Sample records for aerosol beam irradiation

  1. Aerosol beam-focus laser-induced plasma spectrometer device

    DOEpatents

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  2. UV spectral irradiance measurements in New Zealand: Effects of Pinatubo volcanic aerosol

    NASA Technical Reports Server (NTRS)

    Mckenzie, Richard L.

    1994-01-01

    Since late 1989, regular UV spectral irradiance measurements have been made at Lauder, New Zealand (45 deg S, 170 deg E), whenever weather permits. Here, the instrumentation and measurement strategy are outlined, and early results are discussed. Following the eruption of Mt Pinatubo in June 1991, large amounts of volcanic aerosol were injected into the stratosphere and were subsequently transported to New Zealand's latitudes in the latter half of 1991. This provides an opportunity to investigate the effects of volcanic aerosols on UV irradiances measured at this clean-air site. Although changes in global (sum of diffuse plus direct) irradiances were below the detection threshold, there were significant changes in the partitioning of radiation between the direct beam and diffuse skylight. Decreases by nearly a factor of two in the direct/diffuse ratio were observed at longer wavelengths, and at smaller solar zenith angles (sza's). The aerosol optical depth due to volcanic aerosol over Lauder in December 1991 was 0.15 plus or minus 0.02 at 450 nm, with lower values at shorter wavelengths. Although effects were relatively small in the UVB region, an implication of the changes is that the contrast between shade and direct sun is reduced, so that shaded areas received relatively more radiation in the summer of 1991/92 in New Zealand.

  3. Three-beam aerosol backscatter correlation lidar for wind profiling

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand

    2017-03-01

    The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

  4. Chemical evolution of Titan’s aerosol analogues under VUV irradiation

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Gavilan, Lisseth; Tigrine, Sarah; Vettier, Ludovic; Nahon, Laurent; Pernot, Pascal

    2017-10-01

    Since the Cassini-CAPS measurements, organic aerosols are known to be present and formed at high altitudes in the diluted and partially ionized medium that is Titan’s ionosphere [1].After production in the ionosphere, Titan’s aerosols evolve through microphysics during their sedimentation down to Titan’s surface [2]. Starting with a few nanomers size in the upper atmosphere, they reach a fractal structure of a few hundreds nanometers close to the surface [3]. During sedimentation, aerosols are also submitted to solar irradiation. As laboratory analogs of Titan’s atmospheric aerosols (tholins) show a strong UV absorption [4], we suspect that VUV irradiation could also induce a chemical evolution of Titan’s aerosols during their descent in Titan’s atmosphere.The aim of this work ist to simulate the irradiation process occuring on the aerosols in Titan’s atmosphere and to address whether this irradiation impacts the chemical composition of the organic solids. First aerosol analogues were produced in a N2-CH4 plasma discharge as thin organic films of a few hundreds of nanometers thick [5]. Then those were irradiated at Lyman-α wavelength, the strongest VUV line in the solar spectrum, with a high photon flux on a synchrotron VUV beamline. We will present and discuss the significant chemical evolutions observed on the analogues after VUV irradiation by mid-IR absorption spectroscopy.[1] Waite et al. (2009) Science , 316, p. 870[2] Lavvas et al. (2011) Astrophysical Journal, 728:80[3] Tomasko et al. (2008) Planetary and Space Science, 56, p. 669[4] Mahjoub et al. (2012) Icarus 221, P. 670[5] Carrasco et al. (2016) Planetary and Space Science, 128, p. 52

  5. Scattering of aerosol particles by a Hermite-Gaussian beam in marine atmosphere.

    PubMed

    Huang, Qingqing; Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Yan, Xu; Liu, Songhua

    2017-07-01

    Based on the complex-source-point method and the generalized Lorenz-Mie theory, the scattering properties and polarization of aerosol particles by a Hermite-Gaussian (HG) beam in marine atmosphere is investigated. The influences of beam mode, beam width, and humidity on the scattered field are analyzed numerically. Results indicate that when the number of HG beam modes u (v) increase, the radar cross section of aerosol particles alternating appears at maximum and minimum values in the forward and backward scattering, respectively, because of the special petal-shaped distribution of the HG beam. The forward and backward scattering of aerosol particles decreases with the increase in beam waist. When beam waist is less than the radius of the aerosol particle, a minimum value is observed in the forward direction. The scattering properties of aerosol particles by the HG beam are more sensitive to the change in relative humidity compared with those by the plane wave and the Gaussian beam (GB). The HG beam shows superiority over the plane wave and the GB in detecting changes in the relative humidity of marine atmosphere aerosol. The effects of relative humidity on the polarization of the HG beam have been numerically analyzed in detail.

  6. Microwave-Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (Postprint)

    DTIC Science & Technology

    2012-02-01

    Baggiani, A. and Senesi, S. (2004). Effect of Microwave Radiation on Bacillus subtilis Spores . J. Appl. Microbiol. 97: 1220–1227. Damit, B., Lee, C.N...AFRL-RX-TY-TP-2012-0020 MICROWAVE-IRRADIATION-ASSISTED HVAC FILTRATION FOR INACTIVATION OF VIRAL AEROSOLS POSTPRINT Myung-Heui Woo and...12-APR-2011 -- 11-DEC-2011 Microwave Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (POSTPRINT) FA8650-06-C-5913 0602102F

  7. Electron-beam irradiation-induced gate oxide degradation

    NASA Astrophysics Data System (ADS)

    Cho, Byung Jin; Chong, Pei Fen; Chor, Eng Fong; Joo, Moon Sig; Yeo, In Seok

    2000-12-01

    Gate oxide degradation induced by electron-beam irradiation has been studied. A large increase in the low-field excess leakage current was observed on irradiated oxides and this was very similar to electrical stress-induced leakage currents. Unlike conventional electrical stress-induced leakage currents, however, electron-beam induced leakage currents exhibit a power law relationship with fluency without any signs of saturation. It has also been found that the electron-beam neither accelerates nor initiates quasibreakdown of the ultrathin gate oxide. Therefore, the traps generated by electron-beam irradiation do not contribute to quasibreakdown, only to the leakage current.

  8. Program Models A Laser Beam Focused In An Aerosol Spray

    NASA Technical Reports Server (NTRS)

    Barton, J. P.

    1996-01-01

    Monte Carlo analysis performed on packets of light. Program for Analysis of Laser Beam Focused Within Aerosol Spray (FLSPRY) developed for theoretical analysis of propagation of laser pulse optically focused within aerosol spray. Applied for example, to analyze laser ignition arrangement in which focused laser pulse used to ignite liquid aerosol fuel spray. Scattering and absorption of laser light by individual aerosol droplets evaluated by use of electromagnetic Lorenz-Mie theory. Written in FORTRAN 77 for both UNIX-based computers and DEC VAX-series computers. VAX version of program (LEW-16051). UNIX version (LEW-16065).

  9. NOTE: Blood irradiation with accelerator produced electron beams

    NASA Astrophysics Data System (ADS)

    Butson, M. J.; Cheung, T.; Yu, P. K. N.; Stokes, M. J.

    2000-11-01

    Blood and blood products are irradiated with gamma rays to reduce the risk of graft versus host disease (GVHD). A simple technique using electron beams produced by a medical linear accelerator has been studied to evaluate irradiation of blood and blood products. Variations in applied doses for a single field 20 MeV electron beam are measured in a phantom study. Doses have been verified with ionization chambers and commercial diode detectors. Results show that the blood product volume can be given a relatively homogeneous dose to within 6% using 20 MeV electrons without the need to rotate the blood bags or the beam entry point. The irradiation process takes approximately 6.5 minutes for 30 Gy applied dose to complete as opposed to 12 minutes for a dual field x-ray field irradiation at our centre. Electron beams can be used to satisfactorily irradiate blood and blood products in a minimal amount of time.

  10. Effect of Sodium Fluorescein and Plating Medium on Recovery of Irradiated Escherichia coli and Serratia marcescens from Aerosols

    PubMed Central

    Dorsey, Emerson L.; Berendt, Richard F.; Neff, Everett L.

    1970-01-01

    Irradiation of aerosols of either Escherichia coli or Serratia marcescens with simulated solar (xenon) radiation caused a significant decrease in viability. When sodium fluorescein was employed to determine the physical loss of organisms from the aerosol, an additional adverse effect upon survival was noted. The decay curves indicated that at least two mechanisms of inactivation were operative, one due to aerosolization, the other to irradiation. After collection from aerosols, both species of microorganisms grew better on blood agar base than on Casitone agar, but this finding did not appear to be related to the effect of irradiation. PMID:4922085

  11. Algorithms and uncertainties for the determination of multispectral irradiance components and aerosol optical depth from a shipborne rotating shadowband radiometer

    NASA Astrophysics Data System (ADS)

    Witthuhn, Jonas; Deneke, Hartwig; Macke, Andreas; Bernhard, Germar

    2017-03-01

    The 19-channel rotating shadowband radiometer GUVis-3511 built by Biospherical Instruments provides automated shipborne measurements of the direct, diffuse and global spectral irradiance components without a requirement for platform stabilization. Several direct sun products, including spectral direct beam transmittance, aerosol optical depth, Ångström exponent and precipitable water, can be derived from these observations. The individual steps of the data analysis are described, and the different sources of uncertainty are discussed. The total uncertainty of the observed direct beam transmittances is estimated to be about 4 % for most channels within a 95 % confidence interval for shipborne operation. The calibration is identified as the dominating contribution to the total uncertainty. A comparison of direct beam transmittance with those obtained from a Cimel sunphotometer at a land site and a manually operated Microtops II sunphotometer on a ship is presented. Measurements deviate by less than 3 and 4 % on land and on ship, respectively, for most channels and in agreement with our previous uncertainty estimate. These numbers demonstrate that the instrument is well suited for shipborne operation, and the applied methods for motion correction work accurately. Based on spectral direct beam transmittance, aerosol optical depth can be retrieved with an uncertainty of 0.02 for all channels within a 95 % confidence interval. The different methods to account for Rayleigh scattering and gas absorption in our scheme and in the Aerosol Robotic Network processing for Cimel sunphotometers lead to minor deviations. Relying on the cross calibration of the 940 nm water vapor channel with the Cimel sunphotometer, the column amount of precipitable water can be estimated with an uncertainty of ±0.034 cm.

  12. Can AERONET data be used to accurately model the monochromatic beam and circumsolar irradiances under cloud-free conditions in desert environment?

    NASA Astrophysics Data System (ADS)

    Eissa, Y.; Blanc, P.; Wald, L.; Ghedira, H.

    2015-12-01

    Routine measurements of the beam irradiance at normal incidence include the irradiance originating from within the extent of the solar disc only (DNIS), whose angular extent is 0.266° ± 1.7 %, and from a larger circumsolar region, called the circumsolar normal irradiance (CSNI). This study investigates whether the spectral aerosol optical properties of the AERONET stations are sufficient for an accurate modelling of the monochromatic DNIS and CSNI under cloud-free conditions in a desert environment. The data from an AERONET station in Abu Dhabi, United Arab Emirates, and the collocated Sun and Aureole Measurement instrument which offers reference measurements of the monochromatic profile of solar radiance were exploited. Using the AERONET data both the radiative transfer models libRadtran and SMARTS offer an accurate estimate of the monochromatic DNIS, with a relative root mean square error (RMSE) of 6 % and a coefficient of determination greater than 0.96. The observed relative bias obtained with libRadtran is +2 %, while that obtained with SMARTS is -1 %. After testing two configurations in SMARTS and three in libRadtran for modelling the monochromatic CSNI, libRadtran exhibits the most accurate results when the AERONET aerosol phase function is presented as a two-term Henyey-Greenstein phase function. In this case libRadtran exhibited a relative RMSE and a bias of respectively 27 and -24 % and a coefficient of determination of 0.882. Therefore, AERONET data may very well be used to model the monochromatic DNIS and the monochromatic CSNI. The results are promising and pave the way towards reporting the contribution of the broadband circumsolar irradiance to standard measurements of the beam irradiance.

  13. Retrieval of the aerosol optical thickness from UV global irradiance measurements

    NASA Astrophysics Data System (ADS)

    Costa, M. J.; Salgueiro, V.; Bortoli, D.; Obregón, M. A.; Antón, M.; Silva, A. M.

    2015-12-01

    The UV irradiance is measured at Évora since several years, where a CIMEL sunphotometer integrated in AERONET is also installed. In the present work, measurements of UVA (315 - 400 nm) irradiances taken with Kipp&Zonen radiometers, as well as satellite data of ozone total column values, are used in combination with radiative transfer calculations, to estimate the aerosol optical thickness (AOT) in the UV. The retrieved UV AOT in Évora is compared with AERONET AOT (at 340 and 380 nm) and a fairly good agreement is found with a root mean square error of 0.05 (normalized root mean square error of 8.3%) and a mean absolute error of 0.04 (mean percentage error of 2.9%). The methodology is then used to estimate the UV AOT in Sines, an industrialized site on the Atlantic western coast, where the UV irradiance is monitored since 2013 but no aerosol information is available.

  14. Downward solar global irradiance at the surface in São Paulo city—The climatological effects of aerosol and clouds

    NASA Astrophysics Data System (ADS)

    Yamasoe, M. A.; do Rosário, N. M. E.; Barros, K. M.

    2017-01-01

    We analyzed the variability of downward solar irradiance reaching the surface at São Paulo city, Brazil, and estimated the climatological aerosol and cloud radiative effects. Eleven years of irradiance were analyzed, from 2005 to 2015. To distinguish the aerosol from the cloud effect, the radiative transfer code LibRadtran was used to calculate downward solar irradiance. Two runs were performed, one considering only ozone and water vapor daily variability, with AOD set to zero and the second allowing the three variables to change, according to mean climatological values. The difference of the 24 h mean irradiance calculated with and without aerosol resulted in the shortwave aerosol direct radiative effect, while the difference between the measured and calculated, including the aerosol, represented the cloud effect. Results showed that, climatologically, clouds can be 4 times more effective than aerosols. The cloud shortwave radiative effect presented a maximum reduction of about -170 W m-2 in January and a minimum in July, of -37 W m-2. The aerosol direct radiative effect was maximum in spring, when the transport of smoke from the Amazon and central parts of South America is frequent toward São Paulo. Around mid-September, the 24 h radiative effect due to aerosol only was estimated to be -50 W m-2. Throughout the rest of the year, the mean aerosol effect was around -20 W m-2 and was attributed to local urban sources. The effect of the cloud fraction on the cloud modification factor, defined as the ratio of all-sky irradiation to cloudless sky irradiation, showed dependence on the cloud height. Low clouds presented the highest impact while the presence of high clouds only almost did not affect solar transmittance, even in overcast conditions.

  15. Smartphone-Based Android app for Determining UVA Aerosol Optical Depth and Direct Solar Irradiances.

    PubMed

    Igoe, Damien P; Parisi, Alfio; Carter, Brad

    2014-01-01

    This research describes the development and evaluation of the accuracy and precision of an Android app specifically designed, written and installed on a smartphone for detecting and quantifying incident solar UVA radiation and subsequently, aerosol optical depth at 340 and 380 nm. Earlier studies demonstrated that a smartphone image sensor can detect UVA radiation and the responsivity can be calibrated to measured direct solar irradiance. This current research provides the data collection, calibration, processing, calculations and display all on a smartphone. A very strong coefficient of determination of 0.98 was achieved when the digital response was recalibrated and compared to the Microtops sun photometer direct UVA irradiance observations. The mean percentage discrepancy for derived direct solar irradiance was only 4% and 6% for observations at 380 and 340 nm, respectively, lessening with decreasing solar zenith angle. An 8% mean percent difference discrepancy was observed when comparing aerosol optical depth, also decreasing as solar zenith angle decreases. The results indicate that a specifically designed Android app linking and using a smartphone image sensor, calendar and clock, with additional external narrow bandpass and neutral density filters can be used as a field sensor to evaluate both direct solar UVA irradiance and low aerosol optical depths for areas with low aerosol loads. © 2013 The American Society of Photobiology.

  16. Forecasting Plant Productivity and Health Using Diffuse-to-Global Irradiance Ratios Extracted from the OMI Aerosol Product

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly; Andrews, Jane C.; Ryan, Robert E.

    2007-01-01

    Atmospheric aerosols are a major contributor to diffuse irradiance. This Candidate Solution suggests using the OMI (Ozone Monitoring Instrument) aerosol product as input into a radiative transfer model, which would calculate the ratio of diffuse to global irradiance at the Earth s surface. This ratio can significantly influence the rate of photosynthesis in plants; increasing the ratio of diffuse to global irradiance can accelerate photosynthesis, resulting in greater plant productivity. Accurate values of this ratio could be useful in predicting crop productivity, thereby improving forecasts of regional food resources. However, disagreements exist between diffuse-to-global irradiance values measured by different satellites and ground sensors. OMI, with its unique combination of spectral bands, high resolution, and daily global coverage, may be able to provide more accurate aerosol measurements than other comparable sensors.

  17. Proton beam irradiation inhibits the migration of melanoma cells.

    PubMed

    Jasińska-Konior, Katarzyna; Pochylczuk, Katarzyna; Czajka, Elżbieta; Michalik, Marta; Romanowska-Dixon, Bożena; Swakoń, Jan; Urbańska, Krystyna; Elas, Martyna

    2017-01-01

    In recent years experimental data have indicated that low-energy proton beam radiation might induce a difference in cellular migration in comparison to photons. We therefore set out to compare the effect of proton beam irradiation and X-rays on the survival and long-term migratory properties of two cell lines: uveal melanoma Mel270 and skin melanoma BLM. Cells treated with either proton beam or X-rays were analyzed for their survival using clonogenic assay and MTT test. Long-term migratory properties were assessed with time-lapse monitoring of individual cell movements, wound test and transpore migration, while the expression of the related proteins was measured with western blot. Exposure to proton beam and X-rays led to similar survival but the quality of the cell colonies was markedly different. More paraclones with a low proliferative activity and fewer highly-proliferative holoclones were found after proton beam irradiation in comparison to X-rays. At 20 or 40 days post-irradiation, migratory capacity was decreased more by proton beam than by X-rays. The beta-1-integrin level was decreased in Mel270 cells after both types of radiation, while vimentin, a marker of EMT, was increased in BLM cells only. We conclude that proton beam irradiation induced long-term inhibition of cellular motility, as well as changes in the level of beta-1 integrin and vimentin. If confirmed, the change in the quality, but not in the number of colonies after proton beam irradiation might favor tumor growth inhibition after fractionated proton therapy.

  18. Multiple ion beam irradiation for the study of radiation damage in materials

    NASA Astrophysics Data System (ADS)

    Taller, Stephen; Woodley, David; Getto, Elizabeth; Monterrosa, Anthony M.; Jiao, Zhijie; Toader, Ovidiu; Naab, Fabian; Kubley, Thomas; Dwaraknath, Shyam; Was, Gary S.

    2017-12-01

    The effects of transmutation produced helium and hydrogen must be included in ion irradiation experiments to emulate the microstructure of reactor irradiated materials. Descriptions of the criteria and systems necessary for multiple ion beam irradiation are presented and validated experimentally. A calculation methodology was developed to quantify the spatial distribution, implantation depth and amount of energy-degraded and implanted light ions when using a thin foil rotating energy degrader during multi-ion beam irradiation. A dual ion implantation using 1.34 MeV Fe+ ions and energy-degraded D+ ions was conducted on single crystal silicon to benchmark the dosimetry used for multi-ion beam irradiations. Secondary Ion Mass Spectroscopy (SIMS) analysis showed good agreement with calculations of the peak implantation depth and the total amount of iron and deuterium implanted. The results establish the capability to quantify the ion fluence from both heavy ion beams and energy-degraded light ion beams for the purpose of using multi-ion beam irradiations to emulate reactor irradiated microstructures.

  19. Electron beam irradiation effects on ethylene-tetrafluoroethylene copolymer films

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Saidi, Hamdani; Dahlan, Khairul Zaman M.

    2003-12-01

    The effects of electron beam irradiation on ethylene-tetrafluoroethylene copolymer (ETFE) films were studied. Samples were irradiated in air at room temperature by a universal electron beam accelerator for doses ranging from 100 to 1200 kGy. Irradiated samples were investigated with respect to their chemical structure, thermal characteristics, crystallinity and mechanical properties using FTIR, differential scanning calorimeter (DSC) and universal mechanical tester. The interaction of electron irradiation with ETFE films was found to induce dose-dependent changes in all the investigated properties. A mechanism for electron-induced reactions is proposed to explain the structure-property behaviour of irradiated ETFE films.

  20. The evolution of Titan's high-altitude aerosols under ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Tigrine, Sarah; Gavilan, Lisseth; Nahon, Laurent; Gudipati, Murthy S.

    2018-04-01

    The Cassini-Huygens space mission revealed that Titan's thick brownish haze is initiated high in the atmosphere at an altitude of about 1,000 km, before a slow transportation down to the surface. Close to the surface, at altitudes below 130 km, the Huygens probe provided information on the chemical composition of the haze. So far, we have not had insights into the possible photochemical evolution of the aerosols making up the haze during their descent. Here, we address this atmospheric aerosol aging process, simulating in the laboratory how solar vacuum ultraviolet irradiation affects the aerosol optical properties as probed by infrared spectroscopy. An important evolution was found that could explain the apparent contradiction between the nitrogen-poor infrared spectroscopic signature observed by Cassini below 600 km of altitude in Titan's atmosphere and a high nitrogen content as measured by the aerosol collector and pyrolyser of the Huygens probe at the surface of Titan.

  1. The evolution of Titan's high-altitude aerosols under ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Tigrine, Sarah; Gavilan, Lisseth; Nahon, Laurent; Gudipati, Murthy S.

    2018-06-01

    The Cassini-Huygens space mission revealed that Titan's thick brownish haze is initiated high in the atmosphere at an altitude of about 1,000 km, before a slow transportation down to the surface. Close to the surface, at altitudes below 130 km, the Huygens probe provided information on the chemical composition of the haze. So far, we have not had insights into the possible photochemical evolution of the aerosols making up the haze during their descent. Here, we address this atmospheric aerosol aging process, simulating in the laboratory how solar vacuum ultraviolet irradiation affects the aerosol optical properties as probed by infrared spectroscopy. An important evolution was found that could explain the apparent contradiction between the nitrogen-poor infrared spectroscopic signature observed by Cassini below 600 km of altitude in Titan's atmosphere and a high nitrogen content as measured by the aerosol collector and pyrolyser of the Huygens probe at the surface of Titan.

  2. Development of a MeV proton beam irradiation system.

    PubMed

    Park, Bum-Sik; Cho, Yong-Sub; Hong, In-Seok

    2008-02-01

    A proton beam irradiation system for the application of the MeV class proton beam, such as an implantation for a power semiconductor device and a smart-cut technology for a semiconductor production process, has been developed. This system consists of a negative ion source, an Einzel lens for a low energy beam transport, accelerating tubes, a gas stripper, a Cockroft-Walton high voltage power supply with 1 MV, a vacuum pumping system, and a high pressure insulating gas system. The negative hydrogen ion source is based on TRIUMF's design. Following the tandem accelerator, a pair of magnets is installed for raster scanning of the MeV proton beam to obtain a uniform irradiation pattern on the target. The system is 7 m long from the ion source to the target and is optimized for the proton beam irradiation. The details of the system development will be described.

  3. Application of a Global-to-Beam Irradiance Model to the NASA GEWEX SRB Dataset: An Extension of the NASA Surface Meteorology and Solar Energy Datasets

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Westberg, David J.

    2014-01-01

    The DIRINDEX model was designed to estimate hourly solar beam irradiances from hourly global horizontal irradiances. This model was applied to the NASA GEWEX SRB(Rel. 3.0) 3-hourly global horizontal irradiance data to derive3-hourly global maps of beam, or direct normal, irradiance for the period from January 2000 to December 2005 at the 1 deg. x 1 deg. resolution. The DIRINDEX model is a combination of the DIRINT model, a quasi-physical global-to-beam irradiance model based on regression of hourly observed data, and a broadband simplified version of the SOLIS clear-sky beam irradiance model. In this study, the input variables of the DIRINDEX model are 3-hourly global horizontal irradiance, solar zenith angle, dew-point temperature, surface elevation, surface pressure, sea-level pressure, aerosol optical depth at 700 nm, and column water vapor. The resulting values of the 3-hourly direct normal irradiance are then used to compute daily and monthly means. The results are validated against the ground-based BSRN data. The monthly means show better agreement with the BSRN data than the results from an earlier endeavor which empirically derived the monthly mean direct normal irradiance from the GEWEX SRB monthly mean global horizontal irradiance. To assimilate the observed information into the final results, the direct normal fluxes from the DIRINDEX model are adjusted according to the comparison statistics in the latitude-longitude-cosine of solar zenith angle phase space, in which the inverse-distance interpolation is used for the adjustment. Since the NASA Surface meteorology and Solar Energy derives its data from the GEWEX SRB datasets, the results discussed herein will serve to extend the former.

  4. Enhancement of CNT-based filters efficiency by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Elsehly, Emad M.; Chechenin, N. G.; Makunin, A. V.; Shemukhin, A. A.; Motaweh, H. A.

    2018-05-01

    It is shown in the report that disorder produced by ion beam irradiation can enhance the functionality of the carbon nanotubes. The filters of pressed multiwalled carbon nanotubes (MWNTs) were irradiated by He+ ions of the energy E = 80 keV with the fluence 2 × 1016 ion/cm2. The removal of manganese from aqueous solutions by using pristine and ion beam irradiated MWNTs filters was studied as a function of pH, initial concentration of manganese in aqueous solution, MWNT mass and contact time. The filters before and after filtration were characterized by Raman (RS) and energy dispersive X-ray spectroscopy (EDS) techniques to investigate the deposition content in the filter and defect formation in the MWNTs. The irradiated samples showed an enhancement of removal efficiency of manganese up to 97.5% for 10 ppm Mn concentration, suggesting that irradiated MWNT filter is a better Mn adsorbent from aqueous solutions than the pristine one. Radiation-induced chemical functionalization of MWNTs due to ion beam irradiation, suggesting that complexation between the irradiated MWNTs and manganese ions is another mechanism. This conclusion is supported by EDS and RS and is correlated with a larger disorder in the irradiated samples as follows from RS. The study demonstrates that ion beam irradiation is a promising tool to enhance the filtration efficiency of MWNT filters.

  5. Innovative real-time and non-destructive method of beam profile measurement under large beam current irradiation for BNCT

    NASA Astrophysics Data System (ADS)

    Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.

    2012-10-01

    We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.

  6. Effects of electron beam irradiation on polyamide 12 with fiberglass reinforcement

    NASA Astrophysics Data System (ADS)

    Jeun, Joon-Pyo; Shin, Bum-Sik; Kim, Hyun-Bin; Nho, Young-Chang; Kang, Phil-Hyun

    2010-06-01

    In the present study, the effects of electron beam irradiation of polyamide 12 (PA12) with fiberglass reinforcement on the thermal and wear properties were investigated. Electron beam irradiation of PA 12 was carried out over a range of irradiation doses (100-600 kGy) in air. The gel formation in the presence of a curing agent was dependent on the radiation doses. The thermal properties of irradiated PA 12 were studied in the temperature region 50-250° C to observe the changes in the melting point with radiation dose. The dimensional stability was significantly increased by electron beam irradiation and the related crosslinking of the PA 12.

  7. Electron beam irradiation of gemstone for color enhancement

    NASA Astrophysics Data System (ADS)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi

    2012-09-01

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  8. Transgenerational effects of proton beam irradiation on Caenorhabditis elegans germline apoptosis.

    PubMed

    Min, Hyemin; Sung, Minhee; Son, Miseol; Kawasaki, Ichiro; Shim, Yhong-Hee

    2017-08-26

    When treating cancer using radiation therapy, it is critical to increase patient survival rates and to reduce side effects. In this respect, proton beam radiation treatment performs better than other radiation treatments because of its high target specificity. However, complications still remain after proton beam radiation treatment. Among them, the risk to progeny after irradiation of their parents is a major concern. In this study, we analyzed the transgenerational effects of proton beam irradiation using the model organism Caenorhabditis. elegans. We found that germline apoptosis increased after proton beam irradiation and its effects were sustained transgenerationally. Moreover, we identified that a germline-specific histone methyltransferase component, SET-2, has a critical role in transmitting the transgenerational effect on germline apoptosis to the next generation after proton beam irradiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effects of electron beam irradiation on polyamide 12 with fiberglass reinforcement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeun, Joon-Pyo; Shin, Bum-Sik; Kim, Hyun-Bin

    2010-06-02

    In the present study, the effects of electron beam irradiation of polyamide 12 (PA12) with fiberglass reinforcement on the thermal and wear properties were investigated. Electron beam irradiation of PA 12 was carried out over a range of irradiation doses (100-600 kGy) in air. The gel formation in the presence of a curing agent was dependent on the radiation doses. The thermal properties of irradiated PA 12 were studied in the temperature region 50-250 deg. C to observe the changes in the melting point with radiation dose. The dimensional stability was significantly increased by electron beam irradiation and the relatedmore » crosslinking of the PA 12.« less

  10. Breakdown of dynamic balance of a particle in a quadrupole cell by laser-induced aerosol heating.

    PubMed

    Itoh, M; Lwamoto, T; Takahashi, K; Kuno, S

    1992-08-20

    The retention stability of an aerosol particle in a quadrupole cell exposed to horizontal irradiation with a CO(2) laser is investigated for several sizes of single spherical carbon particles. The stability of dynamic balance for the particle levitation is affected significantly by the irradiation and breaks down at a power higher than 10(5) W/m(2). The particle is pushed away along the beam line, and its trajectory is slightly upward owing to the laser-induced aerosol heating.

  11. Design of refractive laser beam shapers to generate complex irradiance profiles

    NASA Astrophysics Data System (ADS)

    Li, Meijie; Meuret, Youri; Duerr, Fabian; Vervaeke, Michael; Thienpont, Hugo

    2014-05-01

    A Gaussian laser beam is reshaped to have specific irradiance distributions in many applications in order to ensure optimal system performance. Refractive optics are commonly used for laser beam shaping. A refractive laser beam shaper is typically formed by either two plano-aspheric lenses or by one thick lens with two aspherical surfaces. Ray mapping is a general optical design technique to design refractive beam shapers based on geometric optics. This design technique in principle allows to generate any rotational-symmetric irradiance profile, yet in literature ray mapping is mainly developed to transform a Gaussian irradiance profile to a uniform profile. For more complex profiles especially with low intensity in the inner region, like a Dark Hollow Gaussian (DHG) irradiance profile, ray mapping technique is not directly applicable in practice. In order to these complex profiles, the numerical effort of calculating the aspherical surface points and fitting a surface with sufficient accuracy increases considerably. In this work we evaluate different sampling approaches and surface fitting methods. This allows us to propose and demonstrate a comprehensive numerical approach to efficiently design refractive laser beam shapers to generate rotational-symmetric collimated beams with a complex irradiance profile. Ray tracing analysis for several complex irradiance profiles demonstrates excellent performance of the designed lenses and the versatility of our design procedure.

  12. Electron beam irradiation of gemstone for color enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah

    2012-09-26

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors.more » The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.« less

  13. Charge transportation and permittivity in electron beam irradiated polymethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Zheng, Feihu; Zhang, Yewen; Xia, Junfeng; Xiao, Chun; An, Zhenlian

    2009-09-01

    The charging phenomenon in the insulating dielectrics often occurs in the radiative environments such as in the outer space and in the nuclear reactor. Both surface charging and bulk charging have various influences on the dielectric properties. Understanding electrical properties of e-beam irradiated dielectrics is of great significance in order to maintain the stability and reliability of the related operating system. In this work, the effect of electron beam irradiation on the permittivity of polymethyl methacrylate (PMMA) samples was investigated. It was found that the variance of permittivity in e-beam irradiated PMMA is mainly determined by two factors. One is the porosity of the material. The irradiating process could increase the porosity of PMMA due to the escape of the small molecule (e.g., CO, CO2, and CH4) produced during material degradation caused by e-beam irradiation. The enhanced higher porosity corresponds to lower permittivity. The distribution of the implanted charge is the other factor that influences the permittivity. When the distribution of electric field generated by the accumulating charge is asymmetric for the middle thickness of the sample, the PMMA sample with polar groups would be subjected to extra polarization by the field, which could lead to the increase in permittivity. Combining with the model of Wakino et al. [J. Am. Ceram. Soc. 76, 2588 (1993)] on permittivity of mixture materials, the Clausius-Mosotti equation was utilized to analyze the variation in permittivity in the e-beam irradiated PMMA samples.

  14. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, K. G.; Wetteland, C. J.; Cao, G.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiationmore » of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.« less

  15. Aerosol Optical Depth Measurements by Airborne Sun Photometer in SOLVE II: Comparisons to SAGE III, POAM III and Airborne Spectrometer Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Ramirez, S.; Yee, J-H.; Swartz, W.; Shetter, R.

    2004-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) measured solar-beam transmission on the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II). This paper presents AATS-14 results for multiwavelength aerosol optical depth (AOD), including its spatial structure and comparisons to results from two satellite sensors and another DC-8 instrument. These are the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Polar Ozone and Aerosol Measurement III (POAM III) and the Direct beam Irradiance Airborne Spectrometer (DIAS).

  16. An Expanded UV Irradiance Database from TOMS Including the Effects of Ozone, Clouds, and Aerosol Attenuation

    NASA Technical Reports Server (NTRS)

    Herman, J.; Krotkov, N.

    2003-01-01

    The TOMS UV irradiance database (1978 to 2003) has been expanded to include five new products (noon irradiance at 305,310,324, and 380 nm, and noon erythemal-weighted irradiance), in addition to the existing erythemal daily exposure, that permit direct comparisons with ground-based measurements from spectrometers and broadband instruments. The new data are available on http://toms.gsfc.nasa.gov/>http://toms.gsfc.nasa.gov. Comparisons of the TOMS estimated irradiances with ground-based instruments are given along with a review of the sources of known errors, especially the recent improvements in accounting for aerosol attenuation. Trend estimations from the new TOMS irradiances permit the clear separation of changes caused by ozone and those caused by aerosols and clouds. Systematic differences in cloud cover are shown to be the most important factor in determining regional differences in UV radiation reaching the ground for locations at the same latitude (e.g., the summertime differences between Australia and the US southwest).

  17. Detrimental effects of electron beam irradiation on the cowpea bruchid Callosobruchus maculatus.

    PubMed

    Sang, Wen; Speakmon, Mickey; Zhou, Lan; Wang, Yu; Lei, Chaoliang; Pillai, Suresh D; Zhu-Salzman, Keyan

    2016-04-01

    Electron beam (eBeam) irradiation technology is an environmentally friendly, chemical-free alternative for disinfesting insect pests of stored grains. The underlying hypothesis is that specific doses of eBeam will have defined detrimental effects on the different life stages. We evaluated the effects of eBeam exposure in a range of doses (0.03-0.12 kGy) on the development of the cowpea bruchid (Callosobruchus maculatus) at various stages of its life cycle. Differential radiosensitivity was detected during egg development. Early and intermediate stages of eggs never hatched after exposure to a dose of 0.03 kGy, whereas a substantial portion of black-headed (i.e. late) eggs survived irradiation even at 0.12 kGy. However, further development of the hatched larvae was inhibited. Although midgut protein digestion remained intact, irradiated larvae (0.06 kGy or higher) failed to develop into normal living adults; rather, they died as pupae or abnormally eclosed adults, suggesting a detrimental effect of eBeam on metamorphosis. Emerged irradiated pupae had shorter longevity and were unable to produce any eggs at 0.06 kGy or higher. At this dose range, eggs laid by irradiated adults were not viable. eBeam treatment shortened adult longevity in a dose-dependent manner. Reciprocal crosses indicated that females were more sensitive to eBeam exposure than their male counterparts. Dissection of the female reproductive system revealed that eBeam treatment prevented formation of oocytes. eBeam irradiation has very defined effects on cowpea bruchid development and reproduction. A dose of 0.06 kGy could successfully impede cowpea burchid population expansion. This information can be exploited for post-harvest insect control of stored grains. © 2015 Society of Chemical Industry.

  18. Can AERONET data be used to accurately model the monochromatic beam and circumsolar irradiances under cloud-free conditions in desert environment?

    NASA Astrophysics Data System (ADS)

    Eissa, Y.; Blanc, P.; Wald, L.; Ghedira, H.

    2015-07-01

    Routine measurements of the beam irradiance at normal incidence (DNI) include the irradiance originating from within the extent of the solar disc only (DNIS) whose angular extent is 0.266° ± 1.7 %, and that from a larger circumsolar region, called the circumsolar normal irradiance (CSNI). This study investigates if the spectral aerosol optical properties of the AERONET stations are sufficient for an accurate modelling of the monochromatic DNIS and CSNI under cloud-free conditions in a desert environment. The data from an AERONET station in Abu Dhabi, United Arab Emirates, and a collocated Sun and Aureole Measurement (SAM) instrument which offers reference measurements of the monochromatic profile of solar radiance, were exploited. Using the AERONET data both the radiative transfer models libRadtran and SMARTS offer an accurate estimate of the monochromatic DNIS, with a relative root mean square error (RMSE) of 5 %, a relative bias of +1 % and acoefficient of determination greater than 0.97. After testing two configurations in SMARTS and three in libRadtran for modelling the monochromatic CSNI, libRadtran exhibits the most accurate results when the AERONET aerosol phase function is presented as a Two Term Henyey-Greenstein phase function. In this case libRadtran exhibited a relative RMSE and a bias of respectively 22 and -19 % and a coefficient of determination of 0.89. The results are promising and pave the way towards reporting the contribution of the broadband circumsolar irradiance to standard DNI measurements.

  19. Investigation of Damage with Cluster Ion Beam Irradiation Using HR-RBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Toshio; Aoki, Takaaki; Matsuo, Jiro

    2008-11-03

    Cluster ion beam can process targets with shallow damage because of the very low irradiation energy per atom. However, it is needed to investigate the damage with cluster ion beam irradiation, because recent applications demand process targets with ultra low damage. The shallow damage can be investigated from depth profiles of specific species before and after ion irradiation. They can be measured with secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectroscopy (RBS). High resolution Rutherford backscattering spectroscopy (HR-RBS) is a non destructive measurement method and depth profiles can be measured with nano-resolution. The cluster ion beam mixing of thinmore » Ni layer in carbon targets can be investigated with HR-RBS. The mixing depth with cluster ion irradiation at 10 keV was about 10 nm. The mixing depth with cluster ion irradiation at 1 keV and 5 keV were less than 1 nm and 5 nm, respectively. The number of displaced Ni atoms with cluster ion irradiation was very larger than that with monomer ion irradiation of same energy. This result shows that violent mixing occurs with single cluster impact.« less

  20. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Transient clearing of a water aerosol in the case of thermal blooming of an optical beam

    NASA Astrophysics Data System (ADS)

    Kucherov, Arkadii N.

    1995-03-01

    The moisture approximation is used in a study of transient clearing of a water aerosol when droplets are evaporated by an intense laser beam in the presence of a cross wind. Coordinate distributions of the beam intensity and moisture are obtained between the moment at which the beam begins to act and the attainment of a steady state. The dependences of the intensity of the beam transmitted by an aerosol medium on the scaling parameters (representing aerosol evaporation or clearing, beam attenuation, and thermal blooming) are derived. A comparison is made with experimental and theoretical results obtained by other authors.

  1. Study on elucidation of bactericidal effects induced by laser beam irradiation Measurement of dynamic stress on laser irradiated surface

    NASA Astrophysics Data System (ADS)

    Furumoto, Tatsuaki; Kasai, Atsushi; Tachiya, Hiroshi; Hosokawa, Akira; Ueda, Takashi

    2010-09-01

    In dental treatment, many types of laser beams have been used for various surgical treatments, and the influences of laser beam irradiation on bactericidal effect have been investigated. However, most of the work has been performed by irradiating to an agar plate with the colony of bacteria, and very few studies have been reported on the physical mechanism of bactericidal effects induced by laser beam irradiation. This paper deals with the measurement of dynamic stress induced in extracted human enamel by irradiation with Nd:YAG laser beams. Laser beams can be delivered to the enamel surface through a quartz optical fiber. Dynamic stress induced in the specimen using elastic wave propagation in a cylindrical long bar made of aluminum alloy is measured. Laser induced stress intensity is evaluated from dynamic strain measured by small semiconductor strain gauges. Carbon powder and titanium dioxide powder were applied to the human enamel surface as absorbents. Additionally, the phenomenon of laser beam irradiation to the human enamel surface was observed with an ultrahigh speed video camera. Results showed that a plasma was generated on the enamel surface during laser beam irradiation, and the melted tissues were scattered in the vertical direction against the enamel surface with a mushroom-like wave. Averaged scattering velocity of the melted tissues was 25.2 m/s. Induced dynamic stress on the enamel surface increased with increasing laser energy in each absorbent. Induced dynamic stresses with titanium dioxide powder were superior to those with carbon powder. Induced dynamic stress was related to volume of prepared cavity, and induced stress for the removal of unit volume of human enamel was 0.03 Pa/mm 3.

  2. Temperature measurements during high flux ion beam irradiations

    DOE PAGES

    Crespillo, Miguel L.; Graham, Joseph T.; Zhang, Yanwen; ...

    2016-02-16

    A systematic study of the ion beam heating effect was performed in a temperature range of –170 to 900 °C using a 10 MeV Au 3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 10 12 cm –2 s –1. Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparisonmore » with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. Furthermore, a simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beamanalysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect.« less

  3. Infrared differential-absorption Mueller matrix spectroscopy and neural network-based data fusion for biological aerosol standoff detection.

    PubMed

    Carrieri, Arthur H; Copper, Jack; Owens, David J; Roese, Erik S; Bottiger, Jerold R; Everly, Robert D; Hung, Kevin C

    2010-01-20

    An active spectrophotopolarimeter sensor and support system were developed for a military/civilian defense feasibility study concerning the identification and standoff detection of biological aerosols. Plumes of warfare agent surrogates gamma-irradiated Bacillus subtilis and chicken egg white albumen (analytes), Arizona road dust (terrestrial interferent), water mist (atmospheric interferent), and talcum powders (experiment controls) were dispersed inside windowless chambers and interrogated by multiple CO(2) laser beams spanning 9.1-12.0 microm wavelengths (lambda). Molecular vibration and vibration-rotation activities by the subject analyte are fundamentally strong within this "fingerprint" middle infrared spectral region. Distinct polarization-modulations of incident irradiance and backscatter radiance of tuned beams generate the Mueller matrix (M) of subject aerosol. Strings of all 15 normalized elements {M(ij)(lambda)/M(11)(lambda)}, which completely describe physical and geometric attributes of the aerosol particles, are input fields for training hybrid Kohonen self-organizing map feed-forward artificial neural networks (ANNs). The properly trained and validated ANN model performs pattern recognition and type-classification tasks via internal mappings. A typical ANN that mathematically clusters analyte, interferent, and control aerosols with nil overlap of species is illustrated, including sensitivity analysis of performance.

  4. Trends in Ocean Irradiance using a Radiative Model Forced with Terra Aerosols and Clouds

    NASA Technical Reports Server (NTRS)

    Gregg, Watson; Casey, Nancy; Romanou, Anastasia

    2010-01-01

    Aerosol and cloud information from MODIS on Terra provide enhanced capability to understand surface irradiance over the oceans and its variability. These relationships can be important for ocean biology and carbon cycles. An established radiative transfer model, the Ocean-Atmosphere Spectral Irradiance Model (OASIM) is used to describe ocean irradiance variability on seasonal to decadal time scales. The model is forced with information on aerosols and clouds from the MODIS sensor on Terra and Aqua. A 7-year record (2000-2006) showed no trends in global ocean surface irradiance or photosynthetic available irradiance (PAR). There were significant (P<0.05) negative trends in the Mediterranean Sea, tropical Pacific) and tropical Indian Oceans, of -7.0, -5.0 and -2.7 W/sq m respectively. Global interannual variability was also modest. Regional interannual variability was quite large in some ocean basins, where monthly excursions from climatology were often >20 W/sq m. The trends using MODIS data contrast with results from OASIM using liquid water path estimates from the International Satellite Cloud Climatology Project (ISCCP). Here, a global trend of -2 W/sq m was observed, largely dues to a large negative trend in the Antarctic -12 W/sq m. These results suggest the importance of the choice of liquid water path data sets in assessments of medium-length trends in ocean surface irradiance. The choices also impact the evaluation of changes in ocean biogeochemistry.

  5. Parameterization of clear-sky surface irradiance and its implications for estimation of aerosol direct radiative effect and aerosol optical depth

    PubMed Central

    Xia, Xiangao

    2015-01-01

    Aerosols impact clear-sky surface irradiance () through the effects of scattering and absorption. Linear or nonlinear relationships between aerosol optical depth (τa) and have been established to describe the aerosol direct radiative effect on (ADRE). However, considerable uncertainties remain associated with ADRE due to the incorrect estimation of (τa in the absence of aerosols). Based on data from the Aerosol Robotic Network, the effects of τa, water vapor content (w) and the cosine of the solar zenith angle (μ) on are thoroughly considered, leading to an effective parameterization of as a nonlinear function of these three quantities. The parameterization is proven able to estimate with a mean bias error of 0.32 W m−2, which is one order of magnitude smaller than that derived using earlier linear or nonlinear functions. Applications of this new parameterization to estimate τa from , or vice versa, show that the root-mean-square errors were 0.08 and 10.0 Wm−2, respectively. Therefore, this study establishes a straightforward method to derive from τa or estimate τa from measurements if water vapor measurements are available. PMID:26395310

  6. IMPACT OF AEROSOL LIQUID WATER ON SECONDARY ORGANIC AEROSOL YIELDS OF IRRADIATED TOLUENE/PROPYLENE/NOX/(NH4)2SO4/AIR MIXUTRES

    EPA Science Inventory

    Laboratory experiments were conducted to assess whether the presence of liquid water on pre-existing submicron ammonium sulfate aerosols affects yields of condensible organic compounds. Toluene/propylene/NOX/air mixtures were irradiated in the presence of submicron ammonium su...

  7. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    NASA Astrophysics Data System (ADS)

    Choi, Jong-il; Lee, Hee-Sub; Kim, Jae-Hun; Lee, Kwang-Won; Chung, Young-Jin; Byun, Myung-Woo; Lee, Ju-Woon

    2008-12-01

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 °C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  8. Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns

    NASA Technical Reports Server (NTRS)

    Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.

    2013-01-01

    Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.

  9. Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport

    NASA Astrophysics Data System (ADS)

    Banda, M. E.; Griseri, V.; Teyssèdre, G.; Le Roy, S.

    2018-04-01

    Electron-beam irradiation is an alternative way to generate charges in insulating materials, at controlled position and quantity, in order to monitor their behaviour in regard to transport phenomena under the space charge induced electric field or external field applied. In this study, low density polyethylene (LDPE) films were irradiated by a 80 keV electron-beam with a flux of 1 nA cm‑2 during 10 min in an irradiation chamber under vacuum conditions, and were then characterized outside the chamber using three experimental methods. The electrical behaviour of the irradiated material was assessed by space charge measurements using the pulsed electro-acoustic (PEA) method under dc stress. The influence of the applied electric field polarity and amplitude has been tested in order to better understand the charge behaviour after electron-beam irradiation. Fourier transform infra-red spectroscopy (FTIR) and photoluminescence (PL) measurements were performed to evaluate the impact of the electron beam irradiation, i.e. deposited charges and energy, on the chemical structure of the irradiated samples. The present results show that the electrical behaviour in LDPE after irradiation is mostly driven by charges, i.e. by physical process functions of the electric field, and that changes in the chemical structure seems to be mild.

  10. Irradiance tailoring by fractional Fourier transform of a radial Gaussian beam array

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Liu, Zejin

    2011-03-01

    The fractional Fourier transform (FRFT) is applied to a radial Gaussian beam array. Analytical formula is derived for the irradiance distribution of coherent and incoherent radial Gaussian beam array in FRFT domain using Collins integral formula. It is revealed that the irradiance pattern can be tailored to be controllable dark-hollow, flat-topped and Gaussian beam pattern by changing of the fractional order of FRFT and the coherent state of the laser array.

  11. Irradiance tailoring by fractional Fourier transform of a radial Gaussian beam array

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Liu, Zejin

    2010-07-01

    The fractional Fourier transform (FRFT) is applied to a radial Gaussian beam array. Analytical formula is derived for the irradiance distribution of coherent and incoherent radial Gaussian beam array in FRFT domain using Collins integral formula. It is revealed that the irradiance pattern can be tailored to be controllable dark-hollow, flat-topped and Gaussian beam pattern by changing of the fractional order of FRFT and the coherent state of the laser array.

  12. Aerosol effects on the UV irradiance in Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Cordero, R. R.; Seckmeyer, G.; Damiani, A.; Jorquera, J.; Carrasco, J.; Muñoz, R.; Da Silva, L.; Labbe, F.; Laroze, D.

    2014-11-01

    Santiago de Chile (33°27‧ S-70°41‧ W) is a mid-latitude city of 6 million inhabitants with a complicated surrounding topography. Aerosol extinction in Santiago is determined by the semi-arid local climate, the urban pollution, a regional subsidence thermal inversion layer, and the boundary-layer wind airflow. In this paper we report on spectral measurements of the surface irradiance (at 290-600 nm wavelength range) carried out during 2013 in the heart of the city by using a double monochromator-based spectroradiometer system. These measurements were used to assess the effect of local aerosols, paying particular attention to the ultraviolet (UV) range. We found that the aerosol optical depth (AOD) exhibited variations likely related to changes in the subsidence thermal inversion and in the boundary-layer winds. Although the AOD at 350 nm typically ranged from 0.2 to 0.3, peak values of about 0.7 were measured. The AOD diminished with the wavelength and typically ranged from 0.1 to 0.2 at 550 nm. Our AOD data were found to be consistent with measurements of the particulate matter (PM) mass concentration.

  13. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    NASA Astrophysics Data System (ADS)

    Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A.

    2015-08-01

    Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed.

  14. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  15. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.

    PubMed

    Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert

    2018-03-01

    Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm

  16. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    NASA Astrophysics Data System (ADS)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  17. Programmable graphene doping via electron beam irradiation.

    PubMed

    Zhou, Yangbo; Jadwiszczak, Jakub; Keane, Darragh; Chen, Ying; Yu, Dapeng; Zhang, Hongzhou

    2017-06-29

    Graphene is a promising candidate to succeed silicon based devices, and the conventional strategies for fabrication and testing of graphene-based electronics often utilise an electron beam. Here, we report on a systematic study of the effect of electron beam exposure on graphene devices. We realise reversible doping of on-chip graphene using a focused electron beam. Our results demonstrate site-specific control of carrier type and concentration achievable by modulating the charge distribution in the substrate. The effect of substrate-embedded charges on carrier mobility and conductivity of graphene is studied, with a dielectric screening model proposed to explain the effective n-type and p-type doping produced at different beam energies. Multiple logic operations are thus implemented in a single graphene sheet by using site-specific e-beam irradiation. We extend the phenomenon to MoS 2 , generalising it to conductive two-dimensional materials. Our results are of importance to imaging, in situ characterisation and lithographic techniques employed to investigate 2D materials.

  18. Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Min, Daomin; Li, Shengtao; Li, Zhen; Xie, Dongri; Wang, Xuan; Lin, Shengjun

    2017-06-01

    The influencing mechanism of electron beam irradiation on surface flashover of epoxy resin/Al2O3 microcomposite was investigated. Epoxy resin/Al2O3 microcomposite samples with a diameter of 50 mm and a thickness of 1 mm were prepared. The samples were irradiated by electron beam with energies of 10 and 20 keV and a beam current of 5 μA for 5 min. Surface potential decay, surface conduction, and surface flashover properties of untreated and irradiated samples were measured. Both the decay rate of surface potential and surface conductivity decrease with an increase in the energy of electron beam. Meanwhile, surface flashover voltage increase. It was found that both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. The increase in the energy and density of deep surface traps enhance the ability to capture primary emitted electrons. In addition, the decrease in surface conductivity blocks electron emission at the cathode triple junction. Therefore, electron avalanche at the interface between gas and an insulating material would be suppressed, eventually improving surface flashover voltage of epoxy resin microcomposites.

  19. In Situ Aerosol Detector

    NASA Technical Reports Server (NTRS)

    Vakhtin, Andrei; Krasnoperov, Lev

    2011-01-01

    An affordable technology designed to facilitate extensive global atmospheric aerosol measurements has been developed. This lightweight instrument is compatible with newly developed platforms such as tethered balloons, blimps, kites, and even disposable instruments such as dropsondes. This technology is based on detection of light scattered by aerosol particles where an optical layout is used to enhance the performance of the laboratory prototype instrument, which allows detection of smaller aerosol particles and improves the accuracy of aerosol particle size measurement. It has been determined that using focused illumination geometry without any apertures is advantageous over using the originally proposed collimated beam/slit geometry (that is supposed to produce uniform illumination over the beam cross-section). The illumination source is used more efficiently, which allows detection of smaller aerosol particles. Second, the obtained integral scattered light intensity measured for the particle can be corrected for the beam intensity profile inhomogeneity based on the measured beam intensity profile and measured particle location. The particle location (coordinates) in the illuminated sample volume is determined based on the information contained in the image frame. The procedure considerably improves the accuracy of determination of the aerosol particle size.

  20. The impact of electron beam irradiation on Low density polyethylene and Ethylene vinyl acetate

    NASA Astrophysics Data System (ADS)

    Sabet, Maziyar; Soleimani, Hassan

    2017-05-01

    Improvement of measured gel content, hardness, tensile strength and elongation at break of Ethylene vinyl acetate (EVA) have confirmed positive effect of electron beam irradiation on EVA. Results obtained from both gel content tests show that degree of cross-linking in amorphous regions is dependent on dose. A significant improvement in tensile strength of neat EVA samples is obtained upon electron-beam radiation up to 210 kGy. Similarly, hardness properties of Low-density polyethylene (LDPE) improvewith increasing electron beam irradiation. This article deals with the impacts of electron beam (EB) irradiation on the properties of LDPE and Ethylene-Vinyl Acetate (EVA) as the two common based formulations for wire and cable applications.

  1. Luminescence imaging of water during uniform-field irradiation by spot scanning proton beams

    NASA Astrophysics Data System (ADS)

    Komori, Masataka; Sekihara, Eri; Yabe, Takuya; Horita, Ryo; Toshito, Toshiyuki; Yamamoto, Seiichi

    2018-06-01

    Luminescence was found during pencil-beam proton irradiation to water phantom and range could be estimated from the luminescence images. However, it is not yet clear whether the luminescence imaging is applied to the uniform fields made of spot-scanning proton-beam irradiations. For this purpose, imaging was conducted for the uniform fields having spread out Bragg peak (SOBP) made by spot scanning proton beams. We designed six types of the uniform fields with different ranges, SOBP widths and irradiation fields. One of the designed fields was irradiated to water phantom and a cooled charge coupled device camera was used to measure the luminescence image during irradiations. We estimated the ranges, field widths, and luminescence intensities from the luminescence images and compared those with the dose distribution calculated by a treatment planning system. For all types of uniform fields, we could obtain clear images of the luminescence showing the SOBPs. The ranges and field widths evaluated from the luminescence were consistent with those of the dose distribution calculated by a treatment planning system within the differences of  ‑4 mm and  ‑11 mm, respectively. Luminescence intensities were almost proportional to the SOBP widths perpendicular to the beam direction. The luminescence imaging could be applied to uniform fields made of spot scanning proton beam irradiations. Ranges and widths of the uniform fields with SOBP could be estimated from the images. The luminescence imaging is promising for the range and field width estimations in proton therapy.

  2. Uncertainty Estimate of Surface Irradiances Computed with MODIS-, CALIPSO-, and CloudSat-Derived Cloud and Aerosol Properties

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan

    2012-07-01

    Differences of modeled surface upward and downward longwave and shortwave irradiances are calculated using modeled irradiance computed with active sensor-derived and passive sensor-derived cloud and aerosol properties. The irradiance differences are calculated for various temporal and spatial scales, monthly gridded, monthly zonal, monthly global, and annual global. Using the irradiance differences, the uncertainty of surface irradiances is estimated. The uncertainty (1σ) of the annual global surface downward longwave and shortwave is, respectively, 7 W m-2 (out of 345 W m-2) and 4 W m-2 (out of 192 W m-2), after known bias errors are removed. Similarly, the uncertainty of the annual global surface upward longwave and shortwave is, respectively, 3 W m-2 (out of 398 W m-2) and 3 W m-2 (out of 23 W m-2). The uncertainty is for modeled irradiances computed using cloud properties derived from imagers on a sun-synchronous orbit that covers the globe every day (e.g., moderate-resolution imaging spectrometer) or modeled irradiances computed for nadir view only active sensors on a sun-synchronous orbit such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation and CloudSat. If we assume that longwave and shortwave uncertainties are independent of each other, but up- and downward components are correlated with each other, the uncertainty in global annual mean net surface irradiance is 12 W m-2. One-sigma uncertainty bounds of the satellite-based net surface irradiance are 106 W m-2 and 130 W m-2.

  3. Nickel nanowires mesh fabricated by ion beam irradiation-induced nanoscale welding for transparent conducting electrodes

    NASA Astrophysics Data System (ADS)

    Honey, S.; Ahmad, I.; Madhuku, M.; Naseem, S.; Maaza, M.; Kennedy, J. V.

    2017-07-01

    In this report, random nickel nanowires (Ni-NWs) meshes are fabricated by ions beam irradiation-induced nanoscale welding of NWs on intersecting positions. Ni-NWs are exposed to beam of 50 KeV Argon (Ar+) ions at various fluencies in the range ~1015 ions cm-2 to 1016 ions cm-2 at room temperature. Ni-NWs are welded due to accumulation of Ar+ ions beam irradiation-induced sputtered atoms on crossing positions. Ar+ ions irradiated Ni-NWs meshes are optically transparent and optical transparency is enhanced with increase in beam fluence of Ar+ ions. Ar+ ions beam irradiation-induced welded and optically transparent mesh is then exposed to 2.75 MeV hydrogen (H+) ions at fluencies 1  ×  1015 ions cm-2, 3  ×  1015 ions cm-2 and 1  ×  1016 ions cm-2 at room temperature. MeV H+ ions irradiation-induced local heat cause melting and fusion of NWs on intersecting points and eventually lead to reduce contact resistance between Ni-NWs. Electrical conductivity is enhanced with increase in beam fluence of H+ ions. These welded highly transparent and electrically conductive Ni-NWs meshes can be employed as transparent conducting electrodes in optoelectronic devices.

  4. Multi-walled carbon nanotube structural instability with/without metal nanoparticles under electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Huang, Shengli; Wu, Chenxu

    2017-12-01

    The structural transformation of multi-walled carbon nanotubes (MWCNT) under electron beam (e-beam) irradiation at room temperature is studied, with respect to a novel passivation effect due to gold nanoparticles (Au NPs). MWCNT structural evolution induced by energetic e-beam irradiation leads to faster shrinkage, as revealed via in situ transmission electron microscopy, while MWCNT surface modification with Au NPs (Au-MWCNT) slows down the shrinkage by impeding the structural evolution process for a prolonged time under the same irradiation conditions. The new relationship between MWCNT and Au-MWCNT shrinking radii and irradiation time illustrates that the MWCNT shrinkage rate is faster than either theoretical predictions or the same process in Au-MWCNTs. As compared with the outer surface energy (positive curvature), the inner surface energy (negative curvature) of the MWCNT contributes more to the athermal evaporation of tube wall atoms, leading to structural instability and shrinkage under e-beam irradiation. Conversely, Au NPs possess only outer surface energy (positive curvature) compared with the MWCNT. Their presence on MWCNT surfaces retards the dynamics of MWCNT structural evolution by slowing down the evaporation process of carbon atoms, thus restricting Au-MWCNT shrinkage. Au NP interaction and growth evolves athermally on MWCNT surfaces, exhibits increase in their size, and indicates the association of this mechanism with the coalescence induced by e-beam activated electronic excitations. Despite their growth, Au NPs show extreme structural stability, and remain crystalline under prolonged irradiation. It is proposed that the surface energy of MWCNTs and Au NPs, together with e-beam activated soft modes or lattice instability effects, predominantly govern all the above varieties of structural evolution.

  5. Multi-aperture laser transmissometer system for long-path aerosol extinction rate measurement.

    PubMed

    Wu, Chensheng; Rzasa, John R; Ko, Jonathan; Paulson, Daniel A; Coffaro, Joseph; Spychalsky, Jonathan; Crabbs, Robert F; Davis, Christopher C

    2018-01-20

    We present the theory, design, simulation, and experimental evaluations of a new laser transmissometer system for aerosol extinction rate measurement over long paths. The transmitter emits an ON/OFF modulated Gaussian beam that does not require strict collimation. The receiver uses multiple point detectors to sample the sub-aperture irradiance of the arriving beam. The sparse detector arrangement makes our transmissometer system immune to turbulence-induced beam distortion and beam wander caused by the atmospheric channel. Turbulence effects often cause spatial discrepancies in beam propagation and lead to miscalculation of true power loss when using the conventional approach of measuring the total beam power directly with a large-aperture optical concentrator. Our transmissometer system, on the other hand, combines the readouts from distributed detectors to rule out turbulence-induced temporal power fluctuations. As a result, we show through both simulation and field experiments that our transmissometer system works accurately with turbulence strength Cn2 up to 10 -12   m -2/3 over a typical 1-km atmospheric channel. In application, our turbulence- and weather-resistant laser transmissometer system has significant advantages for the measurement and study of aerosol concentration, absorption, and scattering properties, which are crucial for directed energy systems, ground-level free-space optical communication systems, environmental monitoring, and weather forecasting.

  6. Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Han, Do-Hung; Stuchinskaya, Tatiana; Won, Yang-Soo; Park, Wan-Sik; Lim, Jae-Kyong

    2003-05-01

    Decomposition of aromatic volatile organic compounds (VOCs) under electron beam irradiation was studied in order to examine the kinetics of the process, to characterize the reaction product distribution and to develop a process of waste gas control technology. Toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene were used as target materials. The experiments were carried out at doses ranging from 0.5 to 10 kGy, using a flow reactor utilized under electron beam irradiation. Maximum degrees of decomposition carried out at 10 kGy in air environment were 55-65% for “non-chlorinated” aromatic VOC and 85% for chlorobenzene. It was found that a combination of aromatic pollutants with chlorobenzene would considerably increase the degradation value up to nearly 50% compared to the same compounds in the absence of chlorine groups. Based on our experimental observation, the degradation mechanism of the aromatic compounds combined with chloro-compound suggests that a chlorine radical, formed from EB irradiation, induces a chain reaction, resulting in an accelerating oxidative destruction of aromatic VOCs.

  7. Electron beam irradiated ITO films as highly transparent p-type electrodes for GaN-based LEDs.

    PubMed

    Hong, C H; Wie, S M; Park, M J; Kwak, J S

    2013-08-01

    We have investigated the effect of electron beam irradiation on the electrical and optical properties of ITO film prepared by magnetron sputtering method at room temperature. Electron beam irradiation to the ITO films resulted in a significant decrease in sheet resistance from 1.28 x 10(-3) omega cm to 2.55 x 10(-4) omega cm and in a great increase in optical band gap from 3.72 eV to 4.16 eV, followed by improved crystallization and high transparency of 97.1% at a wavelength of 485 nm. The overall change in electrical, optical and structural properties of ITO films is related to annealing effect and energy transfer of electron by electron beam irradiation. We also fabricated GaN-based light-emitting diodes (LEDs) by using the ITO p-type electrode with/without electron beam irradiation. The results show that the LEDs having ITO p-electrode with electron beam irradiation produced higher output power due to the low absorption of light in the p-type electrode.

  8. Food Irradiation Using Electron Beams and X-Rays

    NASA Astrophysics Data System (ADS)

    Miller, Bruce

    2003-04-01

    In this presentation we will discuss the technology of food irradiation using electron accelerators. Food irradiation has generally come to describe the use of ionizing radiation to decrease the population of, or prevent the growth of, undesirable biological organisms in food. The many beneficial applications include insect disinfestation, sprouting inhibition, delayed ripening, and the enhanced safety and sterilization of fresh and frozen meat products, seafood, and eggs. With special regard to food safety, bacteria such as Salmonella enteridis, Listeria monocytogenes, Campylobacter jejuni and Escherichia coli serotype O157:H7 are the primary causes of food poisoning in industrialized countries. Ionizing doses in the range of only 1-5 kilogray (kGy) can virtually eliminate these organisms from food, without affecting the food's sensory and nutritional qualities, and without inducing radioactivity. The key elements of an accelerator-based irradiation facility include the accelerator system, a scanning system, and a material handling system that moves the product through the beam in a precisely controlled manner. Extensive radiation shielding is necessary to reduce the external dose to acceptable levels, and a safety system is necessary to prevent accidental exposure of personnel during accelerator operation. Parameters that affect the dose distribution must be continuously monitored and controlled with process control software. The choice of electron beam vs x-ray depends on the areal density (density times thickness) of the product and the anticipated mass throughput. To eliminate nuclear activation concerns, the maximum kinetic energy of the accelerator is limited by regulation to 10 MeV for electron beams, and 5 MeV for x-rays. From penetration considerations, the largest areal density that can be treated by double-sided electron irradiation at 10 MeV is about 8.8 g/cm2. Products having greater areal densities must be processed using more penetrating x-rays. The

  9. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    NASA Astrophysics Data System (ADS)

    Lu, Dong; Li, Wenjian; Wu, Xin; Wang, Jufang; Ma, Shuang; Liu, Qingfang; He, Jinyu; Jing, Xigang; Ding, Nan; Dai, Zhongying; Zhou, Jianping

    2010-12-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20Ne10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  10. Direct nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation.

    PubMed

    El Mel, Abdel-Aziz; Stephant, Nicolas; Gautier, Romain

    2016-10-06

    In this communication, we report on the growth, direct writing and nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation using a scanning electron microscope. The nanoblocks are produced by placing a droplet of an ethylene glycol solution containing silver nitrate and polyvinylpyrrolidone diluted in ethanol directly on a hot substrate heated up to 150 °C. Upon complete evaporation of the droplet, nanospheres, nano- and micro-triangles and nanoblocks made of silver-containing polymers, form over the substrate surface. Considering the nanoblocks as a model system, we demonstrate that such nanostructures are extremely sensitive to the e-beam extracted from the source of a scanning electron microscope operating at low acceleration voltages (between 5 and 7 kV). This sensitivity allows us to efficiently create various nanopatterns (e.g. arrays of holes, oblique slits and nanotrenches) in the material under e-beam irradiation. In addition to the possibility of writing, the nanoblocks revealed a self-healing ability allowing them to recover a relatively smooth surface after etching. Thanks to these properties, such nanomaterials can be used as a support for data writing and erasing on the nanoscale under low energy electron beam irradiation.

  11. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due tomore » irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.« less

  12. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    PubMed Central

    Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel

    2017-01-01

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2. PMID:28961199

  13. Irradiation of wastewater with electron beam is a key to sustainable smart/green cities: a review

    NASA Astrophysics Data System (ADS)

    Hossain, Kaizar; Maruthi, Y. Avasn; Das, N. Lakshmana; Rawat, K. P.; Sarma, K. S. S.

    2018-03-01

    Remediation of wastewater, sludge and removal of objectionable substances from our environment using radiation technology is neglected. Hardly, a couple of decades ago, application of electron beam (EB) technology has gained attention for waste management. When wastewater is irradiated with electron beam, the beam can alter the physico-chemical properties of irradiated aqueous material and also transform wastewater chemicals due to the excitation or ionization of chemical molecules. Thus, chemical reactions may be capable of producing new compounds. The beam of electrons initiates primary reactions to induce the excitation or ionization of molecules at varied rates. This review paper will help to a budding researcher how to optimize the irradiation process to achieve high efficiency with low electron beam energy which is economically viable/feasible. Application of E-beam radiation for wastewater treatment may ensure future smart cities with sustainable water resources management.

  14. Kr-86 Ion-Beam Irradiation of Hydrated DNA: Free Radical and Unaltered Base Yields

    PubMed Central

    Becker, David; Adhikary, Amitava; Tetteh, Smedley T.; Bull, Arthur W.; Sevilla, Michael D.

    2012-01-01

    This work reports an ESR and product analysis investigation of Kr-86 ion-beam irradiation of hydrated DNA at 77 K. The irradiation results in the formation and trapping of both base radicals and sugar phosphate radicals (DNA backbone radicals). The absolute yields (G, μmol/J) of the base radicals are smaller than the yields found in similarly prepared γ-irradiated DNA samples, and the relative yields of backbone radicals relative to base radicals are much higher than that found in γ-irradiated samples. From these results, we have elaborated our radiation chemical model of the track structure for ion-beam irradiated DNA as it applies to krypton ion-beams. The base radicals, which are trapped as ion radicals or reversibly protonated or deprotonated ion radicals, are formed almost entirely in the track penumbra, a region in which radiation chemical effects are similar to those found in γ-irradiated samples. By comparing the yields of base radicals in ion-beam samples to the yields of the same radicals in γ-irradiated samples, the partition of energy between the low-LET region (penumbra) and the core is experimentally determined. The neutral sugar and other backbone radicals, which are not as susceptible to recombination as are ion radicals, are formed largely in the track core. The backbone radicals show a linear dose response up to very high doses. Unaltered base release yields in Kr-86 irradiated hydrated DNA are equal to sugar radical yields within experimental error limits, consistent with radiation-chemical processes in which all base release originates with sugar radicals. Two phosphorus-centered radicals from fragmentation of the DNA backbone are found in low yields. PMID:23106211

  15. Kr-86 ion-beam irradiation of hydrated DNA: free radical and unaltered base yields.

    PubMed

    Becker, David; Adhikary, Amitava; Tetteh, Smedley T; Bull, Arthur W; Sevilla, Michael D

    2012-12-01

    This work reports an ESR and product analysis investigation of Kr-86 ion-beam irradiation of hydrated DNA at 77 K. The irradiation results in the formation and trapping of both base radicals and sugar phosphate radicals (DNA backbone radicals). The absolute yields (G, μmol/J) of the base radicals are smaller than the yields found in similarly prepared γ-irradiated DNA samples, and the relative yields of backbone radicals relative to base radicals are much higher than that found in γ-irradiated samples. From these results, we have elaborated our radiation chemical model of the track structure for ion-beam irradiated DNA as it applies to krypton ion-beams. The base radicals, which are trapped as ion radicals or reversibly protonated or deprotonated ion radicals, are formed almost entirely in the track penumbra, a region in which radiation chemical effects are similar to those found in γ-irradiated samples. By comparing the yields of base radicals in ion-beam samples to the yields of the same radicals in γ-irradiated samples, the partition of energy between the low-LET region (penumbra) and the core is experimentally determined. The neutral sugar and other backbone radicals, which are not as susceptible to recombination as are ion radicals, are formed largely in the track core. The backbone radicals show a linear dose response up to very high doses. Unaltered base release yields in Kr-86 irradiated hydrated DNA are equal to sugar radical yields within experimental error limits, consistent with radiation-chemical processes in which all base release originates with sugar radicals. Two phosphorus-centered radicals from fragmentation of the DNA backbone are found in low yields.

  16. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.

    2016-04-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.

  17. Nitrogen Incorporation in CH4-N2 Photochemical Aerosol Produced by Far UV Irradiation

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Jimenez, Jose L.; Yung, Yuk L.; Toon, Owen B.; Tolbert, Margaret A.

    2012-01-01

    Nitrile incorporation into Titan aerosol accompanying hydrocarbon chemistry is thought to be driven by extreme UV wavelengths (lambda < 120 nm) or magnetospheric electrons in the outer reaches of the atmosphere. Far UV radiation (120 - 200 nm), which is transmitted down to the stratosphere of Titan, is expected to affect hydrocarbon chemistry only and not initiate the formation of nitrogenated species. We have examined the chemical properties of photochemical aerosol produced at far UV wavelengths using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS), which allows for elemental analysis of particle-phase products. Our results show that aerosol formed from CH4/N2 photochemistry contains a surprising amount of nitrogen, up to 16% by mass, a result of photolysis in the far UV. The proportion of nitrogenated organics to hydrocarbon species is shown to be correlated with that of N2 in the irradiated gas. The aerosol mass greatly decreases when N2 is removed, indicating that N2 plays a major role in aerosol production. Because direct dissociation of N2 is highly improbable given the immeasurably low cross-section at the wavelengths studied, the chemical activation of N2 must occur via another pathway. Any chemical activation of N2 at wavelengths > 120 nm is presently unaccounted for in atmospheric photochemical models. We suggest that reaction with CH radicals produced from CH4 photolysis may provide a mechanism for incorporating N into the molecular structure of the aerosol. Further work is needed to understand the chemistry involved, as these processes may have significant implications for prebiotic chemistry on the early Earth and similar planets.

  18. A long term study of the relations between erythemal UV-B irradiance, total ozone column, and aerosol optical depth at central Argentina

    NASA Astrophysics Data System (ADS)

    Palancar, Gustavo G.; Olcese, Luis E.; Achad, Mariana; López, María Laura; Toselli, Beatriz M.

    2017-09-01

    Global ultraviolet-B irradiance (UV-B, 280-315 nm) measurements made at the campus of the University of Córdoba, Argentina were analyzed to quantify the effects of ozone and aerosols on surface UV-B erythemal irradiance (UVER). The measurements have been carried out with a YES Pyranometer during the period 2000-2013. The effect of ozone and aerosols has been quantified by means of the Radiation Amplification Factor (RAF) and by an aerosol factor (AF, analogous to RAF), respectively. The overall mean RAF under cloudless conditions was (1.2 ± 0.3) %, ranging from 0.67 to 2.10% depending on solar zenith angle (SZA) and on Aerosol Optical Depth (AOD). The RAF increased with the SZA with a clear trend. Similarly, the aerosol effect under almost-constant ozone and SZA showed that, on average, a 1% increase in AOD forced a decrease of (0.15 ± 0.04) % in the UVER, with a range of 0.06 to 0.27 and no defined trend as a function of the SZA. To analyze the effect of absorbing aerosols, an effective single scattering albedo (SSA) was determined by comparing the experimental UVER with calculations carried out with the TUV radiative transfer model.

  19. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation.

    PubMed

    Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki

    2015-05-01

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  1. DNA Double-strand Breaks Induced byFractionated Neutron Beam Irradiation for Boron Neutron Capture Therapy.

    PubMed

    Kinashi, Yuko; Yokomizo, Natsuya; Takahashi, Sentaro

    2017-04-01

    To use the 53BP1 foci assay to detect DNA double-strand breaks induced by fractionated neutron beam irradiation of normal cells. The Kyoto University Research Reactor heavy-water facility and gamma-ray irradiation system were used as experimental radiation sources. After fixation of Chinese Hamster Ovary cells with 3.6% formalin, immunofluorescence staining was performed. Number and size of foci were analyzed using ImageJ software. Fractionated neutron irradiation induced 25% fewer 53BP1 foci than single irradiation at the same dose. By contrast, gamma irradiation induced 30% fewer 53BP1 foci than single irradiation at the same dose. Fractionated neutron irradiation induced larger foci than gamma irradiation, raising the possibility that persistent unrepaired DNA damage was amplified due to the high linear energy transfer component in the neutron beam. Unrepaired cluster DNA damage was more prevalent after fractionated neutron irradiation than after gamma irradiation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. The Effect of p53 Status of Tumor Cells on Radiosensitivity of Irradiated Tumors With Carbon-Ion Beams Compared With γ-Rays or Reactor Neutron Beams.

    PubMed

    Masunaga, Shin-Ichiro; Uzawa, Akiko; Hirayama, Ryoichi; Matsumoto, Yoshitaka; Sakurai, Yoshinori; Tanaka, Hiroki; Tano, Keizo; Sanada, Yu; Suzuki, Minoru; Maruhashi, Akira; Ono, Koji

    2015-08-01

    The aim of the study was to clarify the effect of p53 status of tumor cells on radiosensitivity of solid tumors following accelerated carbon-ion beam irradiation compared with γ-rays or reactor neutron beams, referring to the response of intratumor quiescent (Q) cells. Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or with neo vector (SAS/neo) were injected subcutaneously into hind legs of nude mice. Tumor-bearing mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all intratumor proliferating (P) cells. They received γ-rays or accelerated carbon-ion beams at a high or reduced dose-rate. Other tumor-bearing mice received reactor thermal or epithermal neutrons at a reduced dose-rate. Immediately or 9 hours after the high dose-rate irradiation (HDRI), or immediately after the reduced dose-rate irradiation (RDRI), the tumor cells were isolated and incubated with a cytokinesis blocker, and the micronucleus (MN) frequency in cells without BrdU labeling (Q cells) was determined using immunofluorescence staining for BrdU. The difference in radiosensitivity between the total (P + Q) and Q cells after γ-ray irradiation was markedly reduced with reactor neutron beams or carbon-ion beams, especially with a higher linear energy transfer (LET) value. Following γ-ray irradiation, SAS/neo tumor cells, especially intratumor Q cells, showed a marked reduction in sensitivity due to the recovery from radiation-induced damage, compared with the total or Q cells within SAS/mp53 tumors that showed little repair capacity. In both total and Q cells within both SAS/neo and SAS/mp53 tumors, carbon-ion beam irradiation, especially with a higher LET, showed little recovery capacity through leaving an interval between HDRI and the assay or decreasing the dose-rate. The recovery from radiation-induced damage after γ-ray irradiation was a p53-dependent event, but little recovery was found after carbon-ion beam irradiation. With RDRI

  3. The Effect of p53 Status of Tumor Cells on Radiosensitivity of Irradiated Tumors With Carbon-Ion Beams Compared With γ-Rays or Reactor Neutron Beams

    PubMed Central

    Masunaga, Shin-ichiro; Uzawa, Akiko; Hirayama, Ryoichi; Matsumoto, Yoshitaka; Sakurai, Yoshinori; Tanaka, Hiroki; Tano, Keizo; Sanada, Yu; Suzuki, Minoru; Maruhashi, Akira; Ono, Koji

    2015-01-01

    Background The aim of the study was to clarify the effect of p53 status of tumor cells on radiosensitivity of solid tumors following accelerated carbon-ion beam irradiation compared with γ-rays or reactor neutron beams, referring to the response of intratumor quiescent (Q) cells. Methods Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or with neo vector (SAS/neo) were injected subcutaneously into hind legs of nude mice. Tumor-bearing mice received 5-bromo-2’-deoxyuridine (BrdU) continuously to label all intratumor proliferating (P) cells. They received γ-rays or accelerated carbon-ion beams at a high or reduced dose-rate. Other tumor-bearing mice received reactor thermal or epithermal neutrons at a reduced dose-rate. Immediately or 9 hours after the high dose-rate irradiation (HDRI), or immediately after the reduced dose-rate irradiation (RDRI), the tumor cells were isolated and incubated with a cytokinesis blocker, and the micronucleus (MN) frequency in cells without BrdU labeling (Q cells) was determined using immunofluorescence staining for BrdU. Results The difference in radiosensitivity between the total (P + Q) and Q cells after γ-ray irradiation was markedly reduced with reactor neutron beams or carbon-ion beams, especially with a higher linear energy transfer (LET) value. Following γ-ray irradiation, SAS/neo tumor cells, especially intratumor Q cells, showed a marked reduction in sensitivity due to the recovery from radiation-induced damage, compared with the total or Q cells within SAS/mp53 tumors that showed little repair capacity. In both total and Q cells within both SAS/neo and SAS/mp53 tumors, carbon-ion beam irradiation, especially with a higher LET, showed little recovery capacity through leaving an interval between HDRI and the assay or decreasing the dose-rate. The recovery from radiation-induced damage after γ-ray irradiation was a p53-dependent event, but little recovery was found after carbon

  4. Effect of electron beam irradiation on thermal and mechanical properties of epoxy polymer

    NASA Astrophysics Data System (ADS)

    Nguyen, A. T.; Visakh, P. M.; Nazarenko, O. B.; Chandran, C. S.; Melnikova, T. V.

    2017-01-01

    This study investigates the thermal and mechanical properties of epoxy polymer after exposure to different doses of electron beam irradiation. The epoxy polymer was prepared using epoxy-diane resin ED-20 cured by polyethylenepolyamine. The irradiation of the samples was carried out with doses of 30, 100 and 300 kGy. The effects of doses on thermal and mechanical properties of the epoxy polymer were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The thermal properties of the epoxy polymer slightly increased after irradiation at the heating in air. The tensile strength and Young’s modulus of the epoxy polymer increased by the action of electron beam up to dose of 100 kGy and then decreased. The elongation at break decreased with increasing the irradiation dose.

  5. Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage

    NASA Astrophysics Data System (ADS)

    Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su

    2012-08-01

    The volatile organic compounds of non-irradiated and electron-beam irradiated 'Fuji' apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph-mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated 'Fuji' apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of 'Fuji' apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.

  6. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I 3TEM) offers the unique ability to observe microstructural changes duemore » to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. As a result, this work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO 2.« less

  7. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    DOE PAGES

    Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana; ...

    2017-09-29

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I 3TEM) offers the unique ability to observe microstructural changes duemore » to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. As a result, this work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO 2.« less

  8. Microplastic deformation of polycrystalline iron and molybdenum subjected to high-current electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Dudarev, E. F.; Pochivalova, G. P.; Proskurovskii, D. I.; Rotshtein, V. P.; Markov, A. B.

    1996-03-01

    A technique for determination of residual stresses at various distances from the irradiated surface is proposed. It is established for iron and molybdenum that compressive stresses are set up under irradiation by low-energy high-current electron beams and that their values decrease sharply with increasing distance from the surface. The residual stresses are much smaller in absolute magnitude than those operating during irradiation. It is shown that the change in resistance to microplastic deformation on irradiation with low-energy high-current electron beams is governed not only by formation of a gradient dislocation substructure in the surface layer, but also by the residual stresses and the appearance of the Bauschinger effect.

  9. Reduction of gate leakage current on AlGaN/GaN high electron mobility transistors by electron-beam irradiation.

    PubMed

    Oh, S K; Song, C G; Jang, T; Kim, Kwang-Choong; Jo, Y J; Kwak, J S

    2013-03-01

    This study examined the effect of electron-beam (E-beam) irradiation on the AIGaN/GaN HEMTs for the reduction of gate leakage. After E-beam irradiation, the gate leakage current significantly decreased from 2.68 x 10(-8) A to 4.69 x 10(-9) A at a drain voltage of 10 V. The maximum drain current density of the AIGaN/GaN HEMTs with E-beam irradiation increased 14%, and the threshold voltage exhibited a negative shift, when compared to that of the AIGaN/GaN HEMTs before E-beam irradiation. These results strongly suggest that the reduction of gate leakage current resulted from neutralization nitrogen vacancies and removing of oxygen impurities.

  10. New equipment the ion beam irradiation equipment installed at ISAS / JAXA

    NASA Astrophysics Data System (ADS)

    Nakauchi, Yusuke; Matsumoto, Toru; Asada, Yuma; Abe, Masanao; Tsuchiyama, Akira; Takigawa, Aki; Watanabe, Naoki; Yusuke Nakauchi

    2017-10-01

    Understanding of the space weathering effect by the solar wind implantation is thought to be important for the interpretation of the reflectance spectra on the airless body’s surface [e.g. 1]. It is important to elucidate the space weathering effect by hydrogen ions and helium ions which account for most of solar wind. In particular, it is suggested that the solar wind protons interact with the minerals in the surface layer of the airless bodies to form OH and H2O. To understanding the space weathering effect by solar wind protons will be an important clue to reveal the origin and the abundance of lunar water [e.g. 2].Solar wind consists of 95% protons, 4% helium and other ions [3]. The energy of protons is mainly 1.1 keV and the one of helium ions is mainly 4 keV. Then, we established the ion beam irradiation equipment in ISAS/JAXA. This device consists of a cold cathode ion gun, an ion irradiation chamber, a load lock chamber for specimen preparation and reflection spectrum measurement, and FTIR. The ion sources capable of irradiation are hydrogen and helium which occupy the most of solar wind and it is possible to selectively irradiate each ion with a magnetic separator. The energy can be selected from 500 eV to 5 keV. The ultimate degree of vacuum is about 10-6 Pa. The samples can move between the irradiation chamber and the load lock chamber without being exposed to the air. Moreover, since the nitrogen purge is possible for the optical path of FTIR, the influence of the adsorbed water can be ignored when measuring the reflection spectra.In this presentation, we will report the first results of the performance of ion beam irradiation equipment (e.g. beam current, beam-shape) and the proton irradiation to Sun Carlos olivine.[1] T. Noguchi et al., MPS, 49(2):188-214, 2014. [2] C.M. Pieters et al., Science, 326(5952):568-572, 2009. [3] J.T. Gosling, Encyclopedia of the Solar System (Second Edition), pages 99 -116, 2007. Acknowledgements Part of this work has

  11. Electron beam irradiation induced changes in liquid-crystal compound 5CB

    NASA Astrophysics Data System (ADS)

    Rath, M. C.; Sarkar, S. K.; Wadhawan, V. K.; Verma, R.; Das, I. M. L.; Dąbrowski, R.; Tykarska, M.; Dhar, R.

    2008-12-01

    Electron beam irradiation studies on liquid crystal material 5CB have been carried out at a temperature where the compound exists in the isotropic liquid phase. In situ time-resolved spectroscopic characterization was carried out during the irradiation. Three different transients were observed during the 2-μs electron pulse. After about 50 μs, only one transient species was found to be present, which has an absorption peak at 360 nm. Radiolysed sample exhibits a broad absorption at ˜400 nm. The dielectric measurements show that even a low level of irradiation results in a dramatic increase in the component of dielectric permittivity normal to the long axes of the molecules ɛ⊥', and a corresponding decrease in the dielectric anisotropy (Δɛ'=ɛ∥'-ɛ⊥' ). These studies show that 5CB is prone to substantial radiation damage on exposure to the beam of high-energy electrons.

  12. Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan; Rutan, David A.; Stephens, Graeme L.; Loeb, Norman G.; Minnis, Patrick; Wielicki, Bruce A.; Winker, David M.; Charlock, Thomas P.; Stackhouse, Paul W., Jr.; Xu, Kuan-Man; Collins, William D.

    2011-10-01

    One year of instantaneous top-of-atmosphere (TOA) and surface shortwave and longwave irradiances are computed using cloud and aerosol properties derived from instruments on the A-Train Constellation: the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, the CloudSat Cloud Profiling Radar (CPR), and the Aqua Moderate Resolution Imaging Spectrometer (MODIS). When modeled irradiances are compared with those computed with cloud properties derived from MODIS radiances by a Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm, the global and annual mean of modeled instantaneous TOA irradiances decreases by 12.5 W m-2 (5.0%) for reflected shortwave and 2.5 W m-2 (1.1%) for longwave irradiances. As a result, the global annual mean of instantaneous TOA irradiances agrees better with CERES-derived irradiances to within 0.5W m-2 (out of 237.8 W m-2) for reflected shortwave and 2.6W m-2 (out of 240.1 W m-2) for longwave irradiances. In addition, the global annual mean of instantaneous surface downward longwave irradiances increases by 3.6 W m-2 (1.0%) when CALIOP- and CPR-derived cloud properties are used. The global annual mean of instantaneous surface downward shortwave irradiances also increases by 8.6 W m-2 (1.6%), indicating that the net surface irradiance increases when CALIOP- and CPR-derived cloud properties are used. Increasing the surface downward longwave irradiance is caused by larger cloud fractions (the global annual mean by 0.11, 0.04 excluding clouds with optical thickness less than 0.3) and lower cloud base heights (the global annual mean by 1.6 km). The increase of the surface downward longwave irradiance in the Arctic exceeds 10 W m-2 (˜4%) in winter because CALIOP and CPR detect more clouds in comparison with the cloud detection by the CERES cloud algorithm during polar night. The global annual mean surface downward longwave irradiance of

  13. An experience of electron beam (EB) irradiated gemstones in Malaysian nuclear agency

    NASA Astrophysics Data System (ADS)

    Idris, Sarada; Hairaldin, Siti Zulaiha; Tajau, Rida; Karim, Jamilah; Jusoh, Suhaimi; Ghazali, Zulkafli; Ahmad, Shamshad

    2014-02-01

    In Nuclear Malaysia, a study on gemstone irradiation using beta particle is conducted. The purpose of the study is to evaluate the gemstone colour enhancement by using different kind of precious and non-precious gemstones. By using irradiation technique, selected gemstones are exposed to highly ionizing radiation electron beam to knock off electrons to generate colour centres culminating in the introduction of deeper colours. The colour centres may be stable or unstable depending on the nature of colour centre produced. The colour change of irradiated stones were measured by HunterLab colour measurement. At 50 kGy, Topaz shows changes colour from colourless to golden. Meanwhile pearl shows changes from pale colour to grey. Kunzite and amethyst shows colour changes from colorless to green and pale colour to purple. Gamma survey meter measurement confirmed that irradiation treatment with 3 MeV electron beam machine does not render any activation that activate the gems to become radioactive.

  14. An experience of electron beam (EB) irradiated gemstones in Malaysian nuclear agency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idris, Sarada, E-mail: sarada@nuclearmalaysia.gov.my; Hairaldin, Siti Zulaiha, E-mail: sarada@nuclearmalaysia.gov.my; Tajau, Rida, E-mail: sarada@nuclearmalaysia.gov.my

    In Nuclear Malaysia, a study on gemstone irradiation using beta particle is conducted. The purpose of the study is to evaluate the gemstone colour enhancement by using different kind of precious and non-precious gemstones. By using irradiation technique, selected gemstones are exposed to highly ionizing radiation electron beam to knock off electrons to generate colour centres culminating in the introduction of deeper colours. The colour centres may be stable or unstable depending on the nature of colour centre produced. The colour change of irradiated stones were measured by HunterLab colour measurement. At 50 kGy, Topaz shows changes colour from colourlessmore » to golden. Meanwhile pearl shows changes from pale colour to grey. Kunzite and amethyst shows colour changes from colorless to green and pale colour to purple. Gamma survey meter measurement confirmed that irradiation treatment with 3 MeV electron beam machine does not render any activation that activate the gems to become radioactive.« less

  15. Luminescence imaging of water during proton-beam irradiation for range estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantomsmore » of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.« less

  16. Biological effects of mixed-ion beams. Part 1: Effect of irradiation of the CHO-K1 cells with a mixed-ion beam containing the carbon and oxygen ions.

    PubMed

    Czub, Joanna; Banaś, Dariusz; Braziewicz, Janusz; Buraczewska, Iwona; Jaskóła, Marian; Kaźmierczak, Urszula; Korman, Andrzej; Lankoff, Anna; Lisowska, Halina; Szefliński, Zygmunt; Wojewódzka, Maria; Wójcik, Andrzej

    2018-05-30

    Carbon and oxygen ions were accelerated simultaneously to estimate the effect of irradiation of living cells with the two different ions. This mixed ion beam was used to irradiate the CHO-K1 cells, and a survival test was performed. The type of the effect of the mixed ion beam on the cells was determined with the isobologram method, whereby survival curves for irradiations with individual ion beams were also used. An additive effect of irradiation with the two ions was found. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Comprehensive stabilization mechanism of electron-beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment

    PubMed Central

    Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho

    2016-01-01

    An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100–130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130–140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization. PMID:27349719

  18. Comprehensive identification of mutations induced by heavy-ion beam irradiation in Arabidopsis thaliana.

    PubMed

    Hirano, Tomonari; Kazama, Yusuke; Ishii, Kotaro; Ohbu, Sumie; Shirakawa, Yuki; Abe, Tomoko

    2015-04-01

    Heavy-ion beams are widely used for mutation breeding and molecular biology. Although the mutagenic effects of heavy-ion beam irradiation have been characterized by sequence analysis of some restricted chromosomal regions or loci, there have been no evaluations at the whole-genome level or of the detailed genomic rearrangements in the mutant genomes. In this study, using array comparative genomic hybridization (array-CGH) and resequencing, we comprehensively characterized the mutations in Arabidopsis thaliana genomes irradiated with Ar or Fe ions. We subsequently used this information to investigate the mutagenic effects of the heavy-ion beams. Array-CGH demonstrated that the average number of deleted areas per genome were 1.9 and 3.7 following Ar-ion and Fe-ion irradiation, respectively, with deletion sizes ranging from 149 to 602,180 bp; 81% of the deletions were accompanied by genomic rearrangements. To provide a further detailed analysis, the genomes of the mutants induced by Ar-ion beam irradiation were resequenced, and total mutations, including base substitutions, duplications, in/dels, inversions, and translocations, were detected using three algorithms. All three resequenced mutants had genomic rearrangements. Of the 22 DNA fragments that contributed to the rearrangements, 19 fragments were responsible for the intrachromosomal rearrangements, and multiple rearrangements were formed in the localized regions of the chromosomes. The interchromosomal rearrangements were detected in the multiply rearranged regions. These results indicate that the heavy-ion beams led to clustered DNA damage in the chromosome, and that they have great potential to induce complicated intrachromosomal rearrangements. Heavy-ion beams will prove useful as unique mutagens for plant breeding and the establishment of mutant lines. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  19. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirai, Takahisa; Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo; Saito, Soichiro

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in Nationalmore » Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. - Highlights: • Effective radiosensitizers for particle radiation therapy have not been reported. • PARP inhibitor treatment radiosensitized after proton beam irradiation. • The sensitization at Bragg peak was greater than that at entrance region. • DSB induction and G2/M arrest is involved in the sensitization mechanism.« less

  20. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; hide

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new

  1. Shortwave Radiative Fluxes, Solar-Beam Transmissions, and Aerosol Properties: TARFOX and ACE-2 Find More Absorption from Flux Radiometry than from Other Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Redemann, J.; Schmid, B.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2) made simultaneous measurements of shortwave radiative fluxes, solar-beam transmissions, and the aerosols affecting those fluxes and transmissions. Besides the measured fluxes and transmissions, other obtained properties include aerosol scattering and absorption measured in situ at the surface and aloft; aerosol single scattering albedo retrieved from skylight radiances; and aerosol complex refractive index derived by combining profiles of backscatter, extinction, and size distribution. These measurements of North Atlantic boundary layer aerosols impacted by anthropogenic pollution revealed the following characteristic results: (1) Better agreement among different types of remote measurements of aerosols (e.g., optical depth, extinction, and backscattering from sunphotometers, satellites, and lidars) than between remote and in situ measurements; 2) More extinction derived from transmission measurements than from in situ measurements; (3) Larger aerosol absorption inferred from flux radiometry than from other measurements. When the measured relationships between downwelling flux and optical depth (or beam transmission) are used to derive best-fit single scattering albedos for the polluted boundary layer aerosol, both TARFOX and ACE-2 yield midvisible values of 0.90 +/- 0.04. The other techniques give larger single scattering albedos (i.e. less absorption) for the polluted boundary layer, with a typical result of 0.95 +/- 0.04. Although the flux-based results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., unknown gas absorption). Current uncertainties in aerosol single scattering albedo are large in terms of climate effects. They also have an important influence on aerosol optical depths retrieved from satellite radiances

  2. Detection of irradiated fresh fruits treated by e-beam or gamma rays

    NASA Astrophysics Data System (ADS)

    Marin-Huachaca, Nélida Simona; Lamy-Freund, Maria Tereza; Mancini-Filho, Jorge; Delincée, Henry; Villavicencio, Anna Lúcia C. H.

    2002-03-01

    Since about 1990, the amount of commercially irradiated food products available worldwide has increased. Commercial irradiation of foods has been allowed in Brazil since 1973 and now more than 20 different food products are approved. Among these products are a number of fresh fruits which may be irradiated for insect disinfestation, to delay ripening and to extend shelf-life. Today, there is a growing interest to apply radiation for the treatment of fruits instead of using fumigation or e.g. vapour-heat treatments, and an increased international trade in irradiated fruits is expected. To ensure free consumer choice, methods to identify irradiated foods are highly desirable. In this work, three detection methods for irradiated fruits have been employed: DNA Comet Assay, the half-embryo test and ESR. Both electron-beam (e-beam) and gamma rays were applied in order to compare the response with these two different kinds of radiation. Fresh fruits such as oranges, lemons, apples, watermelons and tomatoes were irradiated with doses in the range 0, 0.50, 0.75, 1.0, 2.0 and 4.0kGy. For analysis, the seeds of the fruits were utilized. Both DNA Comet Assay and the half-embryo test enabled an easy identification of the radiation treatment. However, under our conditions, ESR measurements were not satisfactory.

  3. Probing the photoresponse of individual Nb2O5 nanowires with global and localized laser beam irradiation.

    PubMed

    Tamang, Rajesh; Varghese, Binni; Mhaisalkar, Subodh G; Tok, Eng Soon; Sow, Chorng Haur

    2011-03-18

    Photoresponse of isolated Nb(2)O(5) nanowires (NW) padded with platinum (Pt) at both ends were studied with global irradiation by a laser beam and localized irradiation using a focused laser beam. Global laser irradiation on individual NW in ambient and vacuum conditions revealed photocurrent contributions with different time characteristics (rapid and slowly varying components) arising from defect level excitations, thermal heating effect, surface states and NW-Pt contacts. With a spot size of < 1 µm, localized irradiation highlighted the fact that the measured photocurrent in this single NW device (with and without applied bias) depended sensitively on the photoresponse at the NW-Pt contacts. At applied bias, unidirectional photocurrent was observed and higher photocurrent was achieved with localized laser irradiation at reverse-biased NW-Pt contacts. At zero bias, the opposite polarity of photocurrents was detected when the two NW-Pt contacts were subjected to focused laser beam irradiation. A reduced Schottky barrier/width resulting from an increase in charge carriers and thermoelectric effects arising from the localized thermal heating due to focused laser beam irradiation were proposed as the mechanisms dictating the photocurrent at the NW-Pt interface. Comparison of photocurrents generated upon global and localized laser irradiation showed that the main contribution to the photocurrent was largely due to the photoresponse of the NW-Pt contacts.

  4. Effects of proton beam irradiation on seed germination and growth of soybean ( Glycine max L. Merr.)

    NASA Astrophysics Data System (ADS)

    Im, Juhyun; Kim, Woon Ji; Kim, Sang Hun; Ha, Bo-Keun

    2017-12-01

    The present study aimed to evaluate the morphological effects of proton beam irradiation on the seed germination, seedling survival, and plant growth of soybean. Seeds of three Korean elite cultivars (Kwangankong, Daepungkong, and Pungsannamulkong) were irradiated with a 57-MeV proton beam in the range of 50 - 400 Gy. The germination rates of all the varieties increased to > 95%; however, the survival rates were significantly reduced. At doses of > 300 Gy irradiation, the Daepungkong, Kwangankong, and Pungsannamulkong cultivars exhibited 39, 75, and 71% survival rates, respectively. In addition, plant height and the fresh weight of shoots and roots were significantly decreased by doses of > 100 Gy irradiation, as were the dry weights of the shoots and roots. However, SPAD values increased with increasing doses of irradiation. Abnormal plants with atypically branched stems, modified leaves, and chlorophyll mutations were observed. Based on the survival rate, plant growth inhibition, and mutation frequency, it appears that the optimum dosage of proton beam irradiation for soybean mutation breeding is between 250 and 300 Gy.

  5. Influence of electron beam irradiation on mechanical and thermal properties of polypropylene/polyamide blend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Shigeya, E-mail: shi-nakamura@hitachi-chem.co.jp; Tokumitsu, Katsuhisa

    The effects of electron beam irradiation on the mechanical and thermal properties of polypropylene (PP) and polyamide6 (PA6) blends-with talc 20 wt% as filler, SEBS-g-MAH as compatibilizer, and triallyl isocyanurate as crosslinking agent-were investigated. Although the tensile and flexural moduli and strengths of the PP/PA6 blends with talc, SEBS-g-MAH, and TAIC could be increased by the application of electron beam irradiation, the impact strength was decreased. Ddifferential scanning calorimetryer measurements showed that the melting temperatures of all PP/PA6 blends were decreased with increases in the electron beam irradiationdose. From dynamic mechanical analyzer results, a storage modulus curve in the plateaumore » region was observed only in the PP/PA6 blends with talc, SEBS-g-MAH, and TAIC; the storage modulus increased with increasing electron beam irradiation dose, indicating that the three-dimensional network developed gradually in the more amorphous PA6. As a result, the most significant improvement observed in heat distortion tests under high load (1.8 MPa) occurred at 200 kGy.« less

  6. Organic Aerosol Formation Photoenhanced by the Formation of Secondary Photo-sensitizers in ageing Aerosols

    NASA Astrophysics Data System (ADS)

    Aregahegn, Kifle; Nozière, Barbara; George, Christian

    2013-04-01

    Humankind is facing a changing environment possibly due to anthropogenic stress on the atmosphere. In this context, aerosols play a key role by affecting the radiative climate forcing, hydrological cycle, and by their adverse effect on health. The role of organic compounds in these processes is however still poorly understood because of their massive chemical complexity and numerous transformations. This is particularly true for Secondary Organic Aerosol (SOA), which are produced in the atmosphere by organic gases. Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms can not account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS) having Kr-85 source aerosol neutralizer, Differential Mobility Analyser (DMA) and Condensation Particle Sizer (CPC), we identified that traces of the aerosol phase product of glyoxal chemistry as is explained in Gallway et al., and Yu et al., namely imidazole-2-carboxaldehyde (IC) is a strong photo-sensitizer when irradiated by near-UV in the presence of volatile organic compounds such as terpenes. Furthermore, the influence of pH, type and concentration of VOCs, composition of seed particles, relative humidity and irradiation intensity on particle growth were studied. This novel photo-sensitizer contributed to more than 30% of SOA growth in 19min irradiation time in the presence of terpenes in the

  7. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; hide

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  8. Limbal Stem Cell Preservation During Proton Beam Irradiation for Diffuse Iris Melanoma.

    PubMed

    Singh, Arun D; Dupps, William J; Biscotti, Charles V; Suh, John H; Lathrop, Kira L; Nairn, John P; Shih, Helen

    2017-01-01

    To report the outcome after limbal stem cell preservation during proton beam irradiation for diffuse iris melanoma. This is a single-case report of diffuse iris melanoma that was managed with proton beam radiation (53 Gy), wherein preemptively harvested superior and inferior limbal stem cells before radiation were replaced after irradiation. Regeneration of the palisades of Vogt and the limbal stem cells was documented by an optical coherence tomography-based imaging protocol. At 24 months after radiation therapy, best-corrected visual acuity was 20/25. The cornea was clear without evidence of limbal stem cell dysfunction. Clinical examination (including gonioscopy and ultrasound biomicroscopy [UBM]) was indicative of local control, and systemic surveillance was negative for metastatic disease. At posttransplant (21 months), there were more palisade structures visible in both anterior and posterior regions of the superior and inferior limbus, and the linear presentation of the inferior palisades appears to have regenerated. Diffuse iris melanoma can be managed successfully with proton beam radiation while preserving corneal limbal stem cells by harvesting them before radiation and then replacing them after irradiation. Regeneration of the palisades of Vogt could be documented by an optical coherence tomography-based imaging protocol.

  9. Improving oxidation resistance and thermal insulation of thermal barrier coatings by intense pulsed electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Mei, Xianxiu; Liu, Xiaofei; Wang, Cunxia; Wang, Younian; Dong, Chuang

    2012-12-01

    In this paper, intense pulsed electron beam was used for the irradiation treatment of 6-8% Y2O3-stablized ZrO2 thermal barrier coating prepared by electron beam-physical vapor deposition to achieve the "sealing" of columnar crystals, thus improving their thermal insulation properties and high temperature oxidation resistance. The electron beam parameters used were: pulse duration 200 μs, electron voltage 15 kV, energy density 3, 5, 8, 15, 20 J/cm2, and pulsed numbers 30. 1050 °C cyclic oxidation and static oxidation experiments were used for the research on oxidation resistance of the coatings. When the energy density of the electron beam was larger than 8 J/cm2, ZrO2 ceramic coating surface was fully re-melted and became smooth, dense and shiny. The coating changed into a smooth polycrystalline structure, thus achieving the "sealing" effect of the columnar crystals. After irradiations with the energy density of 8-15 J/cm2, the thermally grown oxide coating thickness decreased significantly in comparison with non-irradiated coatings, showing that the re-melted coating improved the oxidation resistance of the coatings. The results of thermal diffusivity test by laser flash method showed that the thermal diffusion rate of the irradiated coating was lower than that of the coating without irradiation treatment, and the thermal insulation performance of irradiated coating was improved.

  10. Dose response of alanine detectors irradiated with carbon ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Rochus; Jaekel, Oliver; Palmans, Hugo

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type when irradiated with ion beams. The purpose of this study is to investigate the response behavior of the alanine detector in clinical carbon ion beams and compare the results to model predictions. Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track structure based alanine response model developed by Hansen andmore » Olsen has been implemented in the Monte Carlo code FLUKA and calculations were compared to experimental results. Results: Calculations of the relative effectiveness deviate less than 5% from the measured values for monoenergetic beams. Measured depth-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasimonoenergetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties of the detector geometry implemented in the Monte Carlo simulations.« less

  11. Supine craniospinal irradiation in pediatric patients by proton pencil beam scanning.

    PubMed

    Farace, Paolo; Bizzocchi, Nicola; Righetto, Roberto; Fellin, Francesco; Fracchiolla, Francesco; Lorentini, Stefano; Widesott, Lamberto; Algranati, Carlo; Rombi, Barbara; Vennarini, Sabina; Amichetti, Maurizio; Schwarz, Marco

    2017-04-01

    Proton therapy is the emerging treatment modality for craniospinal irradiation (CSI) in pediatric patients. Herein, special methods adopted for CSI at proton Therapy Center of Trento by pencil beam scanning (PBS) are comprehensively described. Twelve pediatric patients were treated by proton PBS using two/three isocenters. Special methods refer to: (i) patient positioning in supine position on immobilization devices crossed by the beams; (ii) planning field-junctions via the ancillary-beam technique; (iii) achieving lens-sparing by three-beams whole-brain-irradiation; (iv) applying a movable-snout and beam-splitting technique to reduce the lateral penumbra. Patient-specific quality assurance (QA) program was performed using two-dimensional ion chamber array and γ-analysis. Daily kilovoltage alignment was performed. PBS allowed to obtain optimal target coverage (mean D98%>98%) with reduced dose to organs-at-risk. Lens sparing was obtained (mean D1∼730cGyE). Reducing lateral penumbra decreased the dose to the kidneys (mean Dmean<600cGyE). After kilovoltage alignment, potential dose deviations in the upper and lower junctions were small (average 0.8% and 1.2% respectively). Due to imperfect modeling of range shifter, QA showed better agreements between measurements and calculations at depths >4cm (mean γ>95%) than at depths<4cm. The reported methods allowed to effectively perform proton PBS CSI. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fabrication of plasmonic nanopore by using electron beam irradiation for optical bio-sensor

    NASA Astrophysics Data System (ADS)

    Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Oh, Seh Joong; Park, Nam Kyou; Park, Doo Jae; Choi, Soo Bong; Kim, Yong-Sang

    2017-05-01

    The Au nano-hole surrounded by the periodic nano-patterns would provide the enhanced optical intensity. Hence, the nano-hole surrounded with periodic groove patterns can be utilized as single molecule nanobio optical sensor device. In this report, the nano-hole on the electron beam induced membrane surrounded by periodic groove patterns were fabricated by focused ion beam technique (FIB), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Initially, the Au films with three different thickness of 40 nm, 60 nm, and 200 nm were deposited on the SiN film by using an electron beam sputter-deposition technique, followed by removal of the supporting SiN film. The nanopore was formed on the electron beam induced membrane under the FESEM electron beam irradiation. Nanopore formation inside the Au aperture was controlled down to a few nanometer, by electron beam irradiations. The optical intensities from the biomolecules on the surfaces including Au coated pyramid with periodic groove patterns were investigated via surface enhanced Raman spectroscopy (SERS). The fabricated nanopore surrounded by periodic patterns can be utilized as a next generation single molecule bio optical sensor.

  13. Effects of carbon ion beam irradiation on the shoot regeneration from in vitro axillary bud explants of the Impatiens hawkeri

    NASA Astrophysics Data System (ADS)

    Zhou, Libin; Zhou, Libin; Li, Wenjian; Li, Ping; Dong, Xicun; Qu, Ying; Ma, Shuang; Li, Qiang

    Accelerated ion beams is an excellent mutagen in plant breeding which can induce higher mutation frequencies and wider mutation spectrum than those of low linear energy transfer (LET) irradiations, such as X-rays (Okamura et al. 2003, Yamaguchi et al. 2003). Mutation breeding operation of two Saintpaulia ionahta cultivars using the method combining plant tissue culture technique and carbon ion beam irradiations were set out at Institute of Modern Physics from 2005 (Zhou et al. 2006). The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiations on regenerated shoots of Impatiens hawkeri from another kind of explants named in vitro axillary buds explants were studied recently. The biology endpoints in this study included relative number of roots (RNR), relative length of roots (RLR), relative height of shoots (RHS), relative number of nodes (RNN), survival fraction (SF) and morphology changes in the regenerated shoots. The experimental results showed that carbon ion beams inhibited the root and stem developments of axillary bud explants more severely than X-rays did. And the 50% lethal dose (LD50 ) is about 23.3 Gy for the carbon ion beam and 49.1 Gy for the X-rays, respectively. Relative biological effectiveness (RBE) of Impatiens hawkeri with respect to X-rays according to 50% SF was about two. Secondly, the percentage of shoots regenerated with malformed shoots including curliness, carnification, nicks in all Impatiens hawkeri axillary bud explants irradiated with carbon ion beam at 20 Gy accounted for 55.6%, while the highest number for the 40 Gy X-ray irradiation was 40%. Last, many regenerated shoots whose vascular bundle fused together were obtained only from explants irradiated with carbon ion beams. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the axillary explants of Impatiens hawkeri is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy

  14. X-ray luminescence computed tomography imaging via multiple intensity weighted narrow beam irradiation

    NASA Astrophysics Data System (ADS)

    Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2018-02-01

    The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.

  15. The evaluation of 6 and 18 MeV electron beams for small animal irradiation

    NASA Astrophysics Data System (ADS)

    Chao, T. C.; Chen, A. M.; Tu, S. J.; Tung, C. J.; Hong, J. H.; Lee, C. C.

    2009-10-01

    A small animal irradiator is critical for providing optimal radiation dose distributions for pre-clinical animal studies. This paper focuses on the evaluation of using 6 or 18 MeV electron beams as small animal irradiators. Compared with all other prototypes which use photons to irradiate small animals, an electron irradiator has many advantages in its shallow dose distribution. Two major approaches including simulation and measurement were used to evaluate the feasibility of applying electron beams in animal irradiation. These simulations and measurements were taken in three different fields (a 6 cm × 6 cm square field, and 4 mm and 30 mm diameter circular fields) and with two different energies (6 MeV and 18 MeV). A PTW Semiflex chamber in a PTW-MP3 water tank, a PTW Markus chamber type 23343, a PTW diamond detector type 60003 and KODAK XV films were used to measure PDDs, lateral beam profiles and output factors for either optimizing parameters of Monte Carlo simulation or to verify Monte Carlo simulation in small fields. Results show good agreement for comparisons of percentage depth doses (<=2.5% for 6 MeV e; <=1.8% for 18 MeV e) and profiles (FWHM <= 0.5 mm) between simulations and measurements on the 6 cm field. Greater deviation can be observed in the 4 mm field, which is mainly caused by the partial volume effects of the detectors. The FWHM of the profiles for the 18 MeV electron beam is 32.6 mm in the 30 mm field, and 4.7 mm in the 4 mm field at d90. It will take 1-13 min to complete one irradiation of 5-10 Gy. In addition, two different digital phantoms were also constructed, including a homogeneous cylindrical water phantom and a CT-based heterogeneous mouse phantom, and were implemented into Monte Carlo to simulate dose distribution with different electron irradiations.

  16. Local Coulomb explosion of boron nitride nanotubes under electron beam irradiation.

    PubMed

    Wei, Xianlong; Tang, Dai-Ming; Chen, Qing; Bando, Yoshio; Golberg, Dmitri

    2013-04-23

    In many previous reports, the engineering of nanostructures using electron beam irradiation (EBI) in a high vacuum has primarily been based on the knock-on atom displacement. Herein, we report a new phenomenon under EBI that can also be effectively used to engineer a nanostructure: local Coulomb explosion (LCE) of cantilevered multiwalled boron nitride nanotubes (BNNTs) resulted from their profound positive charging. The nanotubes are gradually shortened, while the tubular shells at free ends are torn into graphene-like pieces and then removed during LCE. The phenomenon is dependent not only on the characteristics of an incident electron beam, as in the case of a common knock-on process, but also on the cantilevered tube length. Only after the electron beam density and tube length exceed the threshold values can LCE take place, and the threshold value for one of the parameters decreases with increasing the value of the other one. A model based on the diffusion of electron-irradiation-induced holes along a BNNT is proposed to describe the positive charge accumulation and can well explain the observed LCE. LCE opens up an efficient and versatile way to engineer BNNTs and other dielectric nanostructures with a shorter time and a lower beam density than those required for the knock-on effect-based engineering.

  17. Electron beam irradiation of fluoropolymers containing polyethers

    NASA Astrophysics Data System (ADS)

    Bucio, E.; Burillo, G.; Tapia, F.; Adem, E.; Cedillo, G.; Cassidy, P. E.

    2009-02-01

    A highly fluorinated monomer, 1,3-bis(1,1,1,3,3,3-hexafluoro-2-pentafluorophenyl methoxy-2-propyl)benzene (12F-FBE) was polymerized with some diphenols by polycondensation and then was electron beam irradiated between 100 and 1000 kGy to determine degradation radiochemistry yield ( Gs) by gel permeation chromatography (GPC). The samples were characterized after irradiation by DSC, FTIR, and nuclear magnetic resonance (NMR). The fluoropolymers show apparent degradation in mechanical properties at 300 kGy, except 12F-FBE polymerized with biphenol and bisphenol A, when they did not show any apparent physical change up to 300 kGy; and continue to be flexible and transparent, with a radiochemical yield scission ( Gs) of 0.75, 0.53, 0.88, and 0.38 for 12F-FBE/SDL aliphatic, 12F-FBE/biphenol, 12F-FBE/bisphenol A, and 12F-FBE/bisphenol O, respectively. The number average molecular weights for three of the polymers decrease upon 1000 kGy irradiation to 10% of their original values; however, the polymer from bisphenol A is much more stable and its Mn decreases to only 24% of original.

  18. A comparative study on the effects of electron beam irradiation on imidacloprid-resistant and -susceptible Aphis gossypii (Hemiptera: Aphididae)

    NASA Astrophysics Data System (ADS)

    Yun, Seung-Hwan; Koo, Hyun-Na; Lee, Seon-Woo; Kim, Hyun Kyung; Kim, Yuri; Han, Bumsoo; Kim, Gil-Hah

    2015-07-01

    The melon and cotton aphid, Aphis gossypii, is a polyphagous insect pest. This study compared the development, reproduction, DNA damage, recovery, and gene expression in imidacloprid-resistant (IMI-R) and -susceptible (S) strains of A. gossypii by electron beam irradiation. When 1st instar nymphs were irradiated with 100 Gy, the fecundity (nymphs of F1 generation) of the resultant adults were completely inhibited. When adults were irradiated with 200 Gy, the number of total 1st instar nymphs produced per adult was 3.0±1.7 and 1.9±1.4 in the S and IMI-R strains, respectively, but adult development was completely suppressed. However, electron beam irradiation did not affect adult longevity in either the S or IMI-R strain. There was no statistically significant difference between the effect of irradiation on the S and IMI-R strains. Therefore, electron beam irradiation at 200 Gy could be used as a phytosanitary irradiation treatment for both S and IMI-R strains of A. gossypii. The DNA damage caused by electron beam irradiation was evaluated by an alkaline comet assay. Exposure to an electron beam (50 Gy) induced DNA damage that was repaired to a similar level as the untreated control group (0 Gy) over time. However, at more than 100 Gy, the DNA damage was not completely repaired. The expression of P450, HSP70, cuticle protein, and elongation factor genes were higher in the IMI-R strain than in the S strain.

  19. Mutagenic effects of carbon ion beam irradiations on dry Lotus japonicus seeds

    NASA Astrophysics Data System (ADS)

    Luo, Shanwei; Zhou, Libin; Li, Wenjian; Du, Yan; Yu, Lixia; Feng, Hui; Mu, Jinhu; Chen, Yuze

    2016-09-01

    Carbon ion beam irradiation is a powerful method for creating mutants and has been used in crop breeding more and more. To investigate the effects of carbon ion beams on Lotus japonicus, dry seeds were irradiated by 80 MeV/u carbon ion beam at dosages of 0, 100, 200, 300, 400, 500 and 600 Gy. The germination rate, survival rate and root length of M1 populations were explored and the dose of 400 Gy was selected as the median lethal dose (LD50) for a large-scale mutant screening. Among 2472 M2 plants, 127 morphological mutants including leaf, stem, flower and fruit phenotypic variation were found, and the mutation frequency was approximately 5.14%. Inter simple sequence repeat (ISSR) assays were utilized to investigate the DNA polymorphism between seven mutants and eight plants without phenotypic variation from M2 populations. No remarkable differences were detected between these two groups, and the total polymorphic rate was 0.567%.

  20. Influence of the nucleus area distribution on the survival fraction after charged particles broad beam irradiation.

    PubMed

    Wéra, A-C; Barazzuol, L; Jeynes, J C G; Merchant, M J; Suzuki, M; Kirkby, K J

    2014-08-07

    It is well known that broad beam irradiation with heavy ions leads to variation in the number of hit(s) received by each cell as the distribution of particles follows the Poisson statistics. Although the nucleus area will determine the number of hit(s) received for a given dose, variation amongst its irradiated cell population is generally not considered. In this work, we investigate the effect of the nucleus area's distribution on the survival fraction. More specifically, this work aims to explain the deviation, or tail, which might be observed in the survival fraction at high irradiation doses. For this purpose, the nucleus area distribution was added to the beam Poisson statistics and the Linear-Quadratic model in order to fit the experimental data. As shown in this study, nucleus size variation, and the associated Poisson statistics, can lead to an upward survival trend after broad beam irradiation. The influence of the distribution parameters (mean area and standard deviation) was studied using a normal distribution, along with the Linear-Quadratic model parameters (α and β). Finally, the model proposed here was successfully tested to the survival fraction of LN18 cells irradiated with a 85 keV µm(- 1) carbon ion broad beam for which the distribution in the area of the nucleus had been determined.

  1. Computerized optimization of multiple isocentres in stereotactic convergent beam irradiation

    NASA Astrophysics Data System (ADS)

    Treuer, U.; Treuer, H.; Hoevels, M.; Müller, R. P.; Sturm, V.

    1998-01-01

    A method for the fully computerized determination and optimization of positions of target points and collimator sizes in convergent beam irradiation is presented. In conventional interactive trial and error methods, which are very time consuming, the treatment parameters are chosen according to the operator's experience and improved successively. This time is reduced significantly by the use of a computerized procedure. After the definition of target volume and organs at risk in the CT or MR scans, an initial configuration is created automatically. In the next step the target point positions and collimator diameters are optimized by the program. The aim of the optimization is to find a configuration for which a prescribed dose at the target surface is approximated as close as possible. At the same time dose peaks inside the target volume are minimized and organs at risk and tissue surrounding the target are spared. To enhance the speed of the optimization a fast method for approximate dose calculation in convergent beam irradiation is used. A possible application of the method for calculating the leaf positions when irradiating with a micromultileaf collimator is briefly discussed. The success of the procedure has been demonstrated for several clinical cases with up to six target points.

  2. Stress-induced waveguides in Nd:YAG by simultaneous double-beam irradiation with femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Castillo, Gabriel R.; Romero, Carolina; Lifante, Ginés; Jaque, Daniel; Chen, Feng; Varela, Óscar; García-García, Enrique; Méndez, Cruz; Camacho-López, Santiago; Vázquez de Aldana, Javier R.

    2016-01-01

    We report on the fabrication of stress-induced waveguides in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) by simultaneous double-beam irradiation with femtosecond laser pulses. An interferometer was used to generate two femtosecond laser beams that, focused with certain lateral separation inside the crystal, produced two parallel damage tracks with a single scan. The propagation of the mechanical waves simultaneously created in both focal spots produced a highly symmetrical stress field that is clearly revealed in micro-luminescence maps. The optical properties of the double-beam waveguides are studied and compared to those of single-beam irradiation, showing relevant differences. The creation of more symmetric stress patterns and a slight reduction of propagation losses are explained in terms of the fact that simultaneous inscription allows for a drastic reduction in the magnitude of "incubation" effects related to the existence of pre-damaged states.

  3. Fractionated irradiation of carbon beam and the isoeffect dose on acute reaction of skin

    PubMed Central

    Uzawa, Akiko; Hirayama, Ryoichi; Matsumoto, Yoshitaka; Koda, Kana; Koike, Sachiko; Ando, Koichi; Furusawa, Yoshiya

    2014-01-01

    Purpose: The aim of this study was to clear any specific LETs cause change in skin reaction. We irradiated mice feet with mono-energetic and SOBP carbon ions, to obtain dose–response of early skin reaction at different LETs. Materials and methods: Mice: C3H/HeMsNrsf female mice aged 4 months old were used for this study. The animals were produced and maintained in specific pathogen-free (SPF) facilities. Irradiation: The mice right hind legs received daily fractionated irradiation ranged from single to six fractions. Carbon ions (12C6+) were accelerated by the HIMAC synchrotron to 290 MeV/u. Irradiation was conducted using horizontal carbon-ion beams with a dose rate of ∼3 Gy/min. We chose the LETs at entrance of plateau (20keV/μm) and the SOBP (proximal: 40 keV/μm, middle: 45 keV/μm, distal: 60 keV/μm, distal-end: 80 keV/μm). The reference beam was 137Cs gamma rays with a dose rate of 1.2 Gy/min. Skin reaction: Skin reaction of the irradiated legs was scored every other day, between the14th and 35th post-irradiation days. Our scoring scale consisted of seven steps, ranging from 0.5 to 3.5 [ 1]. The skin score analyzed a result by the method that described by Ando et al. [ 2]. The Fe-plot proposed by Douglas and Fowler was used as a multifraction linear quadratic model. A plot between the reciprocal of the isoeffect dose and the dose per fraction resulted in a straight line. Results: Required isoeffect total dose increased linearly with the fraction numbers on a semi-logarithmic chart at LET 20–60 keV/µm SOBP beam. The isoeffect total dose decreased with the increase in the LET. However, no increases in isoeffect total dose were observed at few fractionations at 80 keV/µm. (data not shown) Using an Fe-plot, we analyzed the isoeffect total dose to evaluate the dependence on Carbon beam, or gamma ray. When I irradiate it by gamma ray, an Fe-plot shows linearly. But, irradiated by Carbon beam, an Fe-plot bent at low fractions (Fig. 1). Conclusion: The LQ

  4. Efficient modification of floral traits by heavy-ion beam irradiation on transgenic Torenia.

    PubMed

    Ohtsubo, Norihiro; Sasaki, Katsutomo; Aida, Ryutaro; Ryuto, Hiromichi; Ichida, Hiroyuki; Hayashi, Yoriko; Abe, Tomoko

    2012-01-01

    While heavy-ion beam irradiation is becoming popular technology for mutation breeding in Japan, the combination with genetic manipulation makes it more convenient to create greater variation in plant phenotypes. We have succeeded in producing over 200 varieties of transgenic torenia (Torenia fournieri Lind.) from over 2,400 regenerated plants by this procedure in only 2 years. Mutant phenotypes were observed mainly in flowers and showed wide variation in colour and shape. Higher mutation rates in the transgenics compared to those in wild type indicate the synergistic effect of genetic manipulation and heavy-ion beam irradiation, which might be advantageous to create greater variation in floral traits.

  5. Movement of basal plane dislocations in GaN during electron beam irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakimov, E. B.; National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049; Vergeles, P. S.

    The movement of basal plane segments of dislocations in low-dislocation-density GaN films grown by epitaxial lateral overgrowth as a result of irradiation with the probing beam of a scanning electron microscope was detected by means of electron beam induced current. Only a small fraction of the basal plane dislocations was susceptible to such changes and the movement was limited to relatively short distances. The effect is explained by the radiation enhanced dislocation glide for dislocations pinned by two different types of pinning sites: a low-activation-energy site and a high-activation-energy site. Only dislocation segments pinned by the former sites can bemore » moved by irradiation and only until they meet the latter pinning sites.« less

  6. Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium in powdered weaning food by electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Hong, Yun-Hee; Park, Ji-Yong; Park, Jong-Hyun; Chung, Myong-Soo; Kwon, Ki-Sung; Chung, Kyungsook; Won, Misun; Song, Kyung-Bin

    2008-09-01

    Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium were evaluated in powdered weaning food using electron-beam irradiation. E. sakazakii, B. cereus, and S. typhimurium were eliminated by irradiation at 16, 8, and 8 kGy, respectively. The D10-vlaues of E. sakazakii, B. cereus, and S. typhimurium inoculated on powdered weaning food were 4.83, 1.22, and 0.98 kGy, respectively. The results suggest that electron-beam irradiation should inhibit the growth of pathogenic bacteria on baby food without impairing qualities.

  7. Solutions Network Formulation Report. Aerosol Polarimetry Sensor Measurements of Diffuse-to-Global Irradiance Ratio for Improved Forecasting of Plant Productivity and Health

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly; Andrews, Jane C.; Ryan, Robert E.

    2007-01-01

    Studies have shown that vegetation is directly sensitive to changes in the diffuse-to-global irradiance ratio and that increased percentage of diffuse irradiation can accelerate photosynthesis. Therefore, measurements of diffuse versus global irradiance could be useful for monitoring crop productivity and overall vegetative health as they relate to the total amount of particulates in the air that result from natural disasters or anthropogenic (manmade) causes. While the components of solar irradiance are measured by satellite and surface sensors and calculated with atmospheric models, disagreement exists between the results, creating a need for more accurate and comprehensive retrievals of atmospheric aerosol parameters. Two satellite sensors--APS and VIIRS--show promise for retrieving aerosol properties at an unprecedented level of accuracy. APS is expected to be launched in December 2008. The planned launch date for VIIRS onboard NPP is September 2009. Identified partners include the USDA s ARS, North Carolina State University, Purdue Climate Change Research Center, and the Cooperative Institute for Research in the Atmosphere at Colorado State University. Although at present no formal DSSs (decision support systems) require accurate values of diffuse-to-global irradiance, this parameter is sufficiently important that models are being developed that will incorporate these measurements. This candidate solution is aligned with the Agricultural Efficiency and Air Quality National Applications.

  8. Proton irradiation damage of an annealed Alloy 718 beam window

    DOE PAGES

    Bach, H. T.; Anderoglu, O.; Saleh, T. A.; ...

    2015-04-01

    Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cutmore » into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ~0.2–0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ~34–120 °C with short excursion to be ~47–220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (~0.2–0.7 dpa) was the highest and attributed to the formation of γ" precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (~11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.« less

  9. Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike

    2016-12-14

    Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, developed to measure the extended broadband spectrum of the terrestrial direct solar beam irradiance that extends beyond the ultraviolet and infrared bands; i.e. below 0.2 um and above 50 um, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to the spectralmore » range of approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers, which measure the atmospheric longwave irradiance, are also used for solar and atmospheric science applications and calibrated with traceability to a consensus reference, yet they are calibrated during nighttime only, because no consensus reference has been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80 degrees to 16 degrees, respectively. Recent development shows that there is greater than 1.1 percent bias in measuring shortwave solar irradiance.« less

  10. Investigation of multiple scattering effects in aerosols

    NASA Technical Reports Server (NTRS)

    Deepak, A.

    1980-01-01

    The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.

  11. Investigation of multiple scattering effects in aerosols

    NASA Astrophysics Data System (ADS)

    Deepak, A.

    1980-05-01

    The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.

  12. Characterization and error analysis of an operational retrieval algorithm for estimating column ozone and aerosol properties from ground-based ultra-violet irradiance measurements

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan; Slusser, James; Stephens, Graeme; Krotkov, Nick; Davis, John; Goering, Christian

    2005-08-01

    Extensive sensitivity and error characteristics of a recently developed optimal estimation retrieval algorithm which simultaneously determines aerosol optical depth (AOD), aerosol single scatter albedo (SSA) and total ozone column (TOC) from ultra-violet irradiances are described. The algorithm inverts measured diffuse and direct irradiances at 7 channels in the UV spectral range obtained from the United States Department of Agriculture's (USDA) UV-B Monitoring and Research Program's (UVMRP) network of 33 ground-based UV-MFRSR instruments to produce aerosol optical properties and TOC at all seven wavelengths. Sensitivity studies of the Tropospheric Ultra-violet/Visible (TUV) radiative transfer model performed for various operating modes (Delta-Eddington versus n-stream Discrete Ordinate) over domains of AOD, SSA, TOC, asymmetry parameter and surface albedo show that the solutions are well constrained. Realistic input error budgets and diagnostic and error outputs from the retrieval are analyzed to demonstrate the atmospheric conditions under which the retrieval provides useful and significant results. After optimizing the algorithm for the USDA site in Panther Junction, Texas the retrieval algorithm was run on a cloud screened set of irradiance measurements for the month of May 2003. Comparisons to independently derived AOD's are favorable with root mean square (RMS) differences of about 3% to 7% at 300nm and less than 1% at 368nm, on May 12 and 22, 2003. This retrieval method will be used to build an aerosol climatology and provide ground-truthing of satellite measurements by running it operationally on the USDA UV network database.

  13. Evaluation of degradation of antibiotic tetracycline in pig manure by electron beam irradiation.

    PubMed

    Cho, Jae-Young

    2010-04-01

    This study was carried out to evaluate the degradation efficiency and intermediate products of the tetracycline from artificially contaminated pig manure using of electron beam irradiation as a function of the absorbed dose. The degradation efficiency of tetracycline was 42.77% at 1 kGy, 64.20% at 3 kGy, 77.83% at 5 kGy, and 90.50% at 10 kGy. The initial concentration of tetracycline (300 mg kg(-1)) in pig manure decreased significantly to 24.2 +/- 5.3 mg kg(-1) after electron beam irradiation at 10 kGy. The radiolytic degradation products of tetracycline were 1,4-benzenedicarboxylic acid, hexadecanoic acid, 9-octadecenamide, 11-octadecenamide, and octadecanoic acid.

  14. Irradiation of Materials using Short, Intense Ion Beams

    NASA Astrophysics Data System (ADS)

    Seidl, Peter; Ji, Q.; Persaud, A.; Feinberg, E.; Silverman, M.; Sulyman, A.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Gilson, E. P.; Kaganovich, I. D.; Stepanov, A.; Zimmer, M.

    2016-10-01

    We present experiments studying material properties created with nanosecond and millimeter-scale ion beam pulses on the Neutralized Drift Compression Experiment-II at Berkeley Lab. The explored scientific topics include the dynamics of ion induced damage in materials, materials synthesis far from equilibrium, warm dense matter and intense beam-plasma physics. We describe the improved accelerator performance, diagnostics and results of beam-induced irradiation of thin samples of, e.g., tin and silicon. Bunches with >3x1010 ions/pulse with 1-mm radius and 2-30 ns FWHM duration and have been created. To achieve the short pulse durations and mm-scale focal spot radii, the 1.2 MeV He+ ion beam is neutralized in a drift compression section which removes the space charge defocusing effect during the final compression and focusing. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing the accelerator performance and keep pace with the accelerator repetition rate of <1/minute. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0205CH11231 (LBNL), DE-AC52-07NA27344 (LLNL) and DE-AC02-09CH11466 (PPPL).

  15. Effect of Irradiation on Tissue Penetration Depth of Doxorubicin after Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC) in a Novel Ex-Vivo Model.

    PubMed

    Khosrawipour, Veria; Giger-Pabst, Urs; Khosrawipour, Tanja; Pour, Yousef Hedayat; Diaz-Carballo, David; Förster, Eckart; Böse-Ribeiro, Hugo; Adamietz, Irenäus Anton; Zieren, Jürgen; Fakhrian, Khashayar

    2016-01-01

    This study was performed to assess the impact of irradiation on the tissue penetration depth of doxorubicin delivered during Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC). Fresh post mortem swine peritoneum was cut into 10 proportional sections. Except for 2 control samples, all received irradiation with 1, 2, 7 and 14 Gy, respectively. Four samples received PIPAC 15 minutes after irradiation and 4 other after 24 hours. Doxorubicin was aerosolized in an ex-vivo PIPAC model at 12 mmHg/36°C. In-tissue doxorubicin penetration was measured using fluorescence microscopy on frozen thin sections. Doxorubicin penetration after PIPAC (15 minutes after irradiation) was 476 ± 74 µm for the control sample, 450 ± 45µm after 1 Gy (p > 0.05), 438 ± 29 µm after 2 Gy (p > 0.05), 396 ± 32 µm after 7 Gy (p = 0.005) and 284 ± 57 after 14 Gy irradiation (p < 0.001). The doxorubicin penetration after PIPAC (24 hours after irradiation) was 428 ± 77 µm for the control sample, 393 ± 41 µm after 1 Gy (p > 0.05), 379 ± 56 µm after 2 Gy (p > 0.05), 352 ± 53 µm after 7 Gy (p = 0.008) and 345 ± 53 after 14 Gy irradiation (p = 0.001). Higher (fractional) radiation dose might reduce the tissue penetration depth of doxorubicin in our ex-vivo model. However, irradiation with lower (fractional) radiation dose does not affect the tissue penetration negatively. Further studies are warranted to investigate if irradiation can be used safely as chemopotenting agent for patients with peritoneal metastases treated with PIPAC.

  16. Decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process.

    PubMed

    Mohd Nasir, Norlirubayah; Teo Ming, Ting; Ahmadun, Fakhru'l-Razi; Sobri, Shafreeza

    2010-01-01

    The research conducted a study on decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. The purposes of this research are to remove pollutant through decomposition and to enhance the biodegradability of textile wastewater. The wastewater is treated using electron beam irradiation as a pre-treatment before undergo an activated sludge process. As a result, for non-irradiated wastewater, the COD removal was achieved to be between 70% and 79% after activated sludge process. The improvement of COD removal efficiency increased to 94% after irradiation of treated effluent at the dose of 50 kGy. Meanwhile, the BOD(5) removal efficiencies of non-irradiated and irradiated textile wastewater were reported to be between 80 and 87%, and 82 and 99.2%, respectively. The maximum BOD(5) removal efficiency was achieved at day 1 (HRT 5 days) of the process of an irradiated textile wastewater which is 99.2%. The biodegradability ratio of non-irradiated wastewater was reported to be between 0.34 and 0.61, while the value of biodegradability ratio of an irradiated wastewater increased to be between 0.87 and 0.96. The biodegradability enhancement of textile wastewater is increased with increasing the doses. Therefore, an electron beam radiation holds a greatest application of removing pollutants and also on enhancing the biodegradability of textile wastewater.

  17. Reduction of aqueous Crvi using nanoscale zero-valent iron dispersed by high energy electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zhang, Guilong; Wang, Min; Zheng, Kang; Cai, Dongqing; Wu, Zhengyan

    2013-09-01

    High energy electron beam (HEEB) irradiation was used to disperse nanoscale zero-valent iron (NZVI) for reduction of Crvi to Criii in aqueous solution. Pore size distribution, scanning electron microscopy and X-ray diffraction characterizations demonstrated that HEEB irradiation could effectively increase the dispersion of NZVI resulting in more active reduction sites of Crvi on NZVI. Batch reduction experiments indicated that the reductive capacity of HEEB irradiation-modified NZVI (IMNZVI) was significantly improved, as the reductive efficiency reached 99.79% under the optimal conditions (electron beam dose of 30 kGy at 10 MeV, pH 2.0 and 313 K) compared with that of raw NZVI (72.14%). Additionally, the NZVI was stable for at least two months after irradiation. The modification mechanism of NZVI by HEEB irradiation was investigated and the results indicated that charge and thermal effects might play key roles in dispersing the NZVI particles.

  18. Electron beam irradiation of Matricaria chamomilla L. for microbial decontamination

    NASA Astrophysics Data System (ADS)

    Nemţanu, Monica R.; Kikuchi, Irene Satiko; de Jesus Andreoli Pinto, Terezinha; Mazilu, Elena; Setnic, Silvia; Bucur, Marcela; Duliu, Octavian G.; Meltzer, Viorica; Pincu, Elena

    2008-05-01

    Wild chamomile (Matricaria chamomilla L.) is one of the most popular herbal materials with both internal and external use to cure different health disturbances. As a consequence of its origin, chamomile could carry various microbial contaminants which offer different hazards to the final consumer. Reduction of the microbial load to the in force regulation limits represents an important phase in the technological process of vegetal materials, and the electron beam treatment might be an efficient alternative to the classical methods of hygienic quality assurance. The purpose of the study was to analyze the potential application of the electron beam treatment in order to assure the microbial safety of the wild chamomile. Samples of chamomile dry inflorescences were treated in electron beam (e-beam) of 6 MeV mean energy, at room temperature and ambient pressure. Some loss of the chemical compounds with bioactive role could be noticed, but the number of microorganisms decreased as a function on the absorbed dose. Consequently, the microbial quality of studied vegetal material inflorescences was improved by e-beam irradiation.

  19. Spectral solar attenuation due to aerosol loading over an urban area in India

    NASA Astrophysics Data System (ADS)

    Latha, K. Madhavi; Badarinath, K. V. S.

    2005-06-01

    Anthropogenic activities in urban areas are sources for atmospheric aerosols and are increasing due to population explosion and migration. Many large cities in the developing world are presently plagued by high levels of atmospheric pollution and long-term effect of urban aerosol on climate is an important topic. In the present study, ground-based measurements of solar irradiance, aerosol loading and black carbon (BC) aerosol concentration have been analyzed during different aerosol loading conditions during 2003 over an urban environment. BC aerosols concentration has been observed to be enhanced during high aerosol optical depth day suggesting influence of local anthropogenic activities. The analysis of wind fields over the study area during the measurement period is from north with continental air mass prevailing over the region. Spectral measurements of solar irradiance exhibited variations based on aerosol loading in urban atmosphere. Relative attenuations caused by aerosols have been found to be of the order of 21% and 17% on the irradiance on visible and near infrared respectively.

  20. External-beam irradiation of carcinoma of the penis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagerman, R.H.; Yu, W.S.; Chung, C.T.

    1984-07-01

    Twenty-four patients with biopsy-proved squamous-cell carcinoma of the penis underwent external-beam radiation therapy between 1966 and 1980. Fifteen were treated for the primary tumor and 9 for metastatic inguinal lymphadenopathy; no patient received prophylactic nodal irradiation. Seven out of 9 tumors in stage I, 2/3 in stage II, and 1/3 in stage IV were controlled for three years. Control of fixed, inoperable groin nodes was poor, and none of these patients survived beyond 1 1/2 years.

  1. Autonomous marine hyperspectral radiometers for determining solar irradiances and aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Wood, John; Smyth, Tim J.; Estellés, Victor

    2017-05-01

    We have developed two hyperspectral radiometer systems which require no moving parts, shade rings or motorised tracking, making them ideally suited for autonomous use in the inhospitable remote marine environment. Both systems are able to measure direct and diffuse hyperspectral irradiance in the wavelength range 350-1050 nm at 6 nm (Spectrometer 1) or 3.5 nm (Spectrometer 2) resolution. Marine field trials along a 100° transect (between 50° N and 50° S) of the Atlantic Ocean resulted in close agreement with existing commercially available instruments in measuring (1) photosynthetically available radiation (PAR), with both spectrometers giving regression slopes close to unity (Spectrometer 1: 0.960; Spectrometer 2: 1.006) and R2 ˜ 0.96; (2) irradiant energy, with R2 ˜ 0.98 and a regression slope of 0.75 which can be accounted for by the difference in wavelength integration range; and (3) hyperspectral irradiance where the agreement on average was between 2 and 5 %. Two long duration land-based field campaigns of up to 18 months allowed both spectrometers to be well calibrated. This was also invaluable for empirically correcting for the wider field of view (FOV) of the spectrometers in comparison with the current generation of sun photometers ( ˜ 7.5° compared with ˜ 1°). The need for this correction was also confirmed and independently quantified by atmospheric radiative transfer modelling and found to be a function of aerosol optical depth (AOD) and solar zenith angle. Once Spectrometer 2 was well calibrated and the FOV effect corrected for, the RMSE in retrievals of AOD when compared with a CIMEL sun photometer were reduced to ˜ 0.02-0.03 with R2 > 0.95 at wavelengths 440, 500, 670 and 870 nm. Corrections for the FOV as well as ship motion were applied to the data from the marine field trials. This resulted in AOD500 nm ranging between 0.05 in the clear background marine aerosol regions and ˜ 0.5 within the Saharan dust plume. The RMSE between the

  2. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    NASA Astrophysics Data System (ADS)

    Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-11-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.

  3. First application of hemi-body electron beam irradiation for Kaposi sarcoma at the lower extremities.

    PubMed

    Platoni, Kalliopi; Diamantopoulos, Stefanos; Dilvoi, Maria; Delinikolas, Panagiotis; Kypraiou, Efrosyni; Efstathopoulos, Efstathios; Kouloulias, Vassilis

    2018-01-01

    Kaposi's sarcoma (KS) is a systemic neoplastic disease that can present cutaneous symptoms and is usually treated with a systematic approach due to its extent. Due to its radiosensitivity, radiotherapy is considered one of its main treatments, for palliation and local control of the skin and mucosal lesions. The aim of this paper was to report the first case of KS treated by hemi-body electron irradiation protocol in Greece. A fractionated 40 Gy hemi-body electron irradiation was prescribed to a 60-year-old male patient with KS at his legs. Dose uniformity was verified on a daily basis by thermoluminescence dosimetry (TLD). The treatment resulted to complete clinical response. Limited irradiation-derived side effects appeared. This is the first case ever to be treated with hemi-body electron irradiation protocol in Greece. To the best of our knowledge, this is also the first time that a single field hemi-body electron beam irradiation at a total skin electron beam (TSEB)-like configuration is reported to be used for KS.

  4. Structural changes in graphene oxide thin film by electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Lakshmi, G. B. V. S.; Kumar, Sunil; Tripathi, Ambuj; Avasthi, D. K.

    2016-07-01

    Although we have a whole class of 2D materials, graphene has drawn much attention for its excellent electronic, optical, thermal and mechanical properties. Recent researches have shown its large scale production by the reduction of graphene oxide either thermally, chemically or electrochemically. Although the structure of graphene oxide is inhomogeneous and hence complicated due to the presence of organic moieties e.g. epoxy, carboxylic acid, hydroxyl groups etc., its properties can be tuned by reduction according to desired application. The aim of this work is to synthesize continuous thin film of graphene oxide using commercially available graphene oxide solution and to study its reduction by 25 keV electron beam irradiation at fluences varying from 2 × 1011 to 2 × 1013 e-/cm2. Our studies using X-ray diffraction, Raman microscopy and UV-Vis spectroscopy showed that electron-beam irradiation is an effective tool for reduction of graphene oxide and for tuning its band gap.

  5. Preliminary results of proton beam irradiation of macular and paramacular melanomas.

    PubMed Central

    Gragoudas, E S; Goitein, M; Seddon, J; Verhey, L; Munzenrider, J; Urie, M; Suit, H D; Blitzer, P; Johnson, K N; Koehler, A

    1984-01-01

    Proton beam irradiation has been used for the treatment of 60 eyes with choroidal melanomas located 3 mm or less from the fovea. The average follow-up period was 18 months. 86% of the treated lesions showed regression at the time of this analysis, and the 14% that did not were followed up for less than a year. Visual acuity remained the same in 47% of the treated eyes, improved in 20%, and deteriorated in 33%. 58% of the treated eyes had visual acuity of 20/100 or better at the last follow-up examination. Radiation vasculopathy with macular oedema was the most common complication, and it was observed in 22% of the treated eyes. These preliminary observations suggest that proton beam irradiation may be a reasonable alternative to enucleation even for this group of choroidal melanomas, which is considered unfavourable in respect of the preservation of visual function. Images PMID:6329261

  6. Temperature field of dielectric films under continuous ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Salikhov, T. Kh.; Abdurahmonov, A. A.

    2017-11-01

    In the present study, we theoretically examine the formation process of the steady-state temperature field in dielectrics under irradiation with a continuous ion beam in air with allowance for the temperature dependence of thermophysical quantities. Analytical expressions for the temperature field were obtained. An interconnected system of nonlinear algebraic equations for the steady-state temperatures at the front (irradiated) and rear surfaces of the sample, and the steady-state temperature at the interface between the ion-damaged and non-damaged region was obtained; by numerical solution of this system, a nonlinear dependence of the mentioned temperatures on the characteristics of incident ion flux was revealed.

  7. Formation of Secondary Organic Aerosol from Irradiated a-Pinene/Tolueme/NOx Mixtures and the Effect of Isoprene and Sulfur Dioxide

    EPA Science Inventory

    Secondary organic aerosol (SOA) was generated by irradiating a series of a-pinene/toluene/NOx mixtures in the absence and presence of isoprene or sulfur dioxide. The purpose of the experiment was to evaluate the extent to which chemical perturbations to this base-case (a-pinene/...

  8. Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Development

    NASA Astrophysics Data System (ADS)

    Reda, I.; Andreas, A.; Dooraghi, M.; Habte, A.; Sengupta, M.; Kutchenreiter, M.

    2016-12-01

    Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to consensus Reference, which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, and developed to measure extended broadband spectrum of the terrestrial direct solar beam irradiance, extends beyond the ultraviolet and infrared bands; i.e. below 0.2 µm and above 50 µm, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 µm to 3 µm, while the present photovoltaic cells are limited to the spectral range of approximately 0.3 µm to 1 µm. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus Reference, yet they are calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 µm to 50 µm, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80° to 16°, respectively.

  9. Radiotherapy in the management of keloids. Clinical experience with electron beam irradiation and comparison with X-ray therapy.

    PubMed

    Maarouf, Mohammad; Schleicher, Ursula; Schmachtenberg, Axel; Ammon, Jürgen

    2002-06-01

    Aim of this study was to evaluate the advantages of electron beam irradiation compared to kilovoltage X-ray therapy in the treatment of keloids. Furthermore, the risk of developing malignancy following keloid radiotherapy was assessed. An automatic water phantom was used to evaluate the dose distribution in tissue. Furthermore, a series of measurements was done on the patients using thermoluminescence dosimeters (TLD) to estimate the doses absorbed by the organs at risk. We also report our clinical experience with electron beam radiation of 134 keloids following surgical excision. Electron beam irradiation offers a high control rate (84%) with minimal side effects for keloids. Electron irradiation provides better dose distribution in tissue, and therefore less radiation burden to the organs at risk. After a mean follow-up period of 7.2 years, no severe side effects or malignancies were observed after keloid radiotherapy. Electron radiation therapy is superior to kilovoltage irradiation for treating keloids due to better dose distribution in tissue. In agreement with the literature, no cases of malignancy were observed after keloid irradiation.

  10. A new approach to correct for absorbing aerosols in OMI UV

    NASA Astrophysics Data System (ADS)

    Arola, A.; Kazadzis, S.; Lindfors, A.; Krotkov, N.; Kujanpää, J.; Tamminen, J.; Bais, A.; di Sarra, A.; Villaplana, J. M.; Brogniez, C.; Siani, A. M.; Janouch, M.; Weihs, P.; Webb, A.; Koskela, T.; Kouremeti, N.; Meloni, D.; Buchard, V.; Auriol, F.; Ialongo, I.; Staneck, M.; Simic, S.; Smedley, A.; Kinne, S.

    2009-11-01

    Several validation studies of surface UV irradiance based on the Ozone Monitoring Instrument (OMI) satellite data have shown a high correlation with ground-based measurements but a positive bias in many locations. The main part of the bias can be attributed to the boundary layer aerosol absorption that is not accounted for in the current satellite UV algorithms. To correct for this shortfall, a post-correction procedure was applied, based on global climatological fields of aerosol absorption optical depth. These fields were obtained by using global aerosol optical depth and aerosol single scattering albedo data assembled by combining global aerosol model data and ground-based aerosol measurements from AERONET. The resulting improvements in the satellite-based surface UV irradiance were evaluated by comparing satellite and ground-based spectral irradiances at various European UV monitoring sites. The results generally showed a significantly reduced bias by 5-20%, a lower variability, and an unchanged, high correlation coefficient.

  11. Improvement of Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size.

    PubMed

    Ma, Haotong; Liu, Zejin; Jiang, Pengzhi; Xu, Xiaojun; Du, Shaojun

    2011-07-04

    We propose and demonstrate the improvement of conventional Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size. Based on the detailed study of the refractive beam shaping system, we found that the conventional Galilean beam shaper can only work well for the magnifying beam shaping. Taking the transformation of input beam with Gaussian irradiance distribution into target beam with high order Fermi-Dirac flattop profile as an example, the shaper can only work well at the condition that the size of input and target beam meets R(0) ≥ 1.3 w(0). For the improvement, the shaper is regarded as the combination of magnifying and demagnifying beam shaping system. The surface and phase distributions of the improved Galilean beam shaping system are derived based on Geometric and Fourier Optics. By using the improved Galilean beam shaper, the accurate transformation of input beam with Gaussian irradiance distribution into target beam with flattop irradiance distribution is realized. The irradiance distribution of the output beam is coincident with that of the target beam and the corresponding phase distribution is maintained. The propagation performance of the output beam is greatly improved. Studies of the influences of beam size and beam order on the improved Galilean beam shaping system show that restriction of beam size has been greatly reduced. This improvement can also be used to redistribute the input beam with complicated irradiance distribution into output beam with complicated irradiance distribution.

  12. Luminescence properties of pure and doped CaSO4 nanorods irradiated by 15 MeV e-beam

    NASA Astrophysics Data System (ADS)

    Salah, Numan; Alharbi, Najlaa D.; Enani, Mohammad A.

    2014-01-01

    Calcium sulfate (CaSO4) doped with proper activators is a highly sensitive phosphor used in different fields mainly for radiation dosimetry, lighting and display applications. In this work pure and doped nanorods of CaSO4 were produced by the co-precipitation technique. Samples from this material doped with Ag, Cu, Dy, Eu and Tb were exposed to different doses of 15 MeV e-beam and studied for their thermoluminesence (TL) and photoluminescence (PL) properties. Color center formation leading to PL emissions were investigated before and after e-beam irradiation. The samples doped with rare earths elements (i.e. Dy, Eu and Tb) were observed to have thinner nanorods than the other samples and have higher absorption in the UV region. The Ag and Tb doped samples have poor TL response to e-beam, while those activated by Cu, Dy and Eu have strong glow peaks at around 123 °C. Quite linear response curves in the whole studied exposures i.e. 0.1-100 Gy were also observed in Cu and Dy doped samples. The PL results show that pure CaSO4 nanorods have active color centers without irradiation, which could be enriched/modified by these impurities mainly rare earths and further enhanced by e-beam irradiation. Eu3+ → Eu2+ conversion is clearly observed in Eu doped sample after e-beam irradiation. These results show that these nanorods might be useful in lighting and display devices development.

  13. An experimental investigation of wastewater treatment using electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  14. Color change of tourmaline by heat treatment and electron beam irradiation: UV-Visible, EPR, and Mid-IR spectroscopic analyses

    NASA Astrophysics Data System (ADS)

    Maneewong, Apichate; Seong, Baek Seok; Shin, Eun Joo; Kim, Jeong Seog; Kajornrith, Varavuth

    2016-01-01

    The color of pink tourmaline gemstone changed to colorless when heating at temperature of 600 °C in air. This colorless tourmaline recovered its pink color when irradiated with an electron beam (e-beam) of 800 kGy. The origin of the color change was investigated in three types of tourmaline gemstones, two pink are from Afghanistan and one green are from Nigeria, by using Ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), Electron paramagnetic resonance (EPR), and Energy Dispersive X-ray Fluorescence (EDXRF). The UV-Vis absorption spectrum of the pink tourmaline with higher Mn concentration (T2, 0.24 wt%) showed characteristic absorption peaks originating from the Mn3+ color center: two absorption bands centered at wavelength of 396 and 520 nm, respectively. Both absorption bands disappeared when heated in air at 600 °C and then reappeared when irradiated with an e-beam at 800 kGy. EPR T2 spectra showed that the color change was related to the valence change of Mn3+ to Mn2+ and vice versa. The pink tourmaline of lower MnO content (T1, 0.08 wt%) also became colorless when heated, but the color was not recovered when the gemstone underwent e-beam irradiation. Instead, a yellow color was obtained. UV-Vis and FTIR spectra indicated that this yellow color originated from a decomposition of the hydroxyl group (-OH) into O- and Ho by the e-beam irradiation. Green tourmaline did not show any color change with either heat treatment or e-beam irradiation.

  15. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation

    PubMed Central

    Polf, Jerimy C; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam

    2013-01-01

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured using a high-purity germanium detector, and the absolute detection efficiency of the detector, average beam current, and delivered dose distribution were also measured. Changes to the total PG emission from 12C (4.44 MeV) and 16O (6.13 MeV) per incident proton and per Gray of absorbed dose were characterized as a function of carbon and oxygen concentration in the sample. The intensity of the 4.44 MeV PG emission per incident proton was found to be nearly constant for all samples regardless of their carbon concentration. However, we found that the 6.13 MeV PG emission increased linearly with the total amount (in grams) of oxygen irradiated in the sample. From the measured PG data, we determined that 1.64 × 107 oxygen PGs were emitted per gram of oxygen irradiated per Gray of absorbed dose delivered with a 48 MeV proton beam. These results indicate that the 6.13 MeV PG emission from 16O is proportional to the concentration of oxygen in tissue irradiated with proton beams, showing that it is possible to determine the concentration of oxygen within tissues irradiated with proton beams by measuring 16O PG emission. PMID:23920051

  16. Tuning the third-order nonlinear optical properties of In:ZnO thin films by 8 MeV electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Shettigar, Nayana; Pramodini, S.; Kityk, I. V.; Abd-Lefdil, M.; Eljald, E. M.; Regragui, M.; Antony, Albin; Rao, Ashok; Sanjeev, Ganesh; Ajeyakashi, K. C.; Poornesh, P.

    2017-11-01

    We report the third-order nonlinear optical properties of electron beam treated Indium doped ZnO (Zn1-xInxO (x = 0.03) thin films at different dose rate. Zn1-xInxO (x = 0.03) thin films prepared by spray pyrolysis deposition technique were irradiated using 8 MeV electron beam at dose rates ranging from 1 kGy to 4 kGy. X-ray diffraction patterns were obtained to examine the structural changes, The transformation from sphalerite to wurtzite structure of ZnO was observed which indicates occurrence of structural changes due to irradiation. Morphology of irradiated thin films examined using atomic force microscopy (AFM) technique indicates the surface roughness varying with irradiation dose rate. The switching over from Saturable Absorption (SA) to Reverse Saturable Absorption (RSA) behaviour was noted when the irradiation dose rate was increased from 1 kGy to 4 kGy. The significant changes observed in the third-order nonlinear optical susceptibility χ(3) of the Zn1-xInxO (x = 0.03) thin films is attributed mainly due to electron beam irradiation. The study indicates that nonlinear optical parameters can be controlled by electron beam irradiation by choosing appropriate dose rate which is very much essential for device applications. Hence Zn1-xInxO (x = 0.03) materialize as a promising material for use in nonlinear optical device applications.

  17. Experimental electron beam irradiation of food and the induction of radioactivity.

    PubMed

    Findlay, D J; Parsons, T V; Sene, M R

    1992-05-01

    Samples of chicken, prawns, cheeses and spices were irradiated on the Harwell electron linear accelerator HELIOS at 20 MeV to assess mechanisms for the induction of radioactivity. The induced radioactivity was measured using a lead shielded Ge(Li) gamma-ray spectrometer, and the results were compared with activities calculated on the basis of photoneutron and photoproton reactions induced by real and virtual photons. In general, there was good agreement. Bounds were also placed on the induction of radioactivity by capture of neutrons produced in the food samples themselves. Further, the data were used to assess the effects of a gross malfunction of an electron beam irradiation facility; after 1 day, the specific activity of food samples irradiated to 10 kGy at 20 MeV was approximately 0.01 Bq g-1. In addition, food samples were also irradiated at 10 MeV, and irradiated and control samples were analysed for microbiological burden. Reductions in the microbiological burden of the food samples by factors consistent with those found in previous measurements were found.

  18. PIXE Analysis of Indoor Aerosols

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher; Turley, Colin; Moore, Robert; Battaglia, Maria; Labrake, Scott; Vineyard, Michael

    2011-10-01

    We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol samples collected in academic buildings at Union College to investigate the air quality in these buildings and the effectiveness of their air filtration systems. This is also the commissioning experiment for a new scattering chamber in the Union College Ion-Beam Analysis Laboratory. The aerosol samples were collected on Kapton foils using a nine-stage cascade impactor that separates particles according to their aerodynamic size. The foils were bombarded with beams of 2.2-MeV protons from the Union College 1.1-MV Pelletron Accelerator and the X-ray products were detected with an Amptek silicon drift detector. After subtracting the contribution from the Kapton foils, the X-ray energy spectra of the aerosol samples were analyzed using GUPIX software to determine the elemental concentrations of the samples. We will describe the collection of the aerosol samples, discuss the PIXE analysis, and present the results.

  19. Advancing Solar Irradiance Measurement for Climate-Related Studies: Accurate Constraint on Direct Aerosol Radiative Effect (DARE)

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Ji, Q. Jack

    2011-01-01

    Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.

  20. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation

    PubMed Central

    Manaila, Elena; Stelescu, Maria Daniela; Craciun, Gabriela; Ighigeanu, Daniel

    2016-01-01

    The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose. PMID:28773626

  1. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation.

    PubMed

    Manaila, Elena; Stelescu, Maria Daniela; Craciun, Gabriela; Ighigeanu, Daniel

    2016-06-23

    The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose.

  2. Effects of cloud, aerosol, and ozone on surface spectral Ultraviolet and total irradiance observed in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Hana; Kim, Jhoon; Kim, Woogyung; Lee, Yun Gon; Cho, Hi Ku

    2015-04-01

    In recent years, there have been substantial attempts to model the radiative transfer for climatological and biological purposes. However, the incorporation of clouds, aerosols and ozone into the modeling process is one of the difficult tasks due to their variable transmission in both temporal and space domains. In this study we quantify the atmospheric transmissions by clouds, aerosol optical depth (AOD at 320 nm) and total ozone (Ozone) together with all skies in three solar radiation components of the global solar (GS 305-2800nm), total ultraviolet (TUV 290-363nm) and the erythemal weighted ultraviolet (EUV 290-325nm) irradiances with statistical methods using the data at Seoul. The purpose of this study also is to clarify the different characteristics between cloud, AOD and Ozone in the wavelength-dependent solar radiation components. The ozone, EUV and TUV used in this study (March 2003 - February 2014) have been measured with Dobson Spectrophotometer (Beck #124) and Brewer Spectrophotometer (SCI-TEC#148) at Yonsei University, respectively. GS, Cloud Cover (CC) are available from the Korean Meteorological Agency. The measured total (effect of cloud, aerosol, and ozone) transmissions on annual average showed 74%, 76% and 80% of GS, TUV and EUV irradiance, respectively. For the comparison of the measured values with modeled, we have also constructed a multiple linear regression model for the total transmission. The average ratio of measured to modeled total transmission were 0.94, 0.96 and 0.96 with higher measured than modeled value in the three components, respectively, The individual transmission by clouds under the constant AOD and Ozone atmosphere on average showed 68%, 71% and 76% and further the overcast clouds reduced the transmissions to the 45%, 54% and 59% of the clear sky irradiance in the GS, TUV and EUV, respectively. The annual transmissions by AOD showed on average 67%, 70% and 74% and further the high loadings 2.5-4.0 AOD reduced the

  3. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah

    2014-09-03

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev butmore » at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.« less

  4. Application of Satellite and Ground-based Data to Investigate the UV Radiative Effects of Australian Aerosols

    NASA Technical Reports Server (NTRS)

    Kalashnikova, Olga V.; Mills, Franklin P.; Eldering, Annmarie; Anderson, Don

    2007-01-01

    An understanding of the effect of aerosols on biologically- and photochemically-active UV radiation reaching the Earth's surface is important for many ongoing climate, biophysical, and air pollution studies. In particular, estimates of the UV characteristics of the most common Australian aerosols will be valuable inputs to UV Index forecasts, air quality studies, and assessments of the impact of regional environmental changes. By analyzing climatological distributions of Australian aerosols we have identified sites where co-located ground-based UV-B and ozone measurements were available during episodes of relatively high aerosol activity. Since at least June 2003, surface UV global irradiance spectra (285-450 nm) have been measured routinely at Darwin and Alice Springs in Australia by the Australian Bureau of Meteorology (BoM). Using colocated sunphotometer measurements at Darwin and Alice Springs, we identified several episodes of relatively high aerosol activity. Aerosol air mass types were analyzed from sunphotometer-derived angstrom parameter, MODIS fire maps and MISR aerosol property retrievals. To assess aerosol effects we compared the measured UV irradiances for aerosol-loaded and clear-sky conditions with each other and with irradiances simulated using the libRadtran radiative transfer model for aerosol-free conditions. We found that for otherwise similar atmospheric conditions, smoke aerosols over Darwin reduced the surface UV irradiance by as much as 40-50% at 290-300 nm and 20-25% at 320-400 nm near active fires (aerosol optical depth, AOD, at 500 nm approximately equal to 0.6). Downwind of fires, the smoke aerosols over Darwin reduced the surface irradiance by 15-25% at 290-300 nm and approximately 10% at 320-350 nm (AOD at 500 nm approximately equal to 0.2). The effect of smoke increased with decrease of wavel strongest in the UV-B. The aerosol attenuation factors calculated for the selected cases suggest smoke over Darwin has an effect on surface 340

  5. Nanoparticles of CdI 2 with closed cage structures obtained via electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Sallacan, N.; Popovitz-Biro, R.; Tenne, R.

    2003-06-01

    Nanoparticles of various layered compounds were shown to form closed cage or nanotubular structures, which were designated as inorganic fullerene-like ( IF) materials. In particular, closed cage structures and nanotubes were synthesized from NiCl 2 and CdCl 2 in the past. In the present work IF-CdI 2 nanoparticles were synthesized by electron-beam irradiation of the source powder leading to evaporation and subsequent recrystallization into closed nanoparticles with a non-hollow core. This process created polyhedral nanoparticles with hexagonal or elongated rectangular characters. Consistent with previous observations, this study shows that the seamless structure of the IF materials can stabilize phases, which are otherwise unstable under the electron-beam irradiation.

  6. Anisotropic proton-conducting membranes prepared from swift heavy ion-beam irradiated ETFE films

    NASA Astrophysics Data System (ADS)

    Kimura, Yosuke; Chen, Jinhua; Asano, Masaharu; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru

    2007-10-01

    Poly(ethylene-co-tetrafluoroethylene) (ETFE) films were irradiated by swift heavy ion-beams of 129Xe 23+ with fluences of 0, 3 × 10 6, 3 × 10 7, 3 × 10 8 and 3 × 10 9 ions/cm 2, followed by γ-ray pre-irradiation for radiation grafting of styrene onto the ETFE films and sulfonation of the grafted ETFE films to prepare highly anisotropic proton-conducting membranes. The fluence of Xe ions and the addition of water in the grafting solvent were examined to determine their effect on the proton conductivity of the resultant membranes. It was found that the polymer electrolyte membrane prepared by grafting the styrene monomer in a mixture of 67% isopropanol and 33% water to the ETFE film with an ion-beam irradiation fluence of 3.0 × 10 6 ions/cm 2 was a highly anisotropic proton-conducting material, as the proton conductivity was three or more times higher in the thickness direction than in the surface direction of the membrane.

  7. Joining of graphene flakes by low energy N ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Xin; Zhao, Haiyan; Pei, Jiayun; Yan, Dong

    2017-03-01

    An approach utilizing low energy N ion beam irradiation is applied in joining two monolayer graphene flakes. Raman spectrometry and atomic force microscopy show the joining signal under 40 eV and 1 × 1014 cm-2 N ion irradiation. Molecular dynamics simulations demonstrate that the joining phenomenon is attributed to the punch-down effect and the subsequent chemical bond generation between the two sheets. The generated chemical bonds are made up of inserted ions (embedded joining) and knocked-out carbon atoms (saturation joining). The electronic transport properties of the joint are also calculated for its applications.

  8. Fast crystallization of amorphous Gd{sub 2}Zr{sub 2}O{sub 7} induced by thermally activated electron-beam irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhangyi; Qi, Jianqi, E-mail: qijianqi@scu.edu.cn; Zhou, Li

    2015-12-07

    We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd{sub 2}Zr{sub 2}O{sub 7} synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd{sub 2}Zr{sub 2}O{sub 7} and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm{sup 2}). The crystallization occurred on the nanoscale upon ionizationmore » irradiation at 400 °C after a dose of less than 10{sup 17} electrons/cm{sup 2}. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism.« less

  9. Electron Beam Irradiation Induced Multiwalled Carbon Nanotubes Fusion inside SEM.

    PubMed

    Shen, Daming; Chen, Donglei; Yang, Zhan; Liu, Huicong; Chen, Tao; Sun, Lining; Fukuda, Toshio

    2017-01-01

    This paper reported a method of multiwalled carbon nanotubes (MWCNTs) fusion inside a scanning electron microscope (SEM). A CNT was picked up by nanorobotics manipulator system which was constructed in SEM with 21 DOFs and 1 nm resolution. The CNT was picked up and placed on two manipulators. The tensile force was 140 nN when the CNT was pulled into two parts. Then, two parts of the CNT were connected to each other by two manipulators. The adhered force between two parts was measured to be about 20 nN. When the two parts of CNT were connected again, the contact area was fused by focused electron beam irradiation for 3 minutes. The tensile force of the junction was measured to be about 100 nN. However, after fusion, the tensile force was five times larger than the tensile force connected only by van der Waals force. This force was 70 percent of the tensile force before pulling out of CNTs. The results revealed that the electron beam irradiation was a promising method for CNT fusion. We hope this technology will be applied to nanoelectronics in the near future.

  10. Use of electron beam irradiation to improve the microbiological safety of Hippophae rhamnoides

    NASA Astrophysics Data System (ADS)

    Minea, R.; Nemţanu, M. R.; Manea, S.; Mazilu, E.

    2007-09-01

    Sea buckthorn ( Hippophae rhamnoides) is increasingly used in food supplements due to its dietary and medicinal compounds with a beneficial role in human diet and health. As many other medicinal plants, sea buckthorn can be contaminated with microorganisms which exerts an important impact on the overall quality of the products. Irradiation is an effective method for food preservation because it is able to destroy pathogenic microorganisms keeping the organoleptic and nutritional characteristics of the foods. The objective of the present study was to investigate the application of electron beam irradiation in order to improve the microbiological safety of sea buckthorn. The experimental results indicated that the electron beam treatment might be a good method to remove undesirable microorganisms from sea buckthorn without significant changes in its active principles.

  11. Evaluation of fatigue crack behavior in electron beam irradiated polyethylene pipes

    NASA Astrophysics Data System (ADS)

    Pokharel, Pashupati; Jian, Wei; Choi, Sunwoong

    2016-09-01

    A cracked round bar (CRB) fatigue test was employed to determine the slow crack growth (SCG) behavior of samples from high density polyethylene (HDPE) pipes using PE4710 resin. The structure property relationships of fatigue failure of polyethylene CRB specimens which have undergone various degree of electron beam (EB) irradiation were investigated by observing fatigue failure strength and the corresponding fracture surface morphology. Tensile test of these HDPE specimens showed improvements in modulus and yield strength while the failure strain decreased with increasing EB irradiation. The CRB fatigue test of HDPE pipe showed remarkable effect of EB irradiation on number of cycles to failure. The slopes of the stress-cycles to failure curve were similar for 0-100 kGy; however, significantly higher slope was observed for 500 kGy EB irradiated pipe. Also, the cycle to fatigue failure was seen to decrease as with EB irradiation in the high stress range, ∆σ=(16 MPa to 10.8 MPa); however, 500 kGy EB irradiated samples showed longer cycles to failure than the un-irradiated specimens at the stress range below 9.9 MPa and the corresponding initial stress intensity factor (∆KI,0)=0.712 MPa m1/2. The fracture surface morphology indicated that the cross-linked network in 500 kGy EB irradiated PE pipe can endure low dynamic load more effectively than the parent pipe.

  12. Light dosimetry for focused and defocused beam irradiation in multi-layered tissue models

    NASA Astrophysics Data System (ADS)

    Petrova, Kremena S.; Stoykova, Elena V.

    2006-09-01

    Treatment of acupuncture points, trigger points, joint inflammations in low level laser therapy as well as various applications of lasers for treatment of soft tissues in dental medicine, require irradiation by a narrow converging laser beam. The aim of this study is to compare light delivery produced by focused or defocused narrow beam irradiation in a multi-layered skin tissue model at increasing depth of the target. The task is solved by 3-D Monte-Carlo simulation for matched and mismatched refractive indices at the tissue/ambient medium interface. The modeled light beams have a circular cross-section at the tissue entrance with uniform or Gaussian intensity distribution. Three are the tissue models used in simulation : i) a bloodless skin layer; ii) a bloodless skin layer with embedded scattering object; iii) a skin layer with small blood vessels of varying size, which are modeled as infinite cylinders parallel to the tissue surface located at different depths. Optical properties (absorption coefficient, scattering coefficient, anisotropy factor, g, and index of refraction) of different tissue constituents are chosen from the literature.

  13. Electron beam irradiated polymer electrolyte film: Morphology, dielectric and AC conductivity studies

    NASA Astrophysics Data System (ADS)

    Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Ganesh, S.; Devendrappa, H.

    2018-05-01

    The polymer (PVdF-co-HFP: LiClO4=90:10, PHL10) electrolyte films prepared by solution casting method and studied morphology, dielectric properties and ac conductivity before and after electron beam (EB) irradiation. The polarized optical micrographs reveals size of spherulite reduced with increasing EB dose represents increase in amorphousity. The dielectric measurements were studied at different temperatures and observed increase with frequency at different temperatures upon EB irradiation. The ac conductivity increases with frequency due to effect of EB dose.

  14. Reduction of aqueous CrVI using nanoscale zero-valent iron dispersed by high energy electron beam irradiation.

    PubMed

    Zhang, Jing; Zhang, Guilong; Wang, Min; Zheng, Kang; Cai, Dongqing; Wu, Zhengyan

    2013-10-21

    High energy electron beam (HEEB) irradiation was used to disperse nanoscale zero-valent iron (NZVI) for reduction of CrVI to CrIII in aqueous solution. Pore size distribution, scanning electron microscopy and X-ray diffraction characterizations demonstrated that HEEB irradiation could effectively increase the dispersion of NZVI resulting in more active reduction sites of Crvi on NZVI. Batch reduction experiments indicated that the reductive capacity of HEEB irradiation-modified NZVI (IMNZVI) was significantly improved, as the reductive efficiency reached 99.79% under the optimal conditions (electron beam dose of 30 kGy at 10 MeV, pH 2.0 and 313 K) compared with that of raw NZVI (72.14%). Additionally, the NZVI was stable for at least two months after irradiation. The modification mechanism of NZVI by HEEB irradiation was investigated and the results indicated that charge and thermal effects might play key roles in dispersing the NZVI particles.

  15. Flexible foils formed by a prolonged electron beam irradiation in scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Čechal, Jan; Šikola, Tomáš

    2017-11-01

    The ubiquitous presence of hydrocarbon contamination on solid surfaces alters their inherent physical properties and complicates the surface analyses. An irradiation of sample surface with electron beam can lead to the chemical transformation of the hydrocarbon layer to carbon films, which are flexible and capable of acting as a barrier for chemical etching of an underlying material. The growth of these foils is limited by supply of hydrocarbons to the writing beam position rather than the electron dose or electron beam current. The prepared films can find their applications in fabrication of surface nanostructures without a need of an electron sensitive resist material.

  16. How gamma-rays and electron-beam irradiation would affect the antimicrobial activity of differently processed wild mushroom extracts?

    PubMed

    Alves, M J; Fernandes, Â; Barreira, J C M; Lourenço, I; Fernandes, D; Moura, A; Ribeiro, A R; Salgado, J; Antonio, A; Ferreira, I C F R

    2015-03-01

    The effects of irradiation (gamma-rays and electron-beams), up to 10 kGy, in the antimicrobial activity of mushroom species (Boletus edulis, Hydnum repandum, Macrolepiota procera and Russula delica) differently processed (fresh, dried, freeze) were evaluated. Clinical isolates with different resistance profiles from hospitalized patients in Local Health Unit of Mirandela, Northeast of Portugal, were used as target micro-organisms. The mushrooms antimicrobial activity did not suffer significant changes that might compromise applying irradiation as a possible mushroom conservation technology. Two kGy dose (independently of using gamma-rays or electron-beams) seemed to be the most suitable choice to irradiate mushrooms. This study provides important results in antimicrobial activity of extracts prepared from irradiated mushroom species. © 2014 The Society for Applied Microbiology.

  17. Electron Beam Irradiated Intercalated CNT Yarns For Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Waters, Deborah L.; Gaier, James R.; Williams, Tiffany S.; Lopez Calero, Johnny E.; Ramirez, Christopher; Meador, Michael A.

    2015-01-01

    Multi-walled CNT yarns have been experimentally and commercially created to yield lightweight, high conductivity fibers with good tensile properties for application as electrical wiring and multifunctional tendons. Multifunctional tendons are needed as the cable structures in tensegrity robots for use in planetary exploration. These lightweight robust tendons can provide mechanical strength for movement of the robot in addition to power distribution and data transmission. In aerospace vehicles, such as Orion, electrical wiring and harnessing mass can approach half of the avionics mass. Use of CNT yarns as electrical power and data cables could reduce mass of the wiring by thirty to seventy percent. These fibers have been intercalated with mixed halogens to increase their specific electrical conductivity to that near copper. This conductivity, combined with the superior strength and fatigue resistance makes it an attractive alternative to copper for wiring and multifunctional tendon applications. Electron beam irradiation has been shown to increase mechanical strength in pristine CNT fibers through increased cross-linking. Both pristine and intercalated CNT yarns have been irradiated using a 5-megavolt electron beam for various durations and the conductivities and tensile properties will be discussed. Structural information obtained using a field emission scanning electron microscope, energy dispersive X-ray spectroscopy (EDS), and Raman spectroscopy will correlate microstructural details with bulk properties.

  18. During air cool process aerosol absorption detection with photothermal interferometry

    NASA Astrophysics Data System (ADS)

    Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang

    2014-11-01

    This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.

  19. Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap.

    PubMed

    Cotterell, Michael I; Mason, Bernard J; Carruthers, Antonia E; Walker, Jim S; Orr-Ewing, Andrew J; Reid, Jonathan P

    2014-02-07

    A single horizontally-propagating zeroth order Bessel laser beam with a counter-propagating gas flow was used to confine single fine-mode aerosol particles over extended periods of time, during which process measurements were performed. Particle sizes were measured by the analysis of the angular variation of light scattered at 532 nm by a particle in the Bessel beam, using either a probe beam at 405 nm or 633 nm. The vapour pressures of glycerol and 1,2,6-hexanetriol particles were determined to be 7.5 ± 2.6 mPa and 0.20 ± 0.02 mPa respectively. The lower volatility of hexanetriol allowed better definition of the trapping environment relative humidity profile over the measurement time period, thus higher precision measurements were obtained compared to those for glycerol. The size evolution of a hexanetriol particle, as well as its refractive index at wavelengths 532 nm and 405 nm, were determined by modelling its position along the Bessel beam propagation length while collecting phase functions with the 405 nm probe beam. Measurements of the hygroscopic growth of sodium chloride and ammonium sulfate have been performed on particles as small as 350 nm in radius, with growth curves well described by widely used equilibrium state models. These are the smallest particles for which single-particle hygroscopicity has been measured and represent the first measurements of hygroscopicity on fine mode and near-accumulation mode aerosols, the size regimes bearing the most atmospheric relevance in terms of loading, light extinction and scattering. Finally, the technique is contrasted with other single particle and ensemble methods, and limitations are assessed.

  20. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    NASA Technical Reports Server (NTRS)

    Schmidt, Howard K. (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor); Rauwald, Urs (Inventor); Kittrell, W. Carter (Inventor); Ziegler, Kirk J. (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  1. Effects of Light and Electron Beam Irradiation on Halide Perovskites and Their Solar Cells.

    PubMed

    Klein-Kedem, Nir; Cahen, David; Hodes, Gary

    2016-02-16

    Hybrid alkylammonium lead halide perovskite solar cells have, in a very few years of research, exceeded a light-to-electricity conversion efficiency of 20%, not far behind crystalline silicon cells. These perovskites do not contain any rare element, the amount of toxic lead used is very small, and the cells can be made with a low energy input. They therefore already conform to two of the three requirements for viable, commercial solar cells-efficient and cheap. The potential deal-breaker is their long-term stability. While reasonable short-term (hours) and even medium term (months) stability has been demonstrated, there is concern whether they will be stable for the two decades or more expected from commercial cells in view of the intrinsically unstable nature of these materials. In particular, they have a tendency to be sensitive to various types of irradiation, including sunlight, under certain conditions. This Account focuses on the effect of irradiation on the hybrid (and to a small degree, all-inorganic) lead halide perovskites and their solar cells. It is split up into two main sections. First, we look at the effect of electron beams on the materials. This is important, since such beams are used for characterization of both the perovskites themselves and cells made from them (electron microscopy for morphological and compositional characterization; electron beam-induced current to study cell operation mechanism; cathodoluminescence for charge carrier recombination studies). Since the perovskites are sensitive to electron beam irradiation, it is important to minimize beam damage to draw valid conclusions from such measurements. The second section treats the effect of visible and solar UV irradiation on the perovskites and their cells. As we show, there are many such effects. However, those affecting the perovskite directly need not necessarily always be detrimental to the cells, while those affecting the solar cells, which are composed of several other phases

  2. Ion Beam Irradiation Studies Of Ultrananocrystalline Diamond (UNCD)

    NASA Astrophysics Data System (ADS)

    Kayani, A.; Garratt, E.; AlFaify, S.; Dissanayake, A.; Tecos, G.; Mancini, D. C.; Syed, M.

    2011-06-01

    Investigations into the effects of high-energy ion bombardment of ultrananocrystalline diamond (UNCD) thin films was performed using 3 and 6 MeV protons and 24 MeV F4+, with the fluence of 2.1×1017 ions/cm2, 2.9×1017 ions/cm2, and 6.7×1015 ions/cm2 respectively. Objective of the research is to investigate the effect of structural damage on the physical properties of the material and compare it with the structure of unirradiated and N doped UNCD. Pre- and post-irradiated samples were analyzed by ion beam analysis (IBA) measurements, Raman spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM). IBA measurements including Rutherford backscattering spectrometry (RBS), non-Rutherford backscattering spectrometry (NRBS) and elastic recoil detection analysis (ERDA) were used to determine elemental concentration of pre- and post-irradiated samples. Visible Raman spectra corresponding to samples irradiated at 3 and 6 MeV protons did not show much variation. For 24 MeV F4+ irradiated sample, significant changes were observed, particularly the loss of a shoulder at 1179 cm-1 and sharpening of the G peak at around 1532 cm-1, indicating possible significant changes at the grain boundary and increase in sp2 phase. AFM measurements show a reduction in RMS roughness after bombardment possibly due to the graphitization of the UNCD surface. The results of IBA measurements did not show any change in the elemental concentration or interface region between film and substrate.

  3. Sample damage during X-ray fluorescence analysis--case study on ammonium salts in atmospheric aerosols.

    PubMed

    Van Meel, Katleen; Worobiec, Anna; Stranger, Marianne; Van Grieken, René

    2008-08-01

    Atmospheric aerosols can consist of, amongst others, compounds like NH(4)NO(3) or (NH(4))(2)SO(4). Such components can suffer radiation damage and/or evaporate during EDXRF measurements, providing errors on successively applied analysis. The aim of this work is to investigate the influence of measurements using conventional EDXRF on the volatile compounds and to compare it with the influence of polarized beam EDXRF using secondary targets (and hence indirect irradiation). The effect of different parameters (acquisition time, accelerating voltage, current and medium) on the concentration loss was studied. The measurements performed in vacuum during a long period lead to the highest losses of volatile compounds. The influence of direct irradiation was proved to be larger than the indirect variant.

  4. Effects of Electron Beam Irradiation and Thiol Molecule Treatment on the Properties of MoS2 Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Choi, Barbara Yuri; Cho, Kyungjune; Pak, Jinsu; Kim, Tae-Young; Kim, Jae-Keun; Shin, Jiwon; Seo, Junseok; Chung, Seungjun; Lee, Takhee

    2018-05-01

    We investigated the effects of the structural defects intentionally created by electron-beam irradiation with an energy of 30 keV on the electrical properties of monolayer MoS2 field effect transistors (FETs). We observed that the created defects by electron beam irradiation on the MoS2 surface working as trap sites deteriorated the carrier mobility and carrier concentration with increasing the subthreshold swing value and shifting the threshold voltage in MoS2 FETs. The electrical properties of electron-beam irradiated MoS2 FETs were slightly improved by treating the devices with thiol-terminated molecules which presumably passivated the structural defects of MoS2. The results of this study may enhance the understanding of the electrical properties of MoS2 FETs in terms of creating and passivating defect sites.

  5. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    NASA Astrophysics Data System (ADS)

    Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.

    2013-07-01

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.

  6. Improving enzymatic hydrolysis of industrial hemp ( Cannabis sativa L.) by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Shin, Soo-Jeong; Sung, Yong Joo

    2008-09-01

    The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose.

  7. Electron beam irradiation for biological decontamination of Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Brasoveanu, Mirela; Nemtanu, Monica; Minea, R.; Grecu, Maria Nicoleta; Mazilu, Elena; Radulescu, Nora

    2005-10-01

    The Cyanobacterium Spirulina is commercialized for its use in health foods and for therapeutic purposes due to its valuable constituents particularly proteins and vitamins. The aim of the paper is to study the Spirulina platensis behaviour when it is electron beam irradiated for biological decontamination. Microbial load, antioxidant activity, enzymatic inhibition, electron spin resonance (ESR) and UV-Vis spectra were measured for doses up to 80 kGy. The results were correlated with doses in order to find where decontamination is efficient, keeping the Spirulina qualities.

  8. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    NASA Astrophysics Data System (ADS)

    Taghinejad-Roudbaneh, M.; Ebrahimi, S. R.; Azizi, S.; Shawrang, P.

    2010-12-01

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased ( P<0.01). From in situ results, irradiation of canola meal at doses of 45 kGy decreased ( P<0.05) the effective degradibility of crude protein (CP) by 14%, compared with an untreated sample. In vitro CP digestibility of EB-irradiated canola meal at doses of 15 and 30 kGy was improved ( P<0.05). Electrophoresis results showed that napin and cruciferin sub-units of 30 and 45 kGy EB-irradiated canola meal were more resistant to degradation, compared with an untreated sample. Electron beam irradiation was effective in protecting CP from ruminal degradation and reducing antinutritional factors of irradiated canola meal.

  9. Electron-beam irradiation effects on phytochemical constituents and antioxidant capacity of pecan kernels [ Carya illinoinensis (Wangenh.) K. Koch] during storage.

    PubMed

    Villarreal-Lozoya, Jose E; Lombardini, Leonardo; Cisneros-Zevallos, Luis

    2009-11-25

    Pecans kernels (Kanza and Desirable cultivars) were irradiated with 0, 1.5, and 3.0 kGy using electron-beam (E-beam) irradiation and stored under accelerated conditions [40 degrees C and 55-60% relative humidity (RH)] for 134 days. Antioxidant capacity (AC) using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) assays, phenolic (TP) and condensed tannin (CT) content, high-performance liquid chromatography (HPLC) phenolic profile, tocopherol content, peroxide value (PV), and fatty acid profiles were determined during storage. Irradiation decreased TP and CT with no major detrimental effects in AC. Phenolic profiles after hydrolysis were similar among treatments (e.g., gallic and ellagic acid, catechin, and epicatechin). Tocopherol content decreased with irradiation (>21 days), and PV increased at later stages (>55 days), with no change in fatty acid composition among treatments. Color lightness decreased, and a reddish brown hue developed during storage. A proposed mechanism of kernel oxidation is presented, describing the events taking place. In general, E-beam irradiation had slight effects on phytochemical constituents and could be considered a potential tool for pecan kernel decontamination.

  10. Analysis of microscopic parameters of surface charging in polymer caused by defocused electron beam irradiation.

    PubMed

    Liu, Jing; Zhang, Hai-Bo

    2014-12-01

    The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    NASA Astrophysics Data System (ADS)

    Visakh, P. M.; Nazarenko, O. B.; Sarath Chandran, C.; Melnikova, T. V.; Nazarenko, S. Yu.; Kim, J.-C.

    2017-07-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose.

  12. Reduction of 1/f noise in graphene after electron-beam irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid Hossain, Md.; Rumyantsev, Sergey; Ioffe Physical-Technical Institute, The Russian Academy of Sciences, St. Petersburg 194021

    2013-04-15

    We investigated experimentally the effect of the electron-beam irradiation on the level of the low-frequency 1/f noise in graphene devices. It was found that 1/f noise in graphene reduces with increasing concentration of defects induced by irradiation. The increased amount of structural disorder in graphene under irradiation was verified with micro-Raman spectroscopy. The bombardment of graphene devices with 20-keV electrons reduced the noise spectral density, S{sub I}/I{sup 2} (I is the source-drain current) by an order-of magnitude at the radiation dose of 10{sup 4} {mu}C/cm{sup 2}. We analyzed the observed noise reduction in the limiting cases of the mobility andmore » carrier number fluctuation mechanisms. The obtained results are important for the proposed graphene applications in analog, mixed-signal, and radio-frequency systems, integrated circuits and sensors.« less

  13. Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere.

    PubMed

    Cai, Yangjian; Lin, Qiang; Eyyuboğlu, Halil T; Baykal, Yahya

    2008-05-26

    Analytical formulas are derived for the average irradiance and the degree of polarization of a radially or azimuthally polarized doughnut beam (PDB) propagating in a turbulent atmosphere by adopting a beam coherence-polarization matrix. It is found that the radial or azimuthal polarization structure of a radially or azimuthally PDB will be destroyed (i.e., a radially or azimuthally PDB is depolarized and becomes a partially polarized beam) and the doughnut beam spot becomes a circularly Gaussian beam spot during propagation in a turbulent atmosphere. The propagation properties are closely related to the parameters of the beam and the structure constant of the atmospheric turbulence.

  14. A novel algorithm for the calculation of physical and biological irradiation quantities in scanned ion beam therapy: the beamlet superposition approach

    NASA Astrophysics Data System (ADS)

    Russo, G.; Attili, A.; Battistoni, G.; Bertrand, D.; Bourhaleb, F.; Cappucci, F.; Ciocca, M.; Mairani, A.; Milian, F. M.; Molinelli, S.; Morone, M. C.; Muraro, S.; Orts, T.; Patera, V.; Sala, P.; Schmitt, E.; Vivaldo, G.; Marchetto, F.

    2016-01-01

    The calculation algorithm of a modern treatment planning system for ion-beam radiotherapy should ideally be able to deal with different ion species (e.g. protons and carbon ions), to provide relative biological effectiveness (RBE) evaluations and to describe different beam lines. In this work we propose a new approach for ion irradiation outcomes computations, the beamlet superposition (BS) model, which satisfies these requirements. This model applies and extends the concepts of previous fluence-weighted pencil-beam algorithms to quantities of radiobiological interest other than dose, i.e. RBE- and LET-related quantities. It describes an ion beam through a beam-line specific, weighted superposition of universal beamlets. The universal physical and radiobiological irradiation effect of the beamlets on a representative set of water-like tissues is evaluated once, coupling the per-track information derived from FLUKA Monte Carlo simulations with the radiobiological effectiveness provided by the microdosimetric kinetic model and the local effect model. Thanks to an extension of the superposition concept, the beamlet irradiation action superposition is applicable for the evaluation of dose, RBE and LET distributions. The weight function for the beamlets superposition is derived from the beam phase space density at the patient entrance. A general beam model commissioning procedure is proposed, which has successfully been tested on the CNAO beam line. The BS model provides the evaluation of different irradiation quantities for different ions, the adaptability permitted by weight functions and the evaluation speed of analitical approaches. Benchmarking plans in simple geometries and clinical plans are shown to demonstrate the model capabilities.

  15. Selective Improvement of NO2 Gas Sensing Behavior in SnO2 Nanowires by Ion-Beam Irradiation.

    PubMed

    Kwon, Yong Jung; Kang, Sung Yong; Wu, Ping; Peng, Yuan; Kim, Sang Sub; Kim, Hyoun Woo

    2016-06-01

    We irradiated SnO2 nanowires with He ions (45 MeV) with different ion fluences. Structure and morphology of the SnO2 nanowires did not undergo noticeable changes upon ion-beam irradiation. Chemical equilibrium in SnO2/gas systems was calculated from thermodynamic principles, which were used to study the sensing selectivity of the tested gases, demonstrating the selective sensitivity of the SnO2 surface to NO2 gas. Being different from other gases, including H2, ethanol, acetone, SO2, and NH3, the sensor response to NO2 gas significantly increases as the ion fluence increases, showing a maximum under an ion fluence of 1 × 10(16) ions/cm(2). Photoluminescence analysis shows that the relative intensity of the peak at 2.1 eV to the peak at 2.5 eV increases upon ion-beam irradiation, suggesting that structural defects and/or tin interstitials have been generated. X-ray photoelectron spectroscopy indicated that the ionic ratio of Sn(2+/)Sn(4+) increases by the ion-beam irradiation, supporting the formation of surface Sn interstitials. Using thermodynamic calculations, we explained the observed selective sensing behavior. A molecular level model was also established for the adsorption of NO2 on ion-irradiated SnO2 (110) surfaces. We propose that the adsorption of NO2-related species is considerably enhanced by the generation of surface defects that are comprised of Sn interstitials.

  16. Secondary particle tracks generated by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    García, Gustavo

    2015-05-01

    The Low Energy Particle Track Simulation (LEPTS) procedure is a powerful complementary tool to include the effect of low energy electrons and positrons in medical applications of radiation. In particular, for ion-beam cancer treatments provides a detailed description of the role of the secondary electrons abundantly generated around the Bragg peak as well as the possibility of using transmuted positron emitters (C11, O15) as a complement for ion-beam dosimetry. In this study we present interaction probability data derived from IAM-SCAR corrective factors for liquid environments. Using these data, single electron and positron tracks in liquid water and pyrimidine have been simulated providing information about energy deposition as well as the number and type of interactions taking place in any selected ``nanovolume'' of the irradiated area. In collaboration with Francisco Blanco, Universidad Complutense de Madrid; Antonio Mu noz, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Diogo Almeida, Filipe Ferreira da Silva, Paulo Lim ao-Vieira, Universidade Nova de Lisboa. Supported by the Spanish and Portuguese governments.

  17. Photochemical organonitrate formation in wet aerosols

    NASA Astrophysics Data System (ADS)

    Lim, Yong Bin; Kim, Hwajin; Kim, Jin Young; Turpin, Barbara J.

    2016-10-01

    Water is the most abundant component of atmospheric fine aerosol. However, despite rapid progress, multiphase chemistry involving wet aerosols is still poorly understood. In this work, we report results from smog chamber photooxidation of glyoxal- and OH-containing ammonium sulfate or sulfuric acid particles in the presence of NOx and O3 at high and low relative humidity. Particles were analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). During the 3 h irradiation, OH oxidation products of glyoxal that are also produced in dilute aqueous solutions (e.g., oxalic acids and tartaric acids) were formed in both ammonium sulfate (AS) aerosols and sulfuric acid (SA) aerosols. However, the major products were organonitrogens (CHNO), organosulfates (CHOS), and organonitrogen sulfates (CHNOS). These were also the dominant products formed in the dark chamber, indicating non-radical formation. In the humid chamber (> 70 % relative humidity, RH), two main products for both AS and SA aerosols were organonitrates, which appeared at m / z- 147 and 226. They were formed in the aqueous phase via non-radical reactions of glyoxal and nitric acid, and their formation was enhanced by photochemistry because of the photochemical formation of nitric acid via reactions of peroxy radicals, NOx and OH during the irradiation.

  18. Investigation on using high-energy proton beam for total body irradiation (TBI).

    PubMed

    Zhang, Miao; Qin, Nan; Jia, Xun; Zou, Wei J; Khan, Atif; Yue, Ning J

    2016-09-08

    This work investigated the possibility of using proton beam for total body irradia-tion (TBI). We hypothesized the broad-slow-rising entrance dose from a monoen-ergetic proton beam can deliver a uniform dose to patient with varied thickness. Comparing to photon-based TBI, it would not require any patient-specific com-pensator or beam spoiler. The hypothesis was first tested by simulating 250 MeV, 275 MeV, and 300 MeV protons irradiating a wedge-shaped water phantom in a paired opposing arrangement using Monte Carlo (MC) method. To allow ± 7.5% dose variation, the maximum water equivalent thickness (WET) of a treatable patient separation was 29 cm for 250 MeV proton, and > 40 cm for 275 MeV and 300 MeV proton. The compared 6 MV photon can only treat patients with up to 15.5 cm water-equivalent separation. In the second step, we simulated the dose deposition from the same beams on a patient's whole-body CT scan. The maximum patient separation in WET was 23 cm. The calculated whole-body dose variations were ± 8.9%, ± 9.0%, ± 9.6%, and ± 14% for 250 MeV proton, 275 MeV proton, 300 MeV proton, and 6 MV photon. At last, we tested the current machine capability to deliver a monoenergetic proton beam with a large uniform field. Experiments were performed on a compact double scattering single-gantry proton system. With its C-shaped gantry design, the source-to-surface distance (SSD) reached 7 m. The measured dose deposition curve had 22 cm relatively flat entrance region. The full width half maximum field size was measured 105 cm. The current scatter filter had to be redesigned to produce a uniform intensity at such treatment distance. In con-clusion, this work demonstrated the possibility of using proton beam for TBI. The current commercially available proton machines would soon be ready for such task. © 2016 The Authors.

  19. Reducing broadband shortwave radiometer calibration-bias caused by longwave irradiance in the reference direct beam

    DOE PAGES

    Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike; ...

    2017-01-13

    Shortwave radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to consensus reference, maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, and measures the extended broadband spectrum of the terrestrial direct solar beam irradiance, unlike shortwave radiometers that cover a limited range of the spectrum. The difference between the two spectral ranges may lead to calibration bias that can exceed 1%. This paper describes a method to reduce the calibration bias resulting from using broadband ACRs to calibrate shortwave radiometers, by using an ACR with Schott glass window to measuremore » the reference broadband shortwave irradiance in the terrestrial direct solar beam from 0.3 um to 3 um.« less

  20. Controlled release of tyrosol and ferulic acid encapsulated in chitosan-gelatin films after electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Benbettaïeb, Nasreddine; Assifaoui, Ali; Karbowiak, Thomas; Debeaufort, Frédéric; Chambin, Odile

    2016-01-01

    This work deals with the study of the release kinetics of antioxidants (ferulic acid and tyrosol) incorporated into chitosan-gelatin edible films after irradiation processes. The aim was to determine the influence of electron beam irradiation (at 60 kGy) on the retention of antioxidants in the film, their release in water (pH=7) at 25 °C, in relation with the barrier and mechanical properties of biopolymer films. The film preparation process coupled to the irradiation induced a loss of about 20% of tyrosol but did not affect the ferulic acid content. However, 27% of the ferulic acid remained entrapped in the biopolymer network during the release experiments whereas all tyrosol was released. Irradiation induced a reduction of the release rate for both compounds, revealing that cross-linking occurred during irradiation. This was confirmed by the mechanical properties enhancement which tensile strength value significantly increased and by the reduction of permeabilities. Although molecular weights, molar volume and molecular radius of the two compounds are very similar, the effective diffusivity of tyrosol was 40 times greater than that of ferulic acid. The much lower effective diffusion coefficient of ferulic acid as determined from the release kinetics was explained by the interactions settled between ferulic acid molecules and the gelatin-chitosan matrix. As expected, the electron beam irradiation allowed modulating the retention and then the release of antioxidants encapsulated.

  1. Electrical, thermal and magnetic studies on 7.5 MeV electron beam irradiated PrCoO3 polycrystalline samples

    NASA Astrophysics Data System (ADS)

    Christopher, Benedict; Rao, Ashok; Deka, Utpal; Prasad K, Shyam; Okram, G. S.; Sanjeev, Ganesh; Chandra Petwal, Vikash; Verma, Vijay Pal; Dwivedi, Jishnu

    2018-07-01

    The study of electronic and magnetic properties of electron beam (EB) irradiated PrCoO3 manganites is presented in this communication. The diffraction data confirms that pristine as well as electron beam irradiated samples are single phased and they crystalize at orthorhombic distorted structure with Pbnm space group. The electrical resistivity of all the samples reveals semiconducting behavior. Small polaron hopping model is appropriately employed to investigate the semiconducting nature of the pristine and EB irradiated samples. The Seebeck coefficient (S) data of the pristine sample exhibits colossally high positive value (about 300 mV/K) and substantial decrease in S value is noticed in the irradiated samples. The high temperature analysis of thermopower data validates the small polaron hopping model. The magnetic measurements display possible existence of super-paramagnetic characteristics in the samples.

  2. Pressure control of a proton beam-irradiated water target through an internal flow channel-induced thermosyphon.

    PubMed

    Hong, Bong Hwan; Jung, In Su

    2017-07-01

    A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 μA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Electron-beam irradiation induced transformation of Cu2(OH)3NO3 nanoflakes into nanocrystalline CuO

    NASA Astrophysics Data System (ADS)

    Padhi, S. K.; Gottapu, S. N.; Krishna, M. Ghanashyam

    2016-05-01

    The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated.The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural

  4. Cavity nucleation and growth in dual beam irradiated 316L industrial austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Jublot-Leclerc, S.; Li, X.; Legras, L.; Fortuna, F.; Gentils, A.

    2017-10-01

    Thin foils of 316L were simultaneously ion irradiated and He implanted in situ in a Transmission Electron Microscope at elevated temperatures. The resulting microstructure is carefully investigated in comparison with previous single ion irradiation experiments with a focus on the nucleation and growth of cavities. Helium is found to strongly enhance the nucleation of cavities in dual beam experiments. On the contrary, it does not induce more nucleation when implanted consecutively to an in situ ion irradiation but rather the growth of cavities by absorption at existing cavities, which shows the importance of synergistic effects and He injection mode on the microstructural changes. In both dual beam and single beam experiments, the characteristics of the populations of cavities, either stabilized by He or O atoms, are in qualitative agreement with the predictions of rate theory models for cavity growth. The evolutions of cavity population as a function of irradiation conditions can be reasonably well explained by the concept of relative sink strength of cavities and dislocations and the resulting partitioning of defects at sinks, or conversely recombination when either of the sinks dominates. The dislocations whose presence is a prerequisite to cavity growth in rate theory models are not observed in all studied conditions. In this case, the net influx of vacancies to cavities necessary to their growth and conversion to voids is believed to result from free surface effects, and possibly also segregation of elements close to the cavity surface. In any studied condition, the measured swelling is low, which is ascribed to the dilution of gaseous atoms among a high density of cavities as well as a high rate of point defect recombination and loss at traps. This high rate of recombination enhanced when dislocations are absent appears to result in the formation of overpressurized He bubbles.

  5. Study of montmorillonite nanoparticles and electron beam irradiation interaction of ethylene vinyl acetate (EVA)/de-vulcanized waste rubber thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Bee, Soo-Tueen; Sin, Lee Tin; Hoe, Tie Teck; Ratnam, C. T.; Bee, Soo Ling; Rahmat, A. R.

    2018-05-01

    The purpose of this work was to investigate the effects of montmorillonite (MMT) loading level and electron beam irradiation on the physical-mechanical properties and thermal stability of ethylene vinyl acetate (EVA)- devulcanised waste rubber blends. The addition of MMT particles has significantly increased the d-spacing and interchain separation of deflection peak (0 0 2) of MMT particles. This indicates that MMT particles have effectively intercalated in polymer matrix of EVA-devulcanised waste rubber blends. Besides, the application of electron beam irradiation dosages <150 kGy could also significantly induce the effective intercalation effect of MMT particles in polymer matrix by introducing crosslinking networks. The increasing of electron beam irradiation dosages up to 250 kGy has gradually increased the gel content of all EVA-devulcanized rubber blends by inducing the formation of crosslinking networks in polymer matrix. Also, the tensile strength of all EVA-devulcanized waste rubber blends was gradually increased when irradiated up to 150 kGy. This is due to the occurrence of crosslinking networks by irradiation could significantly provide reinforcement effect to polymer matrix by effectively transferring the stress applied on polymer matrix throughout the whole polymer matrix.

  6. Irradiation Does Not Increase the Penetration Depth of Doxorubicin in Normal Tissue After Pressurized Intra-peritoneal Aerosol Chemotherapy (PIPAC) in an Ex Vivo Model.

    PubMed

    Khosrawipour, Veria; Bellendorf, Alexander; Khosrawipour, Carolina; Hedayat-Pour, Yousef; Diaz-Carballo, David; Förster, Eckart; Mücke, Ralph; Kabakci, Burak; Adamietz, Irenäus Anton; Fakhrian, Khashayar

    To compare the impact of single fractional with bi-fractional irradiation on the depth of doxorubicin penetration into the normal tissue after pressurized intra-peritoneal aerosol chemotherapy (PIPAC) in our ex vivo model. Fresh post mortem swine peritoneum was cut into 12 proportional sections. Two control samples were treated with PIPAC only (no irradiation), one sample on day 1, the other on day 2. Five samples were irradiated with 1, 2, 4, 7 or 14 Gy followed by PIPAC. Four samples were treated on day one with 0.5, 1, 2, 3.5 or 7 Gy and with the same radiation dose 24 h later followed by PIPAC. Doxorubicin was aerosolized in an ex vivo PIPAC model at 12 mmHg/36°C. In-tissue doxorubicin penetration was measured using fluorescence microscopy on frozen thin sections. Doxorubicin penetration (DP) after PIPAC for the control samples was 407 μm and 373 μm, respectively. DP for samples with single fraction irradiation was 396 μm after 1 Gy, 384 μm after 2 Gy, 327 μm after 4 Gy, 280 μm after 7 Gy and 243 μm after 14 Gy. DP for samples with 2 fractions of irradiation was 376 μm after 0.5+0.5 Gy, 363 μm after 1+1 Gy, 372 μm after 2+2 Gy, 341 μm after 3.5+3.5 and 301 μm after 7+7 Gy irradiation. Fractionating of the irradiation did not significantly change DP into normal tissue. Irradiation does not increase the penetration depth of doxorubicin into the normal tissue but might have a limiting impact on penetration and distribution of doxorubicin. Further studies are warranted to investigate the impact of addition of irradiation to PIPAC of tumor cells and to find out if irradiation can be used safely as chemopotenting agent for patients with peritoneal metastases treated with PIPAC. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Effect of Electron Beam Irradiation on Structural and Optical Properties of Cu-Doped In2O3 Films Prepared by RF Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Krishnan, R. Reshmi; Sanjeev, Ganesh; Prabhu, Radhakrishna; Pillai, V. P. Mahadevan

    2018-02-01

    Undoped and Cu-doped In2O3 films were prepared by radiofrequency magnetron sputtering technique. The effects of Cu doping and high-energy electron beam irradiation on the structural and optical properties of as-prepared films were investigated using techniques such as x-ray diffraction, x-ray photoelectron spectroscopy (XPS), lateral scanning electron microscopic image analysis, energy-dispersive x-ray (EDX) spectroscopy, micro-Raman, and ultraviolet-visible (UV-vis) spectroscopy. Moderate doping of Cu in In2O3 enhanced the intensity of (222) peak, indicating alignment of crystalline grains along <111>. Electron beam irradiation promoted orientation of crystalline grains along <111> in undoped and moderately Cu-doped films. EDX spectroscopic and XPS analyses revealed incorporation of Cu2+ ions in the lattice. The transmittance of Cu-doped films decreased with e-beam irradiation. Systematic reduction of the bandgap energy with increase in Cu doping concentration was seen in unirradiated and electron-beam-irradiated films.

  8. Measuring Broadband IR Irradiance in the Direct Solar Beam (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, I.; Konings, J.; Xie, Y.

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 micrometers and 50 micrometers, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 micrometers to 3 micrcometers, while the present photovoltaic cells are limited to approximately 0.3 micrometers to 1 micrometers. The broadband mismatch of ACR versusmore » such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus reference, yet calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 micrometers to 50 micrometers, as first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degres to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.« less

  9. Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanopulos, Ioannis; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 11635; Luckhaus, David

    In this paper, we model the three-dimensional escape dynamics of single submicron-sized aerosol droplets in optical multiple Bessel beam traps. Trapping in counter-propagating Bessel beams (CPBBs) is compared with a newly proposed quadruple Bessel beam (QBB) trap, which consists of two perpendicularly arranged CPBB traps. Calculations are performed for perfectly and imperfectly aligned traps. Mie-theory and finite-difference time-domain methods are used to calculate the optical forces. The droplet escape kinetics are obtained from the solution of the Langevin equation using a Verlet algorithm. Provided the traps are perfectly aligned, the calculations indicate very long lifetimes for droplets trapped either inmore » the CPBB or in the QBB trap. However, minor misalignments that are hard to control experimentally already severely diminish the stability of the CPBB trap. By contrast, such minor misalignments hardly affect the extended droplet lifetimes in a QBB trap. The QBB trap is found to be a stable, robust optical trap, which should enable the experimental investigation of submicron droplets with radii down to 100 nm. Optical binding between two droplets and its potential role in preventing coagulation when loading a CPBB trap is briefly addressed.« less

  10. SECONDARY ORGANIC CARBON AND AEROSOL YIELDS FROM THE IRRADIATIONS OF ISOPRENE AND á-PINENE IN THE PRESENCE OF NO X AND SO 2

    EPA Science Inventory

    A laboratory study was carried out to investigate the secondary organic carbon (SOC) yields of a-pinene and isoprene in the presence of SO2, which produces acidic aerosol in the system. Experiments were based on irradiating each hydrocarbon (HC) with NOx in ...

  11. Effects of gamma and electron beam irradiation on the survival of pathogens inoculated into sliced and pizza cheeses

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Joo; Ham, Jun-Sang; Lee, Ju-Woon; Kim, Keehyuk; Ha, Sang-Do; Jo, Cheorun

    2010-06-01

    The objective of this study was to identify the efficacy of gamma and electron beam irradiation of the food-borne pathogens ( Listeria monocytogenes and Staphylococcus aureus) in sliced and pizza cheeses commercially available in the Korean market. Total aerobic bacteria and yeast/mold in the cheeses ranged from 10 2 to 10 3 Log CFU/g. Irradiation of 1 kGy for sliced cheese and 3 kGy for pizza cheese were sufficient to lower the total aerobic bacteria to undetectable levels (10 1 CFU/g). Pathogen inoculation test revealed that gamma irradiation was more effective than electron beam irradiation at the same absorbed dose, and the ranges of the D 10 values were from 0.84 to 0.93 kGy for L. monocytogenes and from 0.60 to 0.63 kGy for S. aureus. Results suggest that a low dose irradiation can improve significantly the microbial quality and reduce the risk of contamination of sliced and pizza cheeses by the food-borne pathogens which can potentially occur during processing.

  12. Effect on structure and mechanical property of tungsten irradiated by high intensity pulsed ion beam

    NASA Astrophysics Data System (ADS)

    Mei, Xianxiu; Zhang, Xiaonan; Liu, Xiaofei; Wang, Younian

    2017-09-01

    The anti-thermal radiation performance of tungsten was investigated by high intensity pulsed ion beam technology. The ion beam was mainly composed of Cn+ (70%) and H+ (30%) at an acceleration voltage of 250 kV under different energy densities for different number of pulses. GIXRD analysis showed that no obvious phase structural changes occurred on the tungsten, and microstress generated. SEM analysis exhibited that there was no apparent irradiation damage on the surface of tungsten at the low irradiation frequency (3 times and 10 times) and at the low energy density (0.25 J/cm2 and 0.7 J/cm2). Cracks appeared on the surface of tungsten after 100-time and 300-time irradiation. Shedding phenomenon even appeared on the surface of tungsten at the energy densities of 1.4 J/cm2 and 2.0 J/cm2. The surface nano-hardness of tungsten decreased with the increase of the pulse times and the energy density. The tungsten has good anti-thermal radiation properties under certain heat load environment.

  13. Pulsed DF chain-laser breakdown induced by maritime aerosols

    NASA Astrophysics Data System (ADS)

    Amimoto, S. T.; Whittier, J. S.; Ronkowski, F. G.; Valenzuela, P. R.; Harper, G.

    1982-08-01

    Thresholds for breakdown induced by liquid and solid aerosols in room air have been measured for a 1 microsec-duration pulsed D2-F2 laser of 3.58 -4.78 micron bandwidth. The DF laser beam was directed into an aerosol chamber that simulated maritime atmospheres on the open sea. Both focus and collimated beams were studied. For a focused beam in which the largest encountered aerosol particles were of 1 to 4 micron diameter, pulsed DF breakdown thresholds were measured to lie in the range 0.6 to 1.8 GW/sq cm. Salt-water aerosol breakdown thresholds for micron-size particles were found to be 15 to 30% higher than the corresponding thresholds for fresh-water particles. For a collimated beam that encountered particle diameters as large as 100 microns, breakdown could not be induced using 0.5- microsec (FWHM) pulses at peak intensities of 59 MW/sq cm. Image converter camera measurements of the radial plasma growth rate of 1.3 cm/microsec (at 1.4 GW/sq cm) were consistent with measurements of the cutoff rate of the transmitted laser beam. Pulsed DF breakdown thresholds of 32 MW/sq cm for 30- micron diameter Al2O3 particles were also measured to permit comparison with the earlier pulsed-HF breakdown results of Lencioni, et al.; the solid-particle threshold measurements agree with the Lencioni data if one assumes that the thresholds for microsecond-duration pulses scales is 1/lambda. An approximate theoretical model of the water particle breakdown process is presented that permits the scaling of the present results to other laser pulse durations, aerosol distributions, and transmission path lengths.

  14. SU-E-T-285: Dose Variation at Bone in Small-Animal Irradiation: A Monte Carlo Study Using Monoenergetic Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuong, A; Chow, J

    Purpose: The aim of this study is to investigate the variation of bone dose on photon beam energy (keV – MeV) in small-animal irradiation. Dosimetry of homogeneous and inhomogeneous phantoms as per the same mouse computed tomography image set were calculated using the DOSCTP and DOSXYZnrc based on the EGSnrc Monte Carlo code. Methods: Monte Carlo simulations for the homogeneous and inhomogeneous mouse phantom irradiated by a 360 degree photon arc were carried out. Mean doses of the bone tissue in the irradiated volumes were calculated at various photon beam energies, ranging from 50 keV to 1.25 MeV. The effectmore » of bone inhomogeneity was examined through the Inhomogeneous Correction Factor (ICF), a dose ratio of the inhomogeneous to the homogeneous medium. Results: From our Monte Carlo results, higher mean bone dose and ICF were found when using kilovoltage photon beams compared to megavoltage. In beam energies ranging from 50 keV to 200 keV, the bone dose was found maximum at 50 keV, and decreased significantly from 2.6 Gy to 0.55 Gy, when 2 Gy was delivered at the center of the phantom (isocenter). Similarly, the ICF were found decreasing from 4.5 to 1 when the photon beam energy was increased from 50 keV to 200 keV. Both mean bone dose and ICF remained at about 0.5 Gy and 1 from 200 keV to 1.25 MeV with insignificant variation, respectively. Conclusion: It is concluded that to avoid high bone dose in the small-animal irradiation, photon beam energy higher than 200 keV should be used with the ICF close to one, and bone dose comparable to the megavoltage beam where photoelectric effect is not dominant.« less

  15. Effect of heavy-ion beam irradiation on the level of serum soluble interleukin-2 receptors in hamster cheek pouch carcinoma model

    PubMed Central

    AN, XIAOLI; LI, MINGXIN; LI, NA; LIU, BIN; ZHANG, HONG; WANG, JIZENG

    2014-01-01

    Soluble interleukin-2 receptor (sIL-2R) is a glycoprotein derived from α chain of interleukin 2 receptors of mononuclear as well as T-cell membranes. The aims of this study were to detect the changes of serum soluble interleukin-2 receptor (sIL-2R) levels following heavy-ion beam irradiation in the hamster model with cheek pouch carcinoma, as well as to examine the impact of immune status of the hamster cheek pouch carcinoma model using heavy-ion beam irradiation. sIL-2R serum levels were detected by radioimmunoassay (RIA) in 40 hamsters bearing cheek pouch carcinoma prior to and following exposure to heavy-ion beam irradiation, and 8 normal animals served as the control. The sIL-2R serum level in hamster cheek pouch carcinoma model was significantly increased as compared to the normal control group (P<0.05). Results showed that an increase in the irradiation dose led to a gradual decrease in the sIL-2R serum level. Additionally, a statistical significance was observed compared to the tumor group (P<0.05). In conclusion, alterations in serum sIL-2R expression have an effect on the hamsters cheek pouch carcinoma model subsequent to heavy-ion beam irradiation. An increase in the irradiation dose indicated a decreased tendency in serum sIL-2R content. Detection of serum level changes may lead to an improved understanding of heavy-ion irradiation in vivo immune status, which is crucial for clinical diagnosis and prognosis. It can also provide a sensitive indicator to help estimate the effects of heavy-ion cancer targets. PMID:24748984

  16. Effects of electron beam irradiation on properties of corn starch undergone periodate oxidation mechanism blended with polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Yap, Bee-Fen; Rahmat, A. R.

    2018-02-01

    This work was performed to examine the properties of pristine PVOH and PVOH-starch blends under exposure of different irradiation dosages. The periodate oxidation method was used to produce dialdehyde starch. The application of low dosages of electron beam irradiation (≤10 kGy) has improved the tensile strength by forming crosslinking networks. However, the tensile strength drastically declined when radiated at 30 kGy due to the reduction of available hydroxyl groups inside polymer matrix for intermolecular interaction. Also, the incorporation of corn starch and dialdehyde starch has significantly reduced the melting temperature and enthalpy of melting of PVOH blends due to cessation of the hydrogen bonding between PVOH and starch molecules. The crystallite size for deflection planes (1 0 1), (1 0 1) and (2 0 0) for all PVOH blends was significant reduced when irradiated. The electron beam irradiation has also weakened the hydrophilic characteristic of all PVOH blends as evidenced in infrared and microscopy analysis.

  17. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    NASA Astrophysics Data System (ADS)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth

    2015-04-01

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.

  18. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces.

    PubMed

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth

    2015-04-21

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.

  19. Improved crystallinity and dynamic mechanical properties of reclaimed waste tire rubber/EVA blends under the influence of electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Ramarad, Suganti; Ratnam, Chantara T.; Khalid, Mohammad; Chuah, Abdullah Luqman; Hanson, Svenja

    2017-01-01

    Dependence on automobiles has led to a huge amount of waste tires produced annually around the globe. In this study, the feasibility of recycling these waste tires by blending reclaimed waste tire rubber (RTR) with poly(ethylene-co-vinyl acetate) (EVA) and electron beam irradiation was studied. The RTR/EVA blends containing 100-0 wt% of RTR were prepared in the internal mixer followed by electron beam (EB) irradiation with doses ranging from 50 to 200 kGy. The processing torques, calorimetric and dynamic mechanical properties of the blends were studied. Blends were found to have lower processing torque indicating easier processability of RTR/EVA blends compared to EVA. RTR domains were found to be dispersed in EVA matrix, whereas, irradiation improved the dispersion of RTR into smaller domains in EVA matrix. Results showed the addition of EVA improves the efficiency of irradiation induced crosslink formation and dynamic mechanical properties of the blends at the expense of the calorimetric properties. Storage and loss modulus of 50 wt% RTR blend was higher than RTR and EVA, suggesting partial miscibility of the blend. Whereas, electron beam irradiation improved the calorimetric properties and dynamic mechanical properties of the blends through redistribution of RTR in smaller domain sizes within EVA.

  20. Polymerization of room-temperature ionic liquid monomers by electron beam irradiation with the aim of fabricating three-dimensional micropolymer/nanopolymer structures.

    PubMed

    Minamimoto, H; Irie, H; Uematsu, T; Tsuda, T; Imanishi, A; Seki, S; Kuwabata, S

    2015-04-14

    A novel method for fabricating microsized and nanosized polymer structures from a room-temperature ionic liquid (RTIL) on a Si substrate was developed by the patterned irradiation of an electron beam (EB). An extremely low vapor pressure of the RTIL, 1-allyl-3-ethylimidazolium bis((trifluoromethane)sulfonyl)amide, allows it to be introduced into the high-vacuum chamber of an electron beam apparatus to conduct a radiation-induced polymerization in the nanoregion. We prepared various three-dimensional (3D) micro/nanopolymer structures having high aspect ratios of up to 5 with a resolution of sub-100 nm. In addition, the effects of the irradiation dose and beam current on the physicochemical properties of the deposited polymers were investigated by recording the FT-IR spectra and Young's modulus. Interestingly, the overall shapes of the obtained structures were different from those prepared in our recent study using a focused ion beam (FIB) even if the samples were irradiated in a similar manner. This may be due to the different transmission between the two types of beams as discussed on the basis of the theoretical calculations of the quantum beam trajectories. Perceptions obtained in this study provide facile preparation procedures for the micro/nanostructures.

  1. Evaluation of some selected vaccines and other biological products irradiated by gamma rays, electron beams and X-rays

    NASA Astrophysics Data System (ADS)

    May, J. C.; Rey, L.; Lee, Chi-Jen

    2002-03-01

    Molecular sizing potency results are presented for irradiated samples of one lot of Haemophilus b conjugate vaccine, pneumococcal polysaccharide type 6B and typhoid vi polysaccharide vaccine. The samples were irradiated (25 kGy) by gamma rays, electron beams and X-rays. IgG and IgM antibody response in mice test results (ELISA) are given for the Hib conjugate vaccine irradiated at 0°C or frozen in liquid nitrogen.

  2. Control of natural microorganisms in chamomile (Chamomilla recutita L.) by gamma ray and electron beam irradiation.

    PubMed

    Al-Bachir, Mahfouz

    2017-01-01

    Microbial contamination levels and corresponding sensitivities to gamma rays (GR) and elec- tron beam (EB) irradiation were tested in chamomile (Chamomile recutta L.). Chamomile powders were treated with 10 and 20 kGy by GR and EB, respectively. Microbiological and chemical analyses were performed on controls and treated samples immediately after irradiation, and after 12 months of storage. The control samples of chamomile exhibited rather high microbiological contamination, exceeding the levels of 4 log10 CFU g-1   (CFU - colony forming units) reported by national and international authorities as the maximum permissible total count level. Irradiation with GR and EB was found to cause a reduction in microbial contamination proportionate to the dose delivered. The sterilizing effect of EB on microorganisms was higher than the GR one. A dose of 10 kGy of GR and EB significantly (p < 0.05) reduced the total bacte- rial, total coliform and total fungal contamination. A dose of 20 kGy of GR significantly (p < 0.05) reduced the total bacterial and total fungal contamination, while a 20 kGy dose of EB reduced the initial bacterial, total coliform and total fungal contamination to below detection level when the analysis was carried out im- mediately after irradiation treatment or after 12 months of storage. The comparative study demonstrated that electron beam was more effective for decontamination of chamomile powder than gamma irradiation.

  3. Effect of electron beam irradiation on thermal and crystallization behavior of PP/EPDM blend

    NASA Astrophysics Data System (ADS)

    Balaji, Anand Bellam; Ratnam, Chantara Thevy; Khalid, Mohammad; Walvekar, Rashmi

    2017-12-01

    The irradiation stability of ethylene-propylene diene terpolymer (EPDM)/ polypropylene (PP) blends is studied in an attempt to develop radiation compatible PP/EPDM blends suitable for medical applications. The PP/EPDM blends with mixing ratios of 80/20, 50/50/ 20/80 were prepared in an internal mixer at 165 °C and a rotor speed of 50 rpm followed by compression molding. The blends and the individual components were irradiated using 3.0 MeV electron beam (EB) accelerator at doses ranging from 0 to 100 kGy in air and room temperature. Later, the PP/EPDM blends were subjected to gel content, thermal stability, crystallization and dynamic mechanical properties before and after irradiation. Results revealed that the irradiation-induced crosslinking in the PP/EPDM blend increases with the increasing irradiation dose and the EPDM content in the blend. However, the thermal stability of the blends did not show any significant changes upon irradiation. The dynamic mechanical analysis shows that the EPDM rich blend has higher compatibility than PP dominant blends. A further improvement in the blend compatibility found to be achieved upon irradiation.

  4. Effect of electron beam irradiation on developmental stages of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Kim, Junheon; Chung, Soon-Oh; Jang, Sin Ae; Jang, Miyeon; Park, Chung Gyoo

    2015-07-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), is an economically important and polyphagous pest, which harms various kinds of food crops and important agricultural plants, such as cotton and paprika. Effects of electron beam irradiation at six dose levels between 50 and 350 Gy on the egg (24-48 h old), the larval (4-5th instar), and the pupal (7-d old for female, 5-d old for male) development, and on the adult (1-d old) reproduction were tested to identify a potential quarantine treatment dose. Increased doses of irradiation on eggs decreased egg hatchability, pupation and adult emergence and increased larval period. ED99 values for inhibition of hatching, pupation and emergence were 460.6, 236.9 and 197.8 Gy, respectively. When larvae were irradiated with more than 280 Gy, no larvae could develop into pupae. ED99 values for inhibition of pupation and adult emergence were 265.6 and 189.6 Gy, respectively. Even though the irradiation on pupa did not completely inhibit adult emergence, most of the pupae emerged to deformed adults. When adults were irradiated, fecundity was not affected. However, F1 egg hatching was completely inhibited at the dose of 350 Gy. ED99 value for inhibition of adult emergence was estimated at 366.5 Gy. Our results suggest that electron beam irradiation could be recommendable as an alternative to MB and as a phytosanitary treatment for quarantine. A treatment dose of less than or equal to 220 Gy is suggested as a potential quarantine treatment to H. armigera egg for prevention of pupation and to larva for prevention of adult emerge.

  5. Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Vali, Indudhar Panduranga; Shetty, Pramoda Kumara; Mahesha, M. G.; Petwal, V. C.; Dwivedi, Jishnu; Choudhary, R. J.

    2017-06-01

    The effect of electron beam irradiation (EBI) on Al/n-Si Schottky diode has been studied by I-V characterization at room temperature. The behavior of the metal-semiconductor (MS) interface is analyzed by means of variations in the MS contact parameters such as, Schottky barrier height (ΦB), ideality factor (n) and series resistance (Rs). These parameters were found to depend on the EBI dose having a fixed incident beam of energy 7.5 MeV. At different doses (500, 1000, 1500 kGy) of EBI, the Schottky contacts were prepared and extracted their contact parameters by applying thermionic emission and Cheung models. Remarkably, the tuning of ΦB was observed as a function of EBI dose. The improved n with increased ΦB is seen for all the EBI doses. As a consequence of which the thermionic emission is more favored. However, the competing transport mechanisms such as space charge limited emission, tunneling and tunneling through the trap states were ascribed due to n > 1. The analysis of XPS spectra have shown the presence of native oxide and increased radiation induced defect states. The thickness variation in the MS interface contributing to Schottky contact behavior is discussed. This study explains a new technique to tune Schottky contact parameters by metal deposition on the electron beam irradiated n-Si wafers.

  6. New green polymeric composites based on hemp and natural rubber processed by electron beam irradiation.

    PubMed

    Stelescu, Maria-Daniela; Manaila, Elena; Craciun, Gabriela; Dumitrascu, Maria

    2014-01-01

    A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica). The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics.

  7. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  8. Effect of electron beam irradiation on the properties of crosslinked rubbers

    NASA Astrophysics Data System (ADS)

    Banik, Indranil; Bhowmick, Anil K.

    2000-05-01

    Influence of electron beam (EB) irradiation on the mechanical and dynamic mechanical properties of crosslinked fluorocarbon (FKM) rubber, natural rubber (NR), ethylene propylene diene monomer (EPDM) rubber and nitrile rubber (NBR) has been investigated. The modulus, gel fraction, glass transition temperature ( Tg) and storage modulus increased, while the elongation at the break and the loss tangent (tan δ) Tg decreased. FKM and NBR vulcanizates have been shown to have EB radiation resistance up to 1500 kGy.

  9. Comparison of structural changes in skin and amnion tissue grafts for transplantation induced by gamma and electron beam irradiation for sterilization.

    PubMed

    Mrázová, H; Koller, J; Kubišová, K; Fujeríková, G; Klincová, E; Babál, P

    2016-06-01

    Sterilization is an important step in the preparation of biological material for transplantation. The aim of the study is to compare morphological changes in three types of biological tissues induced by different doses of gamma and electron beam radiation. Frozen biological tissues (porcine skin xenografts, human skin allografts and human amnion) were irradiated with different doses of gamma rays (12.5, 25, 35, 50 kGy) and electron beam (15, 25, 50 kGy). Not irradiated specimens served as controls. The tissue samples were then thawn and fixed in 10 % formalin, processed by routine paraffin technique and stained with hematoxylin and eosin, alcian blue at pH 2.5, orcein, periodic acid Schiff reaction, phosphotungstic acid hematoxylin, Sirius red and silver impregnation. The staining with hematoxylin and eosin showed vacuolar cytoplasmic changes of epidermal cells mainly in the samples of xenografts irradiated by the lowest doses of gamma and electron beam radiation. The staining with orcein revealed damage of fine elastic fibers in the xenograft dermis at the dose of 25 kGy of both radiation types. Disintegration of epithelial basement membrane, especially in the xenografts, was induced by the dose of 15 kGy of electron beam radiation. The silver impregnation disclosed nuclear chromatin condensation mainly in human amnion at the lowest doses of both radiation types and disintegration of the fine collagen fibers in the papillary dermis induced by the lowest dose of electron beam and by the higher doses of gamma radiation. Irradiation by both, gamma rays and the electron beam, causes similar changes on cells and extracellular matrix, with significant damage of the basement membrane and of the fine and elastic and collagen fibers in the papillary dermis, the last caused already by low dose electron beam radiation.

  10. Side-entry laser-beam zigzag irradiation of multiple channels in a microchip for simultaneous and highly sensitive detection of fluorescent analytes.

    PubMed

    Anazawa, Takashi; Yokoi, Takahide; Uchiho, Yuichi

    2015-09-01

    A simple and highly sensitive technique for laser-induced fluorescence detection on multiple channels in a plastic microchip was developed, and its effectiveness was demonstrated by laser-beam ray-trace simulations and experiments. In the microchip, with refractive index nC, A channels and B channels are arrayed alternately and respectively filled with materials with refractive indexes nA for electrophoresis analysis and nB for laser-beam control. It was shown that a laser beam entering from the side of the channel array traveled straight and irradiated all A channels simultaneously and effectively because the refractive actions by the A and B channels were counterbalanced according to the condition nA < nC < nB. This technique is thus called "side-entry laser-beam zigzag irradiation". As a demonstration of the technique, when nC = 1.53, nA = 1.41, nB = 1.66, and the cross sections of both eight A channels and seven B channels were the same isosceles trapezoids with 97° base angle, laser-beam irradiation efficiency on the eight A channels by the simulations was 89% on average and coefficient of variation was 4.4%. These results are far superior to those achieved by other conventional methods such as laser-beam expansion and scanning. Furthermore, fluorescence intensity on the eight A channels determined by the experiments agreed well with that determined by the simulations. Therefore, highly sensitive and uniform fluorescence detection on eight A channels was achieved. It is also possible to fabricate the microchips at low cost by plastic-injection molding and to make a simple and compact detection system, thereby promoting actual use of the proposed side-entry laser-beam zigzag irradiation in various fields.

  11. Changes in spectrochemical and catalytic properties of biopolymer anchored Cu(II) and Ni(II) catalysts by electron beam irradiation.

    PubMed

    Antony, R; Suja Pon Mini, P S; Theodore David Manickam, S; Sanjeev, Ganesh; Mitu, Liviu; Balakumar, S

    2015-01-01

    Chitosan (a biopolymer) anchored Cu(II) and Ni(II) Schiff base complexes, [M(OIAC)Cl2] (M: Cu/Ni and OIAC: ([2-oxo-1H-indol-3-ylidene]amino)chitosan) were electron beam irradiated by different doses (100 Gy, 1 kGy and 10 kGy). The electron beam has shown potential impact on biopolymer's support, in detail chain linking and chain scissoring, as evidenced by viscosity studies, FT-IR and X-ray diffraction spectroscopic techniques. Due to these structural changes, thermal properties of the complexes were found to be changed. The surface of these heterogeneous complexes was also effectually altered by electron beam. As a consequence, pores and holes were created as probed by SEM technique. The catalytic activity of both non-irradiated and irradiated complexes was investigated in the aerobic oxidation of cyclohexane using hydrogen peroxide oxidant. The catalytic ability of the complexes was enhanced significantly after irradiation as the result of surface changes. The reusability of the complexes was also greatly affected because of the structural variations in polymeric support. In terms of both better catalytic activity along with the reusability, 1 kGy is suggested as the best dose to attain adequate increase in catalytic activity and good reusability. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Microstructural, thermal and antibacterial properties of electron beam irradiated Bombyx mori silk fibroin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asha, S.; Sanjeev, Ganesh, E-mail: ganeshsanjeev@rediffmail.com; Sangappa

    The Bombyx mori silk fibroin (SF) films were prepared by solution casting method and the effects of electron beam on structural, thermal and antibacterial responses of the prepared films were studied. The electron irradiation for different doses was carried out using 8 MeV Microtron facility at Mangalore University. The changes in microstructural parameters and thermal stability of the films were investigated using Wide Angle X-ray Scattering (WAXS) and thermogravimetric analysis (TGA) respectively. Both microstructuralline parameters (crystallite size and lattice strain (g in %)) and thermal stability of the irradiated films have increased with radiation dosage. Agar diffusion method demonstrated themore » antibacterial activity of SF film which was increased after irradiation on both Gram-positive and Gram-negative species.« less

  13. Reversible wettability of electron-beam deposited indium-tin-oxide driven by ns-UV irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persano, Luana; Center for Biomolecular Nanotechnologies UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano-LE; Del Carro, Pompilio

    2012-04-09

    Indium tin oxide (ITO) is one of the most widely used semiconductor oxides in the field of organic optoelectronics, especially for the realization of anode contacts. Here the authors report on the control of the wettability properties of ITO films deposited by reactive electron beam deposition and irradiated by means of nanosecond-pulsed UV irradiation. The enhancement of the surface water wettability, with a reduction of the water contact angle larger than 50 deg., is achieved by few tens of seconds of irradiation. The analyzed photo-induced wettability change is fully reversible in agreement with a surface-defect model, and it can bemore » exploited to realize optically transparent, conductive surfaces with controllable wetting properties for sensors and microfluidic circuits.« less

  14. Microstructural, thermal and antibacterial properties of electron beam irradiated Bombyx mori silk fibroin films

    NASA Astrophysics Data System (ADS)

    Asha, S.; Sangappa, Naik, Prashantha; Chandra, K. Sharat; Sanjeev, Ganesh

    2014-04-01

    The Bombyx mori silk fibroin (SF) films were prepared by solution casting method and the effects of electron beam on structural, thermal and antibacterial responses of the prepared films were studied. The electron irradiation for different doses was carried out using 8 MeV Microtron facility at Mangalore University. The changes in microstructural parameters and thermal stability of the films were investigated using Wide Angle X-ray Scattering (WAXS) and thermogravimetric analysis (TGA) respectively. Both microstructuralline parameters (crystallite size and lattice strain (g in %)) and thermal stability of the irradiated films have increased with radiation dosage. Agar diffusion method demonstrated the antibacterial activity of SF film which was increased after irradiation on both Gram-positive and Gram-negative species.

  15. Effect of electron beam irradiation on bacterial and Ascaris ova loads and volatile organic compounds in municipal sewage sludge

    NASA Astrophysics Data System (ADS)

    Engohang-Ndong, Jean; Uribe, R. M.; Gregory, Roger; Gangoda, Mahinda; Nickelsen, Mike G.; Loar, Philip

    2015-07-01

    Wastewater treatment plants produce large amounts of biosolids that can be utilized for land applications. However, prior to their use, these biosolids must be treated to eliminate risks of infections and to reduce upsetting odors. In this study, microbiological and chemical analyzes were performed before and after treatment of sewage sludge with 3 MeV of an electron beam accelerator in a pilot processing plant. Thus, we determined that dose 4.5 kGy was required to reduce fecal coliform counts to safe levels for land applications of sludge while, 14.5 kGy was necessary to decrease Ascaris ova counts to safe levels. Furthermore, at low doses, electron beam irradiation showed little effect on the concentrations of volatile organic compounds, while some increase were recorded at high doses. The concentration of dimethyl sulfide was reduced by 50-70% at irradiation doses of 25.7 kGy and 30.7 kGy respectively. By contrast, electron beam irradiation increased dimethyl disulfide concentrations. We also showed that electron beam treatment was less energy-consuming with shorter processing times than conventional techniques used to decontaminate sludge. Hence opening new avenues for large urban agglomerations to save money and time when treating biosolids for land application.

  16. Structural, morphological and optical investigations on electron-beam irradiated PbF2-TeO2-B2O3-Eu2O3 glasses

    NASA Astrophysics Data System (ADS)

    Wagh, Akshatha; Petwal, Vikash; Dwivedi, Jishnu; Upadhyaya, V.; Raviprakash, Y.; Kamath, Sudha D.

    2016-09-01

    Combined structural, optical and morphological studies were carried out on Eu2O3 doped PbF2-TeO2-B2O3 glass samples, before and after being subjected to electron beam of energy 7.5 MeV. XRD confirmed the amorphous nature of the glasses even after 150 kGy electron beam irradiation. Densities of the irradiated samples showed slightly greater values when compared to their respective values before irradiation, which proved the increase in the compaction of the network. The intensities of the three prominent bands; B-O-B linkages, BO4 units and BO3 units of FT-IR spectra, of the titled glasses, showed slight decrease after electron beam irradiation. The decrement in the values of energy band gap and shift in cut-off wavelength towards red edge, proved the formation of color centers in the glass network after irradiation. The change in Hunter L values, through color measurement was a proof for the Farbe/color/absorption centers created in the glass sites after irradiation.

  17. Effects of gamma ray and electron beam irradiation on the mechanical, thermal, structural and physicochemical properties of poly (ether-block-amide) thermoplastic elastomers.

    PubMed

    Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L

    2013-01-01

    Both gamma ray and electron beam irradiation are widely used as a means of medical device sterilisation. However, it is known that the radiation produced by both processes can lead to undesirable changes within biomedical polymers. The main objective of this research was to conduct a comparative study on the two key radiosterilisation methods (gamma ray and electron beam) in order to identify the more detrimental process in terms of the mechanical, structural, chemical and thermal properties of a common biomedical grade polymer. Poly (ether-block-amide) (PEBA) was prepared by injection moulding ASTM testing specimens and these were exposed to an extensive range of irradiation doses (5-200 kGy) in an air atmosphere. The effect of varying the irradiation dose concentration on the resultant PEBA properties was apparent. For instance, the tensile strength, percentage elongation at break and shore D hardness can be increased/decreased by controlling the aforementioned criteria. In addition, it was observed that the stiffness of the material increased with incremental irradiation doses as anticipated. Melt flow index demonstrated a dramatic increase in the melting strength of the material indicating a sharp increase in molecular weight. Conversely, modulated differential scanning calorimetry established that there were no significant alterations to the thermal transitions. Noteworthy trends were observed for the dynamic frequency sweeps of the material, where the crosslink density increased according to an increase in electron beam irradiation dose. Trans-vinylene unsaturations and the carbonyl group concentration increased with an increment in irradiation dose for both processes when observed by FTIR. The relationship between the irradiation dose rate, mechanical properties and the subsequent surface properties of PEBA material is further elucidated throughout this paper. This study revealed that the gamma irradiation process produced more adverse effects in the PEBA

  18. Monitoring volatilization products using Residual Gas Analyzers during MeV ion beam irradiations

    NASA Astrophysics Data System (ADS)

    Wetteland, C. J.; Kriewaldt, K.; Taylor, L. A.; McSween, H. Y.; Sickafus, K. E.

    2018-03-01

    The use of Residual Gas Analyzers (RGAs) during irradiation experiments can provide valuable information when incorporated into experimental end-stations. The instruments can track the volatilization products of beam-sensitive materials, which may ultimately aid researchers in selecting appropriate flux values for conducting experiments. Furthermore, the type of gaseous species released during an irradiation can be monitored directly, which may lead to new insights into the radiolysis and/or heating mechanisms responsible for gas evolution. A survey of several classes of materials exposed to extremes in particle flux is presented to show how RGA instrumentation can be incorporated to qualitatively assess ion-solid interactions in a variety of fields.

  19. Volatile compounds and odor traits of dry-cured ham (Prosciutto crudo) irradiated by electron beam and gamma ray

    USDA-ARS?s Scientific Manuscript database

    Prosciutto crudo were irradiated at 0, 3 and 6kGy by gamma ray (GR) and electron beam (EB), respectively. The odor scores and volatile compounds were examined after 7 days storage at 4'. Volatile compounds from samples without and with irradiation at 6kGy were analyzed by GC-MS. Fifty-nine compounds...

  20. Combined action of corrugation and Weibel instabilities from electron-beam interaction with laser-irradiated plasma

    NASA Astrophysics Data System (ADS)

    Bai, Yafeng; Tian, Ye; Zhang, Zhijun; Cao, Lihua; Liu, Jiansheng

    2018-03-01

    The combined action of corrugation and Weibel instabilities was experimentally observed in the interaction between energetic electrons and a laser-irradiated insulated target. The energetic electron beam, driven by an ultrashort laser pulse, splits into filaments with a diameter of ˜10 μm while traversing an insulated target, owing to the corrugation instability. The filaments continued to split into thinner filaments owing to the Weibel instability if a preplasma was induced by a heating beam on the rear side of the target. When the time delay between the heating beam and electron beam was larger than 1 ps, a merging of the current filaments was observed. The characteristic filamentary structures disappeared when the time delay between the two beams was larger than 3 ps. A simplified model was developed to analyze this process; the obtained results were in good agreement with the experiment. Two-dimensional particle-in-cell simulations supported our analysis and reproduced the filamentation of the electron beam inside the plasma.

  1. Re-irradiation using proton beam therapy combined with weekly intra-arterial chemotherapy for recurrent oral cancer.

    PubMed

    Hayashi, Yuichiro; Nakamura, Tatsuya; Mitsudo, Kenji; Kimura, Kanako; Yamaguchi, Hisashi; Ono, Takashi; Azami, Yusuke; Takayama, Kanako; Hirose, Katsumi; Yabuuchi, Tomonori; Suzuki, Motohisa; Hatayama, Yoshiomi; Kikuchi, Yasuhiro; Wada, Hitoshi; Fuwa, Nobukazu; Hareyama, Masato; Tohnai, Iwai

    2017-10-01

    The purpose of this study was to clarify the efficacy and toxicities of re-irradiation using proton beam therapy combined with weekly intra-arterial chemotherapy for recurrent oral cancer. Between October 2009 and July 2014, 34 patients who had recurrent oral cancer were treated by proton beam therapy combined with intra-arterial infusion chemotherapy at the Southern Tohoku Proton Therapy Center, Japan. For all patients, the median follow-up was 25 months (range, 3-77 months). After treatment, 22 patients (65%) achieved a complete response, and 12 patients (35%) achieved a partial response at the primary tumor site. One-year and 2-year overall survival (OS) rates were 62% and 42%, respectively. One-year and 2-year LC rates were 77% and 60%, respectively. No treatment-related deaths were observed during the treatment and follow-up periods. Re-irradiation using proton beam therapy combined with weekly intra-arterial chemotherapy improved OS and local control rates compared with other treatment modalities and could become a new treatment modality for patients with recurrent oral cancer. © 2016 John Wiley & Sons Australia, Ltd.

  2. Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi

    NASA Astrophysics Data System (ADS)

    Zhang, Hongfei; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2017-01-01

    In this study, we evaluated the effects of e-beam irradiation(1-7 kGy) and irradiation coupled to microwave heating (e-I-MC, 70 °C internal temperature) on the fatty acid composition and volatile compound profile of grass carp surimi. Compared to control samples, e-beam irradiation generated three novel volatile compounds (heptane, 2,6-dimethyl-nonane, and dimethyl disulfide) and increased the relative proportions of alcohols, aldehydes, and ketones. Meanwhile, e-I-MC significantly increased aldehyde levels and generated five heterocyclic compounds along with these three novel compounds. No significant difference in volatile compounds were detected in e-I-MC samples with increasing irradiation dose (p>0.05), comparing to the control group. E-beam irradiation at 5 and 7 kGy increased the levels of saturated fatty acids (SFAs) and decreased the levels of unsaturated fatty acids (p≤0.05), but did not affect the content of trans fatty acid levels (p>0.05). Irradiation, which had no significant effects on (Eicosapentaenoic acid) EPA, decreased (Docose Hexaenoie Acid) DHA levels. In the e-I-MC group, SFA levels increased and PUFA levels decreased. Additionally, MUFA levels were unaffected and trans fatty acid levels increased slightly following e-I-MC.

  3. New Green Polymeric Composites Based on Hemp and Natural Rubber Processed by Electron Beam Irradiation

    PubMed Central

    Stelescu, Maria-Daniela; Craciun, Gabriela; Dumitrascu, Maria

    2014-01-01

    A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica). The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics. PMID:24688419

  4. SU-E-J-121: Measuring Prompt Gamma Emission Profiles with a Multi-Stage Compton Camera During Proton Beam Irradiation: Initial Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polf, J; McCleskey, M; Brown, S

    2014-06-01

    Purpose: Recent studies have suggested that the characteristics of prompt gammas (PG) emitted during proton beam irradiation are advantageous for determining beam range during treatment delivery. The purpose of this work was to determine the feasibility of determining the proton beam range from PG data measured with a prototype Compton camera (CC) during proton beam irradiation. Methods: Using a prototype multi-stage CC the PG emission from a water phantom was measured during irradiation with clinical proton therapy beams. The measured PG emission data was used to reconstruct an image of the PG emission using a backprojection reconstruction algorithm. One dimensionalmore » (1D) profiles extracted from the PG images were compared to: 1) PG emission data measured at fixed depths using collimated high purity Germanium and Lanthanum Bromide detectors, and 2) the measured depth dose profiles of the proton beams. Results: Comparisons showed that the PG emission profiles reconstructed from CC measurements agreed very well with the measurements of PG emission as a function of depth made with the collimated detectors. The distal falloff of the measured PG profile was between 1 mm to 4 mm proximal to the distal edge of the Bragg peak for proton beam ranges from 4 cm to 16 cm in water. Doses of at least 5 Gy were needed for the CC to measure sufficient data to image the PG profile and localize the distal PG falloff. Conclusion: Initial tests of a prototype CC for imaging PG emission during proton beam irradiation indicated that measurement and reconstruction of the PG profile was possible. However, due to limitations of the operational parameters (energy range and count rate) of the current CC prototype, doses of greater than a typical treatment dose (∼2 Gy) were needed to measure adequate PG signal to reconstruct viable images. Funding support for this project provided by a grant from DoD.« less

  5. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  6. Radiological characteristics of MRI-based VIP polymer gel under carbon beam irradiation

    NASA Astrophysics Data System (ADS)

    Maeyama, T.; Fukunishi, N.; Ishikawa, K. L.; Furuta, T.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Fukuda, S.

    2015-02-01

    We study the radiological characteristics of VIP polymer gel dosimeters under carbon beam irradiation with energy of 135 and 290 AMeV. To evaluate dose response of VIP polymer gels, the transverse (or spin-spin) relaxation rate R2 of the dosimeters measured by magnetic resonance imaging (MRI) as a function of linear energy transfer (LET), rather than penetration depth, as is usually done in previous reports. LET is evaluated by use of the particle transport simulation code PHITS. Our results reveal that the dose response decreases with increasing dose-averaged LET and that the dose response-LET relation also varies with incident carbon beam energy. The latter can be explained by taking into account the contribution from fragmentation products.

  7. Stability of the Helical TomoTherapy Hi·Art II detector for treatment beam irradiations

    PubMed Central

    Schombourg, Karin; Bochud, François

    2014-01-01

    The Hi·Art II Helical TomoTherapy (HT) unit is equipped with a built‐in onboard MVCT detector used for patient imaging and beam monitoring. Our aim was to study the detector stability for treatment beam measurements. We studied the MVCT detector response with the 6 MV photon beam over time, throughout short‐term (during an irradiation) and long‐term (two times 50 days) periods. Our results show a coefficient of variation ≤1% for detector chambers inside the beam (excluding beam gradients) for short‐ and long‐term response of the MVCT detector. Larger variations were observed in beam gradients and an influence of the X‐ray target where degradation was found. The results assume that an ‘air scan’ procedure is performed daily to recalibrate the detector with the imaging beam. On short term, the detector response stability is comparable to other devices. Long‐term measurements during two 50‐day periods show a good reproducibility. PACS numbers: 87.55.ne, 87.55.Qr PMID:25493514

  8. 3D-FBK Pixel Sensors: Recent Beam Tests Results with Irradiated Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micelli, A.; /INFN, Trieste /Udine U.; Helle, K.

    2012-04-30

    The Pixel Detector is the innermost part of the ATLAS experiment tracking device at the Large Hadron Collider, and plays a key role in the reconstruction of the primary vertices from the collisions and secondary vertices produced by short-lived particles. To cope with the high level of radiation produced during the collider operation, it is planned to add to the present three layers of silicon pixel sensors which constitute the Pixel Detector, an additional layer (Insertable B-Layer, or IBL) of sensors. 3D silicon sensors are one of the technologies which are under study for the IBL. 3D silicon technology ismore » an innovative combination of very-large-scale integration and Micro-Electro-Mechanical-Systems where electrodes are fabricated inside the silicon bulk instead of being implanted on the wafer surfaces. 3D sensors, with electrodes fully or partially penetrating the silicon substrate, are currently fabricated at different processing facilities in Europe and USA. This paper reports on the 2010 June beam test results for irradiated 3D devices produced at FBK (Trento, Italy). The performance of these devices, all bump-bonded with the ATLAS pixel FE-I3 read-out chip, is compared to that observed before irradiation in a previous beam test.« less

  9. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.

    PubMed

    Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J

    2010-03-01

    A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.

  10. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance formore » the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.« less

  11. Microbial Safety Improvement of Sea Buckthorn by Electron Beam Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemtanu, Monica R.; Minea, R.; Mazilu, Elena

    2007-04-23

    The commercialization of medicinal plants and/or their products is highly increased in Romania lately. One of the most used herbs is sea buckthorn being well known for its quality with a large potential for curing some diseases. Sea buckthorn can be contaminated with undesirable microorganisms which may affect negatively its quality. The paper presents the results regarding the action of a non-conventional technology meaning electron beam technique on sea buckthorn in order to improve its microbiological quality. Our study revealed that the sea buckthorn microbial load has been improved after 3 kGy irradiation keeping its active principles.

  12. Microbial Safety Improvement of Sea Buckthorn by Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Nemţanu, Monica R.; Minea, R.; Mazilu, Elena; Rǎdulescu, Nora

    2007-04-01

    The commercialization of medicinal plants and/or their products is highly increased in Romania lately. One of the most used herbs is sea buckthorn being well known for its quality with a large potential for curing some diseases. Sea buckthorn can be contaminated with undesirable microorganisms which may affect negatively its quality. The paper presents the results regarding the action of a non-conventional technology meaning electron beam technique on sea buckthorn in order to improve its microbiological quality. Our study revealed that the sea buckthorn microbial load has been improved after 3 kGy irradiation keeping its active principles.

  13. High-power laser radiation in atmospheric aerosols: Nonlinear optics of aerodispersed media

    NASA Astrophysics Data System (ADS)

    Zuev, V. E.; Zemlianov, A. A.; Kopytin, Iu. D.; Kuzikovskii, A. V.

    The bulk of this book contains the results of investigations carried out at the Institute of Atmospheric Optics, Siberian Branch, USSR Academy of Science with the participation of the authors. The microphysical and optical characteristics of atmospheric aerosols are considered, taking into account light scattering by a single aerosol particle, light scattering by a system of particles, the scattering phase matrix, light scattering by clouds and fogs, light scattering by hazes, and scattering phase functions of polydispersed aerosols. Other topics studies are related to low-energy (subexplosive) effects of radiation on individual particles, the formation of clear zones in clouds and fogs due to the vaporization of droplets under regular regimes, self-action of a wave beam in a water aerosol under conditions of regular droplet vaporization, laser beam propagation through an explosively evaporating water-droplet aerosol, the propagation of high-power laser radiation through hazes, the ionization and optical breakdown in aerosol media, and laser monitoring of a turbid atmosphere using nonlinear effects.

  14. Effect of heavy ion beam irradiation on germination of local Toraja rice seed (M1-M2) mutant generation

    NASA Astrophysics Data System (ADS)

    Sjahril, R.; Riadi, M.; Rafiuddin; Sato, T.; Toriyama, K.; Abe, T.; Trisnawaty, A. R.

    2018-05-01

    Local rice in general has several weaknesses among others, long life, high plant posture and low yield result. The character is a limiting factor that causes farmers low interest to grow local rice. It is feared this will cause the lack of local rice cultivars as germplasm materials. Therefore, there is an effort to create a diversity of morphological characters, as the character of selection, especially related to the age of harvest and plant posture. One method is through breeding mutation by irradiation using ion beam. The objective of this research is to evaluate seed germination resulted after irradiation using ion beam in two varieties of Toraja local rice. The study was prepared based on a randomized block design pattern consisting of six treatments by testing two local Toraja rice varieties namely Pare Ambok and Pare Lea treated with ion beam irradiation of Argon and Carbon ion and control plant as comparison. Each grain from one panicle was germinated in one line method on a Ø15 cm Petri dish and transplanted into small plastic bags. Each treatment was repeated as much as 20 times which was then considered as a strain. The results showed that irradiation using Argon ion in local rice seed of Pare Ambok variety and of Pare Lea varieties produce better seedlings sprouts than irradiation using Carbon ion. Further M2 seed germination shows uniqueness in some seedlings produced such as lighter leaf color, albinism, wrinkled leaf, etc. which could prove potential mutant lines in tested M2 lines seed.

  15. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.

    PubMed

    Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D

    2016-08-21

    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers.

  16. A systematic study on the effect of electron beam irradiation on structural, electrical, thermo-electric power and magnetic property of LaCoO3

    NASA Astrophysics Data System (ADS)

    Benedict, Christopher J.; Rao, Ashok; Sanjeev, Ganesh; Okram, G. S.; Babu, P. D.

    2016-01-01

    In this communication, the effect of electron beam irradiation on the structural, electrical, thermo-electric power and magnetic properties of LaCoO3 cobaltites have been investigated. Rietveld refinement of XRD data reveals that all samples are single phased with rhombohedral structure. Increase in electrical resistivity data is observed with increase in dosage of electron beam irradiation. Analysis of the measured electrical resistivity data indicates that the small polaron hopping model is operative in the high temperature regime for all samples. The Seebeck coefficient (S) of the pristine and the irradiated samples exhibits a crossover from positive to negative values, and a colossal value of Seebeck coefficient (32.65 mV/K) is obtained for pristine sample, however, the value of S decreases with increase in dosage of irradiation. The analysis of Seebeck coefficient data confirms that the small polaron hopping model is operative in the high temperature region. The magnetization results give clear evidence of increase in effective magnetic moment due to increase in dosage of electron beam irradiation.

  17. Influence of electron beam irradiation on nonlinear optical properties of Al doped ZnO thin films for optoelectronic device applications in the cw laser regime

    NASA Astrophysics Data System (ADS)

    Antony, Albin; Pramodini, S.; Poornesh, P.; Kityk, I. V.; Fedorchuk, A. O.; Sanjeev, Ganesh

    2016-12-01

    We present the studies on third-order nonlinear optical properties of Al doped ZnO thin films irradiated with electron beam at different dose rate. Al doped ZnO thin films were deposited on a glass substrate by spray pyrolysis deposition technique. The thin films were irradiated using the 8 MeV electron beam from microtron ranging from 1 kG y to 5 kG y. Nonlinear optical studies were carried out by employing the single beam Z-scan technique to determine the sign and magnitude of absorptive and refractive nonlinearities of the irradiated thin films. Continuous wave He-Ne laser operating at 633 nm was used as source of excitation. The open aperture Z-scan measurements indicated the sample displays reverse saturable absorption (RSA) process. The negative sign of the nonlinear refractive index n2 was noted from the closed aperture Z-scan measurements indicates, the films exhibit self-defocusing property due to thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) varies from 8.17 × 10-5 esu to 1.39 × 10-3 esu with increase in electron beam irradiation. The present study reveals that the irradiation of electron beam leads to significant changes in the third-order optical nonlinearity. Al doped ZnO displays good optical power handling capability with optical clamping of about ∼5 mW. The irradiation study endorses that the Al doped ZnO under investigation is a promising candidate photonic device applications such as all-optical power limiting.

  18. Effects of gamma and electron beam irradiation on the microbial quality of steamed tofu rolls

    NASA Astrophysics Data System (ADS)

    Jia, Qian; Gao, Meixu; Li, Shurong; Wang, Zhidong

    2013-01-01

    The effectiveness of two kinds of radiation processing, gamma and electron beam (ebeam) irradiation, for the inactivation of Staphylococcus aureus, Salmonella enteritidis and Listeria innocua which were inoculated in pre-sterilised steamed tofu rolls was studied. The corresponding effects of both irradiation types on total bacterial counts (TBCs) in commercial steamed tofu rolls available in the market were also examined. The microbiological results demonstrated that gamma irradiation yielded D10 values of 0.20, 0.24 and 0.22 kGy for S. aureus, S. enteritidis and L. innocua, respectively. The respective D10 values for ebeam irradiation were 0.31, 0.35 and 0.27 kGy. Gamma and ebeam irradiation yielded D10 values of 0.48 and 0.43 kGy for total bacterial counts in commercial steamed tofu rolls, respectively. The results suggest that ebeam irradiation has similar effect on decreasing TBCs in steamed tofu rolls, and gamma irradiation is slightly more effective than ebeam irradiation in reducing the populations of pathogenic bacteria. The observed differences in D10-values between them might be due to the significant differences in dose rate applied, and radiation processing of soybean products to improve their microbial quality could be available for other sources of protein.

  19. Development and first application of an Aerosol Collection Module (ACM) for quasi online compound specific aerosol measurements

    NASA Astrophysics Data System (ADS)

    Hohaus, Thorsten; Kiendler-Scharr, Astrid; Trimborn, Dagmar; Jayne, John; Wahner, Andreas; Worsnop, Doug

    2010-05-01

    Atmospheric aerosols influence climate and human health on regional and global scales (IPCC, 2007). In many environments organics are a major fraction of the aerosol influencing its properties. Due to the huge variety of organic compounds present in atmospheric aerosol current measurement techniques are far from providing a full speciation of organic aerosol (Hallquist et al., 2009). The development of new techniques for compound specific measurements with high time resolution is a timely issue in organic aerosol research. Here we present first laboratory characterisations of an aerosol collection module (ACM) which was developed to allow for the sampling and transfer of atmospheric PM1 aerosol. The system consists of an aerodynamic lens system focussing particles on a beam. This beam is directed to a 3.4 mm in diameter surface which is cooled to -30 °C with liquid nitrogen. After collection the aerosol sample can be evaporated from the surface by heating it to up to 270 °C. The sample is transferred through a 60cm long line with a carrier gas. In order to test the ACM for linearity and sensitivity we combined it with a GC-MS system. The tests were performed with octadecane aerosol. The octadecane mass as measured with the ACM-GC-MS was compared versus the mass as calculated from SMPS derived total volume. The data correlate well (R2 0.99, slope of linear fit 1.1) indicating 100 % collection efficiency. From 150 °C to 270 °C no effect of desorption temperature on transfer efficiency could be observed. The ACM-GC-MS system was proven to be linear over the mass range 2-100 ng and has a detection limit of ~ 2 ng. First experiments applying the ACM-GC-MS system were conducted at the Jülich Aerosol Chamber. Secondary organic aerosol (SOA) was formed from ozonolysis of 600 ppbv of b-pinene. The major oxidation product nopinone was detected in the aerosol and could be shown to decrease from 2 % of the total aerosol to 0.5 % of the aerosol over the 48 hours of

  20. Aromatic Structure in Simulates Titan Aerosol

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Loeffler, M. J.; Anderson, C. M.; Hudson, R. L.; Samuelson, R. E.; Moore, M. A.

    2011-01-01

    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are

  1. Synthesis and characterization of silver/diatomite nanocomposite by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Hanh, Truong Thi; Thu, Nguyen Thi; Quoc, Le Anh; Hien, Nguyen Quoc

    2017-10-01

    Silver nanoparticles (AgNPs) with diameter about 9 nm were deposited on diatomite by irradiation under electron beam of diatomite suspension containing 10 mM AgNO3 in 1% chitosan solution, at the dose of 20.2 kGy. The AgNPs/diatomite nanocomposite was characterized by UV-Vis spectroscopy, TEM image and energy dispersive X-ray spectroscopy (EDX). The antibacterial activity of the AgNPs/diatomite against E. coli and S. aureus was evaluated by reduction of bacterial colonies on spread plates and inhibition zone diameter on diffusion disks.

  2. Pressure-flow reducer for aerosol focusing devices

    DOEpatents

    Gard, Eric; Riot, Vincent; Coffee, Keith; Woods, Bruce; Tobias, Herbert; Birch, Jim; Weisgraber, Todd

    2008-04-22

    A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

  3. Hole defects in molecular beam epitaxially grown p-GaAs introduced by alpha irradiation

    NASA Astrophysics Data System (ADS)

    Goodman, S. A.; Auret, F. D.; Meyer, W. E.

    1994-01-01

    Epitaxial aluminum Schottky barrier diodes on molecular beam epitaxially grown p-GaAs with a free carrier density of 2×1016 cm-3 were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radio nuclide. For the first time, the radiation induced hole defects are characterized using conventional deep level transient spectroscopy (DLTS). The introduction rates and DLTS ``signatures'' of three prominent radiation induced defects Hα1, Hα4, and Hα5, situated 0.08, 0.20, and 0.30 eV above the valence band, respectively, are calculated and compared to those of similar defects introduced during electron irradiation.

  4. Effects of electron beam irradiated natural casings on the quality properties and shelf stability of emulsion sausage

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Choi, Ji-Hun; Choi, Yun-Sang; Kim, Hack-Youn; Hwang, Ko-Eun; Song, Dong-Heon; Lee, Ju-Woon; Kim, Cheon-Jei

    2012-05-01

    The effect of electron beam irradiated hog and sheep casings (1, 3, and 8 kGy) on the physicochemical properties and shelf stability of emulsion sausage was evaluated. There were no significant differences in pH, instrumental color, sensory properties (overall acceptability), and hardness between all the samples. The cooking yields for the irradiated treated samples were larger than that of the yields obtained for the non-irradiated samples for both the hog and sheep casing. The irradiated natural casings accelerated lipid oxidation, and inhibited the formation of volatile basic nitrogen and the increase in total aerobic bacteria. In conclusion, the natural casings irradiated below at a dose of 3 kGy had no effect on physicochemical and sensory properties of the emulsion sausages, however, that improved the shelf-stability over 5 weeks. Therefore, natural casings irradiated at moderate doses are suitable for sausage production.

  5. MO-FG-CAMPUS-JeP1-03: Luminescence Imaging of Water During Proton Beam Irradiation for Range Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, S; Komori, M; Toshito, T

    Purpose: Since proton therapy has the ability to selectively deliver a dose to a target tumor, the dose distribution should be accurately measured. A precise and efficient method to evaluate the dose distribution is desired. We found that luminescence was emitted from water during proton irradiation and thought this phenomenon could be used for estimating the dose distribution. Methods: For this purpose, we placed water phantoms set on a table with a spot-scanning proton-therapy system, and luminescence images of these phantoms were measured with a high-sensitivity cooled charge coupled device (CCD) camera during proton-beam irradiation. We also conducted the imagingmore » of phantoms of pure-water, fluorescein solution and acrylic block. We made three dimensional images from the projection data. Results: The luminescence images of water phantoms during the proton-beam irradiations showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. The image of the pure-water phantom also showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had 14.5% shorter proton range than that of water; the proton range in the acrylic phantom was relatively matched with the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 sec. Three dimensional images were successfully obtained which have more quantitative information. Conclusion: Luminescence imaging during proton-beam irradiation has the potential to be a new method for range estimations in proton therapy.« less

  6. Aerosol scattering and absorption modulation transfer function

    NASA Astrophysics Data System (ADS)

    Sadot, Dan; Kopeika, Norman S.

    1993-08-01

    Recent experimental measurements of overall atmospheric modulation transfer function (MTF) indicate significant difference between the turbulence and overall atmospheric MTFs, except often at midday when turbulence is strong. We suggest here a physical explanation for those results which essentially relates to what we call a practical instrumentation-based atmospheric aerosol MTF which is a modification of the classical aerosol MTF theory. It is shown that system field-of-view and dynamic range affect strongly aerosol and overall atmospheric MTFs. It is often necessary to choose between MTF and SNR depending upon dynamic range requirements. Also, a new approach regarding aerosol absorption is presented. It is shown that aerosol-absorbed irradiance is spatial frequency dependent and enhances the degradation in image quality arising from received scattered light. This is most relevant for thermal imaging. An analytically corrected model for the aerosol MTF is presented which is relevant for imaging. An important conclusion is that the aerosol MTF is often the dominant part in the actual overall atmospheric MTF all across the optical spectral region.

  7. The Aerosol/Cloud/Ecosystems Mission (ACE)

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    2008-01-01

    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  8. TH-CD-201-06: Experimental Characterization of Acoustic Signals Generated in Water Following Clinical Photon and Electron Beam Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickling, S; El Naqa, I

    Purpose: Previous work has demonstrated the detectability of acoustic waves induced following the irradiation of high density metals with radiotherapy linac photon beams. This work demonstrates the ability to experimentally detect such acoustic signals following both photon and electron irradiation in a more radiotherapy relevant material. The relationship between induced acoustic signal properties in water and the deposited dose distribution is explored, and the feasibility of exploiting such signals for radiotherapy dosimetry is demonstrated. Methods: Acoustic waves were experimentally induced in a water tank via the thermoacoustic effect following a single pulse of photon or electron irradiation produced by amore » clinical linac. An immersion ultrasound transducer was used to detect these acoustic waves in water and signals were read out on an oscilloscope. Results: Peaks and troughs in the detected acoustic signals were found to correspond to the location of gradients in the deposited dose distribution following both photon and electron irradiation. Signal amplitude was linearly related to the dose per pulse deposited by photon or electron beams at the depth of detection. Flattening filter free beams induced large acoustic signals, and signal amplitude decreased with depth after the depth of maximum dose. Varying the field size resulted in a temporal shift of the acoustic signal peaks and a change in the detected signal frequency. Conclusion: Acoustic waves can be detected in a water tank following irradiation by linac photon and electron beams with basic electronics, and have characteristics related to the deposited dose distribution. The physical location of dose gradients and the amount of dose deposited can be inferred from the location and magnitude of acoustic signal peaks. Thus, the detection of induced acoustic waves could be applied to photon and electron water tank and in vivo dosimetry. This work was supported in part by CIHR grants MOP-114910 and

  9. SECONDARY ORGANIC AEROSOL FORMATION FROM THE IRRADIATION OF SIMULATED AUTOMOBILE EXHAUST

    EPA Science Inventory

    A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SO...

  10. Photochemistry of Glyoxal in Wet Aerosols: Smog Chamber Study

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Kim, H.; Turpin, B. J.

    2015-12-01

    Aqueous chemistry is an important pathway for the formation of secondary organic aerosol (SOA). Reaction vessel studies provide evidence that in the aqueous phase photooxidation of water soluble organic compounds (e.g., glyoxal, methylglyoxal) form multifunctional organic products and oligomers. In this work, we extend this bulk-phase chemistry to the condensed-phase chemistry that occurs in/on aerosols by conducting smog chamber experiments — photooxidation of ammonium sulfate and sulfuric acid aerosols containing glyoxal and hydrogen peroxide in the presence of NOx under dry/humid conditions. Particles were analyzed using ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In the irradiated chamber, photooxidation products of glyoxal as seen in reaction vessel experiments (e.g., oxalic acids and tartaric acids) were also formed in both ammonium sulfate aerosols and sulfuric acid aerosols at humid and even dry conditions. However, the major products were organosulfurs (CHOS), organonitrogens (CHON), and nitrooxy-organosulfates (CHONS), which were also dominantly formed in the dark chamber. These products were formed via non-radical reactions, which depend on acidity and humidity. However, the real-time profiles in the dark chamber and the irradiated chamber were very different, suggesting photochemistry substantially affects non-radical formation in the condensed phase.

  11. Solar Spectral Radiative Forcing Due to Dust Aerosol During the Puerto Rico Dust Experiment

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Bergstrom, R.; Rabbette, M.; Livingston, J.; Russell, P.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    During the Puerto Rico Dust Experiment (PRIDE) upwelling and downwelling solar spectral irradiance was measured on board the SPAWAR Navajo and downwelling solar spectral flux was measured at a surface site using the NASA Ames Solar Spectral Flux Radiometer. These data will be used to determine the net solar radiative forcing of dust aerosol and to quantify the solar spectral radiative energy budget in the presence of elevated aerosol loading. We will assess the variability in spectral irradiance using formal principal component analysis procedures and relate the radiative variability to aerosol microphysical properties. Finally, we will characterize the sea surface reflectance to improve aerosol optical depth retrievals from the AVHRR satellite and to validate SeaWiFS ocean color products.

  12. Advantages and Disadvantages of using a Focused Ion Beam to Prepare TEM Samples From Irradiated U-10Mo Monolithic Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. D. Miller; J. Gan; J. Madden

    2012-05-01

    Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and focused ion beam (FIB) milling were performed on an irradiated U-10Mo monolithic fuel to understand its irradiation microstructure. This is the first reported TEM work of irradiated fuel sample prepared using a FIB. Advantages and disadvantages of using the FIB to create TEM samples from this irradiated fuel will be presented along with some results from the work. Sample preparation techniques used to create SEM and FIB samples from the brittle irradiated monolithic sample will also be discussed.

  13. Application of simple all-sky imagers for the estimation of aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Nikitidou, Efterpi; Salamalikis, Vasileios; Wilbert, Stefan; Prahl, Christoph

    2017-06-01

    Aerosol optical depth is a key atmospheric constituent for direct normal irradiance calculations at concentrating solar power plants. However, aerosol optical depth is typically not measured at the solar plants for financial reasons. With the recent introduction of all-sky imagers for the nowcasting of direct normal irradiance at the plants a new instrument is available which can be used for the determination of aerosol optical depth at different wavelengths. In this study, we are based on Red, Green and Blue intensities/radiances and calculations of the saturated area around the Sun, both derived from all-sky images taken with a low-cost surveillance camera at the Plataforma Solar de Almeria, Spain. The aerosol optical depth at 440, 500 and 675nm is calculated. The results are compared with collocated aerosol optical measurements and the mean/median difference and standard deviation are less than 0.01 and 0.03 respectively at all wavelengths.

  14. THERMAL PROPERTIES OF SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in several hydrocarbon/NOx irradiation experiments. These measurements were used to estimate the thermal behavior of the particles that may be formed in the atmosphere. These laborator...

  15. Effect of ion beam irradiation on the structure of ZnO films deposited by a dc arc plasmatron.

    PubMed

    Penkov, Oleksiy V; Lee, Heon-Ju; Plaksin, Vadim Yu; Ko, Min Gook; Joa, Sang Beom; Yim, Chan Joo

    2008-02-01

    The deposition of polycrystalline ZnO film on a cold substrate was performed by using a plasmatron in rough vacuum condition. Low energy oxygen ion beam generated by a cold cathode ion source was introduced during the deposition process. The change of film property on the ion beam energy was checked. It is shown that irradiation by 200 eV ions improves crystalline structure of the film. Increasing of ion beam energy up to 400 eV leads to the degradation of a crystalline structure and decreases the deposition rate.

  16. Simultaneous Retrievals of Aerosol Properties Using Airborne Sun Photometer, Solar Flux Radiometer, and Satellite Radiance Data

    NASA Astrophysics Data System (ADS)

    Houben, H.; Bergstrom, R. W.; Russell, P. B.; Pilewskie, P.

    2006-12-01

    Characterization of atmospheric aerosols and their climatic effects frequently requires more information than can be gathered by a single instrument. Considerable effort must be devoted to assembling a suite of complementary instruments to make the required measurements and to the production of computational tools that can fuse the data into a coherent description of the aerosols. The twin turboprop Sky Research Jetstream-31 (J-31) has participated in a number of recent field campaigns (Intex A/ICARTT, Intex B/Milagro) with goals that include column closure studies of atmospheric radiation and satellite validation. Among the instruments on board were the 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14, which measures the transmission of the solar beam in 14 narrow spectral channels from 354 nm to 2139 nm with bandwidths between 2 and 6 nm for most channels) and the Solar Spectral Flux Radiometer (SSFR, a moderate resolution flux [irradiance] spectrometer with a hemispheric field of view which makes simultaneous zenith and nadir measurements in the wavelength range from 300 nm to 2200 nm with spectral resolution 8--12 nm). To retrieve the data we have developed a new adjointed radiative transfer model which simultaneously predicts the direct solar beam, upwelling and downwelling fluxes at the J-31 level, and satellite radiances. The code is based on an adding-doubling formulation, with an arbitrary number of streams and azimuths. The matrix form of the model allows for straightforward (though complicated) linearized and adjoint versions. We are thus able to use data assimilation techniques to determine best-fit aerosol properties above and below the J-31 (and ocean surface albedo), based on approximately 25 independent measurements from the aircraft alone. The presence of both flux and extinction data allow the ready identification of absorbing and scattering aerosols. When column closure spirals are flown, or surface or satellite data are available, a

  17. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobin, R., E-mail: rjgobin@cea.fr; Bogard, D.; Chauvin, N.

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid lowmore » energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported.« less

  18. Electron irradiation induced amorphous SiO2 formation at metal oxide/Si interface at room temperature; electron beam writing on interfaces.

    PubMed

    Gurbán, S; Petrik, P; Serényi, M; Sulyok, A; Menyhárd, M; Baradács, E; Parditka, B; Cserháti, C; Langer, G A; Erdélyi, Z

    2018-02-01

    Al 2 O 3 (5 nm)/Si (bulk) sample was subjected to irradiation of 5 keV electrons at room temperature, in a vacuum chamber (pressure 1 × 10 -9 mbar) and formation of amorphous SiO 2 around the interface was observed. The oxygen for the silicon dioxide growth was provided by the electron bombardment induced bond breaking in Al 2 O 3 and the subsequent production of neutral and/or charged oxygen. The amorphous SiO 2 rich layer has grown into the Al 2 O 3 layer showing that oxygen as well as silicon transport occurred during irradiation at room temperature. We propose that both transports are mediated by local electric field and charged and/or uncharged defects created by the electron irradiation. The direct modification of metal oxide/silicon interface by electron-beam irradiation is a promising method of accomplishing direct write electron-beam lithography at buried interfaces.

  19. How Models Simulate the Radiative Effect in the Transition Zone of the Aerosol-Cloud Continuum

    NASA Astrophysics Data System (ADS)

    Calbo Angrill, J.; González, J. A.; Long, C. N.; McComiskey, A. C.

    2017-12-01

    Several studies have pointed towards dealing with clouds and aerosols as two manifestations of what is essentially the same physical phenomenon: a suspension of tiny particles in the air. Although the two extreme cases (i.e., pure aerosol and well-defined cloud) are easily distinguished, and obviously produce different radiative effects, there are many situations in the transition (or "twilight") zone. In a recent paper [Calbó et al., Atmos. Res. 2017, j.atmosres.2017.06.010], the authors of the current communication estimated that about 10% of time there might be a suspension of particles in the air that is difficult to distinguish as either cloud or aerosol. Radiative transfer models, however, simulate the effect of clouds and aerosols with different modules, routines, or parameterizations. In this study, we apply a sensitivity analysis approach to assess the ability of two radiative transfer models (SBDART and RRTM) in simulating the radiative effect of a suspension of particles with characteristics in the boundary between cloud and aerosol. We simulate this kind of suspension either in "cloud mode" or in "aerosol mode" and setting different values of optical depth, droplet size, water path, aerosol type, cloud height, etc. Irradiances both for solar and infrared bands are studied, both at ground level and at the top of the atmosphere, and all analyses are repeated for different solar zenith angles. We obtain that (a) water clouds and ice clouds have similar radiative effects if they have the same optical depth; (b) the spread of effects regarding different aerosol type/aerosol characteristics is remarkable; (c) radiative effects of an aerosol layer and of a cloud layer are different, even if they have similar optical depth; (d) for a given effect on the diffuse component, the effect on the direct component is usually greater (more extinction of direct beam) by aerosols than by clouds; (e) radiative transfer models are somewhat limited when simulating the

  20. Pretreatment of Cellulose By Electron Beam Irradiation Method

    NASA Astrophysics Data System (ADS)

    Jusri, N. A. A.; Azizan, A.; Ibrahim, N.; Salleh, R. Mohd; Rahman, M. F. Abd

    2018-05-01

    Pretreatment process of lignocellulosic biomass (LCB) to produce biofuel has been conducted by using various methods including physical, chemical, physicochemical as well as biological. The conversion of bioethanol process typically involves several steps which consist of pretreatment, hydrolysis, fermentation and separation. In this project, microcrystalline cellulose (MCC) was used in replacement of LCB since cellulose has the highest content of LCB for the purpose of investigating the effectiveness of new pretreatment method using radiation technology. Irradiation with different doses (100 kGy to 1000 kGy) was conducted by using electron beam accelerator equipment at Agensi Nuklear Malaysia. Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD) analyses were studied to further understand the effect of the suggested pretreatment step to the content of MCC. Through this method namely IRR-LCB, an ideal and optimal condition for pretreatment prior to the production of biofuel by using LCB may be introduced.

  1. Variation in the electrical properties of ion beam irradiated cadmium selenate nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, R. P., E-mail: chauhanrpc@gmail.com; Narula, Chetna; Panchal, Suresh

    The key feature of nanowires consists in the pronounced change in properties induced by the low dimensionality and high surface to volume ratio. The study of electrical transport properties of nanowires is important for electronic device applications. Energetic ions create changes, which may be structural or chemical, in a material along their track and these changes might alter the material’s properties. The demand of the modern technology is to understand the effect of radiation on the different properties of the material for its further applications. The present study is on the high-energy Nickel ion beam (160 MeV Ni{sup +12}) induced modificationsmore » in the electrical and structural properties of the cadmium selenate nanowires. An enhancement in the electrical conductivity of irradiated wires was observed as the ion fluence was increased especially in the forward I–V characteristics. The creation of defects by ion irradiation and the synergy of the ions during their passage in the sample with the intrinsic charge carriers may be responsible for the variation in the transport properties of the irradiated nanowires.« less

  2. Formation of periodic surface structures on dielectrics after irradiation with laser beams of spatially variant polarisation: a comparative study

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Antonis; Skoulas, Evangelos; Tsibidis, George D.; Stratakis, Emmanuel

    2018-02-01

    A comparative study is performed to explore the periodic structure formation upon intense femtosecond-pulsed irradiation of dielectrics with radially and azimuthally polarised beams. Laser conditions have been selected appropriately to produce excited carriers with densities below the optical breakdown threshold in order to highlight the role of phase transitions in surface modification mechanisms. The frequency of the laser-induced structures is calculated based on a theoretical model that comprises estimation of electron density excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. The influence of the laser wavelength in the periodicity of the structures is also unveiled. The decreased energy absorption for azimuthally polarised beams yields periodic structures with smaller frequencies which are more pronounced as the number of laser pulses applied to the irradiation spot increases. Similar results are obtained for laser pulses of larger photon energy and higher fluences. All induced periodic structures are oriented parallel to the laser beam polarisation.

  3. A 24.5-Year Global Dataset of Direct Normal Irradiance: Result from the Application of a Global-to-Beam Model to the NASA GEWEX SRB Global Horizontal Irradiance

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W.; Chandler, W.; Hoell, J. M., Jr.; Westberg, D. J.

    2015-12-01

    The DIRINDEX model has previously been applied to the NASA GEWEX SRB Release 3.0 global horizontal irradiances (GHIs) to derive 3-hourly, daily and monthly mean direct normal irradiances (DNIs) for the period from 2000 to 2005 (http://dx.doi.org/10.1016/j.solener.2014.09.006), though the model was originally designed to estimate hourly DNIs from hourly GHIs. Input to the DIRINDEX model comprised 1.) the 3-hourly all-sky and clear-sky GHIs from the GEWEX SRB dataset; 2.) the surface pressure and the atmospheric column water vapor from the GEOS4 dataset; and 3.) daily mean aerosol optical depth at 700 nm derived from the daily mean aerosol data from the Model of Atmospheric Transport and CHemistry (MATCH). The GEWEX SRB data is spatially available on a quasi-equal-area global grid system consisting of 44016 boxes ranging from 1 degree latitude by 1 degree longitude around the Equator to 1 degree latitude by 120 degree longitude next to the poles. The derived DNIs were on the same grid system. Due to the limited availability of the MATCH aerosol data, the model was applied to the years from 2000 to 2005 only. The results were compared with ground-based measurements from 39 sites of the Baseline Surface Radiation Network (BSRN). The comparison statistics show that the results were in better agreement with their BSRN counterparts than the current Surface meteorology and Solar Energy (SSE) Release 6.0 data (https://eosweb.larc.nasa.gov/sse/). In this paper, we present results from the model over the entire time span of the GEWEX SRB Release 3.0 data (July 1983 to December2007) in which the MERRA atmospheric data were substituted for the GEOS4 data, and the Max-Planck Aerosol Climatology Version 1 (MAC-v1) data for the MATCH data. As a consequence, we derived a 24.5-year DNI dataset of global coverage continuous from July 1983 to December 2007. Comparisons with the BSRN data show that the results are comparable in quality with that from the earlier application.

  4. Structure Evolution and Distributions of Grain-Boundary Misorientainons in Submicrocrystalline Molybdenum Irradiated with a Pulsed Electron Beam

    NASA Astrophysics Data System (ADS)

    Stepanova, E. N.; Grabovetskaya, G. P.; Teresov, A. D.; Mishin, I. P.

    2018-05-01

    Using the methods of electron backscatter diffraction, electron microscopy and X-ray diffraction analysis, it is demonstrated that irradiation of the surface of a submicrocrystalline molybdenum specimen with a pulsed electron beam in a non-melt regime results in the formation of a gradient structure in its bulk. The irradiation temperature is shown to affect the density of defects, the value of stress, and the distributions of grain-boundary misorientations in the surface and bulk of the submicrocrystalline molybdenum specimens.

  5. Neutron beam irradiation study of workload dependence of SER in a microprocessor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalak, Sarah E; Graves, Todd L; Hong, Ted

    It is known that workloads are an important factor in soft error rates (SER), but it is proving difficult to find differentiating workloads for microprocessors. We have performed neutron beam irradiation studies of a commercial microprocessor under a wide variety of workload conditions from idle, performing no operations, to very busy workloads resembling real HPC, graphics, and business applications. There is evidence that the mean times to first indication of failure, MTFIF defined in Section II, may be different for some of the applications.

  6. 80 A/cm2 electron beams from metal targets irradiated by KrCl and XeCl excimer lasers

    NASA Astrophysics Data System (ADS)

    Beloglazov, A.; Martino, M.; Nassisi, V.

    1996-05-01

    Due to the growing demand for high-current and long-duration electron-beam devices, laser electron sources were investigated in our laboratory. Experiments on electron-beam generation and propagation from aluminium and copper targets illuminated by XeCl (308 nm) and KrCl (222 nm) excimer lasers, were carried out under plasma ignition due to laser irradiation. This plasma supplied a spontaneous accelerating electric field of about 370 kV/m without an external accelerating voltage. By applying the modified one-dimensional Poisson equation, we computed the expected current and we also estimated the plasma concentration during the accelerating process. At 40 kV of accelerating voltage, an output current pulse of about 80 A/cm2 was detected from an Al target irradiated by the shorter wavelength laser.

  7. Aerosol mass spectrometry systems and methods

    DOEpatents

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  8. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.

    PubMed

    Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G

    2010-04-01

    The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.

  9. Concept development of X-ray mass thickness detection for irradiated items upon electron beam irradiation processing

    NASA Astrophysics Data System (ADS)

    Qin, Huaili; Yang, Guang; Kuang, Shan; Wang, Qiang; Liu, Jingjing; Zhang, Xiaomin; Li, Cancan; Han, Zhiwei; Li, Yuanjing

    2018-02-01

    The present project will adopt the principle and technology of X-ray imaging to quickly measure the mass thickness (wherein the mass thickness of the item =density of the item × thickness of the item) of the irradiated items and thus to determine whether the packaging size and inside location of the item will meet the requirements for treating thickness upon electron beam irradiation processing. The development of algorithm of X-ray mass thickness detector as well as the prediction of dose distribution have been completed. The development of the algorithm was based on the X-ray attenuation. 4 standard modules, Al sheet, Al ladders, PMMA sheet and PMMA ladders, were selected for the algorithm development. The algorithm was optimized until the error between tested mass thickness and standard mass thickness was less than 5%. Dose distribution of all energy (1-10 MeV) for each mass thickness was obtained using Monte-carlo method and used for the analysis of dose distribution, which provides the information of whether the item will be penetrated or not, as well as the Max. dose, Min. dose and DUR of the whole item.

  10. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates

    NASA Astrophysics Data System (ADS)

    MigdaŁ, Wojciech; Orlikowski, Leszek B.; Ptaszek, Magdalena; Gryczka, Urszula

    2012-08-01

    Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth.

  11. Photochemical Cycling of Humic-Like Substances in Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Rincon, A. G.; Guzman, M. I.; Hoffmann, M. R.; Colussi, A. J.

    2007-12-01

    Colored, humic-like substances (HULIS) arising from the biodegradation of organic detritus are widespread in natural surface waters, where they ultimately undergo solar photolysis into small alpha-dicarbonylic species, such as glyoxal, glyoxylic and pyruvic acids. Diversely generated and chemically dissimilar HULIS are also found in the atmospheric aerosol. How are significant levels of colored HULIS produced and sustained in the concentrated aerosol phase under intense solar irradiation? Here, this issue is tackled by investigating the solar photolysis of aqueous pyruvic acid (PA) solutions at concentrations representative of the atmospheric aerosol using UV-absorption, high resolution electrospray mass, and nuclear magnetic resonance spectrometries. Under such conditions, PA is not photodegraded but yields polyfunctional polymers, whose mass and UV-absorption spectra remain unaffected after 3, 8 and 22 h photolysis. Unless diluted, these polymers undergo condensation/polymerization in the post-photolysis period into mass < 700 Da species that absorb in the visible, and are bleached upon resuming irradiation. The re- photolyzed solutions recover the mass and UV-absorption spectra of first photolyzed solutions. Whereas initial pH has no effect on the mechanism of reaction, ammonium bisulfate, a major component of the aerosol, markedly influences these processes. These findings suggest that the chemical identity and concentration levels of complex organic substances in the aerosol are the result of dynamic photochemical processing in the condensed phase.

  12. Dependence of Mechanical and Thermal Properties of Thermoplastic Composites on Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Sok Won; Park, K.; Lee, S. H.; Kang, J. S.; Kang, K. H.

    2007-06-01

    Since the restrictions for environmental protection being strengthened, thermoplastics reinforced with natural fibers (NF’s), such as jute, kenaf, flax, etc. have appeared as alternatives to chemical plastics for automobile interior materials. In this study, the thermal conductivity, tensile strength, and deformation of several kinds of thermoplastic composites composed of 50% polypropylene (PP) and 50% natural fiber (NF) irradiated by an electron beam (energy: 0.5 MeV, dose: 0 20 kGy) were measured. The length and thickness of PP and NF are 80 ± 10 mm and 40 120 μm, respectively. The results show that the thermal conductivity and the tensile strength changed and became minimum, when the dose of the electron beam was 10 kGy. However, the effect of the dose on the deformation was not clear.

  13. Aerosols and their influence on radiation partitioning and savanna productivity in northern Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanniah, K. D.; Beringer, J.; Tapper, N. J.

    2010-05-01

    We investigated the effect of aerosols and clouds on the Net Ecosystem Productivity (NEP) of savannas in northern Australia using aerosol optical depth, clouds and radiation data from the Atmospheric Radiation Measurement (ARM) site in Darwin and carbon flux data measured from eddy covariance techniques from a site at Howard Springs, 35km southeast of Darwin. Generally we found that the concentration of aerosols in this region was relatively low than observed at other sites, therefore the proportion of diffuse radiation reaching the earths surface was only ~ 30%. As a result, we observed only a modest change in carbon uptakemore » under aerosol laden skies and there was no significant difference for dry season Radiation Use Efficiency (RUE) between clear sky, aerosols or thin clouds. On the other hand thick clouds in the wet season produce much more diffuse radiation than aerosols or thin clouds and therefore the initial canopy quantum efficiency was seen to increase 45 and 2.5 times more than under thin clouds and aerosols respectively. The normalized carbon uptake under thick clouds is 57% and 50% higher than under aerosols and thin clouds respectively even though the total irradiance received under thick clouds was reduced 59% and 50% than under aerosols and thin clouds respectively. However, reduction in total irradiance decreases the mean absolute carbon uptake as much as 22% under heavy cloud cover compared to thin clouds or aerosols. Thus, any increase in aerosol concentration or cloud cover that can enhance the diffuse component may have large impacts on productivity in this region.« less

  14. Application of electron-beam irradiation on the production of salted and seasoned short-necked clam, Tapes Pilippinarum, for safe distribution

    NASA Astrophysics Data System (ADS)

    Kim, B.; Song, H. P.; Choe, J. H.; Jung, S.; Jang, A.; Kim, Y. J.; Jo, C.

    2009-07-01

    Salted and seasoned short-necked clam ( Tapes Philippinarum; SNC) and its major ingredients, red hot pepper powder, ginger, garlic and onion were irradiated at 0.5, 1, 2 and 5 kGy, respectively, and the microbiological and sensory quality were evaluated. The water activities of SNC and red pepper powder were 0.91 and 0.56, respectively, and others were higher than 0.97. The initial microbial populations of SNC were approximately 3.99, 4.38 and 2.22 log CFU/g for total aerobic bacteria, yeast and mold, and coliform bacteria. The highest contamination of total aerobic bacteria was detected from ground ginger among ingredients at 5.51 log CFU/g. Electron-beam irradiation (0, 0.5, 1, 2 and 5 kGy) significantly reduced the initial microbial level of SNC and its ingredients not only immediately after irradiation, but also during storage at 10 °C for 4 weeks ( p<0.05). There was no adverse change of sensory score except for the color of onion irradiated at 5 kGy, which results in a lower score than control. From the results electron-beam irradiation is a useful tool to enhance the storage stability and safe distribution of SNC.

  15. Focusing elliptical laser beams

    NASA Astrophysics Data System (ADS)

    Marchant, A. B.

    1984-03-01

    The spot formed by focusing an elliptical laser beam through an ordinary objective lens can be optimized by properly filling the objective lens. Criteria are given for maximizing the central irradiance and the line-spread function. An optimized spot is much less elliptical than the incident laser beam. For beam ellipticities as high as 2:1, this spatial filtering reduces the central irradiance by less than 14 percent.

  16. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  17. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique for estimating aerosol radiative forcing from spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, R. R.

    2015-12-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. In this study we look into the approach where ground based spectral radiation flux measurements along with an RT model is used to estimate radiative forcing. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and 3nm resolution for around 54 clear-sky days during which AOD range was around 0.1 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. All the measurements were made in the campus of Indian Institute of Science which is in the heart of Bangalore city. The primary study involved in understanding the sensitivity of spectral flux to change in the mass concentration of individual aerosol species (Optical properties of Aerosols and Clouds -OPAC classified aerosol species) using the SBDART RT model. This made us clearly distinguish the region of influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves an iterative process where the mixture of aerosol species are changed in OPAC model and RT model is run as long as the mixture which mimics the measured spectral flux within 2-3% deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model aerosol radiative forcing is estimated. The new method is limited to clear sky scenes and its accuracy to derive an optically equivalent aerosol mixture reduces when diffuse component of flux increases. Our analysis also showed that direct component of spectral flux is

  18. Inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in ready-to-bake cookie dough by gamma and electron beam irradiation.

    PubMed

    Jeong, Seul-Gi; Kang, Dong-Hyun

    2017-06-01

    This study was conducted to investigate the efficacy of gamma and electron beam irradiation to inactivate foodborne pathogens in ready-to-bake cookie dough and to determine the effect on quality by measuring color and texture changes. Cookie dough inoculated with Escherichia coli O157:H7, Salmonella Typhimurium, or Listeria monocytogenes was subjected to gamma and electron beam irradiation, with doses ranging from 0 to 3 kGy. As the radiation dose increased, the inactivation effect increased among all tested pathogens. After 3.0 kGy of gamma and electron beam irradiation, numbers of inoculated pathogens were reduced to below the detection limit (1 log CFU/g). The D 10 -values of E. coli O157:H7, S. Typhimurium, and L. monocytogenes in cookie dough treated with gamma rays were 0.53, 0.51, and 0.71 kGy, respectively, which were similar to those treated by electron beam with the same dose. Based on the D 10 -value of pathogens in cookie dough, L. monocytogenes showed more resistance to both treatments than did E. coli O157:H7 and S. Typhimurium. Color values and textural characteristics of irradiated cookie dough were not significantly (P > 0.05) different from the control. These results suggest that irradiation can be applied to control pathogens in ready-to-bake cookie dough products without affecting quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Beam Attenuators and the Risk of Unrecognized Large-Fraction Irradiation of Critical Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luka, S.; Marks, J.E.

    2015-01-15

    The use of radiation beam attenuators led to radiation injury of the spinal cord in one patient and of the peripheral nerve in another due to unsuspected large-fraction irradiation. The anatomic distribution of radiation dose was reconstructed in the sagittal plane for the patient who developed radiation myelopathy and in the axial plane for the patient who developed peripheral neuropathy. The actual dose delivered to the injured structure in each patient was taken from the dose distribution and recorded along with the time, number of fractions, and dose per fraction. The patient who developed radiation myelopathy received a total ofmore » 46.5 Gy in twenty-three 2.1 Gy fractions in 31 days to the upper cervical spinal cord where the thickness of the neck was less than the central axis thickness due to cervical lordosis and absence of a posterior compensating filter. The patient who developed peripheral neuropathy received 55 Gy in twenty-five 2.2 Gy fractions in 50 days to the femoral nerve using bolus over the groins and an anterior one-half value layer Cerrobend pelvic block to bias the dose anteriorly. Compensating filters and other beam attenuators should be used with caution because they may result in unsuspected large-fraction irradiation and total doses of radiation that exceed the tolerance of critical structures.« less

  20. The effect of electron beam irradiation on the mechanical properties of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites

    NASA Astrophysics Data System (ADS)

    Siregar, J. P.; Sapuan, S. M.; Rahman, M. Z. A.; Zaman, H. M. D. K.

    2010-05-01

    The effects of electron beam irradiation on the mechanical properties of pineapple leaf fibre reinforced high impact polystyrene (HIPS) composites were studied. Two types of crosslinking agent that has been used in this study were trimethylolpropane triacrylate (TMPTA) and tripropylene gylcol diacrylate (TPGDA). A 50 wt.% of PALF was blended with HIPS and crosslinking agent using Brabender melt mixer at 165 °C. The composites were then irradiated using a 3 MeV electron beam accelerator with dosage of 0-100 kGy. The tensile strength, tensile modulus, flexural strength, flexural modulus, notched and unnotched impat and hardness of composites were measured and the effects of crosslinking agent were also compared.

  1. Surface modification of LiNbO3 and KTa1-xNbxO3 crystals irradiated by intense pulsed ion beam

    NASA Astrophysics Data System (ADS)

    Cui, Xiaojun; Shen, Jie; Zhong, Haowen; Zhang, Jie; Yu, Xiao; Liang, Guoying; Qu, Miao; Yan, Sha; Zhang, Xiaofu; Le, Xiaoyun

    2017-10-01

    In this work, we studied the surface modification of LiNbO3 and KTa1-xNbxO3 irradiated by intense pulsed ion beam, which was mainly composed of H+ (70%) and Cn+ (30%) at an acceleration voltage of about 450 kV. The surface morphologies, microstructural evolution and elemental analysis of the sample surfaces after IPIB irradiation have been analyzed by scanning electron microscope, atomic force microscope, X-ray diffraction and energy dispersive spectrometer techniques, respectively. The results show that the surface morphologies have significant difference impacted by the irradiation effect. Regular gully damages range from 200 to 400 nm in depth appeared in LiNbO3 under 2 J/cm2 energy density for 1 pulse, block cracking appeared in KTa1-xNbxO3 at the same condition. Surface of the crystals have melted and were darkened with the increasing number up to 5 pulses. Crystal lattice arrangement is believed to be the dominant reason for the different experimental results irradiated by intense pulsed ion beam.

  2. SAMPLING DURATION DEPENDENCE OF SEMI-CONTINUOUS ORGANIC CARBON MEASUREMENTS ON STEADY STATE SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Semi-continuous organic carbon concentrations were measured through several experiments of statically generated secondary organic aerosol formed by hydrocarbon + NOx irradiations. Repeated, randomized measurements of these steady state aerosols reveal decreases in the observed c...

  3. Measurement of the aerosol absorption coefficient with the nonequilibrium process

    NASA Astrophysics Data System (ADS)

    Li, Liang; Li, Jingxuan; Bai, Hailong; Li, Baosheng; Liu, Shanlin; Zhang, Yang

    2018-02-01

    On the basis of the conventional Jamin interferometer,the improved measuring method is proposed that using a polarization type reentrant Jamin interferometer measures atmospheric aerosol absorption coefficient under the photothermal effect.The paper studies the relationship between the absorption coefficient of atmospheric aerosol particles and the refractive index change of the atmosphere.In Matlab environment, the variation curves of the output voltage of the interferometer with different concentration aerosol samples under stimulated laser irradiation were plotted.Besides, the paper also studies the relationship between aerosol concentration and the time required for the photothermal effect to reach equilibrium.When using the photothermal interferometry the results show that the time required for the photothermal effect to reach equilibrium is also increasing with the increasing concentration of aerosol particles,the absorption coefficient and time of aerosol in the process of nonequilibrium are exponentially changing.

  4. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Oono, Yutaka

    2017-01-01

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or 60Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30-110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  5. New Elastomeric Materials Based on Natural Rubber Obtained by Electron Beam Irradiation for Food and Pharmaceutical Use.

    PubMed

    Craciun, Gabriela; Manaila, Elena; Stelescu, Maria Daniela

    2016-12-21

    The efficiency of polyfunctional monomers as cross-linking co-agents on the chemical properties of natural rubber vulcanized by electron beam irradiation was studied. The following polyfunctional monomers were used: trimethylolpropane-trimethacrylate, zinc-diacrylate, ethylene glycol dimethacrylate, triallylcyanurate and triallylisocyanurate. The electron beam treatment was done using irradiation doses in the range of 75 kGy-300 kGy. The gel fraction, crosslink density and effects of different aqueous solutions, by absorption tests, have been investigated as a function of polyfunctional monomers type and absorbed dose. The samples gel fraction and crosslink density were determined on the basis of equilibrium solvent-swelling measurements by applying the modified Flory-Rehner equation for tetra functional networks. The absorption tests were done in accordance with the SR ISI 1817:2015 using distilled water, acetic acid (10%), sodium hydroxide (1%), ethylic alcohol (96%), physiological serum (sodium chloride 0.9%) and glucose (glucose monohydrate 10%). The samples structure and morphology were investigated by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy techniques.

  6. Surface-and bulk-properties of EPDM rubber modified by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Majumder, Papiya Sen; Bhowmick, Anil K.

    1999-01-01

    Electron beam initiated grafting of trimethylol propane triacrylate (TMPTA) onto ethylene propylene diene monomer (EPDM) has been carried out over a wide range of irradiation doses (0-200 kGy) using a fixed concentration (10%) of TMPTA. The samples have been both surface and bulk modified. Infrared (IR) studies indicate increased peak absorbances at 1730, 1260, 1120 and 1019 cm -1 upto 50 kGy and hence increased CO and C-O-C concentrations. The results are further supported by X-ray photoelectron spectroscopy (XPS) studies. The surface energy of EPDM increases from 46.5 to 60.7 mJ/m 2 on irradiation of the surface modified samples to 50 kGy dose, due to increased contribution of γSAB and γS(-). The results have been explained with the help of IR and XPS data. The values of tensile strength of the surface modified samples have not changed very significantly, while the moduli values have increased at the cost of the elongation at break. DMTA studies have shown changes in Tg and tan δmax on modification of the surface. The surface morphology of the modified and irradiated samples reveals acrylate flow marks at high magnification.

  7. Thermal imaging of levitated fresh and salt water drops during laser irradiation

    NASA Astrophysics Data System (ADS)

    Brownell, Cody; Biggs, Harrison

    2017-11-01

    Simulation of high energy laser propagation and scattering in the maritime environment is problematic, due to the high likelihood of turbulence, fog, and rain or sea spray within the beam path. Considering large water drops (diameters of approximately 1-mm), such as those found in a light rain, an incident high energy laser will lead to rapid evaporation of the water drop as it traverses the beam path. In this work we present surface temperature measurements of a water drop obtained using a FLIR IR camera. The drop is acoustically levitated, and subject to a continuous wave laser with a wavelength of 1070-nm and a mean irradiance of approximately 800 W/cm2. These measurements show that the steady-state surface temperature of the drop is well below the saturation temperature, and for pure substances the equilibrium temperature decreases with decreasing drop volume similar to observations with smaller aqueous aerosols. Temperature non-uniformity within the drop is also assessed from statistics of the surface temperature fluctuations. Preliminary results from irradiated salt water drops show notably different behavior from fresh water drops, including temperature spikes as the drop volume decreases and occasional nucleate boiling. Acknowledge support from ONR #N00014-17-WX-00031.

  8. Aerosol and cloud properties derived from hyperspectral transmitted light in the southeast Atlantic sampled during field campaign deployments in 2016 and 2017

    NASA Astrophysics Data System (ADS)

    LeBlanc, S. E.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Kacenelenbogen, M. S.; Shinozuka, Y.; Pistone, K.; Karol, Y.; Schmidt, S.; Cochrane, S.; Chen, H.; Meyer, K.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.

    2017-12-01

    We present aerosol and cloud properties collected from airborne remote-sensing measurements in the southeast Atlantic during the recent NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign. During the biomass burning seasons of September 2016 and August 2017, we sampled aerosol layers which overlaid marine stratocumulus clouds off the southwestern coast of Africa. We sampled these aerosol layers and the underlying clouds from the NASA P3 airborne platform with the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR). Aerosol optical depth (AOD), along with trace gas content in the atmospheric column (water vapor, NO2, and O3), is obtained from the attenuation in the sun's direct beam, measured at the altitude of the airborne platform. Using hyperspectral transmitted light measurements from 4STAR, in conjunction with hyperspectral hemispheric irradiance measurements from the Solar Spectral Flux Radiometers (SSFR), we also obtained aerosol intensive properties (asymmetry parameter, single scattering albedo), aerosol size distributions, cloud optical depth (COD), cloud particle effective radius, and cloud thermodynamic phase. Aerosol intensive properties are retrieved from measurements of angularly resolved skylight and flight level spectral albedo using the inversion used with measurements from AERONET (Aerosol Robotic Network) that has been modified for airborne use. The cloud properties are obtained from 4STAR measurements of scattered light below clouds. We show a favorable initial comparison of the above-cloud AOD measured by 4STAR to this same product retrieved from measurements by the MODIS instrument on board the TERRA and AQUA satellites. The layer AOD observed above clouds will also be compared to integrated aerosol extinction profile measurements from the High Spectral Resolution Lidar-2 (HSRL-2).

  9. Deep levels in H-irradiated GaAs1-xNx (x < 0.01) grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Shafi, M.; Mari, R. H.; Khatab, A.; Henini, M.; Polimeni, A.; Capizzi, M.; Hopkinson, M.

    2011-12-01

    Dilute nitride GaAs1-xNx layers have been grown by molecular beam epitaxy with nitrogen concentration ranging from 0.2% to 0.8%. These samples have been studied before and after hydrogen irradiation by using standard deep level transient spectroscopy (DLTS) and high resolution Laplace DLTS techniques. The activation energy, capture cross section and density of the electron traps have been estimated and compared with results obtained in N-free as-grown and H-irradiated bulk GaAs.

  10. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    PubMed

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-05-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    PubMed

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-02-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Proton irradiation of simple gas mixtures: Influence of irradiation parameters

    NASA Technical Reports Server (NTRS)

    Sack, Norbert J.; Schuster, R.; Hofmann, A.

    1990-01-01

    In order to get information about the influence of irradiation parameters on radiolysis processes of astrophysical interest, methane gas targets were irradiated with 6.5 MeV protons at a pressure of 1 bar and room temperature. Yields of higher hydrocarbons like ethane or propane were found by analysis of irradiated gas samples using gas chromatography. The handling of the proton beam was of great experimental importance for determining the irradiation parameters. In a series of experiments current density of the proton beam and total absorbed energy were shown to have a large influence on the yields of produced hydrocarbons. Mechanistic interpretations of the results are given and conclusions are drawn with regard to the chemistry and the simulation of various astrophysical systems.

  13. Synergetic use of Aerosol Robotic Network (AERONET) and Moderate Image Spectrometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2004-01-01

    I shall describe several distinct modes in which AERONET data are used in conjunction with MODIS data to evaluate the global aerosol system and its impact on climate. These includes: 1) Evaluation of the aerosol diurnal cycle not available from MODIS, and the relationship between the aerosol properties derived from MODIS and the daily average of these properties; 2) Climatology of the aerosol size distribution and single scattering albedo. The climatology is used to formulate the assumptions used in the MODIS look up tables used in the inversion of MODIS data; 3) Measurement of the aerosol effect on irradiation of the surface, this is used in conjunction with the MODIS evaluation of the aerosol effect at the TOA; and 4) Assessment of the aerosol baseline on top off which the satellite data are used to find the amount of dust or anthropogenic aerosol.

  14. Combined effect of dopant and electron beam-irradiation on phase transition in lithium potassium sulphate

    NASA Astrophysics Data System (ADS)

    Kassem, M. E.; Gaafar, M.; Abdel Gawad, M. M. H.; El-Muraikhi, M.; Ragab, I. M.

    2004-02-01

    Thermodynamic studies of polycrystalline ruthenium (Ru) doped LiKSO 4 have been made for different concentrations of Ru in the range 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3% by weight. The thermal behaviour has been investigated using a differential scanning calorimeter in the vicinity of high temperature phases. From this, the effect of electron beam-irradiation on the thermal properties of these polycrystalline samples has been studied. The results showed a change in the transition temperature Tc, as well as the value of specific heat CPmax at the transition temperature due to the change in Ru content and irradiation energies. The change of enthalpy and entropy of the polycrystalline have been estimated numerically.

  15. Sustained transdermal release of diltiazem hydrochloride through electron beam irradiated different PVA hydrogel membranes

    NASA Astrophysics Data System (ADS)

    Bhunia, Tridib; Goswami, Luna; Chattopadhyay, Dipankar; Bandyopadhyay, Abhijit

    2011-08-01

    Extremely fast release of diltiazem hydrochloride (water soluble, anti anginal drug used to treat chest pain) together with its faster erosion has been the primary problem in conventional oral therapy. It has been addressed in this paper by encapsulating the drug in electron beam irradiated various poly (vinyl alcohol) hydrogel membranes and delivering it through transdermal route. Results show excellent control over the release of diltiazem hydrochloride through these membranes subject to their physico-mechanicals.

  16. The influence of electron-beam irradiation on the chemical and the structural properties of medical-grade polyurethane

    NASA Astrophysics Data System (ADS)

    Shin, Sukyoung; Lee, Soonhyouk

    2015-07-01

    Thermo plastic polyurethane (TPU) provides excellent bio-compatibility, flexibility and good irradiation resistance; however, extremely high irradiation doses can alter the structure and the function of macromolecules, resulting in oxidation, chain scission and cross-linking. In this study, the effects of e-beam irradiation on the medical-grade thermo plastic polyurethane were studied. Changes in the chain length and their distribution, as well as changes in the molecular structure were studied. The GPC (gel permeation chromatography) results show that the oxidative decomposition is followed by a decrease in the molecular mass and an increase in polydispersity. This indicates a very inhomogeneous degradation, which is a consequence of the specific course and of the intensity of oxidative degradation. This was confirmed by means of mechanical property measurements. Overall, this study demonstrated that medical-grade TPU was affected by radiation exposure, particularly at high irradiation doses.

  17. Impact of neutron irradiation on mechanical performance of FeCrAl alloy laser-beam weldments

    NASA Astrophysics Data System (ADS)

    Gussev, M. N.; Cakmak, E.; Field, K. G.

    2018-06-01

    Oxidation-resistant iron-chromium-aluminum (FeCrAl) alloys demonstrate better performance in Loss-of-Coolant Accidents, compared with austenitic- and zirconium-based alloys. However, further deployment of FeCrAl-based materials requires detailed characterization of their performance under irradiation; moreover, since welding is one of the key operations in fabrication of light water reactor fuel cladding, FeCrAl alloy weldment performance and properties also should be determined prior to and after irradiation. Here, advanced C35M alloy (Fe-13%Cr-5%Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions were characterized after neutron irradiation in Oak Ridge National Laboratory's High Flux Isotope Reactor at 1.8-1.9 dpa in a temperature range of 195-559 °C. Specimen sets included as-received (AR) materials and specimens after controlled laser-beam welding. Tensile tests with digital image correlation (DIC), scanning electron microscopy-electron back scatter diffraction analysis, fractography, and x-ray tomography analysis were performed. DIC allowed for investigating local yield stress in the weldments, deformation hardening behavior, and plastic anisotropy. Both AR and welded material revealed a high degree of radiation-induced hardening for low-temperature irradiation; however, irradiation at high-temperatures (i.e., 559 °C) had little overall effect on the mechanical performance.

  18. Visualization of air and metal inhomogeneities in phantoms irradiated by carbon ion beams using prompt secondary ions.

    PubMed

    Gaa, T; Reinhart, M; Hartmann, B; Jakubek, J; Soukup, P; Jäkel, O; Martišíková, M

    2017-06-01

    Non-invasive methods for monitoring of the therapeutic ion beam extension in the patient are desired in order to handle deteriorations of the dose distribution related to changes of the patient geometry. In carbon ion radiotherapy, secondary light ions represent one of potential sources of information about the dose distribution in the irradiated target. The capability to detect range-changing inhomogeneities inside of an otherwise homogeneous phantom, based on single track measurements, is addressed in this paper. Air and stainless steel inhomogeneities, with PMMA equivalent thickness of 10mm and 4.8mm respectively, were inserted into a PMMA-phantom at different positions in depth. Irradiations of the phantom with therapeutic carbon ion pencil beams were performed at the Heidelberg Ion Beam Therapy Center. Tracks of single secondary ions escaping the phantom under irradiation were detected with a pixelized semiconductor detector Timepix. The statistical relevance of the found differences between the track distributions with and without inhomogeneities was evaluated. Measured shifts of the distal edge and changes in the fragmentation probability make the presence of inhomogeneities inserted into the traversed medium detectable for both, 10mm air cavities and 1mm thick stainless steel. Moreover, the method was shown to be sensitive also on their position in the observed body, even when localized behind the Bragg-peak. The presented results demonstrate experimentally, that the method using distributions of single secondary ion tracks is sensitive to the changes of homogeneity of the traversed material for the studied geometries of the target. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Physical and engineering aspect of carbon beam therapy

    NASA Astrophysics Data System (ADS)

    Kanai, Tatsuaki; Kanematsu, Nobuyuki; Minohara, Shinichi; Yusa, Ken; Urakabe, Eriko; Mizuno, Hideyuki; Iseki, Yasushi; Kanazawa, Mitsutaka; Kitagawa, Atsushi; Tomitani, Takehiro

    2003-08-01

    Conformal irradiation system of HIMAC has been up-graded for a clinical trial using a technique of a layer-stacking method. The system has been developed for localizing irradiation dose to target volume more effectively than the present irradiation dose. With dynamic control of the beam modifying devices, a pair of wobbler magnets, and multileaf collimator and range shifter, during the irradiation, more conformal radiotherapy can be achieved. The system, which has to be adequately safe for patient irradiations, was constructed and tested from a viewpoint of safety and the quality of the dose localization realized. A secondary beam line has been constructed for use of radioactive beam in heavy-ion radiotherapy. Spot scanning method has been adapted for the beam delivery system of the radioactive beam. Dose distributions of the spot beam were measured and analyzed taking into account of aberration of the beam optics. Distributions of the stopped positron-emitter beam can be observed by PET. Pencil beam of the positron-emitter, about 1 mm size, can also be used for measurements ranges of the test beam in patients using positron camera. The positron camera, consisting of a pair of Anger-type scintillation detectors, has been developed for this verification before treatment. Wash-out effect of the positron-emitter was examined using the positron camera installed. In this report, present status of the HIMAC irradiation system is described in detail.

  20. Characterization of Irradiated and Non-Irradiated Rubber from Automotive Scrap Tires

    NASA Astrophysics Data System (ADS)

    Souza, Clécia Moura; Silva, Leonardo G.

    The aim of this work was to characterize the samples of irradiated and non-irradiated rubber from automotive scrap tires. Rubber samples from scrap tires were irradiated at irradiation doses of 200, 400 and 600kGy in an electron beam accelerator. Subsequently, both the irradiated and non-irradiated samples were characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), tensile strength mechanical test, and Fourier transform infrared (FTIR) spectrophotometry.

  1. Scanned carbon beam irradiation of moving films: comparison of measured and calculated response

    PubMed Central

    2012-01-01

    Background Treatment of moving target volumes with scanned particle beams benefits from treatment planning that includes the time domain (4D). Part of 4D treatment planning is calculation of the expected result. These calculation codes should be verified against suitable measurements. We performed simulations and measurements to validate calculation of the film response in the presence of target motion. Methods All calculations were performed with GSI's treatment planning system TRiP. Interplay patterns between scanned particle beams and moving film detectors are very sensitive to slight deviations of the assumed motion parameters and therefore ideally suited to validate 4D calculations. In total, 14 film motion parameter combinations with lateral motion amplitudes of 8, 15, and 20 mm and 4 combinations for lateral motion including range changes were used. Experimental and calculated film responses were compared by relative difference, mean deviation in two regions-of-interest, as well as line profiles. Results Irradiations of stationary films resulted in a mean relative difference of -1.52% ± 2.06% of measured and calculated responses. In comparison to this reference result, measurements with translational film motion resulted in a mean difference of -0.92% ± 1.30%. In case of irradiations incorporating range changes with a stack of 5 films as detector the deviations increased to -6.4 ± 2.6% (-10.3 ± 9.0% if film in distal fall-off is included) in comparison to -3.6% ± 2.5% (-13.5% ± 19.9% including the distal film) for the stationary irradiation. Furthermore, the comparison of line profiles of 4D calculations and experimental data showed only slight deviations at the borders of the irradiated area. The comparisons of pure lateral motion were used to determine the number of motion states that are required for 4D calculations depending on the motion amplitude. 6 motion states per 10 mm motion amplitude are sufficient to calculate the film response in the

  2. Electron-Beam Irradiation Effect on Thermal and Mechanical Properties of Nylon-6 Nanocomposite Fibers Infused with Diamond and Diamond Coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Imam, Muhammad A.; Jeelani, Shaik; Rangari, Vijaya K.; Gome, Michelle G.; Moura, Esperidiana. A. B.

    2016-02-01

    Nylon-6 is an engineering plastic with excellent properties and processability, which are essential in several industrial applications. The addition of filler such as diamond (DN) and diamond coated carbon nanotubes (CNTs) to form molded composites may increase the range of Nylon-6 applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increase in the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using the sonochemical technique in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB). The DN-coated CNTs nanoparticles and diamond nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers. They were further tested for their mechanical (Tensile) and thermal properties (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC)). These composites were further exposed to the electron-beam (160kGy, 132kGy and 99kGy) irradiation using a 1.5MeV electron-beam accelerator, at room temperature, in the presence of air and tested for their thermal and mechanical properties. The best ultimate tensile strength was found to be 690MPa and 864MPa irradiated at 132 for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber as compared to 346MPa and 321MPa for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber without irradiation. The neat Nylon-6 tensile strength was 240MPa. These results are consistent with the activation energy calculated from TGA graphs. DSC analysis result shows that the slight increase in glass transition temperature (Tg) and decrease in melting temperature (Tm) which was expected from high electron-beam radiation dose.

  3. Electron beam irradiation impact on surface structure and wettability of ethylene-vinyl alcohol copolymer

    NASA Astrophysics Data System (ADS)

    El-Saftawy, A. A.; Ragheb, M. S.; Zakhary, S. G.

    2018-06-01

    In the present study, electron beam (EB) is utilized to tailor the surface structure and wetting behavior of ethylene-vinyl alcohol (EVOH) copolymer. The structural deformation is examined by x-ray diffractometer (XRD). The recorded patterns reveal the formation of disordered systems on the irradiated surface. Also, the surface crystallinity degree, crystallite size, and micro-strain are studied. The microstructure induced modifications of the irradiated samples are investigated by 1-dimensional proton nuclear magnetic resonance 1H NMR spectroscopic analysis. The recorded spectra showed that the hydroxyl group (O-H) absorption intensity, enhanced compared to that of methylene (-CH2) and methine (>C-H) groups. Likewise, the changes of the polymer surface chemistry are studied by Fourier transform infrared spectroscopy (FTIR) and showed that the surface polarity improved after irradiation. The contact angle method is used to prove the surface wettability improvements after irradiation. Additionally, the fucoidan-coated samples exhibit great enhancements in surface wettability and have a reduced recovery effect compared to the uncoated samples. The surface free energy and bonding adhesion are studied as well. The fucoidan-coated samples are found to have a larger adhesion strength than that of the EVOH samples (pristine and irradiated). Finally, surface morphology and roughness are traced by atomic force microscopy (AFM). The improvements in surface wettability and adhesion are attributed to the modified surface roughness and the increased surface polarity. To sum up, combining EB irradiation and fucoidan enhance the surface wettability of EVOH in a controlled way keeping the bulk properties unaffected.

  4. Effects of prenatal irradiation with accelerated heavy-ion beams on postnatal development in rats: III. Testicular development and breeding activity

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    With a significant increase in human activities dealing with space missions, potential teratogenic effects on the mammalian reproductive system from prenatal exposure to space radiation have become a hot topic that needs to be addressed. However, even for the ground experiments, such effects from exposure to high LET ionizing radiation are not as well studied as those for low LET ionizing radiations such as X-rays. Using the Heavy-Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, effects on gonads in prenatal male fetuses, on postnatal testicular development and on breeding activity of male offspring were studied following exposure of the pregnant animals to either accelerated carbon-ion beams with a LET value of about 13 keV/μm or neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on gestation day 15. The effects of X-rays at 200 kVp estimated for the same biological end points were studied for comparison. A significantly dose-dependent increase of apoptosis in gonocytes appeared 6 h after irradiations with a dose of 0.5 Gy or more. Measured delayed testis descent and malformed testicular seminiferous tubules were observed to be significantly different from the control animals at a dose of 0.5 Gy. These effects are observed to be dose- and LET-dependent. Markedly reduced testicular weight and testicular weight to body weight ratio were scored at postnatal day 30 even in the offspring that were prenatally irradiated with neon-ions at a dose of 0.1 Gy. A dose of 0.5 Gy from neon-ion beams induced a marked decrease in breeding activity in the prenatally irradiated male rats, while for the carbon-ion beams or X-rays, the significantly reduced breeding activity was observed only when the prenatal dose was at 1.0 Gy or more. These findings indicated that prenatal irradiations with heavy-ion beams on gestation day 15 generally induced markedly detrimental effects on prenatal gonads, postnatal testicular development and male

  5. Protective effects of melatonin against 12C6+ beam irradiation-induced oxidative stress and DNA injury in the mouse brain

    NASA Astrophysics Data System (ADS)

    Wu, Z. H.; Zhang, H.; Wang, X. Y.; Yang, R.; Liu, B.; Liu, Y.; Zhao, W. P.; Feng, H. Y.; Xue, L. G.; Hao, J. F.; Niu, B. T.; Wang, Z. H.

    2012-01-01

    The purpose of this experiment was to estimate the protective effects of melatonin against radiation-induced brain damages in mice induced by heavy ion beams. Kun-Ming mice were randomly divided into five groups: normal control group, irradiation control group, and three different doses of melatonin (5, 10, and 20 mg/kg, i.p.) treated groups. Apart from the normal control group, the other four groups were exposed to whole-body 4.0 Gy carbon ion beam irradiation (approximately 0.5 Gy/min) after i.p. administration of normal saline or melatonin 1 h before irradiation. The oxidative redox status of brain tissue was assessed by measurement of malondiadehyde (MDA) levels, total superoxide dismutase (T-SOD), cytosolic superoxide dismutase (Cu/ZnSOD, SOD1) and mitochondrial superoxide dismutase (MnSOD, SOD2) activities at 8 h after irradiation. DNA damages were determined using the Comet assay and apoptosis and cell cycle distribution were detected by flow cytometric analyses. A dramatic dose-dependent decrease in MDA levels, tail moment, rates of tailing cells, and apoptosis, and a dose-dependent increase in T-SOD and SOD2 activities, in brain tissues in the melatonin-treated groups were detected compared with the irradiation only group. Furthermore, flow cytometric analysis demonstrated that the percentage of brain cells in the G0/G1 phase decreased significantly, while those in the S and G2/M stage increased dramatically, with mice pretreated with melatonin compared to the irradiation control group. These data indicate that melatonin has protective effects against irradiation-induced brain injury, and that its underlying protective mechanisms may relate to modulation of oxidative stress induced by heavy ionirradiation.

  6. Correlation between structural and transport properties of electron beam irradiated PrMnO3 compounds

    NASA Astrophysics Data System (ADS)

    Christopher, Benedict; Rao, Ashok; Nagaraja, B. S.; Shyam Prasad, K.; Okram, G. S.; Sanjeev, Ganesh; Petwal, Vikash Chandra; Verma, Vijay Pal; Dwivedi, Jishnu; Poornesh, P.

    2018-02-01

    The structural, electrical, magnetic, and thermal properties of electron beam (EB) irradiated PrMnO3 manganites were investigated in the present communication. X-ray diffraction data reveals that all samples are single phased with orthorhombic distorted structure (Pbnm). Furthermore, the diffracted data are analyzed in detail using Rietveld refinement technique. It is observed that the EB dosage feebly disturbs the MnO6 octahedra. The electrical resistivity of all the samples exhibits semiconducting behavior. Small polaron hopping model is conveniently employed to investigate the semiconducting nature of the pristine as well as EB irradiated samples. The Seebeck coefficient (S) of the pristine as well as the irradiated samples exhibit large positive values at lower temperatures, signifying holes as the dominant charge carriers. The analysis of Seebeck coefficient data confirms that the small polaron hopping mechanism assists the thermoelectric transport property in the high temperature region. The magnetic measurements confirm the existence of paramagnetic (PM) to ferromagnetic (FM) behavior for the pristine and irradiated samples. In the lower temperature regime, coexistence of FM clusters and AFM matrix is dominating. Thus, the complex magnetic behavior of the compound has been explained in terms of rearrangement of antiferromagnetically coupled ionic moments.

  7. Fungal decontamination and enhancement of shelf life of edible split beans of wild legume Canavalia maritima by the electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Supriya, P.; Sridhar, K. R.; Ganesh, S.

    2014-03-01

    Ripened split beans of the coastal sand dune wild legume Canavalia maritima serve as one of the traditional nutritional sources of the coastal dwellers in Southwest coast of India. Nine fungi were isolated from the unirradiated dry beans by plating on the potato dextrose agar medium. Toxigenic fungus Aspergillus niger showed the highest incidence (33-50%) followed by Aspergillus flavus (14-20%) and Penicillium chrysogenum (7-13%). Unirradiated dry beans and irradiated dry beans with electron beam doses 2.5, 5, 10 and 15 kGy were monitored for occurrence of fungal species and their incidence during 0, 3 and 6 months storage period under laboratory conditions. Irradiation resulted in dose-dependent decrease in fungal species (5-7, 4-6, 3-6 and 0 on irradiation at 0, 2.5, 5 and 10 or 15 kGy, respectively) as well as incidence (80-99, 19-46, 13-21 and 0%, respectively). Although aflatoxins (B1 and B2) were found below detectable level (<2 ng/g) in 0, 3 and 6 months stored unirradiated and irradiated beans (2.5 and 5 kGy), they were not present in beans irradiated with 10 and 15 kGy. In spite of occurrence of toxigenic fungus Aspergillus ochraceus in unirradiated and irradiated beans (2.5 and 5 kGy) stored for 3 and 6 months, the beans were devoid of ochratoxin-A. Electron beam irradiation dose 10 kGy could be recommended for fungal decontamination and improvement of shelf life of C. maritima ripened dry split beans.

  8. Investigation of the interaction of copper(II) oxide and electron beam irradiation crosslinkable polyethylene

    NASA Astrophysics Data System (ADS)

    Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Haraveen, K. J. S.; Tee, Tiam-Ting; Rahmat, A. R.

    2015-10-01

    In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.

  9. HIGH SPEED PARTICLE BEAM GENERATION: SIMPLE FOCUSING MECHANISMS. (R823980)

    EPA Science Inventory

    Modern chemical characterization instruments employ an aerosol inlet that transmits atmospheric aerosols to the low pressure source region of a time-of-flight mass spectrometer, where particles are ablated and ionized using high energy irradiation. The ions when analyzed in the m...

  10. Fabrication and characterization of tunnel barriers in a multi-walled carbon nanotube formed by argon atom beam irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomizawa, H.; Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585; Yamaguchi, T., E-mail: tyamag@riken.jp

    We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots withmore » serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed.« less

  11. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi

    2015-12-01

    This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.

  12. Improving the Mechanical Performance and Thermal Stability of a PVA-Clay Nanocomposite by Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Shokuhi Rad, A.; Ebrahimi, D.

    2017-07-01

    The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.

  13. New Elastomeric Materials Based on Natural Rubber Obtained by Electron Beam Irradiation for Food and Pharmaceutical Use

    PubMed Central

    Craciun, Gabriela; Manaila, Elena; Stelescu, Maria Daniela

    2016-01-01

    The efficiency of polyfunctional monomers as cross-linking co-agents on the chemical properties of natural rubber vulcanized by electron beam irradiation was studied. The following polyfunctional monomers were used: trimethylolpropane-trimethacrylate, zinc-diacrylate, ethylene glycol dimethacrylate, triallylcyanurate and triallylisocyanurate. The electron beam treatment was done using irradiation doses in the range of 75 kGy–300 kGy. The gel fraction, crosslink density and effects of different aqueous solutions, by absorption tests, have been investigated as a function of polyfunctional monomers type and absorbed dose. The samples gel fraction and crosslink density were determined on the basis of equilibrium solvent-swelling measurements by applying the modified Flory–Rehner equation for tetra functional networks. The absorption tests were done in accordance with the SR ISI 1817:2015 using distilled water, acetic acid (10%), sodium hydroxide (1%), ethylic alcohol (96%), physiological serum (sodium chloride 0.9%) and glucose (glucose monohydrate 10%). The samples structure and morphology were investigated by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy techniques. PMID:28774150

  14. Control of tunnel barriers in multi-wall carbon nanotubes using focused ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Tomizawa, H.; Suzuki, K.; Yamaguchi, T.; Akita, S.; Ishibashi, K.

    2017-04-01

    We have formed tunnel barriers in individual multi-wall carbon nanotubes using the Ga focused ion beam irradiation. The barrier height was estimated by the temperature dependence of the current (Arrhenius plot) and the current-voltage curves (Fowler-Nordheim plot). It is shown that the barrier height has a strong correlation with the barrier resistance that is controlled by the dose. Possible origins for the variation in observed barrier characteristics are discussed. Finally, the single electron transistor with two barriers is demonstrated.

  15. Analysis of reversibility and reaction products of glyoxal uptake onto ammonium sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Chhabra, P. S.; Chan, A. W.; Surratt, J. D.; Kwan, A. J.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.; Keutsch, F. N.

    2009-04-01

    Glyoxal, the smallest alpha-dicarbonyl, is an oxidation product of both biogenic and anthropogenic volatile organic compounds (Fu et al. JGR 113, D15303, 2008). Despite its low molecular weight, its role in secondary organic aerosol (SOA) formation has gained interest and a recent study suggested that it accounts for more than 15% of SOA in Mexico City (Volkamer et al. GRL 34, L19807, 2007). Despite numerous previous studies, questions remain regarding the processes controlling glyoxal uptake onto aerosol, including the role of acid catalysis, degree of reversibility, and identity of aerosol phase reaction products. We present results of chamber aerosol studies (Galloway et al. ACPD 8, 20799, 2008) and laboratory studies of bulk samples aimed at improving the understanding of these processes, in particular formation of oligomers and organosulfates of glyoxal, as well as the formation of imidazoles (carbon-nitrogen containing heterocyclic aromatic compounds) under dark and irradiated conditions. The relevance of these classes of reaction products extends beyond glyoxal, as evidence of oligomers and organosulfates other than those of glyoxal have been found in ambient aerosol (Surratt et al. JPCA 112, 8345, 2008; Denkenberger et al. Environ. Sci. Technol. 41, 5439, 2007). Experiments in which a chamber air mass was diluted after equilibration of glyoxal uptake onto ammonium sulfate seed aerosol (relative humidity 60% and glyoxal mixing ratios of 25-200 ppbv) shows that under these conditions uptake is reversible. The most important condensed phase products are hydrated oligomers of glyoxal, which are also formed reversibly under these conditions. Our studies show that organosulfates were not formed under dark conditions for neutral or acidified aerosol; similarly, Minerath et al. have recently shown that formation of a different class of organosulfates (alkyl sulfates) also proceeds very slowly even under acidic conditions (Environ. Sci. Technol. 42, 4410, 2008). The

  16. Electron beam irradiation induced compatibilization of immiscible polyethylene/ethylene vinyl acetate (PE/EVA) blends: Mechanical properties and morphology stability

    NASA Astrophysics Data System (ADS)

    Entezam, Mehdi; Aghjeh, Mir Karim Razavi; Ghaffari, Mehdi

    2017-02-01

    Gel content, mechanical properties and morphology of immiscible PE/EVA blends irradiated by high energy electron beam were studied. The results of gel content measurements showed that the capability of cross-linking of the blend samples increased with an increase of the EVA composition. Also, the gel content for most compositions of the blends displayed a positive deviation from the additive rule. The results of mechanical properties showed that the tensile strength and elongation at break of the samples increased and decreased, respectively, with irradiation dose. On the other hand, the mechanical properties of the irradiated blends also depicted a positive deviation from additive rule contrary to the un-irradiated blends. A synergistic effect observed for the mechanical properties improvement of the irradiated blends and it was attributed to the probable formation of the PE-graft-EVA copolymers at the interface of the blends during the irradiation process. A theoretical analysis revealed that irradiation induced synergistic effect was more significant for EVA-rich blends with weaker interfacial interaction as compared to PE-rich blends. The morphological analysis indicated that the blend morphology was not affected obviously, whereas it was stabilized by irradiation.

  17. Electron beam device

    DOEpatents

    Beckner, E.H.; Clauser, M.J.

    1975-08-12

    This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

  18. Evaluation of systems for reducing the transmission of Porcine reproductive and respiratory syndrome virus by aerosol

    PubMed Central

    2006-01-01

    Abstract The purpose of this study was to compare 3 methods for the reduction of aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV): high-efficiency particulate air (HEPA) filtration, low-cost filtration, and ultraviolet light (UV) irradiation. The HEPA-filtration system involved a pre-filter screen, a bag filter (EU8 rating), and a HEPA filter (EU13 rating). The low-cost-filtration system contained mosquito netting (pre-filter), a fiberglass furnace filter, and an electrostatic furnace filter. For UV irradiation, a lamp emitted UVC radiation at 253.7 nm. No form of intervention was used in the control group. The experimental facilities consisted of 2 chambers connected by a 1.3-m-long duct. Recipient pigs, housed in chamber 2, were exposed to artificial aerosols created by a mechanically operated mister containing modified live PRRSV vaccine located in chamber 1. Aerosol transmission of PRRSV occurred in 9 of the 10 control replicates, 8 of the 10 UVC-irradiation replicates, 4 of the 10 low-cost-filtration replicates, and 0 of the 10 HEPA-filtration replicates. When compared with no intervention, HEPA filtration and low-cost filtration significantly reduced PRRSV transmission (P < 0.0005 and = 0.0286, respectively), whereas UV irradiation had no effect (P = 0.5). However, low-cost filtration and UV irradiation were significantly less effective (P = 0.043 and P < 0.0005, respectively) than HEPA filtration. In conclusion, under the conditions of this study, HEPA filtration was significantly more effective at reducing aerosol transmission of PRRSV than the other methods evaluated. PMID:16548329

  19. Direct and semi-direct effects of aerosol climatologies on long-term climate simulations over Europe

    NASA Astrophysics Data System (ADS)

    Schultze, Markus; Rockel, Burkhardt

    2017-08-01

    This study compares the direct and semi-direct aerosol effects of different annual cycles of tropospheric aerosol loads for Europe from 1950 to 2009 using the regional climate model COSMO-CLM, which is laterally forced by reanalysis data and run using prescribed, climatological aerosol optical properties. These properties differ with respect to the analysis strategy and the time window, and are then used for the same multi-decadal period. Five simulations with different aerosol loads and one control simulation without any tropospheric aerosols are integrated and compared. Two common limitations of our simulation strategy, to fully assess direct and semi-direct aerosol effects, are the applied observed sea surface temperatures and sea ice conditions, and the lack of short-term variations in the aerosol load. Nevertheless, the impact of different aerosol climatologies on common regional climate model simulations can be assessed. The results of all aerosol-including simulations show a distinct reduction in solar irradiance at the surface compared with that in the control simulation. This reduction is strongest in the summer season and is balanced primarily by a weakening of turbulent heat fluxes and to a lesser extent by a decrease in longwave emissions. Consequently, the seasonal mean surface cooling is modest. The temperature profile responses are characterized by a shallow near-surface cooling and a dominant warming up to the mid-troposphere caused by aerosol absorption. The resulting stabilization of stratification leads to reduced cloud cover and less precipitation. A decrease in cloud water and ice content over Central Europe in summer possibly reinforce aerosol absorption and thus strengthen the vertical warming. The resulting radiative forcings are positive. The robustness of the results was demonstrated by performing a simulation with very strong aerosol forcing, which lead to qualitatively similar results. A distinct added value over the default aerosol

  20. Investigation of electron beam irradiation effects on anti-nutritional factors, chemical composition and digestion kinetics of whole cottonseed, soybean and canola seeds

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Mahmoudabad, S. R.; Taghinejad-Roudbaneh, M.

    2011-12-01

    This study was completed to determine effects of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on anti-nutritional factors, ruminal degradation and in vitro crude protein (CP) digestibility of whole cottonseed (WCS), soybean (SB) and canola seeds (CS). EB-irradiation eliminated completely ( P<0.001) phytic acid of WCS, SB and CS at a dose of 30 kGy. EB-irradiation decreased linearly ( P<0.001) the total glucosinolate content of CS. Trypsin inhibitor activity of 15, 30 and 45 kGy EB-irradiated SB was decreased by 19, 73 and 88%, respectively. Free gossypol content of WCS was reduced linearly ( P<0.001) by irradiation. EB-irradiation increased linearly ( P<0.001) CP digestibility of feeds. In conclusion, EB-irradiation was an effective processing method for improving the nutritive value of WCS, SB and CS.

  1. Ion beam radiation effects on natural halite crystals

    NASA Astrophysics Data System (ADS)

    Arun, T.; Ram, S. S.; Karthikeyan, B.; Ranjith, P.; Ray, D. K.; Rout, B.; Krishna, J. B. M.; Sengupta, Pranesh; Parlapalli, Venkata Satyam

    2017-10-01

    Halites are one of the interesting material due to its color variations. Natural halites whose color ranges from transparent to dark blue were studied by UV-VIS and Raman spectroscopy. The halite crystals were irradiated with 3 MeV proton micro-beam (∼20 μm beam width with ∼80 PA beam current) for 10 and 90 min to study the radiation damage. After 10 mins of irradiation, small spot developed on the surface of transparent halite crystal whereas after 90 mins of irradiation the spot spread inside the bulk leading to a brown coloration (20 μm initial size to ∼2.0 mm final size). The irradiated portion and the un-irradiated portion of the halites was characterized by Raman spectroscopic technique. The variation in the population density was observed from the UV-Vis spectra. The change in the Raman band intensities was observed for transparent, blue colored and proton beam irradiation halites. Such variation of spectroscopic characteristics due to proton irradiation suggests that the halite can be used for the radiation monitoring.

  2. Volatile compounds and odor traits of dry-cured ham (Prosciutto crudo) irradiated by electron beam and gamma rays

    NASA Astrophysics Data System (ADS)

    Kong, Qiulian; Yan, Weiqiang; Yue, Ling; Chen, Zhijun; Wang, Haihong; Qi, Wenyuan; He, Xiaohua

    2017-01-01

    Prosciutto crudo samples were irradiated at 0, 3 and 6 kGy by gamma rays (GR) and electron beam (EB), respectively. The odor scores and volatile compounds were examined after 7 days storage at 4 °C. Volatile compounds from samples without and with irradiation at 6 kGy were analyzed by GC-MS. Fifty-nine compounds were identified, including terpenes, aldehydes, alcohols, ketones, alkanes, esters, aromatic hydrocarbons and acids. Both GR and EB irradiation resulted in formation of (Z)-7-Hexadecenal, cis-9-hexadecenal, tetradecane, E-9-tetradecen-1-ol formate, and losing of hexadecamethyl-heptasiloxane and decanoic acid-ethyl ester in hams. However, GR irradiation caused additional changes, such as formation of undecane and phthalic acid-2-cyclohexylethyl butyl ester, significantly higher level of 1-pentadecene, and losing of (E, E)-2,4-decadienal and octadecane. EB was shown to be better in maintaining ham's original odor than GR. Our results suggest that EB irradiation is a promising method for treatment of ready to eat hams as it exerts much less negative effect on the flavor of hams compared to GR irradiation.

  3. Spot-scanning beam delivery with laterally- and longitudinally-mixed spot size pencil beams in heavy ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Yan, Yuan-Lin; Liu, Xin-Guo; Dai, Zhong-Ying; Ma, Yuan-Yuan; He, Peng-Bo; Shen, Guo-Sheng; Ji, Teng-Fei; Zhang, Hui; Li, Qiang

    2017-09-01

    The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally-mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviation/mean) in the target volume is better than 95%. Supported by Key Project of National Natural Science Foundation of China (U1232207), National Key Technology Support Program of the Ministry of Science and Technology of China (2015BAI01B11), National Key Research and Development Program of the Ministry of Science and Technology of China (2016YFC0904602) and National Natural Science Foundation of China (11075191, 11205217, 11475231, 11505249)

  4. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations.

    PubMed

    Matsui, S; Mori, Y; Nonaka, T; Hattori, T; Kasamatsu, Y; Haraguchi, D; Watanabe, Y; Uchiyama, K; Ishikawa, M

    2016-05-01

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  5. Zonal Aerosol Direct and Indirect Radiative Forcing using Combined CALIOP, CERES, CloudSat, and CERES Data

    NASA Astrophysics Data System (ADS)

    Miller, W. F.; Kato, S.; Rose, F. G.; Sun-Mack, S.

    2009-12-01

    Under the NASA Energy and Water Cycle System (NEWS) program, cloud and aerosol properties derived from CALIPSO, CloudSat, and MODIS data then matched to the CERES footprint are used for irradiance profile computations. Irradiance profiles are included in the publicly available product, CCCM. In addition to the MODIS and CALIPSO generated aerosol, aerosol optical thickness is calculated over ocean by processing MODIS radiance through the Stowe-Ignatov algorithm. The CERES cloud mask and properties algorithm are use with MODIS radiance to provide additional cloud information to accompany the actively sensed data. The passively sensed data is the only input to the standard CERES radiative flux products. The combined information is used as input to the NASA Langley Fu-Liou radiative transfer model to determine vertical profiles and Top of Atmosphere shortwave and longwave flux for pristine, all-sky, and aerosol conditions for the special data product. In this study, the three sources of aerosol optical thickness will be compared directly and their influence on the calculated and measured TOA fluxes. Earlier studies indicate that the largest uncertainty in estimating direct aerosol forcing using aerosol optical thickness derived from passive sensors is caused by cloud contamination. With collocated CALIPSO data, we are able to estimate frequency of occurrence of cloud contamination, effect on the aerosol optical thickness and direct radiative effect estimates.

  6. Photophoretic velocimetry for the characterization of aerosols.

    PubMed

    Haisch, Christoph; Kykal, Carsten; Niessner, Reinhard

    2008-03-01

    Aerosols are particles in a size range from some nanometers to some micrometers suspended in air or other gases. Their relevance varies as wide as their origin and composition. In the earth's atmosphere they influence the global radiation balance and human health. Artificially produced aerosols are applied, e.g., for drug administration, as paint and print pigments, or in rubber tire production. In all these fields, an exact characterization of single particles as well as of the particle ensemble is essential. Beyond characterization, continuous separation is often required. State-of-the-art separation techniques are based on electrical, thermal, or flow fields. In this work we present an approach to apply light in the form of photophoretic (PP) forces for characterization and separation of aerosol particles according to their optical properties. Such separation technique would allow, e.g., the separation of organic from inorganic particles of the same aerodynamic size. We present a system which automatically records velocities induced by PP forces and does a statistical evaluation in order to characterize the particle ensemble properties. The experimental system essentially consists of a flow cell with rectangular cross section (1 cm(2), length 7 cm), where the aerosol stream is pumped through in the vertical direction at ambient pressure. In the cell, a laser beam is directed orthogonally to the particle flow direction, which results in a lateral displacement of the particles. In an alternative configuration, the beam is directed in the opposite direction to the aerosol flow; hence, the particles are slowed down by the PP force. In any case, the photophoretically induced variations of speed and position are visualized by a second laser illumination and a camera system, feeding a mathematical particle tracking algorithm. The light source inducing the PP force is a diode laser (lambda = 806 nm, P = 0.5 W).

  7. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe 2: Enabling nanoscale direct write homo-junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe 2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe 2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe 2more » thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe 2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe 2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  8. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe 2: Enabling nanoscale direct write homo-junctions

    DOE PAGES

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; ...

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe 2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe 2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe 2more » thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe 2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe 2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  9. Formation of carbon allotrope aerosol by colliding plasmas in an inertial fusion reactor

    NASA Astrophysics Data System (ADS)

    Hirooka, Y.; Sato, H.; Ishihara, K.; Yabuuchi, T.; Tanaka, K. A.

    2014-02-01

    Along with repeated implosions, the interior of an inertial fusion target chamber is exposed to short pulses of high-energy x-ray, unburned DT-fuel particles, He-ash and pellet debris. As a result, chamber wall materials are subjected to ablation, emitting particles in the plasma state. Ablated particles will either be re-deposited elsewhere or collide with each other, perhaps in the centre-of-symmetry region of the chamber volume. Colliding ablation plasma particles can lead to the formation of clusters to grow into aerosol, possibly floating thereafter, which can deteriorate the subsequent implosion performance via laser scattering, etc. In a laboratory-scale YAG laser setup, the formation of nano-scale aerosol has been demonstrated in vacuum at irradiation power densities of the orders of 108-10 W cm-2 at 10 Hz, each 6 ns long, simulating the high-repetition rate inertial fusion reactor situation. Interestingly, carbon aerosol formation has been observed in the form of fullerene onion, nano- and micro-tubes when laser-ablated plasma plumes of carbon collide with each other. In contrast, colliding plasma plumes of metals tend to generate aerosol in the form of droplets under identical laser irradiation conditions. An atomic and molecular reaction model is proposed to interpret the process of carbon allotrope aerosol formation.

  10. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique of estimating aerosol radiative forcing from high resolution spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, Roshan

    2016-04-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. We look into the approach where ground based spectral radiation flux measurement is made and along with an Radtiative transfer (RT) model, radiative forcing is estimated. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and a 3nm resolution during around 54 clear-sky days during which AOD range was around 0.01 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. The primary study involved in understanding the sensitivity of spectral flux due to change in individual aerosol species (Optical properties of Aerosols and Clouds (OPAC) classified aerosol species) using the SBDART RT model. This made us clearly distinguish the influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves matching different combinations of aerosol species in OPAC model and RT model as long as the combination which gives the minimum root mean squared deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model, aerosol radiative forcing is estimated. Also an alternate method to estimate the spectral SSA is discussed. Here, the RT model, the observed spectral flux and spectral AOD is used. Spectral AOD is input to RT model and SSA is varied till the minimum root mean squared difference between observed and simulated spectral flux from RT model is obtained. The methods discussed are limited to clear sky scenes and its accuracy to derive

  11. Nanostructures by ion beams

    NASA Astrophysics Data System (ADS)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  12. Molecular dynamics and dynamic Monte-Carlo simulation of irradiation damage with focused ion beams

    NASA Astrophysics Data System (ADS)

    Ohya, Kaoru

    2017-03-01

    The focused ion beam (FIB) has become an important tool for micro- and nanostructuring of samples such as milling, deposition and imaging. However, this leads to damage of the surface on the nanometer scale from implanted projectile ions and recoiled material atoms. It is therefore important to investigate each kind of damage quantitatively. We present a dynamic Monte-Carlo (MC) simulation code to simulate the morphological and compositional changes of a multilayered sample under ion irradiation and a molecular dynamics (MD) simulation code to simulate dose-dependent changes in the backscattering-ion (BSI)/secondary-electron (SE) yields of a crystalline sample. Recent progress in the codes for research to simulate the surface morphology and Mo/Si layers intermixing in an EUV lithography mask irradiated with FIBs, and the crystalline orientation effect on BSI and SE yields relating to the channeling contrast in scanning ion microscopes, is also presented.

  13. Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Zhou, Ruimin; Wu, Xinfeng; Hao, Xufeng; Zhou, Fei; Li, Hongbin; Rao, Weihong

    2008-02-01

    Electron beam radiation was applied to prepare nano-size copper in water system using polyvinyl alcohol, sodium dodecyl benzene sulfonate, gluten and polyethylene glycol as the surfactants, respectively. The irradiated products were characterized by XRD, TEM and LSPSDA. The XRD and TEM showed that relative pure copper products with an average size of 20 nm, 40 nm and 20 nm can be obtained by using gluten, PEG and SDBS as surfactant, respectively. An admixture of copper and cuprous oxide was obtained in PVA system. The LSPSDA showed that the size of the Cu nanoparticles decreased with increasing the glutin concentration.

  14. Effects of gamma ray and electron beam irradiation on reduction of microbial load and antioxidant properties of Chum-Hed-Thet (Cassia alata (L.) Roxb.)

    NASA Astrophysics Data System (ADS)

    Prakhongsil, P.; Pewlong, W.; Sajjabut, S.; Chookaew, S.

    2017-06-01

    Considering the growing demands of herbal medicines, Cassia alata (L.) Roxb. has been reported to have various phytochemical activities. It has also been called in Thai as Chum-Hed-Thet. In this study, C. alata (L.) Roxb. powder were exposed to gamma and electron beam irradiation at doses of 0, 5, 10, 15 and 20 kGy. At the dose of 10 kGy, both of gamma and electron beam irradiation were sufficient in reducing microbial load of irradiated samples as specified in Thai pharmacopoeia (2005). These include the total aerobic microbial count of < 5.0x105 CFU/g, total fungi count of < 5.0x104 CFU/g, bile tolerant gram negative bacteria of < 104 (per g). In addition, pathogenic Clostridium spp. (per 10 g), Salmonella spp. (per 10 g), S. aureus (per 1g) and E.coli (per 1g) were absence. In terms of the bioactive molecules, the total phenolic content, DPPH free radical scavenging activity and ferric reducing antioxidant potential of unirradiated and irradiated samples were 19.32-22.44 mg gallic acid equivalent/g, 5.20-7.82 mg ascorbic acid equivalent/g and 69.46-82.06 μmol FeSO4/g, respectively. However, there were no significant differences between unirradiated and irradiated samples (p>0.05). Therefore, both of radiation by gamma ray or electron beam at 10 kGy was sufficient in elimination of microbial flora and did not significantly affected the total phenolic content and antioxidant activities of C. alata (L.) Roxb.

  15. Special cases for proton beam radiotherapy: re-irradiation, lymphoma, and breast cancer.

    PubMed

    Plastaras, John P; Berman, Abigail T; Freedman, Gary M

    2014-12-01

    The dose distributions that can be achieved with protons are usually superior to those of conventional photon external-beam radiation. There are special cases where proton therapy may offer a substantial potential benefit compared to photon treatments where toxicity concerns dominate. Re-irradiation may theoretically be made safer with proton therapy due to lower cumulative lifetime doses to sensitive tissues, such as the spinal cord. Proton therapy has been used in a limited number of patients with rectal, pancreatic, esophageal, and lung cancers. Chordomas and soft tissue sarcomas require particularly high radiation doses, posing additional challenges for re-irradiation. Lymphoma is another special case where proton therapy may be advantageous. Late toxicities from even relatively low radiation doses, including cardiac complications and second cancers, are of concern in lymphoma patients with high cure rates and long life expectancies. Proton therapy has begun to be used for consolidation after chemotherapy in patients with Hodgkin and non-Hodgkin lymphoma. Breast cancer is another emerging area of proton therapy development and use. Proton therapy may offer advantages compared to other techniques in the setting of breast boosts, accelerated partial breast irradiation, and post-mastectomy radiotherapy. In these settings, proton therapy may decrease toxicity associated with breast radiotherapy. As techniques are refined in proton therapy, we may be able to improve the therapeutic ratio by maintaining the benefits of radiotherapy while better minimizing the risks. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effects of electron beam irradiation and temperature on the treatment of swine wastewater using an ion exchange biological reactor.

    PubMed

    Lim, Seung Joo; Kim, Tak-Hyun; Lee, Sang-hun; Kim, Jun-young; Kim, Sun-kyoung

    2013-06-01

    Swine wastewater was treated using an ion exchange biological reactor (IEBR). Organic matter and nutrient in swine wastewater were pre-treated by electron beam irradiation. The optimal dose for solubilization of organic matter in swine wastewater ranged from 20 kGy to 75 kGy. The carbohydrates, proteins, and lipids were investigated as proteins and lipids mainly contained the solubilized organic matter. The solubilization of organic matter in swine wastewater was affected by the combination effects of temperature and dose. The maximum chemical oxygen demand (COD) and ammonia removal efficiencies were 74.4% and 76.7% at a dose of 0 kGy under room temperatures (23.0°C). The removal of ammonia was significantly affected by low temperature (15.3°C). On the other hand, the removal of phosphorus was not a function of electron beam irradiation or temperature because struvite is one of the main removal mechanisms under anoxic conditions. Published by Elsevier Ltd.

  17. Effect of analytical proton beam irradiation on lead-white pigments, characterized by EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gourier, Didier; Binet, Laurent; Gonzalez, Victor; Vezin, Hervé; Touati, Nadia; Calligaro, Thomas

    2018-01-01

    Analytical techniques using proton beams with energy in the MeV range are commonly used to study archeological artefact and artistic objects. However ion beams can induce alteration of fragile materials, which is notably the case of easel paintings, limiting the use of these techniques. We used continuous wave EPR and pulse EPR spectroscopy to reveal the effect of 3 MeV proton irradiation on lead carbonates, which were extensively employed as white pigments from the antiquity to the 20th century. Two kinds of paramagnetic centers were identified in cerussite (PbCO3): the first one is CO3- radicals formed by hole trapping by CO32- ions, and the second one is NO32- radical resulting from electron trapping by NO3- impurities. Hydrocerussite (2PbCO3·Pb(OH)2) is the most darkened material under proton beam, however it exhibits no NO32- radicals and 20 times less CO3- radicals than cerussite. Consequently these paramagnetic centers are not directly responsible for the darkening of lead-white pigments. We proposed that their higher instability in hydrocerussite might be at the origin of the formation of color centers in this material.

  18. Effects of low energy E-beam irradiation on graphene and graphene field effect transistors and raman metrology of graphene on split gate test structures

    NASA Astrophysics Data System (ADS)

    Rao, Gayathri S.

    2011-12-01

    Apart from its compelling performance in conventional nanoelectronic device geometries, graphene is an appropriate candidate to study certain interesting phenomenon (e.g. the Veselago lens effect) predicted on the basis of its linear electron dispersion relation. A key requirement for the observation of such phenomenon in graphene and for its use in conventional field-effect transistor (FET) devices is the need to minimize defects such as consisting of -- or resulting from -- adsorbates and lattice non-uniformities, and reduce deleterious substrate effects. Consequently the investigation of the origin and interaction of defects in the graphene lattice is essential to improve and tailor graphene-based device performance. In this thesis, optical spectroscopic studies on the influence of low-energy electron irradiation on adsorbate-induced defectivity and doping for substrate supported and suspended graphene were carried out along with spectroscopic and transport measurements on graphene FETs. A comparative investigation of the effects of single-step versus multi-step, low-energy electron irradiation (500 eV) on suspended, substrate supported graphene and on graphene FETs is reported. E-beam irradiation (single-step and multi-step) of substrate-supported graphene resulted in an increase in the Raman ID/IG ratio largely from hydrogenation due to radiolysis of the interfacial water layer between the graphene and the SiO2 substrate and from irradiated surface adsorbates. GFETs subjected to single and multi-step irradiation showed n-doping from CNP (charge neutrality point) shift of ˜ -8 and ˜ -16 V respectively. Correlation of this data with Raman analysis of suspended and supported graphene samples implied a strong role of the substrate and irradiation sequence in determining the level of doping. A correspondingly higher reduction in mobility per incident electron was also observed for GFETs subjected to multi-step irradiation compared to single step, in line with

  19. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  20. Stability and linearity of luminescence imaging of water during irradiation of proton-beams and X-ray photons lower energy than the Cerenkov light threshold

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Koyama, Shuji; Yabe, Takuya; Komori, Masataka; Tada, Junki; Ito, Shiori; Toshito, Toshiyuki; Hirata, Yuho; Watanabe, Kenichi

    2018-03-01

    Luminescence of water during irradiations of proton-beams or X-ray photons lower energy than the Cerenkov-light threshold is promising for range estimation or the distribution measurements of beams. However it is not yet obvious whether the intensities and distributions are stable with the water conditions such as temperature or addition of solvable materials. It remains also unclear whether the luminescence of water linearly increases with the irradiated proton or X-ray energies. Consequently we measured the luminescence of water during irradiations of proton-beam or X-ray photons lower energy than the Cerenkov-light threshold with different water conditions and energies to evaluate the stability and linearity of luminescence of water. We placed a water phantom set with a proton therapy or X-ray system, luminescence images of water with different conditions and energies were measured with a high-sensitivity cooled charge coupled device (CCD) camera during proton or X-ray irradiations to the water phantom. In the stability measurements, imaging was made for different temperatures of water and addition of inorganic and organic materials to water. In the linearity measurements for the proton, we irradiated with four different energies below Cerenkov light threshold. In the linearity measurements for the X-ray, we irradiated X-ray with different supplied voltages. We evaluated the depth profiles for the luminescence images and evaluated the light intensities and distributions. The results showed that the luminescence of water was quite stable with the water conditions. There were no significant changes of intensities and distributions with the different temperatures. Results from the linearity experiments showed that the luminescence of water linearly increased with their energies. We confirmed that luminescence of water is stable with conditions of water. We also confirmed that the luminescence of water linearly increased with their energies.

  1. Influence of electron beam irradiation on the microrheology of incompatible polymer blends: Thread break-up and coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Gisbergen, J.G.M.; Meijer, H.E.H.

    1991-01-01

    The microrheology of polymer blends as influenced by crosslinks induced in the dispersed phase via electron beam irradiation, is systematically investigated for the model system polystyrene/low density polyethylene (PS/LDPE). Both break-up of threads and coalescence of particles are delayed to a large extent, but are not inhibited completely and occur faster than would be expected for a nonirradiated material with a comparable viscosity. Small amplitude, dynamic rheological measurements indicated that in the irradiated materials a yield stress could exist. In contrast, direct microrheological measurements showed that this yield stress, which would prevent both break-up and coalescence, could not be realizedmore » by EB irradiation. Apparently, the direct study of the microrheology of a blend system is important for the prediction of the development of its morphology and it is not possible to rely only on rheological data obtained via other methods.« less

  2. Final Report on MEGAPIE Target Irradiation and Post-Irradiation Examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yong, Dai

    2015-06-30

    Megawatt pilot experiment (MEGAPIE) was successfully performed in 2006. One of the important goals of MEGAPIE is to understand the behaviour of structural materials of the target components exposed to high fluxes of high-energy protons and spallation neutrons in flowing LBE (liquid lead-bismuth eutectic) environment by conducting post-irradiation examination (PIE). The PIE includes four major parts: non-destructive test, radiochemical analysis of production and distribution of radionuclides produced by spallation reaction in LBE, analysis of LBE corrosion effects on structural materials, T91 and SS 316L steels, and mechanical testing of the T91 and SS 316L steels irradiated in the lower partmore » of the target. The non-destructive test (NDT) including visual inspection and ultrasonic measurement was performed in the proton beam window area of the T91 calotte of the LBE container, the most intensively irradiated part of the MEGAPIE target. The visual inspection showed no visible failure and the ultrasonic measurement demonstrated no detectable change in thickness in the beam window area. Gamma mapping was also performed in the proton beam window area of the AlMg 3 safety-container. The gamma mapping results were used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. Radiochemical analysis of radionuclides produced by spallation reaction in LBE is to improve the understanding of the production and distribution of radionuclides in the target. The results demonstrate that the radionuclides of noble metals, 207Bi, 194Hg/Au are rather homogeneously distributed within the target, while radionuclides of electropositive elements are found to be deposited on the steel-LBE interface. The corrosion effect of LBE on the structural components under intensive irradiation was investigated by metallography. The results show that no evident corrosion damages. However, unexpected deep cracks were found in the

  3. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    NASA Technical Reports Server (NTRS)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  4. Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.

    2011-11-01

    Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.

  5. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y.; Nonaka, T.

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films andmore » Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.« less

  6. Emulation of reactor irradiation damage using ion beams

    DOE PAGES

    Was, G. S.; Jiao, Z.; Getto, E.; ...

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  7. Rapid phase-correlated rescanning irradiation improves treatment time in carbon-ion scanning beam treatment under irregular breathing

    NASA Astrophysics Data System (ADS)

    Mori, Shinichiro; Furukawa, Takuji

    2016-05-01

    To shorten treatment time in pencil beam scanning irradiation, we developed rapid phase-controlled rescanning (rPCR), which irradiates two or more isoenergy layers in a single gating window. Here, we evaluated carbon-ion beam dose distribution with rapid and conventional PCR (cPCR). 4 dimensional computed tomography (4DCT) imaging was performed on 12 subjects with lung or liver tumors. To compensate for intrafractional range variation, the field-specific target volume (FTV) was calculated using 4DCT within the gating window (T20-T80). We applied an amplitude-based gating strategy, in which the beam is on when the tumor is within the gating window defined by treatment planning. Dose distributions were calculated for layered phase-controlled rescanning under an irregular respiratory pattern, although a single 4DCT data set was used. The number of rescannings was eight times. The prescribed doses were 48 Gy(RBE)/1 fr (where RBE is relative biological effectiveness) delivered via four beam ports to the FTV for the lung cases and 45 Gy(RBE)/2 fr delivered via two beam ports to the FTV for the liver cases. In the liver cases, the accumulated dose distributions showed an increased magnitude of hot/cold spots with rPCR compared with cPCR. The results of the dose assessment metrics for the cPCR and rPCR were very similar. The D 95, D max, and D min values (cPCR/rPCR) averaged over all the patients were 96.3  ±  0.9%/96.0  ±  1.2%, 107.3  ±  3.6%/107.1  ±  2.9%, and 88.8  ±  3.2%/88.1  ±  3.1%, respectively. The treatment times in cPCR and rPCR were 110.7 s and 53.5 s, respectively. rPCR preserved dose conformation under irregular respiratory motion and reduced the total treatment time compared with cPCR.

  8. Quantifying the Reduction in Potential Health Risks by Determining the Sensitivity of Poliovirus Type 1 Chat Strain and Rotavirus SA-11 to Electron Beam Irradiation of Iceberg Lettuce and Spinach

    PubMed Central

    Espinosa, Ana Cecilia; Jesudhasan, Palmy; Arredondo, René; Cepeda, Martha; Mazari-Hiriart, Marisa; Mena, Kristi D.

    2012-01-01

    Fresh produce, such as lettuce and spinach, serves as a route of food-borne illnesses. The U.S. FDA has approved the use of ionizing irradiation up to 4 kGy as a pathogen kill step for fresh-cut lettuce and spinach. The focus of this study was to determine the inactivation of poliovirus and rotavirus on lettuce and spinach when exposed to various doses of high-energy electron beam (E-beam) irradiation and to calculate the theoretical reduction in infection risks that can be achieved under different contamination scenarios and E-beam dose applications. The D10 value (dose required to reduce virus titers by 90%) (standard error) of rotavirus on spinach and lettuce was 1.29 (± 0.64) kGy and 1.03 (± 0.05) kGy, respectively. The D10 value (standard error) of poliovirus on spinach and lettuce was 2.35 (± 0.20) kGy and 2.32 (± 0.08) kGy, respectively. Risk assessment of data showed that if a serving (∼14 g) of lettuce was contaminated with 10 PFU/g of poliovirus, E-beam irradiation at 3 kGy will reduce the risk of infection from >2 in 10 persons to approximately 6 in 100 persons. Similarly, if a serving size (∼0.8 g) of spinach is contaminated with 10 PFU/g of rotavirus, E-beam irradiation at 3 kGy will reduce infection risks from >3 in 10 persons to approximately 5 in 100 persons. The results highlight the value of employing E-beam irradiation to reduce public health risks but also the critical importance of adhering to good agricultural practices that limit enteric virus contamination at the farm and in packing houses. PMID:22179244

  9. Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry.

    PubMed

    Sumner, Andrew J; Woo, Joseph L; McNeill, V Faye

    2014-10-21

    The reactive uptake of glyoxal by atmospheric aerosols is believed to be a significant source of secondary organic aerosol (SOA). Several recent laboratory studies have been performed with the goal of characterizing this process, but questions remain regarding the effects of photochemistry on SOA growth. We applied GAMMA (McNeill et al. Environ. Sci. Technol. 2012, 46, 8075-8081), a photochemical box model with coupled gas-phase and detailed aqueous aerosol-phase chemistry, to simulate aerosol chamber studies of SOA formation by the uptake of glyoxal by wet aerosol under dark and irradiated conditions (Kroll et al. J. Geophys. Res. 2005, 110 (D23), 1-10; Volkamer et al. Atmos. Chem. Phys. 2009, 9, 1907-1928; Galloway et al. Atmos. Chem. Phys. 2009, 9, 3331- 306 3345 and Geophys. Res. Lett. 2011, 38, L17811). We find close agreement between simulated SOA growth and the results of experiments conducted under dark conditions using values of the effective Henry's Law constant of 1.3-5.5 × 10(7) M atm(-1). While irradiated conditions led to the production of some organic acids, organosulfates, and other oxidation products via well-established photochemical mechanisms, these additional product species contribute negligible aerosol mass compared to the dark uptake of glyoxal. Simulated results for irradiated experiments therefore fell short of the reported SOA mass yield by up to 92%. This suggests a significant light-dependent SOA formation mechanism that is not currently accounted for by known bulk photochemistry, consistent with recent laboratory observations of SOA production via photosensitizer chemistry.

  10. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-01-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic aerosols (BA), for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2) and malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment, except for ω-oxooctanoic acid (ωC8) that showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids dominates their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  11. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  12. Radiobiologic significance of response of intratumor quiescent cells in vivo to accelerated carbon ion beams compared with gamma-rays and reactor neutron beams.

    PubMed

    Masunaga, Shin-Ichiro; Ando, Koichi; Uzawa, Akiko; Hirayama, Ryoichi; Furusawa, Yoshiya; Koike, Sachiko; Sakurai, Yoshinori; Nagata, Kenji; Suzuki, Minoru; Kashino, Genro; Kinashi, Yuko; Tanaka, Hiroki; Maruhashi, Akira; Ono, Koji

    2008-01-01

    To clarify the radiosensitivity of intratumor quiescent cells in vivo to accelerated carbon ion beams and reactor neutron beams. Squamous cell carcinoma VII tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine to label all intratumor proliferating cells. Next, they received accelerated carbon ion or gamma-ray high-dose-rate (HDR) or reduced-dose-rate (RDR) irradiation. Other tumor-bearing mice received reactor thermal or epithermal neutrons with RDR irradiation. Immediately after HDR and RDR irradiation or 12 h after HDR irradiation, the response of quiescent cells was assessed in terms of the micronucleus frequency using immunofluorescence staining for 5-bromo-2'-deoxyuridine. The response of the total (proliferating plus quiescent) tumor cells was determined from the 5-bromo-2'-deoxyuridine nontreated tumors. The difference in radiosensitivity between the total and quiescent cell populations after gamma-ray irradiation was markedly reduced with reactor neutron beams or accelerated carbon ion beams, especially with a greater linear energy transfer (LET) value. Clearer repair in quiescent cells than in total cells through delayed assay or a decrease in the dose rate with gamma-ray irradiation was efficiently inhibited with carbon ion beams, especially with a greater LET. With RDR irradiation, the radiosensitivity to accelerated carbon ion beams with a greater LET was almost similar to that to reactor thermal and epithermal neutron beams. In terms of tumor cell-killing effect as a whole, including quiescent cells, accelerated carbon ion beams, especially with greater LET values, are very useful for suppressing the dependency on the heterogeneity within solid tumors, as well as depositing the radiation dose precisely.

  13. Illuminating e-beam processing

    USDA-ARS?s Scientific Manuscript database

    This month's Processing column will explore electronic beam (e-beam) processing. E-beam processing uses a low energy form of irradiation and has emerged as a highly promising treatment for both food safety and quarantine purposes. It is also used to extend food shelf life. This column will review...

  14. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NO x photooxidation system

    NASA Astrophysics Data System (ADS)

    Lu, Zifeng; Hao, Jiming; Takekawa, Hideto; Hu, Lanhua; Li, Junhua

    High concentrations (>15 μm 3 cm -3) of CaSO 4, Ca(NO 3) 2 and (NH 4) 2SO 4 were selected as surrogates of dry neutral, aqueous neutral and dry acidic inorganic seed aerosols, respectively, to study the effects of inorganic seeds on secondary organic aerosol (SOA) formation in irradiated m-xylene/NO x photooxidation systems. The results indicate that neither ozone formation nor SOA formation is significantly affected by the presence of neutral aerosols (both dry CaSO 4 and aqueous Ca(NO 3) 2), even at elevated concentrations. The presence of high concentrations of (NH 4) 2SO 4 aerosols (dry acidic) has no obvious effect on ozone formation, but it does enhance SOA generation and increase SOA yields. In addition, the effect of dry (NH 4) 2SO 4 on SOA yield is found to be positively correlated with the (NH 4) 2SO 4 surface concentration, and the effect is pronounced only when the surface concentration reaches a threshold value. Further, it is proposed that the SOA generation enhancement is achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of dry (NH 4) 2SO 4 seed aerosols.

  15. Photochemical Formation of Sulfur-Containing Aerosols

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Vaida, Veronica

    2017-06-01

    In order to understand planetary climate systems, modeling the properties of atmospheric aerosols is vital. Aerosol formation plays an important role in planetary climates and is tied to feedback loops that can either warm or cool a planet. Sulfur compounds are known to play an important role in new particle aerosol formation and have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere; however, several discrepancies arise when comparing observations of the Venusian atmosphere with model predictions. This suggests that there are still problems in our fundamental understanding of sulfur chemistry. This is concerning given recent renewed interest in sulfate injections in the stratosphere for solar radiation management geo-engineering schemes. We investigate the role of sunlight as a potential driver of the formation of sulfur-containing aerosols. I will present recent work investigating the generation of large quantities of aerosol from the irradiation of mixtures of SO_2 with water and organic species, using a solar simulator that mimics the light that is available in the Earth's troposphere and the Venusian middle atmosphere. I will present on recent work done in our lab suggesting the formation of sulfurous acid, H_2SO_3, and describe experimental work that supports this proposed mechanism. Additionally I will present on new work showing the highly reactive nature of electronically excited SO_2 with saturated alkane species. The implications of this photochemically induced sulfur aerosol formation in the atmosphere of Earth and other planetary atmospheres will be discussed.

  16. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals

    DOE PAGES

    Awel, Salah; Kirian, Richard A.; Wiedorn, Max O.; ...

    2018-02-01

    High-resolution Bragg diffraction from aerosolized single granulovirus nanocrystals using an X-ray free-electron laser is demonstrated. The outer dimensions of the in-vacuum aerosol injector components are identical to conventional liquid-microjet nozzles used in serial diffraction experiments, which allows the injector to be utilized with standard mountings. As compared with liquid-jet injection, the X-ray scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. Such reduction is required for diffraction measurements of small macromolecular nanocrystals and single particles. High particle speeds are achieved, making the approach suitable for use at upcoming high-repetition-rate facilities.

  17. Effects of beam irregularity on uniform scanning

    NASA Astrophysics Data System (ADS)

    Kim, Chang Hyeuk; Jang, Sea duk; Yang, Tae-Keun

    2016-09-01

    An active scanning beam delivery method has many advantages in particle beam applications. For the beam is to be successfully delivered to the target volume by using the active scanning technique, the dose uniformity must be considered and should be at least 2.5% in the case of therapy application. During beam irradiation, many beam parameters affect the 2-dimensional uniformity at the target layer. A basic assumption in the beam irradiation planning stage is that the shape of the beam is symmetric and follows a Gaussian distribution. In this study, a pure Gaussian-shaped beam distribution was distorted by adding parasitic Gaussian distribution. An appropriate uniform scanning condition was deduced by using a quantitative analysis based on the gamma value of the distorted beam and 2-dimensional uniformities.

  18. An Optimized Online Verification Imaging Procedure for External Beam Partial Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, David J., E-mail: David.Willis@petermac.or; Royal Melbourne Institute of Technology University, Melbourne, Victoria; Kron, Tomas

    2011-07-01

    The purpose of this study was to evaluate the capabilities of a kilovoltage (kV) on-board imager (OBI)-equipped linear accelerator in the setting of on-line verification imaging for external-beam partial breast irradiation. Available imaging techniques were optimized and assessed for image quality using a modified anthropomorphic phantom. Imaging dose was also assessed. Imaging techniques were assessed for physical clearance between patient and treatment machine using a volunteer. Nonorthogonal kV image pairs were identified as optimal in terms of image quality, clearance, and dose. After institutional review board approval, this approach was used for 17 patients receiving accelerated partial breast irradiation. Imagingmore » was performed before every fraction verification with online correction of setup deviations >5 mm (total image sessions = 170). Treatment staff rated risk of collision and visibility of tumor bed surgical clips where present. Image session duration and detected setup deviations were recorded. For all cases, both image projections (n = 34) had low collision risk. Surgical clips were rated as well as visualized in all cases where they were present (n = 5). The average imaging session time was 6 min, 16 sec, and a reduction in duration was observed as staff became familiar with the technique. Setup deviations of up to 1.3 cm were detected before treatment and subsequently confirmed offline. Nonorthogonal kV image pairs allowed effective and efficient online verification for partial breast irradiation. It has yet to be tested in a multicenter study to determine whether it is dependent on skilled treatment staff.« less

  19. Experimental evidence of nitrous acid formation in the electron beam treatment of flue gas

    NASA Astrophysics Data System (ADS)

    Mätzing, H.; Namba, H.; Tokunaga, O.

    1994-03-01

    In the Electron Beam Dry Scrubbing (EBDS) process, flue gas from fossil fuel burning power plants is irradiated with accelerated (300-800 keV) electrons. Thereby, nitrogen oxide (NO x) and sulfur dioxide (SO 2) traces are transformed into nitric and sulfuric acids, respectively, which are converted into particulate ammonium nitrate and sulfate upon the addition of ammonia. The powdery can be filtered from the main gas stream and can be sold as agricultural fertilizer. A lot of experimental investigations have been performed on the EBDS process and computer models have been developed to interpret the experimental results and to predict economic improvements. According to the model calculations, substantial amounts of intermediate nitrous acid (HNO 2) are formed in the electron beam treatment of flue gas. However, no corresponding experimental information is available so far. Therefore, we have undertaken the first experimental investigation about the formation of nitrous acid in an irradiated mixture of NO in synthetic air. Under these conditions, aerosol formation is avoided. UV spectra of the irradiated gas were recorded in the wavelength range λ = 345-375 nm. Both NO 2 and HNO 2 have characteristic absorption bands in this wavelength range. Calibration spectra of NO 2 were subtracted from the sample spectra. The remaining absorption bands can clearly be assigned to nitrous acid. The concentration of nitrous acid was determined by differential optical absorption. It was found lower than the model prediction. The importance of nitrous acid formation in the EBDS process needs to be clarified.

  20. Significance of Heavy-Ion Beam Irradiation-Induced Avermectin B1a Production by Engineered Streptomyces avermitilis

    PubMed Central

    Bo, Yong-Heng; Chen, Ji-Hong; Li, Wen-Jian; Liang, Jian-Ping; Xiao, Guo-Qing; Wang, Yu-Chen; Liu, Jing; Hu, Wei; Jiang, Bo-Ling

    2017-01-01

    Heavy-ion irradiation technology has advantages over traditional methods of mutagenesis. Heavy-ion irradiation improves the mutation rate, broadens the mutation spectrum, and shortens the breeding cycle. However, few data are currently available regarding its effect on Streptomyces avermitilis morphology and productivity. In this study, the influence of heavy-ion irradiation on S. avermitilis when cultivated in approximately 10 L stirred-tank bioreactors was investigated. The specific productivity of the avermectin (AVM) B1a-producing mutant S. avermitilis 147-G58 increased notably, from 3885 to 5446 μg/mL, approximately 1.6-fold, compared to the original strain. The mycelial morphology of the mutant fermentation processes was microscopically examined. Additionally, protein and metabolite identification was performed by using SDS-PAGE, 2- and 3-dimensional electrophoresis (2DE and 3DE). The results showed that negative regulation gene deletion of mutants led to metabolic process upregulating expression of protein and improving the productivity of an avermectin B1a. The results showed that the heavy-ion beam irradiation dose that corresponded to optimal production was well over the standard dose, at approximately 80 Gy at 220 AMeV (depending on the strain). This study provides reliable data and a feasible method for increasing AVM productivity in industrial processes. PMID:28243599

  1. A tandem mass spectrometer for crossed-beam irradiation of mass-selected molecular systems by keV atomic ions

    NASA Astrophysics Data System (ADS)

    Schwob, Lucas; Lalande, Mathieu; Chesnel, Jean-Yves; Domaracka, Alicja; Huber, Bernd A.; Maclot, Sylvain; Poully, Jean-Christophe; Rangama, Jimmy; Rousseau, Patrick; Vizcaino, Violaine; Adoui, Lamri; Méry, Alain

    2018-04-01

    In the present paper, we describe a new home-built crossed-beam apparatus devoted to ion-induced ionization and fragmentation of isolated biologically relevant molecular systems. The biomolecular ions are produced by an electrospray ionization source, mass-over-charge selected, accumulated in a 3D ion trap, and then guided to the extraction region of an orthogonal time-of-flight mass spectrometer. Here, the target molecular ions interact with a keV atomic ion beam produced by an electron cyclotron resonance ion source. Cationic products from the collision are detected on a position sensitive detector and analyzed by time-of-flight mass spectrometry. A detailed description of the operation of the setup is given, and early results from irradiation of a protonated pentapeptide (leucine-enkephalin) by a 7 keV He+ ion beam are presented as a proof-of-principle.

  2. Toward Investigating Optically Trapped Organic Aerosols with CARS Microspectroscopy

    NASA Astrophysics Data System (ADS)

    Voss, L. F.

    2009-12-01

    The Intergovernmental Panel on Climate Change notes the huge uncertainty in the effect that atmospheric aerosols play in determining overall global temperature, specifically in their ability to nucleate clouds. To better understand aerosol chemistry, the novel coupling of gradient force optical trapping with broad bandwidth coherent anti-Stokes Raman scattering (CARS) spectroscopy is being developed to study single particles suspended in air. Building on successful designs employed separately for the techniques, this hybrid technology will be used to explain how the oxidation of organic compounds changes the chemical and physical properties of aerosols. By trapping the particles, an individual aerosol can be studied for up to several days. Using a broad bandwidth pulse for one of the incident beams will result in a Raman vibrational spectrum from every laser pulse. Combined with signal enhancement due to resonance and coherence of nonlinear CARS spectroscopy, this technique will allow for acquisition of data on the millisecond time scale, facilitating the study of dynamic processes. This will provide insights on how aerosols react with and absorb species from the gas phase. These experiments will increase understanding of aerosol oxidation and growth mechanisms and the effects that aerosols have on our atmosphere and climate. Progress in efforts developing this novel technique to study model systems is presented.

  3. Ion irradiation effects on a magnetic Si/Ni/Si trilayer and lateral magnetic-nonmagnetic multistrip patterning by focused ion beam

    NASA Astrophysics Data System (ADS)

    Dev, B. N.; Banu, Nasrin; Fassbender, J.; Grenzer, J.; Schell, N.; Bischoff, L.; Groetzschel, R.; McCord, J.

    2017-10-01

    Fabrication of a multistrip magnetic/nonmagnetic structure in a thin sandwiched Ni layer [Si(5 nm)/Ni(15 nm)/Si] by a focused ion beam (FIB) irradiation has been attempted. A control experiment was initially performed by irradiation with a standard 30 keV Ga ion beam at various fluences. Analyses were carried out by Rutherford backscattering spectrometry, X-ray reflectivity, magnetooptical Kerr effect (MOKE) measurements and MOKE microscopy. With increasing ion fluence, the coercivity as well as Kerr rotation decreases. A threshold ion fluence has been identified, where ferromagnetism of the Ni layer is lost at room temperature and due to Si incorporation into the Ni layer, a Ni0.68Si0.32 alloy layer is formed. This fluence was used in FIB irradiation of parallel 50 nm wide stripes, leaving 1 µm wide unirradiated stripes in between. MOKE microscopy on this FIB-patterned sample has revealed interacting magnetic domains across several stripes. Considering shape anisotropy effects, which would favour an alignment of magnetization parallel to the stripe axis, the opposite behaviour is observed. Magneto-elastic effects introducing a stress-induced anisotropy component oriented perpendicular to the stripe axis are the most plausible explanation for the observed behaviour.

  4. Use of low dose e-beam irradiation to reduce E. coli O157:H7, non-O157 (VTEC) E. coli and Salmonella viability on meat surfaces.

    PubMed

    Kundu, Devapriya; Gill, Alexander; Lui, Chenyuan; Goswami, Namita; Holley, Richard

    2014-01-01

    This study determined the extent that irradiation of fresh beef surfaces with an absorbed dose of 1 kGy electron (e-) beam irradiation might reduce the viability of mixtures of O157 and non-O157 verotoxigenic Escherichia coli (VTEC) and Salmonella. These were grouped together based on similar resistances to irradiation and inoculated on beef surfaces (outside flat and inside round, top and bottom muscle cuts), and then e-beam irradiated. Salmonella serovars were most resistant to 1 kGy treatment, showing a reduction of ≤1.9 log CFU/g. This treatment reduced the viability of two groups of non-O157 E. coli mixtures by ≤4.5 and ≤3.9 log CFU/g. Log reductions of ≤4.0 log CFU/g were observed for E. coli O157:H7 cocktails. Since under normal processing conditions the levels of these pathogens on beef carcasses would be lower than the lethality caused by the treatment used, irradiation at 1 kGy would be expected to eliminate the hazard represented by VTEC E. coli. © 2013.

  5. Satellite estimation of surface spectral ultraviolet irradiance using OMI data in East Asia

    NASA Astrophysics Data System (ADS)

    Lee, H.; Kim, J.; Jeong, U.

    2017-12-01

    Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface ultraviolet (UV) irradiance is important nowadays. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UV irradiance estimation. Also UV index (UVI) is a simple parameter to show the strength of surface UV irradiance, therefore UVI has been widely utilized for the purpose of UV monitoring. In this study, we estimate surface UV irradiance at East Asia using realistic input based on OMI Total Ozone and reflectivity, and then validate this estimated comparing to UV irradiance from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) data. In this work, we also try to develop our own retrieval algorithm for better estimation of surface irradiance. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UV irradiance calculation. The input to the VLIDORT radiative transfer calculations are the total ozone column (TOMS V7 climatology), the surface albedo (Herman and Celarier, 1997) and the cloud optical depth. Based on these, the UV irradiance is calculated based on look-up table (LUT) approach. To correct absorbing aerosol, UV irradiance algorithm added climatological aerosol information (Arola et al., 2009). The further study, we analyze the comprehensive uncertainty analysis based on LUT and all input parameters.

  6. Examining the Impact of Overlying Aerosols on the Retrieval of Cloud Optical Properties from Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.

    2010-01-01

    Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.

  7. Craniospinal Irradiation for Trilateral Retinoblastoma Following Ocular Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Lawrence B.; Bentel, Gunilla; Sherouse, George W.

    A case study is presented. Craniospinal radiotherapy and a three-field pineal boost for trilateral retinoblastoma were delivered to a patient previously irradiated for ocular retinoblastoma. The availability of CT-based three-dimensional treatment planning provided the capability of identifying the previously irradiated volume as a three-dimensional anatomic structure and of designing a highly customized set of treatment beams that minimized reirradiation of that volume.

  8. Atmospheric aerosol profiling with a bistatic imaging lidar system.

    PubMed

    Barnes, John E; Sharma, N C Parikh; Kaplan, Trevor B

    2007-05-20

    Atmospheric aerosols have been profiled using a simple, imaging, bistatic lidar system. A vertical laser beam is imaged onto a charge-coupled-device camera from the ground to the zenith with a wide-angle lens (CLidar). The altitudes are derived geometrically from the position of the camera and laser with submeter resolution near the ground. The system requires no overlap correction needed in monostatic lidar systems and needs a much smaller dynamic range. Nighttime measurements of both molecular and aerosol scattering were made at Mauna Loa Observatory. The CLidar aerosol total scatter compares very well with a nephelometer measuring at 10 m above the ground. The results build on earlier work that compared purely molecular scattered light to theory, and detail instrument improvements.

  9. Performance of the HIMAC beam control system using multiple-energy synchrotron operation

    NASA Astrophysics Data System (ADS)

    Mizushima, K.; Furukawa, T.; Iwata, Y.; Hara, Y.; Saotome, N.; Saraya, Y.; Tansho, R.; Sato, S.; Fujimoto, T.; Shirai, T.; Noda, K.

    2017-09-01

    Multiple-energy synchrotron operation was developed to realize fast 3D scanning irradiation for carbon-ion radiotherapy. This type of operation can output various carbon-ion beams with different energies in a single synchrotron cycle. The beam control system used in this kind of operation was developed to quickly provide the beam energy and intensity required from the irradiation control system. The performance of the system was verified by experimental tests. The system could output beams of 197 different energies in 63 s. The beam intensity could be controlled for all the output beams without large ripples or overshooting. The experimental test of irradiation for prostate cancer treatment was also successfully performed, and the test results proved that our system can greatly reduce the irradiation time.

  10. Aerosol Optical Depth Retrievals From High-Resolution Commercial Satellite Imagery Over Areas of High Surface Reflectance

    NASA Astrophysics Data System (ADS)

    Vincent, D. A.; Nielsen, K. E.; Durkee, P. A.; Reid, J. S.

    2005-12-01

    The advancement and proliferation of high-resolution commercial imaging satellites presents a new opportunity for overland aerosol characterization. Current aerosol optical depth retrieval methods typically fail over areas with high surface reflectance, such as urban areas and deserts, since the upwelling radiance due to scattering by aerosols is small compared to the radiance resulting from surface reflection. The method proposed here uses shadows cast on the surface to exploit the differences between radiance from the adjacent shaded and unshaded areas of the scene. Shaded areas of the scene are primarily illuminated by diffuse irradiance that is scattered downward from the atmosphere, while unshaded areas are illuminated by both diffuse and direct solar irradiance. The first-order difference between the shaded and unshaded areas is the direct component. Given uniform surface reflectance for the shaded and unshaded areas, the difference in reflected radiance measured by a satellite sensor is related to the direct transmission of solar radiation and inversely proportional to total optical depth. Using an iterative approach, surface reflectance and mean aerosol reflectance can be partitioned to refine the retrieved total optical depth. Aerosol optical depth can then be determined from its contribution to the total atmospheric optical depth (following correction for molecular Rayleigh scattering). Intitial results based on QuickBird imagery and AERONET data collected during the United Arab Emirates Unified Aerosol Experiment (UAE2) indicate that aerosol optical depth retrievals are possible in the visible and near-infrared region with an accuracy of ~0.04.

  11. Correlation between Satellite-Derived Aerosol Characteristics and Oceanic Dimethylsulfide (DMS)

    DTIC Science & Technology

    1988-12-01

    intensity gained by multiple scattering into the beam from all directions and the beam addition term accounting for single scattering events. The physical...the extinction and scattering coefficients are the integracion over radius of the product of the cross sectional area of aerosol particles, the...the same photon more than once is small. Therefore, the multiple interaction term can be neglected and a single scattering approximation is made. The

  12. Influence of Desert Dust Intrusions on Ground-based and Satellite Derived Ultraviolet Irradiance in Southeastern Spain

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay A.; Anton, Manuel; Valenzuela, Antonio; Roman, Roberto; Lyamani, Hassan; Arola, Antti; Olmo, Francisco J.; Alados-Arboledas

    2012-01-01

    The desert dust aerosols strongly affect propagation of solar radiation through the atmosphere, reducing surface irradiance available for photochemistry and photosynthesis. This paper evaluates effects of desert dust on surface UV erythemal irradiance (UVER), as measured by a ground-based broadband UV radiometer and retrieved from the satellite Ozone Monitoring Instrument (OMI) at Granada (southern Spain) from January 2006 to December 2010. The dust effects are characterized by the transmittance ra tio of the measured UVER to the corresponding modeled clear sky value. The transmittance has an exponential dependency on aerosol optical depth (AOD), with minimum values of approximately 0.6 (attenuation of approximately 40%). The OMI UVER algorithm does not account for UV aerosol absorption, which results in overestimation of the ground-based UVER especially during dust episodes with a mean relative difference up to 40%. The application of aerosol absorption post-correction method reduces OMI bias up to approximately 13%. The results highlight great effect of desert dust on the surface UV irradiance in regions like southern Spain, where dust intrusions from Sahara region are very frequent.

  13. Site-selective local fluorination of graphene induced by focused ion beam irradiation.

    PubMed

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-29

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases.

  14. Site-selective local fluorination of graphene induced by focused ion beam irradiation

    PubMed Central

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-01

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases. PMID:26822900

  15. Site-selective local fluorination of graphene induced by focused ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-01

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases.

  16. Modeling study of polychlorinated dibenzo-p-dioxins and dibenzofurans behavior in flue gases under electron beam irradiation.

    PubMed

    Gerasimov, Gennady

    2016-09-01

    The efficiency of the electron beam treatment of industrial flue gases for the removal of sulfur and nitrogen oxides was investigated as applied to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) using methods of mathematical modeling. The proposed kinetic model of the process includes mechanism of PCDD/Fs decomposition caused by their interaction with OH radicals generated in the flue gases under the electron beam (EB) irradiation as well as PCDD/Fs formation from unburned aromatic compounds. The model allows to predict the main features of the process, which are observed in pilot plant installations, as well as to evaluate the process efficiency. The results of calculations are compared with the available experimental data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A preclinical study testing "Focused multiple laser beams," a new concept of irradiation with the 1064-nm Nd:YAG laser for skin rejuvenation.

    PubMed

    Horiguchi, Masatoshi; Miyata, Nariaki; Mizuno, Hiroshi

    2017-04-01

    In order to avoid epidermal heat damage, we developed a novel irradiation method termed "Focused multiple laser beams (FMLB)," which allows long-pulse neodymium:yttrium aluminum garnet (Nd:YAG) laser beams to be irradiated from several directions in a concentric fashion followed by focusing into the dermis without epidermal damage. This study aimed to assess whether FMLB achieves the desired dermal improvement without epidermal damage. The dorsal skin of New Zealand White rabbits was irradiated with FMLB. Macroscopic and histological analyses were performed after 1 hour and 1, 2, 3 and 4 weeks. Real-time PCR analysis of type I and III collagen expression was performed at two and four weeks. Control groups exhibited skin ulcers which were healed with scar formation whereas FMLB groups remained intact macroscopically. Histologically, FMLB group showed increase in dermal thickness at four weeks while the epidermis remained intact. Real-time PCR demonstrated that both type I and III collagen increased at two weeks but decreased at four weeks. FMLB can deliver the target laser energy to the dermis without significantly affecting the epidermis.

  18. Airborne rhinovirus detection and effect of ultraviolet irradiation on detection by a semi-nested RT-PCR assay

    PubMed Central

    Myatt, Theodore A; Johnston, Sebastian L; Rudnick, Stephen; Milton, Donald K

    2003-01-01

    Background Rhinovirus, the most common cause of upper respiratory tract infections, has been implicated in asthma exacerbations and possibly asthma deaths. Although the method of transmission of rhinoviruses is disputed, several studies have demonstrated that aerosol transmission is a likely method of transmission among adults. As a first step in studies of possible airborne rhinovirus transmission, we developed methods to detect aerosolized rhinovirus by extending existing technology for detecting infectious agents in nasal specimens. Methods We aerosolized rhinovirus in a small aerosol chamber. Experiments were conducted with decreasing concentrations of rhinovirus. To determine the effect of UV irradiation on detection of rhinoviral aerosols, we also conducted experiments in which we exposed aerosols to a UV dose of 684 mJ/m2. Aerosols were collected on Teflon filters and rhinovirus recovered in Qiagen AVL buffer using the Qiagen QIAamp Viral RNA Kit (Qiagen Corp., Valencia, California) followed by semi-nested RT-PCR and detection by gel electrophoresis. Results We obtained positive results from filter samples that had collected at least 1.3 TCID50 of aerosolized rhinovirus. Ultraviolet irradiation of airborne virus at doses much greater than those used in upper-room UV germicidal irradiation applications did not inhibit subsequent detection with the RT-PCR assay. Conclusion The air sampling and extraction methodology developed in this study should be applicable to the detection of rhinovirus and other airborne viruses in the indoor air of offices and schools. This method, however, cannot distinguish UV inactivated virus from infectious viral particles. PMID:12525263

  19. A stochastic post-processing method for solar irradiance forecasts derived from NWPs models

    NASA Astrophysics Data System (ADS)

    Lara-Fanego, V.; Pozo-Vazquez, D.; Ruiz-Arias, J. A.; Santos-Alamillos, F. J.; Tovar-Pescador, J.

    2010-09-01

    Solar irradiance forecast is an important area of research for the future of the solar-based renewable energy systems. Numerical Weather Prediction models (NWPs) have proved to be a valuable tool for solar irradiance forecasting with lead time up to a few days. Nevertheless, these models show low skill in forecasting the solar irradiance under cloudy conditions. Additionally, climatic (averaged over seasons) aerosol loading are usually considered in these models, leading to considerable errors for the Direct Normal Irradiance (DNI) forecasts during high aerosols load conditions. In this work we propose a post-processing method for the Global Irradiance (GHI) and DNI forecasts derived from NWPs. Particularly, the methods is based on the use of Autoregressive Moving Average with External Explanatory Variables (ARMAX) stochastic models. These models are applied to the residuals of the NWPs forecasts and uses as external variables the measured cloud fraction and aerosol loading of the day previous to the forecast. The method is evaluated for a set one-moth length three-days-ahead forecast of the GHI and DNI, obtained based on the WRF mesoscale atmospheric model, for several locations in Andalusia (Southern Spain). The Cloud fraction is derived from MSG satellite estimates and the aerosol loading from the MODIS platform estimates. Both sources of information are readily available at the time of the forecast. Results showed a considerable improvement of the forecasting skill of the WRF model using the proposed post-processing method. Particularly, relative improvement (in terms of the RMSE) for the DNI during summer is about 20%. A similar value is obtained for the GHI during the winter.

  20. Impact of Aerosols on Atmospheric Attenuation Loss in Central Receiver Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, M.; Wagner, M. J.

    2011-08-01

    Atmospheric attenuation loss between the heliostat field and receiver has been recognized as a significant source of loss in Central Receiver Systems. In clear sky situations, extinction of Direct Normal Irradiance (DNI) is primarily by aerosols in the atmosphere. When aerosol loading is high close to the surface the attenuation loss between heliostat and receivers is significantly influenced by the amount of aerosols present on a particular day. This study relates measured DNI to aerosol optical depths close to the surface of the earth. The model developed in the paper uses only measured DNI to estimate the attenuation between heliostatmore » and receiver in a central receiver system. The requirement that only a DNI measurement is available potentially makes the model a candidate for widespread use.« less

  1. Irradiation With Carbon Ion Beams Induces Apoptosis, Autophagy, and Cellular Senescence in a Human Glioma-Derived Cell Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jinno-Oue, Atsushi; Shimizu, Nobuaki; 21st Century Center of Excellence Program for Biomedical Research Using Accelerator Technology, Maebashi, Gunma

    2010-01-15

    Purpose: We examined biological responses of human glioma cells to irradiation with carbon ion beams (C-ions). Methods and Materials: A human glioma-derived cell line, NP-2, was irradiated with C-ions. Apoptotic cell nuclei were stained with Hoechst 33342. Induction of autophagy was examined either by staining cells with monodansylcadaverine (MDC) or by Western blotting to detect conversion of microtuble-associated protein light chain 3 (MAP-LC3) (LC3-I) to the membrane-bound form (LC3-II). Cellular senescence markers including induction of senescence-associated beta-galactosidase (SA-beta-gal) were examined. The mean telomere length of irradiated cells was determined by Southern blot hybridization. Expression of tumor suppressor p53 and cyclin/cyclin-dependentmore » kinase inhibitor p21{sup WAF1/CIP1} in the irradiated cells was analyzed by Western blotting. Results: When NP-2 cells were irradiated with C-ions at 6 Gy, the major population of the cells died of apoptosis and autophagy. The residual fraction of attached cells (<1% of initially irradiated cells) could not form a colony: however, they showed a morphological phenotype consistent with cellular senescence, that is, enlarged and flattened appearance. The senescent nature of these attached cells was further indicated by staining for SA-beta-gal. The mean telomere length was not changed after irradiation with C-ions. Phosphorylation of p53 at serine 15 as well as the expression of p21{sup WAF1/CIP1} was induced in NP-2 cells after irradiation. Furthermore, we found that irradiation with C-ions induced cellular senescence in a human glioma cell line lacking functional p53. Conclusions: Irradiation with C-ions induced apoptosis, autophagy, and cellular senescence in human glioma cells.« less

  2. Theoretical predictions of the changes in the irradiance and color of light beams traveling in sugared water caused by optical rotation phenomena, and their possible applications for educational purposes

    NASA Astrophysics Data System (ADS)

    Tokumitsu, S.; Hasegawa, M.

    2018-05-01

    The coloring phenomena caused by optical rotation of polarized light beams in sugared water can be an appropriate subject for use as an educational tool. In this paper, such coloring phenomena are studied in terms of theory, and the results are compared with experimental results. First, polarized laser beams in red, blue, or green were allowed to travel in sugared water of certain concentrations, and changes in the irradiance of the beams were measured while changing the distance between a pair of polarizing plates arranged in the sugared water. The angle of rotation was then determined for each color. An equation was established for predicting a theoretical value of the angle of rotation for laser beams of specific colors (wavelengths) traveling in sugared water of specific concentrations. The predicted results from the equation exhibited satisfactory agreement with the experimental values obtained from the measurements. In addition, changes in the irradiance of traveling laser beams, as well as the changes in colors observable for white light beams, were also predicted, resulting in good agreement with the observed results.

  3. Modeling and optimization of sensory changes and shelf-life in vacuum-packaged cooked ham treated by E-beam irradiation

    NASA Astrophysics Data System (ADS)

    Benedito, J.; Cambero, M. I.; Ortuño, C.; Cabeza, M. C.; Ordoñez, J. A.; de la Hoz, L.

    2011-03-01

    The E-beam irradiation of vacuum-packaged RTE cooked ham was carried out to establish the dose required to achieve the food safety objective (FSO) and to minimize changes in selected sensory attributes. Cooked ham was irradiated with doses ranging 1-4 kGy. After the treatment, the microbial inactivation of Listeria monocytogenes, the shelf-life of the product and some sensory attributes (appearance, odor, and flavor) were determined. The inactivation of L. monocytogenes was satisfactorily described by a first-order kinetics equation ( R2=0.99). The influence of the irradiation dose on appearance, odor, and flavor was modeled through Gompertz ( R2=0.99, for appearance) and Activation/Inactivation ( R2=0.99, for odor and flavor) equations. A model was also developed to determine the shelf-life of irradiated cooked ham depending on the irradiation dose ( R2>0.91). The dose that maximized the scores of the sensory attributes was 0.96 kGy resulting in an acceptable sensory quality for 80 days. It is possible to apply up to 2 kGy to ensure microbial safety, while provoking no significant changes in the above mentioned sensory attributes.

  4. Atmosphere, Ocean, Land, and Solar Irradiance Data Sets

    NASA Technical Reports Server (NTRS)

    Johnson, James; Ahmad, Suraiya

    2003-01-01

    The report present the atmosphere, ocean color, land and solar irradiation data sets. The data presented: total ozone, aerosol, cloud optical and physical parameters, temperature and humidity profiles, radiances, rain fall, drop size distribution.

  5. Accelerator-based chemical and elemental analysis of atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Mentes, Besim

    Aerosol particles have always been present in the atmosphere, arising from natural sources. But it was not until recently when emissions from anthropogenic (man made) sources began to dominate, that atmospheric aerosols came into focus and the aerosol science in the environmental perspective started to grow. These sources emit or produce particles with different elemental and chemical compositions, as well as different sizes of the individual aerosols. The effects of increased pollution of the atmosphere are many, and have different time scales. One of the effects known today is acid rain, which causes problems for vegetation. Pollution is also a direct human health risk, in many cities where traffic driven by combustion engines is forbidden at certain times when the meteorological conditions are unfavourable. Aerosols play an important role in the climate, and may have both direct and indirect effect which cause cooling of the planet surface, in contrast to the so-called greenhouse gases. During this work a technique for chemical and elemental analysis of atmospheric aerosols and an elemental analysis methodology for upper tropospheric aerosols have been developed. The elemental analysis is performed by the ion beam analysis (IBA) techniques, PIXE (elements heavier than Al). PESA (C, N and O), cPESA (H) and pNRA (Mg and Na). The chemical speciation of atmospheric aerosols is obtained by ion beam thermography (IBT). During thermography the sample temperature is stepwise increased and the IBA techniques are used to continuously monitor the elemental concentration. A thermogram is obtained for each element. The vaporisation of the compounds in the sample appears as a concentration decrease in the thermograms at characteristic vaporisation temperatures (CVTs). Different aspects of IBT have been examined in Paper I to IV. The features of IBT are: almost total elemental speciation of the aerosol mass, chemical speciation of the inorganic compounds, carbon content

  6. Redundancy Technology With A Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Komano, Haruki; Hashimoto, Kazuhiko; Takigawa, Tadahiro

    1989-08-01

    Fuse cutting with a focused ion beam to activate redundancy circuits is proposed. In order to verify its potential usefulness, experiments have been performed. Fuse-cutting time was evaluated using aluminum fuses with a thin passivation layer, which are difficult to cut by conventional laser-beam technology due to the material's high reflectivity. The fuse width and thickness were 2 and 0.8 μm, respectively. The fuse was cut in 5 seconds with a 30 keV focused ion beam of 0.3 A/cm2 current density. Since the fuses used in DRAMs will be smaller, their cutting time will become shorter by scanning an ion beam on narrower areas. Moreover, it can be shortened by increasing current density. Fuses for redundancy technology in 256 k CMOS SRAMs were cut with a focused ion beam. The operation of the memories was checked with a memory tester. It was confirmed that memories which had failure cells operated normally after focused-ion-beam fuse-cutting. Focused ion beam irradiation effects upon a device have been studied. When a 30 keV gallium focused ion beam was irradiated near the gate of MOSFETs, a threshold voltage shift was not observed at an ion dose of 0.3 C/cm2 which corresponded to the ion dose in cutting a fuse. However, when irradiated on the gate, a threshold voltage shift was observed at ion doses of more than 8 x 10-4 C/cm2. The voltage shift was caused by the charge of ions within the passivation layer. It is necessary at least not to irradiate a focused ion beam on a device in cutting fuses. It is concluded that the focused-ion-beam method will be advantageous for future redundancy technology application.

  7. SU-E-T-216: Comparison of Volumetrically Modulated Arc Therapy Treatment Using Flattening Filter Free Beams Vs. Flattened Beams for Partial Brain Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, S; Roa, D; Hanna, N

    2015-06-15

    Purpose: Flattening Filter Free (FFF) beams offer the potential for higher dose rates, short treatment time, and lower out of field dose. Therefore, the aim of this study was to investigate the dosimetric effects and out of field dose of Volumetric Modulated Arc Therapy (VMAT) plans using FFF vs Flattening Filtering (FF) beams for partial brain irradiation. Methods: Ten brain patients treated with a 6FF beam from a Truebeam STX were analyzed retrospectively for this study. These plans (46Gy at 2 Gy per fraction) were re-optimized for 6FFF beams using the same dose constraints as the original plans. PTV coverage,more » PTV Dmax, total MUs, and mean dose to organs-at-risk (OAR) were evaluated. In addition, the out-of-field dose for 6FF and 6FFF plans for one patient was measured on an anthropomorphic phantom. TLDs were placed inside (central axis) and outside (surface) the phantom at distances ranging from 0.5 cm to 17 cm from the field edge. Paired T-test was used for statistical analysis. Results: PTV coverage and PTV Dmax were comparable for the FF and FFF plans with 95.9% versus 95.6% and 111.2% versus 111.9%, respectively. Mean dose to the OARs were 3.7% less for FFF than FF plans (p<0.0001). Total MUs were, on average, 12.5% greater for FFF than FF plans with 481±55 MU (FFF) versus 429±50 MU (FF), p=0.0003. On average, the measured out of field dose was 24% less for FFF compared to FF, p<0.0001. A similar beam-on time was observed for the FFF and FF treatment. Conclusion: It is beneficial to use 6FFF beams for regular fractionated brain VMAT treatments. VMAT treatment plans using FFF beams can achieve comparable PTV coverage but with more OAR sparing. The out of field dose is significant less with mean reduction of 24%.« less

  8. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  9. Electron-molecule chemistry and charging processes on organic ices and Titan's icy aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Pirim, C.; Gann, R. D.; McLain, J. L.; Orlando, T. M.

    2015-09-01

    Electron-induced polymerization processes and charging events that can occur within Titan's atmosphere or on its surface were simulated using electron irradiation and dissociative electron attachment (DEA) studies of nitrogen-containing organic condensates. The DEA studies probe the desorption of H- from hydrogen cyanide (HCN), acetonitrile (CH3CN), and aminoacetonitrile (NH2CH2CN) ices, as well as from synthesized tholin materials condensed or deposited onto a graphite substrate maintained at low temperature (90-130 K). The peak cross sections for H- desorption during low-energy (3-15 eV) electron irradiation were measured and range from 3 × 10-21 to 2 × 10-18 cm2. Chemical and structural transformations of HCN ice upon 2 keV electron irradiation were investigated using X-ray photoelectron and Fourier-transform infrared spectroscopy techniques. The electron-beam processed materials displayed optical properties very similar to tholins produced by conventional discharge methods. Electron and negative ion trapping lead to 1011 charges cm-2 on a flat surface which, assuming a radius of 0.05 μm for Titan aerosols, is ∼628 charges/radius (in μm). The facile charge trapping indicates that electron interactions with nitriles and complex tholin-like molecules could affect the conductivity of Titan's atmosphere due to the formation of large negative ion complexes. These negatively charged complexes can also precipitate onto Titan's surface and possibly contribute to surface reactions and the formation of dunes.

  10. Microencapsulated antimicrobial compounds as a means to enhance electron beam irradiation treatment for inactivation of pathogens on fresh spinach leaves.

    PubMed

    Gomes, Carmen; Moreira, Rosana G; Castell-Perez, Elena

    2011-08-01

    Recent outbreaks associated to the consumption of raw or minimally processed vegetable products that have resulted in several illnesses and a few deaths call for urgent actions aimed at improving the safety of those products. Electron beam irradiation can extend shelf-life and assure safety of fresh produce. However, undesirable effects on the organoleptic quality at doses required to achieve pathogen inactivation limit irradiation. Ways to increase pathogen radiation sensitivity could reduce the dose required for a certain level of microbial kill. The objective of this study was to evaluate the effectiveness of using natural antimicrobials when irradiating fresh produce. The minimum inhibitory concentration of 5 natural compounds and extracts (trans-cinnamaldehyde, eugenol, garlic extract, propolis extract, and lysozyme with ethylenediaminetetraacetate acid (disodium salt dihydrate) was determined against Salmonella spp. and Listeria spp. In order to mask odor and off-flavor inherent of several compounds, and to increase their solubility, complexes of these compounds and extracts with β-cyclodextrin were prepared by the freeze-drying method. All compounds showed bacteriostatic effect at different levels for both bacteria. The effectiveness of the microencapsulated compounds was tested by spraying them on the surface of baby spinach inoculated with Salmonella spp. The dose (D₁₀ value) required to reduce the bacterial population by 1 log was 0.190 kGy without antimicrobial addition. The increase in radiation sensitivity (up to 40%) varied with the antimicrobial compound. These results confirm that the combination of spraying microencapsulated antimicrobials with electron beam irradiation was effective in increasing the killing effect of irradiation. Foodborne illness outbreaks attributed to fresh produce consumption have increased and present new challenges to food safety. Current technologies (water washing or treating with 200 ppm chlorine) cannot

  11. Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors

    NASA Astrophysics Data System (ADS)

    Kim, J.-S.; Tyryshkin, A. M.; Lyon, S. A.

    2017-03-01

    Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exposure by measuring the density of shallow electron traps in two sets of high-mobility MOS field-effect transistors. One set was irradiated with an electron-beam (10 keV, 40 μC/cm2) and was subsequently annealed in forming gas while the other set remained unexposed. Low temperature (335 mK) transport measurements indicate that the forming gas anneal recovers the e-beam exposed sample's peak mobility (14 000 cm2/Vs) to within a factor of two of the unexposed sample's mobility (23 000 cm2/Vs). Using electron spin resonance (ESR) to measure the density of shallow traps, we find that the two sets of devices are nearly identical, indicating the forming gas anneal is sufficient to anneal out shallow defects generated by the e-beam exposure. Fitting the two sets of devices' transport data to a percolation transition model, we extract a T = 0 percolation threshold density in quantitative agreement with our lowest temperature ESR-measured trap densities.

  12. Preparation of nanocomposite γ-Al2O3/polyethylene separator crosslinked by electron beam irradiation for lithium secondary battery

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Sohn, Joon-Yong; Shin, Junhwa; Park, Jong-Seok; Lim, Yoon-Mook; Kang, Phil-Hyun

    2017-03-01

    Although micro-porous membranes made of polyethylene (PE) offer excellent mechanical strength and chemical stability, they exhibit large thermal shrinkage at high temperature, which causes a short circuit between positive and negative electrodes in cases of unusual heat generation. We tried to develop a new technology to reduce the thermal shrinkage of PE separators by introducing γ-Al2O3 particles treated with coupling agent on PE separators. Nanocomposite γ-Al2O3/PE separators were prepared by the dip coating of polyethylene(PE) separators in γ-Al2O3/poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP)/crosslinker (1,3,5-trially-1,3,5-triazine-2,4,6(1 H,3 H,5 H)-trione (TTT) solution with humidity control followed by electron beam irradiation. γ-Al2O3/PVDF-HFP/TTT (95/5/2)-coated PE separator showed the highest electrolyte uptake (157%) and ionic conductivity (1.3 mS/cm). On the basis of the thermal shrinkage test, the nanocomposite γ-Al2O3/PE separators containing TTT irradiated by electron beam exhibited a higher thermal resistance. Moreover, a linear sweep voltammetry test showed that the irradiated nanocomposite γ-Al2O3/PE separators have electrochemical stabilities of up to 5.0 V. In a battery performance test, the coin cell assembled with γ-Al2O3/PVDF-HFP/TTT-coated PE separator showed excellent discharge cycle performance.

  13. Narrow beam neutron dosimetry.

    PubMed

    Ferenci, M Sutton

    2004-01-01

    Organ and effective doses have been estimated for male and female anthropomorphic mathematical models exposed to monoenergetic narrow beams of neutrons with energies from 10(-11) to 1000 MeV. Calculations were performed for anterior-posterior, posterior-anterior, left-lateral and right-lateral irradiation geometries. The beam diameter used in the calculations was 7.62 cm and the phantoms were irradiated at a height of 1 m above the ground. This geometry was chosen to simulate an accidental scenario (a worker walking through the beam) at Flight Path 30 Left (FP30L) of the Weapons Neutron Research (WNR) Facility at Los Alamos National Laboratory. The calculations were carried out using the Monte Carlo transport code MCNPX 2.5c.

  14. Estimating solar ultraviolet irradiance (290-385 nm) by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    NASA Astrophysics Data System (ADS)

    Foyo-Moreno, I.; Vida, J.; Olmo, F. J.; Alados-Arboledas, L.

    2000-11-01

    Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l.), an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290-385 nm). After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those considered as urban

  15. An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan S.; Slusser, James R.; Stephens, Graeme L.; Goering, Christian D.

    2008-02-01

    This paper describes a number of practical considerations concerning the optimization and operational implementation of an algorithm used to characterize the optical properties of aerosols across part of the ultraviolet (UV) spectrum. The algorithm estimates values of aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) at seven wavelengths in the UV, as well as total column ozone (TOC) and wavelength-independent asymmetry factor (g) using direct and diffuse irradiances measured with a UV multifilter rotating shadowband radiometer (UV-MFRSR). A novel method for cloud screening the irradiance data set is introduced, as well as several improvements and optimizations to the retrieval scheme which yield a more realistic physical model for the inversion and increase the efficiency of the algorithm. Introduction of a wavelength-dependent retrieval error budget generated from rigorous forward model analysis as well as broadened covariances on the a priori values of AOD, SSA and g and tightened covariances of TOC allows sufficient retrieval sensitivity and resolution to obtain unique solutions of aerosol optical properties as demonstrated by synthetic retrievals. Analysis of a cloud screened data set (May 2003) from Panther Junction, Texas, demonstrates that the algorithm produces realistic values of the optical properties that compare favorably with pseudo-independent methods for AOD, TOC and calculated Ångstrom exponents. Retrieval errors of all parameters (except TOC) are shown to be negatively correlated to AOD, while the Shannon information content is positively correlated, indicating that retrieval skill improves with increasing atmospheric turbidity. When implemented operationally on more than thirty instruments in the Ultraviolet Monitoring and Research Program's (UVMRP) network, this retrieval algorithm will provide a comprehensive and internally consistent climatology of ground-based aerosol properties in the UV spectral range that can be used

  16. Structure, dielectric, thermal and I-V studies of electron beam irradiated PVDF-HFP/LiClO4 electrolyte film

    NASA Astrophysics Data System (ADS)

    Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Basappa, M.; Ganesh, S.; Devendrappa, H.

    2018-05-01

    The effect of electron beam (EB) irradiation on polymer electrolyte (PVDF-HFP: LiClO4=90:10, PHL10) films prepared by solution casting method. FT-IR confirms the complexation between salt and polymer upon EB dose. Degradation of polymer and decrease in % of crystallinity from 50.10 to 40.96 at 2θ=19.90° at 120 kGy dose indicates increased amorphousity confirmed by XRD. The TGA result show decrease in Tm from 460 °C to 418 °C is leads to degradation of polymer chain at higher dosage. The dielectric parameters have been determined and observed decreasing trend with increased frequency as well as temperature due to increase the mobility of charge carrier confirms the capacitive nature. I-V plots exhibit an ohmic behavior with applied voltage and irradiation dose. The results notice the change in polymer properties upon irradiation.

  17. Comparison of gamma and electron beam irradiation in reducing populations of E. coli artificially inoculated on mung bean, clover and fenugreek seeds, and affecting germination and growth of seeds

    NASA Astrophysics Data System (ADS)

    Fan, Xuetong; Sokorai, Kimberly; Weidauer, André; Gotzmann, Gaby; Rögner, Frank-Holm; Koch, Eckhard

    2017-01-01

    Sprouts have frequently been implicated in outbreaks of foodborne illnesses, mostly due to contaminated seeds. Intervention technologies to decontaminate seeds without affecting sprout yield are needed. In the present study, we compared gamma rays with electron beam in inactivating E. coli artificially inoculated on three seeds (fenugreek, clover and mung bean) that differed in size and surface morphology. Furthermore, the germination and growth of irradiated seeds were evaluated. Results showed that the D10 values (dose required to achieve 1 log reduction) for E. coli K12 on mung bean, clover, and fenugreek were 1.11, 1.21 and 1.40 kGy, respectively. To achieve a minimum 5-log reduction of E. coli, higher doses were needed on fenugreek than on mung bean or clover. Electron beam treatment at doses up to 12 kGy could not completely inactivate E. coli inoculated on all seeds even though most of the seeds were E. coli-free after 4-12 kGy irradiation. Gamma irradiation at doses up to 6 kGy did not significantly affect the germination rate of clover and fenugreek seeds but reduced the germination rate of mung bean seeds. Doses of 2 kGy gamma irradiation did not influence the growth of seeds while higher doses of gamma irradiation reduced the growth rate. Electron beam treatment at doses up to 12 kGy did not have any significant effect on germination or growth of the seeds. SEM imaging indicated there were differences in surface morphology among the three seeds, and E. coli resided in cracks and openings of seeds, making surface decontamination of seeds with low energy electron beam a challenge due to the low penetration ability. Overall, our results suggested that gamma rays and electron beam had different effects on E. coli inactivation and germination or growth of seeds. Future efforts should focus on optimization of electron bean parameters to increase penetration to inactivate E. coli without causing damage to the seeds.

  18. Sun and aureole spectrometer for airborne measurements to derive aerosol optical properties.

    PubMed

    Asseng, Hagen; Ruhtz, Thomas; Fischer, Jürgen

    2004-04-01

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements.

  19. Ion beam synthesis of Au nanoparticles embedded nano-composite glass

    NASA Astrophysics Data System (ADS)

    Varma, Ranjana S.; Kothari, D. C.; Kumar, Ravi; Kumar, P.; Santra, S. S.; Thomas, R. G.

    2013-02-01

    Ion beam mixing using low energy (LE) ion beams (100 keV Ar+) has been used to form Au nanoparticles in the near-surface region of fused silica glasses. Effect of swift heavy ion (SHI) irradiation (with 120 MeV Ag9+), on the nanoparticles has been studied. Diffusion length of Au after the beam mixing and the irradiation has been found to be 14nm. SHI irradiation causes the increase in the size of the nanoparticles, reduction in size-distribution and increase in number density.

  20. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    uncertainties by "the I-beams". Only an uncertainty range rather than a best estimate is presented for direct aerosol forcing by mineral dust and for indirect aerosol forcing. An assessment of the present level of scientific understanding is indicated at the bottom of the figure (reproduced by permission of Intergovernmental Panel on Climate Change). The importance of atmospheric aerosols to issues of societal concern has motivated much research intended to describe their loading, distribution, and properties and to develop understanding of the controlling processes to address such issues as air pollution, acid deposition, and climate influences of aerosols. However, description based wholly on measurements will inevitably be limited in its spatial and temporal coverage and in the limited characterization of aerosol properties. These limitations are even more serious for predictions of future emissions and provide motivation for concurrent theoretical studies and development of model-based description of atmospheric aerosols.An important long-range goal, which has already been partly realized, is to develop quantitative understanding of the processes that control aerosol loading, composition, and microphysical properties as well as the resultant optical and cloud-nucleating properties. An objective is to incorporate these results into chemical transport models that can be used for predictions. Such models are required, for example, to design approaches to achieve air quality standards and to assess and predict aerosol influences on climate change. Much current research is directed toward enhancing this understanding and to evaluating it by comparison of model results and observations. However, compared to gases, models involving particles are far more complex because of the need to specify additional parameters such as particle sizes and size distributions, compositions as a function of size, particle shapes, and temporal and spatial variations, including reactions that occur

  1. Hydrogels Synthesized by Electron Beam Irradiation for Heavy Metal Adsorption

    PubMed Central

    Manaila, Elena; Craciun, Gabriela; Ighigeanu, Daniel; Cimpeanu, Catalina; Barna, Catalina; Fugaru, Viorel

    2017-01-01

    Poly(acrylamide co-acrylic acid) hydrogels were prepared by free-radical copolymerization of acrylamide and acrylic acid in aqueous solutions using electron beam irradiation in the dose range of 2.5 kGy to 6 kGy in atmospheric conditions and at room temperature. The influence of the absorbed dose, the amount of cross-linker (trimethylolpropane trimethacrylate) and initiator (potassium persulfate) on the swelling properties and the diffusion coefficient and network parameters of hydrogels were investigated. The structure and morphology of hydrogels were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The use of the obtained hydrogels by the removal of Cu2+ and Cr6+ from aqueous solutions was investigated at room temperature. During the adsorption of metal ions on hydrogels, the residual metal ion concentration in the solution was measured by an atomic absorption spectrophotometer (AAS). It has been established that the use of a relatively small amount of trimethylolpropane trimethacrylate for hydrogel preparation has led to the increasing of swelling up to 8500%. PMID:28772904

  2. Hydrogels Synthesized by Electron Beam Irradiation for Heavy Metal Adsorption.

    PubMed

    Manaila, Elena; Craciun, Gabriela; Ighigeanu, Daniel; Cimpeanu, Catalina; Barna, Catalina; Fugaru, Viorel

    2017-05-18

    Poly(acrylamide co-acrylic acid) hydrogels were prepared by free-radical copolymerization of acrylamide and acrylic acid in aqueous solutions using electron beam irradiation in the dose range of 2.5 kGy to 6 kGy in atmospheric conditions and at room temperature. The influence of the absorbed dose, the amount of cross-linker (trimethylolpropane trimethacrylate) and initiator (potassium persulfate) on the swelling properties and the diffusion coefficient and network parameters of hydrogels were investigated. The structure and morphology of hydrogels were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The use of the obtained hydrogels by the removal of Cu 2+ and Cr 6+ from aqueous solutions was investigated at room temperature. During the adsorption of metal ions on hydrogels, the residual metal ion concentration in the solution was measured by an atomic absorption spectrophotometer (AAS). It has been established that the use of a relatively small amount of trimethylolpropane trimethacrylate for hydrogel preparation has led to the increasing of swelling up to 8500%.

  3. Ridge filter design and optimization for the broad-beam three-dimensional irradiation system for heavy-ion radiotherapy.

    PubMed

    Schaffner, B; Kanai, T; Futami, Y; Shimbo, M; Urakabe, E

    2000-04-01

    The broad-beam three-dimensional irradiation system under development at National Institute of Radiological Sciences (NIRS) requires a small ridge filter to spread the initially monoenergetic heavy-ion beam to a small spread-out Bragg peak (SOBP). A large SOBP covering the target volume is then achieved by a superposition of differently weighted and displaced small SOBPs. Two approaches were studied for the definition of a suitable ridge filter and experimental verifications were performed. Both approaches show a good agreement between the calculated and measured dose and lead to a good homogeneity of the biological dose in the target. However, the ridge filter design that produces a Gaussian-shaped spectrum of the particle ranges was found to be more robust to small errors and uncertainties in the beam application. Furthermore, an optimization procedure for two fields was applied to compensate for the missing dose from the fragmentation tail for the case of a simple-geometry target. The optimized biological dose distributions show that a very good homogeneity is achievable in the target.

  4. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian-Xun; College of Electronic Engineering, Wuhan 430019; Ma, Yan-Yun, E-mail: yanyunma@126.com

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positronmore » beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.« less

  5. Regional aerosol radiative and hydrological effects over the mid-Atlantic corridor

    NASA Astrophysics Data System (ADS)

    Creekmore, Torreon N.

    A thorough assessment of direct, indirect, and semi-direct influences of aerosols on Earth's energy budget is required to better understand climate and estimate how it may change in the future. Clear-sky surface broadband (measured and modeled) irradiance, spectral aerosol optical depth, heating rate profiles, and non-radiative flux measurements were conducted at a state-of-the-art site, developed by the NOAA-Howard University Center for Atmospheric Sciences (NCAS) program, providing a best estimate of aerosol radiative atmosphere-surface interactions. Methods developed by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program were applied to: (1) temporally quantify regional aerosol forcing, (2) to derive an empirical equation describing a relationship between aerosol optical depth and normalized diffuse ratio, (3) evaluate aerosol impacts on atmospheric heating, and (4) evaluate how aerosol forcing impacts may possibly reduce latent and sensible fluxes. Measurements were obtained during the period of May--September for the years of 2005, 2006, and 2007. Atmospheric aerosols are among the key uncertainties affecting the Earth's climate and atmospheric radiative processes. Present-day increases in aerosol concentrations directly, indirectly, and semi-directly impact the Earth's energy budget (i.e., cooling the surface and heating the atmosphere), thereby contributing to climate change. The Howard University Beltsville Site (HUBS) has experienced a greater loss in mean normalized aerosol radiative forcing with time, as observations show a decrease from --0.9 in 2005 to --3.1 and --3.4 W/m2 for 2006 and 2007 respectively, in mean net surface irradiance. The mean normalized aerosol radiative forcing estimated for the period considered was --2.5 W/m2. The reduction in surface solar insolation is due to increased scattering and absorption related to increased aerosol burdens v for the period, promoting surface cooling and atmospheric heating

  6. Novel insight on photochemistry at interfaces: potential impact on Seconday Aerosol Formation?

    NASA Astrophysics Data System (ADS)

    Rossignol, S.; George, C.; Aregahegn, K.

    2014-12-01

    Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms cannot account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS), Differential Mobility Analyzer (DMA) and Condensation Particle Sizer (CPC), we identified that traces in the aerosol phase of glyoxal chemistry products, namely imidazole-2-carboxaldehyde (IC) are strong photo-sensitizers when irradiated with near-UV. In the presence of volatile organic compounds such as terpenes, this chemistry leads to a fast aerosol growth. Given the potential importance of this new photosensitized growth pathway for ambient OA, the related reaction mechanism was investigated at a molecular level. Bulk and flow tube experiments were performed to identify major products of the reaction of limonene with the triplet state of IC by direct (+/-)ESI-HRMS and UPLC/(+/-)HESI-HRMS analysis. Detection of recombination products of IC with limonene or with itself, in bulk and flow tube experiment ts, showed that IC is able to initiate a radical chemistry in the aerosol phase under realistic irradiation conditions. Furthermore, highly oxygenated limonene reaction products were detected, clearly explaining the observed OA growth. The chemistry of peroxy radicals derived from limonene upon addition of oxygen explains the formation of such low-volatile compounds without any traditional gas phase oxidant

  7. The trapping and distribution of charge in polarized polymethylmethacrylate under electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Song, Z. G.; Gong, H.; Ong, C. K.

    1997-06-01

    A scanning electron microscope (SEM) mirror-image method (MIM) is employed to investigate the charging behaviour of polarized polymethylmethacrylate (PMMA) under electron-beam irradiation. An ellipsoid is used to model the trapped charge distribution and a fitting method is employed to calculate the total amount of the trapped charge and its distribution parameters. The experimental results reveal that the charging ability decreases with increasing applied electric field, which polarizes the PMMA sample, whereas the trapped charge distribution is elongated along the direction of the applied electric field and increases with increasing applied electric field. The charges are believed to be trapped in some localization states, of activation energy and radius estimated to be about 19.6 meV and 0022-3727/30/11/004/img6, respectively.

  8. Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams

    NASA Astrophysics Data System (ADS)

    Pan, An; Si, Jinhai; Chen, Tao; Li, Cunxia; Hou, Xun

    2016-04-01

    Two-dimensional (2D) periodic structures were fabricated on silicon surfaces by femtosecond laser irradiation in air and water, with the assistance of a microlens array (MLA) placed in the beam's path. By scanning the laser beam along the silicon surface, multiple grooves were simultaneously fabricated in parallel along with smaller laser-induced ripples. The 2D periodic structures contained long-periodic grooves and perpendicular short-periodic laser-induced ripples, which had periods of several microns and several hundred nanometers, respectively. We investigated the influence of laser power and scanning velocity on the morphological evolution of the 2D periodic structures in air and water. Large-area grid-like structures with ripples were fabricated by successively scanning once along each direction of the silicon's surface, which showed enhanced optical absorption. Hydrofluoric acid was then used to remove any oxygen and laser-induced defects for all-silicon structures.

  9. Development of eye-safe lidar for aerosol measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Wilderson, Thomas D.

    1990-01-01

    Research is summarized on the development of an eye safe Raman conversion system to carry out lidar measurements of aerosol and clouds from an airborne platform. Radiation is produced at the first Stokes wavelength of 1.54 micron in the eye safe infrared, when methane is used as the Raman-active medium, the pump source being a Nd:YAG laser at 1.064 micron. Results are presented for an experimental study of the dependence of the 1.54 micron first Stokes radiation on the focusing geometry, methane gas pressure, and pump energy. The specific new technique developed for optimizing the first Stokes generation involves retroreflecting the backward-generated first Stokes light back into the Raman cell as a seed Stokes beam which is then amplified in the temporal tail of the pump beam. Almost 20 percent conversion to 1.54 micron is obtained. Complete, assembled hardware for the Raman conversion system was delivered to the Goddard Space Flight Center for a successful GLOBE flight (1989) to measure aerosol backscatter around the Pacific basin.

  10. A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Lingner, David W.; Gautier, Catherine; Baker, Karen S.; Smith, Ray C.

    1989-01-01

    A simple but accurate analytical formula was developed for computing the total and the photosynthetically available solar irradiances at the ocean surface under clear skies, which takes into account the processes of scattering by molecules and aerosols within the atmosphere and of absorption by the water vapor, ozone, and aerosols. These processes are parameterized as a function of solar zenith angle, aerosol type, atmospheric visibility, and vertically integrated water-vapor and ozone amounts. Comparisons of the calculated and measured total and photosynthetically available solar irradiances for several experiments in tropical and mid-latitude ocean regions show 39 and 14 Wm/sq m rms errors (6.5 and 4.7 percent of the average measured values) on an hourly time scale, respectively. The proposed forumula is unique in its ability to predict surface solar irradiance in the photosynthetically active spectral interval.

  11. Characterization of aerosol scattering and spectral absorption by unique methods: a polar/imaging nephelometer and spectral reflectance measurements of aerosol samples collected on filters

    NASA Astrophysics Data System (ADS)

    Dolgos, Gergely; Martins, J. Vanderlei; Remer, Lorraine A.; Correia, Alexandre L.; Tabacniks, Manfredo; Lima, Adriana R.

    2010-02-01

    Characterization of aerosol scattering and absorption properties is essential to accurate radiative transfer calculations in the atmosphere. Applications of this work include remote sensing of aerosols, corrections for aerosol distortions in satellite imagery of the surface, global climate models, and atmospheric beam propagation. Here we demonstrate successful instrument development at the Laboratory for Aerosols, Clouds and Optics at UMBC that better characterizes aerosol scattering phase matrix using an imaging polar nephelometer (LACO-I-Neph) and enables measurement of spectral aerosol absorption from 200 nm to 2500 nm. The LACO-I-Neph measures the scattering phase function from 1.5° to 178.5° scattering angle with sufficient sensitivity to match theoretical expectations of Rayleigh scattering of various gases. Previous measurements either lack a sufficiently wide range of measured scattering angles or their sensitivity is too low and therefore the required sample amount is prohibitively high for in situ measurements. The LACO-I-Neph also returns expected characterization of the linear polarization signal of Rayleigh scattering. Previous work demonstrated the ability of measuring spectral absorption of aerosol particles using a reflectance technique characterization of aerosol samples collected on Nuclepore filters. This first generation methodology yielded absorption measurements from 350 nm to 2500 nm. Here we demonstrate the possibility of extending this wavelength range into the deep UV, to 200 nm. This extended UV region holds much promise in identifying and characterizing aerosol types and species. The second generation, deep UV, procedure requires careful choice of filter substrates. Here the choice of substrates is explored and preliminary results are provided.

  12. Improving the thermal stability and electrical parameters of a liquid crystalline material 4-n-(nonyloxy) benzoic acid by using Li ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Kumar, Satendra; Verma, Rohit; Dwivedi, Aanchal; Dhar, R.; Tripathi, Ambuj

    2018-05-01

    Li ion beam irradiation studies on a liquid crystalline material 4-n-(nonyloxy) benzoic acid (NOBA) have been carried out. The material has phase sequence of I-N-SmC-Cr. Thermodynamic studies demonstrate that an irradiation fluence of 1×1013 ions-cm-2 results in the increased thermal stability of the smectic C (SmC) phase of the material. Dielectric measurements illustrate that the transverse component of the dielectric permittivity and hence the dielectric anisotropy of the material in the nematic (N) and SmC phases are increased as compared to those of the pure material due to irradiation. UV-Visible spectrum of the irradiated material shows an additional peak along with the peak of the pure material. The observed change in the thermodynamic and electrical parameters is attributed to the conversion of some of the dimers of NOBA to monomers of NOBA due to irradiation.

  13. SU-E-T-748: Theoretical Investigation On Using High Energy Proton Beam for Total-Body-Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, M; Zou, J; Chen, T

    2015-06-15

    Purpose: The broad-slow-rising entrance dose region proximal to the Bragg peak made by a mono-energetic proton beam could potentially be used for total body irradiation (TBI). Due to the quasi-uniform dose deposition, customized thickness compensation may not be required to deliver a uniform dose to patients with varied thickness. We investigated the possibility, efficacy, and hardware requirement to use such proton beam for TBI. Methods: A wedge shaped water phantom with thickness varying from 2 cm to 40 cm was designed to mimic a patient. Geant4 based Monte Carlo code was used to simulate broad mono-energetic proton beams with energymore » ranging from 250 MeV to 300 MeV radiating the phantom. A 6 MV photon with 1 cm water equivalent build-up used for conventional TBI was also calculated. A paired-opposing beam arrangement with no thickness compensation was used to generate TBI plans for all beam energies. Dose from all particles were scored on a grid size of 2 mm{sup 3}. Dose uniformity across the phantom was calculated to evaluate the plan. The field size limit and the dose uniformity of Mevion S250 proton system was examined by using radiochromic films placed at extended treatment distance with the open large applicator and 90° gantry angle. Results: To achieve a maximum ± 7.5% dose variation, the largest patient thickness variation allowed for 250 MeV, 275 MeV, and 300 MeV proton beams were 27.0 cm, 34.9 cm and 36.7 cm. The value for 6 MV photon beam was only 8.0 cm to achieve the same dose variation. With open gantry, Mevion S250 system allows 5 m source-to-surface distance producing an expected 70 cm{sup 2} field size. Conclusion: Energetic proton beam can potentially be used to deliver TBI. Treatment planning and delivery would be much simple since no thickness compensation is required to achieve a uniform dose distribution.« less

  14. Comparison of the Effects of High-Energy Photon Beam Irradiation (10 and 18 MV) on 2 Types of Implantable Cardioverter-Defibrillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashii, Haruko, E-mail: haruko@pmrc.tsukuba.ac.jp; Hashimoto, Takayuki; Okawa, Ayako

    2013-03-01

    Purpose: Radiation therapy for cancer may be required for patients with implantable cardiac devices. However, the influence of secondary neutrons or scattered irradiation from high-energy photons (≥10 MV) on implantable cardioverter-defibrillators (ICDs) is unclear. This study was performed to examine this issue in 2 ICD models. Methods and Materials: ICDs were positioned around a water phantom under conditions simulating clinical radiation therapy. The ICDs were not irradiated directly. A control ICD was positioned 140 cm from the irradiation isocenter. Fractional irradiation was performed with 18-MV and 10-MV photon beams to give cumulative in-field doses of 600 Gy and 1600 Gy,more » respectively. Errors were checked after each fraction. Soft errors were defined as severe (change to safety back-up mode), moderate (memory interference, no changes in device parameters), and minor (slight memory change, undetectable by computer). Results: Hard errors were not observed. For the older ICD model, the incidences of severe, moderate, and minor soft errors at 18 MV were 0.75, 0.5, and 0.83/50 Gy at the isocenter. The corresponding data for 10 MV were 0.094, 0.063, and 0 /50 Gy. For the newer ICD model at 18 MV, these data were 0.083, 2.3, and 5.8 /50 Gy. Moderate and minor errors occurred at 18 MV in control ICDs placed 140 cm from the isocenter. The error incidences were 0, 1, and 0 /600 Gy at the isocenter for the newer model, and 0, 1, and 6 /600Gy for the older model. At 10 MV, no errors occurred in control ICDs. Conclusions: ICD errors occurred more frequently at 18 MV irradiation, which suggests that the errors were mainly caused by secondary neutrons. Soft errors of ICDs were observed with high energy photon beams, but most were not critical in the newer model. These errors may occur even when the device is far from the irradiation field.« less

  15. Irradiation chamber and sample changer for biological samples

    NASA Astrophysics Data System (ADS)

    Kraft, G.; Daues, H. W.; Fischer, B.; Kopf, U.; Liebold, H. P.; Quis, D.; Stelzer, H.; Kiefer, J.; Schöpfer, F.; Schneider, E.; Weber, K.; Wulf, H.; Dertinger, H.

    1980-01-01

    This paper describes an irradiation system with which living cells of different origin are irradiated with heavy ion beams (18⩽ Z⩽92) at energies up to 10 MeV/amu. The system consists of a beam monitor connected to the vacuum system of the accelerator and the irradiation chamber, containing the biological samples under atmospheric pressure. The requirements and aims of the set up are discussed. The first results with saccharomyces cerevisiae and Chinese Hamster tissue cells are presented.

  16. Beam characterisation of the KIRAMS electron microbeam system.

    PubMed

    Sun, G M; Kim, E H; Song, K B; Jang, M

    2006-01-01

    An electron microbeam system has been installed at the Korea Institute of Radiological and Medical Sciences (KIRAMS) for use in radiation biology studies. The electron beam is produced from a commercial electron gun, and the beam size is defined by a 5 microm diameter pinhole. Beam energy can be varied in the range of 1-100 keV, covering a range of linear energy transfer from 0.4 to 12.1 keV microm-1. The micrometer-sized electron beam selectively irradiates cells cultured in a Mylar-bottomed dish. The positioning of target cells one by one onto the beam exit is automated, as is beam shooting. The electron beam entering the target cells has been calibrated using a Passivated Implanted Planar Silicon (PIPS) detector. This paper describes the KIRAMS microbeam cell irradiation system and its beam characteristics.

  17. Real-time beam monitoring in scanned proton therapy

    NASA Astrophysics Data System (ADS)

    Klimpki, G.; Eichin, M.; Bula, C.; Rechsteiner, U.; Psoroulas, S.; Weber, D. C.; Lomax, A.; Meer, D.

    2018-05-01

    When treating cancerous tissues with protons beams, many centers make use of a step-and-shoot irradiation technique, in which the beam is steered to discrete grid points in the tumor volume. For safety reasons, the irradiation is supervised by an independent monitoring system validating cyclically that the correct amount of protons has been delivered to the correct position in the patient. Whenever unacceptable inaccuracies are detected, the irradiation can be interrupted to reinforce a high degree of radiation protection. At the Paul Scherrer Institute, we plan to irradiate tumors continuously. By giving up the idea of discrete grid points, we aim to be faster and more flexible in the irradiation. But the increase in speed and dynamics necessitates a highly responsive monitoring system to guarantee the same level of patient safety as for conventional step-and-shoot irradiations. Hence, we developed and implemented real-time monitoring of the proton beam current and position. As such, we read out diagnostic devices with 100 kHz and compare their signals against safety tolerances in an FPGA. In this paper, we report on necessary software and firmware enhancements of our control system and test their functionality based on three exemplary error scenarios. We demonstrate successful implementation of real-time beam monitoring and, consequently, compliance with international patient safety regulations.

  18. The use of low-dose electron-beam irradiation and storage conditions for sprout control and their effects on xanthophyllis, antioxidant capacity, and phenolics in the potato cultivar Atlantic

    USDA-ARS?s Scientific Manuscript database

    The effects of storage and low-dose electron-beam (e-beam) irradiation on health-promoting compounds were evaluated in the potato cultivar Atlantic. Tubers were either not exposed or subjected to 200 Gy and were either sampled immediately or stored at either 4 degrees C or ambient temperature for 10...

  19. A COMPARISON OF AEROSOL OPTICAL DEPTH SIMULATED USING CMAQ WITH SATELLITE ESTIMATES

    EPA Science Inventory

    Satellite data provide new opportunities to study the regional distribution of particulate matter. The aerosol optical depth (AOD) - a derived estimate from the satellite measured irradiance, can be compared against model derived estimate to provide an evaluation of the columnar ...

  20. Spectrum and density of neutron flux in the irradiation beam line no. 3 of the IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Shabalin, E. P.; Verkhoglyadov, A. E.; Bulavin, M. V.; Rogov, A. D.; Kulagin, E. N.; Kulikov, S. A.

    2015-03-01

    Methodology and results of measuring the differential density of the neutron flux in irradiation beam line no. 3 of the IBR-2 reactor using neutron activation analysis (NAA) are presented in the paper. The results are compared to the calculation performed on the basis of the 3D MCNP model. The data that are obtained are required to determine the integrated radiation dose of the studied samples at various distances from the reactor.

  1. Formation of metal nanoparticles in MgF2, CaF2 and BaF2 crystals under the electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Bochkareva, Elizaveta S.; Sidorov, Alexander I.; Yurina, Uliana V.; Podsvirov, Oleg A.

    2017-07-01

    It is shown experimentally that electron beam action with electrons energies of 50 and 70 keV on MgF2, CaF2 and BaF2 crystals results in local formation in the crystal near-surface layer of Mg, Ca or Ba nanoparticles which possess plasmon resonance. In the case of MgF2 spheroidal nanoparticles are formed, in the cases of CaF2 and BaF2 - spherical. The formation of metal nanoparticles is confirmed by computer simulation in dipole quasistatic approximation. The dependence of absorption via electron irradiation dose is non-linear. It is caused by the increase of nanoparticles concentration and by the increase of nanoparticles sizes during irradiation. In the irradiated zones of MgF2 crystals, for irradiation doses less than 80 mC/cm2, the intense luminescence in a visible range appears. The practical application of fabricated composite materials for multilevel optical information recording is discussed.

  2. Effects of electron-beam and gamma irradiation treatments on the microbial populations, respiratory activity and sensory characteristics of Tuber melanosporum truffles packaged under modified atmospheres.

    PubMed

    Rivera, Carmen Susana; Venturini, María Eugenia; Marco, Pedro; Oria, Rosa; Blanco, Domingo

    2011-10-01

    The effects of electron-beam or gamma irradiation (doses of 1.5 kGy and 2.5 kGy of either one) on the microbial populations, respiratory activity and sensory characteristics of Tuber melanosporum packaged under modified atmospheres were monitored immediately after treatment, and subsequently every seven days during 35 days of storage at 4 °C. Treatments with 1.5 and 2.5 kGy reduced the total mesophilic aerobes counts respectively by 4.3 and 5.6 log cfu/g for electron-beam treatment, and by 6.4 and 6.6 log cfu/g for gamma irradiation. Other microbial groups studied (Pseudomonas genus, Enterobacteriaceae family, lactic acid bacteria, mesophilic aerobic spores, molds and yeasts) were not detected after the treatments. A decrease in the respiratory activity was detected in all the irradiated batches, indicating that the carbon dioxide levels were lower and the oxygen levels higher than those of the non-irradiated ones. Two species of yeasts, Candida sake and Candida membranifaciens var. santamariae, survived the irradiation treatments and became the dominant microbial populations with counts of up to 7.0 log cfu/g. The growth of these microorganisms was visible on the surface of irradiated truffles from day 21 onwards, affecting the flavor and the general acceptability of the ascocarps. Moreover, a watery exudate was detected in the treated truffles from the third week onwards, so the application of irradiation treatments in doses equal to or above 1.5 kGy did not preserve the quality characteristics of T. melanosporum truffles beyond 28 days. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  4. An inexpensive active optical remote sensing instrument for assessing aerosol distributions.

    PubMed

    Barnes, John E; Sharma, Nimmi C P

    2012-02-01

    Air quality studies on a broad variety of topics from health impacts to source/sink analyses, require information on the distributions of atmospheric aerosols over both altitude and time. An inexpensive, simple to implement, ground-based optical remote sensing technique has been developed to assess aerosol distributions. The technique, called CLidar (Charge Coupled Device Camera Light Detection and Ranging), provides aerosol altitude profiles over time. In the CLidar technique a relatively low-power laser transmits light vertically into the atmosphere. The transmitted laser light scatters off of air molecules, clouds, and aerosols. The entire beam from ground to zenith is imaged using a CCD camera and wide-angle (100 degree) optics which are a few hundred meters from the laser. The CLidar technique is optimized for low altitude (boundary layer and lower troposphere) measurements where most aerosols are found and where many other profiling techniques face difficulties. Currently the technique is limited to nighttime measurements. Using the CLidar technique aerosols may be mapped over both altitude and time. The instrumentation required is portable and can easily be moved to locations of interest (e.g. downwind from factories or power plants, near highways). This paper describes the CLidar technique, implementation and data analysis and offers specifics for users wishing to apply the technique for aerosol profiles.

  5. Susceptibility of Murine Norovirus and Hepatitis A Virus to Electron Beam Irradiation in Oysters and Quantifying the Reduction in Potential Infection Risks

    PubMed Central

    Praveen, Chandni; Dancho, Brooke A.; Kingsley, David H.; Calci, Kevin R.; Meade, Gloria K.; Mena, Kristina D.

    2013-01-01

    Consumption of raw oysters is an exposure route for human norovirus (NoV) and hepatitis A virus (HAV). Therefore, efficient postharvest oyster treatment technology is needed to reduce public health risks. This study evaluated the inactivation of HAV and the NoV research surrogate, murine norovirus-1 (MNV-1), in oysters (Crassostrea virginica) by electron beam (E-beam) irradiation. The reduction of potential infection risks was quantified for E-beam irradiation technology employed on raw oysters at various virus contamination levels. The E-beam dose required to reduce the MNV and HAV titer by 90% (D10 value) in whole oysters was 4.05 (standard deviations [SD], ±0.63) and 4.83 (SD, ±0.08) kGy, respectively. Microbial risk assessment suggests that if a typical serving of 12 raw oysters was contaminated with 105 PFU, a 5-kGy treatment would achieve a 12% reduction (from 4.49 out of 10 persons to 3.95 out of 10 persons) in NoV infection and a 16% reduction (from 9.21 out of 10 persons to 7.76 out of 10 persons) in HAV infections. If the serving size contained only 102 PFU of viruses, a 5-kGy treatment would achieve a 26% reduction (2.74 out of 10 persons to 2.03 out of 10 persons) of NoV and 91% reduction (2.1 out of 10 persons to 1.93 out of 100 persons) of HAV infection risks. This study shows that although E-beam processing cannot completely eliminate the risk of viral illness, infection risks can be reduced. PMID:23584781

  6. Susceptibility of murine norovirus and hepatitis A virus to electron beam irradiation in oysters and quantifying the reduction in potential infection risks.

    PubMed

    Praveen, Chandni; Dancho, Brooke A; Kingsley, David H; Calci, Kevin R; Meade, Gloria K; Mena, Kristina D; Pillai, Suresh D

    2013-06-01

    Consumption of raw oysters is an exposure route for human norovirus (NoV) and hepatitis A virus (HAV). Therefore, efficient postharvest oyster treatment technology is needed to reduce public health risks. This study evaluated the inactivation of HAV and the NoV research surrogate, murine norovirus-1 (MNV-1), in oysters (Crassostrea virginica) by electron beam (E-beam) irradiation. The reduction of potential infection risks was quantified for E-beam irradiation technology employed on raw oysters at various virus contamination levels. The E-beam dose required to reduce the MNV and HAV titer by 90% (D(10) value) in whole oysters was 4.05 (standard deviations [SD], ±0.63) and 4.83 (SD, ±0.08) kGy, respectively. Microbial risk assessment suggests that if a typical serving of 12 raw oysters was contaminated with 10(5) PFU, a 5-kGy treatment would achieve a 12% reduction (from 4.49 out of 10 persons to 3.95 out of 10 persons) in NoV infection and a 16% reduction (from 9.21 out of 10 persons to 7.76 out of 10 persons) in HAV infections. If the serving size contained only 10(2) PFU of viruses, a 5-kGy treatment would achieve a 26% reduction (2.74 out of 10 persons to 2.03 out of 10 persons) of NoV and 91% reduction (2.1 out of 10 persons to 1.93 out of 100 persons) of HAV infection risks. This study shows that although E-beam processing cannot completely eliminate the risk of viral illness, infection risks can be reduced.

  7. Columnar characteristics of aerosols by spectroradiometer measurements in the maritime area of the Cadiz Gulf (Spain)

    NASA Astrophysics Data System (ADS)

    Vergaz, Ricardo; Cachorro, Victoria E.; de Frutos, Ángel M.; Vilaplana, José M.; de La Morena, Benito A.

    2005-11-01

    Atmospheric aerosol characteristics represented by the spectral aerosol optical depth AOD) and the Ångström turbidity parameter were determined in the coastal area of the Gulf of Cádiz, (southwest of Spain). The columnar aerosol properties presented here correspond to the 1996-1999 period, and were obtained by solar direct irradiance measurements carried out by a Licor1800 spectroradiometer. The performance of this type of medium-spectral resolution radiometric system is analysed over the measured period. The detailed spectral information of these irradiance measurements enabled the use of selected non-absorption gases spectral windows to determine the columnar spectral AOD that was modelled by Ångström formula to obtain the coefficient. Temporal evolutions of instantaneous values together with a general statistical analysis represented by seasonal values, frequency distributions and some representative correlations for the AOD and the derived Ångström coefficient gave us the first insight of aerosol characteristics in this coastal area. Special attention was paid to the analysis of these aerosol properties at the nominal wavelengths of 440 nm, 670 nm, 870 nm and 1020 nm for the near-future comparisons with the Cimel sun-photometer data. However, taking the most representative aerosol wavelength of 500 nm, the variability of the AOD ranges from 0.005 to 0.53, with a mean of 0.12 (s.d = 0.07) and that of the parameter is given by a mean value of 0.93 (s.d. = 0.58) falling inside the range of marine aerosols. A quantitative discrimination of aerosol types was conducted on the basis of the spectral aerosol properties and air mass back trajectory analysis, which resulted in a mixed type because of the specificity of this area, given by very frequent desert dust episodes, continental and polluted local influences. This study represents the first extended data characterization about columnar properties of aerosols in Spain which has been continued by Cimel

  8. Spectral and spatial shaping of a laser-produced ion beam for radiation-biology experiments

    NASA Astrophysics Data System (ADS)

    Pommarel, L.; Vauzour, B.; Mégnin-Chanet, F.; Bayart, E.; Delmas, O.; Goudjil, F.; Nauraye, C.; Letellier, V.; Pouzoulet, F.; Schillaci, F.; Romano, F.; Scuderi, V.; Cirrone, G. A. P.; Deutsch, E.; Flacco, A.; Malka, V.

    2017-03-01

    The study of radiation biology on laser-based accelerators is most interesting due to the unique irradiation conditions they can produce, in terms of peak current and duration of the irradiation. In this paper we present the implementation of a beam transport system to transport and shape the proton beam generated by laser-target interaction for in vitro irradiation of biological samples. A set of four permanent magnet quadrupoles is used to transport and focus the beam, efficiently shaping the spectrum and providing a large and relatively uniform irradiation surface. Real time, absolutely calibrated, dosimetry is installed on the beam line, to enable shot-to-shot control of dose deposition in the irradiated volume. Preliminary results of cell sample irradiation are presented to validate the robustness of the full system.

  9. Use of lactic acid with electron beam irradiation for control of Escherichia coli O157:H7, non-O157 VTEC E. coli, and Salmonella serovars on fresh and frozen beef.

    PubMed

    Li, Shuliu; Kundu, Devapriya; Holley, Richard A

    2015-04-01

    Lactic acid pre-treatment was examined to enhance the antimicrobial action of electron (e-) beam irradiation of beef trim. Meat samples were inoculated with Escherichia coli O157:H7, non-O157 VTEC E. coli or Salmonella cocktails and treated with 5% lactic acid at 55 °C. Samples were packaged aerobically or vacuum-packed, kept at 4 °C and treated with 1 kGy e-beam energy. Frozen samples were treated with 1, 3 or 7 kGy and stored at -20 °C for ≤ 5 d. Lactic acid enhanced the antimicrobial action of 1 kGy e-beam treatment against Salmonella by causing an additional <1.8 log CFU/g reduction. One kGy treatment of refrigerated samples reduced VTEC E. coli viability by 4.5 log CFU/g, and while lactic acid did not improve the reduction, after freezing additive effects were found. After 3 kGy irradiation, Salmonella was reduced by 2 and 4 log CFU/g in the irradiated and lactic acid plus irradiated samples, respectively. Lactic acid pre-treatment was of limited value with 1 kGy treatment for improving control of toxigenic E. coli in fresh beef trim, however, it would be useful with low dose irradiation for controlling both VTEC E. coli and Salmonella in frozen product. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon

    NASA Astrophysics Data System (ADS)

    Cirino, G. G.; Souza, R. A. F.; Adams, D. K.; Artaxo, P.

    2014-07-01

    Carbon cycling in the Amazon is closely linked to atmospheric processes and climate in the region as a consequence of the strong coupling between the atmosphere and biosphere. This work examines the effects of changes in net radiation due to atmospheric aerosol particles and clouds on the net ecosystem exchange (NEE) of CO2 in the Amazon region. Some of the major environmental factors affecting the photosynthetic activity of plants, such as air temperature and relative humidity, were also examined. An algorithm for clear-sky irradiance was developed and used to determine the relative irradiance, f, which quantifies the percentage of solar radiation absorbed and scattered due to atmospheric aerosol particles and clouds. Aerosol optical depth (AOD) was calculated from irradiances measured with the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, onboard the Terra and Aqua satellites, and was validated with ground-based AOD measurements from AERONET (Aerosol Robotic Network) sun photometers. Carbon fluxes were measured using eddy covariance technique at the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) flux towers. Two sites were studied: the Jaru Biological Reserve (RBJ), located in Rondonia, and the Cuieiras Biological Reserve at the K34 LBA tower (located in a preserved region in the central Amazon). Analysis was performed continuously from 1999 to 2009 at K34 and from 1999 to 2002 at RBJ, and includes wet, dry and transition seasons. In the Jaru Biological Reserve, a 29% increase in carbon uptake (NEE) was observed when the AOD ranged from 0.10 to 1.5 at 550 nm. In the Cuieiras Biological Reserve, the aerosol effect on NEE was smaller, accounting for an approximate 20% increase in NEE. High aerosol loading (AOD above 3 at 550 nm) or high cloud cover leads to reductions in solar flux and strong decreases in photosynthesis up to the point where NEE approaches zero. The observed increase in NEE is attributed to an enhancement (~50%) in

  11. Radiative effects of biomass burning aerosols and cloudiness on seasonal carbon cycle in the Amazon region

    NASA Astrophysics Data System (ADS)

    Moreira, D. S.; Longo, K.; Freitas, S.; Mercado, L. M.; Miller, J. B.; Rosario, N. M. E. D.; Gatti, L.; Yamasoe, M. A.

    2017-12-01

    The Amazon region is characterized by high cloudiness, mainly due to convective clouds during most of the year due to the high humidity, and heat availability. However, during the Austral winter, the northward movement of the inter-tropical convergence zone (ITCZ) from its climatological position, significantly reducing cloudiness and precipitation, facilitating vegetation fires. Consequently, during these dry months, biomass burning aerosols contribute to relatively high values of aerosol optical depth (AOD) in Amazonia, typically exceeding 1.0 in the 550 nm wavelength. Both clouds and aerosols scatter solar radiation, reducing the direct irradiance and increasing the diffuse fraction that reaches the surface, decreasing near surface temperature and increasing photosynthetically active radiation (PAR) availability. This, in turn, affects energy and CO2 fluxes within the vegetation canopy. We applied an atmospheric model fully coupled to terrestrial carbon cycle model to assess the relative impact of biomass burning aerosols and clouds on CO2 fluxes in the Amazon region. Our results indicate that during most of the year, gross primary productivity (GPP) is high mainly due to high soil moisture and high values of the diffuse fraction of solar irradiation due to cloudiness. Therefore, heterotrophic and autotrophic respiration are both high, increasing the NEE values (i.e. reducing the net land sink). On the other hand, during the dry season, with a significant reduction of cloudiness, the biomass burning aerosol is mainly responsible for the increase in the diffuse fraction of solar irradiation and the GPP of the forest. However, the low soil moisture during the dry season, especially in the eastern Amazon, reduces heterotrophic and autotrophic respiration and thus compensates for reduced GPP compared to the wet season. Different reasons, an anthropogenic one (human induced fires during the dry season) and a natural one (cloudiness), lead to a somewhat stable value

  12. The effect of atmospheric aerosol particles and clouds on Net Ecosystem Exchange in Amazonia

    NASA Astrophysics Data System (ADS)

    Cirino, G. G.; Souza, R. F.; Adams, D. K.; Artaxo, P.

    2013-11-01

    Carbon cycling in Amazonia is closely linked to atmospheric processes and climate in the region as a consequence of the strong coupling between the atmosphere and biosphere. This work examines the effects of changes in net radiation due to atmospheric aerosol particles and clouds on the Net Ecosystem Exchange (NEE) of CO2 in the Amazon region. Some of the major environmental factors affecting the photosynthetic activity of plants, such as air temperature and relative humidity were also examined. An algorithm for clear-sky irradiance was developed and used to determine the relative irradiance f, which quantifies the percentage of solar radiation absorbed and scattered due to atmospheric aerosol particles and clouds. Aerosol optical depth (AOD) was calculated from irradiances measured with the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, onboard the TERRA and AQUA satellites, and was validated with ground-based AOD measurements from AERONET sun photometers. Carbon fluxes were measured using eddy-correlation techniques at LBA (The Large Scale Biosphere-Atmosphere Experiment in Amazonia) flux towers. Two sites were studied: the Biological Reserve of Jaru (located in Rondonia) and the Cuieiras Biological Reserve (located in a preserved region in central Amazonia). In the Jaru Biological Reserve, a 29% increase in carbon uptake (NEE) was observed when the AOD ranged from 0.10 to 1.5. In the Cuieiras Biological Reserve, this effect was smaller, accounting for an approximately 20% increase in NEE. High aerosol loading (AOD above 3 at 550 nm) or cloud cover leads to reductions in solar flux and strong decreases in photosynthesis up to the point where NEE approaches 0. The observed increase in NEE is attributed to an enhancement (~50%) in the diffuse fraction of photosynthetic active radiation (PAR). Significant changes in air temperature and relative humidity resulting from changes in solar radiation fluxes under high aerosol loading were also observed at

  13. Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.

    2014-01-01

    The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.

  14. FORMATION OF 2-METHYL TETROLS AND 2-METHYLGLYCERIC ACID IN SECONDARY ORGANIC AEROSOL FROM LABORATORY IRRADIATED ISOPRENE/NO X/SO 2/AIR MIXTURES AND THEIR DETECTION IN AMBIENT PM 2.5 SAMPLES COLLECTED IN THE EASTERN UNITED STATES

    EPA Science Inventory

    A series of isoprene/NOx/air irradiation experiments, carried out in both the absence and presence of SO2, were conducted to assess whether isoprene contributes to secondary organic aerosol (SOA) formation. In the absence of SO2 , the SOA yield of 0.002 was low. However, in th...

  15. Effects of Prenatal Irradiation with an Accelerated Heavy-Ion Beam on Postnatal Development in Rats

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Fujita, K.; Coffigny, H.; Hayata, I.

    Effects on postnatal neurophysiological development in offspring were studied following exposure of pregnant Wistar rats to accelerated neon-ion beams with a LET value of about 30 keV mu m at a dose range from 0 1 Gy to 2 0Gy on the 15th day of gestation The age at which four physiologic markers appeared and five reflexes were acquired was examined prior to weaning Gain in body weight was monitored until the offspring were 3 months old Male offspring were evaluated as young adults using two behavioral tests The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison Our previous study on carbon-ion beams with a LET value of about 13 keV mu m was also cited to elucidate a possible LET-related effect For most of the endpoints at early age significant alteration was even observed in offspring prenatally received 0 1 Gy of accelerated neon ions while neither X rays nor carbon-ions under the same dose resulted in such a significant alteration compared to that from the sham-irradiated dams All offspring whose mothers received 2 0 Gy died prior to weaning Offspring from dams irradiated with accelerated neon ions generally showed higher incidences of prenatal death and preweaning mortality markedly delayed accomplishment in their physiological markers and reflexes and gain in body weight compared to those exposed to X-rays or carbon ions at doses of 0 1 to 1 5 Gy Significantly reduced ratios of main organ weight to body weight at postnatal ages of 30 60 and 90 days were also observed

  16. The effect of electron-beam irradiation and halogen-free flame retardants on properties of poly butylene terephthalate

    NASA Astrophysics Data System (ADS)

    Hooshangi, Zhila; Feghhi, Seyed Amir Hossein; Sheikh, Nasrin

    2015-03-01

    Engineering plastics like Poly (butylene terephthalate) due to their desirable properties have various industrial applications. Neat PBT is highly combustible, so it is necessary to improve significantly its fire retardancy to meet the fire safety requirements. The combustion performance of PBT can be improved by addition of appropriate flame retardant additives. In this study we have investigated the effect of halogen free flame retardants, i.e. melamine and aluminum phosphate, and instantaneously electron beam radiation-induced crosslinking in the presence of Triallyl cyanurate on various properties of PBT. The results of gel content showed that a dose range of 200-400 kGy leads to high cross linked structure in this polymer. Also mechanical experiments showed that its structure became rigid and fragile due to irradiation. Radiation crosslinking of this polymer made its dielectric loss coefficient ten times lower than non-irradiated polymer, but had no effect on its dielectric constant. Moreover the addition of the fire retardant additives as impurity decreased the dielectric loss coefficient. TGA analysis in nitrogen exhibited that irradiation increases char formation and use of the fire retardant additives leads to reduction of onset temperature and formation of higher char quantity than pure PBT. According to the results of UL-94, irradiated samples burned with lower speed and less dripping in vertical and horizontal positions than pure polymer. Finally irradiation of the polymers containing fire retardant additives with a dose of 400 kGy led to self-extinguishing and non-dripping and reach to V-0 level in the UL-94 V.

  17. Thermal conductivity of graphene with defects induced by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L.; Mulchandani, Ashok; Lake, Roger K.; Balandin, Alexander A.

    2016-07-01

    We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is

  18. Development of an irradiation method with lateral modulation of SOBP width using a cone-type filter for carbon ion beams.

    PubMed

    Ishizaki, Azusa; Ishii, Keizo; Kanematsu, Nobuyuki; Kanai, Tatsuaki; Yonai, Shunsuke; Kase, Yuki; Takei, Yuka; Komori, Masataka

    2009-06-01

    Passive irradiation methods deliver an extra dose to normal tissues upstream of the target tumor, while in dynamic irradiation methods, interplay effects between dynamic beam delivery and target motion induced by breathing or respiration distort the dose distributions. To solve the problems of those two irradiation methods, the authors have developed a new method that laterally modulates the spread-out Bragg peak (SOBP) width. By reducing scanning in the depth direction, they expect to reduce the interplay effects. They have examined this new irradiation method experimentally. In this system, they used a cone-type filter that consisted of 400 cones in a grid of 20 cones by 20 cones. There were five kinds of cones with different SOBP widths arranged on the frame two dimensionally to realize lateral SOBP modulation. To reduce the number of steps of cones, they used a wheel-type filter to make minipeaks. The scanning intensity was modulated for each SOBP width with a pair of scanning magnets. In this experiment, a stepwise dose distribution and spherical dose distribution of 60 mm in diameter were formed. The nonflatness of the stepwise dose distribution was 5.7% and that of the spherical dose distribution was 3.8%. A 2 mm misalignment of the cone-type filter resulted in a nonflatness of more than 5%. Lateral SOBP modulation with a cone-type filter and a scanned carbon ion beam successfully formed conformal dose distribution with nonflatness of 3.8% for the spherical case. The cone-type filter had to be set to within 1 mm accuracy to maintain nonflatness within 5%. This method will be useful to treat targets moving during breathing and targets in proximity to important organs.

  19. High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, Gary; Wirth, Brian; Motta, Athur

    The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiatedmore » microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations.« less

  20. Beam characterization by wavefront sensor

    DOEpatents

    Neal, Daniel R.; Alford, W. J.; Gruetzner, James K.

    1999-01-01

    An apparatus and method for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed.

  1. Influence of synoptic weather patterns on solar irradiance variability in Europe

    NASA Astrophysics Data System (ADS)

    Parding, Kajsa; Hinkelman, Laura; Liepert, Beate; Ackerman, Thomas; Dagestad, Knut-Frode; Asle Olseth, Jan

    2014-05-01

    Solar radiation is important for many aspects of existence on Earth, including the biosphere, the hydrological cycle, and creatures living on the planet. Previous studies have reported decadal trends in observational records of surface shortwave (SW) irradiance around the world, too strong to be caused by varying solar output. These observed decadal trends have been dubbed "solar dimming and brightening" and are believed to be related to changes in atmospheric aerosols and cloud cover. Because the observed solar variability coincides with qualitative air pollution histories, the dimming and brightening have become almost synonymous with shortwave attenuation by anthropogenic aerosols. However, there are indications that atmospheric circulation patterns have influenced the dimming and brightening in some regions, e.g., Alaska and Scandinavia. In this work, we focus on the role of atmospheric circulation patterns in modifying shortwave irradiance. An examination of European SW irradiance data from the Global Energy Balance Archive (GEBA) shows that while there are periods of predominantly decreasing (~1970-1985) and increasing (~1985-2007) SW irradiance, the changes are not spatially uniform within Europe and in a majority of locations not statistically significant. To establish a connection between weather patterns and sunshine, regression models of SW irradiance are fitted using a daily classification of European weather called Grosswetterlagen (GWL). The GWL reconstructions of shortwave irradiance represent the part of the solar variability that is related to large scale weather patterns, which should be effectively separated from the influence of varying anthropogenic aerosol emissions. The correlation (R) between observed and reconstruced SW irradiance is between 0.31 and 0.75, depending on station and season, all statistically significant (p<0.05, estimated with a bootstrap test). In central and eastern parts of Europe, the observed decadal SW variability is

  2. 10 μ m-thick four-quadrant transmissive silicon photodiodes for beam position monitor application: electrical characterization and gamma irradiation effects

    NASA Astrophysics Data System (ADS)

    Rafí, J. M.; Pellegrini, G.; Quirion, D.; Hidalgo, S.; Godignon, P.; Matilla, O.; Juanhuix, J.; Fontserè, A.; Molas, B.; Pothin, D.; Fajardo, P.

    2017-01-01

    Silicon photodiodes are very useful devices as X-ray beam monitors in synchrotron radiation beamlines. Owing to Si absorption, devices thinner than 10 μ m are needed to achieve transmission over 90% for energies above 10 keV . In this work, new segmented four-quadrant diodes for beam alignment purposes are fabricated on both ultrathin (10 μ m-thick) and bulk silicon substrates. Four-quadrant diodes implementing different design parameters as well as auxiliary test structures (single diodes and MOS capacitors) are studied. An extensive electrical characterization, including current-voltage (I-V) and capacitance-voltage (C-V) techniques, is carried out on non-irradiated and gamma-irradiated devices up to 100 Mrad doses. Special attention is devoted to the study of radiation-induced charge build-up in diode interquadrant isolation dielectric, as well as its impact on device interquadrant resistance. Finally, the devices have been characterized with an 8 keV laboratory X-ray source at 108 ph/s and in BL13-XALOC ALBA Synchroton beamline with 1011 ph/s and energies from 6 to 16 keV . Sensitivity, spatial resolution and uniformity of the devices have been evaluated.

  3. ß-CARYOPHYLLINIC ACID: AN ATMOSPHERIC TRACER FOR ß-CARYOPHYLLENE SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    The chemical compositions of ambient PM2.5 samples, collected in Research Triangle Park, North Carolina, USA, and a sample of secondary organic aerosol, formed by irradiating a mixture of the sesquiterpene, ß-caryophyllene, and oxides of nitrogen in a smog chamber, wer...

  4. Secondary organic aerosol formation from isoprene photooxidation

    NASA Astrophysics Data System (ADS)

    Kroll, J. H.; Ng, N. L.; Murphy, S. M.; Flagan, R. C.; Seinfeld, J. H.

    2005-12-01

    We report chamber studies of the formation of secondary organic aerosol (SOA) from the oxidation of isoprene (2-methyl-1,3-butadiene). Isoprene is the most abundant non-methane hydrocarbon emitted into the troposphere (source strength of ~500 Tg/year), so even small SOA yields may have a large impact on global SOA production. Reactions are carried out in Caltech's dual 28 m3 Teflon chambers, and aerosol growth is monitored by a differential mobility analyzer (DMA) and an Aerodyne time-of-flight aerosol mass spectrometer (AMS). Isoprene oxidation is initiated by the UV irradiation of isoprene in the presence of hydrogen peroxide, with NO added for high-NOx experiments. These conditions ensure that isoprene oxidation is initiated by reaction with the OH radical, with negligible interference from other oxidants (ozone, nitrate radicals, and O atoms). Aerosol growth is observed under both high-NOx and low-NOx conditions, at isoprene concentrations lower than measured in previous studies (down to 8 ppb). SOA yields are found to be in the range of 1-2%. Yields exhibit a complex dependence on NOx concentration, likely a result of changes in the chemistry of organic peroxy radicals. It is shown that condensable compounds are formed from further reactions of first-generation isoprene oxidation products; the rates and products of such gas-phase reactions are at present poorly understood. Additionally, measurements of SOA composition indicate that these products undergo reactions in the aerosol phase, leading to the formation of low-volatility oligomeric products.

  5. Generation of Mie size microdroplet aerosols with applications in laser-driven fusion experiments.

    PubMed

    Higginbotham, A P; Semonin, O; Bruce, S; Chan, C; Maindi, M; Donnelly, T D; Maurer, M; Bang, W; Churina, I; Osterholz, J; Kim, I; Bernstein, A C; Ditmire, T

    2009-06-01

    We have developed a tunable source of Mie scale microdroplet aerosols that can be used for the generation of energetic ions. To demonstrate this potential, a terawatt Ti:Al2O3 laser focused to 2 x 10(19) W/cm2 was used to irradiate heavy water (D2O) aerosols composed of micron-scale droplets. Energetic deuterium ions, which were generated in the laser-droplet interaction, produced deuterium-deuterium fusion with approximately 2 x 10(3) fusion neutrons measured per joule of incident laser energy.

  6. Caribbean coral growth influenced by anthropogenic aerosol emissions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Lester; Cox, Peter M.; Economou, Theo; Halloran, Paul R.; Mumby, Peter J.; Booth, Ben B. B.; Carilli, Jessica; Guzman, Hector M.

    2013-05-01

    Coral growth rates are highly dependent on environmental variables such as sea surface temperature and solar irradiance. Multi-decadal variability in coral growth rates has been documented throughout the Caribbean over the past 150-200 years, and linked to variations in Atlantic sea surface temperatures. Multi-decadal variability in sea surface temperatures in the North Atlantic, in turn, has been linked to volcanic and anthropogenic aerosol forcing. Here, we examine the drivers of changes in coral growth rates in the western Caribbean between 1880 and 2000, using previously published coral growth chronologies from two sites in the region, and a numerical model. Changes in coral growth rates over this period coincided with variations in sea surface temperature and incoming short-wave radiation. Our model simulations show that variations in the concentration of anthropogenic aerosols caused variations in sea surface temperature and incoming radiation in the second half of the twentieth century. Before this, variations in volcanic aerosols may have played a more important role. With the exception of extreme mass bleaching events, we suggest that neither climate change from greenhouse-gas emissions nor ocean acidification is necessarily the driver of multi-decadal variations in growth rates at some Caribbean locations. Rather, the cause may be regional climate change due to volcanic and anthropogenic aerosol emissions.

  7. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  8. Does sterilization with fractionated electron beam irradiation prevent ACL tendon allograft from tissue damage?

    PubMed

    Schmidt, T; Grabau, D; Grotewohl, J H; Gohs, U; Pruß, A; Smith, M; Scheffler, S; Hoburg, A

    2017-02-01

    Allografts are frequently used for anterior cruciate ligament (ACL) reconstruction. However, due to the inherent risk of infection, a method that achieves complete sterilization of grafts is warranted without impairing their biomechanical properties. Fractionation of electron beam (FEbeam) irradiation has been shown to maintain similar biomechanical properties compared to fresh-frozen allografts (FFA) in vitro. Therefore, aim of this study was to evaluate the biomechanical properties and early remodelling of grafts that were sterilized with fractionated high-dose electron beam irradiation in an in vivo sheep model. ACL reconstruction was performed in 18 mature merino mix sheep. Sixteen were reconstructed with allografts sterilized with FEbeam irradiation (8 × 3.4 kGy) and two with FFA. Eight FFA from prior studies with identical surgical reconstruction and biomechanical and histological analyzes served as controls. Half of the animals were sacrificed at 6 and 12 weeks, and biomechanical testing was performed. Anterior-posterior laxity (APL) was assessed with an AP drawer test at 60° flexion, and load to failure testing was carried out. Histological evaluation of mid-substance samples was performed for descriptive analysis, cell count, crimp and vessel density. For statistical analysis a Kruskal-Wallis test was used for overall group comparison followed by a Mann-Whitney U test for pairwise comparison of the histological and biomechanical parameters. Biomechanical testing showed significantly decreased stiffness in FEbeam compared to FFA at both time points (p ≤ 0.004). APL was increased in FEbeam compared to FFA, which was significant at 6 weeks (p = 0.004). Median of failure loads was decreased in FEbeam grafts, with 12 reconstructions already failing during cyclic loading. Vessel density was decreased in FEbeam compared to FFA at both time points, with significant differences at 12 weeks (p = 0.015). Crimp length was significantly shorter in

  9. Role of sublayers in mechanical response of pulsed electron beam irradiated surface layers to contact load

    NASA Astrophysics Data System (ADS)

    Konovalenko, Igor S.

    2017-12-01

    Here we develop the movable cellular automaton method based a numerical model of surface layers in a NiCr-TiC metal ceramic composite modified by pulsed electron beam irradiation in inert gas plasmas. The model explicitly takes into account the presence of several sublayers differing in structure and mechanical properties. The contribution of each sublayer to the mechanical response of the modified surface to contact loading is studied. It is shown that the maximum strength and fracture toughness are achieved in surface layers containing thin and stiff external sublayers and a more ductile thick internal sublayer.

  10. Aerosol algorithm evaluation within aerosol-CCI

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Schulz, Michael; Griesfeller, Jan

    Properties of aerosol retrievals from space are difficult. Even data from dedicated satellite sensors face contaminations which limit the accuracy of aerosol retrieval products. Issues are the identification of complete cloud-free scenes, the need to assume aerosol compositional features in an underdetermined solution space and the requirement to characterize the background at high accuracy. Usually the development of aerosol is a slow process, requiring continuous feedback from evaluations. To demonstrate maturity, these evaluations need to cover different regions and seasons and many different aerosol properties, because aerosol composition is quite diverse and highly variable in space and time, as atmospheric aerosol lifetimes are only a few days. Three years ago the ESA Climate Change Initiative started to support aerosol retrieval efforts in order to develop aerosol retrieval products for the climate community from underutilized ESA satellite sensors. The initial focus was on retrievals of AOD (a measure for the atmospheric column amount) and of Angstrom (a proxy for aerosol size) from the ATSR and MERIS sensors on ENVISAT. The goal was to offer retrieval products that are comparable or better in accuracy than commonly used NASA products of MODIS or MISR. Fortunately, accurate reference data of ground based sun-/sky-photometry networks exist. Thus, retrieval assessments could and were conducted independently by different evaluation groups. Here, results of these evaluations for the year 2008 are summarized. The capability of these newly developed retrievals is analyzed and quantified in scores. These scores allowed a ranking of competing efforts and also allow skill comparisons of these new retrievals against existing and commonly used retrievals.

  11. Thiobarbituric acid reactive substances and volatile compounds in chicken breast meat infused with plant extracts and subjected to electron beam irradiation.

    PubMed

    Rababah, T; Hettiarachchy, N S; Horax, R; Cho, M J; Davis, B; Dickson, J

    2006-06-01

    The effect of irradiation on thiobarbituric acid reactive substances (TBARS) and volatile compounds in raw and cooked nonirradiated and irradiated chicken breast meat infused with green tea and grape seed extracts was investigated. Chicken breast meat was vacuum infused with green tea extract (3,000 ppm), grape seed extract (3,000 ppm), or their combination (at a total of 6,000 ppm), irradiated with an electron beam, and stored at 5 degrees C for 12 d. The targeted irradiation dosage was 3.0 kGy and the average absorbed dosage was 3.12 kGy. Values of TBARS and volatile compound contents of raw and cooked chicken meat were determined during the 12-d storage period. Thiobarbituric acid reactive substances values ranged from 15.5 to 71.4 mg of malondialdehyde/kg for nonirradiated raw chicken and 17.3 to 80.1 mg of malondialdehyde/kg for irradiated raw chicken. Values for cooked chicken ranged from 31.4 to 386.2 and 38.4 to 504.1 mg of malondialdehyde/kg for nonirradiated and irradiated chicken, respectively. Irradiation increased TBARS and hexanal values of controls and meat infused with plant extracts. Hexanal had the highest intensity of volatiles followed by pentanal and other volatiles. Cooking the samples significantly (P < 0.05) increased the amounts of TBARS and volatiles. Addition of plant extracts decreased the amount of TBARS as well as hexanal and pentanal values. Although irradiation increases lipid oxidation, infusion of chicken meat with plant extracts could reduce lipid oxidation caused by irradiation.

  12. Realistic respiratory motion margins for external beam partial breast irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Leigh; Quirk, Sarah; Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4

    Purpose: Respiratory margins for partial breast irradiation (PBI) have been largely based on geometric observations, which may overestimate the margin required for dosimetric coverage. In this study, dosimetric population-based respiratory margins and margin formulas for external beam partial breast irradiation are determined. Methods: Volunteer respiratory data and anterior–posterior (AP) dose profiles from clinical treatment plans of 28 3D conformal radiotherapy (3DCRT) PBI patient plans were used to determine population-based respiratory margins. The peak-to-peak amplitudes (A) of realistic respiratory motion data from healthy volunteers were scaled from A = 1 to 10 mm to create respiratory motion probability density functions. Dosemore » profiles were convolved with the respiratory probability density functions to produce blurred dose profiles accounting for respiratory motion. The required margins were found by measuring the distance between the simulated treatment and original dose profiles at the 95% isodose level. Results: The symmetric dosimetric respiratory margins to cover 90%, 95%, and 100% of the simulated treatment population were 1.5, 2, and 4 mm, respectively. With patient set up at end exhale, the required margins were larger in the anterior direction than the posterior. For respiratory amplitudes less than 5 mm, the population-based margins can be expressed as a fraction of the extent of respiratory motion. The derived formulas in the anterior/posterior directions for 90%, 95%, and 100% simulated population coverage were 0.45A/0.25A, 0.50A/0.30A, and 0.70A/0.40A. The differences in formulas for different population coverage criteria demonstrate that respiratory trace shape and baseline drift characteristics affect individual respiratory margins even for the same average peak-to-peak amplitude. Conclusions: A methodology for determining population-based respiratory margins using real respiratory motion patterns and dose profiles in the AP

  13. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy.

    PubMed

    Kanai, T; Endo, M; Minohara, S; Miyahara, N; Koyama-ito, H; Tomura, H; Matsufuji, N; Futami, Y; Fukumura, A; Hiraoka, T; Furusawa, Y; Ando, K; Suzuki, M; Soga, F; Kawachi, K

    1999-04-01

    The irradiation system and biophysical characteristics of carbon beams are examined regarding radiation therapy. An irradiation system was developed for heavy-ion radiotherapy. Wobbler magnets and a scatterer were used for flattening the radiation field. A patient-positioning system using X ray and image intensifiers was also installed in the irradiation system. The depth-dose distributions of the carbon beams were modified to make a spread-out Bragg peak, which was designed based on the biophysical characteristics of monoenergetic beams. A dosimetry system for heavy-ion radiotherapy was established to deliver heavy-ion doses safely to the patients according to the treatment planning. A carbon beam of 80 keV/microm in the spread-out Bragg peak was found to be equivalent in biological responses to the neutron beam that is produced at cyclotron facility in National Institute Radiological Sciences (NIRS) by bombarding 30-MeV deuteron beam on beryllium target. The fractionation schedule of the NIRS neutron therapy was adapted for the first clinical trials using carbon beams. Carbon beams, 290, 350, and 400 MeV/u, were used for a clinical trial from June of 1994. Over 300 patients have already been treated by this irradiation system by the end of 1997.

  14. Highlights from 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    2016-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET (Aerosol Robotic Network)-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyperspectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT). From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy's TCAP (Two-Column Aerosol Project) I & II campaigns, and NASA's SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) and ARISE (Arctic Radiation - IceBridge Sea & Ice Experiment) campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2 (High Spectral Resolution Lidar), and from in situ measurements.

  15. Beam characterization by wavefront sensor

    DOEpatents

    Neal, D.R.; Alford, W.J.; Gruetzner, J.K.

    1999-08-10

    An apparatus and method are disclosed for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed. 21 figs.

  16. Luminescence study of Dy or Ce activated LiCaBO3 phosphor for γ-ray and C5+ ion beam irradiation.

    PubMed

    Oza, Abha H; Dhoble, N S; Lochab, S P; Dhoble, S J

    2015-11-01

    The photoluminescence and thermoluminescence characteristics of rare earths (Dy or Ce) activated LiCaBO3 phosphors have been studied. Phosphors were synthesized by modified solid state synthesis. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) and thermoluminescence (TL) for structural, morphological and luminescence studies. Dy(3+) activated LiCaBO3 shows emission at 486 and 577 nm due to (4) F9/2 →(6) H15/2 and (4) F9/2 → (6) H13/2 transition, respectively, whereas the PL emission spectra of Ce(3+) activated LiCaBO3 phosphor shows a broad band peaking at 432 nm, which is due to the transition from 5d level to the ground state of the Ce(3+) ion. The thermoluminescence study was also carried out for both these phosphors for γ-ray irradiation and carbon beam irradiation. Linearity was studied for a 0.4-3.1 Rad dose γ-rays. Linear behaviour over this dose range was observed. Gamma ray-irradiated phosphors were shown to be negligible fading upon storage. All the samples were also studied for 75 MeV C(5+) ion beam exposure in the range of 3.75 × 10(12) - 7.5 × 10(13) ion cm(-2) fluence. In addition to this, trapping parameters of all the samples were also calculated using Chen's peak shape method. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Periodically poled lithium niobate by electron beam: irradiation conditions and second harmonic generation

    NASA Astrophysics Data System (ADS)

    Restoin, C.; Couderc, Vincent; Darraud-Taupiac, Claire; Decossas, J.-Louis; Vareille, J.-C.; Barthelemy, Alain; Hauden, Jerome

    2000-12-01

    Second Harmonic Generation (SHG) using counter-propagating Quasi Phase Matching (QPM) configuration often requires a fine non-linearity with a period of a fraction of a micrometer. The direct Electron Beam (EB) domain reversal technique seems to be promising to achieve gratings on LiNbO3 with such a small period compared to other current poling technologies as it is lithographic free and exhibits a very high theoretical resolution (5 mm). We present here, a preliminary study concerning the influence of EB irradiation conditions on domain inversion; SHG is also examined on a 6.58 j.tm inverted periodic domain grating in lithium niobate using a Nd-YaG laser light. It is well known that LiNbO3 is an attractive material for many optical applications because of its transparency over a large wavelength band (350 mm to 5000 mm) and its high nonlinear coefficients. EB irradiation is performed using a Scanning Electron Microscope (SEM) driven by a Computer Aided Design (CAD) application developed in our laboratory. Various structures such as periodic gratings can be written with the chosen period. The ferroelectric domain inversion is investigated as a function of the accelerating voltage of the electrons (10 to 30 kV), the scanning speed of the EB (0.97 to 7.76 mm/s) and the current received by the sample (1.6 to 14 nA). The inversion patterns have been revealed by chemical etching (HF) and they have been observed using SEM. It has been shown that the duty cycle is respected on the irradiated face. The SHG conversion efficiency is measured as a function of the temperature and the grating period is calculated (value of6.564 jim).

  18. Proton irradiation of malignant melanoma of the ciliary body.

    PubMed Central

    Gragoudas, E S; Goitein, M; Koehler, A; Wagner, M S; Verhey, L; Tepper, J; Suit, H D; Schneider, R J; Johnson, K N

    1979-01-01

    This is our first case of malignant melanoma of the ciliary body treated with proton beam irradiation, a technique that we developed for irradiating choroidal melanomas. After 21 months of follow-up no growth of the tumour has been observed, and shrinkage of the tumour was noted on the follow-up photographs and by ultrasonography. The 32P uptake test, which was positive before treatment, turned negative 14 months after irradiation. The described technique of proton beam irradiation might offer an alternative for the treatment of ciliary body melanomas when the present techniques of iridocyclectomy cannot be applied because of the size of the lesion. Images PMID:106873

  19. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-08-01

    High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer-Emmett-Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  20. WC/Co composite surface structure and nano graphite precipitate induced by high current pulsed electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Hao, S. Z.; Zhang, Y.; Xu, Y.; Gey, N.; Grosdidier, T.; Dong, C.

    2013-11-01

    High current pulsed electron beam (HCPEB) irradiation was conducted on a WC-6% Co hard alloy with accelerating voltage of 27 kV and pulse duration of 2.5 μs. The surface phase structure was examined by using glancing-angle X-ray diffraction (GAXRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) methods. The surface tribological properties were measured. It was found that after 20 pulses of HCPEB irradiation, the surface structure of WC/Co hard alloy was modified dramatically and composed of a mixture of nano-grained WC1-x, Co3W9C4, Co3W3C phases and graphite precipitate domains ˜50 nm. The friction coefficient of modified surface decreased to ˜0.38 from 0.6 of the initial state, and the wear rate reduced from 8.4 × 10-5 mm3/min to 6.3 × 10-6 mm3/min, showing a significant self-lubricating effect.

  1. FORMATION OF POLYKETONES IN IRRADIATED TOLUENE/PROPYLENE/NOX/AIR MIXTURES

    EPA Science Inventory

    A laboratory study was carried out to investigate the formation of polyketones in secondary organic aerosol from photooxidation of the aromatic hydrocarbon toluene, a major constituent of automobile exhaust. The laboratory experiments consisted of irradiating toluene/propylene...

  2. Fabrication of nanoscale Ga balls via a Coulomb explosion of microscale silica-covered Ga balls by TEM electron-beam irradiation

    PubMed Central

    Chen, Ying; Huang, Yanli; Liu, Nishuang; Su, Jun; Li, Luying; Gao, Yihua

    2015-01-01

    Nanoscale Ga particles down to 5 nm were fabricated by an explosion via an in situ electron-beam irradiation on microscale silica-covered Ga balls in a transmission electron microscope. The explosion is confirmed to be a Coulomb explosion because it occurs on the surface rather than in the whole body of the insulating silica-covered Ga micro–balls, and on the pure Ga nano-balls on the edge of carbon film. The ejected particles in the explosion increase their sizes with increasing irradiation time until the stop of the explosion, but decrease their sizes with increasing distance from the original ball. The Coulomb explosion suggests a novel method to fabricate nanoscale metal particles with low melting point. PMID:26100238

  3. Development of activity pencil beam algorithm using measured distribution data of positron emitter nuclei generated by proton irradiation of targets containing (12)C, (16)O, and (40)Ca nuclei in preparation of clinical application.

    PubMed

    Miyatake, Aya; Nishio, Teiji; Ogino, Takashi

    2011-10-01

    The purpose of this study is to develop a new calculation algorithm that is satisfactory in terms of the requirements for both accuracy and calculation time for a simulation of imaging of the proton-irradiated volume in a patient body in clinical proton therapy. The activity pencil beam algorithm (APB algorithm), which is a new technique to apply the pencil beam algorithm generally used for proton dose calculations in proton therapy to the calculation of activity distributions, was developed as a calculation algorithm of the activity distributions formed by positron emitter nuclei generated from target nuclear fragment reactions. In the APB algorithm, activity distributions are calculated using an activity pencil beam kernel. In addition, the activity pencil beam kernel is constructed using measured activity distributions in the depth direction and calculations in the lateral direction. (12)C, (16)O, and (40)Ca nuclei were determined as the major target nuclei that constitute a human body that are of relevance for calculation of activity distributions. In this study, "virtual positron emitter nuclei" was defined as the integral yield of various positron emitter nuclei generated from each target nucleus by target nuclear fragment reactions with irradiated proton beam. Compounds, namely, polyethylene, water (including some gelatin) and calcium oxide, which contain plenty of the target nuclei, were irradiated using a proton beam. In addition, depth activity distributions of virtual positron emitter nuclei generated in each compound from target nuclear fragment reactions were measured using a beam ON-LINE PET system mounted a rotating gantry port (BOLPs-RGp). The measured activity distributions depend on depth or, in other words, energy. The irradiated proton beam energies were 138, 179, and 223 MeV, and measurement time was about 5 h until the measured activity reached the background level. Furthermore, the activity pencil beam data were made using the activity pencil

  4. The signal of aerosol-induced changes in sunshine duration records: A review of the evidence

    NASA Astrophysics Data System (ADS)

    Sanchez-Romero, A.; Sanchez-Lorenzo, A.; Calbó, J.; González, J. A.; Azorin-Molina, C.

    2014-04-01

    Aerosols play a significant yet complex and central role in the Earth's radiation budget, and knowledge of long-term changes in the atmospheric turbidity induced by aerosols is therefore fundamental for a better understanding of climate change. However, there is little available information on changes in aerosol concentration in the atmosphere, especially prior to the 1980s. The present paper reviews publications reporting the suitability of sunshine duration records with regard to detecting changes in atmospheric aerosols. Some of the studies reviewed propose methods for estimating aerosol-related magnitudes, such as turbidity, from sunshine deficit at approximately sunrise and sunset, when the impact of aerosols on the solar beam is more easily observed. In addition, there is abundant evidence that one cause of the decadal changes observed in sunshine duration records involves variations in atmospheric aerosol loading. Possible directions for future research are also suggested: in particular, detailed studies of the burn (not only its length but also its width) registered by means of Campbell-Stokes sunshine recorders may provide a way of creating time series of atmospheric aerosol loading metrics dating back to over 120 years from the present.

  5. Effects of irradiation source and dose level on quality characteristics of processed meat products

    NASA Astrophysics Data System (ADS)

    Ham, Youn-Kyung; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Choi, Yun-Sang; Song, Beom-Seok; Park, Jong-Heum; Kim, Cheon-Jei

    2017-01-01

    The effect of irradiation source (gamma-ray, electron-beam, and X-ray) and dose levels on the physicochemical, organoleptic and microbial properties of cooked beef patties and pork sausages was studied, during 10 days of storage at 30±1 °C. The processed meat products were irradiated at 0, 2.5, 5, 7.5, and 10 kGy by three different irradiation sources. The pH of cooked beef patties and pork sausages was unaffected by irradiation sources or their doses. The redness of beef patties linearly decreased with increasing dose level (P<0.05), obviously by e-beam irradiation compared to gamma-ray and X-ray (P<0.05). The redness of pork sausages was increased by gamma-ray irradiation, whereas it decreased by e-beam irradiation depending on absorbed dose level. No significant changes in overall acceptability were observed for pork sausages regardless of irradiation source (P>0.05), while gamma-ray irradiated beef patties showed significantly decreased overall acceptability in a dose-dependent manner (P<0.05). Lipid oxidation of samples was accelerated by irradiation depending on irradiation sources and dose levels during storage at 30 °C. E-beam reduced total aerobic bacteria of beef patties more effectively, while gamma-ray considerably decreased microbes in pork sausages as irradiation dose increased. The results of this study indicate that quality attributes of meat products, in particular color, lipid oxidation, and microbial properties are significantly influenced by the irradiation sources.

  6. SU-F-T-404: Dosimetric Advantages of Flattening Free Beams to Prone Accelerated Partial Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galavis, P; Barbee, D; Jozsef, G

    2016-06-15

    Purpose: Prone accelerated partial breast irradiation (APBI) results in dose reduction to the heart and lung. Flattening filter free beams (FFF) reduce out of field dose due to the reduced scatter from the removal of the flattening filter and reduce the buildup region. The aim of this work is to evaluate the dosimetric advantages of FFF beams to prone APBI target coverage and reduction in dose to organs at risk. Methods: Fifteen clinical prone APBI cases using flattened photon beams were retrospectively re-planned in Eclipse-TPS using FFF beams. FFF plans were designed to provide equivalent target coverage with similar hotspotsmore » using the same field arrangements, resulting in comparable target DVHs. Both plans were transferred to a prone breast phantom and delivered on Varian-Edge-Linac. GafChromic-film was placed in the coronal plane of the phantom, partially overlapping the treatment field and extending into OARs to compare dose profiles from both plans. Results: FFF plans were comparable to the clinical plans with maximum doses of (108.3±2.3)% and (109.2±2.4)% and mean doses of (104.5±1.0)% and (104.6±1.2)%, respectively. Similar mean dose doses to the heart and contralateral lungs were observed from both plans, whereas the mean dose to the contra-lateral breast was (2.79±1.18) cGy and (2.86±1.40) cGy for FFF and clinical plans respectively. However for both plans the error between calculated and measured doses at 4 cm from the field edge was 10%. Conclusion: The results showed that FFF beams in prone APBI provide dosimetrically equivalent target coverage and improved coverage in superficial target due to softer energy spectra. Film analysis showed that the TPS underestimates dose outside field edges for both cases. The FFF measured plans showed less dose outside the beam that might reduce the probability of secondary cancers in the contralateral breast.« less

  7. Strain improvement of Trichoderma viride for increased cellulase production by irradiation of electron and (12)C(6+)-ion beams.

    PubMed

    Li, Zhaozhou; Chen, Xiujin; Li, Zhili; Li, Daomin; Wang, Yao; Gao, Hongli; Cao, Li; Hou, Yuze; Li, Songbiao; Liang, Jianping

    2016-06-01

    To improve cellulase production and activity, Trichoderma viride GSICC 62010 was subjected to mutation involving irradiation with an electron beam and subsequently with a (12)C(6+)-ion beam. Mutant CIT 626 was the most promising cellulase producer after preliminary and secondary screening. Soluble protein production and cellulase activities were increased mutifold. The optimum temperature, pH and culture time for the maximum cellulase production of the selected mutant were 35 °C, pH 5 and 6 days. The highest cellulase production was obtained using wheat bran. The prepared cellulases from T. viride CIT 626 had twice the hydrolytic performance with sawdust (83 %) than that from the parent strain (42.5 %). Furthermore, molecular studies demonstrated that there were some key mutation sites suggesting that some amino acid changes in the protein caused by base mutations had led to the enhanced cellulase production and activity. Mutagenesis with electron and (12)C(6+)-ion beams could be developed as an effective tool for improvement of cellulase producing strains.

  8. Modelling periodic structure formation on 100Cr6 steel after irradiation with femtosecond-pulsed laser beams

    NASA Astrophysics Data System (ADS)

    Tsibidis, George D.; Mimidis, Alexandros; Skoulas, Evangelos; Kirner, Sabrina V.; Krüger, Jörg; Bonse, Jörn; Stratakis, Emmanuel

    2018-01-01

    We investigate the periodic structure formation upon intense femtosecond pulsed irradiation of chrome steel (100Cr6) for linearly polarised laser beams. The underlying physical mechanism of the laser-induced periodic structures is explored, their spatial frequency is calculated and theoretical results are compared with experimental observations. The proposed theoretical model comprises estimations of electron excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. Simulations describe the sequential formation of sub-wavelength ripples and supra-wavelength grooves. In addition, the influence of the laser wavelength on the periodicity of the structures is discussed. The proposed theoretical investigation offers a systematic methodology towards laser processing of steel surfaces with important applications.

  9. Computational modelling of the cerebral cortical microvasculature: effect of x-ray microbeams versus broad beam irradiation

    NASA Astrophysics Data System (ADS)

    Merrem, A.; Bartzsch, S.; Laissue, J.; Oelfke, U.

    2017-05-01

    Microbeam Radiation Therapy is an innovative pre-clinical strategy which uses arrays of parallel, tens of micrometres wide kilo-voltage photon beams to treat tumours. These x-ray beams are typically generated on a synchrotron source. It was shown that these beam geometries allow exceptional normal tissue sparing from radiation damage while still being effective in tumour ablation. A final biological explanation for this enhanced therapeutic ratio has still not been found, some experimental data support an important role of the vasculature. In this work, the effect of microbeams on a normal microvascular network of the cerebral cortex was assessed in computer simulations and compared to the effect of homogeneous, seamless exposures at equal energy absorption. The anatomy of a cerebral microvascular network and the inflicted radiation damage were simulated to closely mimic experimental data using a novel probabilistic model of radiation damage to blood vessels. It was found that the spatial dose fractionation by microbeam arrays significantly decreased the vascular damage. The higher the peak-to-valley dose ratio, the more pronounced the sparing effect. Simulations of the radiation damage as a function of morphological parameters of the vascular network demonstrated that the distribution of blood vessel radii is a key parameter determining both the overall radiation damage of the vasculature and the dose-dependent differential effect of microbeam irradiation.

  10. PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael

    2014-09-01

    We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 μm), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 μm) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.

  11. Aerosol Retrievals from ARM SGP MFRSR Data

    DOE Data Explorer

    Alexandrov, Mikhail

    2008-01-15

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670 nm). Aerosols and Rayleigh scattering contribute atmospheric extinction in all MFRSR channels. Our recently updated MFRSR data analysis algorithm allows us to partition the spectral aerosol optical depth into fine and coarse modes and to retrieve the fine mode effective radius. In this approach we rely on climatological amounts of NO2 from SCIAMACHY satellite retrievals and use daily ozone columns from TOMS.

  12. X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-10-22

    This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown.more » Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.« less

  13. X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)

    ScienceCinema

    None

    2018-01-26

    This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.

  14. Formation of nitrogenated organic aerosols in the Titan upper atmosphere.

    PubMed

    Imanaka, Hiroshi; Smith, Mark A

    2010-07-13

    Many aspects of the nitrogen fixation process by photochemistry in the Titan atmosphere are not fully understood. The recent Cassini mission revealed organic aerosol formation in the upper atmosphere of Titan. It is not clear, however, how much and by what mechanism nitrogen is incorporated in Titan's organic aerosols. Using tunable synchrotron radiation at the Advanced Light Source, we demonstrate the first evidence of nitrogenated organic aerosol production by extreme ultraviolet-vacuum ultraviolet irradiation of a N(2)/CH(4) gas mixture. The ultrahigh-mass-resolution study with laser desorption ionization-Fourier transform-ion cyclotron resonance mass spectrometry of N(2)/CH(4) photolytic solid products at 60 and 82.5 nm indicates the predominance of highly nitrogenated compounds. The distinct nitrogen incorporations at the elemental abundances of H(2)C(2)N and HCN, respectively, are suggestive of important roles of H(2)C(2)N/HCCN and HCN/CN in their formation. The efficient formation of unsaturated hydrocarbons is observed in the gas phase without abundant nitrogenated neutrals at 60 nm, and this is confirmed by separately using (13)C and (15)N isotopically labeled initial gas mixtures. These observations strongly suggest a heterogeneous incorporation mechanism via short lived nitrogenated reactive species, such as HCCN radical, for nitrogenated organic aerosol formation, and imply that substantial amounts of nitrogen is fixed as organic macromolecular aerosols in Titan's atmosphere.

  15. Analytical pyrolysis experiments of Titan aerosol analogues in preparation for the Cassini Huygens mission

    NASA Technical Reports Server (NTRS)

    Ehrenfreund, P.; Boon, J. J.; Commandeur, J.; Sagan, C.; Thompson, W. R.; Khare, B.

    1995-01-01

    Comparative pyrolysis mass spectrometric data of Titan aerosol analogs, called 'tholins', are presented. The Titan tholins were produced in the laboratory at Cornell by irradiation of simulated Titan atmospheres with high energy electrons in plasma discharge. Mass-spectrometry measurements were performed at FOM of the solid phase of various tholins by Curie-point pyrolysis Gas-Chromatography/Mass-Spectrometry (GCMS) and by temperature resolved in-source Pyrolysis Mass-Spectrometry to reveal the composition and evolution temperature of the dissociation products. The results presented here are used to further define the ACP (Aerosol Collector Pyrolyser)-GCMS experiment and provide a basis for modelling of aerosol composition on Titan and for the iterpretation of Titan atmosphere data from the Huygens probe in the future.

  16. Commissioning of full energy scanning irradiation with carbon-ion beams ranging from 55.6 to 430 MeV/u at the NIRS-HIMAC

    NASA Astrophysics Data System (ADS)

    Hara, Y.; Furukawa, T.; Mizushima, K.; Inaniwa, T.; Saotome, N.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    Since 2011, a three-dimensional (3D) scanning irradiation system has been utilized for treatments at the National Institute of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC). In 2012, a hybrid depth scanning method was introduced for the depth direction, in which 11 discrete beam energies are used in conjunction with the range shifter. To suppress beam spread due to multiple scattering and nuclear reactions, we then developed a full energy scanning method. Accelerator tuning and beam commissioning tests prior to a treatment with this method are time-consuming, however. We therefore devised a new approach to obtain the pencil beam dataset, including consideration of the contribution of large-angle scattered (LAS) particles, which reduces the time spent on beam data preparation. The accuracy of 3D dose delivery using this new approach was verified by measuring the dose distributions for different target volumes. Results confirmed that the measured dose distributions agreed well with calculated doses. Following this evaluation, treatments using the full energy scanning method were commenced in September 2015.

  17. Energy correction factors of LiF powder TLDs irradiated in high-energy electron beams and applied to mailed dosimetry for quality assurance networks.

    PubMed

    Marre, D; Ferreira, I H; Bridier, A; Björeland, A; Svensson, H; Dutreix, A; Chavaudra, J

    2000-12-01

    Absorbed dose determination with thermoluminescent dosimeters (TLDs) generally relies on calibration in 60Co gamma-ray reference beams. The energy correction factor fCo(E) for electron beams takes into account the difference between the response of the TLD in the beam of energy E and in the 60Co gamma-ray beam. In this work, fCo(E) was evaluated for an LiF powder irradiated in electron beams of 6 to 20 MeV (Varian 2300C/D) and 10 to 50 MeV (Racetrack MM50), and its variation with electron energy, TLD size and nature of the surrounding medium was also studied for LiF powder. The results have been applied to the ESTRO-EQUAL mailed dosimetry quality assurance network. Monte Carlo calculations (EGS4, PENELOPE) and experiments have been performed for the LiF powder (rho = 1.4 g cm3) (DTL937, Philitech, France), read on a home made reader and a PCL3 automatic reader (Fimel, France). The TLDs were calibrated using Fricke dosimetry and compared with three ionization chambers (NE2571, NACP02, ROOS). The combined uncertainties in the experimental fCo(E) factors determined in this work are less than about 0.4% (1 SD), which is appreciably smaller than the uncertainties up to 1.4% (1 SD) reported for other calculated values in the literature. Concerning the Varian 2300C/D beams, the measured fCo(E) values decrease from 1.065 to 1.049 +/- 0.004 (1 SD) when the energy at depth in water increases from 2.6 to 14.1 MeV; the agreement with Monte Carlo calculations is better than 0.5%. For the Racetrack MM50 pulsed-scanned beams, the average experimental value of fCo(E) is 1.071 +/- 0.005 (1 SD) for a mean electron energy at depth Ez ranging from 4.3 to 36.3 MeV: fCo(E) is up to 2% higher for the MM50 beams than for the 2300C/D beams in the range of the tested energies. The energy correction factor for LiF powder (3 mm diameter and 15 mm length) varies with beam quality and type (pulsed or pulsed-scanning), cavity size and nature of the surrounding medium. The fCo(E) values obtained

  18. Secondary organic aerosol formation from propylene irradiations in a chamber study

    NASA Astrophysics Data System (ADS)

    Ge, Shuangshuang; Xu, Yongfu; Jia, Long

    2017-05-01

    Some studies have shown that low-molecular-weight VOCs such as ethylene and acetylene can form SOA. However, so far propylene (C3H6) has not been studied. The current work systematically investigates irradiations of propylene in the presence of NOx (x = 1, 2) in a self-made indoor chamber. Only a small amount of secondary organic aerosols (SOA) was formed under 5% and 80% RH conditions without sodium chloride (NaCl) seed particles or in the presence of solid NaCl. When NaCl was in the form of droplets, liquid water content (LWC) increased from 34.5 to 169.8 μg m-3 under different initial NaCl concentrations, and correspondingly the amount of SOA linearly increased from 5.9 to 29.8 μg m-3 (SOA = 0.0164 × LWC+1.137, R2 = 0.97) at the C3H6/NOx ratio of 32.2-44.9 (ppbC/ppb). The initial C3H6/NOx concentration ratio considerably impacted the formation of SOA, in which the amount of SOA increased from 12.1 to 47.9 μg m-3 exponentially as the ratio decreased from 46.5 to 6.3 with an important point of the ratio value of 11. At the ratio of less than 11 in the regime under the control of C3H6, SOA concentrations decreased considerably with increasing ratio, whereas at the ratio value of larger than 11 in the NOx controlled regime, SOA slightly decreased with increasing ratio. From combination of the analysis of different functional groups of particles by IR spectra and ESI-Exactive-Orbitrap mass spectrometer, the constituents of SOA were identified to be hydroperoxides (e.g. HOCH2CCl(CH3)OOH), esters (e.g. CH2ClC(O)OCHClCHO), organic nitrates (e.g. HO2CH(CH2Cl)C(O)OCCl(CH2Cl)C(O)OCHClCH2ONO2), etc. Furthermore, a liquid-phase mechanism of SOA formation has been proposed in this study.

  19. Classifying aerosol type using in situ surface spectral aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Andrews, Elisabeth; Ogren, John A.; Sheridan, Patrick; Jefferson, Anne; Sharma, Sangeeta; Kim, Jeong Eun; Sherman, James P.; Sorribas, Mar; Kalapov, Ivo; Arsov, Todor; Angelov, Christo; Mayol-Bracero, Olga L.; Labuschagne, Casper; Kim, Sang-Woo; Hoffer, András; Lin, Neng-Huei; Chia, Hao-Ping; Bergin, Michael; Sun, Junying; Liu, Peng; Wu, Hao

    2017-10-01

    Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatiotemporal variability in aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA/ESRL Federated Aerosol Monitoring Network to infer aerosol type using previously published aerosol classification schemes.Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type) and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station.The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol), marine polluted (carbonaceous aerosol mixed with sea salt) and continental dust/biomass sites

  20. Experimental validation of a numerical model predicting the charging characteristics of Teflon and Kapton under electron beam irradiation

    NASA Technical Reports Server (NTRS)

    Hazelton, R. C.; Yadlowsky, E. J.; Churchill, R. J.; Parker, L. W.; Sellers, B.

    1981-01-01

    The effect differential charging of spacecraft thermal control surfaces is assessed by studying the dynamics of the charging process. A program to experimentally validate a computer model of the charging process was established. Time resolved measurements of the surface potential were obtained for samples of Kapton and Teflon irradiated with a monoenergetic electron beam. Results indicate that the computer model and experimental measurements agree well and that for Teflon, secondary emission is the governing factor. Experimental data indicate that bulk conductivities play a significant role in the charging of Kapton.