize the organic component in atmospheric aerosols. This ratio varies dependant on the aerosol origin and the chemical processing in the atmosphere. Atmospheric observations have shown that as OA and its precursor gases age in the atmosphere, it leads to the formation of more oxidized (O:C atomic ratio 0.6 to 0.8), less volatile and less hydrophobic compounds (particle growth factor at 95% relative humidity of 0.16 to 0.20) that have more similar properties than fresh aerosols. While reported OM:OC ratios observed over USA range between 1.29 and 1.95, indicating significant contribution of local pollution sources to the OC in that region, high O/C ratio associated with a high OM/OC ratio of 2.2 has been also observed for the summertime East Mediterranean aged aerosol. In global models, the OM/OC ratio is either calculated for specific compounds or estimated for compound groups. In the present study, we review OM/OC observations and compare them with simulations from a variety of models that contributed to the AEROCOM exercise. We evaluate the chemical processing level of atmospheric aerosols simulated by the models. A total of 32 global chemistry transport models are considered in this study with variable complexity of the representation of OM/OC ratio in the OA. The analysis provides an integrated view of the OM/OC ratio in the global atmosphere and of the accuracy of its representation in the global models. Implications for atmospheric chemistry and climate simulations are discussed.

  14. Photoacoustic determination of optical absorption to extinction ratio in aerosols.

    PubMed

    Roessler, D M; Faxvog, F R

    1980-02-15

    The photoacoustic technique has been used in conjunction with an optical transmission measurement to determine the fraction of light absorbed in cigarette and acetylene smoke aerosols. At 0.5145-microm wavelength,the absorption-to-extinction fraction is 0.01 +/- 0.003 for cigarette smoke and is in excellent agreement with predictions from Mie theory for smoke particles having a refractive index of 1.45-0.00133i and a median diameter in the 0.15-0.65-microm range. For acetylene smoke the absorbed fraction was 0.85 +/- 0.05. PMID:20216896

  15. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects

    NASA Astrophysics Data System (ADS)

    Shelley, Rachel U.; Morton, Peter L.; Landing, William M.

    2015-06-01

    The North Atlantic receives the highest aerosol (dust) input of all the oceanic basins. Dust deposition provides essential bioactive elements, as well as pollution-derived elements, to the surface ocean. The arid regions of North Africa are the predominant source of dust to the North Atlantic Ocean. In this study, we describe the elemental composition (Li, Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cd, Sn, Sb, Cs, Ba, La, Ce, Nd, Pb, Th, U) of the bulk aerosol from samples collected during the US-GEOTRACES North Atlantic Zonal Transect (2010/11) in order to highlight the differences between a Saharan dust end-member and the reported elemental composition of the upper continental crust (UCC), and the implications this has for identifying trace element enrichment in aerosols across the North Atlantic basin. As aerosol titanium (Ti) is less soluble than aerosol aluminum (Al), it is a more conservative tracer for lithogenic aerosols and trace element-to-Ti ratios. However, the presence of Ti-rich fine aerosols can confound the interpretation of elemental enrichments, making Al a more robust tracer of aerosol lithogenic material in this region.

  16. Aerosol and Water Vapor Raman Lidar System at CEILAP, Buenos Aires, Argentina. Case Study: November 07, 2006.

    NASA Astrophysics Data System (ADS)

    Otero, Lidia Ana; Ristori, Pablo Roberto; Quel, Eduardo Jaime

    2008-04-01

    A multiwavelength backscatter LIDAR (Light Detection And Ranging) was developed and operates at Centro de Investigaciones en Láseres y Aplicaciones, CEILAP (CITEFA-CONICET), (34.5 S and 58.5 W) to study the atmospheric properties such as the aerosol optical parameters, the boundary layer evolution, and the water vapor vertical distribution. The emission system is based on a Nd:YAG laser emitting at the fundamental, second and third harmonic wavelengths. The reception unit was upgraded to collect the atmospheric elastic and nitrogen Raman backscatters from the second and third harmonic wavelength and the water vapor Raman backscatter from the third harmonic wavelength. The information from all these channels give us enough information to derive the vertical distribution of the total to molecular backscatter, the backscatter to extinction ratio (lidar ratio) and the Ångström coefficient. In addition, water vapor mixing ratio profile is also measured by using the Raman water vapor and nitrogen channels (408 and 387 nm).

  17. Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Vaughan, Mark A.

    2006-01-01

    The extinction-to-backscatter ratio (S(sub a)) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. S(sub a) for the CALIPSO lidar will either be selected from a look-up table or calculated using the lidar measurements depending on the characteristics of aerosol layer. Whenever suitable lofted layers are encountered, S(sub a) is computed directly from the integrated backscatter and transmittance. In all other cases, the CALIPSO observables: the depolarization ratio, delta, the layer integrated attenuated backscatter, beta, and the mean layer total attenuated color ratio, gamma, together with the surface type, are used to aid in aerosol typing. Once the type is identified, a look-up-table developed primarily from worldwide observations, is used to determine the S(sub a) value. The CALIPSO aerosol models include desert dust, biomass burning, background, polluted continental, polluted dust, and marine aerosols.

  18. Raman Lidar Measurements of the Aerosol Extinction-to-Backscatter Ratio Over the Southern Great Plains

    SciTech Connect

    Ferrare, Richard; Turner, David D.; Brasseur, L. H.; Feltz, W. F.; Dubovik, O.; Tooman, Tim P.

    2001-09-16

    We derive profiles of the aerosol extinction-to-backscatter ratio, Sa, at 355 nm using aerosol extinction and backscatter profiles measured during 1998 and 1999 by the operational Raman lidar at the Department of Energy Atmospheric Radiation Measurement program Southern Great Plains site in north central Oklahoma. Data from this Raman/Rayleigh-Mie lidar, which measures Raman scattering from nitrogen as well as the combined molecular (Rayleigh) and aerosol (Mie) scattering at the laser wavelength, are used to derive aerosol extinction and backscattering independently as a function of altitude. Because this lidar operates at 355 nm, where molecular backscattering is comparable with aerosol backscattering, Sa retrievals are generally limited to conditions where the aerosol extinction at 355 nm is > 0.03 km-1. The mean value of Sa at 355 nm derived for this period was 60 sr with a standard deviation of 12 sr. Sa was generally about 5-10 sr higher during high aerosol optical thickness (AOT) (> 0.3) conditions than during low AOT (< 0.1). A similar increase in Sa was found when the relative humidity increased from 30 to 80%. Large (> 15%) variations in the vertical profile of Sa occurred about 30% of the time, which implies significant variability in the vertical distribution of aerosol size distribution, shape, and/or composition often occurs. The Raman lidar measurements of Sa were compared with estimates of particle size and refractive index derived from an algorithm that uses ground-based Sun photometer measurements of Sun and sky radiance. For 17 cases of coincident Raman lidar and Sun and sky radiance measurements, Sa was linearly correlated with the aerosol fine mode effective radius and the volume ratio of fine/coarse particles.

  19. The Effect of Aerosol Formation on Stable Isotopes Ratio in Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa G.; Sebree, Joshua; Wold, Allison; Stern, Jennifer

    2016-10-01

    The formation of large amounts of aerosol in Titan atmosphere induces a significant sink for carbon and nitrogen in the atmosphere. Due to the high complexity of the chemistry leading to aerosol formation, there may be isotopic fractionation along the formation pathways of the aerosol. So far several stable isotopes have been measured in Titan atmosphere including the 13C/12C, 15N/14N and D/H ratios for different gaseous species. However, the fractionation effect of the aerosol formation and its impact on atmospheric stable isotope ratios has yet to be fully understood. Two experimental studies were recently published on the stable carbon [1] and nitrogen [1,2] isotope fractionation during aerosol formation in N2-CH4 reactant mixture. To better constrain the fractionation effect of aerosol formation on the Titan atmosphere we have measured the isotopic fractionation induced in laboratory aerosol analogues produced exploring the space of parameters that are expected to have an effect on fractionation processes. Parameters studied include pressure and temperature of aerosol formation and the reactant gas phase composition, including the standard "Titan" mixture of CH4/N2 as well as other trace species such as benzene (C6H6).[1] Sebree, J.A., Stern, J.C., Mandt, K.E., Domagal-Goldman, S.D., and Trainer, M.G.: C and N Fractionation of CH /N Mixtures during Photochemical Aerosol Formation: Relevance to Titan, (2016) Icarus 270:421-428[2] Kuga, M., Carrasco, N., Marty, B., Marrochi, Y., Bernard, S., Rigaudier, T., Fleury, B., Tissandier, L.: Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles, (2014) EPSL 393:2-13

  20. Surrogate/spent fuel sabotage : aerosol ratio test program and Phase 2 test results.

    SciTech Connect

    Borek, Theodore Thaddeus III; Thompson, N. Slater; Sorenson, Ken Bryce; Hibbs, R.S.; Nolte, Oliver; Molecke, Martin Alan; Autrusson, Bruno; Young, F. I.; Koch, Wolfgang; Brochard, Didier; Pretzsch, Gunter Guido; Lange, Florentin

    2004-05-01

    A multinational test program is in progress to quantify the aerosol particulates produced when a high energy density device, HEDD, impacts surrogate material and actual spent fuel test rodlets. This program provides needed data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments; the program also provides significant political benefits in international cooperation. We are quantifying the spent fuel ratio, SFR, the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are crucial for predicting radiological impacts. This document includes a thorough description of the test program, including the current, detailed test plan, concept and design, plus a description of all test components, and requirements for future components and related nuclear facility needs. It also serves as a program status report as of the end of FY 2003. All available test results, observations, and analyses - primarily for surrogate material Phase 2 tests using cerium oxide sintered ceramic pellets are included. This spent fuel sabotage - aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC, and supported by both the U.S. Department of Energy and Nuclear Regulatory Commission.

  1. Study for radionuclide transfer ratio of aerosols generated during heat cutting

    SciTech Connect

    Iguchi, Yukihiro; Baba, Tsutomu; Kawakami, Hiroto; Kitahara, Takashi; Watanabe, Atsushi; Kodama, Mitsuhiro

    2007-07-01

    The metallic elements with a low melting point and high vapor pressure seemed to transfer in aerosols selectively at dismantling reactor internals using heat cutting. Therefore, the arc melting tests of neutron irradiated zirconium alloy were conducted to investigate the radionuclide transfer behavior of aerosols generated during the heat cutting of activated metals. The arc melting test was conducted using a tungsten inert gas welding machine in an inert gas or air atmosphere. The radioactive aerosols were collected by filter and charcoal filter. The test sample was obtained from Zry-2 fuel cladding irradiated in a Japanese boiling water reactor for five fuel cycles. The activity analysis, chemical composition measurement and scanning electron microscope observation of aerosols were carried out. Some radionuclides were enriched in the aerosols generated in an inert gas atmosphere and the radionuclide transfer ratio did not change remarkably by the presence of air. The transfer ratio of Sb-125 was almost the same as that of Co-60. It was expected that Sb-125 was enriched from other elements since Sb is an element with a low melting point and high vapor pressure compared with the base metal (Zr). In the viewpoint of the environmental impact assessment, it became clear that the influence if Sb-125 is comparable to Co-60. The transfer ratio of Mn-54 was one order higher compared with other radionuclides. The results were discussed on the basis of thermal properties and oxide formation energy of the metallic elements. (authors)

  2. Rain-aerosol coupling in urban area: Scavenging ratio measurement and identification of some transfer processes

    NASA Astrophysics Data System (ADS)

    Jaffrezo, J.-L.; Colin, J.-L.

    Coupling between rain and associated aerosol has been studied for 1 year in Paris. Sampling techniques were chosen so as to describe the interacting phases as precisely as possible: exclusion of dry deposition, separation of successive rain events by an automatic sequential collector and aerosol collection over 6-h periods only. Study of interphase correlations for 82 events reveals three groups of species with distinctly different behaviour: insolubles—Al, Si, Fe; solubles—SO 42-, K, Ca, Zn, Mg; and the extreme case of Na and Cl. Interphase relationships decrease in this order. Variations of the scavenging ratio are in good agreement with the theoretical curve for collection efficiency. Noteworthy is the rise of the experimental curve for sub-μm particles. An interpretation based on the origin and hygroscopy of the species is attempted. Apart from their predictive ability in geochemical assessment, scavenging ratios appear useful for investigating the mechanisms of transfer between aerosols and precipitation.

  3. Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary.

    SciTech Connect

    Brucher, Wenzel; Koch, Wolfgang; Pretzsch, Gunter Guido; Loiseau, Olivier; Mo, Tin; Billone, Michael C.; Autrusson, Bruno A.; Young, F. I.; Coats, Richard Lee; Burtseva, Tatiana; Luna, Robert Earl; Dickey, Roy R.; Sorenson, Ken Bryce; Nolte, Oliver; Thompson, Nancy Slater; Hibbs, Russell S.; Gregson, Michael Warren; Lange, Florentin; Molecke, Martin Alan; Tsai, Han-Chung

    2005-07-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of

  4. Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing

    NASA Astrophysics Data System (ADS)

    Novakov, T.; Menon, S.; Kirchstetter, T. W.; Koch, D.; Hansen, J. E.

    2005-11-01

    Measurements of organic carbon (OC) and black carbon (BC) concentrations over a variety of locations worldwide have been analyzed to infer the spatial distributions of the ratios of OC to BC. Since these ratios determine the relative amounts of scattering and absorption, they are often used to estimate the radiative forcing due to aerosols. An artifact in the protocol for filter measurements of OC has led to widespread overestimates of the ratio of OC to BC in atmospheric aerosols. We developed a criterion to correct for this artifact and analyze corrected OC to BC ratios. The OC to BC ratios, ranging from 1.3 to 2.4, appear relatively constant and are generally unaffected by seasonality, sources, or technology changes, at the locations considered here. The ratios compare well with emission inventories over Europe and China but are a factor of 2 lower in other regions. The reduced estimate for OC/BC in aerosols strengthens the argument that reduction of soot emissions maybe a useful approach to slow global warming.

  5. Aerosol organic carbon to black carbon ratios: Analysis ofpublished data and implications for climate forcing

    SciTech Connect

    Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

    2005-07-11

    Measurements of organic carbon (OC) and black carbon (BC)concentrations over a variety of locations worldwide, have been analyzed to infer the spatial distributions of the ratios of OC to BC. Since these ratios determine the relative amounts of scattering and absorption, they are often used to estimate the radiative forcing due to aerosols. An artifact in the protocol for filter measurements of OC has led to widespread overestimates of the ratio of OC to BC in atmospheric aerosols. We developed a criterion to correct for this artifact and analyze corrected OC to BC ratios. The OC to BC ratios, ranging from 1.3to 2.4, appear relatively constant and are generally unaffected by seasonality, sources or technology changes, at the locations considered here. The ratios compare well with emission inventories over Europe and China but are a factor of two lower in other regions. The reduced estimate for OC/BC in aerosols strengthens the argument that reduction of soot emissions maybe a useful approach to slow global warming.

  6. Dust aerosol optical properties using ground-based and airborne lidar in the framework of FENNEC

    NASA Astrophysics Data System (ADS)

    Marnas, Fabien; Chazette, Patrick; Flamant, Cyrille; Royer, Philippe; Boytard, Mai-Lan; Genau, Pascal; Doira, Pascal; Bruneau, Didier; Pelon, Jacques; Sanak, Joseph

    2013-04-01

    The FENNEC program aims to improve our knowledge of both the role of the Saharan Heat Low (SHL) on the West African monsoon and the interactions between the African continent and the Mediterranean basin through the Saharan dust transport. The Saharan desert is the major source of mineral dust in the world and may significantly impact the air quality over the Western Europe by increasing the particular matter content. Two lidar systems were operated by the French component of the FENNEC project: an airborne lidar which was flown aboard the French Falcon 20 research aircraft and a ground-based lidar which was located in the southeastern part of Spain, close to Marbella. The presence of dust in the Saharan atmospheric boundary layer has been easily highlighted using the lidars and confirmed by ground-based sunphotometer and observations from both MODIS and SEVIRI spaceborne instruments. The simultaneous use of the sunphotometer-derived Angstrom exponent and the lidar-derived backscatter to extinction ratio is appeared to be a good approach to separate the optical contribution of dust from local aerosols for the coastal site. Over Spain, the dust layer was mainly located above the planetary boundary layer with several kilometers thick. Over the tropical Atlantic Ocean and the Mauritania the airborne lidar shows a high planetary boundary layer (~5 km above the mean sea level) associated to strong aerosol optical thickness (> 0.8 at 532 nm). The airborne lidar data have been inverted using both MODIS and SEVIRI-derived aerosol optical thickness. The differences between dust optical properties close to and remote from the sources will be discussed.

  7. New Examination of the Traditional Raman Lidar Technique II: Evaluating the Ratios for Water Vapor and Aerosols

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.

  8. Differences in the OC/EC Ratios that Characterize Ambient and Source Aerosols due to Thermal-Optical Analysis

    EPA Science Inventory

    Thermal-optical analysis (TOA) is typically used to measure the OC/EC (organic carbon/elemental carbon) and EC/TC (elemental carbon/total carbon) ratios in source and atmospheric aerosols. The present study utilizes a dual-optical carbon aerosol analyzer to examine the effects of...

  9. Variations in the OM/OC ratio of urban organic aerosol next to a major roadway.

    PubMed

    Brown, Steven G; Lee, Taehyoung; Roberts, Paul T; Collett, Jeffrey L

    2013-12-01

    Understanding the organic matter/organic carbon (OM/OC) ratio in ambient particulate matter (PM) is critical to achieve mass closure in routine PM measurements, to assess the sources of and the degree of chemical processing organic aerosol particles have undergone, and to relate ambient pollutant concentrations to health effects. Of particular interest is how the OM/OC ratio varies in the urban environment, where strong spatial and temporal gradients in source emissions are common. We provide results of near-roadway high-time-resolution PM1 OM concentration and OM/OC ratio observations during January 2008 at Fyfe Elementary School in Las Vegas, NV, 18 m from the U.S. 95 freeway soundwall, measured with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The average OM/OC ratio was 1.54 (+/- 0.20 standard deviation), typical of environments with a low amount of secondary aerosol formation. The 2-min average OM/OC ratios varied between 1.17 and 2.67, and daily average OM/OC ratios varied between 1.44 and 1.73. The ratios were highest during periods of low OM concentrations and generally low during periods of high OM concentrations. OM/OC ratios were low (1.52 +/- 0.14, on average) during the morning rush hour (average OM = 2.4 microg/m3), when vehicular emissions dominate this near-road measurement site. The ratios were slightly lower (1.46 +/- 0.10) in the evening (average OM = 6.3 microg/m3), when a combination of vehicular and fresh residential biomass burning emissions was typically present during times with temperature inversions. The hourly averaged OM/OC ratio peaked at 1.66 at midday. OM concentrations were similar regardless of whether the monitoring site was downwind or upwind of the adjacent freeway throughout the day, though they were higher during stagnant conditions (wind speed < 0.5 m/sec). The OM/OC ratio generally varied more with time of day than with wind direction and speed. PMID:24558705

  10. Elevated nitrogen isotope ratios of tropical Indian aerosols from Chennai: Implication for the origins of aerosol nitrogen in South and Southeast Asia

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Tachibana, Eri; Swaminathan, T.

    2010-09-01

    To better understand the origins of aerosol nitrogen, we measured concentrations of total nitrogen (TN) and its isotope ratios (δ 15N) in tropical Indian aerosols (PM 10) collected from Chennai (13.04°N; 80.17°E) on day- and night-time basis in winter and summer 2007. We found high δ 15N values (+15.7 to +31.2‰) of aerosol N (0.3-3.8 μg m -3), in which NH 4+ is the major species (78%) with lesser contribution from NO 3- (6%). Based on the comparison of δ 15N in Chennai aerosols with those reported for atmospheric aerosols from mid-latitudes and for the particles emitted from point sources (including a laboratory study), as well as the δ 15N ratios of cow-dung samples (this study), we found that the atmospheric aerosol N in Chennai has two major sources; animal excreta and bio-fuel/biomass burning from South and Southeast Asia. We demonstrate that a gas-to-particle conversion of NH 3 to NH 4HSO 4 and (NH 4) 2SO 4 and the subsequent exchange reaction between NH 3 and NH 4+ are responsible for the isotopic enrichment of 15N in aerosol nitrogen.

  11. Retrieval of Aerosol Optical Depth in Vicinity of Broken Clouds from Reflectance Ratios: Case Study

    SciTech Connect

    Kassianov, Evgueni I.; Ovchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.; Ferrare, Richard; Hostetler, Chris A.; Alexandrov, Mikhail

    2010-10-06

    A recently developed reflectance ratio (RR) method for the retrieval of aerosol optical depth (AOD) is evaluated using extensive airborne and ground-based data sets collected during the Cloud and Land Surface Interaction Campaign (CLASIC) and the Cumulus Humilis Aerosol Processing Study (CHAPS), which took place in June 2007 over the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site. A detailed case study is performed for a field of single-layer shallow cumuli observed on June 12, 2007. The RR method is applied to retrieve the spectral values of AOD from the reflectance ratios measured by the MODIS Airborne Simulator (MAS) for two pairs of wavelengths (660 and 470 nm and 870 and 470 nm) collected at a spatial resolution of 0.05 km. The retrieval is compared with an independent AOD estimate from three ground-based Multi-filter Rotating Shadowband Radiometers (MFRSRs). The interpolation algorithm that is used to project MFRSR point measurements onto the aircraft flight tracks is tested using AOD derived from NASA Langley High Spectral Resolution Lidar (HSRL). The RR AOD estimates are in a good agreement (within 5%) with the MFRSR-derived AOD values for the 660-nm wavelength. The AODs obtained from MAS reflectance ratios overestimate those derived from MFRSR measurements by 15-30% for the 470-nm wavelength and underestimate the 870-nm AOD by the same amount.

  12. Intercommunity differences in acid aerosol (H+)/sulfate (SO4(2-) ratios.

    PubMed

    Ozkaynak, H; Xue, J; Zhou, H; Spengler, J D; Thurston, G D

    1996-01-01

    Exposures to acid aerosols have been associated with acute and chronic health effects. Beginning in 1988, extensive monitoring of acid aerosols (H+), sulfates (SO4(2-)), and ammonia (NH3) was conducted in 24 communities in the United States and Canada in order to characterize the seasonal and daily variations of these pollutants. More recently, in 1992 and 1993, summer monitoring of the same pollutants was conducted by Harvard researchers at multiple locations in Philadelphia, Pennsylvania to examine the factors causing spatial variation in the acidity levels in the greater metropolitan Philadelphia area. Earlier, a similar study also was conducted by Harvard in a more rural community, State College, Ohio, providing data on acidity, sulfate, and ammonia levels. In addition to these studies, New York University researchers have gathered substantial data on aerosol acidity, sulfates, and NH3 levels from sites in the New York City metropolitan region, Albany, Buffalo, and the Toronto metropolitan region between 1988 and 1992. This paper examines the relationships among H+, SO4(2-), ozone, and population density using summer measurements from sites in 24 cities across the United States and Canada, as well as Philadelphia, State College, the New York City region, Buffalo, and Albany. While past studies have consistently shown that H+ and SO4(2-) are correlated over time at sites in eastern North America, the results of our analysis show that spatial variations in the ratios of mean acid-to-sulfate levels also can be predicted satisfactorily with the use of either a linear or a quadratic model, once variations in population density are addressed (R2 = 0.6). These models may be useful in retrospective epidemiological investigations of acid aerosol exposures and health effects, using widely available sulfate measurements and data on local population size.

  13. Retrieval of Aerosol Optical Depth in Vicinity of Broken Clouds from Reflectance Ratios: A Novel Approach

    SciTech Connect

    Kassianov, Evgueni I.; Ovtchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.

    2008-10-13

    A novel method for the retrieval of aerosol optical depth (AOD) under partly cloudy conditions has been suggested. The method exploits reflectance ratios, which are not sensitive to the three-dimensional (3D) effects of clouds. As a result, the new method provides an effective way to avoid the 3D cloud effects, which otherwise would have a large (up to 140%) contaminating impact on the aerosol retrievals. The 1D version of the radiative transfer model has been used to develop look-up tables (LUTs) of reflectance ratios as functions of two parameters describing the spectral dependence of AOD (a power law). The new method implements an innovative 2D inversion for simultaneous retrieval of these two parameters and, thus, the spectral behavior of AOD. The performance of the new method has been illustrated with a model-output inverse problem. We demonstrated that a new retrieval has the potential for (i) detection of clear pixels outside of cloud shadows and (ii) accurate (~15%) estimation of AOD for the majority of them.

  14. Density and elemental ratios of secondary organic aerosol: Application of a density prediction method

    NASA Astrophysics Data System (ADS)

    Nakao, Shunsuke; Tang, Ping; Tang, Xiaochen; Clark, Christopher H.; Qi, Li; Seo, Eric; Asa-Awuku, Akua; Cocker, David

    2013-04-01

    Organic material density is a fundamental parameter in aerosol science, yet direct measurement is not readily available. This study investigates density and elemental ratios of secondary organic aerosol (SOA) formed by the oxidation of 22 different volatile organic compounds with a wide range of molecular size (C5˜C15) in an environmental chamber. Reactants with a larger number of carbons yielded SOA with lower density (e.g., β-caryophyllene SOA: 1.22 g cm-3) compared with smaller ones (e.g., phenol SOA: 1.43 g cm-3) consistent with different extents of oxidation of the parent molecule. A recent study proposed a semi-empirical relationship between elemental ratios (O/C and H/C) and organic material density (Kuwata et al., 2012). The prediction method therein is evaluated against the large experimental data set of this study acquired in the UC Riverside/CE-CERT environmental chamber. The predicted particle densities agree with experimental measurements within 12% as stated by Kuwata et al. (2012) except for C6 compounds (benzene, phenol, and catechol). Therefore, the range of application has been further extended to include anthropogenic (aromatic) systems. The effects of nitrogen and sulfur on the density prediction remain unclear.

  15. Extinction-to-Backscatter Ratios of Lofted Aerosol Layers Observed During the First Three Months of CALIPSO Measurements

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Vaughan, Mark A.; Liu, Zhaoyan; Hu, Yongxiang; Reagan, John A.; Winker, David M.

    2007-01-01

    Case studies from the first three months of the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) measurements of lofted aerosol layers are analyzed using transmittance [Young, 1995] and two-wavelength algorithms [Vaughan et al., 2004] to determine the aerosol extinction-to-backscatter ratios at 532 and 1064 nm. The transmittance method requires clear air below the layer so that the transmittance through the layer can be determined. Suitable scenes are selected from the browse images and clear air below features is identified by low 532 nm backscatter signal and confirmed by low depolarization and color ratios. The transmittance and two-wavelength techniques are applied to a number of lofted layers and the extinction-to-backscatter ratios are compared with values obtained from the CALIPSO aerosol models [Omar et al., 2004]. The results obtained from these studies are used to adjust the aerosol models and develop observations based extinction-to-backscatter ratio look-up tables and phase functions. Values obtained by these techniques are compared to Sa determinations using other independent methods with a goal of developing probability distribution functions of aerosol type-specific extinction to backscatter ratios. In particular, the results are compared to values determined directly by the High Spectral Resolution Lidar (HSRL) during the CALIPSO CloudSat Validation Experiments (CCVEX) and Sa determined by the application of the two-wavelength lidar Constrained Ratio Aerosol Model-fit (CRAM) retrieval approach [Cattrall et al., 2005; Reagan et al., 2004] to the HSRL data. The results are also compared to values derived using the empirical relationship between the multiple-scattering fraction and the linear depolarization ratio by using Monte Carlo simulations of water clouds [Hu et al., 2006].

  16. Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples.

    PubMed

    El-Zanan, Hazem S; Lowenthal, Douglas H; Zielinska, Barbara; Chow, Judith C; Kumar, Naresh

    2005-07-01

    The ratio of organic mass (OM) to organic carbon (OC) in PM(2.5) aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM(2.5) mass and chemical constituents other than OC (mass balance) in IMPROVE samples from 1988 to 2003. Archived IMPROVE filters from five IMPROVE sites were extracted with dichloromethane (DCM), acetone and water. The extract residues were weighed to determine OM and analyzed for OC by thermal optical reflectance (TOR). On average, successive extracts of DCM, acetone, and water contained 64%, 21%, and 15%, respectively, of the extractable OC, respectively. On average, the non-blank-corrected recovery of the OC initially measured in these samples by TOR was 115+/-42%. OM/OC ratios from the combined DCM and acetone extracts averaged 1.92 and ranged from 1.58 at Indian Gardens, AZ in the Grand Canyon to 2.58 at Mount Rainier, WA. The average OM/OC ratio determined by mass balance was 2.07 across the IMPROVE network. The sensitivity of this ratio to assumptions concerning sulfate neutralization, water uptake by hygroscopic species, soil mass, and nitrate volatilization were evaluated. These results suggest that the value of 1.4 for the OM/OC ratio commonly used for mass and light extinction reconstruction in IMPROVE is too low.

  17. Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples.

    PubMed

    El-Zanan, Hazem S; Lowenthal, Douglas H; Zielinska, Barbara; Chow, Judith C; Kumar, Naresh

    2005-07-01

    The ratio of organic mass (OM) to organic carbon (OC) in PM(2.5) aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM(2.5) mass and chemical constituents other than OC (mass balance) in IMPROVE samples from 1988 to 2003. Archived IMPROVE filters from five IMPROVE sites were extracted with dichloromethane (DCM), acetone and water. The extract residues were weighed to determine OM and analyzed for OC by thermal optical reflectance (TOR). On average, successive extracts of DCM, acetone, and water contained 64%, 21%, and 15%, respectively, of the extractable OC, respectively. On average, the non-blank-corrected recovery of the OC initially measured in these samples by TOR was 115+/-42%. OM/OC ratios from the combined DCM and acetone extracts averaged 1.92 and ranged from 1.58 at Indian Gardens, AZ in the Grand Canyon to 2.58 at Mount Rainier, WA. The average OM/OC ratio determined by mass balance was 2.07 across the IMPROVE network. The sensitivity of this ratio to assumptions concerning sulfate neutralization, water uptake by hygroscopic species, soil mass, and nitrate volatilization were evaluated. These results suggest that the value of 1.4 for the OM/OC ratio commonly used for mass and light extinction reconstruction in IMPROVE is too low. PMID:15950041

  18. Forecasting Plant Productivity and Health Using Diffuse-to-Global Irradiance Ratios Extracted from the OMI Aerosol Product

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly; Andrews, Jane C.; Ryan, Robert E.

    2007-01-01

    Atmospheric aerosols are a major contributor to diffuse irradiance. This Candidate Solution suggests using the OMI (Ozone Monitoring Instrument) aerosol product as input into a radiative transfer model, which would calculate the ratio of diffuse to global irradiance at the Earth s surface. This ratio can significantly influence the rate of photosynthesis in plants; increasing the ratio of diffuse to global irradiance can accelerate photosynthesis, resulting in greater plant productivity. Accurate values of this ratio could be useful in predicting crop productivity, thereby improving forecasts of regional food resources. However, disagreements exist between diffuse-to-global irradiance values measured by different satellites and ground sensors. OMI, with its unique combination of spectral bands, high resolution, and daily global coverage, may be able to provide more accurate aerosol measurements than other comparable sensors.

  19. Organic aerosol emission ratios from the laboratory combustion of biomass fuels

    NASA Astrophysics Data System (ADS)

    Jolleys, Matthew D.; Coe, Hugh; McFiggans, Gordon; McMeeking, Gavin R.; Lee, Taehyoung; Kreidenweis, Sonia M.; Collett, Jeffrey L.; Sullivan, Amy P.

    2014-11-01

    Organic aerosol (OA) emission ratios (ER) have been characterized for 67 burns during the second Fire Laboratory at Missoula Experiment. These fires involved 19 different species representing 6 major fuels, each of which forms an important contribution to the U.S. biomass burning inventory. Average normalized ΔOA/ΔCO ratios show a high degree of variability, both between and within different fuel types and species, typically exceeding differen-ces between separate plumes in ambient measurements. This variability is strongly influenced by highly contrasting ΔOA levels between burns and the increased partitioning of semivolatile organic compounds to the particle phase at high ΔOA concentrations. No correlation across all fires was observed between ΔOA/ΔCO and modified combustion efficiency (MCE), which acts as an indicator of the proportional contributions of flaming and smoldering combustion phases throughout each burn. However, a negative correlation exists with MCE for some coniferous species, most notably Douglas fir, for which there is also an influence from fuel moisture content. Changes in fire efficiency were also shown to dramatically alter emissions for fires with very similar initial conditions. Although the relationship with MCE is variable between species, there is greater consistency with the level of oxygenation in OA. The ratio of the m/z 44 fragment to total OA mass concentration (f44) as measured by aerosol mass spectrometer provides an indication of oxygenation as influenced by combustion processes at source, with ΔOA/ΔCO decreasing with increasing f44 for all fuel types. Inconsistencies in the magnitude of the effects associated with each potential influence on ΔOA/ΔCO emphasize the lack of a single dominant control on fire emissions, and a dependency on both fuel properties and combustion conditions.

  20. Tracing the origin of pollution in French Alpine snow and aerosols using lead isotopic ratios.

    PubMed

    Veysseyre, A M; Bollhöfer, A F; Rosman, K J; Ferrari, C P; Boutron, C F

    2001-11-15

    Fresh snow samples collected at 15 remote locations and aerosols collected at one location in the French Alps between November 1998 and April 1999 have been analyzed for Pb concentration and isotopic composition by thermal ionization mass spectrometry. The snow samples contained 19-1300 pg/g of Pb with isotopic ratios 206Pb/207Pb (208Pb/207Pb) of 1.1279-1.1607 (2.3983-2.4302). Airborne Pb concentrations at one sampling site ranged from 0.42 to 6.0 ng/m3 with isotopic ratios of 1.1321-1.1427 (2.4029-2.4160). Air mass trajectory analysis combined with isotopic compositions of potential source regions did not show discernible evidence of the long-range atmospheric transport of pollutants. Isotopic ratios in the Alpine snow samples and thus the free troposphere were generally higher than airborne Pb isotopic ratios in urban France, which coupled with the relatively high Pb concentrations suggested a regional anthropogenic Pb source, probably Italy but possibly Eastern Europe.

  1. Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto

    NASA Astrophysics Data System (ADS)

    Saccon, M.; Kornilova, A.; Huang, L.; Moukhtar, S.; Rudolph, J.

    2015-09-01

    A method to quantify concentrations and stable carbon isotope ratios of secondary organic aerosols has been applied to study atmospheric nitrophenols in Toronto, Canada. The sampling of five nitrophenols, all with substantial secondary formation from the photooxidation of aromatic volatile organic compounds (VOCs), was conducted in the gas phase and particulate matter (PM) together and in PM alone. Their concentrations in the atmosphere are in the low ng m-3 range and, consequently, a large volume of air (> 1000 m3) is needed to analyze samples for stable carbon isotope ratios, resulting in sampling periods of typically 24 h. While this extended sampling period increases the representativeness of average values, it at the same time reduces possibilities to identify meteorological conditions or atmospheric pollution levels determining nitrophenol concentrations and isotope ratios. Average measured carbon isotope ratios of the different nitrophenols are between -34 and -33 ‰, which is well within the range predicted by mass balance. However, the observed carbon isotope ratios cover a range of nearly 9 ‰ and approximately 20 % of the isotope ratios of the products have isotope ratios lower than predicted from the kinetic isotope effect of the first step of the reaction mechanism and the isotope ratio of the precursor. This can be explained by isotope fractionation during reaction steps following the initial reaction of the precursor VOCs with the OH radical. Limited evidence for local production of nitrophenols is observed since sampling was done in the Toronto area, an urban center with significant anthropogenic emission sources. Strong evidence for significant local formation of nitrophenols is only found for samples collected in summer. On average, the difference in carbon isotope ratios between nitrophenols in the particle phase and in the gas phase is insignificant, but for a limited number of observations in summer, a substantial difference is observed. This

  2. Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto

    NASA Astrophysics Data System (ADS)

    Saccon, M.; Kornilova, A.; Huang, L.; Moukhtar, S.; Rudolph, J.

    2015-06-01

    A method to quantify concentrations and stable carbon isotope ratios of secondary organic aerosols (SOA) has been applied to study atmospheric nitrophenols in Toronto, Canada. The sampling of five nitrophenols, all primarily formed from the photo-oxidation of aromatic volatile organic compounds (VOC), in the gas phase and particulate matter (PM) together and PM alone was conducted. Since all of the target compounds are secondary products, their concentrations in the atmosphere are in the low ng m-3 range and consequently a large volume of air (> 1000 m3) is needed to analyze samples for stable carbon isotope ratios, resulting in sampling periods of typically 24 h. While this extended sampling period increases the representativeness of average values, it at the same time reduces possibilities to identify meteorological conditions or atmospheric pollution levels determining nitrophenol concentrations and isotope ratios. Average measured carbon isotope ratios of the different nitrophenols are between -34 and -33‰, which is well within the range predicted by mass balance calculations. However, the observed carbon isotope ratios cover a range of nearly 9‰, and approximately 20% of the isotope ratios of the products have isotope ratios lower than predicted from the kinetic isotope effect of the first step of the reaction mechanism and the isotope ratio of the precursor. This can be explained by isotope fractionation during reaction steps following the initial reaction of the precursor VOCs with the OH radical. Limited evidence for local production of nitrophenols is observed since sampling was done in the Toronto area, an urban centre with significant anthropogenic emission sources. Strong evidence for significant local formation of nitrophenols is only found for samples collected in summer. On average, the difference in carbon isotope ratios between nitrophenols in the particle phase and in the gas phase is insignificant, but for a limited number of observations in

  3. Use of stable carbon and nitrogen isotope ratios in size segregated aerosol particles for the O/I penetration evaluation

    NASA Astrophysics Data System (ADS)

    Garbaras, Andrius; Garbariene, Inga; Masalaite, Agne; Ceburnis, Darius; Krugly, Edvinas; Kvietkus, Kestutis; Remeikis, Vidmantas; Martuzevicius, Dainius

    2015-04-01

    Stable carbon and nitrogen isotope ratio are successfully used in the atmospheric aerosol particle source identification [1, 2], transformation, pollution [3] research. The main purpose of this study was to evaluate the penetration of atmospheric aerosol particles from outdoor to indoor using stable carbon and nitrogen isotope ratios. Six houses in Kaunas (Lithuania) were investigated during February and March 2013. Electrical low pressure impactor was used to measure in real time concentration and size distribution of outdoor aerosol particles. ELPI+ includes 15 channels covering the size range from 0.017 to 10.0 µm. The 25 mm diameter aluminium foils were used to collect aerosol particles. Gravimetric analysis of samples was made using microbalance. In parallel, indoor aerosol samples were collected with a micro-orifice uniform deposition impactor (MOUDI model 110), where the aerosol particles were separated with the nominal D50 cut-off sizes of 0.056, 0.1, 0.18,0.32,0.56, 1.0, 1.8, 3.2, 5.6, 10, 18 μm for impactor stages 1-11, respectively. The impactor was run at a flow rate of 30 L/min. Air quality meters were used to record meteorological conditions (temperature, relative humidity) during the investigated period. All aerosol samples were analyzed for total carbon (TC) and total nitrogen (TN) contents and their isotopic compositions using elemental analyzer (EA) connected to the stable isotope ratio mass spectrometer (IRMS). TC concentration in indoors ranged from 1.5 to 247.5 µg/m3. During the sampling period outdoors TN levels ranged from 0.1 to 10.9 µg/m3. The obtained outdoor δ13C(PM2.5) values varied from -24.21 to -26.3‰, while the δ15N values varied from 2.4 to 11.1 ‰ (average 7.2±2.5 ‰). Indoors carbonaceous aerosol particles were depleted in 13C compared to outdoors in all sampling sites. This depletion in δ13C varied from 0.1 to 3.2 ‰. We think that this depletion occurs due ongoing chemical reactions (oxidation) when aerosol

  4. Measurements of aerosol optical depth and diffuse-to-direct irradiance ratios in the Northeastern United States

    SciTech Connect

    Laulainen, N.; Larson, N.; Michalsky, J.J.

    1995-12-31

    Simultaneous observations of total and diffuse irradiance on a horizontal surface in six narrowband filtered detectors and one broadband shortwave detector have been made since late 1991 at a nine-site network of multi-filter rotating shadowband radiometers. From these measurements, the direct normal irradiance values are calculated. These data are then used to calculate the outside-the-atmosphere direct irradiance (lo) and total optical depth using the Langley method of regressing the natural logarithm of the direct irradiance against air mass for cloud-free conditions. Frequent determinations of lo allow tracking of changes in lo caused by soiling and filter degradation. The daily average total optical depth is calculated in two ways: (1) from the slope of the Langley regression line and (2) from 30-minute averages calculated from the Beer-Lambert-Bougeur law using the median lo for that day. Finally, aerosol optical depths for five wavelengths (the other narrowband wavelength is used to estimate water vapor) are obtained by subtracting Rayleigh scattering and Chappuis ozone absorption optical depths from the total optical depths. The aerosol pattern at each site is consistent with an annual cycle superimposed on a decaying aerosol loading associated with the Mt. Pinatubo eruption. Moreover, the wavelength dependence of the aerosol pattern shows seasonal changes in the aerosol size distribution. The irradiance data are also used to calculate the diffuse-to-direct irradiance ratio, a quantity which in theory is related to the aerosol optical depth and surface albedo. A radiative transfer model based on the adjoint method, combined with a nonlinear least squares method. is used to estimate aerosol optical depth and surface albedo from the observed diffuse-to-direct ratios. The aerosol optical depths are in good agreement with those calculated from the direct beam data and the surface albedos are in accord with other observations.

  5. The FLAME Deluge: organic aerosol emission ratios from combustion chamber experiments

    NASA Astrophysics Data System (ADS)

    Jolleys, Matthew; Coe, Hugh; McFiggans, Gordon; McMeeking, Gavin; Lee, Taehyoung; Sullivan, Amy; Kreidenweis, Sonia; Collett, Jeff

    2014-05-01

    A high level of variability has been identified amongst organic aerosol (OA) emission ratios (ER) from biomass burning (BB) under ambient conditions. However, it is difficult to assess the influences of potential drivers for this variability, given the wide range of conditions associated with wildfire measurements. Chamber experiments performed under controlled conditions provide a means of examining the effects of different fuel types and combustion conditions on OA emissions from biomass fuels. ERs have been characterised for 67 burns during the second Fire Laboratory at Missoula Experiment (FLAME II), involving 19 different species from 6 fuel types widely consumed in BB events in the US each year. Average normalised dOA/dCO ratios show a high degree of variability, both between and within different fuel types and species, typically exceeding variability between separate plumes in ambient measurements. Relationships with source conditions were found to be complex, with little consistent influence from fuel properties and combustion conditions for the entire range of experiments. No strong correlation across all fires was observed between dOA/dCO and modified combustion efficiency (MCE), which is used as an indicator of the proportional contributions of flaming and smouldering combustion phases throughout each burn. However, a negative correlation exists between dOA/dCO and MCE for some coniferous species, most notably Douglas fir, for which there is also an apparent influence from fuel moisture content. Significant contrasts were also identified between combustion emissions from different fuel components of additional coniferous species. Changes in fire efficiency were also shown to dramatically alter emissions for fires with very similar initial conditions. Although the relationship with MCE is variable between species, there is greater consistency with the level of oxygenation in OA. The ratio of the m/z 44 fragment to total OA mass concentration (f44) as

  6. Dependence of the spectral diffuse-direct irradiance ratio on aerosol spectral distribution and single scattering albedo

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Kambezidis, H. D.; Dumka, U. C.; Psiloglou, B. E.

    2016-09-01

    This study investigates the modification of the clear-sky spectral diffuse-direct irradiance ratio (DDR) as a function of solar zenith angle (SZA), spectral aerosol optical depth (AOD) and single scattering albedo (SSA). The solar spectrum under various atmospheric conditions is derived with Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS) radiative transfer code, using the urban and continental aerosol models as inputs. The spectral DDR can be simulated with great accuracy by an exponentially decreasing curve, while the aerosol optical properties strongly affect the scattering processes in the atmosphere, thus modifying the DDR especially in the ultraviolet (UV) spectrum. Furthermore, the correlation between spectral DDR and spectral AOD can be represented precisely by an exponential function and can give valuable information about the dominance of specific aerosol types. The influence of aerosols on spectral DDR increases with increasing SZA, while the simulations using the urban aerosol model as input in SMARTS are closer to the measurements taken in the Athens urban environment. The SMARTS simulations are interrelated with spectral measurements and can be used for indirect estimations of SSA. Overall, the current work provides some theoretical approximations and functions that help in understanding the dependence of DDR on astronomical and atmospheric parameters.

  7. Behavior of zonal mean aerosol extinction ratio and its relationship with zonal mean temperature during the winter 1978-1979 stratospheric warming

    NASA Technical Reports Server (NTRS)

    Wang, P.-H.; Mccormick, M. P.

    1985-01-01

    The behavior of the zonal mean aerosol extinction ratio in the lower stratosphere near 75 deg N and its relationship with the zonal mean temperature during the January-February 1979 stratospheric sudden warming have been investigated based on the satellite sensor SAM II (Stratospheric Aerosol Measurement) and auxiliary meteorological measurements. The results indicate that distinct changes in the zonal mean aerosol extinction ratio occurred during this stratospheric sudden warming. It is also found that horizontal eddy transport due to planetary waves may have played a significant role in determining the distribution of the zonal mean aerosol extinction ratio.

  8. Detection of Remarkably Low Isotopic Ratio of Iron in Anthropogenic Aerosols and Evaluation of its Contribution to the Surface Ocean

    NASA Astrophysics Data System (ADS)

    Kurisu, M.; Iizuka, T.; Sakata, K.; Uematsu, M.; Takahashi, Y.

    2015-12-01

    It has been reported that phytoplankton growth in the High Nutrient-Low Chlorophyll (HNLC) regions is limited by dissolved iron (DFe) concentration (e.g., Martin and Fitzwater, 1988). Aerosol is known as one of the dominant sources of DFe to the ocean and classified into two origins such as anthropogenic and natural. A series of recent studies showed that Fe in anthropogenic aerosols is more soluble than that in natural aerosols (Takahashi et al., 2013) and has lower isotopic ratio (Mead et al., 2013). However, the difference between Fe isotopic ratio (δ56Fe: [(56Fe/54Fe)sample/(56Fe/54Fe)IRMM-14]-1) of two origins reported in Mead et al. (2013) is not so large compared with the standard deviation. Therefore, the aim of this study is to determine Fe species and δ56Fe in anthropogenic aerosols more accurately and to evaluate its contribution to the ocean surface. Iron species were determined by X-ray absorption fine structure (XAFS) analysis, while δ56Fe in size-fractionated aerosols were measured by MC-ICP-MS (NEPTUNE Plus) after chemical separation using anion exchange resin. Dominant Fe species in the samples were, ferrihydrite, hematite, and biotite. It was also revealed that coarse particles contained a larger amount of biotite and that fine particles contained a larger amount of hematite, which suggested that anthropogenic aerosols were emitted during combustion processes. In addition, results of Fe isotopic ratio analysis suggested that δ56Fe of coarse particles were around +0.25‰, whereas that of fine particles were -0.5 ˜ -2‰, which was lower than the δ56Fe in anthropogenic aerosol by Mead et al. (2013). The size-fractionated sampling made it possible to determine the δ56Fe in anthropogenic aerosol. Soluble component in fine particles extracted by simulated rain water also showed much lower δ56Fe (δ56Fe = -3.9±0.12‰), suggesting that anthropogenic Fe has much lower isotopic ratio. The remarkably low δ56Fe may be caused by the

  9. Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Kahnert, M.; Ferrare, R. A.; Hostetler, C. A.; Cook, A. L.; Harper, D. B.; Berkoff, T. A.; Seaman, S. T.; Collins, J. E.; Fenn, M. A.; Rogers, R. R.

    2015-12-01

    Linear particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust-dominated aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of aerosol containing locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm, respectively. The depolarization in the smoke case may be explained by the presence of coated soot aggregates. We note that in these specific case studies, the linear particle depolarization ratio for smoke and dust-dominated aerosol are more similar at 355 nm than at 532 nm, having possible implications for using the particle depolarization ratio at a single wavelength for aerosol typing.

  10. Saharan and Arabian Dust Aerosols: A Comparative Case Study of Lidar Ratio

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, Carmen; Sabbah, Ismail; Sorribas, Mar; Adame, José Antonio; Cuevas, Emilio; Sharifi, Faisal Al; Gil-Ojeda, Manuel

    2016-06-01

    This work presents a first comparative study of the Lidar Ratio (LR) values obtained for dust particles in two singular dust-influenced regions: the Canary Islands (Spain, close to the African coast in the North Atlantic Ocean), frequently affected by Saharan dust intrusions, and the Kuwait area (Arabian Peninsula) as usually influenced by Arabian dust storms. Synergetic lidar and sun-photometry measurements are carried out in two stations located in these particular regions for that purpose. Several dusty cases were observed during 2014 in both stations and, just for illustration, two specific dusty case studies have been selected and analyzed to be shown in this work. In general, mean LR values of 54 sr and 40 sr were obtained in these studies cases for Saharan and Arabian dust particles, respectively. Indeed, these results are in agreement with other studies performed for dust particles arriving from similar desert areas. In particular, the disparity found in Saharan and Arabian dust LR values can be based on the singular composition of the suspended dust aerosols over each station. These results can be useful for CALIPSO extinction retrievals, where a single LR value (40 sr) is assumed for pure dust particles independently on the dust source region.

  11. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE PAGES

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determinemore » elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion

  12. Estimated SAGE II ozone mixing ratios in early 1993 and comparisons with Stratospheric Photochemistry, Aerosols and Dynamic Expedition measurements

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Veiga, R. E.; Poole, L. R.; Zawodny, J. M.; Proffitt, M. H.

    1994-01-01

    An empirical time-series model for estimating ozone mixing ratios based on Stratospheric Aerosols and Gas Experiment II (SAGE II) monthly mean ozone data for the period October 1984 through June 1991 has been developed. The modeling results for ozone mixing ratios in the 10- to 30- km region in early months of 1993 are presented. In situ ozone profiles obtained by a dual-beam UV-absorption ozone photometer during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) campaign, May 1-14, 1993, are compared with the model results. With the exception of two profiles at altitudes below 16 km, ozone mixing ratios derived by the model and measured by the ozone photometer are in relatively good agreement within their individual uncertainties. The identified discrepancies in the two profiles are discussed.

  13. Benefit of depolarization ratio at λ = 1064 nm for the retrieval of the aerosol microphysics from lidar measurements

    NASA Astrophysics Data System (ADS)

    Gasteiger, J.; Freudenthaler, V.

    2014-11-01

    A better quantification of aerosol properties is required for improving the modelling of aerosol effects on weather and climate. This task is methodologically demanding due to the diversity of the microphysical properties of aerosols and the complex relation between their microphysical and optical properties. Advanced lidar systems provide spatially and temporally resolved information on the aerosol optical properties that is sufficient for the retrieval of important aerosol microphysical properties. Recently, the mass concentration of transported volcanic ash, which is relevant for the flight safety of aeroplanes, was retrieved from measurements of such lidar systems in southern Germany. The relative uncertainty of the retrieved mass concentration was on the order of ±50%. The present study investigates improvements of the retrieval accuracy when the capability of measuring the linear depolarization ratio at 1064 nm is added to the lidar setup. The lidar setups under investigation are based on those of MULIS and POLIS of the Ludwig-Maximilians-Universität in Munich (Germany) which measure the linear depolarization ratio at 355 and 532 nm with high accuracy. The improvements are determined by comparing uncertainties from retrievals applied to simulated measurements of this lidar setup with uncertainties obtained when the depolarization at 1064 nm is added to this setup. The simulated measurements are based on real lidar measurements of transported Eyjafjallajökull volcano ash. It is found that additional 1064 nm depolarization measurements significantly reduce the uncertainty of the retrieved mass concentration and effective particle size. This significant improvement in accuracy is the result of the increased sensitivity of the lidar setup to larger particles. The size dependence of the depolarization does not vary strongly with refractive index, thus we expect similar benefits for the retrieval in case of measurements of other volcanic ash compositions and

  14. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE PAGES

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2014-07-31

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), organic mass-to-organic carbon (OM : OC), and carbon oxidation state (OSC) for a vastly expanded laboratory dataset of multifunctional oxidized OA standards. For the expanded standard dataset, the "Aiken-Explicit" method (Aiken et al., 2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios, reproduces known molecular O :more » C and H : C ratio values within 20% (average absolute value of relative errors) and 12% respectively. The more commonly used "Aiken-Ambient" method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions, reproduces O : C and H : C of multifunctional oxidized species within 28% and 14% of known values. These values are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and H2O+ produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method reduces the systematic biases and reproduces O : C (H : C) ratios of individual oxidized standards within 28% (13

  15. Effectiveness of leaded petrol phase-out in Tianjin, China based on the aerosol lead concentration and isotope abundance ratio.

    PubMed

    Wang, Wan; Liu, Xiande; Zhao, Liwei; Guo, Dongfa; Tian, Xiaodan; Adams, Freddy

    2006-07-01

    The phase-out of leaded petrol has been a measure widely used to reduce atmospheric lead pollution. Since the 1980s, China began to promote unleaded petrol. In order to assess the effectiveness of the measure an isotope fingerprint technique was applied for aerosol samples in the city of Tianjin. After dilute acid leaching, the lead concentration and isotope abundance ratios were determined for 123 samples collected in Tianjin during eight years (1994-2001). The 206Pb/207Pb ratio was lower in summer, when coal combustion emission was low and vehicle exhaust became more important, indicating that the 206Pb/207Pb ratio of leaded petrol in Tianjin is lower than that of aerosol samples. The 206Pb/207Pb ratio gradually increased from 1994 to 2001, a trend that suggests that the contribution from vehicle exhaust was diminishing. Overall, the measurements matched well with national statistical data of leaded and unleaded petrol production. After the nationwide switch to unleaded gasoline, comprehensive control measures are urgently needed to reduce air lead pollution in China, as aerosol lead reduced slightly but remains at a relatively high level.

  16. Characterizing the aging of biomass burning organic aerosol by use of mixing ratios: a meta-analysis of four regions.

    PubMed

    Jolleys, Matthew D; Coe, Hugh; McFiggans, Gordon; Capes, Gerard; Allan, James D; Crosier, Jonathan; Williams, Paul I; Allen, Grant; Bower, Keith N; Jimenez, Jose L; Russell, Lynn M; Grutter, Michel; Baumgardner, Darrel

    2012-12-18

    Characteristic organic aerosol (OA) emission ratios (ERs) and normalized excess mixing ratios (NEMRs) for biomass burning (BB) events have been calculated from ambient measurements recorded during four field campaigns. Normalized OA mass concentrations measured using Aerodyne Research Inc. quadrupole aerosol mass spectrometers (Q-AMS) reveal a systematic variation in average values between different geographical regions. For each region, a consistent, characteristic ratio is seemingly established when measurements are collated from plumes of all ages and origins. However, there is evidence of strong regional and local-scale variability between separate measurement periods throughout the tropical, subtropical, and boreal environments studied. ERs close to source typically exceed NEMRs in the far-field, despite apparent compositional change and increasing oxidation with age. The absence of any significant downwind mass enhancement suggests no regional net source of secondary organic aerosol (SOA) from atmospheric aging of BB sources, in contrast with the substantial levels of net SOA formation associated with urban sources. A consistent trend of moderately reduced ΔOA/ΔCO ratios with aging indicates a small net loss of OA, likely as a result of the evaporation of organic material from initial fire emissions. Variability in ERs close to source is shown to substantially exceed the magnitude of any changes between fresh and aged OA, emphasizing the importance of fuel and combustion conditions in determining OA loadings from biomass burning. PMID:23163290

  17. Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios.

    PubMed

    Youssefi, Somayeh; Waring, Michael S

    2014-07-15

    Secondary organic aerosol (SOA) results from the oxidation of reactive organic gases (ROGs) and is an indoor particle source. The aerosol mass fraction (AMF), a.k.a. SOA yield, quantifies the SOA forming potential of ROGs and is the ratio of generated SOA to oxidized ROG. The AMF depends on the organic aerosol concentration, as well as the prevalence of later generation reactions. AMFs have been measured in unventilated chambers or steady-state flow through chambers. However, indoor settings have outdoor air exchange, and indoor SOA formation often occurs when ROGs are transiently emitted, for instance from emissions of cleaning products. Herein, we quantify "transient AMFs" from ozonolysis of pulse-emitted limonene in a ventilated chamber, for 18 experiments at low (0.28 h(-1)), moderate (0.53 h(-1)), and high (0.96 h(-1)) air exchange rates (AER) with varying initial ozone-limonene ratios. Transient AMFs increased with the amount of ROG reacted; AMFs also increased with decreasing AERs and increasing initial ozone-limonene ratios, which together likely promoted more ozone reactions with the remaining exocyclic bond of oxidized limonene products in the SOA phase. Knowing the AER and initial ozone-limonene ratio is crucial to predict indoor transient SOA behavior accurately.

  18. Insights Into Water-Soluble Organic Aerosol Sources From Carbon-13 Ratios of Size Exclusion Chromatography Fractions

    NASA Astrophysics Data System (ADS)

    Ruehl, C. R.; Chuang, P. Y.; McCarthy, M. D.

    2008-12-01

    Many sources of organic aerosols have been identified and quantified, and much of this work has used individual (mosty water-insoluble) compounds as tracers of primary sources. However, most organic aerosol cannot be molecularly characterized, and the water-soluble organic carbon (WSOC) in many aerosols is thought to originate from gaseous precursors (i.e., it is secondary in nature). It can therefore be difficult to infer aerosol sources, particularly of background (i.e., aged) aerosols, and of the relatively high-MW component of aerosols. The stable isotope ratios (δ13C) of organic aerosols have been used to distinguish between sources, with lighter values (-30‰ to -25‰) interpreted as having originated from fossil fuel combustion and C4 biogenic emission, and heavier values (-25‰ to - 20‰) indicating a marine or C3 biogenic source. Most published measurements were of either total suspended particulates or PM2.5, however, and it is unknown to what extent these fractions differ from submicron WSOC. We report δ13C for submicron WSOC collected at a variety of sites, ranging from marine to polluted to background continental. Bulk marine organic δ13C ranged from -30.4 to - 27.6‰, slightly lighter than previously published results. This could be due to the elimination of supermicron cellular material or other biogenic primary emissions from the sample. Continental WSOC δ13C ranged from -19.1 to -29.8‰, with heavier values (-19.8 ± 1.0‰) in Oklahoma and lighter values at Great Smoky Mountain National Park in Tennessee (-25.8 ± 2.6‰) and Illinois (-24.5 ± 1.0‰). This likely results from the greater proportional of C3 plant material in the Oklahoma samples. In addition to bulk samples, we used size exclusion chromatography (SEC) to report δ13C of organic aerosols as a function of hydrodynamic diameter. Variability and magnitude of hydrodynamic diameter was greatest at low SEC pH, indicative of the acidic character of submicron WSOC. Tennessee

  19. Aerosol matrix-assisted laser desorption ionization. Effects of analyte concentration and matrix-to-analyte ratio

    SciTech Connect

    Beeson, M.D.; Murray, K.K.; Russell, D.H.

    1995-07-01

    We have recently developed an aerosol-liquid introduction interface for matrix-assisted laser desorption ionization (MALDI) mass spectrometry. In this study, we examine the effect of matrix-to-analyte ratio and analyte concentration on analyte ion yield. These studies were performed using bradykinin, gramicidin S, bovine insulin, and myoglobin as analytes and {alpha}-cyano-4-hydroxycinnamic acid and 4-nitroaniline as matrices. The optimum matrix-to-analyte molar ratio for aerosol MALDI was determined to be 10-100:1, which is lower than that typically used for conventional surface MALDI (100-10 000:1). The ion yield was found to be a nonlinear function of analyte concentration. Possible explanations for these observations are discussed. 43 refs., 3 figs., 1 tab.

  20. Elucidating carbonaceous aerosol sources by the stable carbon δ13CTC ratio in size-segregated particles

    NASA Astrophysics Data System (ADS)

    Masalaite, A.; Remeikis, V.; Garbaras, A.; Dudoitis, V.; Ulevicius, V.; Ceburnis, D.

    2015-05-01

    Carbonaceous aerosol sources were investigated by measuring the stable carbon isotope ratio (δ13CTC) in size-segregated aerosol particles. The samples were collected with a micro-orifice uniform deposit impactor (MOUDI) in 11 size intervals ranging from 0.056 μm to 18 μm. The aerosol particle size distribution obtained from combined measurements with a scanning mobility particle sizer (SMPS; TSI 3936) and an aerosol particle sizer (APS; TSI 3321) is presented for comparison with MOUDI data. The analysis of δ13CTC values revealed that the total carbonaceous matter in size-segregated aerosol particles significantly varied from - 23.4 ± 0.1‰ in a coarse mode to - 30.1 ± 0.5‰ in a fine mode. A wide range of the δ13CTC values of size-segregated aerosol particles suggested various sources of aerosol particles contributing to carbonaceous particulate matter. Therefore, the source mixing equation was applied to verify the idea of mixing of two sources: continental non-fossil and fossil fuel combustion. The obtained δ13CTC value of aerosol particles originating from fossil fuel combustion was - 28.0 to - 28.1‰, while the non-fossil source δ13CTC value was in the range of - 25.0 to - 25.5‰. The two source mixing model applied to the size-segregated samples revealed that the fossil fuel combustion source contributed from 100% to 60% to the carbonaceous particulate matter in the fine mode range (Dp < 1 μm). Meanwhile, the second source, continental non-fossil, was the main contributor in the coarse fraction (Dp > 2 μm). The particle range from 0.5 to 2.0 μm was identified as a transition region where two sources almost equally contributed to carbonaceous particulate matter. The proposed mixing model offers an alternative method for determining major carbonaceous matter sources where radiocarbon analysis may lack the sensitivity (as in size-segregated samples).

  1. Surrogate/spent fuel sabotage aerosol ratio testing:phase 1 summary and results.

    SciTech Connect

    Vigil, Manuel Gilbert; Sorenson, Ken Bryce; Lange, F. , Germany); Nolte, O. (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Koch, W. (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Dickey, Roy R.; Yoshimura, Richard Hiroyuki; Molecke, Martin Alan; Autrusson, Bruno (Institut de Radioprotection et de Surete Nucleaire , France); Young, F. I.; Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und reaktorsicherheit , Germany)

    2005-10-01

    This multinational test program is quantifying the aerosol particulates produced when a high energy density device (HEDD) impacts surrogate material and actual spent fuel test rodlets. The experimental work, performed in four consecutive test phases, has been in progress for several years. The overall program provides needed data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This program also provides significant political benefits in international cooperation for nuclear security related evaluations. The spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC), and supported by both the U.S. Department of Energy and Nuclear Regulatory Commission. This report summarizes the preliminary, Phase 1 work performed in 2001 and 2002 at Sandia National Laboratories and the Fraunhofer Institute, Germany, and documents the experimental results obtained, observations, and preliminary interpretations. Phase 1 testing included: performance quantifications of the HEDD devices; characterization of the HEDD or conical shaped charge (CSC) jet properties with multiple tests; refinement of the aerosol particle collection apparatus being used; and, CSC jet-aerosol tests using leaded glass plates and glass pellets, serving as representative brittle materials. Phase 1 testing was quite important for the design and performance of the following Phase 2 test program and test apparatus.

  2. Differences in Fine- Coarse Aerosol Ratios in Convective and Non-Convective Dust Events in a Desert City

    NASA Astrophysics Data System (ADS)

    Gill, T. E.; Rivera Rivera, N. I.; Novlan, D. J.

    2014-12-01

    El Paso, Texas (USA) and Ciudad Juarez, Chihuahua (Mexico) form the Paso del Norte, the largest metropolitan area in North America's Chihuahuan Desert. The cities are subject to frequent dust storms presenting a hazard to local infrastructure and health, including synoptic-scale dust events during winter and spring, and dusty outflows from convective storms (haboobs) primarily during the summer. We evaluate particulate matter (PM2.5 and PM10) concentrations over a decade of convective and non-convective dust events, based on hourly aerosol data collected by Texas Commission on Environmental Quality (TCEQ) continuous air monitors in El Paso cross-referenced to weather observations from the USA National Weather Service. A total of 219 dust events (95 convective and 124 non-convective) events occurred between 2001 and 2010. The PM2.5/PM10 ratio was significantly higher (proportionally greater concentration of fine aerosols) in convective episodes and during summertime events than during non-convective dust events and dust episodes in other seasons, although overall concentrations of both PM2.5 and PM10 were higher in the non-convective events, which were also longer-lasting. These differences in fine/coarse aerosol ratios are likely related to different atmospheric stability conditions, and/or different mechanisms of dust particle entrainment and transport in haboobs versus non-convective dust events. Since visibility degradation and adverse human health effects are known to be exacerbated by to fine aerosol concentrations, thunderstorm-related dust events may present a proportionally greater hazard.

  3. Calibration method for the lidar-observed stratospheric depolarization ratio in the presence of liquid aerosol particles.

    PubMed

    Adachi, H; Shibata, T; Iwasaka, Y; Fujiwara, M

    2001-12-20

    A fine calibration of the depolarization ratio is required for a detailed interpretation of lidar-observed polar stratospheric clouds. We propose a procedure for analyzing data by using atmospheric depolarization lidar. The method is based on a plot of deltaT versus (1 - RT(-1)), where deltaT is the total depolarization ratio and RT is the total backscattering ratio. Assuming that there are only spherical particles in some altitude ranges of the lidar data, the characteristics of the plot of deltaT versus (1 - RT(-1)) lead to a simple but effective calibration method for deltaT. Additionally, the depolarization of air molecules deltam can be determined in the process of deltaT calibration. We compared determined values with theoretically calculated values for the depolarization of air to test the proposed method. The deltam value was calculated from the lidar data acquired at Ny-Alesund (79 degrees N, 12 degrees E), Svalbard in winter 1994-1995. When only sulfate aerosols were present on 24 December 1994, deltam was 0.46 +/- 0.35%. When the particles consisted of sulfate aerosols and spherical particles of polar stratospheric clouds on 4 January 1995, deltam was 0.45 +/- 0.07%. Both deltam values were in good agreement with the theoretically calculated value, 0.50 +/- 0.03%.

  4. Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Kahnert, M.; Ferrare, R. A.; Hostetler, C. A.; Cook, A. L.; Harper, D. B.; Berkoff, T. A.; Seaman, S. T.; Collins, J. E.; Fenn, M. A.; Rogers, R. R.

    2015-09-01

    Particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 (HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm. The depolarization in the smoke case is inferred to be due to the presence of coated soot aggregates. We also point out implications for the upcoming EarthCARE satellite, which will measure particle depolarization ratio only at 355 nm. At 355 nm, the particle depolarization ratios for all three of our case studies are very similar, indicating that smoke and dust may be more difficult to separate with EarthCARE measurements than heretofore supposed.

  5. Concentrations of iodine isotopes ((129)I and (127)I) and their isotopic ratios in aerosol samples from Northern Germany.

    PubMed

    Daraoui, A; Riebe, B; Walther, C; Wershofen, H; Schlosser, C; Vockenhuber, C; Synal, H-A

    2016-04-01

    New data about (129)I, (127)I concentrations and their isotopic ratios in aerosol samples from the trace survey station of the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Northern Germany, are presented and discussed in this paper. The investigated samples were collected on a weekly basis during the years 2011 to 2013. Iodine was extracted from aerosol filters using a strong basic solution and was separated from the matrix elements with chloroform and was analysed by accelerator mass spectrometry (AMS) for (129)I and by inductively coupled plasma mass spectrometry (ICP-MS) for (127)I. The concentrations of (127)I and (129)I in aerosol filters ranged from 0.31 to 3.71 ng m(-3) and from 0.06 to 0.75 fg m(-3), respectively. The results of (129)I/(127)I isotopic ratios were in the order 10(-8) to 10(-7). The (129)I originated directly from gaseous emissions and indirectly from liquid emissions (via sea spray) from the reprocessing plants in Sellafield and La Hague. In comparison with the results of (131)I after the Fukushima accident, no contribution of (129)I from this accident was detectable in Central Europe due to the high background originating from the (129)I releases of the European reprocessing plants. (129)I atmospheric activity concentrations were compared with those of an anthropogenic radionuclide ((85)Kr). We did not find any correlation between (129)I and (85)Kr, both having nuclear reprocessing plant as the main source. PMID:26867099

  6. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  7. Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols

    SciTech Connect

    Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

    2012-07-02

    The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

  8. Lidar Ratios for Dust Aerosols Derived From Retrievals of CALIPSO Visible Extinction Profiles Constrained by Optical Depths from MODIS-Aqua and CALIPSO/CloudSat Ocean Surface Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.

    2010-01-01

    CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.

  9. Black Carbon, Metal Concentrations and Lead Isotopes Ratios in Aerosols as Tracers of Human and Natural Activities in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Guinot, B. P.

    2015-12-01

    Atmospheric brown clouds (ABC) observed as widespread layers of brownish haze are regional scale plumes of air pollutants with a hot spot of emission located in East Asia. ABC are mainly composed of aerosol particles such as Black Carbon (BC) emitted to the atmosphere during biomass burning and fossil fuels combustion. The atmospheric lifetime of BC ranges from a few days in wet season up to one month in dry season. The use of stable lead isotopes and 21 elements as tracers of air pollution was applied to identify and characterized the main sources of anthropogenic activities in Asian region. Aerosol samples from Haiphong (North Vietnam) were collected by a high volume sampler for a period of one year from October 2012 to October 2013. Vietnam's 207Pb/206Pb ratios were almost identical to those found for China. Ratios of 207Pb/206Pb ranged from 0.837 to 0.871 which agrees with values previously reported for the last 10 years in China (0.841 - 0.879). No significant variation in isotope ratio was observed during the sampling period, which suggests that there was no large seasonal variation in the isotope ratios of airborne lead. Trajectory analysis showed that almost two third of the air masses originated from East Northeast which implies that China was a major source of lead in atmosphere. Enrichment factor calculations indicated a large influence of coal activity (EF(Al) As = 1982 ± 796, EF(Al) Cd = 972 ± 659, EF(Al) Sb = 1358 ± 930) but the difference between combustion and mining exploitation could not be evidenced. Significant correlations were found between two others groups of elements: As, Cu, Ni, Zn, and Al, Fe K, Co. Wind dilution was effective on metals concentration variation. During the cold and dry season (winter) ambient concentrations were high and variable, during the warm and wet season (summer) concentrations were stable and low. Taken together, these factors also identified industrial and lithogenic activities in the region.

  10. Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the south Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Bates, Timothy S.; Calhoun, Julie A.; Quinn, Patricia K.

    1992-01-01

    Seawater concentrations of dimethylsulfide (DMS) and atmospheric concentrations of DMS, sulfur dioxide, methanesulfonate (MSA), and non-sea-salt (nss) sulfate were measured over the eastern Pacific Ocean between 105 deg and 110 deg W from 20 deg N to 60 deg S during February and March 1989. Although the samples collected in the Southern Hemisphere appear to be of marine origin, no significant correlation was found between the latitudinal distributions of DMS, SO2, MSA, and nss SO4(2-). However, an inverse correlation was found between atmospheric temperature and the MSA to nss SO4(2-) molar ratio in submicrometer aerosol particles with a decrease in temperature corresponding to an increase in the molar ratio. Although this trend is consistent with laboratory results indicating the favored production of MSA at lower temperatures, it is contrary to Southern Hemisphere baseline station data. This suggests either a decrease in the supply of DMS relative to nonmarine sources of nss SO4(2-) at the baseline stations in winter or additional mechanisms that affect the relative production of MSA and nss SO4(2-).

  11. Angular and Seasonal Variation of Spectral Surface Reflectance Ratios: Implications for the Remote Sensing of Aerosol over Land

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Wald, A. E.; Kaufman, Y. J.

    1999-01-01

    We obtain valuable information on the angular and seasonal variability of surface reflectance using a hand-held spectrometer from a light aircraft. The data is used to test a procedure that allows us to estimate visible surface reflectance from the longer wavelength 2.1 micrometer channel (mid-IR). Estimating or avoiding surface reflectance in the visible is a vital first step in most algorithms that retrieve aerosol optical thickness over land targets. The data indicate that specular reflection found when viewing targets from the forward direction can severely corrupt the relationships between the visible and 2.1 micrometer reflectance that were derived from nadir data. There is a month by month variation in the ratios between the visible and the mid-IR, weakly correlated to the Normalized Difference Vegetation Index (NDVI). If specular reflection is not avoided, the errors resulting from estimating surface reflectance from the mid-IR exceed the acceptable limit of DELTA-rho approximately 0.01 in roughly 40% of the cases, using the current algorithm. This is reduced to 25% of the cases if specular reflection is avoided. An alternative method that uses path radiance rather than explicitly estimating visible surface reflectance results in similar errors. The two methods have different strengths and weaknesses that require further study.

  12. Ratio

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.

    2014-12-01

    Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.

  13. Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio.

    PubMed

    Rajput, Prashant; Sarin, M M

    2014-05-01

    This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67±0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (∼30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1∼1.2) and polar organic aerosols (OM2/OC2∼2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9±0.2 and 1.8±0.2, from paddy- and wheat-residue burning emissions.

  14. Diurnal variations of carbonaceous components, major ions, and stable carbon and nitrogen isotope ratios in suburban aerosols from northern vicinity of Beijing

    NASA Astrophysics Data System (ADS)

    He, Nannan; Kawamura, Kimitaka; Kanaya, Yugo; Wang, Zifa

    2015-12-01

    We report diurnal variations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and major ions as well as stable carbon and nitrogen isotope ratios (δ13C and δ15N) in ambient aerosols at a suburban site (Mangshan), 40 km north of Beijing, China. We found that aerosol chemical compositions were largely controlled by the air mass transport from Beijing in daytime with southerly winds and by relatively fresh air mass in nighttime from the northern forest areas with northerly winds. Higher concentrations of aerosol mass and total carbon were obtained in daytime. Further, higher OC/EC ratios were recorded in daytime (4.0 ± 1.7) than nighttime (3.2 ± 0.7), suggesting that OC is formed by photochemical oxidation of gaseous precursors in daytime. Contributions of WSOC to OC were slightly higher in daytime (38%) than nighttime (34%), possibly due to secondary formation of WSOC in daytime. We also found higher concentrations of Ca2+ in daytime, which was originated from the construction dust in Beijing area and transported to the sampling site. δ13C ranged from -25.3 to -21.2‰ (ave. -23.5 ± 0.9‰) in daytime and -29.0 to -21.4‰ (-24.0 ± 1.5‰) in nighttime, suggesting that Mangshan aerosols were more influenced by fossil fuel combustion products in daytime and by terrestrial C3 plants in nighttime. This study suggests that daytime air mass delivery from megacity Beijing largely influence the air quality at the receptor site in the north together with photochemical processing of organic aerosols during the atmospheric transport, whereas the Mangshan site is covered with relatively clean air masses at night.

  15. Real refractive indices and formation yields of secondary organic aerosol generated from photooxidation of limonene and α-pinene: the effect of the HC/NO(x) ratio.

    PubMed

    Kim, Hwajin; Barkey, Brian; Paulson, Suzanne E

    2012-06-21

    The refractive index is an important property affecting aerosol optical properties, which in turn help determine the aerosol direct effect and satellite retrieval results. Here, we investigate the real refractive indices (m(r)) of secondary organic aerosols (SOA) generated from the photooxidation of limonene and α-pinene with different HC/NO(x) ratios. Refractive indices were obtained from polar nephelometer data using parallel and perpendicular polarized 532 nm light combined with measured size distributions, and retrievals were performed using a genetic algorithm and Mie-Lorenz scattering theory. The absolute error associated with the m(r) retrieval is ±0.03, and reliable retrievals are possible for mass concentrations above 5-20 μg/m(3) depending on particle size. The limonene SOA data suggest the most important factor controlling the refractive index is the HC/NO(x) ratio; the refractive index is much less sensitive to the aerosol age or mass concentration. The refractive index ranges from about 1.34 to 1.56 for limonene and from 1.36 to 1.52 for α-pinene, and generally decreases as the HC/NO(x) ratio increases. Especially for limonene, the particle diameter is also inversely related to the HC/NO(x) ratio; the final size mode increases from 220 to 330 nm as the HC/NO(x) ratio decreases from 33 to 6. In an effort to explore the ability of models from the literature to explain the observed refractive indices, a recent limonene oxidation mechanism was combined with SOA partitioning and a structure-property relationship for estimating refractive indices of condensing species. The resulting refractive indices fell in a much narrower range (1.475 ± 0.02) of m(r) than observed experimentally. We hypothesize the experimentally observed high m(r) values are due to oligomerization and the low values to water uptake, small soluble molecules such as glyoxal and other factors, each of which is not included in the oxidation mechanism. Aerosol formation yields were

  16. Validating MODIS above-cloud aerosol optical depth retrieved from "color ratio" algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors

    NASA Astrophysics Data System (ADS)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rosenheimer, Michal; Spurr, Rob

    2016-10-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.

  17. Seasonal variations in Titan's stratosphere observed with Cassini/CIRS: temperature, trace molecular gas and aerosol mixing ratio profiles

    NASA Astrophysics Data System (ADS)

    Vinatier, S.; Bézard, B.; Anderson, C.; Teanby, N.; Lebonnois, S.; Rannou, P.; de Kok, R.; T. CIRS Team

    2013-09-01

    Titan's northern spring equinox occurred in August 2009. General Circulation Models (e.g. [1]) predict strong modifications of the global circulation in this period, with formation of two circulation cells instead of the pole-to-pole cell that occurred during northern winter. This winter single cell, which had its descending branch at the north pole, was at the origin of the enrichment of molecular abundances and high stratopause temperatures observed by Cassini/CIRS at high northern latitudes (e.g., [2], [3], [4], [5]). The predicted dynamical seasonal variations after the equinox have strong impact on the spatial distributions of trace gas, temperature and aerosol abundances. We will present here an analysis of CIRS limbgeometry datasets acquired in 2010, 2011 and 2012 that we used to monitor the seasonal evolution of the vertical profiles of temperature, molecular (C2H2, C2H6, HCN, ...) and aerosol abundances.

  18. 239+240Pu concentration and isotope ratio (240Pu/239Pu) in aerosols during high dust (Yellow Sand) period, Korea.

    PubMed

    Choi, Man Sik; Lee, Dong-Soo; Choi, Jae-Cheon; Cha, Hyun-Ju; Yi, Hee-Il

    2006-10-15

    Concentration and isotope ratio of Pu were analyzed for aerosols collected at Anmyeondo located in the western coast of Korea using multiple collector inductively coupled plasma mass spectrometer equipped with desolvated micro-concentric nebulizer. Aerosols were collected from June 2001 to April 2002 using high volume air sampler. The samples consist of high dust samples (Yellow Sand), and also low dust samples; maximum Al concentration was 74.2 microg/m(3) and minimum was 0.17 microg/m(3). Pu was concentrated using 0.1 ml TEVA resin columns after conc. HNO(3) extraction. Isotope dilution using (242)Pu spike and mass bias correction using (233)U and (236)U mixed solution enabled the quantification of Pu and measurement of isotope ratio simultaneously. The contribution of (238)U from both spikes and samples was minimized by careful chemical separation and optimization of spike concentration. The (238)U(1)H and tail contribution on (239)Pu peak were about 0.75 x 10(-5) and 1 x 10(-5) of (238)U intensity, respectively, and they were corrected from (239)Pu using externally determined ((238)U(1)H + tailing)/(238)U ratio and (238)U measurement during acquisition. The detection limits of this analytical procedure were 0.61 fg/ml and 0.56 fg/ml for (239)Pu and (240)Pu, respectively (4 nBq/m(3) and 12 nBq/m(3) for (239)Pu and (240)Pu, respectively). The precision of isotope ratio measurement was better than 2% for larger quantity than 20 fg of (239)Pu. In spring, maximum concentration of 0.580 microBq/m(3) for (239)Pu and 0.404 microBq/m(3) for (240)Pu was observed when Al concentration was maximum, so called as Yellow Sand event. Pu concentrations in aerosols are well correlated with Al, a tracer of soil dust. The ratios of Pu/Al were 0.0082 (microBq/microg) and 0.0055 (microBq/microg) for (239)Pu/Al and (240)Pu/Al, respectively. Isotope ratios of Pu ((240)Pu/(239)Pu) in Yellow Sand samples show 0.191+/-0.014 close to those of global fallout. These facts indicate that

  19. Seasonal Variations in Titan's Stratosphere Observed with Cassini/CIRS: Temperature, Trace Molecular Gas and Aerosol Mixing Ratio Profiles

    NASA Technical Reports Server (NTRS)

    Vinatier, S.; Bezard, B.; Anderson, C. M.; Coustenis, A.; Teanby, N.

    2012-01-01

    Titan's northern spring equinox occurred in August 2009. General Circulation Models (e.g. Lebonnois et al., 2012) predict strong modifications of the global circulation in this period, with formation of two circulation cells instead of the pole-to-pole cell that occurred during northern winter. This winter single cell, which had its descending branch at the north pole, was at the origin of the enrichment of molecular abundances and high stratopause temperatures observed by Cassini/CIRS at high northern latitudes (e.g. Achterberg et al., 2011, Coustenis et al., 2010, Teanby et al., 2008, Vinatier et al., 2010). The predicted dynamical seasonal variations after the equinox have strong impact on the spatial distributions of trace gas, temperature and aerosol abundances. We will present here an analysis of CIRS limb-geometry datasets acquired in 2010 and 2011 that we used to monitor the seasonal evolution of the vertical profiles of temperature, molecular (C2H2, C2H6, HCN, ..) and aerosol abundances.

  20. Solutions Network Formulation Report. Aerosol Polarimetry Sensor Measurements of Diffuse-to-Global Irradiance Ratio for Improved Forecasting of Plant Productivity and Health

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly; Andrews, Jane C.; Ryan, Robert E.

    2007-01-01

    Studies have shown that vegetation is directly sensitive to changes in the diffuse-to-global irradiance ratio and that increased percentage of diffuse irradiation can accelerate photosynthesis. Therefore, measurements of diffuse versus global irradiance could be useful for monitoring crop productivity and overall vegetative health as they relate to the total amount of particulates in the air that result from natural disasters or anthropogenic (manmade) causes. While the components of solar irradiance are measured by satellite and surface sensors and calculated with atmospheric models, disagreement exists between the results, creating a need for more accurate and comprehensive retrievals of atmospheric aerosol parameters. Two satellite sensors--APS and VIIRS--show promise for retrieving aerosol properties at an unprecedented level of accuracy. APS is expected to be launched in December 2008. The planned launch date for VIIRS onboard NPP is September 2009. Identified partners include the USDA s ARS, North Carolina State University, Purdue Climate Change Research Center, and the Cooperative Institute for Research in the Atmosphere at Colorado State University. Although at present no formal DSSs (decision support systems) require accurate values of diffuse-to-global irradiance, this parameter is sufficiently important that models are being developed that will incorporate these measurements. This candidate solution is aligned with the Agricultural Efficiency and Air Quality National Applications.

  1. Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition.

    PubMed

    Bulusheva, L G; Okotrub, A V; Fedoseeva, Yu V; Kurenya, A G; Asanov, I P; Vilkov, O Y; Koós, A A; Grobert, N

    2015-10-01

    Nitrogen-containing multi-wall carbon nanotubes (N-MWCNTs) were synthesized using aerosol assisted chemical vapor deposition (CVD) techniques in conjunction with benzylamine:ferrocene or acetonitrile:ferrocene mixtures. Different amounts of toluene were added to these mixtures in order to change the N/C ratio of the feedstock. X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopy detected pyridinic, pyrrolic, graphitic, and molecular nitrogen forms in the N-MWCNT samples. Analysis of the spectral data indicated that whilst the nature of the nitrogen-containing precursor has little effect on the concentrations of the different forms of nitrogen in N-MWCNTs, the N/C ratio in the feedstock appeared to be the determining factor. When the N/C ratio was lower than ca. 0.01, all four forms existed in equal concentrations, for N/C ratios above 0.01, graphitic and molecular nitrogen were dominant. Furthermore, higher concentrations of pyridinic nitrogen in the outer shells and N2 molecules in the core of the as-produced N-MWCNTs suggest that the precursors were decomposed into individual atoms, which interacted with the catalyst surface to form CN and NH species or in fact diffused through the bulk of the catalyst particles. These findings are important for a better understanding of possible growth mechanisms for heteroatom-containing carbon nanotubes (CNTs) and therefore paving the way for controlling the spatial distribution of foreign elements in the CNTs using CVD processes. PMID:26104737

  2. Lead isotopes and trace metal ratios of aerosols as tracers of Pb pollution sources in Kanpur, India

    NASA Astrophysics Data System (ADS)

    Sen, Indra; Bizimis, Michael; Tripathi, Sachchida; Paul, Debajyoti; Tyagi, Swati; Sengupta, Deep

    2015-04-01

    The anthropogenic flux of Pb in the Earth's surface is almost an order of magnitude higher than its corresponding natural flux [1]. Identifying the sources and pathways of anthropogenic Pb in environment is important because Pb toxicity is known to have adverse effects on human health. Pb pollution sources for America, Europe, and China are well documented. However, sources of atmospheric Pb are unknown in India, particularly after leaded gasoline was phased out in 2000. India has a developing economy with a rapidly emerging automobile and high temperature industry, and anthropogenic Pb emission is expected to rise in the next decade. In this study, we report on the Pb- isotope compositions and trace metal ratios of airborne particulates collected in Kanpur, an industrial city in northern India. The Pb concentration in the airborne particulate matter varies between 14-216 ng/m3, while the other heavy metals vary by factor of 10 or less, e.g. Cd=0.3-3 ng/m3, As=0.4-3.5 ng/m3, Zn=36-161 ng/m3, and Cu=3-22 ng/m3. The 206Pb/207Pb, 208Pb/206Pb, and 208Pb/207Pb vary between 1.112 - 1.129, 2.123-2.141, and 2.409-2.424 respectively, and are highly correlated with each other (R2>0.9). Pb isotopes and trace metal data reveals that coal combustion is the major source of anthropogenic Pb in the atmosphere, with limited contribution from mining and smelting processes. We further conclude that combination of Pb isotope ratios and V/Pb ratios are powerful tracers for Pb source apportionment studies, which is otherwise difficult to differentiate based only on Pb systematics [1] Sen and Peucker-Ehrenbrink (2012), Environ. Sci. Technol.(46), 8601-8609

  3. Physicochemical variations in atmospheric aerosols recorded at sea onboard the Atlantic-Mediterranean 2008 Scholar Ship cruise (Part I): Particle mass concentrations, size ratios, and main chemical components

    NASA Astrophysics Data System (ADS)

    Pérez, Noemí; Moreno, Teresa; Querol, Xavier; Alastuey, Andrés; Bhatia, Ravinder; Spiro, Baruch; Hanvey, Melanie

    2010-07-01

    We report on ambient atmospheric aerosols present at sea during the Atlantic-Mediterranean voyage of Oceanic II (The Scholar Ship) in spring 2008. A record was obtained of hourly PM 10, PM 2.5, and PM 1 particle size fraction concentrations and 24-h filter samples for chemical analysis which allowed for comparison between levels of crustal particles, sea spray, total carbon, and secondary inorganic aerosols. On-board monitoring was continuous from the equatorial Atlantic to the Straits of Gibraltar, across the Mediterranean to Istanbul, and back via Lisbon to the English Channel. Initially clean air in the open Atlantic registered PM 10 levels <10 μg m -3 but became progressively polluted by increasingly coarse PM as the ship approached land. Away from major port cities, the main sources of atmospheric contamination identified were dust intrusions from North Africa (NAF), smoke plumes from biomass burning in sub-Saharan Africa and Russia, industrial sulphate clouds and other regional pollution sources transported from Europe, sea spray during rough seas, and plumes emanating from islands. Under dry NAF intrusions PM 10 daily mean levels averaged 40-60 μg m -3 (30-40 μg m -3 PM 2.5; c. 20 μg m -3 PM 1), peaking briefly to >120 μg m -3 (hourly mean) when the ship passed through curtains of higher dust concentrations amassed at the frontal edge of the dust cloud. PM 1/PM 10 ratios ranged from very low during desert dust intrusions (0.3-0.4) to very high during anthropogenic pollution plume events (0.8-1).

  4. Photodiode array to charged aerosol detector response ratio enables comprehensive quantitative monitoring of basic drugs in blood by ultra-high performance liquid chromatography.

    PubMed

    Viinamäki, Jenni; Ojanperä, Ilkka

    2015-03-20

    Quantitative screening for a broad range of drugs in blood is regularly required to assess drug abuse and poisoning within analytical toxicology. Mass spectrometry-based procedures suffer from the large amount of work required to maintain quantitative calibration in extensive multi-compound methods. In this study, a quantitative drug screening method for blood samples was developed based on ultra-high performance liquid chromatography with two consecutive detectors: a photodiode array detector and a corona charged aerosol detector (UHPLC-DAD-CAD). The 2.1 mm × 150 mm UHPLC column contained a high-strength silica C18 bonded phase material with a particle size of 1.8 μm, and the mobile phase consisted of methanol/0.1% trifluoroacetic acid in gradient mode. Identification was based on retention time, UV spectrum and the response ratio from the two detectors. Using historic calibration over a one-month period, the median precision (RSD) of retention times was 0.04% and the median accuracy (bias) of quantification 6.75%. The median precision of the detector response ratio over two orders of magnitude was 12%. The applicable linear ranges were generally 0.05-5 mg L(-1). The method was validated for 161 compounds, including antipsychotics, antidepressants, antihistamines, opioid analgesics, and adrenergic beta blocking drugs, among others. The main novelty of the method was the proven utility of the response ratio of DAD to CAD, which provided the additional identification efficiency required. Unlike with mass spectrometry, the high stability of identification and quantification allowed the use of facile historic calibration.

  5. INDOOR/OUTDOOR AEROSOL CONCENTRATION RATIOS DURING THE 1999 FRESNO PARTICULATE MATTER EXPOSURE STUDIES AS A FUNCTION OF SIZE, SEASON, AND TIME OF DAY

    EPA Science Inventory

    The 1999 Fresno particulate matter exposure studies tools place in February (winter season) and April/May (spring season) for two periods of four weeks. During that time, near-continuous measurements of indoor and outdoor aerosol concentrations were made with a scanning mobilit...

  6. Stable isotope ratio measurements of Cu and Zn in mineral dust (bulk and size fractions) from the Taklimakan Desert and the Sahel and in aerosols from the eastern tropical North Atlantic Ocean.

    PubMed

    Dong, Shuofei; Weiss, Dominik J; Strekopytov, Stanislav; Kreissig, Katharina; Sun, Youbin; Baker, Alex R; Formenti, Paola

    2013-09-30

    Accurate characterization of the stable isotope composition of Cu and Zn in major global mineral dust sources and in aerosols is central to the application of these isotope systems to the studies of global geochemical processes and cycles. We test here for the first time Cu and Zn isotope ratios within a well-defined source-receptor setting on the continent-ocean interface and determine the isotope composition of (i) bulk surface soil dust samples from the Sahel region, (ii) individual size fractions of surface dust samples from the Taklimakan Desert, and (iii) aerosols collected in the equatorial eastern North Atlantic region. This is achieved reducing the blank contribution during the ion exchange step using small resin and acid volumes and using a second ion exchange passage to purify the Cu fraction. We find no significant correlation between size fractions and isotope ratios in the two samples analyzed from the Taklimakan Desert. Mass balance calculations suggest that isotope ratios of bulk samples are within the analytical precision of the <4 μm size fraction and can be used to characterize atmospheric long range transport of Cu and Zn in mineral dust from the Taklimakan Desert. The <1 µm size fractions of two aerosol samples collected over the equatorial eastern North Atlantic region have Cu and Zn isotope ratios that are different to Sahel surface soil dust suggesting important non-crustal sources, in line with calculated enrichment factors, and possibly of anthropogenic origin. Using previously reported δ(66)Zn values for anthropogenic emission from Europe, preliminary calculations suggest that up to 55% of Zn arriving at the sampling points in the equatorial eastern North Atlantic region could be of anthropogenic origin.

  7. Seasonal Variations In Titan’s Stratosphere Observed With Cassini/CIRS: Temperature, Trace Molecular Gas And Aerosol Mixing Ratio Profiles

    NASA Astrophysics Data System (ADS)

    Vinatier, Sandrine; Bézard, B.; Anderson, C.; Teanby, N.; de Kok, R.; Actherberg, R.; Coustenis, A.; CIRS Team

    2012-10-01

    Titan's northern spring equinox occurred in August 2009. General Circulation Models predict strong modifications of the global circulation in this period, with formation of two circulation cells instead of the pole-to-pole cell that occurred during northern winter. This winter single cell, which had its descending branch at the north pole, was at the origin of the enrichment of molecular abundances and high stratopause temperatures observed by Cassini/CIRS at high northern latitudes. The predicted dynamical seasonal variations after the equinox have strong impact on the spatial distributions of trace gas, temperature and aerosol abundances. We will present here an analysis of CIRS limb-geometry datasets acquired in 2010, 2011 and 2012 that we used to monitor the seasonal evolution of the vertical profiles of temperature, molecular (C2H2, C2H6, HCN, ...) and aerosol abundances.

  8. Development of a dual-internal-reference technique to improve accuracy when determining bacterial 16S rRNA:16S rRNA gene ratio with application to Escherichia coli liquid and aerosol samples.

    PubMed

    Zhen, Huajun; Krumins, Valdis; Fennell, Donna E; Mainelis, Gediminas

    2015-10-01

    Accurate enumeration of rRNA content in microbial cells, e.g. by using the 16S rRNA:16S rRNA gene ratio, is critical to properly understand its relationship to microbial activities. However, few studies have considered possible methodological artifacts that may contribute to the variability of rRNA analysis results. In this study, a technique utilizing genomic DNA and 16S rRNA from an exogenous species (Pseudomonas fluorescens) as dual internal references was developed to improve accuracy when determining the 16S rRNA:16S rRNA gene ratio of a target organism, Escherichia coli. This technique was able to adequately control the variability in sample processing and analysis procedures due to nucleic acid (DNA and RNA) losses, inefficient reverse transcription of RNA, and inefficient PCR amplification. The measured 16S rRNA:16S rRNA gene ratio of E. coli increased by 2-3 fold when E. coli 16S rRNA gene and 16S rRNA quantities were normalized to the sample-specific fractional recoveries of reference (P. fluorescens) 16S rRNA gene and 16S rRNA, respectively. In addition, the intra-sample variation of this ratio, represented by coefficients of variation from replicate samples, decreased significantly after normalization. This technique was applied to investigate the temporal variation of 16S rRNA:16S rRNA gene ratio of E. coli during its non-steady-state growth in a complex liquid medium, and to E. coli aerosols when exposed to particle-free air after their collection on a filter. The 16S rRNA:16S rRNA gene ratio of E. coli increased significantly during its early exponential phase of growth; when E. coli aerosols were exposed to extended filtration stress after sample collection, the ratio also increased. In contrast, no significant temporal trend in E. coli 16S rRNA:16S rRNA gene ratio was observed when the determined ratios were not normalized based on the recoveries of dual references. The developed technique could be widely applied in studies of relationship between

  9. Development of a dual-internal-reference technique to improve accuracy when determining bacterial 16S rRNA:16S rRNA gene ratio with application to Escherichia coli liquid and aerosol samples.

    PubMed

    Zhen, Huajun; Krumins, Valdis; Fennell, Donna E; Mainelis, Gediminas

    2015-10-01

    Accurate enumeration of rRNA content in microbial cells, e.g. by using the 16S rRNA:16S rRNA gene ratio, is critical to properly understand its relationship to microbial activities. However, few studies have considered possible methodological artifacts that may contribute to the variability of rRNA analysis results. In this study, a technique utilizing genomic DNA and 16S rRNA from an exogenous species (Pseudomonas fluorescens) as dual internal references was developed to improve accuracy when determining the 16S rRNA:16S rRNA gene ratio of a target organism, Escherichia coli. This technique was able to adequately control the variability in sample processing and analysis procedures due to nucleic acid (DNA and RNA) losses, inefficient reverse transcription of RNA, and inefficient PCR amplification. The measured 16S rRNA:16S rRNA gene ratio of E. coli increased by 2-3 fold when E. coli 16S rRNA gene and 16S rRNA quantities were normalized to the sample-specific fractional recoveries of reference (P. fluorescens) 16S rRNA gene and 16S rRNA, respectively. In addition, the intra-sample variation of this ratio, represented by coefficients of variation from replicate samples, decreased significantly after normalization. This technique was applied to investigate the temporal variation of 16S rRNA:16S rRNA gene ratio of E. coli during its non-steady-state growth in a complex liquid medium, and to E. coli aerosols when exposed to particle-free air after their collection on a filter. The 16S rRNA:16S rRNA gene ratio of E. coli increased significantly during its early exponential phase of growth; when E. coli aerosols were exposed to extended filtration stress after sample collection, the ratio also increased. In contrast, no significant temporal trend in E. coli 16S rRNA:16S rRNA gene ratio was observed when the determined ratios were not normalized based on the recoveries of dual references. The developed technique could be widely applied in studies of relationship between

  10. Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; Harper, David B.

    2012-01-01

    Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

  11. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  12. Lidar Ratio Derived for Pure Dust Aerosols: Multi-Year Micro Pulse Lidar Observations in a Saharan Dust-Influenced Region

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, Carmen; Adame, José Antonio; Campbell, James R.; Cuevas, Emilio; Díaz, Juan Pedro; Expósito, Francisco; Gil-Ojeda, Manuel

    2016-06-01

    A seasonal distribution of the Lidar Ratio (LR, extinction-to-backscattering coefficient ratio) for pure Saharan dust particles has been achieved. Simultaneous MPLNET/Micro Pulse lidar measurements in synergy with AERONET sun-photometer data were collected in the Tenerife area, a Saharan dust-influenced region, from June 2007 to November 2009. Dusty cases were mostly observed in summertime (71.4 % of total dusty cases). No differences were found among the LR values derived for spring, summertime and autumn times (a rather consistent seasonally averaged LR value of 57 sr is found). In wintertime, however, a higher mean LR is derived (65 sr), associated likely with a potential contamination from fine biomass burning particles coming from Sahel area during wintertime deforestation fires period. Results, obtained from a free-tropospheric pristine station (AEMET/Izaña Observatory) under Saharan dust intrusion occurrence, provide a more realistic perspective about LR values to be used in elastic lidar-derived AOD inversion for Saharan pure dust particles, and hence in improving CALIPSO AOD retrievals.

  13. Validation of MODIS Aerosol Retrieval Over Ocean

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Mattoo, Shana; Levy, Robert; Chu, D. Allen; Holben, Brent N.; Dubovik, Oleg; Ahmad, Ziauddin; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) algorithm for determining aerosol characteristics over ocean is performing with remarkable accuracy. A two-month data set of MODIS retrievals co-located with observations from the AErosol RObotic NETwork (AERONET) ground-based sunphotometer network provides the necessary validation. Spectral radiation measured by MODIS (in the range 550 - 2100 nm) is used to retrieve the aerosol optical thickness, effective particle radius and ratio between the submicron and micron size particles. MODIS-retrieved aerosol optical thickness at 660 nm and 870 nm fall within the expected uncertainty, with the ensemble average at 660 nm differing by only 2% from the AERONET observations and having virtually no offset. MODIS retrievals of aerosol effective radius agree with AERONET retrievals to within +/- 0.10 micrometers, while MODIS-derived ratios between large and small mode aerosol show definite correlation with ratios derived from AERONET data.

  14. Aerosolized Antibiotics.

    PubMed

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  15. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  16. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  17. Mesospheric aerosol sampling spectrometer

    NASA Astrophysics Data System (ADS)

    Knappmiller, Scott; Robertson, Scott; Sternovsky, Zoltan; Horanyi, Mihaly; Kohnert, Rick

    . The Mesospheric Aerosol Sampling Spectrometer (MASS) instrument has been launched on two sounding rockets in August, 2007 from Andoya, Norway to detect charged sub-visible aerosol particles in the polar mesosphere. The MASS instrument is designed to collect charged aerosols, cluster ions, and electrons on four pairs of graphite electrodes, three of which are biased with increasing voltage. The design of the MASS instrument was complicated by the short mean free path in the mesosphere. The opening to MASS was deliberately built to increase the mean free path and to reduce the shock wave within the instrument. The design procedure began with aerodynamics simulations of the flow through the instrument using Direct Simulation Monte Carlo (DSMC) in 3-D. The electric fields within the instrument were calculated using a Laplace solver in 3-D. With the aerodynamic and electric field simulations completed, an algorithm was created to find the trajectories of charged aerosols including collisions within MASS. Using this algorithm the collection efficiencies for each electrode was calculated as a function of the charge to mass ratio of the incoming particle. The simulation results have been confirmed experimentally using an Argon RF ion beam. The data from the August launches have been analyzed and the initial results show the MASS instrument operated as expected. Additional studies are underway to determine if there were effects from payload charging or spurious charge generation within the instrument. This project is supported by NASA.

  18. Aerosol/Cloud Measurements Using Coherent Wind Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Boquet, Matthieu; Cariou, Jean-Pierre; Sauvage, Laurent; Parmentier, Rémy

    2016-06-01

    The accurate localization and characterization of aerosol and cloud layers is crucial for climate studies (aerosol indirect effect), meteorology (Planetary Boundary Layer PBL height), site monitoring (industrial emissions, mining,…) and natural hazards (thunderstorms, volcanic eruptions). LEOSPHERE has recently developed aerosol/cloud detection and characterization on WINDCUBE long range Coherent Wind Doppler Lidars (CWDL). These new features combine wind and backscatter intensity informations (Carrier-to-Noise Ratio CNR) in order to detect (aerosol/cloud base and top, PBL height) and to characterize atmospheric structures (attenuated backscatter, depolarization ratio). For each aerosol/cloud functionality the method is described, limitations are discussed and examples are given to illustrate the performances.

  19. [Aerosol therapy].

    PubMed

    Wildhaber, J H

    1998-08-15

    Aerosol therapy plays a major role in the diagnosis and treatment of various lung diseases. The aim of inhalation therapy is to deposit a reproducible and adequate dose of a specific drug to the airways, in order to achieve a high, local, clinical effect while avoiding serious systemic side effects. To achieve this goal, it is therefore important to have an efficient inhalation device to deliver different medications. However, the currently available therapeutic inhalation devices (nebuliser, pressurised metered-dose inhaler and dry powder inhaler) are not very efficient in aerosol delivery and have several disadvantages. Inhalation devices can be assessed by in vitro studies, filter studies and radiolabelled deposition studies. Several radiolabelled deposition studies have shown that nebulisers and pressurised metered-dose inhalers are not very efficient in aerosol delivery. In children, before 1997, only 0.5% to 15% of the total nebulised or actuated dose from a nebuliser or pressurised metered-dose inhaler actually reached the lungs. These numbers were somewhat improved in adults, 30% of the total nebulised or actuated dose reaching the airways. Aerosol therapy with dry powder inhalers was the most efficient before 1997, 30% of the total dose being deposited in the lungs of adults and children. In 1997, new developments in pressurised metered-dose inhalers much improved their efficiency in aerosol delivery. Lung deposition can be increased by up to 60% with use of a non-electrostatic holding chamber and/or a pressurised metered-dose inhaler with a hydrofluoroalkane propellant possessing superior aerosol characteristics. Several studies comparing the clinical efficiency of different inhalation devices have shown that the choice of an optimal inhalation device is crucial. In addition to the aerosol characteristics, ventilation parameters and airway morphology have an important bearing on deposition patterns. These parameters may be greatly influenced by the

  20. PRIMARY AND SECONDARY ORGANIC AEROSOLS OVER THE UNITED STATES: ESTIMATES ON THE BASIS OF OBSERVED ORGANIC CARBON (OC) AND ELEMENTAL CARBON (EC), AND AIR QUALITY MODELED PRIMARY (OC/EC) RATIOS

    EPA Science Inventory

    The temporal and spatial distributions of primary and secondary organic carbon aerosols (OC) over the continental US during June 15 to August 31, 1999, were estimated by using observational OC and elemental carbon (EC) data from Interagency Monitoring of Protected Visual Environm...

  1. Separating Dust Mixtures and Other External Aerosol Mixtures Using Airborne High Spectral Resolution Lidar Data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Vaughan, M.; Hostetler, C. A.; Rogers, R. R.; Hair, J. W.; Cook, A. L.; Harper, D. B.

    2013-12-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) has acquired considerable datasets of both aerosol extensive parameters (e.g. aerosol optical depth) and intensive parameters (e.g. aerosol depolarization ratio, lidar ratio) that can be used to infer aerosol type. An aerosol classification methodology has been used extensively to classify HSRL-1 aerosol measurements of different aerosol types including dust, smoke, urban pollution, and marine aerosol. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. Here we present a comprehensive and unified set of rules for characterizing external mixtures using several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. Our mixing rules apply not just to the scalar values of aerosol intensive parameters, but to multi-dimensional normal distributions with variance in each measurement dimension. We illustrate the applicability of the mixing rules using examples of HSRL-1 data where mixing occurred between different aerosol types, including advected Saharan dust mixed with the marine boundary layer in the Caribbean Sea and locally generated dust mixed with urban pollution in the Mexico City surroundings. For each of these cases we infer a time-height cross section of mixing ratio along the flight track and we partition aerosol extinction into portions attributed to the two pure types. Since multiple aerosol intensive parameters are measured and included in these calculations, the techniques can also be used for cases without significant depolarization (unlike similar work by earlier researchers), and so a third example of a

  2. CALIPSO lidar ratio retrieval over the ocean.

    PubMed

    Josset, Damien; Rogers, Raymond; Pelon, Jacques; Hu, Yongxiang; Liu, Zhaoyan; Omar, Ali; Zhai, Peng-Wang

    2011-09-12

    We are demonstrating on a few cases the capability of CALIPSO to retrieve the 532 nm lidar ratio over the ocean when CloudSat surface scattering cross section is used as a constraint. We are presenting the algorithm used and comparisons with the column lidar ratio retrieved by the NASA airborne high spectral resolution lidar. For the three cases presented here, the agreement is fairly good. The average CALIPSO 532 nm column lidar ratio bias is 13.7% relative to HSRL, and the relative standard deviation is 13.6%. Considering the natural variability of aerosol microphysical properties, this level of accuracy is significant since the lidar ratio is a good indicator of aerosol types. We are discussing dependencies of the accuracy of retrieved aerosol lidar ratio on atmospheric aerosol homogeneity, lidar signal to noise ratio, and errors in the optical depth retrievals. We are obtaining the best result (bias 7% and standard deviation around 6%) for a nighttime case with a relatively constant lidar ratio (in the vertical) indicative of homogeneous aerosol type.

  3. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    The reliability of aerosol radiative forcing estimates from climate models depends on the accuracy of simulated global aerosol distribution and composition, as well as on the models' representation of the aerosol-cloud and aerosol-radiation interactions. To help improve on previous modeling studies, we recently developed the new aerosol microphysics submodel MADE3 that explicitly tracks particle mixing state in the Aitken, accumulation, and coarse mode size ranges. We implemented MADE3 into the global atmospheric chemistry general circulation model EMAC and evaluated it by comparison of simulated aerosol properties to observations. Compared properties include continental near-surface aerosol component concentrations and size distributions, continental and marine aerosol vertical profiles, and nearly global aerosol optical depth. Recent studies have shown the specific importance of aerosol vertical profiles for determination of the aerosol radiative forcing. Therefore, our focus here is on the evaluation of simulated vertical profiles. The observational data is taken from campaigns between 1990 and 2011 over the Pacific Ocean, over North and South America, and over Europe. The datasets include black carbon and total aerosol mass mixing ratios, as well as aerosol particle number concentrations. Compared to other models, EMAC with MADE3 yields good agreement with the observations - despite a general high bias of the simulated mass mixing ratio profiles. However, BC concentrations are generally overestimated by many models in the upper troposphere. With MADE3 in EMAC, we find better agreement of the simulated BC profiles with HIPPO data than the multi-model average of the models that took part in the AeroCom project. There is an interesting difference between the profiles from individual campaigns and more "climatological" datasets. For instance, compared to spatially and temporally localized campaigns, the model simulates a more continuous decline in both total

  4. Aerosol light scattering measurements as a function of relative humidity.

    PubMed

    Day, D E; Malm, W C; Kreidenweis, S M

    2000-05-01

    The hygroscopic nature of atmospheric fine aerosol was investigated at a rural site in the Great Smoky Mountains National Park during July and August 1995. Passing the sample aerosol through an inlet, which housed an array of Perma Pure diffusion dryers, controlled the sample aerosol's relative humidity (RH). After conditioning the aerosol sample in the inlet, the light scattering coefficient and the aerosol size distribution were simultaneously measured. During this study, the conditioned aerosol's humidity ranged between 5% < RH < 95%. Aerosol response curves were produced using the ratio bspw/bspd; where bspw is the scattering coefficient measured at some RH greater than 20% and bspd is the scattering coefficient of the "dry" aerosol. For this work, any sample RH values below 15% were considered dry. Results of this investigation showed that the light scattering ratio increased continuously and smoothly over the entire range of relative humidity. The magnitude of the ratio at a particular RH value, however, varied considerably in time, particularly for RH values greater than approximately 60%. Curves of the scattering coefficient ratios as a function of RH were generated for each day and compared to the average 12-hour chemical composition of the aerosol. This comparison showed that for any particular RH value the ratio was highest during time periods of high sulfate concentrations and lowest during time periods of high soil or high organic carbon concentrations.

  5. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  6. Global aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Wagner, Till; Stier, Philip

    2013-04-01

    Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.

  7. Development the EarthCARE aerosol classification scheme

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Baars, Holger; Hünerbein, Anja; Donovan, Dave; van Zadelhoff, Gerd-Jan; Fischer, Jürgen; von Bismarck, Jonas; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2015-04-01

    The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission is a joint ESA/JAXA mission planned to be launched in 2018. The multi-sensor platform carries a cloud-profiling radar (CPR), a high-spectral-resolution cloud/aerosol lidar (ATLID), a cloud/aerosol multi-spectral imager (MSI), and a three-view broad-band radiometer (BBR). Three out of the four instruments (ATLID, MSI, and BBR) will be able to sense the global aerosol distribution and contribute to the overarching EarthCARE goals of sensor synergy and radiation closure with respect to aerosols. The high-spectral-resolution lidar ATLID obtains profiles of particle extinction and backscatter coefficients, lidar ratio, and linear depolarization ratio as well as the aerosol optical thickness (AOT) at 355 nm. MSI provides AOT at 670 nm (over land and ocean) and 865 nm (over ocean). Next to these primary observables the aerosol type is one of the required products to be derived from both lidar stand-alone and ATLID-MSI synergistic retrievals. ATLID measurements of the aerosol intensive properties (lidar ratio, depolarization ratio) and ATLID-MSI observations of the spectral AOT will provide the basic input for aerosol-type determination. Aerosol typing is needed for the quantification of anthropogenic versus natural aerosol loadings of the atmosphere, the investigation of aerosol-cloud interaction, assimilation purposes, and the validation of atmospheric transport models which carry components like dust, sea salt, smoke and pollution. Furthermore, aerosol classification is a prerequisite for the estimation of direct aerosol radiative forcing and radiative closure studies. With an appropriate underlying microphysical particle description, the categorization of aerosol observations into predefined aerosol types allows us to infer information needed for the calculation of shortwave radiative effects, such as mean particle size, single-scattering albedo, and spectral conversion factors. In order to ensure

  8. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  9. Aerosol Classification from High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Ferrare, R. A.; Hostetler, C. A.; Kahnert, M.; Vaughan, M. A.; Cook, A. L.; Harper, D. B.; Berkoff, T.; Seaman, S. T.; Collins, J. E., Jr.; Fenn, M. A.; Rogers, R. R.

    2015-12-01

    The NASA Langley airborne High Spectral Resolution Lidars, HSRL-1 and HSRL-2, have acquired large datasets of vertically resolved aerosol extinction, backscatter, and depolarization during >30 airborne field missions since 2006. The lidar measurements of aerosol intensive parameters like lidar ratio and color ratio embed information about intrinsic aerosol properties, and are combined to qualitatively classify HSRL aerosol measurements into aerosol types. Knowledge of aerosol type is important for assessing aerosol radiative forcing, and can provide useful information for source attribution studies. However, atmospheric aerosol is frequently not a single pure type, but instead is a mixture, which affects the optical and radiative properties of the aerosol. We show that aerosol intensive parameters measured by lidar can be understood using mixing rules for cases of external mixing. Beyond coarse classification and mixing between classes, variations in the lidar aerosol intensive parameters provide additional insight into aerosol processes and composition. This is illustrated by depolarization measurements at three wavelengths, 355 nm, 532 nm, and 1064 nm, made by HSRL-2. Particle depolarization ratio is an indicator of non-spherical particles. Three cases each have a significantly different spectral dependence of the depolarization ratio, related to the size of the depolarizing particles. For two dust cases, large non-spherical particles account for the depolarization of the lidar light. The spectral dependence reflects the size distribution of these particles and reveals differences in the transport histories of the two plumes. For a smoke case, the depolarization is inferred to be due to the presence of small coated soot aggregates. Interestingly, the depolarization at 355 nm is similar for this smoke case compared to the dust cases, having potential implications for the upcoming EarthCARE satellite, which will measure particle depolarization ratio only at 355 nm.

  10. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  11. Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer

    PubMed Central

    Yu, Pengfei; Toon, Owen B; Neely, Ryan R; Martinsson, Bengt G; Brenninkmeijer, Carl A M

    2015-01-01

    Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that the ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. The model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations. Key Points The Asian Tropopause Aerosol Layer is composed of sulfate, primary organics, and secondary organics The North American Tropospheric Aerosol Layer is mostly composed of sulfate and secondary organics Aerosol Optical Depth of Asian Tropopause Aerosol Layer increases by 0.002 from 2000 to 2010 PMID:26709320

  12. SAGE Aerosol Measurements. Volume 2: 1 January - 31 December 1980

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1986-01-01

    The stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched on February 18, 1979, provides profiles of aerosol extinction at wavelengths of 1.00 and 0.45 micron, ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events in the form of zonal averages and seasonal averages of the aerosol extinction at 1.00 and 0.45 micron, ratios of the aerosol extinction to the molecular extinction at 1.00 micron, and ratios of the aerosol extinction at 0.45 micron to the aerosol extinction at 1.00 micron are presented. The averages for l980 are shown in tables and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by the National Oceanic and Atmospheric Administration (NOAA) for the time and location of each SAGE measurement are averaged and shown in a similar format.

  13. In situ observations of aerosol and chlorine monoxide after the 1991 eruption of Mount Pinatubo - Effect of reactions on sulfate aerosol

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Jonsson, H. H.; Brock, C. A.; Toohey, D. W.; Avallone, L. M.; Baumgardner, D.; Dye, J. E.; Poole, L. R.; Woods, D. C.; Decoursey, R. J.

    1993-01-01

    Highly resolved aerosol size distributions measured from high-altitude aircraft can be used to describe the effect of the 1991 eruption of Mount Pinatubo on the stratospheric aerosol. In some air masses, aerosol mass mixing ratios increased by factors exceeding 100 and aerosol surface area concentrations increased by factors of 30 or more. Increases in aerosol surface area concentration were accompanied by increases in chlorine monoxide at mid-latitudes when confounding factors were controlled. This observation supports the assertion that reactions occurring on the aerosol can increase the fraction of stratospheric chlorine that occurs in ozone-destroying forms.

  14. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  15. Aerosol retrieval experiments in the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; de Leeuw, G.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-03-01

    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013) algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components and their mixing ratios. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data qualitatively by visible analysis of monthly mean AOD maps and quantitatively by comparing global daily gridded satellite data against daily

  16. Aerosol effects and corrections in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Hervig, Mark E.; Russell, James M., III; Gordley, Larry L.; Daniels, John; Drayson, S. Roland; Park, Jae H.

    1995-01-01

    The eruptions of Mt. Pinatubo in June 1991 increased stratospheric aerosol loading by a factor of 30, affecting chemistry, radiative transfer, and remote measurements of the stratosphere. The Halogen Occultation Experiment (HALOE) instrument on board Upper Atmosphere Research Satellite (UARS) makes measurements globally for inferring profiles of NO2, H2O, O3, HF, HCl, CH4, NO, and temperature in addition to aerosol extinction at five wavelengths. Understanding and removing the aerosol extinction is essential for obtaining accurate retrievals from the radiometer channels of NO2, H2O and O3 in the lower stratosphere since these measurements are severely affected by contaminant aerosol absorption. If ignored, aerosol absorption in the radiometer measurements is interpreted as additional absorption by the target gas, resulting in anomalously large mixing ratios. To correct the radiometer measurements for aerosol effects, a retrieved aerosol extinction profile is extrapolated to the radiometer wavelengths and then included as continuum attenuation. The sensitivity of the extrapolation to size distribution and composition is small for certain wavelength combinations, reducing the correction uncertainty. The aerosol corrections extend the usable range of profiles retrieved from the radiometer channels to the tropopause with results that agree well with correlative measurements. In situations of heavy aerosol loading, errors due to aerosol in the retrieved mixing ratios are reduced to values of about 15, 25, and 60% in H2O, O3, and NO2, respectively, levels that are much less than the correction magnitude.

  17. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  18. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  19. Comparison of Aerosol Classification from Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Omar, A. H.; Hostetler, C. A.; Hair, J. W.; Rogers, R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.

    2012-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 349 science flights in 19 field missions across North America since 2006. The extinction-to-backscatter ratio ("lidar ratio"), aerosol depolarization ratios, and backscatter color ratio measurements from HSRL-1 are scale-invariant parameters that depend on aerosol type but not concentration. These four aerosol intensive parameters are combined to qualitatively classify HSRL aerosol measurements into eight separate composition types. The classification methodology uses models formed from "training cases" with known aerosol type. The remaining measurements are then compared with these models using the Mahalanobis distance. Aerosol products from the CALIPSO satellite include aerosol type information as well, which is used as input to the CALIPSO aerosol retrieval. CALIPSO aerosol types are inferred using a mix of aerosol loading-dependent parameters, estimated aerosol depolarization, and location, altitude, and surface type information. The HSRL instrument flies beneath the CALIPSO satellite orbit track, presenting the opportunity for comparisons between the HSRL aerosol typing and the CALIPSO Vertical Feature Mask Aerosol Subtype product, giving insight into the performance of the CALIPSO aerosol type algorithm. We find that the aerosol classification from the two instruments frequently agree for marine aerosols and pure dust, and somewhat less frequently for pollution and smoke. In addition, the comparison suggests that the CALIPSO polluted dust type is overly inclusive, encompassing cases of dust combined with marine aerosol as well as cases without much evidence of dust. Qualitative classification of aerosol type combined with quantitative profile measurements of aerosol backscatter and extinction has many useful

  20. Aerosol backscatter studies supporting LAWS

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1989-01-01

    Optimized Royal Signals and Radar Establishment (RSRE), Laser True Airspeed System (LATAS) algorithm for low backscatter conditions was developed. The algorithm converts backscatter intensity measurements from focused continuous-wave (CW) airborne Doppler lidar into backscatter coefficients. The performance of optimized algorithm under marginal backscatter signal conditions was evaluated. The 10.6 micron CO2 aerosol backscatter climatologies were statistically analyzed. Climatologies reveal clean background aerosol mode near 10(exp -10)/kg/sq m/sr (mixing ratio units) through middle and upper troposhere, convective mode associated with planetary boundary layer convective activity, and stratospheric mode associated with volcanically-generated aerosols. Properties of clean background mode are critical to design and simulation studies of Laser Atmospheric Wind Sounder (LAWS), a MSFC facility Instrument on the Earth Observing System (Eos). Previous intercomparisons suggested correlation between aerosol backscatter at CO2 wavelength and water vapor. Field measurements of backscatter profiles with MSFC ground-based Doppler lidar system (GBDLS) were initiated in late FY-88 to coincide with independent program of local rawinsonde releases and overflights by Multi-spectral Atmospheric Mapping Sensor (MAMS), a multi-channel infrared radiometer capable of measuring horizontal and vertical moisture distributions. Design and performance simulation studies for LAWS would benefit from the existence of a relationship between backscatter and water vapor.

  1. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  2. Aerosols and environmental pollution

    NASA Astrophysics Data System (ADS)

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues; ranging from the Earth’s radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  3. Aerosols and environmental pollution.

    PubMed

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth's atmosphere and are central to many environmental issues; ranging from the Earth's radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  4. Sulfur speciation in individual aerosol particles

    NASA Astrophysics Data System (ADS)

    Neubauer, Kenneth R.; Sum, Stephen T.; Johnston, Murray V.; Wexler, Anthony S.

    1996-08-01

    Sulfur aerosols play an important role in acid deposition and the Earth's energy balance. Important species in these aerosols include methanesulfonates, hydroxymethanesulfonates, sulfates, and sulfites. Because the relative amounts of these species indicate different sources and atmospheric processes, it is important to distinguish them in single-aerosol particles. To accomplish this task, we use rapid single-particle mass spectrometry (RSMS), a technique that permits individual particles to be analyzed in an online mode. Each sulfur species produces a characteristic set of ions in the mass spectra. In simulated marine and urban aerosols the relative amounts of methanesulfonic acid (MSA) and sodium hydroxymethanesulfonate (NaHMSA) in a single particle can be determined from peak area ratios in the mass spectra. Improved quantitation is possible by application of the classification and regression tree (CART) algorithm to distinguish the mass spectra of particles having different compositions. Factors that influence speciation include particle size, morphology, and laser fluence.

  5. Humidity Dependent Extinction of Clay Aerosols

    NASA Astrophysics Data System (ADS)

    Greenslade, M. E.; Attwood, A. R.

    2010-12-01

    Aerosols play an important role in the Earth’s radiative balance by directly scattering and absorbing radiation. The magnitude of aerosol forcing can be altered by changes in relative humidity which cause aerosol size, shape and refractive index to vary. To quantify these effects, a custom cavity ring down instrument operated at 532 nm with two sample channels measures aerosols extinction under dry conditions and at elevated humidity. The optical growth, fRH(ext), is determined as a ratio of the extinction cross section at high relative humidity to that under dry conditions. Three key clay components of mineral dust and mixtures of clay components with ammonium sulfate are investigated using this method. Experimentally obtained optical growth is compared with physical growth factors from the literature and our work determined using several different techniques. Further, Mie theory calculations based on published optical constants are compared with experimental results. Differences between theory and experiment will be discussed.

  6. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  7. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  8. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  9. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  10. Characterization of Speciated Aerosol Direct Radiative Forcing Over California

    SciTech Connect

    Zhao, Chun; Leung, Lai-Yung R.; Easter, Richard C.; Hand, Jenny; Avise, J.

    2013-03-16

    A fully coupled meteorology-chemistry model (WRF-Chem) with added capability of diagnosing the spatial and seasonal distribution of radiative forcings for individual aerosol species over California is used to characterize the radiative forcing of speciated aerosols in California. Model simulations for the year of 2005 are evaluated with various observations including meteorological data from California Irrigation Management Information System (CIMIS), aerosol mass concentrations from US EPA Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE), and aerosol optical depth from AErosol RObotic NETwork (AERONET) and satellites. The model well captures the observed seasonal meteorological conditions over California. Overall, the simulation is able to reproduce the observed spatial and seasonal distribution of mass concentration of total PM2.5 and the relative contribution from individual aerosol species, except the model significantly underestimates the surface concentrations of organic matter (OM) and elemental carbon (EC), potentially due to uncertainty in the anthropogenic emissions of OM and EC and the outdated secondary organic aerosol mechanism used in the model. A sensitivity simulation with anthropogenic EC emission doubled significantly reduces the model low bias of EC. The simulation reveals high anthropogenic aerosol loading over the Central Valley and the Los Angeles metropolitan regions and high natural aerosol (dust) loading over southeastern California. The seasonality of aerosol surface concentration is mainly determined by vertical turbulent mixing, ventilation, and photochemical activity, with distinct characteristics for individual aerosol species and between urban and rural areas. The simulations show that anthropogenic aerosols dominate the aerosol optical depth (AOD). The ratio of AOD to AAOD (aerosol absorption optical depth) shows distinct seasonality with a winter maximum and a summer minimum

  11. Scanning Mobile Lidar for Aerosol Tracking and Biological Aerosol Identification

    NASA Astrophysics Data System (ADS)

    He, Tingyao; Bergant, Klemen; Filipčič, Andrej; Forte, Biagio; Gao, Fei; Stanič, Samo; Veberič, Darko; Zavrtanik, Marko

    2010-05-01

    Optical properties of non-biological aerosols containing aromatic hydrocarbons, such as industrial chemicals and engine exhausts, have already been thoroughly studied using remote sensing techniques. However, because of their complex composition and characteristics, the identification of biological aerosols, such as fungi, pollen and bacteria that are present in the environment remains a rather difficult task. The collection of information on both non-biological and biological aerosols is of great importance for understanding their interrelation, physical and chemical properties and their influence on human health and the environment. Biological and non-biological aerosols can be simultaneously detected, tracked and identified by a scanning mobile Mie-fluorescence lidar. The device developed at the University of Nova Gorica can perform azimuth and zenith angle scans with an angular resolution of 0.1°, as well as operate in both day and night-time conditions. Aerosols of biological origin are identified through the detection of the fluorescence of the amino acid tryptophan which is present in almost all substances of biological origin. In our system, the transmitter is a solid state Nd:YAG laser which is capable of simultaneous emission of light at a base wavelength of 1064 nm (IR) and its quadrupled wavelength of 266 nm (UV) at a maximum repetition rate of 10 Hz. Tryptophan contained in biological aerosols is excited by the 266 nm laser pulses and the returning fluorescence signals are detected in the spectral band centered at 295 nm. The receiver is a Newtonian telescope which uses a 300 mm parabolic mirror to direct received light into three detection channels - two elastic backscatter channels (IR and UV) and a fluorescence channel. First experiments show that the detection range of the lidar reaches 10 km in the IR channel and 3 km in the UV channel. Based on the preliminary simulations of the signal-to-noise ratio, the detection range for biological

  12. Aerosols of Mongolian arid area

    NASA Astrophysics Data System (ADS)

    Golobokova, L.; Marinayte, I.; Zhamsueva, G.

    2012-04-01

    Sampling was performed in July-August 2005-2010 at Station Sain Shand (44°54'N, 110°07'E) in the Gobi desert (1000 m a.s.l.), West Mongolia. Aerosol samples were collected with a high volume sampler PM 10 (Andersen Instruments Inc., USA) onto Whatman-41 filters. The substance was extracted from the filters by de-ionized water. The solution was screened through an acetate-cellulose filter with 0.2 micron pore size. Ions of ammonium, sodium, potassium, magnesium, and calcium, as well as sulphate ions, nitrate ions, hydrocarbonate, chloride ions were determined in the filtrate by means of an atomic adsorption spectrometer Carl Zeiss Jena (Germany), a high performance liquid chromatographer «Milichrome A-02» (Russia), and an ionic chromatographer ICS-3000 (Dionex, USA). The PAH fraction was separated from aerosol samples using hexane extraction at room temperature under UV environment. The extract was concentrated to 0.1-0.2 ml and analysed by a mass-spectrometer "Agilent, GC 6890, MSD 5973 Network". Analysis of concentrations of aerosols components, their correlation ratios, and meteorological modeling show that the main factor affecting chemical composition of aerosols is a flow of contaminants transferred by air masses to the sampling area mainly from the south and south-east, as well as wind conditions of the area, dust storms in particular. Sulphate, nitrate, and ammonium are major ions in aerosol particles at Station Sain Shand. Dust-borne aerosol is known to be a sorbent for both mineral and organic admixtures. Polycyclic aromatic hydrocarbons (PAH) being among superecotoxicants play an important role among resistant organic substances. PAH concentrations were determined in the samples collected in 2010. All aerosol samples contained dominant PAHs with 5-6 benzene rings ( (benze(k)fluoranthen, benze(b)flouranthen, benze(a)pyren, benze(?)pyren, perylene, benze(g,h,i)perylene, and indene(1,2,3-c,d)pyrene). Their total quantity varied between 42 and 90

  13. Vertically resolved separation of dust and other aerosol types by a new lidar depolarization method.

    PubMed

    Luo, Tao; Wang, Zhien; Ferrare, Richard A; Hostetler, Chris A; Yuan, Renmin; Zhang, Damao

    2015-06-01

    This paper developed a new retrieval framework of external mixing of the dust and non-dust aerosol to predict the lidar ratio of the external mixing aerosols and to separate the contributions of non-spherical aerosols by using different depolarization ratios among dust, sea salt, smoke, and polluted aerosols. The detailed sensitivity tests and case study with the new method showed that reliable dust information could be retrieved even without prior information about the non-dust aerosol types. This new method is suitable for global dust retrievals with satellite observations, which is critical for better understanding global dust transportation and for model improvements. PMID:26072778

  14. Infrared lidar observations of stratospheric aerosols.

    PubMed

    Forrister, H N; Roberts, D W; Mercer, A J; Gimmestad, G G

    2014-06-01

    We observed the stratospheric aerosol layer at 34° north latitude with a photon-counting 1574 nm lidar on three occasions in 2011. During all of the observations, we also operated a nearby 523.5 nm micropulse lidar and acquired National Weather Service upper air data. We analyzed the lidar data to find scattering ratio profiles and the integrated aerosol backscatter at both wavelengths and then calculated the color ratio and wavelength exponent for lidar backscattering from the stratospheric aerosols. The visible-light integrated backscatter values of the layer were in the range 2.8-3.5×10⁻⁴ sr⁻¹ and the infrared integrated backscatter values ranged from 2.4 to 3.7×10⁻⁵  sr⁻¹. The wavelength exponent was determined to be 1.9±0.2.

  15. Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Vaughan, M. A.; Ferrare, R. A.; Hostetler, C. A.

    2013-09-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. This paper extends the work of earlier researchers by using the aerosol intensive parameters measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) to develop a comprehensive and unified set of rules for characterizing the external mixing of several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. We present the mixing rules in a particularly simple form that leads easily to mixing rules for the covariance matrices that describe aerosol distributions, rather than just scalar values of measured parameters. These rules can be applied to infer mixing ratios from the lidar-observed aerosol parameters, even for cases without significant depolarization. We demonstrate our technique with measurement curtains from three HSRL-1 flights which exhibit mixing between two aerosol types, urban pollution plus dust, marine plus dust, and smoke plus marine. For these cases, we infer a time-height cross-section of mixing ratio along the flight track, and partition aerosol extinction into portions attributed to the two pure types.

  16. Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Vaughan, M. A.; Ferrare, R. A.; Hostetler, C. A.

    2014-02-01

    Knowledge of aerosol type is important for determining the magnitude and assessing the consequences of aerosol radiative forcing, and can provide useful information for source attribution studies. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. This paper extends the work of earlier researchers by using the aerosol intensive parameters measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) to develop a comprehensive and unified set of rules for characterizing the external mixing of several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e., lidar ratio), backscatter color ratio, and depolarization ratio. We present the mixing rules in a particularly simple form that leads easily to mixing rules for the covariance matrices that describe aerosol distributions, rather than just single values of measured parameters. These rules can be applied to infer mixing ratios from the lidar-observed aerosol parameters, even for cases without significant depolarization. We demonstrate our technique with measurement curtains from three HSRL-1 flights which exhibit mixing between two aerosol types, urban pollution plus dust, marine plus dust, and smoke plus marine. For these cases, we infer a time-height cross-section of extinction mixing ratio along the flight track, and partition aerosol extinction into portions attributed to the two pure types.

  17. Biogenic Contributions to Summertime Arctic Aerosol: Observations of Aerosol Composition from the Netcare 2014 Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Burkart, J.; Koellner, F.; Schneider, J.; Bozem, H.; Hoor, P. M.; Brauner, R.; Herber, A. B.; Leaitch, W. R.; Abbatt, J.

    2014-12-01

    The Arctic is a complex and poorly studied aerosol environment, impacted by strong anthropogenic contributions during winter months and by regional sources in cleaner summer months. In order to gain a predictive understanding of the changing climate in this region, it is necessary to understand the balance between these two aerosol sources to clarify how aerosol might be altered by or contribute to climate change. We present results of vertically resolved, submicron aerosol composition from an Aerodyne high-resolution aerosol mass spectrometer (AMS) during the NETCARE 2014 Polar6 aircraft campaign. The campaign was based in the high Arctic, at Resolute, NU (74°N), allowing measurements from 60 to 2900 meters over ice, open water and near the ice-edge. Concurrent measurements aboard the Polar6 included ultrafine and accumulation mode particle number and size, cloud condensation nuclei concentrations, trace gas concentrations and single particle composition. Aerosol vertical profiles measured by the AMS can be broadly characterized into two regimes corresponding to different meteorological conditions: the first with very low aerosol loading (<0.1 μg/m3) at low altitudes compared to that aloft and high numbers of nucleation mode particles, and the second with higher concentrations at lower levels. This second regime was associated with low concentrations of nucleation mode particles, and higher observable levels of methane sulphonic acid (MSA) from AMS measurements at low altitudes. MSA, produced during the oxidation of dimethyl sulphide, is a marker for the contribution of ocean-derived biogenic sulphur to particulate sulphur and could be identified and quantified using the high-resolution AMS. MSA to sulphate ratios were observed to increase towards lower altitudes, suggesting a contribution to aerosol loading from the ocean. In addition, we present measurements of aerosol neutralization and the characteristics of organic aerosol that relate to the growth of

  18. A new method for estimating aerosol mass flux in the urban surface layer using LAS technology

    NASA Astrophysics Data System (ADS)

    Yuan, Renmin; Luo, Tao; Sun, Jianning; Liu, Hao; Fu, Yunfei; Wang, Zhien

    2016-04-01

    Atmospheric aerosol greatly influences human health and the natural environment, as well as the weather and climate system. Therefore, atmospheric aerosol has attracted significant attention from society. Despite consistent research efforts, there are still uncertainties in understanding its effects due to poor knowledge about aerosol vertical transport caused by the limited measurement capabilities of aerosol mass vertical transport flux. In this paper, a new method for measuring atmospheric aerosol vertical transport flux is developed based on the similarity theory of surface layer, the theory of light propagation in a turbulent atmosphere, and the observations and studies of the atmospheric equivalent refractive index (AERI). The results show that aerosol mass flux can be linked to the real and imaginary parts of the atmospheric equivalent refractive index structure parameter (AERISP) and the ratio of aerosol mass concentration to the imaginary part of the AERI. The real and imaginary parts of the AERISP can be measured based on the light-propagation theory. The ratio of the aerosol mass concentration to the imaginary part of the AERI can be measured based on the measurements of aerosol mass concentration and visibility. The observational results show that aerosol vertical transport flux varies diurnally and is related to the aerosol spatial distribution. The maximum aerosol flux during the experimental period in Hefei City was 0.017 mg m-2 s-1, and the mean value was 0.004 mg m-2 s-1. The new method offers an effective way to study aerosol vertical transport in complex environments.

  19. Sources of Size Segregated Sulfate Aerosols in the Arctic Summer

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Abbatt, J.; Levasseur, M.

    2015-12-01

    Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between <0.49 to 7.0 microns in diameter were collected on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor fitted to a high volume sampler was used for this study and was modified to permit collection of SO2 after aerosols were removed from the gas stream. The isotopic composition of sulfate aerosols and SO2 was measured and apportionment calculations have been performed to quantify the contribution of biogenic as well as anthropogenic sources to the growth of different aerosol size fractions in the atmosphere. The presence of sea salt sulfate aerosols was especially high in coarse mode aerosols as expected. The contribution of biogenic sulfate concentration in this study was higher than anthropogenic sulfate. Around 70% of fine aerosols (<0.49 μm) and 86% of SO2 were from biogenic sources. Concentrations of biogenic sulfate for fine aerosols, ranging from 18 to 625 ng/m3, were five times higher than total biogenic sulfate concentrations measured during Fall in the same region (Rempillo et al., 2011). A comparison of the isotope ratio for SO2 and fine aerosols offers a way to determine aerosol growth from local SO2 oxidation. For some samples, the values for SO2 and fine aerosols were close together suggesting the same source for SO2 and aerosol sulfur.Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between <0.49 to 7.0 microns in diameter were collected on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor

  20. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, Tyler J.; Fu, Qiang

    2015-12-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e., the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically resolved aerosol retrievals over all surface types and over cloud. In this study, uncertainties in CALIPSO-inferred aerosol DRE are estimated using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars at midlatitude and tropical sites. We find that CALIPSO is unable to detect all radiatively significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50% at the two ARM sites. The undetected aerosol is likely the consequence of random noise in CALIPSO measurements and therefore will affect global observations as well. This suggests that the global aerosol DRE inferred from CALIPSO observations are likely too weak. Also examined is the impact of the ratio of extinction-to-backscatter (i.e., the lidar ratio) whose value CALIPSO retrievals must assume to obtain the aerosol extinction profile. It is shown that if CALIPSO can reproduce the climatological value of the lidar ratio at a given location, then the aerosol DRE there can be accurately calculated (within about 3%).

  1. Initial Verification of GEOS-4 Aerosols Using CALIPSO and MODIS: Scene Classification

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Colarco, Peter R.; Hlavka, Dennis; Levy, Robert C.; Vaughan, Mark A.; daSilva, Arlindo

    2007-01-01

    A-train sensors such as MODIS and MISR provide column aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important because retrievals are often dependent upon selection of the right aerosol model. In addition, aerosol scene classification helps place the retrieved products in context for comparisons and analysis with aerosol transport models. The recent addition of CALIPSO to the A-train now provides a means of classifying aerosol distribution with altitude. CALIPSO level 1 products include profiles of attenuated backscatter at 532 and 1064 nm, and depolarization at 532 nm. Backscatter intensity, wavelength ratio, and depolarization provide information on the vertical profile of aerosol concentration, size, and shape. Thus similar estimates of aerosol type using MODIS or MISR are possible with CALIPSO, and the combination of data from all sensors provides a means of 3D aerosol scene classification. The NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-4) provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS-4 aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures along the flight track for NASA's Geoscience Laser Altimeter System (GLAS) satellite lidar. GLAS launched in 2003 and did not have the benefit of depolarization measurements or other sensors from the A-train. Aerosol typing from GLAS data alone was not possible, and the GEOS-4 aerosol classifier has been used to identify aerosol type and improve the retrieval of GLAS products. Here we compare 3D aerosol scene classification using CALIPSO and MODIS with the GEOS-4 aerosol classifier. Dust, smoke, and pollution examples will be discussed in the context of providing an initial verification of the 3D GEOS-4 aerosol products. Prior model verification has only been attempted with surface mass

  2. Estimating aerosol light-scattering enhancement from dry aerosol optical properties at different sites

    NASA Astrophysics Data System (ADS)

    Titos, Gloria; Jefferson, Anne; Sheridan, Patrick; Andrews, Elisabeth; Lyamani, Hassan; Ogren, John; Alados-Arboledas, Lucas

    2014-05-01

    Microphysical and optical properties of aerosol particles are strongly dependent on the relative humidity (RH). Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in-situ measurements with satellite and remote sensing retrievals. The scattering enhancement factor, f(RH), is defined as the ratio of the scattering coefficient at a high and reference RH. Predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we explore the relationship between aerosol light-scattering enhancement and dry aerosol optical properties such as the single scattering albedo (SSA) and the scattering Ångström exponent (SAE) at multiple sites around the world. The measurements used in this study were conducted by the US Department of Energy at sites where different aerosol types predominate (pristine marine, polluted marine, dust dominated, agricultural and forest environments, among others). In all cases, the scattering enhancement decreases as the SSA decreases, that is, as the contribution of absorbing particles increases. On the other hand, for marine influenced environments the scattering enhancement clearly increases as the contribution of coarse particles increases (SAE decreases), evidence of the influence of hygroscopic coarse sea salt particles. For other aerosol types the relationship between f(RH) and SAE is not so straightforward. Combining all datasets, f(RH) was found to exponentially increase with SSA with a high correlation coefficient.

  3. Black carbon in aerosol during BIBLE B

    NASA Astrophysics Data System (ADS)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2002-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  4. Black carbon in aerosol during BIBLE B

    NASA Astrophysics Data System (ADS)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  5. Intercomparison of aerosol instruments: number concentration

    SciTech Connect

    Knutson, E O; Sinclair, D; Tu, K W; Hinchliffe, L; Franklin, H

    1982-05-01

    An intercomparison of aerosol instruments conducted February 23-27, 1981, at the Environmental Measurements Laboratory (EML) focused on five instruments: the Pollak and TSI condensation nucleus counters; the Active Scattering Aerosol Spectrometer (ASAS-X); and two aerosol electrometers. Test aerosols of sodium chloride and ammonium fluorescein generated by nebulization/electrostatic classification were used to obtain 195 lines of comparison data. Concentrations measured by the ASAS-X and the TSI aerosol electrometer averaged respectively 1.388 and 1.581 times that measured by the Pollak. These ratios were very stable during the week and there was little effect of particle size or material. Most other comparisons were equally stable. However, a review of past work at EML and elsewhere led to the disturbing conclusion that these ratios may change from year to year, or from season to season. A filter sample was taken from microscopy, concurrent with readings from the ASAS-X and the TSI condensation nucleus counters. In this sample, the two instruments differed by 20%. Within its 20% uncertainty, the filter result matched both the TSI and ASAS-X readings.

  6. Analysis of Characteristics of Dust Aerosols in Northwest China based on Satellite Remote-sensing Data

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Liu, D.; Zhao, Q.

    2015-12-01

    Based on the CloudSat data, effects of dust aerosol on cloud parameters under the circumstance of the monthly average, dusty days and dust-free days were analyzed during April, 2010. By using L2 aerosol profiles satellite data of CALIOP/CALIOPSO the aerosol extinction coefficients were analyzed over northwest China. As an important case, space distribution and transmission route of dust aerosol were investigated during the dust events occurred from April 16th to 18th in 2013 over northwest China, based on L1 data of CALIOP/CALIOPSO, a combination of multiple satellite data and models. The results show that (1) dust aerosols could cause the reduction in effective radius of particle, cloud liquid water content and cloud optical thickness, and the increase of the number concentration of liquid cloud particles as well, (2) The aerosol extinction coefficients were decreased with the increase of height. The value of the aerosol extinction coefficients in desert area was greater than that in the area of Gansu Province due to urbanization. Distribution of the aerosol extinction coefficients in spring was nearly the same as the annual average. (3) Using aerosol products of the vertical characteristics from CALIOP/CALIOPSO, aerosol was classified during dust events, and with NAPPS Global aerosol model, daily distribution of the dust aerosol concentration was given, showing the transport and diffusion of dust aerosol. With HYSPLIT trajectory model dust transportation path of the sand dust source areas was simulated and identified. During the outbreak of dust event dust aerosol was mainly distributed over the surface about 3km, with depolarization ratio at 0.4 and color ratio at 1.2. During the dust events were close to weak and stop, dust aerosol was mainly distributed over the surface under 2 km, with depolarization ratio from 0.2 to 0.3, and color ratio about 1.

  7. Aerosol MTF revisited

    NASA Astrophysics Data System (ADS)

    Kopeika, Norman S.; Zilberman, Arkadi; Yitzhaky, Yitzhak

    2014-05-01

    Different views of the significance of aerosol MTF have been reported. For example, one recent paper [OE, 52(4)/2013, pp. 046201] claims that the aerosol MTF "contrast reduction is approximately independent of spatial frequency, and image blur is practically negligible". On the other hand, another recent paper [JOSA A, 11/2013, pp. 2244-2252] claims that aerosols "can have a non-negligible effect on the atmospheric point spread function". We present clear experimental evidence of common significant aerosol blur and evidence that aerosol contrast reduction can be extremely significant. In the IR, it is more appropriate to refer to such phenomena as aerosol-absorption MTF. The role of imaging system instrumentation on such MTF is addressed too.

  8. Optical properties of different aerosol types: seven years of combined Raman- elastic backscatter lidar measurements in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Giannakaki, E.; Balis, D. S.; Amiridis, V.; Zerefos, C.

    2009-11-01

    We present our combined Raman/elastic backscatter lidar observations which were carried out at the EARLINET station of Thessaloniki, Greece, during the period 2001-2007. The largest optical depths are observed for Saharan dust and smoke aerosol loads. For "local" and "continental polluted" aerosols the measurements indicate moderate aerosol loads. However, measurements associated with the "local" path show lower values of free tropospheric contribution (37% versus 46% for "continental polluted") and thus, enhanced aerosol load within the Planetary Boundary Layer. The lowest value of aerosol optical depth is observed for "continental clean" aerosols. The largest lidar ratios, of the order of 70 sr are found for biomass burning aerosols. A significant and distinct correlation between lidar ratio and backscatter related Ångström exponent values was estimated for well defined aerosol categories, which provides a statistical measure of the lidar ratio's dependency on aerosol-size, which is a useful tool for elastic lidar systems. Scatter plot between lidar ratio values and Ångström exponent values for "local" and "continental polluted" aerosols does not show a significant correlation, with a large variation in both parameters possibly due to variable absorption characteristics of these aerosols. Finally for "clean continental" aerosols we found constantly low lidar ratios almost independent of size.

  9. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  10. Thermoluminescent aerosol analysis

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Long, E. R., Jr. (Inventor)

    1977-01-01

    A method for detecting and measuring trace amounts of aerosols when reacted with ozone in a gaseous environment was examined. A sample aerosol was exposed to a fixed ozone concentration for a fixed period of time, and a fluorescer was added to the exposed sample. The sample was heated in a 30 C/minute linear temperature profile to 200 C. The trace peak was measured and recorded as a function of the test aerosol and the recorded thermoluminescence trace peak of the fluorescer is specific to the aerosol being tested.

  11. The Cloud-Aerosol Transport System (CATS): Demonstrating New Techniques for Cloud and Aerosol Measurements

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Palm, S. P.; Hlavka, D. L.; Nowottnick, E. P.; Selmer, P. A.

    2015-12-01

    The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar that provides vertical profiles of cloud and aerosol properties. The CATS payload has been operating since early February 2015 from the International Space Station (ISS). CATS was designed to operate for six months, and up to three years, providing a combination of operational science, in-space technology demonstration, and technology risk reduction for future Earth Science missions. One of the primary project goals of CATS is to demonstrate technology in support of future space-based lidar mission development. The CATS instrument has been demonstrating the high repetition rate laser and photon counting detection approach to lidar observations, in contrast to the low repetition rate, high energy technique employed by CALIPSO. Due to this technique, cloud and aerosol profile data exhibit high spatial and temporal resolution, which was never before possible from a space-based platform. Another important science goal of the CATS-FO project is accurate determination of aerosol type on a global scale. CATS provided the first space-based depolarization measurements at multiple wavelengths (532 and 1064 nm), and first measurements at 1064 nm from space. The ratio of the depolarization measurements at these two wavelengths enables significant improvement in aerosol typing. The CATS retrievals at 1064 nm also provide improvements to detecting aerosols above clouds. The CATS layer identification algorithm is a threshold-based layer detection method that uses the 1064 nm attenuated scattering ratio and also includes a routine to identify clouds embedded within aerosol layers. This technique allows CATS to detect the full extent of the aerosol layers above the cloud, and differentiate these two layers so that the optical properties can be more accurately determined.

  12. Aerosol classification using EARLINET measurements for an intensive observational period

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, Nikolaos; Mona, Lucia; Pappalardo, Gelsomina

    2016-04-01

    ACTRIS (Aerosols, Clouds and Trace gases Research Infrastructure Network) organized an intensive observation period during summer 2012. This campaign aimed at the provision of advanced observations of physical and chemical aerosol properties, at the delivery of information about the 3D distribution of European atmospheric aerosols, and at the monitoring of Saharan dust intrusions events. EARLINET (European Aerosol Research Lidar Network) participated in the ACTRIS campaign through the addition of measurements according to the EARLINET schedule as well as daily lidar-profiling measurements around sunset by 11 selected lidar stations for the period from 8 June - 17 July. EARLINET observations during this almost two-month period are used to characterize the optical properties and vertical distribution of long-range transported aerosol over the broader area of Mediterranean basin. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, Angstrom exponents) are shown to vary with location and aerosol type. A methodology based on EARLINET observations of frequently observed aerosol types is used to classify aerosols into seven separate types. The summertime Mediterranean basin is prone to African dust aerosols. Two major dust events were studied. The first episode occurred from the 18 to 21 of the June and the second one lasted from 28 June to 6 July. The lidar ratio within the dust layer was found to be wavelength independent with mean values of 58±14 sr at 355 nm and 57±11 sr at 532 nm. For the particle linear depolarization ratio, mean values of 0.27±0.04 at 532 nm have been found. Acknowledgements. The financial support for EARLINET in the ACTRIS Research Infrastructure Project by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654169 and previously under grant agreement no. 262254 in the Seventh Framework Programme (FP7/2007-2013) is gratefully acknowledged.

  13. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, T. J.; Fu, Q.

    2015-12-01

    Observational constraints on the change in radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detection all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE. Therefore, global estimates of the aerosol DRE inferred from CALIPSO are likely too weak.

  14. Optical closure study on light-absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Petzold, Andreas; Bundke, Ulrich; Freedman, Andrew; Onasch, Timothy B.; Massoli, Paola; Andrews, Elizabeth; Hallar, Anna G.

    2014-05-01

    The in situ measurement of atmospheric aerosol optical properties is an important component of quantifying climate change. In particular, the in-situ measurement of the aerosol single-scattering albedo (SSA), which is the ratio of aerosol scattering to aerosol extinction, is identified as a key challenge in atmospheric sciences and climate change research. Ideally, the complete set of aerosol optical properties is measured through optical closure studies which simultaneous measure aerosol extinction, scattering and absorption coefficients. The recent development of new optical instruments have made real-time in situ optical closure studies attainable, however, many of these instruments are state-of-the-art but not practical for routine monitoring. In our studies we deployed a suit of well-established and recently developed instruments including the cavity attenuated phase shift (CAPS) method for aerosol light extinction, multi-angle absorption photometer (MAAP) and particle soot absorption photometer (PSAP) for aerosol light absorption, and an integrating nephelometer (NEPH) for aerosol light scattering measurements. From these directly measured optical properties we calculated light absorption from extinction minus scattering (difference method), light extinction from scattering plus absorption, and aerosol single-scattering albedo from combinations CAPS + MAAP, NEPH + PSAP, NEPH + MAAP, CAPS + NEPH. Closure studies were conducted for laboratory-generated aerosols composed of various mixtures of black carbon (Regal 400R pigment black, Cabot Corp.) and ammonium sulphate, urban aerosol (Billerica, MA), and background aerosol (Storm Peak Lab.). Key questions addressed in our closure studies are: (1) how well can we measure aerosol light absorption by various methods, and (2) how well can we measure the aerosol single-scattering albedo by various instrument combinations? In particular we investigated (3) whether the combination of a CAPS and NEPH provides a reasonable

  15. Fine Mode Aerosol over the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Ross, K. E.; Piketh, S. J.; Reid, J. S.; Reid, E. A.

    2005-12-01

    The aerosol loading of the atmosphere over the Arabian Gulf region is extremely diverse and is composed not only of dust, but also of pollution that is derived largely from oil-related activities. Fine mode pollution particles are most efficient at scattering incoming solar radiation and have the potential to act as cloud condensation nuclei (CCN), and may therefore have implications for climate change. The smaller aerosols may also pose a health hazard if present in high concentrations. The United Arab Emirates Unified Aerosol Experiment (UAE2) was designed to investigate aerosol and meteorological characteristics over the region using ground-based, aircraft and satellite measurements, and was conducted in August and September 2004. Aerosol chemical composition has been obtained from filters that were collected at the site of the Mobile Atmospheric Aerosol and Radiation Characterization Observatory (MAARCO) on the coast of the UAE between Abu Dhabi and Dubai. Filter samples were also collected on an airborne platform in order to assess how aerosol chemical composition varies across the region and throughout the depth of the boundary layer. Results of the analysis of the PM2.5 coastal samples show that ammonium sulphate is the most prevalent constituent of the fine mode aerosol in the region (>50% of the mass), followed by organic matter, alumino-silicates, calcium carbonate and black carbon. Source apportionment indicates that most of the fine aerosol mass is derived from fossil fuel combustion, while mineral dust and local vehicle emissions also contribute to the fine aerosol loading. The organic carbon-to-total carbon ratio of the aerosol is 0.65, which is typical of fossil fuel combustion. The dominance of sulphates means that the fine mode aerosol in the region is probably responsible for a negative radiative forcing, and that the polluting emissions significantly elevate the concentration of CCN.

  16. Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D. N.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-06-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.

  17. Retrieval of Aerosol Absorption Properties from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, Pawan K.; Jethva, H.; Ahn, Chang-Woo

    2012-01-01

    The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measurement can be explained, using an approximations of Beer's Law (BL), as the upwelling reflectance at the cloud top attenuated by the absorption effects of the overlying aerosol layer. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, corrections for molecular scattering effects are applied to both the observed ad the calculated cloud reflectance terms, and the spectral AAOD is then derived by an inversion of the BL approximation. The proposed technique will be discussed in detail and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.

  18. Chemical characterizations of soluble aerosols in southern China.

    PubMed

    Wu, Dui; Tie, Xuexi; Deng, Xuejiao

    2006-07-01

    Soluble aerosols are measured at Guangdong and Hainan Provinces of southern China. The measured chemical composition of aerosols includes F-, Cl-, NO3-, SO4=, Na+, NH4+, K+, Ca2+, and Mg2+. The locations of measurements include a mega city (Guangzhou), a medium city along the coastline (Haiko), a small city along the coastline (Shanya), and a remote island site in the South China Sea (Yongxing island). The results reveal that aerosols in this region are complex and heterogeneous. Sulfate aerosol (SO4=) has the highest concentrations in Guangzhou (approximately 41% of total soluble aerosol mass), suggesting that anthropogenic activities (e.g., coal burning) play important roles in controlling aerosol concentrations in Guangzhou. By contrast, the concentrations of chlorine (Cl-) and sodium (Na+) are higher in Yongxing than in Guangzhou, indicating that the sea salt is the dominant aerosol in this marine environment site. In the medium (Haiko) and small (Shanya) city sites, the effects of anthropogenic and marine activities on aerosols fall in between the values in the mega city and the remote island site. The measured ratio of Cl-/Na+ shows that the ratio is less than 1.16 in all observation sites. The ratio in the Guangzhou city, the Haiko city, the Shanya city, and the Yongxing island is 0.52, 0.91, 0.24, and 0.53, respectively, indicating that significantly heterogeneous chemical reactions occur on sea salt particles. Unlike those in Europe and North America, there are high concentrations of calcium (Ca+) in all observation sites. The percentage of calcium mass to the measured total soluble aerosols mass is 21, 32, 34, and 30 at Guangzhou, Haiko, Sanya, and Yongxing, respectively. The calculations show that calcium plays an important role in neutralizing aerosols. The calculated "cation/anion" (summation operator[ion+]/summation operator[ion-]) ratio is 2.5, 2.5, 3.2, and 2.1, at Guangzhou, Haiko, Shanya, and Yongxing, respectively. The high "cation/anion" ratios

  19. Observation of low single scattering albedo of aerosols in the downwind of the East Asian desert and urban areas during the inflow of dust aerosols

    NASA Astrophysics Data System (ADS)

    Khatri, Pradeep; Takamura, Tamio; Shimizu, Atsushi; Sugimoto, Nobuo

    2014-01-01

    We analyzed data observed at Fukue-jima (32.752°N, 128.682°E), the downwind of the East Asian desert and urban areas, during the spring season (March-April) of 2008-2011 aiming to understand the light-absorption capacity of Asian dust aerosols, which is a topic of controversy. We observed the decreasing tendency of single-scattering albedo (SSA) with the decrease of Ångström exponent and the increase of the ratio of dust aerosol optical thickness to total aerosol optical thickness, suggesting the important role of coarse-mode dust aerosols on observed low SSAs. The observational data further indicated that the low SSAs during strong dust events were less likely due to the effect of only strong light-absorbing carbonaceous aerosols, such as black carbon (BC), indicating the association of aerosol size distribution on modulating SSA. Such observational results are justified by numerical calculations showing that aerosol size distribution can be the key factor on modulating SSA even without any change in relative amount of light-absorbing aerosol as well as total aerosol optical thickness. Therefore, the observed low SSAs in the downwind regions during dust events could be partially due to the dominance of coarse-mode aerosols over fine-mode aerosols, which are usual in dust events, along with the effect of mixed light-absorbing aerosols. The study further suggests that such effect of aerosol size distribution on SSA can be one of the important reasons for the low SSAs of dust aerosols in the source region as reported by some studies, if coarse-mode aerosols dominate fine-mode aerosols.

  20. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  1. Global Aerosol Observations

    Atmospheric Science Data Center

    2013-04-19

    ... atmosphere, directly influencing global climate and human health. Ground-based networks that accurately measure column aerosol amount and ... being used to improve Air Quality Models and for regional health studies. To assess the human-health impact of chronic aerosol exposure, ...

  2. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  3. Ganges valley aerosol experiment.

    SciTech Connect

    Kotamarthi, V.R.; Satheesh, S.K.

    2011-08-01

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  4. Analysis of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Prather, Kimberly A.; Hatch, Courtney D.; Grassian, Vicki H.

    2008-07-01

    Aerosols represent an important component of the Earth's atmosphere. Because aerosols are composed of solid and liquid particles of varying chemical complexity, size, and phase, large challenges exist in understanding how they impact climate, health, and the chemistry of the atmosphere. Only through the integration of field, laboratory, and modeling analysis can we begin to unravel the roles atmospheric aerosols play in these global processes. In this article, we provide a brief review of the current state of the science in the analysis of atmospheric aerosols and some important challenges that need to be overcome before they can become fully integrated. It is clear that only when these areas are effectively bridged can we fully understand the impact that atmospheric aerosols have on our environment and the Earth's system at the level of scientific certainty necessary to design and implement sound environmental policies.

  5. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  6. LOAC: A light aerosol counter/sizer for atmospheric balloons

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Thaury, Claire; Mineau, Jean-Luc; Verdier, Nicolas; Dulac, François; Mallet, Marc; Berthet, Gwenael; Gaubicher, Bertrand; Coute, Benoit

    The estimation of the total amount of aerosols in the upper troposphere and in lower -middle stratosphere is necessary to constraint the model calculations of the species that are sensi-tive to heterogeneous chemical reactions, to improve calculations on the atmospheric radiative transfer, and to better establish the sources of aerosols that are vertically transported up to the middle stratosphere. It is now known that different natures of aerosols can be found in the troposphere and in the stratosphere. These aerosols are made of liquid particles, and/or solid particles like soot, sands, meteoritic debris... The identification of the main nature of aerosols is not easily feasible using conventional aerosol counters, which perform in situ scat-tering measurements from a light source at a single angle typically in the 70-110 degrees range. Also, such counters are not very sensitive to soot particles that absorb the light but can be the main population of aerosols in the lower and middle stratosphere. In this work we describe a new generation of aerosol counters under development in the framework of the project LOAC (Light Optical Aerosol Counter) supported by the French ANR/Ecotech programme. LOAC will be a light particle counter/sizer, less than metricconverterProductID1 kg1 kg, designed to be mounted on the various kinds of tropospheric and stratospheric balloons. The measurements will be conducted at 2 scattering angles: the first one, at 10 degrees, is used to determine the aerosols concentration of several size classes within diameter range 0.3 and 20 micrometeres. At such low scattering angle close to forward scattering, the signal is much more intense and the measurements are not strongly sensitive to the nature of the aerosols. The second angle is at 60 degrees, where the light scattered is strongly dependent on the particle refractive index and thus on the nature of the aerosols. The ratio of the measurements at the 2 angles is used to determine the main

  7. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions. PMID:24601011

  8. Effects of tropospheric aerosols on radiative flux calculations at UV and visible wavelengths

    SciTech Connect

    Grossman, A.S.; Grant, K.E.

    1994-08-01

    The surface fluxes in the wavelength range 175 to 735nm have been calculated for an atmosphere which contains a uniformly mixed aerosol layer of thickness 1km at the earth`s surface. Two different aerosol types were considered, a rural aerosol, and an urban aerosol. The visibility range for the aerosol layers was 95 to 15 km. Surface flux ratios (15km/95km) were in agreement with previously published results for the rural aerosol layer to within about 2%. The surface flux ratios vary from 7 to 14% for the rural aerosol layer and from 13 to 23% for the urban aerosol layer over the wavelength range. A tropospheric radiative forcing of about 1.3% of the total tropospheric flux was determined for the 95km to 15km visibility change in the rural aerosol layer, indicating the potential of tropospheric feedback effects on the surface flux changes. This effect was found to be negligible for the urban aerosol layer. Stratospheric layer heating rate changes due to visibility changes in either the rural or urban aerosol layer were found to be negligible.

  9. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  10. Aerosol deposition in bends with turbulent flow

    SciTech Connect

    McFarland, A.R.; Gong, H.; Wente, W.B.

    1997-08-01

    The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.

  11. Quasi-biennial oscillation of the tropical stratospheric aerosol layer

    NASA Astrophysics Data System (ADS)

    Hommel, R.; Timmreck, C.; Giorgetta, M. A.; Graf, H. F.

    2015-05-01

    This study describes how aerosol in an aerosol-coupled climate model of the middle atmosphere is influenced by the quasi-biennial oscillation (QBO) during times when the stratosphere is largely unperturbed by volcanic material. In accordance with satellite observations, the vertical extent of the stratospheric aerosol layer in the tropics is modulated by the QBO by up to 6 km, or ~ 35% of its mean vertical extent between 100-7 hPa (about 16-33 km). Its largest vertical extent lags behind the occurrence of strongest QBO westerlies. The largest reduction lags behind maximum QBO easterlies. Strongest QBO signals in the aerosol surface area (30 %) and number densities (up to 100% e.g. in the Aitken mode) are found in regions where aerosol evaporates, that is above the 10 hPa pressure level (~ 31 km). Positive modulations are found in the QBO easterly shear, negative modulations in the westerly shear. Below 10 hPa, in regions where the aerosol mixing ratio is largest (50-20 hPa, or ~ 20-26 km), in most of the analysed parameters only moderate statistically significant QBO signatures (< 10%) have been found. QBO signatures in the model prognostic aerosol mixing ratio are significant at the 95% confidence level throughout the tropical stratosphere where modelled mixing ratios exceed 0.1 ppbm. In some regions of the tropical lower stratosphere the QBO signatures in other analysed parameters are partly not statistically significant. Peak-to-peak amplitudes of the QBO signature in the prognostic mixing ratios are up to twice as large as seasonal variations in the region where aerosols evaporate and between 70-30 hPa. Between the tropical tropopause and 70 hPa the QBO signature is relatively weak and seasonal variations dominate the variability of the simulated Junge layer. QBO effects on the upper lid of the tropical aerosol layer turn the quasi-static balance between processes maintaining the layer's vertical extent into a cyclic balance when considering this dominant mode

  12. Influences of external vs. core-shell mixing on aerosol optical properties at various relative humidities.

    PubMed

    Ramachandran, S; Srivastava, Rohit

    2013-05-01

    Aerosol optical properties of external and core-shell mixtures of aerosol species present in the atmosphere are calculated in this study for different relative humidities. Core-shell Mie calculations are performed using the values of radii, refractive indices and densities of aerosol species that act as core and shell, and the core-shell radius ratio. The single scattering albedo (SSA) is higher when the absorbing species (black carbon, BC) is the core, while for a sulfate core SSA does not vary significantly as the BC in the shell dominates the absorption. Absorption gets enhanced in core-shell mixing of absorbing and scattering aerosols when compared to their external mixture. Thus, SSA is significantly lower for a core-shell mixture than their external mixture. SSA is more sensitive to core-shell ratio than mode radius when BC is the core. The extinction coefficient, SSA and asymmetry parameter are higher for external mixing when compared to BC (core)-water soluble aerosol (shell), and water soluble aerosol (core)-BC (shell) mixtures in the relative humidity range of 0 to 90%. Spectral SSA exhibits the behaviour of the species which acts as a shell in core-shell mixing. The asymmetry parameter for an external mixture of water soluble aerosol and BC is higher than BC (core)-water soluble aerosol (shell) mixing and increases as function of relative humidity. The asymmetry parameter for the water soluble aerosol (core)-BC (shell) is independent of relative humidity as BC is hydrophobic. The asymmetry parameter of the core-shell mixture decreases when BC aerosols are involved in mixing, as the asymmetry parameter of BC is lower. Aerosol optical depth (AOD) of core-shell mixtures increases at a higher rate when the relative humidity exceeds 70% in continental clean and urban aerosol models, whereas AOD remains the same when the relative humidity exceeds 50% in maritime aerosol models. The SSA for continental aerosols varies for core-shell mixing of water soluble

  13. New algorithm to derive the microphysical properties of the aerosols from lidar measurements using OPAC aerosol classification schemes

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Labzovskii, Lev; Toanca, Florica

    2014-05-01

    This paper presents a new method to retrieve the aerosol complex refractive index and effective radius from multiwavelength lidar data, using an integrated model-measurement approach. In the model, aerosols are assumed to be a non-spherical ensemble of internally mixed components, with variable proportions. OPAC classification schemes and basic components are used to calculate the microphysical properties, which are then fed into the T-matrix calculation code to generate the corresponding optical parameters. Aerosol intensive parameters (lidar ratios, extinction and backscatter Angstrom coefficients, and linear particle depolarization ratios) are computed at the altitude of the aerosol layers determined from lidar measurements, and iteratively compared to the values obtained by simulation for a certain aerosol type, for which the critical component's proportion in the overall mixture is varied. Microphysical inversion based on the Truncated Singular Value Decomposition (TSVD) algorithm is performed for selected cases of spherical aerosols, and comparative results of the two methods are shown. Keywords: Lidar, aerosols, Data inversion, Optical parameters, Complex Refractive Index Acknowledgments: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project numbers 38/2012 - CAPESA and 55/2013 - CARESSE, and by the European Community's FP7-INFRASTRUCTURES-2010-1 under grant no. 262254 - ACTRIS and by the European Community's FP7-PEOPLE-2011-ITN under grant no. 289923 - ITARS

  14. Temporal Variation of Aerosol Properties at a Rural Continental Site and Study of Aerosol Evolution through Growth Law Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Jian; Collins, Don; Covert, David; Elleman, Robert; Ferrare, Richard A.; Gasparini, Roberto; Jonsson, Haflidi; Ogren, John; Sheridan, Patrick; Tsay, Si-Chee

    2006-01-01

    Aerosol size distributions were measured by a Scanning Mobility Particle Sizer (SMPS) onboard the CIRPAS Twin Otter aircraft during 16 flights at the Southern Great Plains (SGP) site in northern central Oklahoma as part of the Aerosol Intensive Operation period in May, 2003. During the same period a second SMPS was deployed at a surface station and provided continuous measurements. Combined with trace gas measurements at the SGP site and back-trajectory analysis, the aerosol size distributions provided insights into the sources of aerosols observed at the SGP site. High particle concentrations, observed mostly during daytime, were well correlated with the sulfur dioxide (SO2) mixing ratios, suggesting nucleation involving sulfuric acid is likely the main source of newly formed particles at the SGP. Aerosols within plumes originating from wildfires in Central America were measured at the surface site. Vertically compact aerosol layers, which can be traced back to forest fires in East Asia, were intercepted at altitudes over 3000 meters. Analyses of size dependent particle growth rates for four periods during which high cloud coverage was observed indicate growth dominated by volume controlled reactions. Sulfate accounts for 50% to 72% of the increase in aerosol volume concentration; the rest of the volume concentration increase was likely due to secondary organic species. The growth law analyses and meteorological conditions indicate that the sulfate was produced mainly through aqueous oxidation of SO2 in clouds droplets and hydrated aerosol particles.

  15. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  16. Palaeoclimate: Aerosols and rainfall

    NASA Astrophysics Data System (ADS)

    Partin, Jud

    2015-03-01

    Instrumental records have hinted that aerosol emissions may be shifting rainfall over Central America southwards. A 450-year-long precipitation reconstruction indicates that this shift began shortly after the Industrial Revolution.

  17. Chamber LIDAR measurements of aerosolized biological simulants

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Thrush, Evan P.; Thomas, Michael E.; Siegrist, Karen M.; Baldwin, Kevin; Quizon, Jason; Carter, Christopher C.

    2009-05-01

    A chamber aerosol LIDAR is being developed to perform well-controlled tests of optical scattering characteristics of biological aerosols, including Bacillus atrophaeus (BG) and Bacillus thuringiensis (BT), for validation of optical scattering models. The 1.064 μm, sub-nanosecond pulse LIDAR allows sub-meter measurement resolution of particle depolarization ratio or backscattering cross-section at a 1 kHz repetition rate. Automated data acquisition provides the capability for real-time analysis or recording. Tests administered within the refereed 1 cubic meter chamber can provide high quality near-field backscatter measurements devoid of interference from entrance and exit window reflections. Initial chamber measurements of BG depolarization ratio are presented.

  18. Emergency Protection from Aerosols

    SciTech Connect

    Cristy, G.A.

    2001-11-13

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  19. Emergency protection from aerosols

    SciTech Connect

    Cristy, G.A.; Chester, C.V.

    1981-07-01

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  20. Monodisperse aerosol generator

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  1. MISR Aerosol Typing

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2014-01-01

    AeroCom is an open international initiative of scientists interested in the advancement of the understanding of global aerosol properties and aerosol impacts on climate. A central goal is to more strongly tie and constrain modeling efforts to observational data. A major element for exchanges between data and modeling groups are annual meetings. The meeting was held September 20 through October 2, 1014 and the organizers would like to post the presentations.

  2. Characterizing the Vertical Distribution of Aerosols Over the ARM SGP Site

    SciTech Connect

    Richard Ferrare, Connor Flynn, David Turner

    2009-05-05

    This project focused on: 1) evaluating the performance of the DOE ARM SGP Raman lidar system in measuring profiles of water vapor and aerosols, and 2) the use of the Raman lidar measurements of aerosol and water vapor profiles for assessing the vertical distribution of aerosols and water vapor simulated by global transport models and examining diurnal variability of aerosols and water vapor. The highest aerosol extinction was generally observed close to the surface during the nighttime just prior to sunrise. The high values of aerosol extinction are most likely associated with increased scattering by hygroscopic aerosols, since the corresponding average relative humidity values were above 70%. After sunrise, relative humidity and aerosol extinction below 500 m decreased with the growth in the daytime convective boundary layer. The largest aerosol extinction for altitudes above 1 km occurred during the early afternoon most likely as a result of the increase in relative humidity. The water vapor mixing ratio profiles generally showed smaller variations with altitude between day and night. We also compared simultaneous measurements of relative humidity, aerosol extinction, and aerosol optical thickness derived from the ARM SGP Raman lidar and in situ instruments on board a small aircraft flown routinely over the ARM SGP site. In contrast, the differences between the CARL and IAP aerosol extinction measurements are considerably larger. Aerosol extinction derived from the IAP measurements is, on average, about 30-40% less than values derived from the Raman lidar. The reasons for this difference are not clear, but may be related to the corrections for supermicron scattering and relative humidity that were applied to the IAP data. The investigators on this project helped to set up a major field mission (2003 Aerosol IOP) over the DOE ARM SGP site. One of the goals of the mission was to further evaluate the aerosol and water vapor retrievals from this lidar system

  3. RACORO aerosol data processing

    SciTech Connect

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  4. Reducing the uncertainty in background marine aerosol radiative properties using CAM5 model results and CALIPSO-retrievals

    NASA Astrophysics Data System (ADS)

    Meskhidze, N.; Gantt, B.; Dawson, K.; Johnson, M. S.; Gasso, S.

    2012-12-01

    Abundance of natural aerosols in the atmosphere strongly affects global aerosol optical depth (AOD) and influences clouds and the hydrological cycle through its ability to act as cloud condensation nuclei (CCN). Because the anthropogenic contribution to climate forcing represents the difference between the total forcing and that from natural aerosols, understanding background aerosols is necessary to evaluate the influences of anthropogenic aerosols on cloud reflectivity and persistence (so-called indirect radiative forcing). The effects of marine aerosols are explored using remotely sensed data obtained by Cloud-aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the NCAR Community Atmosphere Model (CAM5.0), coupled with the PNNL Modal Aerosol Model. CALIPSO-provided high resolution vertical profile information about different aerosol subtypes (defined as clean continental, marine, desert dust, polluted continental, polluted dust, and biomass burning), particulate depolarization ratio (or particle non-sphericity), reported aerosol color ratio (the ratio of aerosol backscatter at the two wavelengths) and lidar ratios over different parts of the oceans are compared to model-simulations to help evaluate the contribution of biogenic aerosol to CCN budget in the marine boundary layer. Model-simulations show that over biologically productive ocean waters primary organic aerosols of marine origin can contribute up to a 20% increase in CCN (at a supersaturation of 0.2%) number concentrations. Corresponding changes associated with cloud properties (liquid water path and droplet number) can decrease global annual mean indirect radiative forcing of anthropogenic aerosol (less cooling) by ~0.1 Wm-2 (7%). This study suggests ignoring the complex chemical composition and size distribution of sea spray particles could result in considerable uncertainties in predicted anthropogenic aerosol indirect effect.

  5. Improving satellite-retrieved aerosol microphysical properties using GOCART data

    NASA Astrophysics Data System (ADS)

    Li, S.; Kahn, R.; Chin, M.; Garay, M. J.; Liu, Y.

    2015-03-01

    The Multi-angle Imaging SpectroRadiometer (MISR) aboard the NASA Earth Observing System's Terra satellite can provide more reliable aerosol optical depth (AOD) and better constraints on particle size (Ångström exponent, or ANG), sphericity, and single-scattering albedo (SSA) than many other satellite instruments. However, many aerosol mixtures pass the algorithm acceptance criteria, yielding a poor constraint, when the particle-type information in the MISR radiances is low, typically at low AOD. We investigate adding value to the MISR aerosol product under these conditions by filtering the list of MISR-retrieved mixtures based on agreement between the mixture ANG and absorbing AOD (AAOD) values, and simulated aerosol properties from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. MISR-GOCART ANG difference and AAOD ratio thresholds for applying GOCART constraints were determined based on coincident AOD, ANG, and AAOD measurements from the AErosol RObotic NETwork (AERONET). The results were validated by comparing the adjusted MISR aerosol optical properties over the contiguous USA between 2006 and 2009 with additional AERONET data. The correlation coefficient (r) between the adjusted MISR ANG derived from this study and AERONET improves to 0.45, compared to 0.29 for the MISR Version 22 standard product. The ratio of the adjusted MISR AAOD to AERONET increases to 0.74, compared to 0.5 for the MISR operational retrieval. These improvements occur primarily when AOD < 0.2 for ANG and AOD < 0.5 for AAOD. Spatial and temporal differences among the aerosol optical properties of MISR V22, GOCART, and the adjusted MISR are traced to (1) GOCART underestimation of AOD and ANG in polluted regions; (2) aerosol mixtures lacking in the MISR Version 22 algorithm climatology; (3) low MISR sensitivity to particle type under some conditions; and (4) parameters and thresholds used in our method.

  6. Atmospheric DMS and Biogenic Sulfur aerosol measurements in the Arctic

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Wentworth, G.; Burkart, J.; Leaitch, W. R.; Abbatt, J.; Sharma, S.; Desiree, T. S.

    2014-12-01

    Dimethyl Sulfide (DMS) and its oxidation products were measured on the board of the Canadian Coast Guard Ship (CCGS) Amundsen and above melt ponds in the Arctic during July 2014 in the context of the NETCARE study which seeks to understand the effect of DMS and its oxidation products with respect to aerosol nucleation, as well as its effect on cloud and precipitation properties. The objective of this study is to quantify the role of DMS in aerosol growth and activation in the Arctic atmosphere. Atmospheric DMS samples were collected from different altitudes, from 200 to 9500 feet, aboard the POLAR6 aircraft expedition to determine variations in the DMS concentration and a comparison was made to shipboard DMS measurements and its effects on aerosol size fractions. The chemical and isotopic composition of sulfate aerosol size fractions was studied. Sulfur isotope ratios (34S/32S) offer a way to determine the oceanic DMS contribution to aerosol growth. The results are expected to address the contribution of anthropogenic as well as biogenic sources of aerosols to the growth of the different aerosol size fractions. In addition, aerosol sulfate concentrations were measured at the same time within precipitation and fogs to compare with the characteristics of aerosols in each size fraction with the characteristics of the sulfate in each medium. This measurement is expected to explain the contribution of DMS oxidation in aerosol activation in the Arctic summer. Preliminary results from the measurement campaign for DMS and its oxidation products in air, fog and precipitation will be presented.

  7. Polarization lidar returns from aerosols and thin clouds: a framework for the analysis.

    PubMed

    Gobbi, G P

    1998-08-20

    Relationships for the interpretation of polarization lidar observations of aerosols and thin clouds are presented. They allow for the separation of contributions to backscatter from solid and liquid phases by the use of either the classical backscatter and depolarization ratio parameters or the particulate cross-polarized backscatter cross sections. It is shown that different aerosol phases can be better separated by use of the latter coordinates. Emphasis is placed on the study of composition and phase properties of polar stratospheric aerosols.

  8. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  9. Ozone and aerosol distributions measured by airborne lidar during the 1988 Arctic Boundary Layer Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Consideration is given to O3 and aerosol distributions measured from an aircraft using a DIAL system in order to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during summer 1988. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere.

  10. Aerosol generation by blower motors as a bias in assessing aerosol penetration into cabin filtration systems.

    PubMed

    Heitbrink, William A; Collingwood, Scott

    2005-01-01

    In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters.

  11. Aerosol generation by blower motors as a bias in assessing aerosol penetration into cabin filtration systems.

    PubMed

    Heitbrink, William A; Collingwood, Scott

    2005-01-01

    In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters. PMID:15764523

  12. Meridional gradients in aerosol vertical distribution over Indian Mainland: Observations and model simulations

    NASA Astrophysics Data System (ADS)

    Prijith, S. S.; Suresh Babu, S.; Lakshmi, N. B.; Satheesh, S. K.; Krishna Moorthy, K.

    2016-01-01

    Multi-year observations from the network of ground-based observatories (ARFINET), established under the project 'Aerosol Radiative Forcing over India' (ARFI) of Indian Space Research Organization and space-borne lidar 'Cloud Aerosol Lidar with Orthogonal Polarization' (CALIOP) along with simulations from the chemical transport model 'Goddard Chemistry Aerosol Radiation and Transport' (GOCART), are used to characterize the vertical distribution of atmospheric aerosols over the Indian landmass and its spatial structure. While the vertical distribution of aerosol extinction showed higher values close to the surface followed by a gradual decrease at increasing altitudes, a strong meridional increase is observed in the vertical spread of aerosols across the Indian region in all seasons. It emerges that the strong thermal convections cause deepening of the atmospheric boundary layer, which although reduces the aerosol concentration at lower altitudes, enhances the concentration at higher elevations by pumping up more aerosols from below and also helping the lofted particles to reach higher levels in the atmosphere. Aerosol depolarization ratios derived from CALIPSO as well as the GOCART simulations indicate the dominance of mineral dust aerosols during spring and summer and anthropogenic aerosols in winter. During summer monsoon, though heavy rainfall associated with the Indian monsoon removes large amounts of aerosols, the prevailing southwesterly winds advect more marine aerosols over to landmass (from the adjoining oceans) leading to increase in aerosol loading at lower altitudes than in spring. During spring and summer months, aerosol loading is found to be significant, even at altitudes as high as 4 km, and this is proposed to have significant impacts on the regional climate systems such as Indian monsoon.

  13. Cloud Nucleating Properties of Aerosols During TexAQS - GoMACCS 2006: Influence of Aerosol Sources, Composition, and Size

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Coffman, D. J.; Covert, D. S.; Onasch, T. B.; Alllan, J. D.; Worsnop, D.

    2006-12-01

    TexAQS - GoMACCS 2006 was conducted from July to September 2006 in the Gulf of Mexico and Houston Ship Channel to investigate sources and processing of gas and particulate phase species and to determine their impact on regional air quality and climate. As part of the experiment, the NOAA R.V. Ronald H. Brown transited from Charleston, S.C. to the study region. The ship was equipped with a full compliment of gas and aerosol instruments. To determine the cloud nucleating properties of aerosols, measurements were made of the aerosol number size distribution, aerosol chemical composition, and cloud condensation nuclei (CCN) concentration at five supersaturations. During the transit and over the course of the experiment, a wide range of aerosol sources and types was encountered. These included urban and industrial emissions from the S.E. U.S. as the ship left Charleston, a mixture of Saharan dust and marine aerosol during the transit around Florida and across the Gulf of Mexico, urban emissions from Houston, and emissions from the petrochemical industries, oil platforms, and marine vessels in the Gulf coast region. Highest activation ratios (ratio of CCN to total particle number concentration at 0.4 percent supersaturation) were measured in anthropogenic air masses when the aerosol was composed primarily of ammonium sulfate salts and in marine air masses with an aerosol composed of sulfate and sea salt. A strong gradient in activation ratio was measured as the ship moved from the Gulf of Mexico to the end of the Houston Ship Channel (values decreasing from about 0.8 to less than 0.1) and the aerosol changed from marine to industrial. The activation ratio under these different regimes in addition to downwind of marine vessels and oil platforms will be discussed in the context of the aerosol size distribution and chemical composition. The discussion of composition will include the organic mass fraction of the aerosol, the degree of oxidation of the organics, and the water

  14. Rheology of model aerosol suspensions.

    PubMed

    Sidhu, B K; Washington, C; Davis, S S; Purewal, T S

    1993-07-01

    The rheological properties of model aerosol suspensions at phase fractions of less than 5% w/v (phase ratio of 0.05) were investigated. The rheological profiles of lactose in chloroform, lactose in trichlorofluoromethane (Propellent 11, P11), and salbutamol sulphate in P11 have been investigated in the presence and absence of lecithin, a phospholipid surface-active agent. The relative viscosities of these disperse systems correlated with the increasing disperse phase fractions and the addition of surfactant was found to reduce these viscosities to a relative viscosity of approximately 1.0. The results suggest that the relative viscosity is a useful indicator of flocculation in these systems, and may be valuable in formulation development. PMID:8105051

  15. Blowing Snow - A Major Source of Aerosol in the Polar Regions?

    NASA Astrophysics Data System (ADS)

    Kalnajs, L.; DeCarlo, P. F.; Giordano, M.; Davis, S. M.; Deshler, T.; Johnson, A.; Goetz, J. D.; Mukherjee, A. D.; Slater, A. G.

    2015-12-01

    Sea salt aerosol is the dominant aerosol component in unpolluted Polar Regions, particularly in the sea ice zone. In the lower latitude liquid ocean, wave action and bubble bursting is thought to be the main mechanism for sea salt aerosol production. However there is growing evidence that in the Polar Regions, particularly near sea ice, that the sublimation of wind lofted salty snow may be a dominant source of sea salt aerosol. An extensive set of aerosol sizing and compositional measurements was made at sea ice location near Ross Island, Antarctica during two field measurement campaigns - a summer campaign in 2014 and late winter campaign in 2015. Sizing measurements from both open and closed path aerosol instruments, and compositional measurements from an Aerosol Mass Spectrometer suggest that there is a significant enhancement in both super and sub micron aerosol associated with high wind events and blowing snow in the boundary layer. While the composition of this aerosol indicates that it is primarily of marine origin, the ratios of the major sea salt ions suggest that processing in the snow pack significantly modifies the aerosol. This alternate sea salt aerosol production mechanism could have significant impact on the modeling of tropospheric halogen chemistry and on the interpretation of sea salt-based proxies in the ice core record.

  16. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations.

    PubMed

    Sasano, Y; Browell, E V

    1989-05-01

    The present study demonstrates the potential of a multiple wavelength lidar for discriminating between several aerosol types such as maritime, continental, stratospheric, and desert aerosols on the basis of wavelength dependence of the aerosol backscatter coefficient. In the analysis of lidar signals, the two-component lidar equation was solved under the assumption of similarity in the derived profiles of backscatter coefficients for each wavelength, and this made it possible to reduce the uncertainty in the extinction/backscatter ratio, which is a key parameter in the lidar solution. It is shown that a three-wavelength lidar system operating at 300, 600, and 1064 nm can provide unique information for discriminating between various aerosol types such as continental, maritime, Saharan dust, stratospheric aerosols in a tropopause fold event, and tropical forest aerosols. Measurement error estimation was also made through numerical simulations. Mie calculations were made using in situ aerosol data and aerosol models to compare with the lidar results. There was disagreement between the theoretical and empirical results, which in some cases was substantial. These differences may be partly due to uncertainties in the lidar data analysis and aerosol characteristics and also due to the conventional assumption of aerosol sphericity for the aerosol Mie calculations. PMID:20548724

  17. Sensitivity of remote aerosol distributions to representation of cloud-aerosol interactions in a global climate model

    NASA Astrophysics Data System (ADS)

    Wang, H.; Easter, R. C.; Rasch, P. J.; Wang, M.; Liu, X.; Ghan, S. J.; Qian, Y.; Yoon, J.-H.; Ma, P.-L.; Velu, V.

    2013-01-01

    Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in

  18. Improving aerosol retrieval over urban areas

    NASA Astrophysics Data System (ADS)

    Picón, A. J.; Wu, Y.; Gross, B.; Moshary, F.; Ahmed, S. A.

    2010-12-01

    Aerosol retrieval over urban areas is complicated since surface models in the operational algorithms are based on vegetation models such as the case of MODIS. To improve satellite retrieval of aerosols in urban areas, we use simultaneous AERONET radiometer and MODIS measurements in combination to refine surface albedo models. Refined surface models have been implemented for NYC and Mexico City demonstrating significant improvement in AOD in terms of accuracy and spatial resolution. Based on these direct retrievals of the surface reflection for the MODIS Land Aerosol Bands, we were able to show that current parameterizations of the surface as a function of the Modified Vegetation Index are not in good agreement either quantitatively or qualitatively. Further comparisons in other urban areas (eg. Beijing) show that for cases with surface reflectance ratios sufficiently high at the AERONET site, similar over biases can be observed. On the other hand, other cities such as Kanpur, Buenos Aires and Rome do not show any significant bias which can be traced to the fact that these sites are located in regions with less urban surface correlations. Further comparisons in these urban centers are also made with other satellites aerosol retrievals such as POLDER, MISR and OMI.

  19. Secondary Ion Mass Spectrometry of Environmental Aerosols

    SciTech Connect

    Gaspar, Daniel J.; Cliff, John B.

    2010-08-01

    Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

  20. The colors of biomass burning aerosols in the atmosphere

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-06-01

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC.

  1. The colors of biomass burning aerosols in the atmosphere.

    PubMed

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-01-01

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC. PMID:27306230

  2. The Impact of Geoengineering Aerosols on Stratospheric Temperature and Ozone

    NASA Technical Reports Server (NTRS)

    Heckendorn, P.; Weisenstein, D.; Fueglistaler, S.; Luo, B. P.; Rozanov, E.; Schraner, M.; Peter, T.; Thomason, L. W.

    2009-01-01

    Anthropogenic greenhouse gas emissions are warming the global climate at an unprecedented rate. Significant emission reductions will be required soon to avoid a rapid temperature rise. As a potential interim measure to avoid extreme temperature increase, it has been suggested that Earth's albedo be increased by artificially enhancing stratospheric sulfate aerosols. We use a 3D chemistry climate model, fed by aerosol size distributions from a zonal mean aerosol model, to simulate continuous injection of 1-10 Mt/a into the lower tropical stratosphere. In contrast to the case for all previous work, the particles are predicted to grow to larger sizes than are observed after volcanic eruptions. The reason is the continuous supply of sulfuric acid and hence freshly formed small aerosol particles, which enhance the formation of large aerosol particles by coagulation and, to a lesser extent, by condensation. Owing to their large size, these particles have a reduced albedo. Furthermore, their sedimentation results in a non-linear relationship between stratospheric aerosol burden and annual injection, leading to a reduction of the targeted cooling. More importantly, the sedimenting particles heat the tropical cold point tropopause and, hence, the stratospheric entry mixing ratio of H2O increases. Therefore, geoengineering by means of sulfate aerosols is predicted to accelerate the hydroxyl catalyzed ozone destruction cycles and cause a significant depletion of the ozone layer even though future halogen concentrations will be significantly reduced.

  3. The Impact of Geoengineering Aerosols on Stratospheric Temperature and Ozone

    NASA Technical Reports Server (NTRS)

    Heckendorn, P.; Weisenstein, D.; Fueglistaler, S.; Luo, B. P.; Rozanov, E.; Schraner, M.; Thomason, L. W.; Peter, T.

    2011-01-01

    Anthropogenic greenhouse gas emissions are warming the global climate at an unprecedented rate. Significant emission reductions will be required soon to avoid a rapid temperature rise. As a potential interim measure to avoid extreme temperature increase, it has been suggested that Earth's albedo be increased by artificially enhancing stratospheric sulfate aerosols. We use a 3D chemistry climate model, fed by aerosol size distributions from a zonal mean aerosol model. to simulate continuous injection of 1-10 Mt/a into the lower tropical stratosphere. In contrast to the case for all previous work, the particles are predicted to grow to larger sizes than are observed after volcanic eruptions. The reason is the continuous supply of sulfuric acid and hence freshly formed small aerosol particles, which enhance the formation of large aerosol particles by coagulation and, to a lesser extent, by condensation. Owing to their large size, these particles have a reduced albedo. Furthermore, their sedimentation results in a non-linear relationship between stratospheric aerosol burden and annual injection, leading to a reduction of the targeted cooling. More importantly, the sedimenting particles heat the tropical cold point tropopause and, hence, the stratospheric entry mixing ratio of H2O increases. Therefore, geoengineering by means of sulfate aerosols is predicted to accelerate the hydroxyl catalyzed ozone destruction cycles and cause a significant depletion of the ozone layer even though future halogen concentrations will he significantly reduced.

  4. Aerosol formation yields from the reaction of catechol with ozone

    NASA Astrophysics Data System (ADS)

    Coeur-Tourneur, Cécile; Tomas, Alexandre; Guilloteau, Angélique; Henry, Françoise; Ledoux, Frédéric; Visez, Nicolas; Riffault, Véronique; Wenger, John C.; Bedjanian, Yuri

    The formation of secondary organic aerosol from the gas-phase reaction of catechol (1,2-dihydroxybenzene) with ozone has been studied in two smog chambers. Aerosol production was monitored using a scanning mobility particle sizer and loss of the precursor was determined by gas chromatography and infrared spectroscopy, whilst ozone concentrations were measured using a UV photometric analyzer. The overall organic aerosol yield ( Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses ( Mo) to the total reacted catechol concentrations, assuming a particle density of 1.4 g cm -3. Analysis of the data clearly shows that Y is a strong function of Mo and that secondary organic aerosol formation can be expressed by a one-product gas-particle partitioning absorption model. The aerosol formation is affected by the initial catechol concentration, which leads to aerosol yields ranging from 17% to 86%. The results of this work are compared to similar studies reported in the literature.

  5. The colors of biomass burning aerosols in the atmosphere

    PubMed Central

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-01-01

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC. PMID:27306230

  6. The colors of biomass burning aerosols in the atmosphere.

    PubMed

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-06-16

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC.

  7. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  8. MISR UAE2 Aerosol Versioning

    Atmospheric Science Data Center

    2013-03-21

    ... the MISR aerosol microphysical properties are "Beta." Uncertainty envelopes for the aerosol optical depths are given in  Kahn et ... particle microphysical property validation is in progress, uncertainty envelopes on particle size distribution, shape, and ...

  9. Atmospheric Chemistry: Nature's plasticized aerosols

    NASA Astrophysics Data System (ADS)

    Ziemann, Paul J.

    2016-01-01

    The structure of atmospheric aerosol particles affects their reactivity and growth rates. Measurements of aerosol properties over the Amazon rainforest indicate that organic particles above tropical rainforests are simple liquid drops.

  10. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  11. Elemental Composition of Primary Aerosols Emitted from Burning of 21 Biomass Fuels Measured by Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Desyaterik, Y.; Mack, L.; Lee, T.; Kreidenweis, S. M.; Collett, J. L.; Jimenez, J. L.; Worsnop, D. R.

    2010-12-01

    Biomass burning emissions are an important contributor to regional aerosol loading and have a large impact of on air quality, visibility, and radiative forcing. However, the detailed chemical composition of the aerosols emitted during biomass burning is largely unknown. In order to gain a better understanding of the chemical and physical properties of these emissions, 92 burns were undertaken in the combustion chamber of the USDA/FS Fire Sciences Laboratory in Missoula, Montana, in well-defined laboratory conditions. A set of 21 different fuels was tested that represents biomass burned annually in the western and southeastern U.S. The chemical composition of the resulting biomass smoke aerosols was analyzed with a high-resolution aerosol mass spectrometer (Aerodyne HR-ToF-AMS). Simultaneous measurements of CO2 and CO concentrations allowed flaming and smoldering fire regimes to be distinguished. The elemental composition of the organic portion of the aerosols was extracted from the AMS measurements. Here we present the variation of O/C, H/C and organic mass to organic carbon ratios (OM/OC) versus fire regime and fuel type. We also discuss the influence on the organic aerosol chemical composition of various factors such as fuel moisture content and total aerosol loading, as well as the approach used to account for water vapor ions derived from water originally present in sampled particles versus water vapor ions produced by electron impact fragmentation of organic molecules.

  12. Variability of Biomass Burning Aerosols Layers and Near Ground

    NASA Astrophysics Data System (ADS)

    Vasilescu, Jeni; Belegante, Livio; Marmureanu, Luminita; Toanca, Flori

    2016-06-01

    The aim of this study is to characterize aerosols from both chemical and optical point of view and to explore the conditions to sense the same particles in elevated layers and at the ground. Three days of continuous measurements using a multi-wavelength depolarization lidar(RALI) and a C-ToF-AMS aerosol mass spectrometer are analyzed. The presence of smoke particles was assessed in low level layers from RALI measurements. Chemical composition of submicronic volatile/semi-volatile aerosols at ground level was monitored by the CTOF AMS Several episodes of biomass burning aerosols have been identified by both techniques due to the presence of specific markers (f60, linear particle depolarization ratio, Ängström exponent).

  13. Lidar determination of the composition of atmosphere aerosols

    NASA Technical Reports Server (NTRS)

    Wright, M. L.

    1980-01-01

    Theoretical and experimental studies of the feasibility of using DIfferential SCatter (DISC) lidar to measure the composition of atmospheric aerosols are described. This technique involves multiwavelength measurements of the backscatter cross section of aerosols in the middle infrared, where a number of materials display strong restrahlen features that significantly modulate the backscatter spectrum. The theoretical work indicates that a number of materials of interest, including sulfuric acid, ammonium sulfate, and silicates, can be discriminated among with a CO2 lidar. An initial evaluation of this procedure was performed in which cirrus clouds and lower altitude tropospheric aerosols were developed. The observed ratio spectrum of the two types of aerosol displays structure that is in crude accord with theoretical expectations.

  14. Aerosol Quality Monitor (AQUAM)

    NASA Astrophysics Data System (ADS)

    Liang, X.; Ignatov, A.

    2011-12-01

    The Advanced Clear-Sky Processor for Oceans (ACSPO) developed at NESDIS generates three products from AVHRR, operationally: clear sky radiances in all bands, and sea surface temperature (SST) derived from clear-sky brightness temperatures (BT) in Ch3B (centered at 3.7 μm), Ch4 (11 μm) and Ch5 (12 μm), and aerosol optical depths (AOD) derived from clear-sky reflectances in Ch1 (0.63), Ch2 (0.83) and Ch3A (1.61 μm). An integral part of ACSPO is the fast Community Radiative Transfer Model (CRTM), which calculates first-guess clear-sky BTs using global NCEP forecast atmospheric and Reynolds SST fields. Simulated BTs are employed in ACSPO for improved cloud screening, physical (RTM-based) SST inversions, and to monitor and validate satellite BTs. The model minus observation biases are monitored online in near-real time using the Monitoring IR Clear-sky radiances over Oceans for SST (MICROS; http://www.star.nesdis.noaa.gov/sod/sst/micros/). A persistent positive M-O bias is observed in MICROS, partly attributed to missing aerosol in CRTM input, causing "M" to be warmer than "O". It is thus necessary to include aerosols in CRTM and quantify their effects on AVHRR BTs and SSTs. However, sensitivity of thermal bands to aerosol is only minimal, and use of solar reflectance bands is preferable to evaluate the accuracy of CRTM modeling, with global aerosol fields as input (from e.g. Goddard Chemistry Aerosol Radiation and Transport, GOCART, or Navy Aerosol Analysis and Prediction System, NAAPS). Once available, the corresponding M-O biases in solar reflectance bands will be added to MICROS. Also, adding CRTM simulated reflectances in ACSPO would greatly improve cloud detection, help validate CRTM in the solar reflectance bands, and assist aerosol retrievals. Running CRTM with global aerosol as input is very challenging, computationally. While CRTM is being optimized to handle such global scattering computations, a near-real time web-based Aerosol Quality Monitor (AQUAM

  15. Cantera Aerosol Dynamics Simulator

    SciTech Connect

    Moffat, Harry

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkin formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.

  16. Characterization of biomass burning aerosols from forest fire in Indonesia

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Iriana, W.; Okumura, M.; Lestari, P.; Tohno, S.; Akira, M.; Okuda, T.

    2012-12-01

    Biomass burning (forest fire, wild fire) is a major source of pollutants, generating an estimate of 104 Tg per year of aerosol particles worldwide. These particles have adverse human health effects and can affect the radiation budget and climate directly and indirectly. Eighty percent of biomass burning aerosols are generated in the tropics and about thirty percent of them originate in the tropical regions of Asia (Andreae, 1991). Several recent studies have reported on the organic compositions of biomass burning aerosols in the tropical regions of South America and Africa, however, there is little data about forest fire aerosols in the tropical regions of Asia. It is important to characterize biomass burning aerosols in the tropical regions of Asia because the aerosol properties vary between fires depending on type and moisture of wood, combustion phase, wind conditions, and several other variables (Reid et al., 2005). We have characterized PM2.5 fractions of biomass burning aerosols emitted from forest fire in Indonesia. During the dry season in 2012, PM2.5 aerosols from several forest fires occurring in Riau, Sumatra, Indonesia were collected on quartz and teflon filters with two mini-volume samplers. Background aerosols in forest were sampled during transition period of rainy season to dry season (baseline period). Samples were analyzed with several analytical instruments. The carbonaceous content (organic and elemental carbon, OC and EC) of the aerosols was analyzed by a thermal optical reflectance technique using IMPROVE protocol. The metal, inorganic ion and organic components of the aerosols were analyzed by X-ray Fluorescence (XRF), ion chromatography and gas chromatography-mass spectrometry, respectively. There was a great difference of chemical composition between forest fire and non-forest fire samples. Smoke aerosols for forest fires events were composed of ~ 45 % OC and ~ 2.5 % EC. On the other hand, background aerosols for baseline periods were

  17. Volcanic Aerosol Evolution: Model vs. In Situ Sampling

    NASA Astrophysics Data System (ADS)

    Pfeffer, M. A.; Rietmeijer, F. J.; Brearley, A. J.; Fischer, T. P.

    2002-12-01

    Volcanoes are the most significant non-anthropogenic source of tropospheric aerosols. Aerosol samples were collected at different distances from 92°C fumarolic source at Poás Volcano. Aerosols were captured on TEM grids coated by a thin C-film using a specially designed collector. In the sampling, grids were exposed to the plume for 30-second intervals then sealed and frozen to prevent reaction before ATEM analysis to determine aerosol size and chemistry. Gas composition was established using gas chromatography, wet chemistry techniques, AAS and Ion Chromatography on samples collected directly from a fumarolic vent. SO2 flux was measured remotely by COSPEC. A Gaussian plume dispersion model was used to model concentrations of the gases at different distances down-wind. Calculated mixing ratios of air and the initial gas species were used as input to the thermo-chemical model GASWORKS (Symonds and Reed, Am. Jour. Sci., 1993). Modeled products were compared with measured aerosol compositions. Aerosols predicted to precipitate out of the plume one meter above the fumarole are [CaSO4, Fe2.3SO4, H2SO4, MgF2. Na2SO4, silica, water]. Where the plume leaves the confines of the crater, 380 meters distant, the predicted aerosols are the same, excepting FeF3 replacing Fe2.3SO4. Collected aerosols show considerable compositional differences between the sampling locations and are more complex than those predicted. Aerosols from the fumarole consist of [Fe +/- Si,S,Cl], [S +/- O] and [Si +/- O]. Aerosols collected on the crater rim consist of the same plus [O,Na,Mg,Ca], [O,Si,Cl +/- Fe], [Fe,O,F] and [S,O +/- Mg,Ca]. The comparison between results obtained by the equilibrium gas model and the actual aerosol compositions shows that an assumption of chemical and thermal equilibrium evolution is invalid. The complex aerosols collected contrast the simple formulae predicted. These findings show that complex, non-equilibrium chemical reactions take place immediately upon volcanic

  18. Aerosol analysis techniques and results from micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis L.; Spinhirne, James D.; Campbell, James R.; Reagan, John A.; Powell, Donna

    1998-01-01

    aerosol optical depth as well as aerosol extinction can be calculated. The techniques used to calibrate the lidar, calculate the aerosol extinction-to-backscatter ratio, and produce profiles of aerosol extinction and aerosol optical depths, will be described. Results using these techniques will be presented for case studies at the ARM site in the Tropical West Pacific and later in the Southern Great Plains.

  19. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions. PMID:12492171

  20. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions.

  1. Easy Volcanic Aerosol

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Stevens, Bjorn; Schmidt, Hauke; Timmreck, Claudia

    2016-04-01

    Radiative forcing by stratospheric sulfate aerosol of volcanic origin is one of the strongest drivers of natural climate variability. Transient model simulations attempting to match observed climate variability, such as the CMIP historical simulations, rely on volcanic forcing reconstructions based on observations of a small sample of recent eruptions and coarse proxy data for eruptions before the satellite era. Volcanic forcing data sets used in CMIP5 were provided either in terms of optical properties, or in terms of sulfate aerosol mass, leading to significant inter-model spread in the actual volcanic radiative forcing produced by models and in their resulting climate responses. It remains therefore unclear to what degree inter-model spread in response to volcanic forcing represents model differences or variations in the forcing. In order to isolate model differences, Easy Volcanic Aerosol (EVA) provides an analytic representation of volcanic stratospheric aerosol forcing, based on available observations and aerosol model results, prescribing the aerosol's radiative properties and primary modes of spatial and temporal variability. In contrast to regriddings of observational data, EVA allows for the production of physically consistent forcing for historic and hypothetical eruptions of varying magnitude, source latitude, and season. Within CMIP6, EVA will be used to reconstruct volcanic forcing over the past 2000 years for use in the Paleo-Modeling Intercomparison Project (PMIP), and will provide forcing sets for VolMIP experiments aiming to quantify model uncertainty in the response to volcanic forcing. Here, the functional form of EVA will be introduced, along with illustrative examples including the EVA-based reconstruction of volcanic forcing over the historical period, and that of the 1815 Tambora eruption.

  2. simplified aerosol representations in global modeling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Peters, Karsten; Stevens, Bjorn; Rast, Sebastian; Schutgens, Nick; Stier, Philip

    2015-04-01

    The detailed treatment of aerosol in global modeling is complex and time-consuming. Thus simplified approaches are investigated, which prescribe 4D (space and time) distributions of aerosol optical properties and of aerosol microphysical properties. Aerosol optical properties are required to assess aerosol direct radiative effects and aerosol microphysical properties (in terms of their ability as aerosol nuclei to modify cloud droplet concentrations) are needed to address the indirect aerosol impact on cloud properties. Following the simplifying concept of the monthly gridded (1x1 lat/lon) aerosol climatology (MAC), new approaches are presented and evaluated against more detailed methods, including comparisons to detailed simulations with complex aerosol component modules.

  3. Highly stable aerosol generator

    SciTech Connect

    DeFord, Henry S.; Clark, Mark L.

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  4. Highly stable aerosol generator

    DOEpatents

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  5. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  6. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  7. Sulfur aerosol in the clouds of Venus

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2016-08-01

    The photochemical model for the middle atmosphere of Venus (Krasnopolsky, V.A. [2012] Icarus, 218, 230-246) predicts sulfur aerosol as a product of the OCS photolysis at 55-60 km. The calculated mass loading is much smaller than that of the mode 1 particles in the upper cloud layer. The chemical kinetic model for the lower atmosphere (Krasnopolsky, V.A. [2013], Icarus, 225, 570-580) results in a constant mixing ratio of 20 ppm for OCS + XSX. This means the S8 mixing ratio of 2.5 ppm near the model upper boundary at 47 km. Using this abundance, the calculated profile of the sulfur aerosol has a bottom that coincides with the lower boundary of modes 2 and 3 and constitutes ∼10% of the total mass loading in the lower cloud layer. Sulfur aerosol cannot be the near UV absorber because its abundance is too low at the cloud tops and disagrees with the profile of the absorber observed by Venera 14.

  8. Sensitivity of Remote Aerosol Distributions to Representation of Cloud-Aerosol Interactions in a Global Climate Model

    SciTech Connect

    Wang, Hailong; Easter, Richard C.; Rasch, Philip J.; Wang, Minghuai; Liu, Xiaohong; Ghan, Steven J.; Qian, Yun; Yoon, Jin-Ho; Ma, Po-Lun; Vinoj, V.

    2013-06-05

    Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in

  9. Aerosol processing in stratiform clouds in ECHAM6-HAM

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna

    2013-04-01

    chemical components as well as 5 tracers for aerosol particles in ice crystals. This allows simulations of aerosol processing in warm, mixed-phase (e.g. through the Bergeron-Findeisen process) and ice clouds. The fixed scavenging ratios used for wet deposition in clouds in standard HAM are replaced by an explicit treatment of collision of cloud droplets/ice crystals with interstitial aerosol particles. Nucleation scavenging of aerosol particles by acting as cloud condensation nuclei or ice nuclei, freezing and evaporation of cloud droplets and melting and sublimation of ice crystals are treated explicitly. In extension to previous studies, aerosol particles from evaporating precipitation are released to modes which correspond to their size. Cloud processing of aerosol particles changes their size distribution and hence influences cloud droplet and ice crystal number concentrations as well as precipitation rate, which in turn affects aerosol concentrations. Results will be presented at the conference. Hoose et al., JGR, 2008a, doi: 10.1029/2007JD009251 Hoose et al., ACP, 2008b, doi: 10.5194/acp-8-6939-2008 Stevens et al., 2013, submitted Stier et al., ACP, 2005, doi: 10.5194/acp-5-1125-2005

  10. Physicochemical properties of aerosols over the northeast Atlantic: Evidence for wind-speed-related submicron sea-salt aerosol production

    SciTech Connect

    O'Dowd, C.D.; Smith, M.H. )

    1993-01-20

    Physicochemical characteristics of submicron aerosol particles over the Northeast Atlantic (63[degrees]N, 8[degrees]W) during October/November 1989 have been examined using a thermal analytical technique and are classified according 10 air mass origin. Aerosol associated with anthropogenically influenced air masses contained typically 80% sulphate particles by number, the remainder being soot carbon and sea salt. For Arctic air masses the contribution of sulphate to the total aerosol was reduced to around 65%, due to low concentrations relative 10 sea salt which is dependent on wind speed. In situations with clean maritime air and high wind speeds, sulphate aerosol accounted for less than 25% of the total accumulation mode particles, the remainder consisting predominantly of sea salt. Arctic air masses and clean maritime air during periods of high winds were consistently acidic with inferred molar ratios of NH[sub 4][sup +]/SO[sub 4][sup =] near 0.2. The continental and modified maritime aerosol encountered was found to have molar ratios of about 0.8. Soot carbon was present in all air masses to a similar degree (5-13%). In clean air masses, submicron sea salt aerosol concentrations showed a strong exponential increase with wind speed (correlation coefficients cc [ge] 0.8), down to a dry particle radius of 0.05 [mu]m. Under these clean air' conditions and high winds the sea salt aerosol dominated all particle sizes for r > 0.05 [mu]m and accounted for approximately 75% of the total concentration, suggesting that under these conditions, sea salt aerosol would comprise the primary source cloud condensation nuclei (CCN) in stratiform clouds. 30 refs., 8 figs., 4 tabs.

  11. Geometrical Optics of Dense Aerosols

    SciTech Connect

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

  12. Jupiter: Aerosol Chemistry in the Polar Atmosphere.

    PubMed

    Wong; Lee; Yung; Ajello

    2000-05-10

    Aromatic compounds have been considered a likely candidate for enhanced aerosol formation in the polar region of Jupiter. We develop a new chemical model for aromatic compounds in the Jovian auroral thermosphere/ionosphere. The model is based on a previous model for hydrocarbon chemistry in the Jovian atmosphere and is constrained by observations from Voyager, Galileo, and the Infrared Space Observatory. Precipitation of energetic electrons provides the major energy source for the production of benzene and other heavier aromatic hydrocarbons. The maximum mixing ratio of benzene in the polar model is 2x10-9, a value that can be compared with the observed value of 2+2-1x10-9 in the north polar auroral region. Sufficient quantities of the higher ring species are produced so that their saturated vapor pressures are exceeded. Condensation of these molecules is expected to lead to aerosol formation. PMID:10813686

  13. Free Tropospheric Aerosols Over South Africa

    NASA Astrophysics Data System (ADS)

    Elina, Giannakaki; Pfüller, Anne; Korhonen, Kimmo; Mielonen, Tero; Laakso, Lauri; Vakkari, Ville; Baars, Holger; Engelmann, Ronny; Beukes, Johan P.; Van Zyl, Pieter G.; Josipovic, Miroslav; Tiitta, Petri; Chiloane, Kgaugelo; Piketh, Stuart; Lihavainen, Heikki; Lehtinen, Kari

    2016-06-01

    Raman lidar data of one year was been analyzed to obtain information relating aerosol layers in the free troposphere over South Africa, Elandsfontein. In total, 375 layers were observed above the boundary layer during the period 30th January 2010 - 31st January 2011. The seasonal behavior of aerosol layer geometrical characteristics as well as intensive and extensive optical properties were studied. In general, layers were observed at higher altitudes during spring (2520 ± 970 m) while the geometrical layer depth did not show any significant seasonal dependence. The variations of most of the intensive and extensive optical properties analyzed were high during all seasons. Layers were observed at mean altitude of 2100 m ± 1000 m with lidar ratio at 355 nm of 67 ± 25 and extinction-related Ångström exponent between 355 and 532 nm of 1.9 ± 0.8.

  14. Vertical resolved separation of aerosol types using CALIPSO level-2 product

    NASA Astrophysics Data System (ADS)

    Giannakaki, Elina; Balis, Dimitris; Amiridis, Vassilis

    2011-11-01

    A lidar-based method was used to separate profiles of optical parameters due to different aerosol types over different European Aerosol Research LIdar NETwork (EARLINET) stations. The method makes uses of particle backscatter profiles at 532 nm and vertically resolved linear particle depolarization ratio measurements at the same wavelength. Values of particle depolarization ratio of 'pure' aerosol types (Saharan dust, biomass burning aerosols, anthropogenic aerosols, Volcanic ash aerosols) were taken from literature. Cases of CALIPSO space-borne lidar system were selected on the basis of different mixing state of the atmosphere over EARLINET stations. To identify the origin of air-masses four-day air mass back trajectories were computed using HYbrid Single-Particle Langrangian Integrated Trajectory (HYSPLIT) model, for different arrival heights, for the location and time under study was used. Also, the Dust REgional Atmospheric Modeling (DREAM) model was used to identify cases where dust from Saharan region was affecting the place under study. For our analysis we have used Atmospheric Volume Description (AVD), Cloud-Aerosol Discrimination (CAD) and extinction Quality Control (QC) flags to screen out CALIOP data. The method was applied for different horizontal resolution of 5, 25, 45 and 105 km. The height-resolved lidar results were finally compared with column-integrated products obtained with Aerosol Robotic Network Sun photometer (AERONET) in order to see to what extent Sun photometer columnar data are representative when different aerosol layers are present in the atmosphere.

  15. Volatility and composition of aerosols in tropical stratosphere and TTL over Biak, Indonesia

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Shibata, T.; Hara, K.; Hasebe, F.

    2014-12-01

    Number concentration and volatility of aerosols in the Tropical Tropopause Layer (TTL) over Biak (1.2 oS, 136.1 oE) were observed using balloon-borne dual optical particle counters (OPC) in January 2011, 2012, and 2013. One OPC observed number concentration of ambient aerosols and another OPC had an inlet with a thermo denuder, whose temperature were set at 100 to 300 oC, in order to observe volatility. The results suggest that major composition of aerosol change with altitude, from sulfate in upper troposphere to sulfuric acid in stratosphere through TTL region. The ratios of number concentrations of un-volatile aerosol, to those of ambient aerosol in sub-micrometer size range are few percent in stratosphere and several percent in TTL. In addition, un-volatile aerosol concentrations were similar to the concentration of ice particle in sub-visible cirrus.

  16. Phase transitions and morphologies of aerosol particles

    NASA Astrophysics Data System (ADS)

    Song, M.; Marcolli, C.; Krieger, U.; Zuend, A.; Peter, T.

    2012-12-01

    Tropospheric aerosol particles consisting of complex mixtures of organic compounds, ammonium sulfate (AS) and water undergo phase transitions such as liquid-liquid phase separation (LLPS), efflorescence and deliquescence as a consequence of changes in ambient relative humidity (RH). These phase transitions in the mixed aerosol particles may lead to different particle configurations such as core-shell or partially engulfed structures. However, the physical states and morphologies of these aerosol particles are still poorly understood. In this study, we investigate the phase transitions and morphological changes of various internally mixed organics/AS/water particles with different organic-to-inorganic ratios (OIR), namely OIR = 6:1, 2:1, 1:2 and 1:6 during humidity cycles using optical microscopy and Raman spectroscopy. Particularly, we explore how the properties of different organic functional groups and the compositional complexity of the organic aerosol fraction influence the occurrence of LLPS in the relationship with the organic oxygen-to-carbon (O:C) ratios. We found that LLPS occurred for all mixtures with O:C < 0.56, for none of the mixtures with O:C > 0.80, and depended on the specific types and compositions of organic functional groups for 0.56 < O:C < 0.80. Moreover, the number of mixture components and the spread of the O:C range did not notably influence the conditions for LLPS to occur. Since in ambient aerosols O:C and OIR range typically between 0.2 and 1.0, and between 4:1 and 1:5, respectively, LLPS is expected to be a common feature of tropospheric aerosols. AS in the mixed particles effloresced between 0 and 47 %RH and deliquesced between 71 and 80 %RH during humidity cycles. Compared to a deliquescence relative humidity (DRH) of 80 % for pure AS, the DRH in the mixed particles showed slightly lower values. A strong reduction or complete inhibition of efflorescence occurred for mixtures with high OIR that did not exhibit LLPS. Both core-shell and

  17. Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

    NASA Astrophysics Data System (ADS)

    Hock, N.; Schneider, J.; Borrmann, S.; Römpp, A.; Moortgat, G.; Franze, T.; Schauer, C.; Pöschl, U.; Plass-Dülmer, C.; Berresheim, H.

    2007-06-01

    Detailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. The online measurement data and techniques included: size-resolved chemical composition of submicron particles by aerosol mass spectrometry (AMS); total particle number concentrations and size distributions over the diameter range of 3 nm to 9 μm (CPC, SMPS, OPC); monoterpenes determined by gas chromatography- ion trap mass spectrometry; OH and H2SO4 determined by atmospheric pressure chemical ionization mass spectrometry (CIMS). Filter sampling and offline analytical techniques were used to determine: fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 μg m-3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 μg m-3). The relative proportions of non-refractory submicron particle components were: 11% ammonium, 19% nitrate, 20% sulfate, and 50% organics (OM1). In spite of strongly changing meteorological conditions and absolute concentration levels of particulate matter (3-13 μg m-3 PM1), OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. In contrast, the ratio of nitrate to sulfate was highly dependent on temperature (14-32°C) and relative humidity (20-100%), which could be explained by thermodynamic model calculations of NH3/HNO3/NH4NO3 gas-particle partitioning. From the combination of optical and other sizing techniques (OPC, AMS, SMPS), an average refractive index of 1.40-1.45 was inferred for the measured rural aerosol

  18. Improving satellite retrieved aerosol microphysical properties using GOCART data

    NASA Astrophysics Data System (ADS)

    Li, S.; Kahn, R.; Chin, M.; Garay, M. J.; Chen, L.; Liu, Y.

    2014-09-01

    The Multi-Angle Imaging Spectro-Radiometer (MISR) instrument on NASA's Terra satellite can provide more reliable Aerosol Optical Depth (AOD, τ) and more particle information, such as constraints on particle size (Angström exponent or ANG, α), particle shape, and single-scattering albedo (SSA, ω), than many other satellite instruments. However, MISR's ability to retrieve aerosol properties is weakened at low AOD levels. When aerosol-type information content is low, many candidate aerosol mixtures can match the observed radiances. We propose an algorithm to improve MISR aerosol retrievals by constraining MISR mixtures' ANG and absorbing AOD (AAOD) with Goddard Chemistry Aerosol Radiation and Transport (GOCART) model-simulated aerosol properties. To demonstrate this approach, we calculated MISR aerosol optical properties over the contiguous US from 2006 to 2009. Sensitivities associated with the thresholds of MISR-GOCART differences were analyzed according to the agreement between our results (AOD, ANG, and AAOD) and AErosol RObotic NETwork (AERONET) observations. Overall, our AOD has a good agreement with AERONET because the MISR AOD retrieval is not sensitive to different mixtures under many retrieval conditions. The correlation coefficient (r) between our ANG and AERONET improves to 0.45 from 0.29 for the MISR Version 22 standard product and 0.43 for GOCART when all data points are included. However, when only cases having AOD > 0.2, the MISR product itself has r ~ 0.40, and when only AOD > 0.2 and the best-fitting mixture are considered, r ~ 0.49. So as expected, the ANG improvement occurs primarily when the model constraint is applied in cases where the particle type information content of the MISR radiances is low. Regression analysis for AAOD shows that MISR Version 22 and GOCART misestimate AERONET by a ratio (mean retrieved AAOD to mean AERONET AAOD) of 0.5; our method improves this ratio to 0.74. Large discrepancies are found through an inter

  19. Aerosol optical depth estimates based on nephelometer measurements at the SGP arm site

    SciTech Connect

    Bergin, M.H.; Ogren, J.A.; Halthore, R.

    1996-03-01

    The scattering of shortwave radiation by anthropogenic aerosols during clear-sky conditions, termed direct aerosol forcing, has been estimated to be roughly 1 W/m{sup 2} on a global annual average and may be as high as 50 W/m{sup 2} locally and instantaneously new source regions. The extent of the direct aerosol forcing effect at a given time and place depends primarily in the aerosol optical depth, {tau}, as well as on other factors including the solar zenith angle, aerosol upscatter fraction, and the single scatter albedo (ratio of light scattering to total extinction). The aerosol optical depth at a given wavelength ({tau}{sub {lambda}}) can be written as the integral with height to the top of the atmosphere (toa) of the aerosol extinction coefficient, b{sub ext,p}. Where b{sub ext,p} is the sum of the aerosol extinction (b{sub ap}) and scattering (b{sub sp}) coefficients. The objectives of this research are to use nephelometer measurements of the scattering coefficient to estimate the aerosol optical depth at a specific wavelength (530 nm), and to compare these results with optical depths measured by a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and Cimel Sun Photometer. This comparison will used to determine if all of the key parameters related to aerosol optical depth are being measured at the SGP ARM site.

  20. Seasonal variability in aerosol, CCN and their relationship observed at a high altitude site in Western Ghats

    NASA Astrophysics Data System (ADS)

    Leena, P. P.; Pandithurai, G.; Anilkumar, V.; Murugavel, P.; Sonbawne, S. M.; Dani, K. K.

    2016-04-01

    Atmospheric aerosols which serve as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. In the present work, aerosol-CCN variability and their relationship have been studied for the first time at Mahabaleshwar, a high altitude (1348 m AMSL) site in Western Ghats, using one year (June 2012-May 2013) of observations. Present study has been done in two sections in which first temporal variability (diurnal and seasonal) of aerosol and CCN has been analyzed. Later CCN to aerosol ratio and other microphysical properties have been investigated along with detail discussion on possible sources of aerosol. First part, i.e., diurnal variation in aerosol and CCN concentration has shown relatively higher values during early morning hours in monsoon season whereas in winter and pre-monsoon it was higher in the evening hours. Seasonal mean variation in aerosol and CCN (SS above 0.6 %) has shown higher (less) in monsoon (winter) season. Temporal variation reveals dominance of fine-mode aerosol during monsoon season over the study region. In the second part temporal variation of activation ratio, k value (exponent of CCN super-saturation spectra) and geometric mean aerosol diameter have been analyzed. Variation of activation ratio showed the ratio is higher in monsoon especially for SS 0.6-1 %. The analysis also showed high k value during monsoon season as compared to other seasons (pre-monsoon and winter) which may be due to dominance of hygroscopic aerosols in the maritime air masses from Arabian Sea and biogenic aerosol emissions from the wet forest. Analyzed mean aerosol diameter is much smaller during monsoon season with less variability compared to other seasons. Overall analysis showed that aerosol and CCN concentration was higher over this high altitude site despite of dominant sink processes such as cloud scavenging and washout mechanisms indicating local emissions and biogenic Volatile Organic Compounds (BVOC) emissions from wet forest

  1. Development of aerosol retrieval algorithm for Geostationary Environmental Monitoring Spectrometer (GEMS)

    NASA Astrophysics Data System (ADS)

    Kim, Mijin; Kim, Jhoon; Park, Sang Seo; Jeong, Ukkyo; Ahn, Changwoo; Bhartia, Pawan. K.; Torres, Omar; Song, Chang-Keun; Han, Jin-Seok

    2014-05-01

    current algorithm, but advanced cloud removal method such as spectral ratio test can be applied to reduce cloud contamination error and improve retrieval accuracy. Also, simultaneous retrieval of aerosol height with AOD is required. In this study, O4 algorithm was adopted to retrieve aerosol height. The O4 algorithm retrieves aerosol height by using the O4 slant column densities at 477 nm from the DOAS fitting method. The aerosol effective height is proposed for the parameter of aerosol height. Theoretically, the error, which is caused by the variation of aerosol optical properties and instrument condition, ranges from 28% to 57%. Those error values also showed in the several case studies from the OMI observation.

  2. Evaluation of Slit Sampler in Quantitative Studies of Bacterial Aerosols

    PubMed Central

    Ehrlich, Richard; Miller, Sol; Idoine, L. S.

    1966-01-01

    Quantitative studies were conducted to evaluate the efficiency of the slit sampler in collecting airborne Serratia marcescens and Bacillus subtilis var. niger, and to compare it with the collecting efficiency of the all-glass impinger AGI-30. The slit sampler was approximately 50% less efficient than the AGI-30. This ratio remained the same whether liquid or dry cultures were disseminated when the sample was taken at 2 min of aerosol cloud life. At 30 min of aerosol cloud life, this ratio was approximately 30% for B. subtilis var. niger. S. marcescens recoveries by the slit sampler were, however, only 17% lower than the AGI-30 at 30 min of cloud age, indicating a possible interaction involving the more labile vegetative cells, aerosol age, and method of collection. PMID:4961550

  3. Uncertainties of aerosol retrieval from neglecting non-sphericity of dust aerosols

    NASA Astrophysics Data System (ADS)

    Li, Chi; Xue, Yong; Yang, Leiku; Guang, Jie

    2013-04-01

    by straightforwardly utilizing Mie theory in dust aerosol retrieval. As expected we find that the uncertainties mainly result from the obvious difference of phase functions (Pspheric and Pspheroid). Errors may be positive or negative, depending on the specific geometry. In scattering angle (θ) regions where Psphericis greater (30°~85° & 145°~180°), we generally get positive Δ?TOA and negative Δ?, and vice versa (85°~145°). For low aerosol loading (? ~0.25) and black surface, |Δ?TOA| could be greater than 0.004 and 0.012 around θ ~120° and θ ~170°, with |Δ?| of ~0.04 and ~0.12 respectively. In most back scattering cases (θ >100°), the magnitude of Δ? is about ten times that of Δ?TOA, while this ratio (|Δ?|/|Δ?TOA|) significantly reduces to as low as ~0.5 for forward scattering, and can reach ~20 at θ ~145°. Moreover, this errors and |Δ?|/|Δ?TOA| can increase more than ten times as aerosol loading gets higher and surface gets brighter. Therefore we conclude that the neglect of non-sphericity introduces substantial errors on radiative transfer simulation and AOD retrieval. As a result of this study, a representative aspheric aerosol model other than Mie calculation is recommended for inversion algorithms related with dust-like non-spherical aerosols. References Dubovik, O., Holben, B. N., Lapyonok, T., Sinyuk, A., Mishchenko, M. I., Yang, P., and Slutsker, I. (2002). Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophyscal Research Letters, 29(10), 1415, doi:10.1029/2001GL014506. Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang, P., Eck, T. F., Volten, H., Muñoz, O., Veihelmann, B., van der Zande, W. J., Leon, J.-F., Sorokin, M., and Slutsker, I. (2006). Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. Journal of Geophysical Research, 111, D11208, doi:10.1029/2005JD006619. Mishchenko, M. I., Lacis, A. A., Carlson, B. E., and

  4. Sources and components of organic aerosols in Central Europe

    NASA Astrophysics Data System (ADS)

    Lanz, V. A.; Prévôt, A. S. H.; Alfarra, M. R.; Hüglin, C.; Mohr, C.; Weimer, S.; Baltensperger, U.

    2009-04-01

    The quadrupole version of the Aerodyne Aerosol Mass Spectrometer (q-AMS) was deployed at several places in Switzerland, Austria, and Liechtenstein. The q-AMS provides real-time information on mass concentration and composition of the non-refractory species in particulate matter smaller than 1 µm (NR-PM1) with high time- and size-resolution at unit mass resolution. The combination of factor analysis and ambient AMS data represents a relatively new approach to identify organic aerosol (OA) sources/components (Zhang et al., 2005). In this study, such an approach (PMF - positive matrix factorization; Lanz et al., 2007, 2008) was applied to various OA data sets covering a wide range of pollution levels (mobile measurements on motorways, urban, rural, and even a high-alpine location) as well as all seasons of the year. Dominating aerosol components were representing oxygenated and secondary organic aerosol (OOA-I and OOA-II), primary particles from wood burning (P-BBOA; especially in residential areas in wintertime with abundances of ~50% OA and more) and primary traffic-related aerosols (usually ~10% of OA, but up to 60% on motorways). Close to sources, charbroiling and potentially food cooking aerosols could be distinguished as well. The OOAs' time series were compared to measurements of AMS inorganics (sulphate, nitrate, and ammonium) in order to facilitate their interpretation as secondary OA (SOA). Diurnal cycles of the estimated source strengths, ancillary gas-phase and meteorological data, estimated emission ratios etc. were also used to validate the interpretations of the factor analytical results. Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., and Prévôt, A. S. H.: Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra, Atmos. Chem. Phys., 7, 1503-1522, 2007, http://www.atmos-chem-phys.net/7/1503/2007/. Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B

  5. Formation of halogen-induced secondary organic aerosol (XOA)

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    Reactive halogen species (RHS) are very important due to their potential of stratospheric ozone depletion and surface ozone destruction. RHS seem to interact with precursors of secondary organic aerosol (SOA) similarly to common atmospheric oxidants like OH radicals and ozone. The potential interaction of RHS with preformed SOA has recently been studied (Ofner et al., 2012). Although aerosol formation from reaction of RHS with typical SOA precursors was previously studied (e.g. Cai et al., 2006), no data are available on bromine-induced aerosol formation from organic precursors yet. An aerosol smog-chamber was used to examine the halogen-induced secondary organic aerosol (XOA) formation under atmospheric conditions using simulated sunlight. With a concentration of 10 ppb for the organic precursor, 2 ppb for molecular chlorine, and 10 ppb for molecular bromine, the experimental setup is close to ambient conditions. By combined measurements of the aerosol size distribution, ozone and NOx mixing ratios, as well as the decay of the organic precursor, aerosol yields and aerosol growth rates were determined. The decay of the organic precursor was analyzed by capillary gas chromatography coupled with flame-ionization detection (GC-FID) and the aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS). Additionally, with the decay rate of the precursor and the calculated photolysis rates of molecular halogen species, based on the well-known spectrum of the solar simulator, mechanistic details on the XOA formation pathways can be determined. We observed XOA formation even at very low precursor and RHS concentrations with a diameter mode at 10-20 nm and a number concentration up to 1000000 particles cm-3. While the XOA formation from chlorine is very rapid, the interaction of bromine with the organic precursors is about five times slower. The aerosol yield reached maximum values of 0.01 for the reaction of chlorine with α-pinene and 0.0004 for

  6. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-01

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality.

  7. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-01

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality. PMID:26953969

  8. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.

    PubMed

    Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R

    2015-10-01

    Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry.

  9. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.

    PubMed

    Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R

    2015-10-01

    Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry. PMID:26348650

  10. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  11. Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006

    SciTech Connect

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; VanReken, T.; Fischer, M.; Matias, E.; Moya, M.; Farmer, D.; Cohen, R.C.

    2008-12-05

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM{sub 2.5} is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1 {micro}m diameter, semi-volatile partitioning requires 30-60 min to equilibrate; longer time is typically required during the night and early morning hours. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as 'equivalent sodium' (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  12. How Well Will MODIS Measure Top of Atmosphere Aerosol Direct Radiative Forcing?

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.; Levin, Zev; Ghan, Stephen; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The new generation of satellite sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) will be able to detect and characterize global aerosols with an unprecedented accuracy. The question remains whether this accuracy will be sufficient to narrow the uncertainties in our estimates of aerosol radiative forcing at the top of the atmosphere. Satellite remote sensing detects aerosol optical thickness with the least amount of relative error when aerosol loading is high. Satellites are less effective when aerosol loading is low. We use the monthly mean results of two global aerosol transport models to simulate the spatial distribution of smoke aerosol in the Southern Hemisphere during the tropical biomass burning season. This spatial distribution allows us to determine that 87-94% of the smoke aerosol forcing at the top of the atmosphere occurs in grid squares with sufficient signal to noise ratio to be detectable from space. The uncertainty of quantifying the smoke aerosol forcing in the Southern Hemisphere depends on the uncertainty introduced by errors in estimating the background aerosol, errors resulting from uncertainties in surface properties and errors resulting from uncertainties in assumptions of aerosol properties. These three errors combine to give overall uncertainties of 1.5 to 2.2 Wm-2 (21-56%) in determining the Southern Hemisphere smoke aerosol forcing at the top of the atmosphere. The range of values depend on which estimate of MODIS retrieval uncertainty is used, either the theoretical calculation (upper bound) or the empirical estimate (lower bound). Strategies that use the satellite data to derive flux directly or use the data in conjunction with ground-based remote sensing and aerosol transport models can reduce these uncertainties.

  13. Anthropogenic Aerosols and Tropical Precipitation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Kim, D.; Ekman, A. M. L.; Barth, M. C.; Rasch, P. J.

    2009-04-01

    Anthropogenic aerosols can affect the radiative balance of the Earth-atmosphere system and precipitation by acting as cloud condensation nuclei (CCN) or ice nuclei (IN) and thus modifying the optical and microphysical properties as well as lifetimes of clouds. Recent studies have also suggested that the direct radiative effect of anthropogenic aerosols, particularly absorbing aerosols, can perturb the large-scale circulation and cause a significant change in both quantity and distribution of critical tropical precipitation systems ranging from Pacific and Indian to Atlantic Oceans. This effect of aerosols on precipitation often appears in places away from aerosol-concentrated regions and current results suggest that the precipitation changes caused by it could be much more substantial than that by the microphysics-based aerosol effect. To understand the detailed mechanisms and strengths of such a "remote impact" and the climate response/feedback to anthropogenic aerosols in general, an interactive aerosol-climate model has been developed based on the Community Climate System Model (CCSM) of NCAR. Its aerosol module describes size, chemical composition, and mixing states of various sulfate and carbonaceous aerosols. Several model processes are derived based on 3D cloud-resolving model simulations. We have conducted a set of long integrations using the model driven by radiative effects of different combinations of various carbonaceous and sulfate aerosols and their mixtures. The responses of tropical precipitation systems to the forcing of these aerosols are analyzed using both model and observational data. Detailed analyses on the aerosol-precipitation causal relations of two systems: i.e., the Indian summer monsoon and Pacific ITCZ will be specifically presented.

  14. Quantum Chemical Calculations Resolved Identification of Methylnitrocatechols in Atmospheric Aerosols.

    PubMed

    Frka, Sanja; Šala, Martin; Kroflič, Ana; Huš, Matej; Čusak, Alen; Grgić, Irena

    2016-06-01

    Methylnitrocatechols (MNCs) are secondary organic aerosol (SOA) tracers and major contributors to atmospheric brown carbon; however, their formation and aging processes in atmospheric waters are unknown. To investigate the importance of aqueous-phase electrophilic substitution of 3-methylcatechol with nitronium ion (NO2(+)), we performed quantum calculations of their favorable pathways. The calculations predicted the formation of 3-methyl-5-nitrocatechol (3M5NC), 3-methyl-4-nitrocatechol (3M4NC), and a negligible amount of 3-methyl-6-nitrocatechol (3M6NC). MNCs in atmospheric PM2 samples were further inspected by LC/(-)ESI-MS/MS using commercial as well as de novo synthesized authentic standards. We detected 3M5NC and, for the first time, 3M4NC. In contrast to previous reports, 3M6NC was not observed. Agreement between calculated and observed 3M5NC/3M4NC ratios cannot unambiguously confirm the electrophilic mechanism as the exclusive formation pathway of MNCs in aerosol water. However, the examined nitration by NO2(+) is supported by (1) the absence of 3M6NC in the ambient aerosols analyzed and (2) the constant 3M5NC/3M4NC ratio in field aerosol samples, which indicates their common formation pathway. The magnitude of error one could make by incorrectly identifying 3M4NC as 3M6NC in ambient aerosols was also assessed, suggesting the importance of evaluating the literature regarding MNCs with special care.

  15. Levoglucosan and phenols in Antarctic marine, coastal and plateau aerosols.

    PubMed

    Zangrando, Roberta; Barbaro, Elena; Vecchiato, Marco; Kehrwald, Natalie M; Barbante, Carlo; Gambaro, Andrea

    2016-02-15

    Due to its isolated location, Antarctica is a natural laboratory for studying atmospheric aerosols and pollution in remote areas. Here, we determined levoglucosan and phenolic compounds (PCs) at diverse Antarctic sites: on the plateau, a coastal station and during an oceanographic cruise. Levoglucosan and PCs reached the Antarctic plateau where they were observed in accumulation mode aerosols (with median levoglucosan concentrations of 6.4 pg m(-3) and 4.1 pg m(-3), and median PC concentrations of 15.0 pg m(-3) and 7.3 pg m(-3)). Aged aerosols arrived at the coastal site through katabatic circulation with the majority of the levoglucosan mass distributed on larger particulates (24.8 pg m(-3)), while PCs were present in fine particles (34.0 pg m(-3)). The low levoglucosan/PC ratios in Antarctic aerosols suggest that biomass burning aerosols only had regional, rather than local, sources. General acid/aldehyde ratios were lower at the coastal site than on the plateau. Levoglucosan and PCs determined during the oceanographic cruise were 37.6 pg m(-3) and 58.5 pg m(-3) respectively. Unlike levoglucosan, which can only be produced by biomass burning, PCs have both biomass burning and other sources. Our comparisons of these two types of compounds across a range of Antarctic marine, coastal, and plateau sites demonstrate that local marine sources dominate Antarctic PC concentrations. PMID:26674690

  16. Levoglucosan and phenols in Antarctic marine, coastal and plateau aerosols.

    PubMed

    Zangrando, Roberta; Barbaro, Elena; Vecchiato, Marco; Kehrwald, Natalie M; Barbante, Carlo; Gambaro, Andrea

    2016-02-15

    Due to its isolated location, Antarctica is a natural laboratory for studying atmospheric aerosols and pollution in remote areas. Here, we determined levoglucosan and phenolic compounds (PCs) at diverse Antarctic sites: on the plateau, a coastal station and during an oceanographic cruise. Levoglucosan and PCs reached the Antarctic plateau where they were observed in accumulation mode aerosols (with median levoglucosan concentrations of 6.4 pg m(-3) and 4.1 pg m(-3), and median PC concentrations of 15.0 pg m(-3) and 7.3 pg m(-3)). Aged aerosols arrived at the coastal site through katabatic circulation with the majority of the levoglucosan mass distributed on larger particulates (24.8 pg m(-3)), while PCs were present in fine particles (34.0 pg m(-3)). The low levoglucosan/PC ratios in Antarctic aerosols suggest that biomass burning aerosols only had regional, rather than local, sources. General acid/aldehyde ratios were lower at the coastal site than on the plateau. Levoglucosan and PCs determined during the oceanographic cruise were 37.6 pg m(-3) and 58.5 pg m(-3) respectively. Unlike levoglucosan, which can only be produced by biomass burning, PCs have both biomass burning and other sources. Our comparisons of these two types of compounds across a range of Antarctic marine, coastal, and plateau sites demonstrate that local marine sources dominate Antarctic PC concentrations.

  17. Quantum Chemical Calculations Resolved Identification of Methylnitrocatechols in Atmospheric Aerosols.

    PubMed

    Frka, Sanja; Šala, Martin; Kroflič, Ana; Huš, Matej; Čusak, Alen; Grgić, Irena

    2016-06-01

    Methylnitrocatechols (MNCs) are secondary organic aerosol (SOA) tracers and major contributors to atmospheric brown carbon; however, their formation and aging processes in atmospheric waters are unknown. To investigate the importance of aqueous-phase electrophilic substitution of 3-methylcatechol with nitronium ion (NO2(+)), we performed quantum calculations of their favorable pathways. The calculations predicted the formation of 3-methyl-5-nitrocatechol (3M5NC), 3-methyl-4-nitrocatechol (3M4NC), and a negligible amount of 3-methyl-6-nitrocatechol (3M6NC). MNCs in atmospheric PM2 samples were further inspected by LC/(-)ESI-MS/MS using commercial as well as de novo synthesized authentic standards. We detected 3M5NC and, for the first time, 3M4NC. In contrast to previous reports, 3M6NC was not observed. Agreement between calculated and observed 3M5NC/3M4NC ratios cannot unambiguously confirm the electrophilic mechanism as the exclusive formation pathway of MNCs in aerosol water. However, the examined nitration by NO2(+) is supported by (1) the absence of 3M6NC in the ambient aerosols analyzed and (2) the constant 3M5NC/3M4NC ratio in field aerosol samples, which indicates their common formation pathway. The magnitude of error one could make by incorrectly identifying 3M4NC as 3M6NC in ambient aerosols was also assessed, suggesting the importance of evaluating the literature regarding MNCs with special care. PMID:27136117

  18. Water soluble organic constituents in Arctic aerosols and snow pack

    SciTech Connect

    Li, Shaomeng ); Winchester, J.W. )

    1993-01-08

    Eight water-soluble organic anions were measured in 70 aerosol samples and 10 snow samples at Barrow, Alaska in March-April, 1989. The ranking of the ions in aerosols according to total (coarse + fine aerosol) median concentrations was acetate (44 ng m[sup [minus]3]), oxalate (27), benzoate (23), formate (22), propionate (6), methanesulfonate (5), lactate (4), and pyruvate (4). When added up, the median organic anion mass was 156 ng m[sup [minus]3]. The organic anions/nssSO[sub 4][sup =] mass ratio had a median of 0.18 and 0.07 in the coarse (>1 [mu]m) and fine (<1 [mu]m) size fractions, respectively, but can be very high on occasions. On average, the organic anions made up more than 10% of the water-soluble aerosol mass. A similar ranking in concentration was also found for the organic ions in the snow pack samples. The organic anion/nssSO[sub 4][sup =] mass ratio in these samples was >0.5, substantially higher than in aerosols. 18 refs., 2 tabs.

  19. New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects

    DOE PAGES

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; Peng, Yiran

    2016-02-28

    In this study, aerosol indirect effects suffer from large uncertainty in climate models and among observations. This study focuses on two plausible factors: regime dependence of aerosol-cloud interactions and the effect of cloud droplet spectral shape. We show, using a new parcel model, that combined consideration of droplet number concentration (Nc) and relative dispersion (ε, ratio of standard deviation to mean radius of the cloud droplet size distribution) better characterizes the regime dependence of aerosol-cloud interactions than considering Nc alone. Given updraft velocity (w), ε increases with increasing aerosol number concentration (Na) in the aerosol-limited regime, peaks in the transitionalmore » regime, and decreases with further increasing Na in the updraft-limited regime. This new finding further reconciles contrasting observations in literature and reinforces the compensating role of dispersion effect. The nonmonotonic behavior of ε further quantifies the relationship between the transitional Na and w that separates the aerosol- and updraft-limited regimes.« less

  20. Development of an Aerosol Model of Cryptococcus Reveals Humidity as an Important Factor Affecting the Viability of Cryptococcus during Aerosolization

    PubMed Central

    Springer, Deborah J.; Saini, Divey; Byrnes, Edmond J.; Heitman, Joseph; Frothingham, Richard

    2013-01-01

    Cryptococcus is an emerging global health threat that is annually responsible for over 1,000,000 infections and one third of all AIDS patient deaths. There is an ongoing outbreak of cryptococcosis in the western United States and Canada. Cryptococcosis is a disease resulting from the inhalation of the infectious propagules from the environment. The current and most frequently used animal infection models initiate infection via liquid suspension through intranasal instillation or intravenous injection. These models do not replicate the typically dry nature of aerosol exposure and may hinder our ability to decipher the initial events that lead to clearance or the establishment of infection. We have established a standardized aerosol model of murine infection for the human fungal pathogen Cryptococcus. Aerosolized cells were generated utilizing a Collison nebulizer in a whole-body Madison Chamber at different humidity conditions. The aerosols inside the chamber were sampled using a BioSampler to determine viable aerosol concentration and spray factor (ratio of viable aerosol concentration to total inoculum concentration). We have effectively delivered yeast and yeast-spore mixtures to the lungs of mice and observed the establishment of disease. We observed that growth conditions prior to exposure and humidity within the Madison Chamber during exposure can alter Cryptococcus survival and dose retained in mice. PMID:23894542

  1. Field and Laboratory Studies of Atmospheric Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Coggon, Matthew Mitchell

    these conditions to all measurements conducted during E-PEACE demonstrated that a large fraction of cloud droplet (72%) and dry aerosol mass (12%) sampled in the California coastal study region was heavily or moderately influenced by ship emissions. Another study investigated the chemical and physical evolution of a controlled organic plume emitted from the R/V Point Sur. Under sunny conditions, nucleated particles composed of oxidized organic compounds contributed nearly an order of magnitude more cloud condensation nuclei (CCN) than less oxidized particles formed under cloudy conditions. The processing time necessary for particles to become CCN active was short ( 4 hr). Laboratory chamber experiments were also conducted to evaluate particle-phase processes influencing aerosol phase and composition. In one study, ammonium sulfate seed was coated with a layer of secondary organic aerosol (SOA) from toluene oxidation followed by a layer of SOA from α-pinene oxidation. The system exhibited different evaporative properties than ammonium sulfate seed initially coated with α-pinene SOA followed by a layer of toluene SOA. This behavior is consistent with a shell-and-core model and suggests limited mixing among different SOA types. Another study investigated the reactive uptake of isoprene epoxy diols (IEPOX) onto non-acidified aerosol. It was demonstrated that particle acidity has limited influence on organic aerosol formation onto ammonium sulfate seed, and that the chemical system is limited by the availability of nucleophiles such as sulfate. Flow tube experiments were conducted to examine the role of iron in the reactive uptake and chemical oxidation of glycolaldehyde. Aerosol particles doped with iron and hydrogen peroxide were mixed with gas-phase glycolaldehyde and photochemically aged in a custom-built flow reactor. Compared to particles free of iron, iron-doped aerosols significantly enhanced the oxygen to carbon (O/C) ratio of accumulated organic mass. The primary

  2. Graphical aerosol classification method using aerosol relative optical depth

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Xiang; Yuan, Yuan; Shuai, Yong; Tan, He-Ping

    2016-06-01

    A simple graphical method is presented to classify aerosol types based on a combination of aerosol optical thickness (AOT) and aerosol relative optical thickness (AROT). Six aerosol types, including maritime (MA), desert dust (DD), continental (CO), sub-continental (SC), urban industry (UI) and biomass burning (BB), are discriminated in a two dimensional space of AOT440 and AROT1020/440. Numerical calculations are performed using MIE theory based on a multi log-normal particle size distribution, and the AROT ranges for each aerosol type are determined. More than 5 years of daily observations from 8 representative aerosol sites are applied to the method to confirm spatial applicability. Finally, 3 individual cases are analyzed according to their specific aerosol status. The outcomes indicate that the new graphical method coordinates well with regional characteristics and is also able to distinguish aerosol variations in individual situations. This technique demonstrates a novel way to estimate different aerosol types and provide information on radiative forcing calculations and satellite data corrections.

  3. Exposures to acidic aerosols.

    PubMed

    Spengler, J D; Keeler, G J; Koutrakis, P; Ryan, P B; Raizenne, M; Franklin, C A

    1989-02-01

    Ambient monitoring of acid aerosols in four U.S. cities and in a rural region of southern Ontario clearly show distinct periods of strong acidity. Measurements made in Kingston, TN, and Steubenville, OH, resulted in 24-hr H+ ion concentrations exceeding 100 nmole/m3 more than 10 times during summer months. Periods of elevated acidic aerosols occur less frequently in winter months. The H+ determined during episodic conditions in southern Ontario indicates that respiratory tract deposition can exceed the effects level reported in clinical studies. Observed 12-hr H+ concentrations exceeded 550 nmole/m3 (approximately 27 micrograms/m3 H2SO4). The maximum estimated 1-hr concentration exceeded 1500 nmole/m3 for H+ ions. At these concentrations, an active child might receive more than 2000 nmole of H+ ion in 12 hr and in excess of 900 nmole during the hour when H2SO4 exceeded 50 micrograms/m3.

  4. Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

    NASA Astrophysics Data System (ADS)

    Hock, N.; Schneider, J.; Borrmann, S.; Römpp, A.; Moortgat, G.; Franze, T.; Schauer, C.; Pöschl, U.; Plass-Dülmer, C.; Berresheim, H.

    2008-02-01

    Detailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. Online measurements included: Size-resolved chemical composition of submicron particles; total particle number concentrations and size distributions over the diameter range of 3 nm to 9 μm; gas-phase concentration of monoterpenes, CO, O3, OH, and H2SO4. Filter sampling and offline analytical techniques were used to determine: Fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 μg m-3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 μg m-3). The relative proportions of non-refractory submicron particle components were: (23±39)% ammonium nitrate, (27±23)% ammonium sulfate, and (50±40)% organics (OM1). OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. The average ratio of OM1 to OC2.5 was 2.1±1.4, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA) inferred from the AMS results (4:1), and also with the high abundance of proteins (~3%) indicating a high proportion of primary biological material (~30%) in PM2.5. This finding was confirmed by low abundance of PAHs (<1 ng m-3) and EC (<1 μg m-3) in PM2.5 and detection of several secondary organic aerosol compounds (dicarboxylic acids) and their precursors (monoterpenes). New particle formation was observed almost

  5. Using the Aerosol Single Scattering Albedo and Angstrom Exponent from AERONET to Determine Aerosol Origins and Mixing States over the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Slutsker, I.; Smirnov, A.; Schafer, J. S.; Dickerson, R. R.; Thompson, A. M.; Tripathi, S. N.; Singh, R. P.; Ghauri, B.

    2012-12-01

    various fuel types (e.g., from open agricultural waste, forest, or dung burning), combustion phases, or aging processes including aggregation or mixing with ambient aerosols. Other intensive aerosol properties (e.g., depolarization ratio or absorption Angstrom exponent) may provide improved definition of fine mode dominated aerosol types from U/I and BB sources [Burton et al., 2012, Giles et al., 2012]. Additional sites in India and Pakistan are also analyzed using available AERONET Version 2, Level 2.0 data.

  6. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  7. Photochemical aerosols in warm exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Imanaka, Hiroshi; Smith, Mark A.; McKay, Christopher P.; Cruikshank, Dale P.; Marley, Mark S.

    2016-10-01

    Recent transit observations of exoplanets have demonstrated the possibility of a wide prevalence of haze/cloud layers at high altitudes. Hydrocarbon photochemical haze could be the candidate for such haze particles on warm sub-Neptunes, but the lack of evidence for methane poses a puzzle for such hydrocarbon photochemical haze. The CH4/CO ratios in planetary atmospheres vary substantially from their temperature and dynamics. We have conducted a series of laboratory simulations to investigate how atmospheric compositions, specifically CH4/CO ratios, affect the haze production rates and their optical properties. The mass production rates in the H2-CH4-CO gas mixtures are rather insensitive to the CH4/CO ratios larger than at 0.3. Significant formation of solid material is observed in a H2-CO gas mixture even without CH4. The complex refractive indices of the aerosol analogue from the H2-CO gas mixture show strong absorption at the visible/near-IR wavelengths. These experimental facts imply that substantial carbonaceous aerosols may be generated in warm H2-CO-CH4 exoplanetary atmospheres, and that it might be responsible for the observed dark albedos at the visible wavelengths.

  8. Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida N.

    2016-07-01

    Real time composition of non-refractory submicron aerosol (NR-PM1) is measured via Aerosol mass spectrometer (AMS) for the first time during Indian summer monsoon at Kanpur, a polluted urban location located at the heart of Indo Gangetic Plain (IGP). Submicron aerosols are found to be dominated by organics followed by nitrate. Source apportionment of organic aerosols (OA) via positive matrix factorization (PMF) revealed several types of secondary/oxidized and primary organic aerosols. On average, OA are completely dominated by oxidized OA with a very little contribution from biomass burning OA. During rain events, PM1 concentration is decreased almost by 60%, but its composition remains nearly the same. Oxidized OA showed slightly more decrease than primary OAs, probably due to their higher hygroscopicity. The presence of organo nitrates (ON) is also detected in ambient aerosols. Apart from real-time sampling, collected fog and rainwater samples were also analyzed via AMS in offline mode and in the ICP-OES (Inductively coupled plasma - Optical emission spectrometry) for elements. The presence of sea salt, organo nitrates and sulfates has been observed. Rainwater residues are also dominated by organics but their O/C ratios are 15-20% lower than the observed values for ambient OA. Alkali metals such as Ca, Na, K are found to be most abundant in the rainwater followed by Zn. Rainwater residues are also found to be much less oxidized than the aerosols present inside the fog water, indicating presence of less oxidized organics. These findings indicate that rain can act as an effective scavenger of different types of pollutants even for submicron particle range. Rainwater residues also contain organo sulfates which indicate that some portion of the dissolved aerosols has undergone aqueous processing, possibly inside the cloud. Highly oxidized and possibly hygroscopic OA during monsoon period compared to other seasons (winter, post monsoon), indicates that they can act

  9. Design of Nanomaterial Synthesis by Aerosol Processes

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO2, pigmentary TiO2, ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering. PMID:22468598

  10. Low power acoustic harvesting of aerosols

    SciTech Connect

    Kaduchak, G.; Sinha, D. N.

    2001-01-01

    A new acoustic device for levitation and/or concentration of aerosols and sniall liquid/solid samples (up to several millimeters in diameter) in air has been developed. The device is inexpensive, low-power, and, in its simplest embodiment, does not require accurate alignmen1 of a resonant cavity. It is constructed from a cylindrical PZT tube of outside diameter D = 19.0 mm and thickness-to-radius ratio h/a - 0.03. The lowest-order breathing mode of the tube is tuned to match a resonant mode of the interior air-filled cylindrical cavity. A high Q cavity results that can be driven efficiently. An acoustic standing wave is created in the inteirior cavity of the cylindrical shell where particle concrmtration takes place at the nodal planes of the field. It is shown that drops of water in excess of 1 mm in diameter may be levitated against the force of gravity for approxirnately 100 mW of input electrical power. The main objective of the research is to implement this lowpower device to concentrate and harvest aerosols in a flowing system. Several different cavity geonietries iwe presented for efficient collection of 1 he conaartratetl aerosols. Concentraiion factors greater than 40 iue demonstrated for particles of size 0.7 1.1 in a flow volume of 50 L/minute.

  11. Assessing spaceborne lidar detection and characterization of aerosols near clouds using coincident airborne lidar and other measurements

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Redemann, J.; Russell, P. B.; Vaughan, M.; Omar, A. H.; Burton, S. P.; Rogers, R.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2011-12-01

    The objectives are to 1) evaluate potential shortcomings in the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol height detection concerning specific biomass burning smoke events informed by airborne High Spectral Resolution Lidar (HSRL) in different cloud environments and 2) study the lidar-derived atmospheric parameters in the vicinity of clouds for the cases where smoke is within or above clouds. In the case of light absorbing aerosols like biomass burning smoke, studies show that the greater the cloud cover below the aerosols, the more likely the aerosols are to heat the planet. An accurate aerosol height assumption is also crucial to a correct retrieval of aerosol chemical composition from passive space-based measurements (through the Single Scattering Albedo (SSA) and aerosol absorption coefficient, as exemplified by aerosol retrievals using the passive Ozone Monitoring Instrument (OMI)). Strong smoke events are recognized as very difficult to quantify from space using passive (MODIS, OMI etc...) or active (CALIOP) satellite sensors for different reasons. This study is performed through (i) the selection of smoke events with coincident CALIOP and airborne HSRL aerosol observations, with smoke presence determined according to the HSRL aerosol classification data, (ii) the order of such events by range of HSRL aerosol optical depth, total color ratio and depolarization ratio (the latter two informing on the size and shape of the particles) and the evaluation of CALIOP's detection, classification and retrieval performance for each event, (iii) the study of the HSRL (or CALIOP when available) atmospheric parameters (total color ratio, volume depolarization ratio, mean attenuated backscatter) in the vicinity of clouds for each smoke event.

  12. Biological aerosol trigger

    NASA Astrophysics Data System (ADS)

    DeSha, Michael S.

    1999-01-01

    In recent history, manmade and natural events have shown us the every-present need for systems to monitor the troposphere for contaminates. These contaminants may take either a chemical or biological form, which determines the methods we use to monitor them. Monitoring the troposphere for biological contaminants is of particular interest to my organization. Whether manmade or natural, contaminants of a biological origin share similar constituents; typically the aromatic amino acids tryptophan, phenylalanine, and tyrosine. All of these proteinaceous compounds autofluorescence when exposed to UV radiation and this established the basis of the laser-induced fluorescence technique we use to detect biological contaminants. This technique can be employed in either point or remote detection schemes and is a valuable tool for discriminating proteinaceous form non-proteinaceous aerosols. For this particular presentation I am going to describe a breadboard point sensor we designed and fabricated to detect proteinaceous aerosols. Previous point sensor designs relied on convoluted flow paths to concentrate the aerosols into a solution. Other systems required precise beam alignment to evenly distribute the energy irradiating the detector elements. Our objective was to build a simple system where beam alignment is not critical, and the flow is straight and laminar. The breadboard system was developed over a nine- month period and its performance assessed at a recent test at Dugway Proving Grounds in Utah. In addition, we have performed chamber experiments in an attempt to establish a baseline for the systems. The results of these efforts are presented here.

  13. Cantera Aerosol Dynamics Simulator

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkinmore » formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.« less

  14. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  15. Quantitative determination of stratospheric aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Tingey, D. L.; Potter, J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. In the S192 data, a peak was apparent in the lower altitudes that was not present in the shorter wavelengths and grew with increasing wavelength beginning with band 7. For ten S192 wavelengths, the relative altitude increment was determined by knowledge of the relative position of the highest point in the scan arc. Using this scheme, results of scaling and inverting data for passes 47 and 61 were put into two models. Each result had three chart representations: (1) limb brightness measurement, (2) attenuation coefficients, and (3) ratio of the aerosol and Rayleigh coefficients to accentuate layers.

  16. The uptake of HO2 radicals to organic aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, Pascale; Krapf, Manuel; Dommen, Josef; George, Ingrid; Whalley, Lisa; Ingham, Trevor; Baeza-Romero, Maria Teresa; Ammann, Markus; Heard, Dwayne

    2014-05-01

    , however, this was reduced to 0.008 ± 0.009 when EDTA was added in a 1:1 ratio with copper and 0.003 ± 0.004 when oxalic acid was added in a 10:1 ratio with copper. SOA aerosols were also investigated at PSI and HO2 uptake coefficients of γ < 0.004 and γ = 0.004 ± 0.003 were measured for alpha-pinene and trimethylbenzene derived SOA respectively. [1] Sommariva, R. et al. Atmos. Chem. Phys.2006, 6, 1135-1153. [2] Whalley, L.K. et al. Atmos. Chem. Phys. 2010, 10, 1555-1576. [3] Turpin, B.J. et al. Atmos. Environ. 2000, 34, 2983-3013 [4] Taketani, F. et al Int. J. Chem. Kin. 2013, 9, 560-565.

  17. Mixing state of aerosols over the Indo-Gangetic Plain: Radiative forcing and heating rate

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Ramachandran, S.

    2012-12-01

    ratio is calculated from the geometry of core-shell particles, which depends on the mass and density of the core and shell. The size distribution parameters and refractive indices of different aerosol species are taken from OPAC database [3]. Different fractions of black carbon, water soluble and mineral dust aerosols involved in core-shell mixing emerge as the most probable mixing states over the IGP. Aerosol forcing for external mixing shows higher deviations from those for probable mixing cases during winter and pre-monsoon. The heating rate over Kanpur and Gandhi College in the lower troposphere is similar during pre-monsoon (March-May) ( 0.75 K day^{-1}) and monsoon (June-September) ( 0.5 K day^{-1}), while differences occur in other seasons [4]. Aerosol heating rate profiles exhibit primary and secondary peaks over the IGP and exhibit seasonal variations. Details on the calculations of aerosol mixing states over IGP, the impact of aerosol mixing state on aerosol forcing and heating rate will be discussed. References: [1] Intergovernmental panel on climate change (2007), Solomon S. et al. (eds.), Cambridge Univ. Press, NewYork. [2] Holben B. N., et al. (2001), J. Geophys. Res., 106(D11), 12067-12097. [3] Hess M., P. Koepke, I. Schult (1998), Bull. Am. Meteorol. Soc., 79, 831-844. [4] Srivastava R., S. Ramachandran (2012), Q. J. R. Meteorol. Soc., 138, doi:10.1002/qj.1958.

  18. Volcanic aerosols and lunar eclipses.

    PubMed

    Keen, R A

    1983-12-01

    The moon is visible during total lunar eclipses due to sunlight refracted into the earth's shadow by the atmosphere. Stratospheric aerosols can profoundly affect the brightness of the eclipsed moon. Observed brightnesses of 21 lunar eclipses during 1960-1982 are compared with theoretical calculations based on refraction by an aerosol-free atmosphere to yield globally averaged aerosol optical depths. Results indicate the global aerosol loading from the 1982 eruption of El Chichón is similar in magnitude to that from the 1963 Agung eruption.

  19. Volcanic aerosols and lunar eclipses.

    PubMed

    Keen, R A

    1983-12-01

    The moon is visible during total lunar eclipses due to sunlight refracted into the earth's shadow by the atmosphere. Stratospheric aerosols can profoundly affect the brightness of the eclipsed moon. Observed brightnesses of 21 lunar eclipses during 1960-1982 are compared with theoretical calculations based on refraction by an aerosol-free atmosphere to yield globally averaged aerosol optical depths. Results indicate the global aerosol loading from the 1982 eruption of El Chichón is similar in magnitude to that from the 1963 Agung eruption. PMID:17776243

  20. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.

    1978-01-01

    Stratospht1ic sulfuric acid particles scatter and absorb sunlight and they scatter, absorb and emit terrestrial thermal radiation. These interactions play a role in the earth's radiation balance and therefore affect climate. The stratospheric aerosols are perturbed by volcanic injection of SO2 and ash, by aircraft injection of SO2, by rocket exhaust of Al2O3 and by tropospheric mixing of particles and pollutant SO2 and COS. In order to assess the effects of these perturbations on climate, the effects of the aerosols on the radiation balance must be understood and in order to understand the radiation effects the properties of the aerosols must be known. The discussion covers the aerosols' effect on the radiation balance. It is shown that the aerosol size distribution controls whether the aerosols will tend to warm or cool the earth's surface. Calculations of aerosol properties, including size distribution, for various perturbation sources are carried out on the basis of an aerosol model. Calculations are also presented of the climatic impact of perturbed aerosols due to volcanic eruptions and Space Shuttle flights.

  1. Aerosol and gas re-distribution by shallow cumulus clouds: An investigation using airborne measurements

    NASA Astrophysics Data System (ADS)

    Wonaschuetz, Anna; Sorooshian, Armin; Ervens, Barbara; Chuang, Patrick Y.; Feingold, Graham; Murphy, Shane M.; de Gouw, Joost; Warneke, Carsten; Jonsson, Haflidi H.

    2012-09-01

    Aircraft measurements during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) are used to examine the influence of shallow cumulus clouds on vertical profiles of aerosol chemical composition, size distributions, and secondary aerosol precursor gases. The data show signatures of convective transport of particles, gases and moisture from near the surface to higher altitudes, and of aqueous-phase production of aerosol mass (sulfate and organics) in cloud droplets and aerosol water. In cloudy conditions, the average aerosol volume concentration at an altitude of 2850 m, above typical cloud top levels, was found to be 34% of that at 450 m; for clear conditions, the same ratio was 13%. Both organic and sulfate mass fractions were on average constant with altitude (around 50%); however, the ratio of oxalate to organic mass increased with altitude (from 1% at 450 m to almost 9% at 3450 m), indicative of the influence of in-cloud production on the vertical abundance and characteristics of secondary organic aerosol (SOA) mass. A new metric termed "residual cloud fraction" is introduced as a way of quantifying the "cloud processing history" of an air parcel. Results of a parcel model simulating aqueous phase production of sulfate and organics reproduce observed trends and point at a potentially important role of SOA production, especially oligomers, in deliquesced aerosols. The observations emphasize the importance of shallow cumulus clouds in altering the vertical distribution of aerosol properties that influence both their direct and indirect effect on climate.

  2. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    SciTech Connect

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  3. Nabro aerosol evolution observed jointly by lidars at a mid-latitude site and CALIPSO

    NASA Astrophysics Data System (ADS)

    Zhuang, J.; Yi, F.

    2016-09-01

    Evolution of the Nabro volcanic aerosols from initially-localized plumes to a decaying hemispherically-covered layer was jointly observed by ground-based lidars at Wuhan (30.5°N, 114.4°E), China and CALIPSO. During the aerosol plume formation period, from the Nabro eruption to early July 2011, the lidar backscatter ratio related to the Nabro aerosols above Wuhan varied strongly both in vertical structure and intensity, suggesting that the Nabro aerosol distribution was horizontally inhomogeneous. The stratospheric aerosol optical depth (AOD) from CALIPSO shows that the Nabro plume first circled around the Asian monsoon anticyclone and then gradually fulfilled the whole anticyclone area with a net aerosol enhancement, which may reflect a gas-particle conversion (from sulfur dioxide gas) and/or particle injection from the upper troposphere. During the horizontal dispersion period, from early July to mid-August 2011, the stratospheric AOD over Wuhan declined rapidly since the Nabro particles were transported throughout the northern hemisphere. A nearly horizontally-uniform volcanic aerosol layer was formed. During the local cleansing period, from mid-August to the end of 2011, the Nabro aerosol layer over Wuhan had a single-peak structure and decayed uniformly. The corresponding e-folding decay time for the layer AOD is ∼130 days. The lidar measurements at Wuhan gave a small depolarization ratio and large backscatter-related Ångström exponent for the Nabro aerosols on 8 July, suggesting that the majority of these aerosols were spherical and small. The effective radius and total mass for the Nabro aerosol particles were estimated to be ∼0.26 μm and ∼0.32 Tg respectively.

  4. [Seasonal variations in the vertical distribution of aerosols during dry haze periods in regions around Shanghai].

    PubMed

    Xu, Ting-Ting; Qing, Yan; Geng, Fu-Hai; Chen, Yong-Hang; Zhang, Hua; Liu, Qiong; Ma, Xiao-Jun

    2012-07-01

    Based on the onboard lidar data from CALIPSO satellite of National Aeronautics and Space Administration (NASA) from January 2007 to November 2010, the vertical distribution of optical and micro-physical properties of aerosols around Shanghai during the haze periods when relative humidity less than 80% were revealed by analyzing the parameters of 532 nm total attenuated backscatter coefficient, volume depolarization ratio and total attenuated color ratio. The results showed that during dry haze periods, the scattering ability of lower troposphere (0-2 km) was the highest and the main constituents were regular aerosols. The scattering ability of the upper troposphere (8-10 km) was the lowest and the proportion of irregular aerosols was the highest among the five altitude layers. In addition, the scattering ability of the altitude range (2-8 km) was lower than that of the lower troposphere, and the scattering ability and irregularity of aerosols at different altitude levels within the range were close to each other. Fine particle aerosols were the dominant aerosols in altitude range of 0-10 km. To be noted, the proportion of fine particles decreased with increasing altitude within the altitude range of 2-8 km. The proportion of large and irregular aerosols were higher in spring, whereas the proportion of fine and regular aerosols were higher in summer. According to the analysis of a dry haze episode on May 7th, 2007, it was found that a mass of aerosols mainly distributed within the altitude range of 0-1.5 km and partially within the altitude range of 4.0-5.5 km. The HYSPLIT model was applied to analyze the sources of aerosols in the episode, and the results indicated that the dry haze was mainly caused not only by local emissions but also by the dust aerosols transported from Mongolia, the northwest and north of China by the airflow.

  5. Aerosol radiative effects in the ultraviolet, visible, and near-infrared spectral ranges using long-term aerosol data series over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Mateos, D.; Antón, M.; Toledano, C.; Cachorro, V. E.; Alados-Arboledas, L.; Sorribas, M.; Costa, M. J.; Baldasano, J. M.

    2014-12-01

    A better understanding of aerosol radiative properties is a crucial challenge for climate change studies. This study aims at providing a complete characterization of aerosol radiative effects in different spectral ranges within the shortwave (SW) solar spectrum. For this purpose, long-term data sets of aerosol properties from six AERONET stations located in the Iberian Peninsula (southwestern Europe) have been analyzed in terms of climatological characterization and inter-annual changes. Aerosol information was used as input for the libRadtran model in order to determine the aerosol radiative effect (ARE) at the surface in the ultraviolet (AREUV), visible (AREVIS), near-infrared (ARENIR), and the entire SW range (ARESW) under cloud-free conditions. Over the whole Iberian Peninsula, yearly aerosol radiative effects in the different spectral ranges were found to be -1.1 < AREUV < -0.7, -5.7 < AREVIS < -3.5, -2.6 < ARENIR < -1.6, and -8.8 < ARESW < -5.7 (in W m-2). Monthly means of ARE showed a seasonal pattern with larger values in spring and summer. The aerosol forcing efficiency (AFE), ARE per unit of aerosol optical depth, has also been evaluated in the four spectral ranges. AFE exhibited a dependence on single scattering albedo as well as a weaker one on the Ångström exponent. AFE is larger (in absolute value) for small and absorbing particles. The contributions of the UV, VIS, and NIR ranges to the SW efficiency varied with the aerosol types. The predominant aerosol size determined the fractions AFEVIS/AFESW and AFENIR/AFESW. The AFEVIS was the dominant contributor for all aerosol types, although non-absorbing large particles caused more even contribution of VIS and NIR intervals. The AFEUV / AFESW ratio showed a higher value in the case of absorbing fine particles.

  6. A Pure Marine Aerosol Model, for Use in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Holben, B. N.

    2011-01-01

    Retrievals of aerosol optical depth (AOD) and related parameters from satellite measurements typically involve prescribed models of aerosol size and composition, and are therefore dependent on how well these models are able to represent the radiative behaviour of real aerosols, This study uses aerosol volume size distributions retrieved from Sun-photometer measurements at 11 Aerosol Robotic Network (AERONET) island sites, spread throughout the world's oceans, as a basis to define such a model for unpolluted maritime aerosols. Size distributions are observed to be bimodal and approximately lognormal, although the coarse mode is skewed with a long tail on the low-radius end, The relationship of AOD and size distribution parameters to meteorological conditions is also examined, As wind speed increases, so do coarse-mode volume and radius, The AOD and Angstrom exponent (alpha) show linear relationships with wind speed, although there is considerable scatter in all these relationships, limiting their predictive power. Links between aerosol properties and near-surface relative humidity, columnar water vapor, and sea surface temperature are also explored. A recommended bimodal maritime model, which is able to reconstruct the AERONET AOD with accuracy of order 0.01-0.02, is presented for use in aerosol remote sensing applications. This accuracy holds at most sites and for wavelengths between 340 nm and 1020 nm. Calculated lidar ratios are also provided, and differ significantly from those currently used in Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) processing.

  7. Zenith polarization and color ratio during twilight.

    PubMed

    Volz, F E

    1981-12-15

    The excellent data of zenith polarization and color ratio (CR) during twilight obtained by Coulson at the Mauna Loa Observatory, Hawaii are subjected to a reinterpretation, especially with regard to the frequent deviations from the clear average. It is shown that a moderate lift of the earth's shadow by distant clouds (or by low level haze) will reduce the red/green CR, while greater lift shifts the CR peak to a smaller solar depression. The effect on zenith polarization at wavelengths >/=0.6 microm is seen to correspond to a slight reduction of overall polarization for a moderate lift, and for a large lift to a shift of the polarization minimum (depolarization by stratospheric aerosol) from 4 degrees solar depression angle to 2 degrees . A generally high level of polarization, but with a barely noticeable 4 degrees minimum, had also been observed earlier in Germany by Steinhorst when the stratospheric aerosol load was very small. The difference is explained by a higher and stronger aerosol layer in the tropics combined with a higher and cleaner troposphere.

  8. Furnace-generated acid aerosols: speciation and pulmonary effects.

    PubMed

    Amdur, M O; Chen, L C

    1989-02-01

    Guinea pigs were exposed to ultrafine aerosols (less than 0.1 micron) of zinc oxide with a surface layer of sulfuric acid. These acid-coated aerosols are typical of primary emissions from smelters and coal combustors. Repeated daily 3-hr exposures for 5 days produce decrements in lung volumes and pulmonary diffusing capacity and elevations of lung weight/body weight ratio, protein, and number of neutrophils in pulmonary lavage fluid at concentrations of 20 micrograms/m3. A single 1-hr exposure to 20 micrograms/m3 causes increased bronchial reactivity. Higher concentrations of conventionally generated sulfuric acid mist are required to produce responses of similar magnitude.

  9. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China.

    PubMed

    Yuan, Liang; Yin, Yan; Xiao, Hui; Yu, Xingna; Hao, Jian; Chen, Kui; Liu, Chao

    2016-04-15

    There is a large uncertainty in evaluating the radiative forcing from aerosol-radiation and aerosol-cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core-shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ±6% and ±14% for external mixture and ±9% and ±31% for core-shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate.

  10. Polarimetric remote sensing of aerosol and cloud microphysics from the NASA Glory Aerosol Polarimetry Sensor (APS)

    NASA Astrophysics Data System (ADS)

    Cairns, B.; Chowdhary, J.; Knobelspiesse, K.; Sato, M.; Mishchenko, M.; Travis, L.

    2005-12-01

    Tropospheric aerosols play a crucial role in climate and can cause a climate forcing directly by absorbing and reflecting sunlight, thereby cooling or heating the atmosphere, and indirectly by modifying cloud properties. The indirect aerosol effect may include increased cloud brightness, as aerosols lead to a larger number of smaller cloud droplets (the so-called Twomey effect), and increased cloud cover, as smaller droplets inhibit rainfall and increase cloud lifetime. Both forcings are poorly understood and may represent the largest source of uncertainty about future climate change. In this paper we present results from various field experiments demonstrating the contribution that the multi-angle multi-spectral photopolarimetric remote sensing measurements of the NASA Glory APS will make to the determination of the direct and indirect radiative effects of aerosols. Remote sensing of aerosols from satellites is plagued by the need to make prior assumptions about the composition and size of the aerosols that are present, whether this is to calculate the phase functions of the aerosols for passive remote sensing, or the extinction to backscatter ratio for elastic backscatter lidar measurements. Measurements made by the Research Scanning Polarimeter (RSP) have demonstrated that many of these assumptions can be eliminated using polarimetric remote sensing and that it is possible to retrieve the optical depth, single scattering albedo, refractive index and the location and width of a bimodal size distribution. Moreover, polarimetric remote sensing provides this capability over both land and water surfaces. Measurements from the CLAMS and IHOP field experiments and over smoke from fires in Southern California have been used to demonstrate these capabilities and the ability to estimate the height of the aerosol layer if sufficient aerosol is present. In passive remote sensing of clouds it is generally the case that for water clouds the effective variance of the droplet

  11. Intercomparison of aerosol optical parameters from WALI and R-MAN510 aerosol Raman lidars in the framework of HyMeX campaign

    NASA Astrophysics Data System (ADS)

    Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent

    2013-04-01

    The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.

  12. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E. (Editor); Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.

    1994-01-01

    Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120 deg, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20% +/- 15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law distribution, based on the spectral dependence of the optical thickness, alpha, cannot estimate accurately the phase function (up to 50% error for lambda = 0.87 microns). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with alpha. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distribution before the injection of stratospheric aerosol consistently show two modes, sulfate

  13. In situ Measurements of Absorbing Aerosols from Urban Sources, in Maritime Environments and during Biomass Combustion

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Manvendra, D.; Chylek, P.; Arnott, P.

    2006-12-01

    Absorbing aerosols have important but still ill quantified effects on climate, visibility, cloud processes, and air quality. The compilation of aerosol scattering and absorption databases from reliable measurements is essential to reduce uncertainties in these inter-linked research areas. The atmospheric radiative balance for example, is modeled using the aerosol single scattering albedo (ratio of scattering to scattering plus absorption, SSA) as a fundamental input parameter in climate models. Sulfate aerosols with SSA values close to 1 scatter solar radiation resulting in a negative radiative forcing. However aerosol SSA values less than 1 are common when combustion processes are contributing to the aerosol sources. Absorbing aerosols directly heat the atmosphere and reduce the solar radiation at the surface. Currently, the net global anthropogenic aerosol direct radiative forcing is estimated to be around -0.5W m-2 with uncertainty of about 80% largely due to lack of understanding of SSA of sulfate-organic-soot aerosols. We present a rapidly expanding data set of direct in situ aerosol absorption and scattering measurements performed since June 2005 by photoacoustic instrument (at 781 and 870 nm), with integrated a total scattering sensor, during numerous field campaigns. Data have been collected over a wide range of aerosol sources, local environments and anthropogenic activities. Airborne measurements were performed in marine stratus off shore of the California coast and in cumulus clouds and clear air in the Houston, TX area; ground-based measurements have been performed in many locations in Mexico City; while laboratory measurements have been collected during a controlled combustion experiment of many different biomass fuels. The large dynamic range of aerosol types and conditions from these different field campaigns will be integrated to help quantify the SSA values, their variability, and their implications on the radiative forcing of climate.

  14. Aerosol and Dry Air Entrainment Impacts on Thermally Driven Orographic Clouds and the Development of Precipitation

    NASA Astrophysics Data System (ADS)

    Nugent, A. D.; Watson, C. D.; Thompson, G.; Smith, R. B.

    2014-12-01

    Precipitation generation in a cumulus cloud depends on the nature of available aerosols and the turbulent entrainment of dry air. These two processes were observed in the orographic clouds during the DOMEX (Dominica Experiment) field campaign. On days with thermally driven convection, little precipitation develops and the orographic clouds are composed on average of clouds with 125 cm-3 droplet number concentration and 15 μm cloud droplet diameter. Aerosol number concentrations as high as 325 cm-3 are found in the detrained air above the tropical island of Dominica. The island surface aerosol source and the relatively dry cloud layer are two independent variables that play a role in the composition and development of the observed orographic clouds. We use idealized 3D WRF simulations with the new aerosol-aware Thompson and Eidhammer microphysics scheme to compare with observations. A 1 km high mountain with a constant surface sensible heat flux drives convection with no background wind. Four simulations are performed to explore the parameter space with and without an aerosol source, and with a dry and moist cloud layer: (1) aerosol source / dry, (2) aerosol source / moist, (3) no source / dry, and (4) no source / moist. The aerosol source is composed of an organic-like aerosol with a mean radius of 0.08 μm and a hygroscopicity of 0.6. The aerosol flux comes only from the island surface at a rate of 5 aerosols cm-3 s-1 or 1.5x108 aerosols m-2 s-1. Precipitation efficiency, drying ratio, and microphysical conversion rates of liquid water are computed and tracked, and cloud and rain water mass and number budgets are completed. Comparing the development of orographic clouds and precipitation in the four simulations leads toward an improved understanding of the observations and the relative controls on convection.

  15. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution

    PubMed Central

    Vernier, J-P; Fairlie, T D; Natarajan, M; Wienhold, F G; Bian, J; Martinsson, B G; Crumeyrolle, S; Thomason, L W; Bedka, K M

    2015-01-01

    Satellite observations have shown that the Asian Summer Monsoon strongly influences the upper troposphere and lower stratosphere (UTLS) aerosol morphology through its role in the formation of the Asian Tropopause Aerosol Layer (ATAL). Stratospheric Aerosol and Gas Experiment II solar occultation and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations show that summertime UTLS Aerosol Optical Depth (AOD) between 13 and 18 km over Asia has increased by three times since the late 1990s. Here we present the first in situ balloon measurements of aerosol backscatter in the UTLS from Western China, which confirm high aerosol levels observed by CALIPSO since 2006. Aircraft in situ measurements suggest that aerosols at lower altitudes of the ATAL are largely composed of carbonaceous and sulfate materials (carbon/sulfur elemental ratio ranging from 2 to 10). Back trajectory analysis from Cloud-Aerosol Lidar with Orthogonal Polarization observations indicates that deep convection over the Indian subcontinent supplies the ATAL through the transport of pollution into the UTLS. Time series of deep convection occurrence, carbon monoxide, aerosol, temperature, and relative humidity suggest that secondary aerosol formation and growth in a cold, moist convective environment could play an important role in the formation of ATAL. Finally, radiative calculations show that the ATAL layer has exerted a short-term regional forcing at the top of the atmosphere of −0.1 W/m2 in the past 18 years. Key Points Increase of summertime upper tropospheric aerosol levels over Asia since the 1990s Upper tropospheric enhancement also observed by in situ backscatter measurements Significant regional radiative forcing of −0.1 W/m2 PMID:26691186

  16. Raman lidar measurements of aerosol extinction and backscattering 1. Methods and comparisons

    SciTech Connect

    Ferrare, R.A.; Melfi, S.H.; Whiteman, D.N.; Evans, K.D.

    1998-08-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.015 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0.1 and 5 km are found to be about 10{endash}40{percent} lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40{percent} lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles. {copyright} 1998 American Geophysical Union

  17. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 1; Methods and Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-01-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.0 1 5 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0. I and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  18. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions.

  19. Aerosol deposition favors red tide phytoplankton in the East China Sea

    NASA Astrophysics Data System (ADS)

    Mackey, K. R.; Chien, C.; Chen, Y.; Glover, D. M.; Paytan, A.

    2013-12-01

    Chinese marginal seas support vast fisheries and vital economies, but their productivity is threatened by eutrophication from runoff and atmospheric deposition. The East China Sea is inundated with nitrogen from the Yangtze River and anthropogenic emissions, leading to elevated N:P ratios. We show that aerosol additions approximating one week of moderate deposition to offshore waters favor the growth of red tide phytoplankton, such as Skeletonema costatum, by providing nutrients and trace metals (iron and zinc) needed for growth. In contrast toxin-producing Pseudonitzchia does not benefit from aerosols in this region, possibly due to its preference for lower N:P ratios. A dose-dependent toxic response was observed in Synechococcus at high aerosol loads approximating a week of heavy deposition in the region. In contrast, phytoplankton growth at an onshore station was light limited, and aerosol additions did not have an appreciable effect on phytoplankton growth. Aerosol and chlorophyll observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite have the potential to explore the effect of aerosols on phytoplankton blooms over longer time scales and seasons. This study shows the potential for aerosols to control N:P ratios in offshore waters and to shape the phytoplankton community through fertilization and toxicity, contributing to the occurrence of red tides.

  20. Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Reagan, J. A.; Herman, B. M.

    1980-01-01

    The paper reports on vertical profiles of aerosol extinction and backscatter in the troposphere which were obtained from multi zenith angle lidar measurements. It is reported that a direct slant path solution was found to be not possible due to horizontal inhomogeneity of the atmosphere. Attention is given to the use of a regression analysis with respect to zenith angle for a layer integration of the angle dependent lidar equation in order to determine the optical thickness and aerosol extinction-to-backscatter ratio for defined atmospheric layers and the subsequent evaluation of cross-section profiles.

  1. Organics Substantially Reduce HO2 Uptake onto Aerosols Containing Transition Metal ions.

    PubMed

    Lakey, Pascale S J; George, Ingrid J; Baeza-Romero, Maria T; Whalley, Lisa K; Heard, Dwayne E

    2016-03-10

    A HO2 mass accommodation coefficient of α = 0.23 ± 0.07 was measured onto submicron copper(II)-doped ammonium sulfate aerosols at a relative humidity of 60 ± 3%, at 293 ± 2 K and at an initial HO2 concentration of ∼ 1 × 10(9) molecules cm(-3) by using an aerosol flow tube coupled to a sensitive fluorescence assay by gas expansion (FAGE) HO2 detection system. The effect upon the HO2 uptake coefficient γ of adding different organic species (malonic acid, citric acid, 1,2-diaminoethane, tartronic acid, ethylenediaminetetraacetic acid (EDTA), and oxalic acid) into the copper(II)-doped aerosols was investigated. The HO2 uptake coefficient decreased steadily from the mass accommodation value to γ = 0.008 ± 0.009 when EDTA was added in a one-to-one molar ratio with the copper(II) ions, and to γ = 0.003 ± 0.004 when oxalic acid was added into the aerosol in a ten-to-one molar ratio with the copper(II). EDTA binds strongly to copper(II) ions, potentially making them unavailable for catalytic destruction of HO2, and could also be acting as a surfactant or changing the viscosity of the aerosol. The addition of oxalic acid to the aerosol potentially forms low-volatility copper-oxalate complexes that reduce the uptake of HO2 either by changing the viscosity of the aerosol or by causing precipitation out of the aerosol forming a coating. It is likely that there is a high enough oxalate to copper(II) ion ratio in many types of atmospheric aerosols to decrease the HO2 uptake coefficient. No observable change in the HO2 uptake coefficient was measured when the other organic species (malonic acid, citric acid, 1,2-diaminoethane, and tartronic acid) were added in a ten-to-one molar ratio with the copper(II) ions.

  2. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  3. Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Chen, Chien-Lung

    In this study, the chemical characteristics of winter aerosol at four sites in southern Taiwan were determined and the Gaussian Trajectory transfer coefficient model (GTx) was then used to identify the major air pollutant sources affecting the study sites. Aerosols were found to be acidic at all four sites. The most important constituents of the particulate matter (PM) by mass were SO 42-, organic carbon (OC), NO 3-, elemental carbon (EC) and NH 4+, with SO 42-, NO 3-, and NH 4+ together constituting 86.0-87.9% of the total PM 2.5 soluble inorganic salts and 68.9-78.3% of the total PM 2.5-10 soluble inorganic salts, showing that secondary photochemical solution components such as these were the major contributors to the aerosol water-soluble ions. The coastal site, Linyuan (LY), had the highest PM mass percentage of sea salts, higher in the coarse fraction, and higher sea salts during daytime than during nighttime, indicating that the prevailing daytime sea breeze brought with it more sea-salt aerosol. Other than sea salts, crustal matter, and EC in PM 2.5 at Jenwu (JW) and in PM 2.5-10 at LY, all aerosol components were higher during nighttime, due to relatively low nighttime mixing heights limiting vertical and horizontal dispersion. At JW, a site with heavy traffic loadings, the OC/EC ratio in the nighttime fine and coarse fractions of approximately 2.2 was higher than during daytime, indicating that in addition to primary organic aerosol (POA), secondary organic aerosol (SOA) also contributed to the nighttime PM 2.5. This was also true of the nighttime coarse fraction at LY. The GTx produced correlation coefficients ( r) for simulated and observed daily concentrations of PM 10 at the four sites (receptors) in the range 0.45-0.59 and biases from -6% to -20%. Source apportionment indicated that point sources were the largest PM 10 source at JW, LY and Daliao (DL), while at Meinung (MN), a suburban site with less local PM 10, SO x and NO x emissions, upwind

  4. CART and GSFC raman lidar measurements of atmospheric aerosol backscattering and extinction profiles for EOS validation and ARM radiation studies

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Turner, D. D.; Melfi, S. H.; Whiteman, D. N.; Schwenner, G.; Evans, K. D.; Goldsmith, J. E. M.; Tooman, T.

    1998-01-01

    The aerosol retrieval algorithms used by the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer (MISR) sensors on the Earth Observing Satellite (EOS) AM-1 platform operate by comparing measured radiances with tabulated radiances that have been computed for specific aerosol models. These aerosol models are based almost entirely on surface and/or column averaged measurements and so may not accurately represent the ambient aerosol properties. Therefore, to validate these EOS algorithms and to determine the effects of aerosols on the clear-sky radiative flux, we have begun to evaluate the vertical variability of ambient aerosol properties using the aerosol backscattering and extinction profiles measured by the Cloud and Radiation Testbed (CART) and NASA Goddard Space Flight Center (GSFC) Raman Lidars. Using the procedures developed for the GSFC Scanning Raman Lidar (SRL), we have developed and have begun to implement algorithms for the CART Raman Lidar to routinely provide profiles of aerosol extinction and backscattering during both nighttime and ,daytime operations. Aerosol backscattering and extinction profiles are computed for both lidar systems using data acquired during the 1996 and 1997 Water Vapor Intensive Operating Periods (IOPs). By integrating these aerosol extinction profiles, we derive measurements of aerosol optical thickness and compare these with coincident sun photometer measurements. We also use these measurements to measure the aerosol extinction/backscatter ratio S(sub a) (i.e. 'lidar ratio'). Furthermore, we use the simultaneous water vapor measurements acquired by these Raman lidars to investigate the effects of water vapor on aerosol optical properties.

  5. INDOOR AEROSOLS AND EXPOSURE ASSESSMENT

    EPA Science Inventory

    This chapter provides an overview of both indoor aerosol concentration measurements, and the considerations for assessment of exposure to aerosols in non-occupational settings. The fixed-location measurements of concentration at an outdoor location, while commuting inside an a...

  6. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  7. Mount Saint Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  8. Oxidation enhancement of submicron organic aerosols by fog processing

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Ge, X.; Collier, S.; Setyan, A.; Xu, J.; Sun, Y.

    2011-12-01

    During 2010 wintertime, a measurement study was carried out at Fresno, California, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) combined with a Scanning Mobility Particle Sizer (SMPS). Four fog events occurred during the first week of the campaign. While ambient aerosol was sampled into the HR-ToF-AMS, fog water samples were collected, and were later aerosolized and analyzed via HR-TOF-AMS in the laboratory. We performed Positive Matrix Factorization (PMF) on the AMS ambient organic mass spectra, and identified four OA factors: hydrocarbon-like OA (HOA) likely from vehicle emissions, cooking influenced OA (COA), biomass burning OA (BBOA) representing residential wood combustion, and an oxygenated OA (OOA) that has an average O/C ratio of 0.42. The time series of the OOA factor correlates best with that of sulfate (R2 =0.54 ) during fog events, suggesting that aqueous phase processing may have strongly affected OOA production during wintertime in Fresno. We further investigate the OOA compositions and elemental ratios before, during, and after the fog events, as well as those of dissolved organic matter (DOM) in fog waters to study the influence of aqueous phase processing on OA compositions. Results of fog sample analysis shows an enhancement of oxidation of DOM in 11 separate fog samples. Further factor analysis of the fog DOM data will elucidate the possible mechanisms by which fog processing enhances oxidation of aerosol. In addition, in order to investigate the influence of aqueous processing on OA, we used the Extended Aerosol Inorganic Model (E-AIM) (http://www.aim.env.uea.ac.uk/aim/aim.php) to estimate aerosol phase water contents based on the AMS measured aerosol composition. The predicted water content has a good correlation with sulfate and OOA . We will further explore the correlations between particle phase water with organic aerosol characteristics to discuss the influence of aqueous phase processing on

  9. Two-frequency lidar inversion technique.

    PubMed

    Potter, J F

    1987-04-01

    An analytical technique for inverting lidar returns is proposed and tested on simulated data. The technique requires simultaneous lidar returns at two frequencies and is based on the assumptions that (1) the ratio of backscatter to extinction is independent of position along the lidar line and (2) the ratio of the extinction coefficients at the two frequencies is independent of position along the lidar line. These assumptions are met if molecular scattering can be neglected and the aerosol is composed of the same kind of particle at all points along the lidar line. The simulated data corresponded to a lidar line of 1.0-km length with a uniform aerosol having a total optical depth of 1.0. The quantities determined by the analysis are the total transmittance T, the ratio between the extinction coefficients at the two frequencies k, and the extinction profiles at the two frequencies. The errors in these quantities are critically dependent on the noise level in the data. When 100 shots were averaged to reduce noise, the rms errors in T and k were 1.93 and 1.54%, respectively, and the maximum error in the extinction profile was 6%. An appendix describes possible extensions to include molecular scattering.

  10. Aerosol Remote Sensing

    NASA Technical Reports Server (NTRS)

    Lenoble, Jacqueline (Editor); Remer, Lorraine (Editor); Tanre, Didier (Editor)

    2012-01-01

    This book gives a much needed explanation of the basic physical principles of radia5tive transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. For the first time, an easy path from theory to practical algorithms is available in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing. In addition, the specifics and intercomparison of all current and historical methods are explained and clarified.

  11. Thermophoretically Dominated Aerosol Coagulation

    NASA Astrophysics Data System (ADS)

    Rosner, Daniel E.; Arias-Zugasti, Manuel

    2011-01-01

    A theory of aerosol coagulation due to size-dependent thermophoresis is presented. This previously overlooked effect is important when local temperature gradients are large, the sol population is composed of particles of much greater thermal conductivity than the carrier gas, with mean diameters much greater than the prevailing gas mean free path, and an adequate “spread” in sizes (as in metallurgical mists or fumes). We illustrate this via a population-balance analysis of the evolution of an initially log-normal distribution when this mechanism dominates ordinary Brownian diffusion.

  12. The Indian ocean experiment: aerosol forcing obtained from satellite data

    NASA Astrophysics Data System (ADS)

    Rajeev, K.; Ramanathan, V.

    The tropical Indian Ocean provides an ideal and unique natural laboratory to observe and understand the role of anthropogenic aerosols in climate forcing. Since 1996, an international team of American, European and Indian scientists have been collecting aerosol, chemical and radiation data from ships and surface stations, which culminated in a multi-platform field experiment conducted during January to March of 1999. A persistent haze layer that spread over most of the northern Indian Ocean during wintertime was discovered. The layer, a complex mix of organics, black carbon, sulfates, nitrates and other species, subjects the lower atmosphere to a strong radiative heating and a larger reduction in the solar heating of the ocean. We present here the regional distribution of aerosols and the resulting clear sky aerosol radiative forcing at top-of-atmosphere (TOA) observed over the Indian Ocean during the winter months of 1997, 1998 and 1999 based on the aerosol optical depth (AOD) estimated using NOAA14-AVHRR and the TOA radiation budget data from CERES on board TRMM. Using the ratio of surface to TOA clear sky aerosol radiative forcing observed during the same period over the Indian Ocean island of Kaashidhoo (Satheesh and Ramanathan, 2000), the clear sky aerosol radiative forcing at the surface and the atmosphere are discussed. The regional maps of AVHRR derived AOD show abnormally large aerosol concentration during the winter of 1999 which is about 1.5 to 2 times larger than the AOD during the corresponding period of 1997 and 1998. A large latitudinal gradient in AOD is observed during all the three years of observation, with maximum AOD in the northern hemisphere. The diurnal mean clear sky aerosol forcing at TOA in the northern hemisphere Indian Ocean is in the range of -4 to -16 Wm -2 and had large spatio-temporal variations while in the southern hemisphere Indian Ocean it is in the range of 0 to -6Wm -2. The importance of integrating in-situ data with satellite

  13. Ceilometer calibration for retrieval of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Jin, Yoshitaka; Kai, Kenji; Kawai, Kei; Nagai, Tomohiro; Sakai, Tetsu; Yamazaki, Akihiro; Uchiyama, Akihiro; Batdorj, Dashdondog; Sugimoto, Nobuo; Nishizawa, Tomoaki

    2015-03-01

    Ceilometers are durable compact backscatter lidars widely used to detect cloud base height. They are also useful for measuring aerosols. We introduced a ceilometer (CL51) for observing dust in a source region in Mongolia. For retrieving aerosol profiles with a backscatter lidar, the molecular backscatter signal in the aerosol free heights or system constant of the lidar is required. Although the system constant of the ceilometer is calibrated by the manufacturer, it is not necessarily accurate enough for the aerosol retrieval. We determined a correction factor, which is defined as the ratio of true attenuated backscattering coefficient to the measured attenuated backscattering coefficient, for the CL51 ceilometer using a dual-wavelength Mie-scattering lidar in Tsukuba, Japan before moving the ceilometer to Dalanzadgad, Mongolia. The correction factor determined by minimizing the difference between the ceilometer and lidar backscattering coefficients was approximately 1.2±0.1. Applying the correction to the CL51 signals, the aerosol optical depth (AOD) agreed well with the sky-radiometer AOD during the observation period (13-17 February 2013) in Tsukuba (9 ×10-3 of mean square error). After moving the ceilometer to Dalanzadgad, however, the AOD observed with the CL51 (calibrated by the correction factor determined in Tsukuba) was approximately 60% of the AErosol RObotic NETwork (AERONET) sun photometer AOD. The possible causes of the lower AOD results are as follows: (1) the limited height range of extinction integration (< 3 km); (2) change in the correction factor during the ceilometer transportation or with the window contamination in Mongolia. In both cases, on-site calibrations by dual-wavelength lidar are needed. As an alternative method, we showed that the backward inversion method was useful for retrieving extinction coefficients if the AOD was larger than 1.5. This retrieval method does not require the system constant and molecular backscatter signals

  14. Engineering of aerosol nanoparticle architectures

    NASA Astrophysics Data System (ADS)

    Jiang, Xingmao

    Aerosol-assisted evaporation-induced self-assembly has been applied to fabricate a wide range of nanoparticle architectures. Ordered core-shell Ce/silica particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Higher hydrophobicity derived by increasing methyltrimethoxysilane/tetramethoxysilane ratio in the precursor delays the release in water and improves the hydrothermal stability significantly. Long-term corrosion inhibition can be realized using microporous encapsulating materials. A mathematical model has been developed to evaluate the release behavior and obtain the effective diffusion coefficient. To realize a long-term controlled release, low diffusivity and low solubility of the encapsulated cerium compound in the release medium are desirable. To maintain an effective cerium concentration for corrosion protection, a proper formulation of quick-release particles and slow-release particles may be strategically necessary. NaCl is selected as a model salt to investigate the diffusion of ions in nanoporous silica and the formation mechanism for the core-shell structure. Ordered nonporous silica with single crystal NaCl core has also been prepared. Azobenzene ligands have been uniformly anchored to the pore surfaces of the nanoporous silica particles by reacting with 4-(3-triethoxysilylpropylureido) azobenzene (TSUA). The functionalization of pore surfaces by organic groups regulates the hydrophobicity and therefore the release behavior. The modified particles demonstrate a photo controlled release by trans/cis isomerization of azobenzene moieties. Long molecule solvents or polymers can be used as blockers to adjust the release behavior for a long-term controlled release. We have developed a valid simulation method and computer code for the evaporation of ethanol-water-NaCl droplets. Various parameters such as droplet size and surrounding gas temperature and pressure have been examined. The code clearly demonstrates the evolution of

  15. The NASA-Ames Research Center stratospheric aerosol model. 2. Sensitivity studies and comparison with observatories

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Turco, R. P.; Hamill, P.; Kiang, C. S.; Whitten, R. C.

    1979-01-01

    Sensitivity tests were performed on a one-dimensional, physical-chemical model of the unperturbed stratospheric aerosols, and model calculations were compared with observations. The tests and comparisons suggest that coagulation controls the particle number mixing ratio, although the number of condensation nuclei at the tropopause and the diffusion coefficient at high altitudes are also important. The sulfur gas source strength and the aerosol residence time are much more important than the supply of condensation nuclei in establishing mass and large particle concentrations. The particle size is also controlled mainly by gas supply and residence time. In situ observations of the aerosols and laboratory measurements of aerosols, parameters that can provide further information about the physics and chemistry of the stratosphere and the aerosols found there are provided.

  16. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  17. Experimental Studies on Dynamic Properties of Fibrous Aerosols

    NASA Astrophysics Data System (ADS)

    Yang, Miintsong

    Throughout the development of the theory of fibrous aerosol particles, the dynamic behaviour of fibrous aerosol particles has most often been approximated by prolate spheroids. During recent experiments with chain-like particles of axis ratios between 5 and 1000, it became clear that the dynamics of fibrous particles needs to be well studied. This work addresses this need by studying both translational and rotational motions using various techniques. One of the measurements described below extends the classical work done with macroscopic bodies in oil tanks. The determination of drag and shape factors of chains and cylinders relative to that of prolate spheroids was obtained with chains of equal sized spheres and tungsten cylinders of various axis ratios between 2 and 50. Re was kept below ca. 0.01 for all particles by using silicone oil with a viscosity of ca. 110 poise. Empirical wall corrections in both principal orientations were developed for prolated bodies moving along the axis of an "infinitely long" cylindrical tube. Respective uncertainties for shape factors and wall corrections were typically (+OR-)1% and (+OR-)10%. The other measurement studied measures electrical light scattering of fibrous aerosols. Due to Brownian rotational motion, the size distribution function to nonspherical aerosols was determined after removing the electrical field which had been applied to the aerosol flow by measuring the decay of intensity of scattered light in a small foward angle with respect to the laser beam. Some necessary inter -instrument comparisons were made by using three different sizes of chain-like aerosols. Whether NNLS, nonlinear regression, or lognormal fittings were used they yielded very consistent results. The agreement of the count median between comparisons was very satisfactory. The uncertainty of the mean size was typically (+OR-)3%.

  18. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    SciTech Connect

    Mazurek, M.A. ); Cofer, W.R. III; Levine, J.S. . Langley Research Center)

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m{sup {minus}1} (OC) and 0.120 to 0.160 mg/m{sup {minus}3} (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m{sup {minus}3} (OC) and 0.006--0.050 mg/m{sup {minus}3} (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC).

  19. A study of aerosol optical properties at the global GAW station Bukit Kototabang, Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurhayati, N.; Nakajima, Teruyuki

    2012-01-01

    There have been very few studies carried out in Indonesia on the atmospheric aerosol optical properties and their impact on the earth climate. This study utilized solar radiation and aerosol measurement results of Indonesian GAW station Bukit Kototabang in Sumatra. The radiation data of nine years were used as input to a radiation simulation code for retrieving optically equivalent parameters of aerosols, i.e., aerosol optical thickness (AOT), coarse particle to fine particle ratio ( γ-ratio), and soot fraction. Retrieval of aerosol properties shows that coarse particles dominated at the station due to high relative humidity (RH) reaching more than 80% throughout the year. AOT time series showed a distinct two peak structure with peaks in MJJ and NDJ periods. The second peak corresponds to the period of high RH suggesting it was formed by active particle growth with large RH near 90%. On the other hand the time series of hot spot number, though it is only for the year of 2004, suggests the first peak was strongly contributed by biomass burning aerosols. The γ-ratio took a value near 10 throughout the year except for November and December when it took a larger value. The soot fraction varies in close relation with the γ-ratio, i.e. low values when γ was large, as consistent with our proposal of active particle growth in the high relative periods.

  20. Evaluation of Aerosol Indirect Radiative Forcing in MIRAGE

    SciTech Connect

    Ghan, Steven J.; Easter, Richard C.; Hudson, J D.; Breon, Francois

    2001-04-01

    We evaluate aerosol indirect radiative forcing simulated by the Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE). Although explicit measurements of aerosol indirect radiative forcing do not exist, measurements of many of the links between aerosols and indirect radiative forcing are available and can be used for evaluation. These links include the cloud condensation nuclei concentration, the ratio of droplet number to aerosol number, the droplet number concentration, the column droplet number, the column cloud water, the droplet effective radius, the cloud optical depth, the correlation between cloud albedo and droplet effective radius, and the cloud radiative forcing. The CCN concentration simulated by MIRAGE agrees with measurements for supersaturations larger than 0.1%, but not for smaller supersaturations. Simulated droplet number concentrations are too low in most, but not all, locations with available measurements, even when normalized by aerosol number. MIRA GE correctly simulates the higher droplet numbers and smaller droplet sizes over continents and in the Northern Hemisphere. Biases in column cloud water, cloud optical depth, and shortwave cloud radiative forcing are evident in the Intertropical Convergence Zone and in the subtropical oceans. MIRAGE correctly simulates a negative correlation between cloud albedo and droplet size over remote oceans for cloud optical depths greater than 15 and a positive correlation for cloud optical depths less than 15, but fails to simulate a negative correlation over land.

  1. The Golden Ratio

    ERIC Educational Resources Information Center

    Hyde, Hartley

    2004-01-01

    The Golden Ratio is sometimes called the "Golden Section" or the "Divine Proportion", in which three points: A, B, and C, divide a line in this proportion if AC/AB = AB/BC. "Donald in Mathmagicland" includes a section about the Golden Ratio and the ratios within a five-pointed star or pentagram. This article presents two computing exercises that…

  2. Analysis of tropospheric aerosol number density for aerosols of 0.2- to 3-micrometers diameter: Central and northeastern Canada

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Anderson, Bruce E.; Barrick, John D.; Hudgins, Charles H.; Bagwell, Donald R.; Blake, Donald R.

    1994-01-01

    NASA's Atmospheric Boundary Layer Experiment conducted during the summer of 1990 focused on the distribution of trace species in central and northeastern Canada (altitudes less than 6 km) and the importance of surface sources/sinks, local emissions, distant transport, tropospheric/stratospheric exchange. Aircraft flights were based from North Bay, Ontario, and Goose Bay, Labrador, Canada. As part of the aircraft measurements, aerosol number density (0.2- to 3-micrometers diameter) was measured using an optical laser technique. Results show that summertime aerosol budgets of central and northeastern Canada can be significantly impacted by the transport of pollutants from distant source regions. Biomass burning in Alaska and western and central Canada exerts major influences on regional aerosol budgets. Urban emissions transported from the U.S./Canadian border regions are also important. Aerosol enhancements (mixed layer and free troposphere) were most prevalent in air with carbon monoxide mixing ratios greater than 110 parts per billion by volume (ppbv). When data were grouped as to the source of the air (5-day back trajectories) either north or south of the polar jet, aerosol number density in the mixed layer showed a tendency to be enhanced for air south of the jet relative to north of the jet. However, this difference was not observed for measurements at the higher altitudes (4 to 6 km). For some flights, mixed layer aerosol number densities were greater than 100 higher than free-tropospheric values (3- to 6-km altitude). The majority of the observed mixed layer enhancement was associated with transport of effluent-rich air into the Canadian regions. Aerosol emissions from natural Canadian ecosystems were relatively small when compared to transport.

  3. Estimating back to front ratio of wire screen for measurement of thoron decay products.

    PubMed

    Koli, Amruta; Khandare, Pallavi; Joshi, Manish; Mariam; Khan, Arshad; Sapra, B K

    2016-01-01

    Wire screens are widely used for measuring the fine fraction of radon/thoron decay products. Their capture efficiencies are generally defined at low aerosol concentration conditions as well as at low sampling flow rates. Effect of changes in sampling flow rate and aerosol concentration on wire screen capture efficiencies and counting correction factor has been studied in this work. Controlled experiments have been conducted using two different mesh sizes at two different aerosol concentration conditions. Experimental results were compared with the existing theories for capture efficiencies of wire screens given by Cheng and Yeh (1980) and Alonso et al. (2001); and semi empirical relation for the front to total ratio given by Solomon and Ren (1992). Theoretical predictions have been found to be relatively close to the experimental findings for moderate aerosol conditions but disagreement was observed in case of high aerosol concentration. The possible reasons for these differences have been discussed in this work.

  4. Estimating back to front ratio of wire screen for measurement of thoron decay products.

    PubMed

    Koli, Amruta; Khandare, Pallavi; Joshi, Manish; Mariam; Khan, Arshad; Sapra, B K

    2016-01-01

    Wire screens are widely used for measuring the fine fraction of radon/thoron decay products. Their capture efficiencies are generally defined at low aerosol concentration conditions as well as at low sampling flow rates. Effect of changes in sampling flow rate and aerosol concentration on wire screen capture efficiencies and counting correction factor has been studied in this work. Controlled experiments have been conducted using two different mesh sizes at two different aerosol concentration conditions. Experimental results were compared with the existing theories for capture efficiencies of wire screens given by Cheng and Yeh (1980) and Alonso et al. (2001); and semi empirical relation for the front to total ratio given by Solomon and Ren (1992). Theoretical predictions have been found to be relatively close to the experimental findings for moderate aerosol conditions but disagreement was observed in case of high aerosol concentration. The possible reasons for these differences have been discussed in this work. PMID:26595797

  5. Mexico City aerosol study

    SciTech Connect

    Falcon, Y.I. ); Ramirez, C.R. )

    1988-01-01

    Mexico City is located in a valley at high elevation (2,268 m) and is subject to atmospheric inversion related problems similar to those found in Denver, Colorado. In addition, Mexico City has a tropical climate (latitude 19{degrees} 25 minutes N), and therefore has more sunlight available for production of photochemical smog. There are approximately 9.5 million people spread in a 1,500 km{sup 2} (25 sq. mi) urban area, and more than two million automobiles (D.G.P.T. 1979) which use leaded gasoline. Furthermore, Mexico City is the principal industrial center in the country with more than 131,000 industries. The growth of the city has led to a serious air pollution problem, and there is concern over the possible pollutant effects on human health. The authors discuss work done to characterize the chemical composition of the aerosol. It is shown that many of the organic compounds which have been detected in urban aerosols are carcinogens.

  6. How Important Is Organic Aerosol Hygroscopicity to Aerosol Indirect Forcing?

    SciTech Connect

    Liu, Xiaohong; Wang, Jian

    2010-12-07

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation and yield of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR Community Atmospheric Model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (“κ” value) of POA and SOA. Our model simulation indicates that in the present-day condition changing “κ” value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S=0.1% by 40-60% over the POA source regions, while changing “κ” value of SOA by ±50% (from 0.14 to 0.07 and 0.21) changes the CCN within 30%. Changes in the in-cloud droplet number concentrations (CDNC) are within 20% in most locations on the globe with the above changes in “κ” value of POA and SOA. Global annual mean anthropogenic aerosol indirect forcing (AIF) between present-day (PD) and pre-industrial (PI) conditions change by 0.4 W m-2 with the control run of -1.3 W m-2. AIF reduces with the increase hygroscopicity of organic aerosol, indicating the important role of natural organic aerosol in buffering the relative change of CDNC from PI to PD.

  7. PMSE dependence on aerosol charge number density and aerosol size

    NASA Astrophysics Data System (ADS)

    Rapp, Markus; Lübken, Franz-Josef; Hoffmann, Peter; Latteck, Ralph; Baumgarten, Gerd; Blix, Tom A.

    2003-04-01

    It is commonly accepted that the existence of polar mesosphere summer echoes (PMSEs) depends on the presence of charged aerosols since these are comparatively heavy and reduce the diffusion of free electrons due to ambipolar forces. Simple microphysical modeling suggests that this diffusivity reduction is proportional to rA2 (rA = aerosol radius) but only if a significant amount of charges is bound on the aerosols such that NA∣ZA∣/ne > 1.2 (NA = number of aerosols, ZA = aerosol charge, ne = number of free electrons). The fact that the background electron profile frequently shows large depletions ("biteouts") at PMSE altitudes is taken as a support for this idea since within biteouts a major fraction of free electrons is missing, i.e., bound on aerosols. In this paper, we show from in situ measurements of electron densities and from radar and lidar observations that PMSEs can also exist in regions where only a minor fraction of free electrons is bound on aerosols, i.e., with no biteout and with NA∣ZA∣/ne ≪ 1. We show strong experimental evidence that it is instead the product NA∣ZA∣rA2 that is crucial for the existence of PMSEs. For example, small aerosol charge can be compensated by large aerosol radius. We show that this product replicates the main features of PMSEs, in particular the mean altitude distribution and the altitude of PMSEs in the presence of noctilucent clouds (NLCs). We therefore take this product as a "proxy" for PMSE. The agreement between this proxy and the main characteristics of PMSEs implies that simple microphysical models do not satisfactorily describe PMSE physics and need to be improved. The proxy can easily be used in models of the upper atmosphere to better understand seasonal and geographical variations of PMSEs, for example, the long debated difference between Northern and Southern hemisphere PMSEs.

  8. Inorganic Components of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Wexler, Anthony Stein

    The inorganic components comprise 15% to 50% of the mass of atmospheric aerosols. For about the past 10 years the mass of these components was predicted assuming thermodynamic equilibrium between the volatile aerosol -phase inorganic species NH_4NO _3 and NH_4Cl and their gas-phase counterparts NH_3, HNO_3, and HCl. In this thesis I examine this assumption and prove that (1) the time scales for equilibration between the gas and aerosol phases are often too long for equilibrium to hold, and (2) even when equilibrium holds, transport considerations often govern the size distribution of these aerosol components. Water can comprise a significant portion of atmospheric aerosols under conditions of high relative humidity, whereas under conditions of sufficiently low relative humidity atmospheric aerosols tend to be dry. The deliquescence point is the relative humidity where the aerosol goes from a solid dry phase to an aqueous or mixed solid-aqueous phase. In this thesis I derive the temperature dependence of the deliquescence point and prove that in multicomponent solutions the deliquescence point is lower than for corresponding single component solutions. These theories of the transport, thermodynamic, and deliquescent properties of atmospheric aerosols are integrated into an aerosol inorganics model, AIM. The predictions of AIM compare well to fundamental thermodynamic measurements. Comparison of the prediction of AIM to those of other aerosol equilibrium models shows substantial disagreement in the predicted water content at lower relative humidities. The disagreement is due the improved treatment in AIM of the deliquescence properties of multicomponent solutions. In the summer and fall of 1987 the California Air Resources Board conducted the Southern California Air Quality Study, SCAQS, during which atmospheric aerosols were measured in Los Angeles. The size and composition of the aerosol and the concentrations of their gas phase counterparts were measured. When the

  9. Evaluation of the Moderate Resolution Imaging Spectroradiometer aerosol products at two Aerosol Robotic Network stations in China

    NASA Astrophysics Data System (ADS)

    Mi, Wen; Li, Zhanqing; Xia, Xiangao; Holben, Brent; Levy, Robert; Zhao, Fengsheng; Chen, Hongbin; Cribb, Maureen

    2007-11-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products have been used to address aerosol climatic issues in many parts of the world, but their quality has yet to be determined over China. This paper presents a thorough evaluation of aerosol optical depth (AOD) data retrieved from MODIS collections 4 (C004) and 5 (C005) at two AERONET sites in northern and southeastern China. Established under the aegis of the East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE) project, the two sites, Xianghe and Taihu, have distinct ecosystems and climate regimes, resulting in differences in retrieval performance. At the rural northeastern site (Xianghe), MODIS C004 retrievals generally overestimate AOD at 550 nm during clean days, with the largest errors occurring during winter. In the warm and humid regions of southeastern China (Taihu), MODIS C004 retrievals overestimate AOD throughout the year. The systematic error at Xianghe is primarily due to the fixed surface reflectance ratio, while as the error at Taihu is mainly caused by the choice of the single scattering albedo (SSA) for the fine model aerosols. Both problems are alleviated considerably in the C005. The comparisons between C005 retrievals and AERONET data show much higher correlation coefficient, lower offset and a slope closer to unity. Also, the variability of AOD retrieval among neighboring pixels is reduced by several factors. The strong overestimation problem at small AOD values was fixed by using dynamic reflectance ratios that vary with the vegetation index and scattering angle. However, significant uncertainties remain because of the use of highly simplified aerosol models.

  10. Lidar Observations of Arctic Aerosols and Clouds in the Free Troposphere for More than Fifteen Months over Svalbard

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Shiraishi, K.; Iwasaki, S.; Shiobara, M.; Takano, T.

    2015-12-01

    The information on spatial distributions and microphysical properties of aerosols and clouds is crucial for the studies on their direct and indirect impacts on Arctic climate. Observations of tropospheric aerosols and clouds by Mie/depolarization lidar have been made for more than a year at Ny-Ålesund (79◌N, 12◌E) since March 2014 by using a pulsed Nd:YAG laser and its wavelengths of 1064 nm and 532 nm. The backscattering coefficients at these two wavelengths, and depolarization ratio at 532nm of aerosols and clouds are obtained by the lidar observations. Figures show the results of aerosols for more than a year. Fig. 1 shows the mean backscattering coefficient of aerosols (BSC) at 532 nm, and Fig. 2 shows mean particle depolarization ratio of aerosols (PDR) at 532 nm in 1 km intervals (0.4 km for the lowest height interval) to 5 km in altitude since March 2014 to May 2015. There is a maximum in backscattering coefficient at spring as indicated by previous studies on Arctic aerosols. In addition, there is another maximum at autumn in depolarization ratio and in color ratio, or the ratio of BSC at 1064 nm to BSC at 532 nm.

  11. International Cooperative for Aerosol Prediction Workshop on Aerosol Forecast Verification

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.

    2011-01-01

    The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.

  12. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  13. Measurement of contemporary and fossil carbon contents of PM 2.5 aerosols: results from Turtleback Dome, Yosemite National Park

    SciTech Connect

    Bench, G

    2003-10-17

    The impact of aerosol particulate matter of mean mass aerodynamic diameter {le} 2.5 {proportional_to}m (PM 2.5 aerosols), on health, visibility, and compliance with EPA's regional haze regulations is a growing concern. Techniques that can help better characterize particulate matter are required to better understand the constituents, causes and sources of PM 2.5 aerosols. Measurement of the {sup 14}C/C ratio of the PM 2.5 aerosols, the absence of {sup 14}C in fossil carbon materials and the known {sup 14}C/C levels in contemporary carbon materials allows use of a two-component model to derive contemporary and fossil carbon contents of the particulate matter. Such data can be used to estimate the relative contributions of fossil fuels and biogenic aerosols to the total aerosol loading. Here, the methodology for performing such an assessment using total suspended particulate Hi-vol aerosol samplers to collect PM 2.5 aerosols on quartz fiber filters and the technique of accelerator mass spectrometry to measure {sup 14}C/C ratios is presented and illustrated using PM 2.5 aerosols collected at Yosemite National Park.

  14. Regional aerosol properties: Comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS

    NASA Astrophysics Data System (ADS)

    Quinn, Patricia K.; Bates, Timothy S.

    2005-07-01

    Means and variability of aerosol chemical composition and optical properties are compared for the first and second Aerosol Characterization Experiments (ACE 1 and ACE 2), a cruise across the Atlantic (Aerosols99), the Indian Ocean Experiment (INDOEX), the Asian Aerosol Characterization Experiment (ACE Asia), the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX), and the New England Air Quality Study (NEAQS). These experiments were focused either on the remote marine atmosphere (ACE 1) or areas downwind of continental aerosol source regions including western Europe, North America, Africa, India, and Asia. Presented here are size-segregated concentrations of aerosol mass, sea salt, non-sea-salt (nss) SO4=, NH4+, NO3-, dust, organic carbon (OC), elemental carbon (EC), and nss K+, as well as mass ratios that are commonly used to identify aerosol sources and to assess aerosol processing (Cl- to Na+, OC to nss SO4=, EC to total carbon (TC), EC to nss SO4=, nss K+ to EC, Fe to Al, and Si to Al). Optical properties that are compared include size-segregated scattering, backscattering, and absorption coefficients, and single-scattering albedo at 550 nm. Size-segregated mass scattering and mass absorption efficiencies for the total aerosol and mass extinction efficiencies for the dominant chemical components also are compared. In addition, we present the contribution to light extinction by the dominant chemical components for each region. All data are based on shipboard measurements performed at a relative humidity of 55 ± 5%. Scattering coefficients and single-scattering albedos also are reported at ambient relative humidity (RH) using published values of f(RH). Finally, aerosol optical depths from each region are compared. Identical sampling protocols were used in all experiments in order to eliminate sampling biases and to make the data directly comparable. Major findings include (1) nss SO4= makes up only 16 to 46% of the submicron aerosol mass

  15. Near-highway aerosol and gas-phase measurements in a high-diesel environment

    NASA Astrophysics Data System (ADS)

    DeWitt, H. L.; Hellebust, S.; Temime-Roussel, B.; Ravier, S.; Polo, L.; Jacob, V.; Buisson, C.; Charron, A.; André, M.; Pasquier, A.; Besombes, J. L.; Jaffrezo, J. L.; Wortham, H.; Marchand, N.

    2015-04-01

    Diesel-powered passenger cars currently outnumber gasoline-powered cars in many countries, particularly in Europe. In France, diesel cars represented 61% of light duty vehicles in 2011 and this percentage is still increasing (French Environment and Energy Management Agency, ADEME). As part of the September 2011 joint PM-DRIVE (Particulate Matter - DiRect and Indirect on-road Vehicular Emissions) and MOCOPO (Measuring and mOdeling traffic COngestion and POllution) field campaign, the concentration and high-resolution chemical composition of aerosols and volatile organic carbon species were measured adjacent to a major urban highway south of Grenoble, France. Alongside these atmospheric measurements, detailed traffic data were collected from nearby traffic cameras and loop detectors, which allowed the vehicle type, traffic concentration, and traffic speed to be quantified. Six aerosol age and source profiles were resolved using the positive matrix factorization model on real-time high-resolution aerosol mass spectra. These six aerosol source/age categories included a hydrocarbon-like organic aerosol (HOA) commonly associated with primary vehicular emissions, a nitrogen-containing aerosol with a diurnal pattern similar to that of HOA, oxidized organic aerosol (OOA), and biomass burning aerosol. While quantitatively separating the influence of diesel from that of gasoline proved impossible, a low HOA : black carbon ratio, similar to that measured in other high-diesel environments, and high levels of NOx, also indicative of diesel emissions, were observed. Although the measurement site was located next to a large source of primary emissions, which are typically found to have low oxygen incorporation, OOA was found to comprise the majority of the measured organic aerosol, and isotopic analysis showed that the measured OOA contained mainly modern carbon, not fossil-derived carbon. Thus, even in this heavily vehicular-emission-impacted environment, photochemical processes

  16. Airborne LIDAR Measurements of Aerosol and Ozone Above the Alberta Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Aggarwal, M.; Whiteway, J. A.; Seabrook, J.; Gray, L. H.

    2014-12-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. The field campaign was carried out with a total of five flights out of Fort McMurray, Alberta during the period between August 22 and August 26, 2013. Significant amounts of aerosol were observed within the boundary layer, up to a height of 1.6 km, but the ozone concentration remained at or below background levels. On August 24th the lidar observed a separated layer of aerosol above the boundary layer, at a height of 1.8 km, in which the ozone mixing ratio increased to 70 ppbv. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, in the pollution from the oil sands industry, the measured ozone mixing ratio was lower than the background levels (≤35 ppbv).

  17. Atmospheric aerosol characterization during Saharan dust outbreaks at Naples EARLINET station

    NASA Astrophysics Data System (ADS)

    Pisani, Gianluca; Armenante, Mario; Boselli, Antonella; Frontoso, Maria Grazia; Spinelli, Nicola; Wang, Xuan

    2007-10-01

    The optical properties and the spatial distribution of the tropospheric aerosols over Naples under Saharan dust outbreaks conditions have been studied by means of lidar measurements performed between May 2000 and August 2003 in the frame of the EARLINET project. Climatological analysis of sand plume has been done by comparing normal and dust affected conditions. Results in terms of backscattering and extinction coefficient as well as their integrated quantities show that the aerosol load from the ground level up to 2 Km during Saharan dust transport events is almost the same of normal conditions. This is probably due to the relevant widespread of local aerosol sources, such as vehicular traffic, industrial activities, etc. Nevertheless, when sand outbreaks occur, the extinction to backscattering ratio, i.e. the lidar ratio, clearly shows that the aerosol type in the lowest atmospheric layer changes. Moreover, Saharan dust transport events strong increase both integrated backscatter and optical dept above 2 km.

  18. AERONET: The Aerosol Robotic Network

    DOE Data Explorer

    The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and is greatly expanded by collaborators from national agencies, institutes, universities, individual scientists, and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, mircrophysical and radiative properties for aerosol research and characterization, validation of satellite retrievals, and synergism with other databases. The network imposes standardization of instruments, calibration, processing and distribution. AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  19. Multidecadal solar radiation trends in the United States and Germany and direct tropospheric aerosol forcing

    NASA Astrophysics Data System (ADS)

    Liepert, Beate; Tegen, Ina

    2002-06-01

    In recent studies, anthropogenic aerosols have been recognized as important radiative forcing factors of climate because of their ability to scatter and/or absorb sunlight. At clear-sky conditions the direct aerosol forcing at ground is negative and implies less solar heating of the surface because of aerosols. In this study, an intensified direct aerosol forcing of -7 to -8 W/m2 has been detected in the United States for the interval from 1960 to 1990. In Germany a weakened aerosol forcing of +3 W/m2 was observed during the same time period. Even though the aerosol forcing is stronger in the eastern United States compared to the western United States, the positive trend is almost equal. We attained these results by scrutinizing clear-sky global solar radiation recordings for these regions and this time period. Additionally, the diurnal cycle and the direct to diffuse ratio of solar radiation were used for constraining the observed trends. Increased absorption and declined light scattering are presumably responsible for the intensified direct aerosol forcing in the United States. While at the same time in Germany, both aerosol absorption and scattering must have declined to explain the parallel weakened aerosol forcing and the increased direct/diffuse ratio. To estimate the possible anthropogenic portion of these observed changes, we compared the observational results with modeled aerosol forcing scenarios retrieved from the Goddard Institute for Space Studies general circulation model (GISS GCM). Modeled surface solar radiation, aerosol optical thickness, and single-scattering albedo are derived from emission trends of anthropogenic sulfate and carbonaceous aerosols. The emission distributions are calculated from fossil fuel consumption databases. On the basis of these simulations we suspect that the declining trend of sulfate burden over Germany between 1960 and 1990 was stronger than estimated with the model. Over the United States the simulated small increase

  20. Supercooling versus crystallization of nitric acid/water aerosols

    SciTech Connect

    Disselkamp, R.S.; Anthony, S.E.; Tolbert, M.A.

    1995-12-31

    Polar Stratospheric Clouds (PSCs) have been implicated in Antarctic and Arctic ozone loss. These clouds are comprised of small particles (diameter {approximately}1 {mu}m) and play two essential roles in perturbing the chemistry of ozone during winter. First, PSCs promote heterogeneous reactions which activate chlorine. Second, PSCs permanently remove nitrogen oxides from the stratosphere due to particle sedimentation. Both PSC reactivity and denitrification depend on the particle phase and composition. In my talk, I will discuss laboratory modeling of PSCs. FTIR spectroscopy was used to investigate the phase and composition of nitric acid/water aerosols at temperatures from 190 to 229 K. Static aerosol samples were generated and probed spectroscopically for time periods of up to 100 minutes. For aerosols containing a molar ratio of 1:1 and 3:1 H{sub 2}O:HNO{sub 3}, extensive supercooling was observed with no crystallization in 100 minutes. However, aerosols containing a molar ratio of 2:1 H{sub 2}O:HNO{sub 3} crystallized readily to nitric acid dehydrate (NAD). The rate of NAD crystallization was found to increase with increasing temperature and will be discussed.

  1. Mediterranean aerosol typing by integrating three-wavelength lidar and sun photometer measurements.

    PubMed

    Perrone, M R; Burlizzi, P

    2016-07-01

    Backscatter lidar measurements at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sun photometer measurements collocated in space and time were used to retrieve the vertical profiles of intensive and extensive aerosol parameters. Then, the vertical profiles of the Ångström coefficients for different wavelength pairs (Å(λ1, λ2, z)), the color ratio (CR(z)), the fine mode fraction (η(z)) at 532 nm, and the fine modal radius (R f (z)), which represent aerosol characteristic properties independent from the aerosol load, were used for typing the aerosol over the Central Mediterranean. The ability of the Ångström coefficients to identify the main aerosol types affecting the Central Mediterranean with the support of the backward trajectory analysis was first demonstrated. Three main aerosol types, which were designed as continental-polluted (CP), marine-polluted (MP), and desert-polluted (DP), were identified. We found that both the variability range and the vertical profile structure of the tested aerosol intensive parameters varied with the aerosol type. The variability range and the altitude dependence of the aerosol extinction coefficients at 355, 532, and 1064 nm, respectively, also varied with the identified aerosol types even if they are extensive aerosol parameters. DP, MP, and CP aerosols were characterized by the Å(532, 1064 nm) mean values ± 1 standard deviation equal to 0.5 ± 0.2, 1.1 ± 0.2, 1.6 ± 0.2, respectively. η(%) mean values ± 1SD were equal to 50 ± 10, 73 ± 7, and 86 ± 6 for DP, MP, and CP aerosols, respectively. The R f and CR mean values ± 1SD were equal to 0.16 ± 0.05 μm and 1.3 ± 0.3, respectively, for DP aerosols; to 0.12 ± 0.03 μm and 1.8 ± 0.4, respectively, for MP aerosols; and to 0.11 ± 0.02 μm and 1.7 ± 0.4, respectively, for CP aerosols. CP and DP aerosols were on average responsible for greater AOT and LR values, but

  2. Carbon isotope based aerosol source apportionment in Eastern European city Vilnius

    NASA Astrophysics Data System (ADS)

    Garbaras, Andrius; Sapolaite, Justina; Garbariene, Inga; Ezerinskis, Zilvinas; Pocevicius, Matas; Krikscikas, Laurynas; Jacevicius, Sarunas; Plukis, Arturas; Remeikis, Vidmantas

    2016-04-01

    We present carbonaceous aerosol source apportionment results in Eastern European city Vilnius (capital of Lithuania) using stable carbon isotope ratio (δ13C) and radiocarbon (14C) methods. The aerosol sampling campaigns were performed in 2014-2016 winter seasons in Vilnius. PM1 particles were collected on quartz fiber filters using high volume sampler, while PM10 and size segregated aerosol particles were collected using low volume and MOUDI 128 cascade impactor respectively. δ13C values were measured with EA-IRMS system while radiocarbon analysis was performed using Single Stage Accelerator Mass Spectrometer (SSAMS). For the AMS analysis, filters (or aluminium foils from cascade impactor) were graphitized using Automated Graphitization Equipment. It was estimated that dominant carbonaceous aerosol source in Vilnius was of biogenic/biomass origin (60-90 %). Fossil fuel sources accounted for up to 23 % of total carbon fraction. Combining stable carbon and radiocarbon isotope analysis we were able to quantify the amount of coal derived aerosol particles. The contribution of coal burning emissions were up to 14 %. We will present the applicability of dual carbon (13C and 14C) isotope ratio method for the aerosol source apportionment in different regions of Europe, also the perspectives of using MOUDI cascade impactors to make source apportionment in size segregated aerosol particles.

  3. Bacteria and fungi in aerosols generated by two different types of wastewater treatment plants.

    PubMed

    Bauer, H; Fuerhacker, M; Zibuschka, F; Schmid, H; Puxbaum, H

    2002-09-01

    Raw wastewater is a potential carrier of pathogenic microorganisms and may pose a health risk when pathogenic microorganisms become aerosolized during aeration. Two different types of wastewater treatment plants were investigated, and the amounts of cultivable bacteria and fungi were measured in the emitted aerosols. Average concentrations of 17,000 CFU m(-3) of mesophilic, 2,100 CFU m(-3) of TSA-SB bacteria (bacteria associated with certain waterborne virulence factors), 1700 CFU m(-3) of mesophilic and 45 CFU m(-3) of thermotolerant fungi, were found in the aerosol emitted by the aeration tank of the activated sludge plant. In the aerosol of the fixed-film reactor 3000 CFU m(-3) mesophilic and 730CFUm(-3) TSA-SB bacteria, and 180 CFUm(-3) mesophilic and 14 CFU m(-3) thermotolerant fungi were measured. The specific emissions per population equivalent between the two types of treatment plants differed by two orders of magnitude. The microbial flux based on the open water surface area of the two treatment plants was similar. The aerosolization ratios of cultivable bacteria (expressed as CFU m(-3) aerosol/m(-3) wastewater) ranged between 8.4 x 10(-11) and 4.9 x 10(-9). The aerosolization ratio of fungi was one to three orders of magnitude higher and a significant difference between the two types of treatment plants could be observed.

  4. Determination of aerosol yields from 3-methylcatechol and 4-methylcatechol ozonolysis in a simulation chamber

    NASA Astrophysics Data System (ADS)

    Coeur-Tourneur, Cécile; Foulon, Valentine; Laréal, Michel

    2010-02-01

    Secondary Organic Aerosol (SOA) formation during the ozonolysis of 3-methylcatechol (3-methyl-1,2-dihydroxybenzene) and 4-methylcatechol (3-methyl-1,2-dihydroxybenzene) was investigated using a simulation chamber (8 m 3) at atmospheric pressure, room temperature (294 ± 2 K) and low relative humidity (5-10%). The initial mixing ratios were as follows (in ppb): 3-methylcatechol (194-1059), 4-methylcatechol (204-1188) and ozone (93-531). The ozone and methylcatechol concentrations were followed by UV photometry and GC-FID (Gas chromatography-Flame ionization detector), respectively and the aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer). The SOA yields (Y) were determined as the ratio of the suspended aerosol mass corrected for wall losses (M o) to the total reacted methylcatechol concentrations assuming a particle density of 1.4 g cm -3. The aerosol formation yield increases as the initial methylcatechol concentration increases, and leads to aerosol yields ranging from 32% to 67% and from 30% to 64% for 3-methylcatechol and 4-methylcatechol, respectively. Y is a strong function of M o and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. These data are comparable to those published in a recent study on secondary organic aerosol formation from catechol ozonolysis. To our knowledge, this work represents the first investigation of SOA formation from the ozone reaction with methylcatechols.

  5. Secondary Organic Aerosol formation from the gas-phase ozonolysis of 3-methylcatechol and 4-methylcatechol

    NASA Astrophysics Data System (ADS)

    Coeur-Tourneur, Cécile; Foulon, Valentine; Laréal, Michel; Cassez, Andy; Zhao, Weixiong

    2010-05-01

    Secondary Organic Aerosol (SOA) formation during the ozonolysis of 3-methylcatechol (3-methyl-1,2-dihydroxybenzene) and 4-methylcatechol (3-methyl-1,2-dihydroxybenzene) was investigated using a simulation chamber (8 m3) at atmospheric pressure, room temperature (294 ± 2 K) and low relative humidity (5-10%). The initial mixing ratios were as follows (in ppb): 3-methylcatechol (194-1059), 4-methylcatechol (204-1188) and ozone (93-531). The ozone and methylcatechol concentrations were followed by UV photometry and GC-FID (Gas Chromatography - Flame ionization detector), respectively and the aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer). The SOA yields (Y) were determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted methylcatechol concentrations assuming a particle density of 1.4 g cm-3. The aerosol formation yield increases as the initial methylcatechol concentration increases, and leads to aerosol yields ranging from 32% to 67% and from 30% to 64% for 3-methylcatechol and 4-methylcatechol, respectively. Y is a strong function of Mo and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. These data are comparable to those published in a recent study on secondary organic aerosol formation from catechol ozonolysis. To our knowledge, this work represents the first investigation of SOA formation from the ozone reaction with methylcatechols.

  6. SAGE aerosol measurements. Volume 1: February 21, 1979 to December 31, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1985-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched on February 18, 1979, provides profiles of aerosol extinction, ozone concentration, and nitrogen dioxide concentration between about 80 N and 80 S. Zonal averages, separated into sunrise and sunset events, and seasonal averages of the aerosol extinction at 1.00 microns and 0.45 microns ratios of the aerosol extinction to the molecular extinction at 1.00 microns, and ratios of the aerosol extinction at 0.45 microns to the aerosol extinction at 1.00 microns are given. The averages for 1979 are shown in tables and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by the National Oceanic and Atmospheric Administration (NOAA) for the time and location of each SAGE measurement are averaged and shown in a similar format. Typical values of the peak aerosol extinction were 0.0001 to 0.0002 km at 1.00 microns depth values for the 1.00 microns channel varied between 0.001 and 0.002 over all latitudes.

  7. Methodology for the passive detection and discrimination of chemical and biological aerosols

    NASA Astrophysics Data System (ADS)

    Marinelli, William J.; Shokhirev, Kirill N.; Konno, Daisei; Rossi, David C.; Richardson, Martin

    2013-05-01

    The standoff detection and discrimination of aerosolized biological and chemical agents has traditionally been addressed through LIDAR approaches, but sensor systems using these methods have yet to be deployed. We discuss the development and testing of an approach to detect these aerosols using the deployed base of passive infrared hyperspectral sensors used for chemical vapor detection. The detection of aerosols requires the inclusion of down welling sky and up welling ground radiation in the description of the radiative transfer process. The wavelength and size dependent ratio of absorption to scattering provides much of the discrimination capability. The approach to the detection of aerosols utilizes much of the same phenomenology employed in vapor detection; however, the sensor system must acquire information on non-line-of-sight sources of radiation contributing to the scattering process. We describe the general methodology developed to detect chemical or biological aerosols, including justifications for the simplifying assumptions that enable the development of a real-time sensor system. Mie scattering calculations, aerosol size distribution dependence, and the angular dependence of the scattering on the aerosol signature will be discussed. This methodology will then be applied to two test cases: the ground level release of a biological aerosol (BG) and a nonbiological confuser (kaolin clay) as well as the debris field resulting from the intercept of a cruise missile carrying a thickened VX warhead. A field measurement, conducted at the Utah Test and Training Range will be used to illustrate the issues associated with the use of the method.

  8. Secondary Organic Aerosol formation from the gas-phase reaction of catechol with ozone

    NASA Astrophysics Data System (ADS)

    Coeur-Tourneur, C.; Tomas, A.; Guilloteau, A.; Henry, F.; Ledoux, F.; Visez, N.; Riffault, V.; Wenger, J. C.; Bedjanian, Y.; Foulon, V.

    2009-04-01

    The formation of secondary organic aerosol from the gas-phase reaction of catechol (1,2-dihydroxybenzene) with ozone has been studied in two smog chambers (at the LPCA in France and at the CRAC in Ireland). Aerosol production was monitored using a scanning mobility particle sizer. The overall organic aerosol yield (Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted catechol concentrations, assuming a particle density of 1.4 g cm-3. Analysis of the data clearly shows that Y is a strong function of Mo and that secondary organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. The aerosol formation is affected by the initial catechol concentration, which leads to aerosol yields ranging from 17% to 86%. The aerosol yields determined in the LPCA and CRAC smog chambers were comparable and were also in accordance with those determined in a previous study performed in EUPHORE (EUropean PHOto REactor, Spain).

  9. Two years of free-tropospheric aerosol layers observed over Portugal by lidar

    NASA Astrophysics Data System (ADS)

    PreißLer, J.; Wagner, F.; Guerrero-Rascado, J. L.; Silva, A. M.

    2013-05-01

    Multi-wavelength Raman light detection and ranging (lidar) observations were analyzed, which were performed in Évora, Portugal, during more than 2 years on a regular basis in the framework of the European Aerosol Research Lidar Network (EARLINET). An aerosol characterization in terms of the lidar ratios at 355 and 532 nm and the extinction and backscatter related Ångström exponents is presented. Aerosol layers in the free troposphere were classified according to their origin. Clear differences in the intensive optical properties were found for layers of mineral dust from the Sahara and from Asia, of anthropogenic aerosol from Europe and from North America, as well as of biomass burning smoke from the Iberian Peninsula and from North America, respectively. In general, the mean Ångström exponents of aerosol layers of the same type, but from closer source regions, were smaller than those from aerosol layers transported over a longer distance. This hints at the deposition of large particles along the transportation path, especially for anthropogenic aerosol and mineral dust. Besides, the seasonal behavior of aerosol in the free troposphere over Évora was studied. Seventy-three percent of the detected layers were observed during spring and summer. On average, the layers were highest in summer with an overall mean layer height of (3.8 ±1.9) km above sea level (asl), and lowest in winter with (2.3 ±0.9) km asl.

  10. Long-range transport of forest fire aerosol observed by Raman lidar

    NASA Astrophysics Data System (ADS)

    Vaughan, Geraint; Ricketts, Hugo; Bradley, Zoe

    2016-04-01

    Over the summer of 2014 and 2015 the Raman lidar system at Aberystwyth observed frequent occurrences of aerosol layers in the free troposphere, layers which are not observed at other times of the year. The Raman lidar can measure the optical depth and lidar ratio of these layers, giving an indication of their microsphysical properties. A summary of the observations will be presented, together with evidence that the aerosol originates from forest fires over North America. The hemispheric spread of absorbing aerosol, at a time of year when the northern latitudes are illuminated by the Sun, suggests that there may be implications for the Earth's radiation budget.

  11. Composition and Characteristics of Aerosols in the Southern High Plains of Texas (USA)

    SciTech Connect

    Gill, Thomas E.; Stout, John E.; Peinado, Porfirio

    2009-03-10

    Aerosol samples on polycarbonate filters were collected daily for several years in the Southern High Plains region of western Texas. Selected samples representing a variety of size modes, locations, and air quality conditions were analyzed by PIXE. Silicon and other crustal elements dominated during dust storms and in the coarse mode; sulfur dominated during anthropogenic pollution episodes and in the fine mode. A mixture of both aerosol types was present even during 'clear' conditions. The Al/Si ratio in dust events increases with wind speed. These data provide an initial assessment of aerosol chemistry in the West Texas plains.

  12. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  13. eDPS Aerosol Collection

    SciTech Connect

    Venzie, J.

    2015-10-13

    The eDPS Aerosol Collection project studies the fundamental physics of electrostatic aerosol collection for national security applications. The interpretation of aerosol data requires understanding and correcting for biases introduced from particle genesis through collection and analysis. The research and development undertaken in this project provides the basis for both the statistical correction of existing equipment and techniques; as well as, the development of new collectors and analytical techniques designed to minimize unwanted biases while improving the efficiency of locating and measuring individual particles of interest.

  14. Lidar observations of stratospheric aerosol over Mauna Loa Observatory, 1974 - 1981

    NASA Astrophysics Data System (ADS)

    Deluisi, J.; Defoor, T.; Coulson, K.; Fernald, F.; Thorne, K.

    1984-08-01

    One hundred seventy-three lidar profiles obtained during the year 1974 to 1981, inclusively are presented. Backscattering ratios are displayed in graphical form for 1-km intervals. Aerosol backscattering cross section, Rayleigh backscattering cross section, backscattering ratio and integrated optical depth are tabulated, also for 1-km intervals. The data reduction computer program is included.

  15. Organic Aerosols in Rural and Remote Atmospheric Environments: Insights from Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Jimenez, J.; Ulbrich, I.; Dunlea, E.; Decarlo, P.; Huffman, A.; Allan, J.; Coe, H.; Alfarra, R.; Canagaratna, M.; Onasch, T.; Jayne, J.; Worsnop, D.; Takami, A.; Miyoshi, T.; Shimono, A.; Hatakeyama, S.; Weimer, S.; Demerjian, K.; Drewnick, F.; Schneider, J.; Middlebrook, A.; Bahreini, R.; Cotrell, L.; Griffin, R.; Leaitch, R.; Li, S.; Hayden, K.; Rautiainen, J.

    2006-12-01

    Organic matter usually accounts for a large fraction of the fine particle mass in rural and remote atmospheres. However, little is known about the sources and properties of this material. Here we report findings on the characteristics and the major types of organic aerosols (OA) in urban downwind, high elevation, forested, and marine atmospheres based on analyses of more than 20 highly time resolved AMS datasets sampled from various locations in the mid-latitude Northern Hemisphere. Organic aerosol components are extracted from these datasets using a custom multiple component mass spectral analysis technique and the Positive Matrix Factorization (PMF) method. These components are evaluated according to their extracted mass spectra and correlations to aerosol species, such as sulfate, nitrate, and elemental carbon, and gas-phase tracer compounds, such as CO and NOx. We have identified a hydrocarbon-like organic aerosol (HOA) component similar in mass spectra to the hydrocarbon substances observed at urban locations. We have also identified several oxygenated OA (OOA) components that show different fragmentation patterns and oxygen to carbon ratios in their mass spectra. Two OOA components a highly oxygenated that has mass spectrum resembling that of fulvic acid (a model compound representative for highly processed/oxidized organics in the environment) and a less oxygenated OOA component, whose spectrum is dominated with ions that are mainly associated with carbonyls and alcohols, are very frequently observed at various rural/remote sites. The oxygenated OOA component is more prevalent at downwind sites influenced by urban transport and the less oxygenated shows correlation to biogenic chamber OA at some locations. Compared to the total OOA concentration, HOA is generally very small and accounts for < 10% of the total OA mass at rural/remote sites. The comparisons between the concentrations of HOA and primary OA (POA) that would be predicted according to inert

  16. Novel Approach for Evaluating Secondary Organic Aerosol from Aromatic Hydrocarbons: Unified Method for Predicting Aerosol Composition and Formation.

    PubMed

    Li, Lijie; Tang, Ping; Nakao, Shunsuke; Kacarab, Mary; Cocker, David R

    2016-06-21

    Innovative secondary organic aerosol (SOA) composition analysis methods normalizing aerosol yield and chemical composition on an aromatic ring basis are developed and utilized to explore aerosol formation from oxidation of aromatic hydrocarbons. SOA yield and chemical composition are revisited using 15 years of University of California, Riverside/CE-CERT environmental chamber data on 17 aromatic hydrocarbons with HC:NO ranging from 11.1 to 171 ppbC:ppb. SOA yield is redefined in this work by normalizing the molecular weight of all aromatic precursors to the molecular weight of the aromatic ring [Formula: see text], where i is the aromatic hydrocarbon precursor. The yield normalization process demonstrates that the amount of aromatic rings present is a more significant driver of aerosol formation than the vapor pressure of the precursor aromatic. Yield normalization also provided a basis to evaluate isomer impacts on SOA formation. Further, SOA elemental composition is explored relative to the aromatic ring rather than on a classical mole basis. Generally, four oxygens per aromatic ring are observed in SOA, regardless of the alkyl substitutes attached to the ring. Besides the observed SOA oxygen to ring ratio (O/R ∼ 4), a hydrogen to ring ratio (H/R) of 6 + 2n is observed, where n is the number of nonaromatic carbons. Normalization of yield and composition to the aromatic ring clearly demonstrates the greater significance of aromatic ring carbons compared with alkyl carbon substituents in determining SOA formation and composition. PMID:27177154

  17. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  18. Stratospheric aerosol geoengineering

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2015-03-01

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5-10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  19. Aerosols over Eastern Asia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Sea-viewing Wide Field-of-view Sensor (SeaWiFS) image of eastern Asia from October 14, 2001, shows large amounts of aerosol in the air. A few possible point sources of smoke, probably fires, are visible north of the Amur River at the very top of the image. One of the larger of these plumes can be seen down river of the confluence of the Songhua and Amur rivers. At lower left, the Yangtze River plume in the East China Sea is also very prominent. Sediment suspended in the ocean water is quite brown near the shore, but becomes much greener as it diffuses into the water. The increasing greenness of the river plume is probably an indication of enhanced phytoplankton growth driven by the nutrients in the river runoff. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  20. Stratospheric aerosol geoengineering

    SciTech Connect

    Robock, Alan

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  1. Aerosol lidar ``M4``

    SciTech Connect

    Shelevoy, C.D.; Andreev, Y.M. |

    1994-12-31

    Small carrying aerosol lidar in which is used small copper vapor laser ``Malachite`` as source of sounding optical pulses is described. The advantages of metal vapor laser and photon counting mode in acquisition system of lidar gave ability to get record results: when lidar has dimensions (1 x .6 x .3 m) and weight (65 kg), it provides the sounding of air industrial pollutions at up to 20 km range in scanning sector 90{degree}. Power feed is less than 800 Wt. Lidar can be disposed as stationary so on the car, helicopter, light plane. Results of location of smoke tails and city smog in situ experiments are cited. Showed advantages of work of acquisition system in photon counting mode when dynamic range of a signal is up to six orders.

  2. Aerosol Transmission of Filoviruses

    PubMed Central

    Mekibib, Berhanu; Ariën, Kevin K.

    2016-01-01

    Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013–2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses. PMID:27223296

  3. Aerosol Transmission of Filoviruses.

    PubMed

    Mekibib, Berhanu; Ariën, Kevin K

    2016-01-01

    Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013-2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses. PMID:27223296

  4. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  5. Assessing aerosol indirect effect through ice clouds in CAM5

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Liu, Xiaohong; Yoon, Jin-Ho; Wang, Minghuai; Comstock, Jennifer M.; Barahona, Donifan; Kooperman, Gabriel

    2013-05-01

    Ice clouds play an important role in regulating the Earth's radiative budget and influencing the hydrological cycle. Aerosols can act as solution droplets or ice nuclei for ice crystal formation, thus affecting the physical properties of ice clouds. Because the related dynamical and microphysical processes happen at very small spatial and temporal scales, it is a great challenge to accurately represent them in global climate models. Consequently, the aerosol indirect effect through ice clouds (ice AIE) estimated by global climate models is associated with large uncertainties. In order to better understand these processes and improve ice cloud parameterization in the Community Atmospheric Model, version 5 (CAM5), we analyze in-situ measurements from various research campaigns, and use the derived statistical information to evaluate and constrain the model [1]. We also make use of new model capabilities (prescribed aerosols and nudging) to estimate the aerosol indirect effect through ice clouds, and quantify the uncertainties associated with ice nucleation processes. In this study, a new approach is applied to separate the impact of aerosols on warm and cold clouds by using the prescribed-aerosol capability in CAM5 [2]. This capability allows a single simulation to simultaneously include up to three aerosol fields: online calculated, as well as prescribed pre-industrial (PI) and present-day conditions (PD). In a set of sensitivity simulations, we use the same aerosol fields to drive droplet activation in warm clouds, and different (PD and PI) conditions for different components of the ice nucleation parameterization in pure ice clouds, so as to investigate various ice nucleation mechanisms in an isolated manner. We also applied nudging in our simulations, which helps to increase the signal-to-noise ratio in much shorter simulation period [3] and isolate the impact of aerosols on ice clouds from other factors, such as temperature and relative humidity change. The

  6. A New Stratospheric Aerosol Product from CALIPSO Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Kar, J.; Vaughan, M.; Trepte, C. R.; Winker, D. M.; Vernier, J. P.; Pitts, M. C.; Young, S. A.; Liu, Z.; Lucker, P.; Tackett, J. L.; Omar, A. H.

    2014-12-01

    Stratospheric aerosols are derived from precursor SO2 and OCS gases transported from the lower troposphere. Volcanic injections can also enhance aerosol loadings far above background levels. The latter can exert a significant influence on the Earth's radiation budget for major and even minor eruptions. Careful measurements are needed, therefore, to monitor the distribution and evolution of stratospheric aerosols for climate related studies. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been acquiring profile measurements of clouds and aerosols since 2006, leading to major advances in our understanding of tropospheric aerosol and cloud properties and the processes that control them. The CALIPSO products have also enabled new insights into polar stratospheric clouds and stratospheric aerosols. Vernier et al (2009,JGR,114,D00H10) reported on the construction of a modified CALIPSO lidar product that corrected minor artifacts with the original lidar calibration that affected stratospheric aerosol investigations. A significantly improved CALIPSO Lidar Version 4 Level 1 product has been recently released addressing these calibration issues and has resulted in enhanced signal levels and a highly stable record over the span of the mission. Based on this product, a new 3D gridded stratospheric CALIPSO data product is under development and being targeted for release in 2015. A key emphasis of this new product is to bridge the measurement gap between the SAGE II and SAGE III data record (1984-2005) and the start of measurements from the new SAGE III instrument to be deployed on the International Space Station in 2016. The primary parameters delivered in the CALIPSO stratospheric data products will be attenuated scattering ratio and aerosol extinction profiles, both averaged over one month intervals and binned into an equal angle grid of constant latitude and longitude with a vertical resolution of 900m. We will present the overall

  7. Aerosol Layering Characterization Near the Gobi Desert by a Double Polarization Lidar System

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Boselli, A.; Sannino, A.; Song, C.; Spinelli, N.; Wang, X.

    2016-06-01

    In order to carry out 4-D (space and time) analysis of the atmospheric aerosol distribution and to make a characterization of their properties and time evolution, a transportable multi-wavelength, Elastic/Raman scanning lidar system with angular scanning capability has been realized. The system uses a diode pumped Nd:YAG laser source, specifically designed for this device, and a receiving systems able to detect elastic signals at 355, 532 and 1064 nm and Raman signals at 386, 407 and 607 nm. It also allows to perform aerosol depolarization measurements at both 355nm and 532nm. A first measurement campaign has been carried out in Dunhuang, North-West of China, in the region of the Gobi desert with the aims to study and characterize desert dust at source. Optical properties of aerosol layers developing in the atmosphere have been analyzed and lidar data are discussed in terms of profiles of aerosol backscatter coefficient at 355nm, 532nm, aerosol extinction coefficient at 355nm, aerosol depolarization ratio at 355nm and 532nm and water vapor mixing ratio. Depolarization ratio measured simultaneously at two wavelengths allowed also to study its dependence on the wavelength.

  8. Global View of Aerosol Vertical Distributions from CALIPSO Lidar Measurements and GOCART Simulations: Regional and Seasonal Variations

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; Winker, David M.; Omar, Ali H.; Liu, Zhaoyan; Kittaka, Chieko; Diehl, Thomas

    2010-01-01

    This study examines seasonal variations of the vertical distribution of aerosols through a statistical analysis of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar observations from June 2006 to November 2007. A data-screening scheme is developed to attain good quality data in cloud-free conditions, and the polarization measurement is used to separate dust from non-dust aerosol. The CALIPSO aerosol observations are compared with aerosol simulations from the Goddard Chemistry Aerosol Radiation Transport (GOCART) model and aerosol optical depth (AOD) measurements from the MODerate resolution Imaging Spectroradiometer (MODIS). The CALIPSO observations of geographical patterns and seasonal variations of AOD are generally consistent with GOCART simulations and MODIS retrievals especially near source regions, while the magnitude of AOD shows large discrepancies in most regions. Both the CALIPSO observation and GOCART model show that the aerosol extinction scale heights in major dust and smoke source regions are generally higher than that in industrial pollution source regions. The CALIPSO aerosol lidar ratio also generally agrees with GOCART model within 30% on regional scales. Major differences between satellite observations and GOCART model are identified, including (1) an underestimate of aerosol extinction by GOCART over the Indian sub-continent, (2) much larger aerosol extinction calculated by GOCART than observed by CALIPSO in dust source regions, (3) much weaker in magnitude and more concentrated aerosol in the lower atmosphere in CALIPSO observation than GOCART model over transported areas in midlatitudes, and (4) consistently lower aerosol scale height by CALIPSO observation than GOCART model. Possible factors contributing to these differences are discussed.

  9. Background stratospheric aerosol reference model

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Wang, P.

    1989-01-01

    In this analysis, a reference background stratospheric aerosol optical model is developed based on the nearly global SAGE 1 satellite observations in the non-volcanic period from March 1979 to February 1980. Zonally averaged profiles of the 1.0 micron aerosol extinction for the tropics and the mid- and high-altitudes for both hemispheres are obtained and presented in graphical and tabulated form for the different seasons. In addition, analytic expressions for these seasonal global zonal means, as well as the yearly global mean, are determined according to a third order polynomial fit to the vertical profile data set. This proposed background stratospheric aerosol model can be useful in modeling studies of stratospheric aerosols and for simulations of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  10. Mycobacterial Aerosols and Respiratory Disease

    PubMed Central

    2003-01-01

    Environmental opportunistic mycobacteria, including Mycobacterium avium, M. terrae, and the new species M. immunogenum, have been implicated in outbreaks of hypersensitivity pneumonitis or respiratory problems in a wide variety of settings. One common feature of the outbreaks has been exposure to aerosols. Aerosols have been generated from metalworking fluid during machining and grinding operations as well as from indoor swimming pools, hot tubs, and water-damaged buildings. Environmental opportunistic mycobacteria are present in drinking water, resistant to disinfection, able to provoke inflammatory reactions, and readily aerosolized. In all outbreaks, the water sources of the aerosols were disinfected. Disinfection may select for the predominance and growth of mycobacteria. Therefore, mycobacteria may be responsible, in part, for many outbreaks of hypersensitivity pneumonitis and other respiratory problems in the workplace and home. PMID:12890314

  11. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Baldwin, B.; Pollack, J. B.; Summers, A.; Toon, O. B.; Sagan, C.; Van Camp, W.

    1976-01-01

    Generated primarily by volcanic explosions, a layer of submicron silicate particles and particles made of concentrated sulfuric acids solution is present in the stratosphere. Flights through the stratosphere may be a future source of stratospheric aerosols, since the effluent from supersonic transports contains sulfurous gases (which will be converted to H2SO4) while the exhaust from Space Shuttles contains tiny aluminum oxide particles. Global heat balance calculations have shown that the stratospheric aerosols have made important contributions to some climatic changes. In the present paper, accurate radiative transfer calculations of the globally-averaged surface temperature (T) are carried out to estimate the sensitivity of the climate to changes in the number of stratospheric aerosols. The results obtained for a specified model atmosphere, including a vertical profile of the aerosols, indicate that the climate is unlikely to be affected by supersonic transports and Space Shuttles, during the next decades.

  12. Satellite measurements of tropospheric aerosols

    NASA Technical Reports Server (NTRS)

    Griggs, M.

    1981-01-01

    This investigation uses LANDSAT 2 radiance data and ground-truth measurements of the aerosol optical thickness, obtained previously from five inland sites, to study the usefulness and limitations of the near infrared radiance over inland bodies of water. The linear relationship between LANDSAT 2 MSS7 and aerosol content found in this study can be used to estimate the aerosol content with a standard deviation of 0.42N. Analysis of the data for MSS6 and MSS7 suggest that the larger uncertainty is mostly due to water turbidity, with little contribution from the adjacency effect. The relationship found is best applied to determine an average aerosol content over a period of time at a given target, or an area average at a given time over several targets close together.

  13. Aerosol profiling by calibrated ceilometer data

    NASA Astrophysics Data System (ADS)

    Geiß, Alexander; Wiegner, Matthias

    2015-04-01

    Recently, networks of automated single-wavelength backscatter lidars ("ceilometers") were implemented, primarily by weather services. As a consequence, the potential of ceilometers to quantitatively determine the spatiotemporal distribution of atmospheric aerosols was investigated, to derive mixing layer heights for air quality studies and to assess optical properties. The main issues are the limited signal-to-noise ratio and the inherent problems of the calibration. We have studied several approaches for calibrating ceilometers, based on different numerical solutions and on auxiliary data of different remote sensing techniques. As a result, the backscatter coefficient can be determined with a relative accuracy of typically 10% and a time resolution in the order of 5 minutes. This parameter is used to estimate the mixing layer height by applying different techniques of averaging and pattern recognition. In this context, it is assumed that aerosols are a good tracer for the thermodynamic stratification of the troposphere. Our algorithm is fully automated and was tested for several commercially available ceilometers. For this purpose, a simplified version for non-calibrated ceilometers, based on the so called range corrected signal, was additionally developed. We used data of the CHM15k-x ceilometer (manufactured by Jenoptik) from more than 5 years of continuous operation by the LMU-MIM in Munich (Germany) to establish climatologies of mixing layer heights (MLH), cloud cover, cloud heights and vertical profiles of the backscatter coefficient. Among others, the mean diurnal cycle and the interannual variability of the MLH for different months were determined. Ceilometer derived MLH were also used to validate different parameterization of chemistry transport models and to validate forecasts of the dispersion of aerosol layers. For the latter applications backscatter coefficients are required. That means, a calibration of the ceilometers is mandatory.

  14. Hygroscopic Characteristics of Alkylaminium Carboxylate Aerosols.

    PubMed

    Gomez-Hernandez, Mario; McKeown, Megan; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Lavi, Avi; Rudich, Yinon; Collins, Don R; Zhang, Renyi

    2016-03-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity for a series of alkylaminium carboxylate aerosols have been measured using a hygroscopicity tandem differential mobility analyzer coupled to a condensation particle counter and a CCN counter. The particles, consisting of the mixtures of mono- (acetic, propanoic, p-toluic, and cis-pinonic acid) and dicarboxylic (oxalic, succinic, malic, adipic, and azelaic acid) acid with alkylamine (mono-, di-, and trimethylamines), represent those commonly found under diverse environmental conditions. The hygroscopicity parameter (κ) of the alkylaminium carboxylate aerosols was derived from the HGF and CCN results and theoretically calculated. The HGF at 90% RH is in the range of 1.3 to 1.8 for alkylaminium monocarboxylates and 1.1 to 2.2 for alkylaminium dicarboxylates, dependent on the molecular functionality (i.e., the carboxylic or OH functional group in organic acids and methyl substitution in alkylamines). The κ value for all alkylaminium carboxylates is in the range of 0.06-1.37 derived from the HGF measurements at 90% RH, 0.05-0.49 derived from the CCN measurements, and 0.22-0.66 theoretically calculated. The measured hygroscopicity of the alkylaminium carboxylates increases with decreasing acid to base ratio. The deliquescence point is apparent for several of the alkylaminium dicarboxylates but not for the alkylaminium monocarboxylates. Our results reveal that alkylaminium carboxylate aerosols exhibit distinct hygroscopic and deliquescent characteristics that are dependent on their molecular functionality, hence regulating their impacts on human health, air quality, and direct and indirect radiative forcing on climate. PMID:26794419

  15. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect

    SCHWARTZ, S.E.

    2005-09-01

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  16. Method for producing monodisperse aerosols

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  17. Aerosol radiative effects in the ultraviolet, visible, and near-infrared spectral ranges using long-term aerosol data series over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Mateos, D.; Antón, M.; Toledano, C.; Cachorro, V. E.; Alados-Arboledas, L.; Sorribas, M.; Costa, M. J.; Baldasano, J. M.

    2014-04-01

    A better understanding of the aerosol radiative properties is a crucial challenge for climate change studies. This study aims to provide a complete characterization of aerosol radiative effects in different spectral ranges within the shortwave (SW) solar spectrum. For this purpose, long-term datasets of aerosol properties from six AERONET stations located in the Iberian Peninsula (Southwestern Europe) are analyzed in term of climatology characterization and trends. Aerosol information is used as input to the libRadtran model in order to determine the aerosol radiative effect at the surface in the ultraviolet (AREUV), visible (AREVIS), near-infrared (ARENIR), and the entire SW range (ARESW) under cloud-free conditions. Over the whole Iberian Peninsula, aerosol radiative effects in the different spectral ranges are: -1.1 < AREUV < -0.7 W m-2, -5.7 < AREVIS < -3.8 W m-2, -2.8 < ARENIR < -1.7 W m-2, and -9.5 < ARESW < -6.1 W m-2. The four variables showed positive statistically significant trends between 2004 and 2012, e.g., ARESW increased +3.6 W m-2 per decade. This fact is linked to the decrease in the aerosol load, which presents a trend of -0.04 per unit of aerosol optical depth at 500 nm per decade, hence a reduction of aerosol effect on solar radiation at the surface is seen. Monthly means of ARE show a seasonal pattern with larger values in spring and summer. The aerosol forcing efficiency (AFE), ARE per unit of aerosol optical depth, is also evaluated in the four spectral ranges. AFE exhibits a dependence on single scattering albedo and a weaker one on Ångström exponent. AFE is larger (in absolute value) for small and absorbing particles. The contributions of the UV, VIS, and NIR ranges to the SW efficiency vary with the aerosol types. Aerosol size determines the fractions of AFEVIS/AFESW and AFENIR/AFESW. VIS range is the dominant region for all types, although non-absorbing large particles cause a more equal contribution of VIS and NIR intervals. The AFEUV

  18. Compression Ratio Adjuster

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1982-01-01

    New mechanism alters compression ratio of internal-combustion engine according to load so that engine operates at top fuel efficiency. Ordinary gasoline, diesel and gas engines with their fixed compression ratios are inefficient at partial load and at low-speed full load. Mechanism ensures engines operate as efficiently under these conditions as they do at highload and high speed.

  19. Offer/Acceptance Ratio.

    ERIC Educational Resources Information Center

    Collins, Mimi

    1997-01-01

    Explores how human resource professionals, with above average offer/acceptance ratios, streamline their recruitment efforts. Profiles company strategies with internships, internal promotion, cooperative education programs, and how to get candidates to accept offers. Also discusses how to use the offer/acceptance ratio as a measure of program…

  20. Detecting isotopic ratio outliers

    SciTech Connect

    Bayne, C.K.; Smith, D.H.

    1985-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs.

  1. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  2. Climate forcing by anthropogenic aerosols.

    PubMed

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  3. Climate Forcing by Anthropogenic Aerosols

    NASA Astrophysics Data System (ADS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  4. Passive Remote Sensing of Aerosols

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    Remote sensing of aerosol optical and microphysical properties got a resurgence in the 1970s when John Reagan and Ben Herman initiated a program to develop and implement a surface-based sunphotometer system to monitor spectral aerosol optical thickness at the University of Arizona. In this presentation I will review the state of the technology used to monitor aerosol optical and microphysical properties, including the determination of spectral aerosol optical thickness and total ozone content. This work continued with John Reagan developed a surface-based spectral flux radiometer to implement Ben Herman's idea to determine the imaginary part of the complex refractive index of aerosols using the recently developed diffuse-direct technique. Progress made both in surface-based instrumentation, inversion theory for analyzing such data, and in satellite observations of aerosol optical and microphysical properties will be reviewed to highlight the state of knowledge after 30 years of expanded capability and introduction of novel new capabilities, both from the ground and from spacecraft.

  5. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  6. On surface temperature, greenhouse gases, and aerosols: models and observations

    SciTech Connect

    Mitchell, J.F.B.; Davis, R.A.; Ingram, W.J.; Senior, C.A.

    1995-10-01

    The effect of changes in atmospheric carbon dioxide concentrations and sulphate aerosols on near-surface temperature is investigated using a version of the Hadley Centre atmospheric model coupled to a mixed layer ocean. The scattering of sunlight by sulphate aerosols is represented by appropriately enhancing the surface albedo. On doubling atmospheric carbon dioxide concentrations, the global mean temperature increases by 5.2 K. An integration with a 39% increase in CO{sub 2}, giving the estimated change in radiative heating due to increases in greenhouse gases since 1900, produced an equilibrium warming of 2.3 K, which, even allowing for oceanic inertia, is significantly higher than the observed warming over the same period. Furthermore, the simulation suggests a substantial warming everywhere, whereas the observations indicate isolated regions of cooling, including parts of the northern midlatitude continents. The addition of an estimate of the effect of scattering by current industrial aerosols (uncertain by a factor of at least 3) leads to improved agreement with the observed pattern of changes over the northern continents and reduces the global mean warming by about 30%. Doubling the aerosol forcing produces patterns that are still compatible with the observations, but further increase leads to unrealistically extensive cooling in the midlatitudes. The diurnal range of surface temperature decreases over most of the northern extratropics on increasing CO{sub 2}, in agreement with recent observations. The addition of the current industrial aerosol had little detectable effect on the diurnal range in the model because the direct effect of reduced solar heating at the surface is approximately balanced by the indirect effects of cooling. Thus, the ratio of the reduction in diurnal range to the mean warming is increased, in closer agreement with observations. Results from further sensitivity experiments with larger increases in aerosol and CO{sub 2} are presented.

  7. COS in the stratosphere. [sulfuric acid aerosol precursor

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Tyson, B. J.; Ohara, D.

    1979-01-01

    Carbonyl sulfide (COS) has been detected in the stratosphere, and mixing ratio measurements are reported for altitudes of 15.2 to 31.2 km. A large volume, cryogenic sampling system mounted on board a U-2 aircraft has been used for lower stratosphere measurements and a balloon platform for measurement at 31.2 km. These observations and measurements strongly support the concept that stratospheric COS is an important precursor in the formation of sulfuric acid aerosols.

  8. Specialized ratio analysis.

    PubMed

    Wyer, J C; Salzinger, F H

    1983-01-01

    Many common management techniques have little use in managing a medical group practice. Ratio analysis, however, can easily be adapted to the group practice setting. Acting as broad-gauge indicators, financial ratios provide an early warning of potential problems and can be very useful in planning for future operations. The author has gathered a collection of financial ratios which were developed by participants at an education seminar presented for the Virginia Medical Group Management Association. Classified according to the human element, system component, and financial factor, the ratios provide a good sampling of measurements relevant to medical group practices and can serve as an example for custom-tailoring a ratio analysis system for your medical group.

  9. Holistic aerosol evaluation using synthesized aerosol aircraft measurements

    NASA Astrophysics Data System (ADS)

    Watson-Parris, Duncan; Reddington, Carly; Schutgens, Nick; Stier, Philip; Carslaw, Ken; Liu, Dantong; Allan, James; Coe, Hugh

    2016-04-01

    Despite ongoing efforts there are still large uncertainties in aerosol concentrations and loadings across many commonly used GCMs. This in turn leads to large uncertainties in the contributions of the direct and indirect aerosol forcing on climate. However, constraining these fields using earth observation data, although providing global coverage, is problematic for many reasons, including the large uncertainties in retrieving aerosol loadings. Additionally, the inability to retrieve aerosols in or around cloudy scenes leads to further sampling biases (Gryspeerdt 2015). Many in-situ studies have used regional datasets to attempt to evaluate the model uncertainties, but these are unable to provide an assessment of the models ability to represent aerosols properties on a global scale. Within the Global Aerosol Synthesis and Science Project (GASSP) we have assembled the largest collection of quality controlled, in-situ aircraft observations ever synthesized to a consistent format. This provides a global set of in-situ measurements of Cloud Condensation Nuclei (CCN) and Black Carbon (BC), amongst others. In particular, the large number of vertical profiles provided by this aircraft data allows us to investigate the vertical structure of aerosols across a wide range of regions and environments. These vertical distributions are particularly valuable when investigating the dominant processes above or below clouds where remote sensing data is not available. Here we present initial process-based assessments of the BC lifetimes and vertical distributions of CCN in the HadGEM-UKCA and ECHAM-HAM models using this data. We use point-by-point based comparisons to avoid the sampling issues associated with comparing spatio-temporal aggregations.

  10. Aerosol Composition in the Los Angeles Basin Studied by High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Cubison, M.; Hu, W.; Toohey, D. W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Allan, J. D.; Taylor, J.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Massoli, P.; Zhang, X.; Weber, R.; Zhao, Y.; Cliff, S. S.; Wexler, A. S.; Isaacman, G. A.; Worton, D. R.; Kreisberg, N. M.; Hering, S. V.; Goldstein, A. H.; Jimenez, J. L.

    2011-12-01

    Atmospheric aerosols impact climate and health, but their sources and composition are poorly understood. To address this knowledge gap, a high-resolution aerosol mass spectrometer (AMS) and complementary instrumentation were deployed during the 2010 CalNex campaign to characterize aerosol composition in the Los Angeles (LA) area. Total mass concentrations as well as the species concentrations measured by the AMS compare well with most other instruments. Nitrate dominates in the mornings, but its concentration is reduced in the afternoon when organic aerosols (OA) increase and dominate. The diurnal variations in concentrations are strongly influenced by emission transport from the source-rich western basin. The average OA to enhanced CO ratio increases with photochemical age from 25 to 80 μg m-3 ppm-1, which indicates significant secondary OA (SOA) production and that a large majority of OA is secondary in aged air. The ratio values are similar to those from Mexico City as well as New England and the Mid-Atlantic States. Positive matrix factorization (PMF) is used to assess the concentrations of different OA components. The major OA classes are oxygenated OA (OOA, a surrogate for total SOA), and hydrocarbon-like OA (HOA, a surrogate for primary combustion OA). Several subclasses of OA are identified as well including diesel-influenced HOA (DI-HOA) and non-diesel HOA. DI-HOA exhibits low concentrations on Sundays consistent with the well-known weekday/weekend effect in LA. PMF analysis finds that OOA is 67% of the total OA concentration. A strong correlation between OOA and Ox (O3 + NO2) concentrations is observed with a slope of 0.15 that suggests the production of fresh SOA in Pasadena. Plotting the OA elemental ratios in a Van Krevelen diagram (H:C vs. O:C) yields a slope of -0.6, which is less steep than that observed in Riverside during the SOAR-2005 campaign. The difference in slopes may be attributed to the highly oxidized HOA present in Pasadena that is

  11. Climate response of the South Asian monsoon system to anthropogenic aerosols

    SciTech Connect

    Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong; Yoon, Jin-Ho

    2012-07-13

    The equilibrium climate response to the total effects (direct, indirect and semi-direct effects) of aerosols arising from anthropogenic and biomass burning emissions on the South Asian summer monsoon system is studied using a coupled atmosphere-slab ocean model. Our results suggest that anthropogenic and biomass burning aerosols generally induce a reduction in mean summer monsoon precipitation over most parts of the Indian subcontinent, strongest along the western coastline of the Indian peninsula and eastern Nepal region, but modest increases also occur over the north western part of the subcontinent. While most of the noted reduction in precipitation is triggered by increased emissions of aerosols from anthropogenic activities, modest increases in the north west are mostly associated with decreases in local emissions of aerosols from forest fire and grass fire sources. Anthropogenic aerosols from outside Asia also contribute to the overall reduction in precipitation but the dominant contribution comes from aerosol sources within Asia. Local emissions play a more important role in the total rainfall response to anthropogenic aerosol sources during the early monsoon period, whereas both local as well as remote emissions of aerosols play almost equally important roles during the later part of the monsoon period. While precipitation responses are primarily driven by local aerosol forcing, regional surface temperature changes over the region are strongly influenced by anthropogenic aerosols from sources further away (non-local changes). Changes in local anthropogenic organic and black carbon emissions by as much as a factor of two (preserving their ratio) produce the same basic signatures in the model's summer monsoon temperature and precipitation responses.

  12. Glass transition measurements in mixed organic and organic/inorganic aerosol particles

    NASA Astrophysics Data System (ADS)

    Dette, Hans Peter; Qi, Mian; Schröder, David; Godt, Adelheid; Koop, Thomas

    2014-05-01

    The recent proposal of a semi-solid or glassy state of secondary organic aerosol (SOA) particles has sparked intense research in that area. In particular, potential effects of a glassy aerosol state such as incomplete gas-to-particle partitioning of semi-volatile organics, inhibited chemical reactions and water uptake, and the potential to act as heterogeneous ice nuclei have been identified so far. Many of these studies use well-studied proxies for oxidized organics such as sugars or other polyols. There are, however, few measurements on compounds that do exist in atmospheric aerosol particles. Here, we have performed studies on the phase state of organics that actually occur in natural SOA particles arising from the oxidation of alpha-pinene emitted in boreal forests. We have investigated the two marker compounds pinonic acid and 3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA) and their mixtures. 3-MBCTA was synthesized from methyl isobutyrate and dimethyl maleate in two steps. In order to transfer these substances into a glassy state we have developed a novel aerosol spray drying technique. Dilute solutions of the relevant organics are atomized into aerosol particles which are dried subsequently by diffusion drying. The dried aerosol particles are then recollected in an impactor and studied by means of differential scanning calorimetry (DSC), which provides unambiguous information on the aerosols' phase state, i.e. whether the particles are crystalline or glassy. In the latter case DSC is used to determine the glass transition temperature Tg of the investigated samples. Using the above setup we were able to determine Tg of various mixtures of organic aerosol compounds as a function of their dry mass fraction, thus allowing to infer a relation between Tg and the O:C ratio of the aerosols. Moreover, we also studied the glass transition behavior of mixed organic/inorganic aerosol particles, including the effects of liquid-liquid phase separation upon drying.

  13. Identifying Metals as Marker for Waste Burning Aerosol Particles in New Delhi

    NASA Astrophysics Data System (ADS)

    Kumar, Sudhanshu

    2012-07-01

    {Identifying Metals as Marker for Waste Burning Aerosol Particles in New Delhi } Tracing of aerosol sources is an important task helpful for making control strategy, and for climate change study. However, it is a difficult job as aerosols have several sources, involve in complex atmospheric processing, degradation and removal processes. Several approaches have been used for this task, e.g., models, which are based on the input of chemical species; stable- and radio-isotope compositions of certain species; chemical markers in which trace metals are the better options because they persist in atmosphere until the life of a particle. For example, K and Hg are used for biomass and coal burning tracings, respectively. Open waste burning has recently been believed to be a considerable source of aerosols in several mega cities in India and China. To better understand this source contribution in New Delhi aerosols, we have conducted aerosol sampling at a landfill site (Okhla), and in proximity (within 1 km distance) of this site. Aerosol filter samples were acid digested in microwave digestion system and analyzed using inductively coupled plasma -- high resolution mass spectrometry (ICP-HRMS) for getting metal signatures in particles. The metals, e.g., Sn, Sb and As those are found almost negligible in remote aerosols, are maximized in these waste burning aerosols. Sample collected in other location of New Delhi also shows the considerable presence of these metals in particles. Preliminary studies of isotopic ratios of these metals suggested that these metals, especially Sn can be used as marker for tracing the open waste burning sources of aerosols in New Delhi.

  14. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  15. Pacific marine aerosol 2. Equatorial gradients in chlorophyll, ammonium, and excess sulfate during SAGA 3

    SciTech Connect

    Clarke, A.D.; Porter, J.N.

    1993-09-20

    In February and March 1990, measurements of aerosol physicochemistry were made during five transects across the equator between 15{degrees}N and 10{degrees}S. Marked equatorial gradients in both the aerosol NH{sub 4}{sup +}/SO{sub 4}{sup 2{minus}} ratio and the strong surface water chlorophyll were associated with boundaries separating oligotrophic waters and regions of equatorial upwelling. Highest aerosol ammonium concentrations appeared to be unrelated to continental signatures but corresponded to regions of highest chlorophyll concentrations. Favorable aerosol chemistry, wind directions, and cruise tracks in conjunction with rapid aerosol sampling made it possible to estimate the flux of ammonia from in surface in these transition regions at about 10 {mu}mol m{sup {minus}2} d{sup {minus}1} with possibly greater values in regions where higher chlorophyll concentrations exceeded about 0.25 mg m{sup {minus}3}. Low NH{sub 4}{sup +}/SO{sub 4}{sup 2{minus}} values in aerosol over oligotrophic regions with chlorophyll concentrations below 0.1 mg m{sup {minus}3} suggest the flux in these regions was about an order of magnitude lower. Aerosol sulfate concentrations were also generally elevated over the upwelling region but showed a less pronounced relationship to chlorophyll abundance, suggesting independent source mechanisms for ammonium and sulfate. Rapid variability in mass and number concentrations were evident in convective regions. Both depletion of larger aerosol (mass) through precipitation scavenging and an increase in the number of smaller aerosol in region of subsidence indicate the complex relationship among CN, CCN, and aerosol mass in the remote marine boundary layer. 37 refs., 11 figs., 1 tab.

  16. A 20-year simulated climatology of global dust aerosol deposition.

    PubMed

    Zheng, Yu; Zhao, Tianliang; Che, Huizheng; Liu, Yu; Han, Yongxiang; Liu, Chong; Xiong, Jie; Liu, Jianhui; Zhou, Yike

    2016-07-01

    Based on a 20-year (1991-2010) simulation of dust aerosol deposition with the global climate model CAM5.1 (Community Atmosphere Model, version 5.1), the spatial and temporal variations of dust aerosol deposition were analyzed using climate statistical methods. The results indicated that the annual amount of global dust aerosol deposition was approximately 1161±31Mt, with a decreasing trend, and its interannual variation range of 2.70% over 1991-2010. The 20-year average ratio of global dust dry to wet depositions was 1.12, with interannual variation of 2.24%, showing the quantity of dry deposition of dust aerosol was greater than dust wet deposition. High dry deposition was centered over continental deserts and surrounding regions, while wet deposition was a dominant deposition process over the North Atlantic, North Pacific and northern Indian Ocean. Furthermore, both dry and wet deposition presented a zonal distribution. To examine the regional changes of dust aerosol deposition on land and sea areas, we chose the North Atlantic, Eurasia, northern Indian Ocean, North Pacific and Australia to analyze the interannual and seasonal variations of dust deposition and dry-to-wet deposition ratio. The deposition amounts of each region showed interannual fluctuations with the largest variation range at around 26.96% in the northern Indian Ocean area, followed by the North Pacific (16.47%), Australia (9.76%), North Atlantic (9.43%) and Eurasia (6.03%). The northern Indian Ocean also had the greatest amplitude of interannual variation in dry-to-wet deposition ratio, at 22.41%, followed by the North Atlantic (9.69%), Australia (6.82%), North Pacific (6.31%) and Eurasia (4.36%). Dust aerosol presented a seasonal cycle, with typically strong deposition in spring and summer and weak deposition in autumn and winter. The dust deposition over the northern Indian Ocean exhibited the greatest seasonal change range at about 118.00%, while the North Atlantic showed the lowest seasonal

  17. Test-Aerosol Generator For Calibrating Particle Counters

    NASA Technical Reports Server (NTRS)

    Mogan, Paul A.; Adams, Alois J.; Schwindt, Christian J.; Hodge, Timothy R.; Mallow, Tim J.; Duong, Anh A.; Bukauskas, Vyto V.

    1996-01-01

    Apparatus generates clean, stable aerosol stream for use in testing and calibrating laser-based aerosol-particle counter. Size and concentration of aerosol particles controlled to ensure accurate calibration. Cheap, widely available medical nebulizers used to generate aerosols.

  18. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Minnis, Patrick; Yi, Yuhong; Tang, Qiang; Wang, Xin; Hu, Yongxiang; Liu, Zhaoyan; Ayers, Kirk; Trepte, Charles; Winker, David

    2007-09-01

    Summertime Tibetan dust aerosol plumes are detected from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. CALIPSO reveals that dust storms occur more frequently than previously found from Tibetan surface observations because few surface sites were available over remote northwestern Tibet due to high elevation and harsh climate. The Tibetan dust aerosol is characterized by column-averaged volume depolarization and total volume color ratios around 21% and 0.83, respectively. The dust layers appear most frequently around 4-7 km above mean sea level. The volume depolarization ratio for about 90% of the dust particles is less than 10% at low altitudes (3-5 km), while only about 50% of the particles have a greater depolarization ratio at higher altitudes (7-10 km). The 4-day back trajectory analyses show that these plumes probably originate from the nearby Taklamakan desert surface and accumulate over the northern slopes of the Tibetan Plateau. These dust outbreaks can affect the radiation balance of the atmosphere of Tibet because they both absorb and reflect solar radiation.

  19. Tropospheric Vertical Profiles of Aerosol Optical, Microphysical and Concentration Properties in the Frame of the Hygra-CD Campaign (Athens, Greece 2014): A Case Study of Long-Range Transport of Mixed Aerosols

    NASA Astrophysics Data System (ADS)

    Papayannis, Alexandros; Argyrouli, Athina; Müller, Detlef; Tsaknakis, Georgios; Kokkalis, Panayotis; Binietoglou, Ioannis; Kazadzis, Stelios; Solomos, Stavros; Amiridis, Vassilis

    2016-06-01

    Combined multi-wavelength aerosol Raman lidar and sun photometry measurements were performed during the HYGRA-CD campaign over Athens, Greece during May-June 2014. The retrieved aerosol optical properties (3 aerosol backscatter at 355-532-1064 nm and 2 aerosol extinction profiles at 355-532 nm) were used as input to an inversion code to retrieve the aerosol microphysical properties (effective radius reff and number concentration N) using regularization techniques. Additionally, the volume concentration profile was derived for fine particles using the LIRIC code. In this paper we selected a complex case study of long-range transport of mixed aerosols (biomass burning particles mixed with dust) arriving over Athens between 10-12 June 2014 in the 1.5-4 km height. Between 2-3 km height we measured mean lidar ratios (LR) ranging from 45 to 58 sr (at 355 and 532 nm), while the Ångström exponent (AE) aerosol extinction-related values (355nm/532nm) ranged between 0.8-1.3. The retrieved values of reff and N ranged from 0.19±0.07 to 0.22±0.07 μm and 460±230 to 2200±2800 cm-3, respectively. The aerosol linear depolarization ratio (δ) at 532 nm was lower than 5-7% (except for the Saharan dust cases, where δ~10-15%).

  20. Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data

    NASA Technical Reports Server (NTRS)

    Su, Wenying; Schuster, Gregory L.; Loeb, Norman G.; Rogers, Raymond R.; Ferrare, Richard A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.

    2008-01-01

    Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these limitations do not exist in High Spectral Resolution Lidar (HSRL) observations; for instance, HSRL observations are not a ected by cloud adjacency effects, are less prone to cloud contamination, and offer accurate aerosol property measurements (backscatter coefficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,and aerosol optical depth) at a neospatial resolution (less than 100 m) in the vicinity of clouds. Hence, the HSRL provides an important dataset for studying aerosol and cloud interaction. In this study, we statistically analyze aircraft-based HSRL profiles according to their distance from the nearest cloud, assuring that all profile comparisons are subject to the same large-scale meteorological conditions. Our results indicate that AODs from HSRL are about 17% higher in the proximity of clouds (approximately 100 m) than far away from clouds (4.5 km), which is much smaller than the reported cloud 3D effect on AOD retrievals. The backscatter and extinction coefficients also systematically increase in the vicinity of clouds, which can be explained by aerosol swelling in the high relative humidity (RH) environment and/or aerosol growth through in cloud processing (albeit not conclusively). On the other hand, we do not observe a systematic trend in lidar ratio; we hypothesize that this is caused by the opposite effects of aerosol swelling and aerosol in-cloud processing on the lidar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does not show a consistent trend because of the complicated relationship between BAE and RH. We demonstrate that BAE should not be used as a surrogate for Angstrom

  1. Are anthropogenic aerosols affecting rainfall?

    NASA Astrophysics Data System (ADS)

    Junkermann, Wolfgang; Hacker, Jorg

    2013-04-01

    Modification of cloud microphysics by anthropogenic aerosols is well known since several decades. Whether the underlying processes leads to changes in precipitation is by far less confirmed. Several different factors affect the production of rain in a way that a causality between increasing aerosol load in the atmosphere and a change of annual rainfall is very difficult to confirm. What would be expected as an effect of additional cloud condensation nuclei is a shift in the spatial and temporal rainfall distribution towards a lower number of days with low rain intensity and more frequent or more vigorous single events. In fact such a shift has been observed in several locations worldwide and has been suggested to be caused by increasing aerosol load, however, without further specification of the nature and number of the aerosols involved. Measurements of aerosols which might be important for cloud properties are extremely sparse and no long term monitoring data sets are available up to now. The problem of missing long term aerosol data that could be compared to available long term meteorological data sets can possibly be resolved in certain areas where well characterized large anthropogenic aerosol sources were installed in otherwise pristine areas without significant changes in land use over several decades. We investigated aerosol sources and current aerosol number, size and spatial distributions with airborne measurements in the planetary boundary layer over two regions in Australia that are reported to suffer from extensive drought despite the fact that local to regional scale water vapor in the atmosphere is slowly and constantly increasing. Such an increase of the total water in the planetary boundary layer would imply also an increase in annual precipitation as observed in many other locations elsewhere. The observed decline of rainfall in these areas thus requires a local to regional scale physical process modifying cloud properties in a way that rain

  2. Hydrogen bonding at the aerosol interface

    SciTech Connect

    Zhang, J.X.; Aiello, D.; Aker, P.M. )

    1995-01-12

    Morphology-dependent stimulated Raman scattering (MDSRS) has been used to monitor the degree of hydrogen bonding in water aerosols generated by a vibrating orifice aerosol generator (VOAG). The results show that aerosols created by a VOAG suffer extensive structural disruption and that the disruption is most pronounced at the aerosol surface. Laboratory aerosols prepared in this way do not appropriately mimic those found in the atmosphere, and the mass accommodation coefficients measured using such aerosols should not be used in global climate modeling calculations. 25 refs., 10 figs.

  3. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol

  4. Chemistry of secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Yee, Lindsay Diana

    The photooxidation of volatile organic compounds (VOCs) in the atmosphere can lead to the formation of secondary organic aerosol (SOA), a major component of fine particulate matter. Improvements to air quality require insight into the many reactive intermediates that lead to SOA formation, of which only a small fraction have been measured at the molecular level. This thesis describes the chemistry of secondary organic aerosol (SOA) formation from several atmospherically relevant hydrocarbon precursors. Photooxidation experiments of methoxyphenol and phenolic compounds and C12 alkanes were conducted in the Caltech Environmental Chamber. These experiments include the first photooxidation studies of these precursors run under sufficiently low NOx levels, such that RO2 + HO2 chemistry dominates, an important chemical regime in the atmosphere. Using online Chemical Ionization Mass Spectrometery (CIMS), key gas-phase intermediates that lead to SOA formation in these systems were identified. With complementary particle-phase analyses, chemical mechanisms elucidating the SOA formation from these compounds are proposed. Three methoxyphenol species (phenol, guaiacol, and syringol) were studied to model potential photooxidation schemes of biomass burning intermediates. SOA yields (ratio of mass of SOA formed to mass of primary organic reacted) exceeding 25% are observed. Aerosol growth is rapid and linear with the organic conversion, consistent with the formation of essentially non-volatile products. Gas and aerosol-phase oxidation products from the guaiacol system show that the chemical mechanism consists of highly oxidized aromatic species in the particle phase. Syringol SOA yields are lower than that of phenol and guaiacol, likely due to unique chemistry dependent on methoxy group position. The photooxidation of several C12 alkanes of varying structure n-dodecane, 2-methylundecane, cyclododecane, and hexylcyclohexane) were run under extended OH exposure to investigate the

  5. Birthweight ratio revisited.

    PubMed Central

    Brownlee, K G; Ng, P C; Roussounis, S H; Dear, P R

    1991-01-01

    In order to test the hypothesis suggested in a recent report that the birthweight ratio might be a useful predictor of several important clinical outcome measures in babies of less than 31 weeks' gestation, we examined the association between the birthweight ratio and aspects of both short and long term outcome in 436 Leeds babies of less than 31 weeks' gestation. Unlike the report, and contrary to what we had expected, we were unable to find any significant association between birthweight ratio and length of time on the ventilator, mortality, neurological outcome, or intellectual outcome. PMID:2025035

  6. Characterization of aerosol particles at the forested site in Lithuania

    NASA Astrophysics Data System (ADS)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  7. Continuous and automatic measurement of atmospheric structures and aerosols optical properties with R-Man510 nitrogen Raman lidar

    NASA Astrophysics Data System (ADS)

    Royer, P.; Renaudier, M.; Sauvage, L.; Boquet, M.; Thobois, L.; Bizard, A.

    2012-04-01

    A new compact and light nitrogen Raman lidar (R-Man510) has recently been developed by Leosphere company. This UV-lidar system is based on a low energy diode pumped Nd:YAG laser at 355 nm and has been developed to be operated unmanly for the meteorological and airport needs. Measurements are typically performed with a vertical resolution between 15 and 60 m and a temporal resolution between 30 seconds (for elastic channel) and 10 minutes (for Raman channel). The elastic channel of the lidar is used to automatically detect up to 9 atmospheric structures (Plantery Boundary Layer height, aerosol and cloud layers) in quasi real-time. Aerosols are classified in 6 types (pollution aerosols, desert dusts, volcanic ashes, marine aerosols, biomass burning and no aerosols) considering informations on depolarization ratio determined with the two cross-polarized elastic channels and on aerosols optical properties (extinction-to-backscatter ratio, aerosol backscatter and extinction coefficients) determined thanks to the nitrogen Raman channel at 387 nm. Aerosols optical properties can then been used for the assessment of mass concentrations which is crucial in case of hypothetical volcanic eruption. We will present the first results obtained with this new commercial lidar system. Daytime and nighttime performances of the system will be analyzed and compared with simulations from an instrumental model.

  8. AERONET - Aerosol Climatology From Megalopolis Aerosol Source Regions

    NASA Astrophysics Data System (ADS)

    Holben, B. N.; Eck, T. F.; Dubovik, O.; Smirnov, A.; Slutsker, I.; Artaxo, P.; Leyva, A.; Lu, D.; Sano, I.; Singh, R. P.; Quel, E.; Tanre, D.; Zibordi, G.

    2002-05-01

    AERONET is a globally distributed network of ~170 identical sun and sky scanning spectral radiometers expanded by federation with collaborating investigators that contribute to the AERONET public domain data-base. We will detail the current distribution and plans for expanded collaboration. Recent products available through the project database are important for assessment of human health as well as climate forcing issues. We will illustrate a summary of aerosol optical properties measured in Indian, East Asian, North American, South American and European megalopolis source regions. We will present monthly mean fine and coarse particle aerosol optical depth, particle size distributions and single scattering albedos. Each region represents a population in excess of 10 million inhabitants within a 200 km radius of the observation site that dictate the anthropogenic aerosol sources contributing to significantly diverse aerosol properties as a function of economic development and seasonally dependent meteorological processes. The diversity of the measured optical properties of urban aerosols illustrates the need for long-term regional monitoring that contribute to comparative assessments for health and climate change investigations.

  9. Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization

    SciTech Connect

    Friedman, Beth; Herich, Hanna; Kammermann, Lukas; Gross, Deborah S.; Ameth, Almut; Holst, Thomas; Lohmann, U.; Cziczo, Daniel J.

    2009-07-10

    Sub-Arctic aerosol was sampled during July 2007 at the Abisko Research Station Stordalen field site operated by the Royal Swedish Academy of Sciences. Located in northern Sweden at 68º latitude and 385 meters above sea level (msl), this site is classified as a semi-continuous permafrost mire. Number density, size distribution, cloud condensation nucleus properties, and chemical composition of the ambient aerosol were determined. Backtrajectories showed that three distinct airmasses were present over Stordalen during the sampling period. Aerosol properties changed and correlated with airmass origin to the south, northeast, or west. We observe that Arctic aerosol is not compositionally unlike that found in the free troposphere at mid-latitudes. Internal mixtures of sulfates and organics, many on insoluble biomass burning and/or elemental carbon cores, dominate the number density of particles from ~200 to 2000 nm aerodynamic diameter. Mineral dust which had taken up gas phase species was observed in all airmasses. Sea salt, and the extent to which it had lost volatile components, was the aerosol type that most varied with airmass.

  10. Estimation of aerosol columnar size distribution and optical thickness from the angular distribution of radiance exiting the atmosphere: simulations.

    PubMed

    Wang, M; Gordon, H R

    1995-10-20

    We report the results of simulations in which an algorithm developed for estimation of aerosol optical properties from the angular distribution of radiance exiting the top of the atmosphere over the oceans [Appl. Opt. 33, 4042 (1994)] is combined with a technique for carrying out radiative transfer computations by synthesis of the radiance produced by individual components of the aerosol-size distribution [Appl. Opt. 33, 7088 (1994)], to estimate the aerosol-size distribution by retrieval of the total aerosol optical thickness and the mixing ratios for a set of candidate component aerosol-size distributions. The simulations suggest that in situations in which the true size-refractive-index distribution can actually be synthesized from a combination of the candidate components, excellent retrievals of the aerosol optical thickness and the component mixing ratios are possible. An exception is the presence of strongly absorbing aerosols. The angular distribution of radiance in a single spectral band does not appear to contain sufficient information to separate weakly from strongly absorbing aerosols. However, when two spectral bands are used in the algorithm, retrievals in the case of strongly absorbing aerosols are improved. When pseudodata were simulated with an aerosol-size distribution that differed in functional form from the candidate components, excellent retrievals were still obtained as long as the refractive indices of the actual aerosol model and the candidate components were similar. This underscores the importance of component candidates having realistic indices of refraction in the various size ranges for application of the method. The examples presented all focus on the multiangle imaging spectroradiometer; however, the results should be as valid for data obtained by the use of high-altitude airborne sensors. PMID:21060560

  11. Regional Urban Aerosol Retrieval With MODIS: High-Resolution Algorithm Application and Extension of Look-up Tables

    NASA Astrophysics Data System (ADS)

    Jerg, M. P.; Oo, M. M.; Gross, B. M.; Moshary, F.; Ahmed, S. A.

    2008-12-01

    Aerosols play an important role for the global climate by modulating the Earth's energy budget. Air quality and related health issues for humans are also tightly linked with concentration, composition, and size of aerosol particles. Satellite remote sensing with the MODIS sensor on NASA's Aqua and Terra platforms is one means to investigate aerosols globally. However, due to the global scope of the operational mission only globally based aerosol models can be employed in the look-up table approach of the retrieval algorithm. The relatively coarse resolution of 10x10km also largely prevents the detection of small scale structures in the aerosol optical depth (AOD) on a regional level. Consequently, the operational MODIS aerosol algorithm over land has been specifically adapted to the New York City area. First, the operational look-up table was extended based on local aerosol climatology obtained using five years of AERONET measurements at the City College of New York site. These models were then used to create appropriate LUT using the 6S radiative transfer model. Second, regional surface reflectance ratio parameterizations which better characterize the urban surface properties were implemented in the algorithm. These two modifications ultimately allow the retrieval algorithm to be applied at the actual sensor resolution of 500x500m. This presentation focuses on estimating the errors that are inherent in the operational processing compared to a regionally refined processing scheme. In particular, we remove artificial hot spots in the aerosol retrieval and are able to extract realistic high resolution aerosol structure.

  12. A Multi-Instrument Approach for Characterizing the Vertical Structure of Aerosol Properties: Case Studies in the Pacific Basin Troposphere

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Pueschel, R. F.; Fenn, M. A.; Browell, E. V.; Grant, W. B.

    1998-01-01

    During February/March 1994, a series of aircraft-based aerosol measurements were carried out in the Pacific Basin troposphere using a differential absorption lidar system deployed by NASA Langley, and optical spectrometer probes and a wire-impactor system operated by NASA Ames. A modified Klett inversion algorithm was applied to extract altitude profiles of aerosol backscattering from the IR lidar signal. The algorithm that we have designed for this purpose utilizes the in situ aerosol measurements to normalize the lidar profile at the aircraft altitude and to supply the lidar ratio as a function of height. The lidar-derived aerosol backscattering coefficients were then compared to the backscattering coefficients calculated from the in situ measurements. During several local aircraft descents, we found good agreement between the remote lidar and in situ results for the absolute value of the aerosol backscattering coefficient and its altitude variation only when we allowed for several layers with different aerosol refractive indices. The agreement validates our lidar calibration method and provides an indication of the variation in aerosol refractive index as a function of altitude. Two of the three case studies performed in this paper reveal layers of anthropogenic aerosols transported long distances into the Pacific Basin troposphere. A third case implies the existence of a layer of dustlike aerosol particles in the lower troposphere, most likely of Asian origin.

  13. Relative Contributions of Fossil and Contemporary Carbon sources to PM 2.5 Aerosols at Nine IMPROVE Network Sites

    SciTech Connect

    Bench, G; Fallon, S; Schichtel, B; Malm, W; McDade, C

    2006-06-26

    Particulate matter aerosols contribute to haze diminishing vistas and scenery at National Parks and Wilderness Areas within the United States. To increase understanding of the sources of carbonaceous aerosols at these settings, the total carbon loading and {sup 14}C/C ratio of PM 2.5 aerosols at nine IMPROVE (Interagency Monitoring for Protection Of Visual Environments) network sites were measured. Aerosols were collected weekly in the summer and winter at one rural site, two urban sites, five sites located in National Parks and one site located in a Wildlife Preserve. The carbon measurements together with the absence of {sup 14}C in fossil carbon materials and the known {sup 14}C/C levels in contemporary carbon materials were used to derive contemporary and fossil carbon contents of the particulate matter. Contemporary and fossil carbon aerosol loadings varied across the sites and suggest different percentages of carbon source inputs. The urban sites had the highest fossil carbon loadings that comprised around 50% of the total carbon aerosol loading. The Wildlife Preserve and National Park sites together with the rural site had much lower fossil carbon loading components. At these sites, variations in the total carbon aerosol loading were dominated by non-fossil carbon sources. This suggests that reduction of anthroprogenic sources of fossil carbon aerosols may result in little decrease in carbonaceous aerosol loading at many National Parks and rural areas.

  14. A multi-instrument approach for characterizing the vertical structure of aerosol properties: Case studies in the Pacific Basin troposphere

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Turco, R. P.; Pueschel, R. F.; Fenn, M. A.; Browell, E. V.; Grant, W. B.

    1998-09-01

    During February/March 1994, a series of aircraft-based aerosol measurements were carried out in the Pacific Basin troposphere using a differential absorption lidar system deployed by NASA Langley, and optical spectrometer probes and a wire-impactor system operated by NASA Ames. A modified Klett inversion algorithm was applied to extract altitude profiles of aerosol backscattering from the IR lidar signal. The algorithm that we have designed for this purpose utilizes the in situ aerosol measurements to normalize the lidar profile at the aircraft altitude and to supply the lidar ratio as a function of height. The lidar-derived aerosol backscattering coefficients were then compared to the backscattering coefficients calculated from the in situ measurements. During several local aircraft descents, we found good agreement between the remote lidar and in situ results for the absolute value of the aerosol backscattering coefficient and its altitude variation only when we allowed for several layers with different aerosol refractive indices. The agreement validates our lidar calibration method and provides an indication of the variation in aerosol refractive index as a function of altitude. Two of the three case studies performed in this paper reveal layers of anthropogenic aerosols transported long distances into the Pacific Basin troposphere. A third case implies the existence of a layer of dustlike aerosol particles in the lower troposphere, most likely of Asian origin.

  15. A study on the extent of neutralization of sulphate aerosol through laboratory and field experiments using an ATOFMS and a GPIC

    NASA Astrophysics Data System (ADS)

    Yao, Xiaohong; Rehbein, Peter J. G.; Lee, Colin J.; Evans, Greg J.; Corbin, Joel; Jeong, Cheol-Heon

    2011-11-01

    Extent of neutralization (EoN) of atmospheric aerosol is an important parameter in understanding related nucleation mechanisms, acid-catalyzed reactions and gas-aerosol partitioning. Ion m/ z -195 (HSOHSO4-) detected by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) has been used as an indicator of incompletely-neutralized sulphate aerosol, but there are no laboratory data to support this assumption. In this study, experiments using artificially generated sulphuric acid nucleated aerosol and metal sulphate aerosol across a range of EoN found that the peak area ratio and hit ratio of ion m/ z -195 (HSOHSO4-) to ion m/ z -97 (HSO4-) detected by the ATOFMS increased with decreasing EoN. Area ratio and hit ratio are sensitive to EoN at the low and high value zones, respectively. In ambient air measured by the ATOFMS and a Gas Particle Ion Chromatograph (GPIC) in Toronto, Canada, ion m/ z -195 was always detected in ammonium sulphate aerosol, and its hit number and peak area varied widely, regardless of EoN indicated by the equivalent ratio of NH4+ to (SO42-+NO3-). Thus, ion m/ z -195 alone is not an indicator of acidic sulphate aerosol. The combined approach using the ATOFMS and the GPIC found that cloud-processing formed incompletely-neutralized acidic sulphate aerosol in 2 out of 35 days sampled in winter in Toronto, Canada. It is interesting that the two episodes both occurred at night. Formation of incompletely-neutralized acidic sulphate aerosol caused a decrease in the concentration of particulate nitrate. This can be explained by acidic sulphate aerosol reacting with ammonium nitrate, leading to the release of HNO 3 to the gas phase. It was also found that the GPIC results occasionally suffered a positive artifact of NH4+ concentration caused by the clogging-induced high back-pressure in the instrument.

  16. Ultrafine calcium aerosol: Generation and use as a sorbent for sulfur in coal combustion. Volume 1, Experimental work: Final report, August 1, 1988--October 31, 1991

    SciTech Connect

    Alam, M.K.; Nahar, N.U.; Stewart, G.D.; Prudich, M.E.

    1991-11-01

    Studies conducted at Ohio University and elsewhere have demonstrated that ultrafine aerosols, which have the highest surface area per unit mass, have enhanced potential to efficiently remove sulfur dioxide form combustion gases. Therefore it is proposed to generate a very fine aerosol calcium-rich sorbent (or similar aerosols) for gas conditioning. The aerosol will be generated by vaporization of the sorbent compound and subsequent homogeneous nucleation. In experimental studies liquids as well as solids will be converted into ultrafine aerosols by using suitable aerosol generator. The aerosol generator could be a simple bubbler or a flame spray jet using powders of calcium ``Compounds. Studies will then be carried out, to determine the dynamics of sulfur dioxide capture by the ultrafine aerosol. The primary objective of this research was to generate fine aerosols and to use them for coal combustion SO{sub 2}/NO{sub x} gas removal purposes. From the background study on the dry scrubbing system, it can be concluded that the most important experimental parameters are addition ratio, reactor temperature, residence time, total inlet flow rate and inlet SO{sub 2} concentration. Addition ratio is the inlet molar ratio of calcium to sulfur. Before any experimentation, it was necessary to decide and investigate the values of each of the parameters. Each of these parameters were investigated individually and the effects on SO{sub 2} removal were determined.

  17. YAG aerosol lidar

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1988-01-01

    The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

  18. Drop size measurement of liquid aerosols

    NASA Astrophysics Data System (ADS)

    Liu, B. Y. H.; Pui, D. Y. H.; Xian-Qing, Wang

    The factor B = D/ D' relating the diameter D of a spherical liquid drop to the diameter, D˜, of the same drop collected on a microscope slide has been measured for DOP (di-octyl phthalate) and oleic acid aerosols. The microscope slide was coated with a fluorocarbon, oleophobic surfactant (L-1428, 3M Co., St. Paul, MN). The ratio was found to be independent of drop diameter in the 2-50 μm range and the mean value of B was found to be 0.700 for oleic acid and 0.690 for DOP. Similar measurements for oleic acid and DOP drops collected on a clean, uncoated slide resulted in the values of 0.419 and 0.303, respectively. The experimental values of B were compared with the theoretical values based on contact angle measurements. Good agreement was obtained.

  19. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  20. An overview of geoengineering of climate using stratospheric sulphate aerosols.

    PubMed

    Rasch, Philip J; Tilmes, Simone; Turco, Richard P; Robock, Alan; Oman, Luke; Chen, Chih-Chieh; Stenchikov, Georgiy L; Garcia, Rolando R

    2008-11-13

    We provide an overview of geoengineering by stratospheric sulphate aerosols. The state of understanding about this topic as of early 2008 is reviewed, summarizing the past 30 years of work in the area, highlighting some very recent studies using climate models, and discussing methods used to deliver sulphur species to the stratosphere. The studies reviewed here suggest that sulphate aerosols can counteract the globally averaged temperature increase associated with increasing greenhouse gases, and reduce changes to some other components of the Earth system. There are likely to be remaining regional climate changes after geoengineering, with some regions experiencing significant changes in temperature or precipitation. The aerosols also serve as surfaces for heterogeneous chemistry resulting in increased ozone depletion. The delivery of sulphur species to the stratosphere in a way that will produce particles of the right size is shown to be a complex and potentially very difficult task. Two simple delivery scenarios are explored, but similar exercises will be needed for other suggested delivery mechanisms. While the introduction of the geoengineering source of sulphate aerosol will perturb the sulphur cycle of the stratosphere signicantly, it is a small perturbation to the total (stratosphere and troposphere) sulphur cycle. The geoengineering source would thus be a small contributor to the total global source of 'acid rain' that could be compensated for through improved pollution control of anthropogenic tropospheric sources. Some areas of research remain unexplored. Although ozone may be depleted, with a consequent increase to solar ultraviolet-B (UVB) energy reaching the surface and a potential impact on health and biological populations, the aerosols will also scatter and attenuate this part of the energy spectrum, and this may compensate the UVB enhancement associated with ozone depletion. The aerosol will also change the ratio of diffuse to direct energy

  1. An overview of geoengineering of climate using stratospheric sulphate aerosols

    SciTech Connect

    Rasch, Philip J.; Tilmes, S.; Turco, Richard P.; Robock, Alan; Oman, Luke; Chen, Chih-Chieh; Stenchikov, Georgiy; Garcia, Rolando R.

    2010-01-01

    We provide an overview of geoengineering by stratospheric sulphate aerosols. The state of understanding about this topic as of early 2008 is reviewed, summarizing the past 30 years of work in the area, highlighting some very recent studies using climate models, and discussing methods used to deliver sulphur species to the stratosphere. The studies reviewed here suggest that sulphate aerosols can counteract the globally averaged temperature increase associated with increasing greenhouse gases, and reduce changes to some other components of the Earth system. There are likely to be remaining regional climate changes after geoengineering, with some regions experiencing significant changes in temperature or precipitation. The aerosols also serve as surfaces for heterogeneous chemistry resulting in increased ozone depletion. The delivery of sulphur species to the stratosphere in a way that will produce particles of the right size is shown to be a complex and potentially very difficult task. Two simple delivery scenarios are explored, but similar exercises will be needed for other suggested delivery mechanisms. While the introduction of the geoengineering source of sulphate aerosol will perturb the sulphur cycle of the stratosphere signicantly, it is a small perturbation to the total (stratosphere and troposphere) sulphur cycle. The geoengineering source would thus be a small contributor to the total global source of ‘acid rain’ that could be compensated for through improved pollution control of anthropogenic tropospheric sources. Some areas of research remain unexplored. Although ozone may be depleted, with a consequent increase to solar ultraviolet-B (UVB) energy reaching the surface and a potential impact on health and biological populations, the aerosols will also scatter and attenuate this part of the energy spectrum, and this may compensate the UVB enhancement associated with ozone depletion. The aerosol will also change the ratio of diffuse to direct energy

  2. Final Technical Report. Cloud and Radiation Testbed (CART) Raman Lidar measurement of atmospheric aerosols for the Atmospheric Radiation Measurement (ARM) Program

    SciTech Connect

    Ferrare, Richard A.

    2002-08-19

    Vertical profiles of aerosol extinction are required for determination of the effects of aerosols on the clear-sky radiative flux. Since recent studies have demonstrated the inability to compute these profiles on surface aerosol measurements alone, vertical profiles of aerosol optical properties must be acquired to compute aerosol radiative effects throughout the entire atmospheric column. Following the recommendation of the ARM Aerosol Working Group, the investigator developed, evaluated, and implemented algorithms for the CART Raman Lidar to provide profiles of aerosol extinction and backscattering. By virtue of its ability to measure vertical profiles of both aerosol extinction and water vapor simultaneously in the same scattering volume, we used the resulting profiles from the CART Raman Lidar to investigate the impact of water vapor and relative humidity on aerosol extinction throughout the column on a continuous and routine basis. The investigator used these the CART Raman Lidar aerosol extinction and backscattering profiles to evaluate the vertical variability of aerosol extinction and the extinction/backscatter ratio over the ARM SGP site.

  3. Light Scattering by Aerosols Over the Remote Ocean: Clear-Sky Point and Column Radiative Closure Studies

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Jacobson, M. Z.

    2001-12-01

    Field data gathered by ship and aircraft during leg 2 of the First Aerosol Characterization Experiment (ACE 1) were used to study clear-sky radiative closure over the remote Southern Ocean. Closure was evaluated by comparing observations with modeled values of: (i) aerosol light scattering coefficients in the marine boundary layer and free troposphere, (ii) total aerosol optical depth, and (iii) total solar radiation at the ocean surface. Point modeling using the ship data benefited from an existing study of closure on the ship, expanding the number of data points considered in that study from 22 to 887. Point and column modeling using the aircraft data provide the first such studies to date. Aerosol light scattering coefficients were calculated from size-distributed measurements of aerosol chemical composition and number concentration, and were compared with observations at three wavelengths (450, 550, and 700 nm) on both ship and aircraft. Point closure on the ship could be achieved at all wavelengths for both total and hemispheric backscattering coefficients if the model accounted for experimental uncertainties in aerosol chemistry, nephelometer nonidealities, and the likely nonsphericity of dried sea salt aerosols. Point closure on the aircraft could be achieved at most wavelengths for total scattering coefficients, but could not be achieved at any wavelengths for hemispheric backscattering coefficients. Deviations between predicted and observed backscattering coefficients on the aircraft were widely scattered rather than biased, indicating that a low signal to noise ratio in observed backscattering coefficients was the likely cause for lack of closure. Aerosol optical depth and solar radiation at the ocean surface were calculated for the two days with clear-sky periods when the aircraft measured aerosol profiles near the ship. Input gas and meteorological data were the observed profiles of ozone, water vapor, temperature, and pressure from the surface to

  4. Lung physiology and aerosol deposition imaged with positron emission tomography.

    PubMed

    Venegas, Jose; Winkler, Tilo; Harris, R Scott

    2013-02-01

    Physiological conditions and pathophysiological changes in the lungs may affect many applications in aerosol medicine and pulmonary drug delivery. In the diseased lung, spatial heterogeneity in function and structure may cause substantial changes in aerosol transport and local deposition among different lung regions. Non-uniform aerosol deposition affects airway or tissue pharmacological dosing, which could reduce the therapeutic effectiveness of inhalation therapy. This review article presents examples of pulmonary imaging using PET and PET-CT in lung physiology with an emphasis on their implications for aerosol medicine. Measurements of regional ventilation, perfusion, and ventilation/perfusion ratio, by imaging local kinetics of intravenously injected Nitrogen-13 in saline solution, and of pulmonary inflammation, by assessing the regional uptake of the radiotracer (18)F-FDG, are presented. These examples demonstrate that it is possible to access both preexisting conditions, such as heterogeneity of ventilation, perfusion, and/or inflammatory stimuli, which may affect inhalation therapy, and the functional effects of inhaled medications or inflammatory agents on lung regional function. The imaging techniques described could be efficient tools to evaluate quantitatively and noninvasively these processes in vivo. Furthermore, it can be expected that imaging of respiratory structure and function will yield sensitive biomarkers of disease, which will help and speed drug discovery, and the evaluation of novel inhalation therapies.

  5. Spontaneous Aerosol Ejection: Origin of Inorganic Particles in Biomass Pyrolysis.

    PubMed

    Teixeira, Andrew R; Gantt, Rachel; Joseph, Kristeen E; Maduskar, Saurabh; Paulsen, Alex D; Krumm, Christoph; Zhu, Cheng; Dauenhauer, Paul J

    2016-06-01

    At high thermal flux and temperatures of approximately 500 °C, lignocellulosic biomass transforms to a reactive liquid intermediate before evaporating to condensable bio-oil for downstream upgrading to renewable fuels and chemicals. However, the existence of a fraction of nonvolatile compounds in condensed bio-oil diminishes the product quality and, in the case of inorganic materials, catalyzes undesirable aging reactions within bio-oil. In this study, ablative pyrolysis of crystalline cellulose was evaluated, with and without doped calcium, for the generation of inorganic-transporting aerosols by reactive boiling ejection from liquid intermediate cellulose. Aerosols were characterized by laser diffraction light scattering, inductively coupled plasma spectroscopy, and high-speed photography. Pyrolysis product fractionation revealed that approximately 3 % of the initial feed (both organic and inorganic) was transported to the gas phase as aerosols. Large bubble-to-aerosol size ratios and visualization of significant late-time ejections in the pyrolyzing cellulose suggest the formation of film bubbles in addition to the previously discovered jet formation mechanism.

  6. A ten-year global record of absorbing aerosols above clouds from OMI's near-UV observations

    NASA Astrophysics Data System (ADS)

    Jethva, Hiren; Torrres, Omar; Ahn, Changwoo

    2016-05-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosolcloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong `color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  7. Aerosol and cloud typing with an automated 24/7 aerosol lidar

    NASA Astrophysics Data System (ADS)

    Baars, Holger; Seifert, Patric; Wandinger, Ulla

    2015-04-01

    Modern sophisticated multi-wavelength Raman polarization lidars have the ability to measure autonomous and unattended in 24/7 mode. These aerosol lidars can deliver backscatter, extinction, and depolarization profiles of the atmosphere which can be used for a target categorization, i.e. the determination of different aerosol and cloud types. However, to derive the optical particle properties a calibration of the lidar signals in the free atmosphere, where only Rayleigh scattering occurs, is needed. This calibration is usually done manually case by case and thus prohibits automatic data analysis and particle typing. To overcome this limitation, the mobile EARLINET lidar PollyXT of TROPOS was deployed continuously without changes in the instrumental setup during two field campaigns in the framework of the German HD(CP)2 project to obtain temporally stable lidar signals. The temporal stability together with the high performance and good characterization of the lidar lead to the possibility of an absolute lidar calibration. The corresponding calibration constant was derived in two ways: first by using manually Raman and Klett retrievals for selected periods and second by using the aerosol optical depth (AOD) from co-located AERONET sun photometer measurements. The derived calibration constants show a high temporal stability and a good agreement between both methods and thus allowed the continuous calibration of the lidar and the retrieval of the attenuated backscatter coefficient at three wavelengths. In addition, the calibrated volume depolarization ratio, obtained following EARLINET recommendations, is continuously available. After correction for the molecular contribution, these four quantities were used for an aerosol and cloud typing in terms of particle size and shape. The final categorization leads to 11 categories, e.g. clean atmosphere, small spherical particles, large non-spherical particles, water droplets, ice crystals and corresponding mixtures. In this

  8. X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)

    ScienceCinema

    None

    2016-07-12

    This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.

  9. X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)

    SciTech Connect

    2012-10-22

    This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.

  10. Retrieval of stratospheric aerosol distributions from SCIAMACHY limb measurements: methodology, sensitivity studies and first results

    NASA Astrophysics Data System (ADS)

    Ernst, Florian; von Savigny, Christian; Rozanov, Alexei; Rozanov, Vladimir; Bovensmann, Heinrich; Burrows, John P.

    Stratospheric aerosols play an important role for the global radiation budget and may signif-icantly affect the retrieval of trace gases from satellite observations. SAGE I -III provided a 25-year record of stratospheric aerosols by means of solar occultation technique. Since the demise of SAGE II and III in 2005/2006, the long-term stratospheric aerosol satellite record is jeopardized. The main goal of this work is to demonstrate that aerosol extinction profiles can be retrieved from SCIAMACHY limb scatter measurements to sustain the time series. Since the eruption of Pinatubo in 1991 was the last large source of volcanic aerosols in the strato-sphere, we have now the opportunity to retrieve background aerosol profiles. The radiative transfer model and retrieval package SCIATRAN is used to derive aerosol extinction profiles from SCIAMACHY limb data. The algorithm is based on a color-index ratio using limb radi-ance profiles at 470 nm and 750 nm wavelength. The algorithm, sensitivity studies and first results are presented here.

  11. The Effect of Inlet Aspiration of Aerosol Odd-nitrogen Species on NOy Budget Determination.

    NASA Astrophysics Data System (ADS)

    Knapp, D. J.; Rogers, D. C.; Weinheimer, A. J.; Montzka, D.; Flocke, F. M.; Zheng, W.; Wennberg, P.; Crounse, J.; McCabe, D.; Decarlo, P.; Dunlea, E.; Aiken, A.; Jimenez, J.; Blake, D.

    2007-12-01

    During the MILAGRO/MIRAGE-MEX campaign in March 2006, the NCAR chemiluminescence NOx, NOy, O3 instrument was flown aboard the NSF C-130 in and around the Mexico City Metropolitan Area (MCMA) to sample the urban pollution plume. The NOy instrument sampled ambient air from an aft-facing inlet extended on a pylon from the bottom of the aircraft, in a continuously aspirated flow of about 1 SLM. The sample flow entrained small aerosols which is understood from a practical perspective, but until this time had not been quantified for this inlet configuration. During flights close to MCMA, relatively high values of ammonium nitrate aerosol (5.2 ppbv equivalent mixing ratio) were measured by the University of Colorado AMS instrument coincidently with high NOy readings (5.5 ppbv) from the NCAR NOy instrument. Subsequent analysis of the NOy partitioning resulted in a component NOy deficiency of 15 - 40 percent, based on independent but concomitantly measured major NOy species: NOx, PANs, HNO3, alkyl nitrates and aerosol NH4NO3. The aspiration efficiency of small aerosols from the NOy inlet was modeled using the Fluent aerodynamic model. The amount of aerosol NH4NO3 and HNO3 on fine dust were calculated based on the determined aspiration efficiencies for a range of aerosol masses, and the potential contribution of these species to the NOy budget was determined. Systematic aspiration of an unknown amount of these aerosols may at least partially explain historic examples of missing NOy.

  12. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    NASA Astrophysics Data System (ADS)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  13. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  14. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  15. MISR Level 2 Aerosol and Land Versioning

    Atmospheric Science Data Center

    2013-04-01

    ... Current F12_0022 (aerosol), F07_0022 (land) 12/01/2007 Data Product Specification Rev Q ... AEROSOL: Revised Dark Water algorithm to use a common subregion location across all channels. Revised ...

  16. Satellite remote sensing of nonspherical tropospheric aerosols

    SciTech Connect

    Mishchenko, M.I.; Travis, L.D.; Lacis, A.A.; Carlson, B.E.

    1995-12-31

    In this paper the authors discuss the possible effect of nonsphericity of solid tropospheric aerosols on the accuracy of aerosol optical thickness retrievals from reflectance measurements over the ocean surface. To model light-scattering properties of nonspherical aerosols, they use a shape mixture of moderately aspherical, randomly oriented polydisperse spheroids. They assume that the size distribution and refractive index of aerosols are known and use the aerosol optical thickness 0.2 to compute the reflectivity for an atmosphere-ocean model similar to that used in the AVHRR aerosol retrieval algorithms. They then use analogous computations for volume-equivalent spherical aerosols with varying optical thickness to invert the simulated nonspherical reflectance. The computations demonstrate that the use of the spherical model to retrieve the optical thickness of actually nonspherical aerosols can result in errors which, depending on the scattering geometry, can well exceed 100%.

  17. Quantitative deposition of aerosolized gentamicin in cystic fibrosis

    SciTech Connect

    Ilowite, J.S.; Gorvoy, J.D.; Smaldone, G.C.

    1987-12-01

    In cystic fibrosis (CF), the clinical effectiveness of aerosolized antibiotics is controversial. Previous investigators have not considered the type of nebulizer, droplet size, and dose to the lung in assessing the results of aerosol therapy. The present study tests the importance of these factors by standardizing an aerosol system for delivery of antibiotics and other agents to patients with CF. Particle size, distribution, and output from a commercially available nebulizer were measured. Thirteen patients with CF inhaled aerosol (MMAD = 1.1 micron) containing gentamicin (160 mg in nebulizer) and /sup 99m/Tc-labeled human serum albumin. Patients' sputum and serum were analyzed for gentamicin levels by immunoenzymatic assay. Using a gamma camera and suitable filters, central versus peripheral deposition (C/P ratio) and whole lung deposition were measured and related to sputum gentamicin levels. Gentamicin deposit averaged 12.3 mg +/- 5.9 (SD) or 7.69% of the original amount placed in the nebulizer. Peak sputum levels averaged 376.6 micrograms/ml +/- 275, whereas serum levels were undetectable in all patients. When peak sputum levels were normalized for the amount deposited, a close correlation with C/P ratio was obtained (r = 0.88, p less than 0.05). Furthermore, an inverse relationship was found between the C/P ratio and the %FEV1 (r = 0.76, p less than 0.05). Finally, a bell-shaped relationship between deposited dose and minute ventilation was seen in the patients (r = 0.88, p less than 0.05), i.e., an optimal minute ventilation was shown. These relationships may be important when designing future clinical studies.

  18. New capabilities for space-based cloud and aerosols measurements: The Cloud-Aerosol Transport System (CATS)

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Hlavka, D. L.; Palm, S. P.; Hart, W. D.; Nowottnick, E. P.; Vaughan, M.; Rodier, S. D.; Colarco, P. R.; da Silva, A.; Buchard-Marchant, V.

    2013-12-01

    Current uncertainties in cloud and aerosol properties limit our ability to accurately model the Earth's climate system and predict climate change. These limitations are due primarily to difficulties in adequately measuring aerosols and clouds on a global scale. NASA's A-Train satellites provide an unprecedented opportunity to address these uncertainties. In particular, the Cloud-Aerosol Lidar Infrared Pathfinder Spaceborne Observations (CALIPSO) satellite provides vertical profiles of cloud and aerosol properties. The CALIOP lidar onboard CALIPSO has reached its seventh year of operation, well past its expected lifetime. The ATLID lidar on EarthCARE is not expected to launch until 2016 or later. If the CALIOP lidar fails before a new mission is operational, there will be a gap in global lidar measurements. The Cloud-Aerosol Transport System (CATS), built at NASA Goddard Space Flight Center as a payload for the International Space Station (ISS), is set to launch in the summer of 2014. CATS is an elastic backscatter lidar with three wavelengths (1064, 532, 355 nm) and HSRL capability at 532 nm. Depolarization measurements will be made at all three wavelengths. The ISS orbit is a 51 degree inclination orbit at an altitude of about 405 km. This orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three day repeat cycle. Thus, science applications of CATS include cloud and aerosol climate studies, air quality monitoring, and smoke/volcanic plume tracking. The primary science objectives of CATS include: continuing the CALIPSO aerosol and cloud vertical profile data record, providing near real time data to support operational applications such as air quality modeling, and advancing technology in support of future mission development using the HSRL channel. Furthermore, the vertical profiles of cloud and aerosol properties provided by CATS will complement current and future passive satellite

  19. Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite Aerosol Characterization Study

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Day, Derek E.; Carrico, Christian; Kreidenweis, Sonia M.; Collett, Jeffrey L.; McMeeking, Gavin; Lee, Taehyoung; Carrillo, Jacqueline; Schichtel, Bret

    2005-07-01

    Physical and optical properties of inorganic aerosols have been extensively studied, but less is known about carbonaceous aerosols, especially as they relate to the non-urban settings such as our nation's national parks and wilderness areas. Therefore an aerosol characterization study was conceived and implemented at one national park that is highly impacted by carbonaceous aerosols, Yosemite. The primary objective of the study was to characterize the physical, chemical, and optical properties of a carbon-dominated aerosol, including the ratio of total organic matter weight to organic carbon, organic mass scattering efficiencies, and the hygroscopic characteristics of a carbon-laden ambient aerosol, while a secondary objective was to evaluate a variety of semi-continuous monitoring systems. Inorganic ions were characterized using 24-hour samples that were collected using the URG and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring systems, the micro-orifice uniform deposit impactor (MOUDI) cascade impactor, as well as the semi-continuous particle-into-liquid sampler (PILS) technology. Likewise, carbonaceous material was collected over 24-hour periods using IMPROVE technology along with the thermal optical reflectance (TOR) analysis, while semi-continuous total carbon concentrations were measured using the Rupprecht and Patashnick (R&P) instrument. Dry aerosol number size distributions were measured using a differential mobility analyzer (DMA) and optical particle counter, scattering coefficients at near-ambient conditions were measured with nephelometers fitted with PM10 and PM2.5 inlets, and "dry" PM2.5 scattering was measured after passing ambient air through Perma Pure Nafion® dryers. In general, the 24-hour "bulk" measurements of various aerosol species compared more favorably with each other than with the semi-continuous data. Semi-continuous sulfate measurements correlated well with the 24-hour measurements, but were biased low by

  20. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.

  1. Evolution of Biomass Burning Aerosol Optical Properties in the Near Field

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J., III; Arnott, W. P.; Chand, D.; Fortner, E.; Freedman, A.; Kleinman, L. I.; Onasch, T. B.; Shilling, J. E.; Springston, S. R.

    2014-12-01

    Biomass burning (BB) events are known to produce chemically rich environments that can impact the evolution of primary aerosols and influence secondary aerosols production rates. With their increasing in frequency, BB events are expected to exert an ever-increasing impact on climate due to aerosol radiative forcing processes. One area that is still poorly understood is the evolution of these smoke aerosols in the near field. Recent literature suggests that BB aerosols undergo a rapid evolution near their source that is then followed by a slower aging phase. During the summer of 2013, the Department of Energy-sponsored an aircraft field campaign called the Biomass Burning Observation Project (BBOP) that specifically targeted the evolution of smoke aerosols in the near field (< 2 hours). Results examining the evolution of BB optical and microphysical properties will be presented. To probe these properties, the BBOP field campaign deployed a Single Particle Soot Photometer (SP2) to probe the mixing state of refractory black carbon (rBC) and a Soot Particle Aerosol Mass Spectrometer (SP-AMS) to investigate the composition of both non-refractory and rBC-containing particles. Aerosol optical properties were measured in situ using a 355 nm Photoacoustic spectrometer (PAS), a 532 nm photo thermal interferometer (PTI), a 630 nm cavity Attenuation Phase Shifted (CAPS) spectrometer, a 3-λ nephelometer, and a 3-λ PSAP. The BBOP study represented the maiden aircraft deployment for the SP-AMS, the 355 nm PAS and 532 nm PTI. Discussion will be on the near-field evolution of particle mixing state and morphology, chemical composition, and microphysical processes that determine aerosol size distributions and single scattering albedo (SSA) of light absorbing aerosols. In the cases studied, increases in the coating thickness of refractive black carbon (rBC) particles, organic aerosol/rBC ratio, scattering/CO ratio, and aerosol size distributions have been observed. Results will be

  2. Molecular Characterization of Free Tropospheric Aerosol Collected at the Pico Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Dzepina, K.; Mazzoleni, C.; Fialho, P. J.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Jacques, H.; Kumar, S.; Perlinger, J. A.; Kramer, L. J.; Dziobak, M.; Ampadu, M.; Olsen, S. C.; Wuebbles, D. J.; Mazzoleni, L. R.

    2014-12-01

    Long-range transported free tropospheric aerosol was sampled at the Pico Mountain Observatory (38°28'15''N, 28°24'14''W; 2225 m amsl) on Pico Island of the Azores archipelago in the North Atlantic ~3900 km east and downwind of North America. Filter-collected aerosol during summer 2012 was analyzed for organic and elemental carbon, and inorganic ions. The average ambient concentration of aerosol was 0.9 μg m-3. Organic aerosol contributed the majority of mass (57%), followed by sulfate (21%) and nitrate (17%). Filter-collected aerosol was positively correlated with continuous aerosol measurements of black carbon, light scattering and number concentration. Water-soluble organic compounds (WSOC) from 9/24 and 9/25 aerosol samples collected during a pollution event were analyzed using ultrahigh-resolution FT-ICR MS. FLEXPART retroplume analysis shows the air masses were very aged (> 12 days). About 4000 molecular formulas were assigned to each of the mass spectra between m/z 100-1000. The majority of the assigned molecular formulas have unsaturated structures with CHO and CHNO elemental compositions. WSOC have an average O/C ratio of ~0.45, relatively low compared to O/C ratios of other aged aerosol which might be the result of evaporation and fragmentation during long-range transport. The increase in aerosol loading during 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplumes and MODIS fire counts. This was confirmed with WSOC biomass burning markers and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of biomass burning phenolic species suggests that the aerosol collected at Pico had undergone cloud processing. The air masses on 9/25 were more aged (~15 days) and influenced by marine emissions, as indicated by organosulfates and species characteristic for marine aerosol (e.g. fatty acids). The change in air masses for

  3. Aerosol Climate Time Series in ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  4. Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation and composition

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Tripathi, Sachchida; Gupta, Tarun

    2016-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world, it contains substantial quantity of liquid water and generally seen as a natural cleansing agent but it also has the potential to form highly oxidized secondary organic aerosols (SOA) via aqueous processing of ambient aerosols. On the other hand higher organic aerosols (OA) loading tend to decrease the overall oxidation level (O/C) of the particle phase organics, due to enhanced partitioning of less oxidized organics from gas to particle phase. However, combined impact of these two parameters; aqueous oxidation and OA loading, on the overall oxidation ratio (O/C) of ambient OA has never been studied. To assess this, real time ambient sampling using HR-ToF-AMS was carried out at Kanpur, India from 15 December 2014 - 10 February 2015. In first 3 weeks of this campaign, very high OA loading is (134 ± 42 μg/m3) observed (termed as high loading or HL period) while loading is substantially reduced from 2nd January, 2016 (56 ± 20 μg/m3, termed as low loading or LL period) . However, both the loading period was affected by several fog episodes (10 in HL and 7 in LL), thus providing the opportunity of studying the combined effects of fog and OA loading on OA oxidation. It is found that O/C ratio is very strongly anti-correlated with OA loading in both the loading period, however, slope of this ant-correlation is much steep during HL period than in LL period. Source apportionment of OA revealed that there is drastic change in the types of OA from HL to LL period, clearly indicating difference in OA composition from HL to LL period. During foggy night continuous oxidation of OA is observed from early evening to early morning with 15-20% enhancement in O/C ratio, while the same is absent during non-foggy period, clearly indicating the efficient fog processing of ambient OA. It is also found that night time fog aqueous oxidation can be as effective as daytime photo chemistry in oxidation of OA. Fog

  5. Iterative method for the inversion of multiwavelength lidar signals to determine aerosol size distribution.

    PubMed

    Rajeev, K; Parameswaran, K

    1998-07-20

    Two iterative methods of inverting lidar backscatter signals to determine altitude profiles of aerosol extinction and altitude-resolved aerosol size distribution (ASD) are presented. The first method is for inverting two-wavelength lidar signals in which the shape of the ASD is assumed to be of power-law type, and the second method is for inverting multiwavelength lidar signals without assuming any a priori analytical form of ASD. An arbitrary value of the aerosol extinction-to-backscatter ratio (S(1)) is assumed initially to invert the lidar signals, and the ASD determined by use of the spectral dependence of the retrieved aerosol extinction coefficients is used to improve the value of S(1) iteratively. The methods are tested for different forms of altitude-dependent ASD's by use of simulated lidar-backscatter-signal profiles. The effect of random noise on the lidar backscatter signals is also studied.

  6. Aerosol Typing by 3-Wavelength Elastic Lidar Signals Over the Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Perrone, Maria Rita; Burlizzi, Pasquale

    2016-06-01

    Elastic lidar signals at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sunphotometer measurements collocated in space and time have been used to retrieve columnar lidar ratio (LR) values at the lidar wavelengths by a constrained iterative inversion procedure. Then, the relationships of LRs with AOTs, Ångström exponents, fine mode fractions (η), and fine mode radii (Rf) have been investigated for the aerosol typing. η and Rf values have been retrieved from a graphical framework. It is shown that the implemented methodology has allowed identifying three main aerosol types over the Central Mediterranean which are designed as urban/industrial, marine-polluted, and mixed-dust. Results on the relationships of LRs with AOTs, Å, η, and Rf for each aerosol type represent main paper results.

  7. Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary.

    SciTech Connect

    Gregson, Michael Warren; Brockmann, John E.; Nolte, O. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Loiseau, O. (Institut de radioprotection et de Surete Nucleaire, France); Koch, W. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Billone, M. C. (Argonne National Laboratory, USA); Lucero, Daniel A.; Burtseva, T.; Brucher, W (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2006-10-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence

  8. Aerosolization Characteristics of Dry Powder Inhaler Formulations for the Excipient Enhanced Growth (EEG) Application: Effect of Spray Drying Process Conditions on Aerosol Performance

    PubMed Central

    Son, Yoen-Ju; Longest, P. Worth; Hindle, Michael

    2013-01-01

    The aim of this study was to develop a spray dried submicrometer powder formulation suitable for the excipient enhanced growth (EEG) application. Combination particles were prepared using the Buchi Nano spray dryer B-90. A number of spray drying and formulation variables were investigated with the aims of producing dry powder formulations that were readily dispersed upon aerosolization and maximizing the fraction of submicrometer particles. Albuterol sulfate, mannitol, L-leucine, and poloxamer 188 were selected as a model drug, hygroscopic excipient, dispersibility enhancer and surfactant, respectively. Formulations were assessed by scanning electron microscopy and aerosol performance following aerosolization using an Aerolizer® dry powder inhaler (DPI). In vitro drug deposition was studied using a realistic mouth-throat (MT) model. Based on the in vitro aerosolization results, the best performing submicrometer powder formulation consisted of albuterol sulfate, mannitol, L-leucine and poloxamer 188 in a ratio of 30:48:20:2, containing 0.5% solids in a water:ethanol (80:20% v/v) solution which was spray dried at 70 °C. The submicrometer particle fraction (FPF1μm/ED) of this final formulation was 28.3% with more than 80% of the capsule contents being emitted during aerosolization. This formulation also showed 4.1% MT deposition. The developed combination formulation delivered a powder aerosol developed for the EEG application with high dispersion efficiency and low MT deposition from a convenient DPI device platform. PMID:23313343

  9. Integrated Analyses of Multiple Worldwide Aerosol Mass Spectrometer Datasets for Improved Understanding of Aerosol Sources and Processes and for Comparison with Global Models

    SciTech Connect

    Zhang, Qi; Jose, Jimenez Luis

    2014-04-28

    composition, concentration, size distribution and (inferred) shape and mixing state in various environments and their regional and seasonal variations within the context of regional and global modeling; and 4) to quantitatively evaluate important processes in various atmospheric environments and during different seasons, focusing on acid-catalyzed SOA formation, new particle growth, and photochemical processes of atmospheric organic aerosols (i.e., SOA production and POA oxidation). We will also examine the correlations and compile the ratios between important pairs of aerosol and gas phase species using region-specific and season-specific correlations and as a function of photochemical age and compare them with the ratios produced by various models. To enable our collaborations with the modelers, we will supply (via a public web interface) AMS data and our analysis results for use in model testing and validation and facilitate the use of the AMS information to constrain calculations of radiative forcing. Model output and AMS measurements and derived parameters will be compared with a focus on regional variability of model/measurement discrepancies and their causes. Finally we will share results, insights and data mining algorithms through peer-reviewed publications, presentations/tutorials at conferences/workshops, and web dissemination of analysis results and in-house developed software packages.

  10. A Lidar and Backscatter Sonde Aerosol Measurement Campaign at Table Mountain During February-March 1997: Observations of Stratospheric Background Aerosols and Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Gross, M.; Haner, D.; Kjome, N.; McDermid, I.; McGee, T.; Rosen, J.; Schafer, H. J.; Schrems, O.

    1999-01-01

    Altitude profiles of backscater ratio of the stratospheric background aerosol layer at altitudes between 15 and 25 km and high-altitude cirrus clouds at altitudes below 13 km are analyzed and discussed. Cirrus clouds were present on 16 of the 26 campaign nights.

  11. Aerosol retrieval experiments in the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; de Leeuw, G.; Griesfeller, J.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-08-01

    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013), algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun photometer

  12. MDIs: physics of aerosol formation.

    PubMed

    Clark, A R

    1996-03-01

    The aerosol clouds produced by metered dose inhalers are very dynamic and dramatic changes in both droplet size and velocity take place within the first few centimeters of the spray plume. It is the interaction of this dynamic cloud with the geometry of the mouth and oropharynx that controls the extent of oral deposition and hence the ability of the MDI to deliver a respiratory therapeutic to the lung. Oral deposition is controlled by inertial mechanisms and in order to develop meaningful in-vitro test methods consideration must be given to both the velocity and droplet size distribution of the cloud. The correct design of the inlet ports used to convey MDI clouds in aerosol sizing instruments is therefore crucial to the development of successful in-vitro methodologies. The use of large sampling chambers or the characterization of residual aerosol droplets is unlikely to produce meaning product comparisons or satisfactory product control data.

  13. Wind reduction by aerosol particles

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.; Kaufman, Yoram J.

    2006-12-01

    Aerosol particles are known to affect radiation, temperatures, stability, clouds, and precipitation, but their effects on spatially-distributed wind speed have not been examined to date. Here, it is found that aerosol particles, directly and through their enhancement of clouds, may reduce near-surface wind speeds below them by up to 8% locally. This reduction may explain a portion of observed ``disappearing winds'' in China, and it decreases the energy available for wind-turbine electricity. In California, slower winds reduce emissions of wind-driven soil dust and sea spray. Slower winds and cooler surface temperatures also reduce moisture advection and evaporation. These factors, along with the second indirect aerosol effect, may reduce California precipitation by 2-5%, contributing to a strain on water supply.

  14. Air ions and aerosol science

    NASA Astrophysics Data System (ADS)

    Tammet, Hannes

    1996-03-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated