Science.gov

Sample records for aerosol campaign isdac

  1. Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008

    SciTech Connect

    SJ Ghan; B Schmid; JM Hubbe; CJ Flynn; A Laskin; AA Zelenyuk; DJ Czizco; CN Long; G McFarquhar; J Verlinde; J Harrington; JW Strapp; P Liu; A Korolev; A McDonald; M Wolde; A Fridlind; T Garrett; G Mace; G Kok; S Brooks; D Collins; D Lubin; P Lawson; M Dubey; C Mazzoleni; M Shupe; S Xie; DD Turner; Q Min; EJ Mlawer; D Mitchell

    2007-11-01

    The ARM Climate Research Facility’s (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol Campaign (ISDAC) during period 29 March through 30 April 2008. The deployment period is within the International Polar Year, thus contributing to and benefiting from the many ancillary observing systems collecting data synergistically. We will deploy the Canadian National Research Council Convair 580 aircraft to measure temperature, humidity, total particle number, aerosol size distribution, single particle composition, concentrations of cloud condensation nuclei and ice nuclei, optical scattering and absorption, updraft velocity, cloud liquid water and ice contents, cloud droplet and crystal size distributions, cloud particle shape, and cloud extinction. In addition to these aircraft measurements, ISDAC will deploy two instruments at the ARM site in Barrow: a spectroradiometer to retrieve cloud optical depth and effective radius, and a tandem differential mobility analyzer to measure the aerosol size distribution and hygroscopicity. By using many of the same instruments used during Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004, we will be able to contrast the arctic aerosol and cloud properties during the fall and spring transitions. The aerosol measurements can be used in cloud models driven by objectively analyzed boundary conditions to test whether the cloud models can simulate the aerosol influence on the clouds. The influence of aerosol and boundary conditions on the simulated clouds can be separated by running the cloud models with all four combinations of M-PACE and ISDAC aerosol and boundary conditions: M-PACE aerosol and boundary conditions, M-PACE aerosol and ISDAC boundary conditions, ISDAC aerosol and M-PACE boundary conditions, and ISDAC aerosol and boundary conditions. ISDAC and M-PACE boundary

  2. The Composition of Individual Aerosol Particles over the North Slope of Alaska during ISDAC

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Imre, D.; Liu, P.; MacDonald, A.; Leaitch, R.

    2008-12-01

    During the month of April 2008 a single particle mass spectrometer, SPLAT II, was deployed on board the Canadian National Research Council Convair 580 aircraft for participation in the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's main scientific objective was to improve our understanding of the relationship between the properties of aerosol particles over the North Pole and their impact on the regional climate. During ISDAC SPLAT II participated in all 27 flights that lasted slightly over 100 hrs. It measured the size of more than 10 million particles and characterized the composition of over 3 million of them. When sampling in clear air SPLAT II measured a wide range of particle compositions, including sulfates mixed with organics, nitrates mixed with organic, processed and freshly emitted sea-salt, a few dust particles, and a significant number of biomass burning particles. Many of these particle types appeared in aerosol layers that had horizontal and vertical filamentous structures. Biomass burning particles, many of which were transported from Asia, were rather prevalent over the North Slope of Alaska during the campaign. Since one of the main goals of this campaign was to characterize cloud properties, large fraction of the data was collected through the CVI inlet. The ice-clouds sampled in ISDAC had typically very low ice crystal concentrations; correspondingly, when sampled through the CVI inlet the number of characterized particles drops precipitously. Despite the low number concentrations SPLAT was able to measure the size and composition of thousands of ice-nuclei. Since the CVI inlet transmits, in addition to ice crystals, liquid droplets, SPLAT was able to characterize a large number of particles that served as cloud condensation nuclei as well. We will present a preliminary analysis of the single particle data collected during this campaign.

  3. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE PAGES

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Menqistu; Brooks, Sarah D.; Cziczo, Dan; et al

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  4. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    SciTech Connect

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Menqistu; Brooks, Sarah D.; Cziczo, Dan; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor; Gultepe, Ismail; Hubbe, John; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. Richard; Liu, Peter; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, Ann -Marie; Moffet, Ryan C.; Morrison, Hugh; Ovchinnikov, Mikhail; Ronfeld, Debbie; Shupe, Matthew D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matt; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41 stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.

  5. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds

    SciTech Connect

    McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Mengistu; Brooks, Sarah D.; Cziczo, Daniel J.; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor J.; Gultepe, Ismail; Hubbe, John M.; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. R.; Liu, Peter S.; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, A. M.; Moffet, Ryan C.; Morrison, H.; Ovchinnikov, Mikhail; Shupe, Matthew D.; Turner, David D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matthew; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmospheric emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.

  6. The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE

    SciTech Connect

    Jackson, Robert C.; McFarquhar, Greg; Korolev, Alexei; Earle, Michael; Liu, Peter S.; Lawson, R. P.; Brooks, Sarah D.; Wolde, Mengistu; Laskin, Alexander; Freer, Matthew

    2012-08-14

    Cloud and aerosol data acquired by the National Research Council of Canada (NRC) Convair-580 aircraft in, above, and below single-layer arctic stratocumulus cloud during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 were used to test three aerosol indirect effects hypothesized to act in mixed-phase clouds: the riming indirect effect, the glaciation indirect effect, and the cold second indirect effect. The data showed a correlation of R= 0.75 between liquid drop number concentration, Nliq, inside cloud and ambient aerosol number concentration NPCASP below cloud. This, combined with increasing liquid water content LWC with height above cloud base and the nearly constant profile of Nliq, suggested that liquid drops were nucleated from aerosol at cloud base. No strong evidence of a riming indirect effect was observed, but a strong correlation of R = 0.69 between ice crystal number concentration Ni and NPCASP above cloud was noted. Increases in ice nuclei (IN) concentration with NPCASP above cloud combined with the subadiabatic LWC profiles suggest possible mixing of IN from cloud top consistent with the glaciation indirect effect. The higher Nice and lower effective radius rel for the more polluted ISDAC cases compared to data collected in cleaner single-layer stratocumulus conditions during the Mixed-Phase Arctic Cloud Experiment is consistent with the operation of the cold second indirect effect. However, more data in a wider variety of meteorological and surface conditions, with greater variations in aerosol forcing, are required to identify the dominant aerosol forcing mechanisms in mixed-phase arctic clouds.

  7. ISDAC Microphysics

    SciTech Connect

    McFarquhar, Greg

    2011-07-25

    Best estimate of cloud microphysical parameters derived using data collected by the cloud microphysical probes installed on the National Research Council (NRC) of Canada Convair-580 during ISDAC. These files contain phase, liquid and ice crystal size distributions (Nw(D) and Ni(D) respectively), liquid water content (LWC), ice water content (IWC), extinction of liquid drops (bw), extinction of ice crystals (bi), effective radius of water drops (rew) and of ice crystals (rei) and median mass diameter of liquid drops (Dmml) and of ice crystals (Dmmi) at 30 second resolution.

  8. Assesment of the Indirect and Semi-Direct Aerosol-Effect During ISDAC Through Integrated Observational and Modeling Studies

    SciTech Connect

    Boybeyi, Zafer

    2014-09-29

    The Department of Energy (DOE) awarded George Mason University (GMU) with a research project. This project started on June, 2009 and ended July 2014. Main objectives of this research project are; a) to assess the indirect and semi-direct aerosol effects on microphysical structure and radiative properties of Arctic clouds, b) to assess the impact of feedback between the aerosol-cloud interactions and atmospheric boundary layer (ABL) processes on the surface energy balance, c) to better understand and characterize the important unresolved microphysical processes, aerosol effects, and ABL processes and feedbacks, over meso-γ spatial (~1-2 km) and temporal scales (a few minutes to days), and d) to investigate the scale dependency of microphysical parameterizations and its effect on simulations.

  9. Characterization of Arctic ice cloud properties observed during ISDAC

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Girard, Eric; Pelon, Jacques; Gultepe, Ismail; Delanoë, Julien; Blanchet, Jean-Pierre

    2012-12-01

    Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-2A), being topped by a cover of nonprecipitating very small (radar unseen) ice crystals (TIC-1), is found more frequently in pristine environment, whereas the second type (TIC-2B), detected by both sensors, is associated preferentially with a high concentration of aerosols. To further investigate the microphysical properties of TIC-1/2A and TIC-2B, airborne in situ and satellite measurements of specific cases observed during Indirect and Semi-Direct Aerosol Campaign (ISDAC) have been analyzed. For the first time, Arctic TIC-1/2A and TIC-2B microstructures are compared using in situ cloud observations. Results show that the differences between them are confined in the upper part of the clouds where ice nucleation occurs. TIC-2B clouds are characterized by fewer (by more than 1 order of magnitude) and larger (by a factor of 2 to 3) ice crystals and a larger ice supersaturation (of 15-20%) compared to TIC-1/2A. Ice crystal growth in TIC-2B clouds seems explosive, whereas it seems more gradual in TIC-1/2A. It is hypothesized that these differences are linked to the number concentration and the chemical composition of aerosols. The ice crystal growth rate in very cold conditions impinges on the precipitation efficiency, dehydration and radiation balance. These results represent an essential and important first step to relate previous modeling, remote sensing and laboratory studies with TICs cloud in situ observations.

  10. Chemical characterization of individual particles and residuals of cloud droplets and ice crystals collected on board research aircraft in the ISDAC 2008 study

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Moffet, R. C.; Glen, A.; Laskin, A.; Gilles, M. K.; Liu, P.; MacDonald, A. M.; Strapp, J. W.; McFarquhar, G. M.

    2013-06-01

    Ambient particles and the dry residuals of mixed-phase cloud droplets and ice crystals were collected during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) near Barrow, Alaska, in spring of 2008. The collected particles were analyzed using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy to identify physico-chemical properties that differentiate cloud-nucleating particles from the total aerosol population. A wide range of individually mixed components was identified in the ambient particles and residuals including organic carbon compounds, inorganics, carbonates, and black carbon. Our results show that cloud droplet residuals differ from the ambient particles in both size and composition, suggesting that both properties may impact the cloud-nucleating ability of aerosols in mixed-phase clouds. The percentage of residual particles which contained carbonates (47%) was almost four times higher than those in ambient samples. Residual populations were also enhanced in sea salt and black carbon and reduced in organic compounds relative to the ambient particles. Further, our measurements suggest that chemical processing of aerosols may improve their cloud-nucleating ability. Comparison of results for various time periods within ISDAC suggests that the number and composition of cloud-nucleating particles over Alaska can be influenced by episodic events bringing aerosols from both the local vicinity and as far away as Siberia.

  11. GLOBE Aerosol Field Campaign - U.S. Pilot Study 2016

    NASA Technical Reports Server (NTRS)

    Pippin, Margaret; Marentette, Christina; Bujosa, Robert; Taylor, Jessica; Lewis, Preston

    2016-01-01

    During the spring of 2016, from April 4 - May 27, sixteen GLOBE schools participated in the GLOBE Aerosol Field Campaign - U.S. Pilot Study. Thirteen teachers from these schools had previously participated in the NASA LEARN program (Long-term Experience in Authentic Research with NASA) where they were GLOBE trained in Atmosphere protocols, and engaged in 1-3 years of research under the mentorship of NASA scientists. Each school was loaned two aerosol instruments for the Campaign duration, either 2 GLOBE sun photometers, 2 Calitoo sun photometers, or 1 of each. This allowed for students to make measurements side-by-side and in the case of the Calitoos, to compare AOT results immediately with each other for better consistency in data collection. Additionally, as part of the Field Campaign evaluation, multiple instruments allow for an assessment of the ease of use of each instrument for grade level of students, whether in middle school or high school. Before the Campaign, all GLOBE and Calitoo instruments were 'checked out' against an AERONET, then checked again upon return after the Campaign. By examining all data, before, during and after the Campaign, this gives an indication of instrument performance and proficiency obtained by the students. Support was provided to each teacher and their students at the level requested, via email, phone or video conferencing.

  12. OMI NO2 and aerosol observations during the DANDELIONS campaign

    NASA Astrophysics Data System (ADS)

    Brinksma, E.; Wagner, T.; Richter, A.; van Roozendael, M.; Swart, D.; de Leeuw, G.; Curier, L.; Berkhout, S.; Veefkind, P.; Levelt, P.

    2005-12-01

    Within the two-year project DANDELIONS (Dutch Aerosol and Nitrogen Dioxide Experiments for vaLIdation of OMI and SCIAMACHY), a 9-week campaign took place. The location was the Cabauw Experimental Site for Atmospheric Research (CESAR, 51N, 5E), which is often subject to considerable tropospheric pollution. The campaign focused on measurements of nitrogen dioxide, atmospheric aerosols, and ozone. Five MAXDOAS instruments and one lidar provided data on the nitrogen dioxide total and tropospheric columns, and profiles (0 - 2.5 km). These were intercompared, and also compared to OMI and SCIAMACHY overpass data. The homogeneity of the tropospheric field was studied. A range of permanent aerosol instrumentation, including sun photometers, an aethalometer, nephelometer, boundary layer lidar and radio sonde profiles and MAX DOASes, was used to provide correlative data for OMI and AATSR aerosol optical depths. Ozone Brewer, ozone sondes, and MAX DOASes provided information on tropospheric and total ozone, to be compared with OMI and SCIAMACHY results. Preliminary results show that satellite and groundbased data compare well. In our presentation, we will show information on the homogeneity of the tropospheric pollution, both in ground based and from satellite data. We will also discuss the quality of the OMI data.

  13. Biogenic Contributions to Summertime Arctic Aerosol: Observations of Aerosol Composition from the Netcare 2014 Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Burkart, J.; Koellner, F.; Schneider, J.; Bozem, H.; Hoor, P. M.; Brauner, R.; Herber, A. B.; Leaitch, W. R.; Abbatt, J.

    2014-12-01

    The Arctic is a complex and poorly studied aerosol environment, impacted by strong anthropogenic contributions during winter months and by regional sources in cleaner summer months. In order to gain a predictive understanding of the changing climate in this region, it is necessary to understand the balance between these two aerosol sources to clarify how aerosol might be altered by or contribute to climate change. We present results of vertically resolved, submicron aerosol composition from an Aerodyne high-resolution aerosol mass spectrometer (AMS) during the NETCARE 2014 Polar6 aircraft campaign. The campaign was based in the high Arctic, at Resolute, NU (74°N), allowing measurements from 60 to 2900 meters over ice, open water and near the ice-edge. Concurrent measurements aboard the Polar6 included ultrafine and accumulation mode particle number and size, cloud condensation nuclei concentrations, trace gas concentrations and single particle composition. Aerosol vertical profiles measured by the AMS can be broadly characterized into two regimes corresponding to different meteorological conditions: the first with very low aerosol loading (<0.1 μg/m3) at low altitudes compared to that aloft and high numbers of nucleation mode particles, and the second with higher concentrations at lower levels. This second regime was associated with low concentrations of nucleation mode particles, and higher observable levels of methane sulphonic acid (MSA) from AMS measurements at low altitudes. MSA, produced during the oxidation of dimethyl sulphide, is a marker for the contribution of ocean-derived biogenic sulphur to particulate sulphur and could be identified and quantified using the high-resolution AMS. MSA to sulphate ratios were observed to increase towards lower altitudes, suggesting a contribution to aerosol loading from the ocean. In addition, we present measurements of aerosol neutralization and the characteristics of organic aerosol that relate to the growth of

  14. Distributed Regional Aerosol Gridded Observation Network (DRAGON) - Korea 2012 campaign

    NASA Astrophysics Data System (ADS)

    Kim, J.; Holben, B. N.; Eck, T. F.; Jeong, U.; Kim, W. V.; Choi, M.; Kim, D. S.; Kim, B.; Kim, S.; Ghim, Y.; Kim, Y. J.; Kim, J. H.; Park, R.; Seo, M.; Song, C.; Yum, S.; Woo, J.; Yoon, S.; Lee, K.; Lee, M.; Lim, J.; Chang, I.; Jeong, M. J.; Bae, M.; Sorokin, M.; Giles, D. M.; Schafer, J.; Herman, J. R.

    2013-12-01

    One of the main objectives of Distributed Regional Aerosol Gridded Observation Network (DRAGON) campaign in Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission is to understand the relationship between the column optical properties of the atmosphere and the surface level air quality in terms of aerosols and gases. Recently, with the cooperative efforts with NASA (National Aeronautics and Space Administration) / GSFC (Goddard Space Flight Center), Korean University research groups, and KME (Korea Ministry of Environment) / NIER (National Institute of Environmental Research), DRAGON-Korea 2012 campaign was successfully performed from March to May 2012. The campaign sites were divided into two groups, the National scale sites and Seoul metropolitan sites. Thirteen Cimel sunphotometers were distributed at National scale sites including two metropolitan cities and several remote sites. Nine Cimel sunphotometers were distributed at Seoul Metropolitan sites including several residential sites and traffic source areas. The measured datasets are being analyzed in diverse fields of air quality communities including in-situ measurement groups, satellite remote sensing groups, chemical modeling groups, and airplane measurement groups. We will introduce several preliminary results of the analysis and discuss the future planes and corporations in Korea.

  15. Large-eddy simulation of three mixed-phase cloud events during ISDAC: Conditions for persistent heterogeneous ice formation

    NASA Astrophysics Data System (ADS)

    Savre, J.; Ekman, A. M. L.

    2015-08-01

    A Classical-Nucleation-Theory-based parameterization for heterogenous ice nucleation, including explicit dependencies of the nucleation rates on the number concentration, size, and composition of the ambient aerosol population, is implemented in a cloud-scale, large-eddy simulation model and evaluated against Arctic mixed-phase cloud events observed during Indirect and Semi-Direct Aerosol Campaign (ISDAC). An important feature of the parameterization is that the ice nucleation efficiency of each considered aerosol type is described using a contact angle distribution which evolves with time so that the model accounts for the inhibition of ice nucleation as the most efficient ice-forming particles are nucleated and scavenged. The model gives a reasonable representation of first-order (ice water paths) and second-order (ice crystal size distributions) ice microphysical properties. The production of new ice crystals in the upper part of the cloud, essential to guarantee sustained mixed-phase conditions, is found to be controlled mostly by the competition between radiative cooling (resulting in more aerosol particles becoming efficient ice nuclei as the temperature decreases), cloud-top entrainment (entraining fresh particles into the cloud), and nucleation scavenging of the ice+forming aerosol particles. The relative contribution of each process is mostly determined by the cloud-top temperature and the entrainment rates. Accounting for the evolution of the contact angle probability density function with time seems to be essential to capture the persistence of in-cloud ice production without having to, for example, increase the free tropospheric aerosol concentration. Although limited to only three cases and despite important limitations of the parameterization (e.g., the present version only considers dust and black carbon as potential ice nuclei), the results suggest that modeling the time evolution of the ice nuclei population ability to form ice is required to

  16. Investigation of aerosol optical properties for remote sensing through DRAGON (distributed regional aerosol gridded observation networks) campaign in Korea

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Hyun; Ahn, Joon Young; Park, Jin-Soo; Hong, You-Deok; Han, Jin-Seok; Kim, Jhoon; Kim, Sang-Woo

    2014-11-01

    Aerosols in the atmosphere, including dust and pollutants, scatters/absorbs solar radiation and change the microphysics of clouds, thus influencing the Earth's energy budget, climate, air quality, visibility, agriculture and water circulation. Pollutants have also been reported to threaten the human health. The present research collaborated with the U.S. NASA and the U.S. Aerosol Robotic Network (AERONET) is to study the aerosol characteristics in East Asia and improve the long-distance transportation monitoring technology by analyzing the observations of aerosol characteristics in East Asia during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March 2012-May 2012). The sun photometers that measure the aerosol optical characteristics were placed evenly throughout the Korean Peninsula and concentrated in Seoul and the metropolitan area. Observation data are obtained from the DRAGON campaign and the first year (2012) observation data (aerosol optical depth and aerosol spatial distribution) are analyzed. Sun photometer observations, including aerosol optical depth (AOD), are utilized to validate satellite observations from Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS). Additional analysis is performed associated with the Northeast Asia, the Korean Peninsula in particular, to determine the spatial distribution of the aerosol.

  17. Evaluation of High-Resolution MAIAC Aerosol Retrievals Using DRAGON Field Campaign Data

    NASA Astrophysics Data System (ADS)

    Lyapustin, A.; Wang, Y.; Korkin, S.

    2013-12-01

    Multi-Angle Implementation of Atmospheric Correction (MAIAC) is a new generation algorithm which uses time series analysis and processing of groups of pixels for advanced cloud masking and retrieval of aerosol and surface reflectance properties. MAIAC makes aerosol retrievals from MODIS data at high 1km resolution providing information about the fine scale aerosol variability. This information is required in different applications such as urban air quality analysis, aerosol source identification etc. The DRAGON field campaign data present a unique spatially distributed array of in-situ aerosol measurements for a comprehensive assessment and validation of MAIAC aerosol retrievals from MODIS. We will provide spatial/temporal comparison statistics between MAIAC and AERONET DRAGON for several different field campaigns including USA 2011 (Washington-Baltimore) and 2012-2013 (San Joaquin Valley, CA) and 2013 (Houston).

  18. Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations

    SciTech Connect

    Liu X.; Lin W.; Xie, S.; Boyle, J.; Klein, S. A.; Shi, X.; Wang, Z.; Ghan, S. J.; Earle, M.; Liu, P. S. K.; Zelenyuk, A.

    2011-12-24

    Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m{sup -2}. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5 C to -40 C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

  19. Ozone, Iodine, and MSA - Case studies in Antarctic aerosol composition from the 2ODIAC Campaign

    NASA Astrophysics Data System (ADS)

    Giordano, M.; Kalnajs, L.; Deshler, T.; Davis, S. M.; Johnson, A.; Slater, A. G.; Goetz, J. D.; Mukherjee, A. D.; DeCarlo, P. F.

    2015-12-01

    Aerosol generation and transport over the Polar Regions, and especially Antarctica, remains a source of uncertainty for geophysical scientists. A characterization of aerosol sources, production, and lifecycle processes in the Polar Regions is required to better understand the polar atmosphere. In an attempt to better characterize Antarctic aerosol and trace gas interactions, the Two-Season, Ozone Depletion and Interaction with Aerosols Campaign (2ODIAC) was launched over the Austral Spring/Summer of 2014 and Austral Winter of 2015. One highlight of the campaign is the first ever deployment of a high-resolution aerosol mass spectrometer to Antarctica. In conjunction with trace gas, meteorology, and aerosol sizing measurements, this presentation will focus on case studies from the campaign relevant to the atmospheric science community. Questions about the role of iodine, MSA, and ozone depletion events in regards to aerosol composition will be examined. Specific attention will be paid to aerosol compositional changes before, during, and after particle bursts especially where changes in aerosol sulfate oxidation occurred (SO2 -> SO4)

  20. The Ny-Alesund aerosol and ozone measurements intercomparison campaign 1997/1998 (NAOMI-1998)

    NASA Technical Reports Server (NTRS)

    Neuber, R.; Beyerle, G.; Beninga, I.; VonderGathen, P.; Rairoux, P.; Schrems, O.; Wahl, P.; Gross, M.; McGee, Th.; Iwasaka, Y.; Fujiwara, M.; Shibata, T.; Klein, U.; Steinbrecht, W.

    1998-01-01

    An intercomparison campaign for Lidar measurements of stratospheric ozone and aerosol has been conducted at the Primary Station of the Network for the Detection of Stratospheric Change (NDSC) in Ny-Alesund/Spitsbergen during January-February 1998. In addition to local instrumentation, the NDSC mobile ozone lidar from NASA/GSFC and the mobile aerosol lidar from Alfred Wegener Institute (AWI) participated. The aim is the validation of stratospheric ozone and aerosol profile measurements according to NDSC guidelines. This paper briefly presents the employed instruments and outlines the campaign. Results of the blind intercomparison of ozone profiles are given in a companion paper and temperature measurements are described in this issue.

  1. An Overview of the 2010 Carbonaceous Aerosol and Radiative Effects Study (CARES) Field Campaign

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.

    2010-12-01

    The primary objective of the DOE Carbonaceous Aerosol and Radiative Effects Study (CARES) in June 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume. Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been shown to play a major role in the direct and indirect radiative forcing of climate. However, significant knowledge gaps and uncertainties still exist in the process-level understanding of: 1) SOA formation, 2) BC mixing state evolution, and 3) the optical and hygroscopic properties of fresh and aged carbonaceous aerosols. The CARES 2010 field study was designed to address several specific science questions under these three topics. During summer the Sacramento-Blodgett Forest corridor effectively serves as a mesoscale daytime flow reactor in which the urban aerosols undergo significant aging as they are transported to the northeast by upslope flow. The CARES campaign observation strategy consisted of the DOE G-1 aircraft sampling upwind, within, and outside of the evolving Sacramento urban plume in the morning and again in the afternoon. The G-1 payload consisted of a suite of instruments to measure trace gases, aerosol size distribution, composition, and optical properties. The NASA B-200 aircraft carrying a High Spectral Resolution Lidar (HSRL) and a Research Scanning Polarimeter (RSP) was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties. The aircraft measurements were complemented by heavily-instrumented ground sites within the Sacramento urban area and at a downwind site in Cool, California, to characterize the diurnal evolution of meteorological variables, trace gases, aerosol precursors, aerosol

  2. Lidar Measurements of Stratospheric Ozone, Temperature and Aerosol During 1992 UARS Correlative Measurement Campaign

    NASA Technical Reports Server (NTRS)

    Mcgee, Thomas J.; Singh, Upendra N.; Gross, Michael; Heaps, William S.; Ferrare, Richard

    1992-01-01

    Measurements of stratospheric ozone, temperature, and aerosols were made by the NASA/GSFC mobile stratospheric lidar during the UARS (Upper Atmospheric Research Satellite) Correlative Measurement Campaign at the JPL-Table Mountain Facility in Feb. and Mar. 1992. Due to the presence of substantial amounts of residual volcanic aerosol from the eruption of Mt. Pinatubo, the GSFC lidar system was modified for an accurate measurement of ozone concentration in the stratosphere. While designed primarily for the measurement of stratospheric ozone, this lidar system was also used to measure middle atmosphere temperature and density from 30 to 65 km and stratospheric aerosol from 15 to 35 km. In the following sections, we will briefly describe and present some typical measurements made during this campaign. Stratospheric ozone, temperature, and aerosols profiles derived from data taken between 15 Feb. and 20 Mar., 1992 will be presented at the conference.

  3. Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations

    SciTech Connect

    Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter; Zelenyuk, Alla

    2011-12-24

    Arctic clouds simulated by the NCAR Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic Spring and Fall seasons performed under the Cloud- Associated Parameterizations Testbed (CAPT) framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary layer mixed-phase stratocumulus, and multilayer or deep frontal clouds. However, for low-level clouds, the model significantly underestimates the observed cloud liquid water content in both seasons and cloud fraction in the Spring season. As a result, CAM5 significantly underestimates the surface downward longwave (LW) radiative fluxes by 20-40 W m-2. The model with a new ice nucleation parameterization moderately improves the model simulations by increasing cloud liquid water content in mixed-phase clouds through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron- Findeisen (WBF) process. The CAM5 single column model testing shows that change in the homogeneous freezing temperature of rain to form snow from -5 C to -40 C has a substantial impact on the modeled liquid water content through the slowing-down of liquid and rain-related processes. In contrast, collections of cloud ice by snow and cloud liquid by rain are of minor importance for single-layer boundary layer mixed-phase clouds in the Arctic.

  4. Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report

    SciTech Connect

    Kotamarthi, VR

    2013-12-01

    In general, the Indian Summer Monsoon (ISM) as well as the and the tropical monsoon climate is influenced by a wide range of factors. Under various climate change scenarios, temperatures over land and into the mid troposphere are expected to increase, intensifying the summer pressure gradient differential between land and ocean and thus strengthening the ISM. However, increasing aerosol concentration, air pollution, and deforestation result in changes to surface albedo and insolation, potentially leading to low monsoon rainfall. Clear evidence points to increasing aerosol concentrations over the Indian subcontinent with time, and several hypotheses regarding the effect on monsoons have been offered. The Ganges Valley Aerosol Experiment (GVAX) field study aimed to provide critical data to address these hypotheses and contribute to developing better parameterizations for tropical clouds, convection, and aerosol-cloud interactions. The primary science questions for the mission were as follows:

  5. Eddy Covariance Flux Measurements of Urban Aerosols During the MILAGRO Mexico City Field Campaign

    NASA Astrophysics Data System (ADS)

    Grivicke, R.; Pressley, S.; Jimenez, J.; Nemitz, E.; Alexander, L.; Velasco, E.; Allwine, E.; Jobson, T.; Westberg, H.; Ramos, R.; Molina, L.; Lamb, B.

    2007-12-01

    Expansive urban development in the fast growing number of megacities around the world raises concerns regarding the pollution levels in such sites. The Mexico City MILAGRO 2006 (Megacity Initiative: Local and Global Research Observations) field campaign was a worldwide initiative aiming to understand sources, chemical nature and evolution of pollution in one of the largest urban developments. As part of the MILAGRO campaign, urban fluxes of aerosols and related trace gases were measured near the centre of Mexico City at 42 m above street level. Aerosol concentrations (1 min. averages) and aerosol fluxes (10 Hz, selected ion monitoring) were measured with an Aerodyne quadrupole aerosol mass spectrometer operated in an alternating 30 minute mode of ambient concentrations and fluxes. The fluxes were derived using eddy covariance calculations. The aerosol flux data were supported by additional flux measurements of CO2 and a number of gas phase VOC species using a combination of techniques, including Proton Transfer Reaction Mass Spectrometry using a disjunct eddy covariance technique and GC-FID analysis of samples from a disjunct eddy accumulation sampler. Preliminary results of aerosol concentrations and flux measurements indicate that the urban landscape is a significant source of organic aerosols.

  6. Organic Aerosol Composition and Sources in Pasadena, California during the 2010 CalNex Campaign

    EPA Science Inventory

    Organic aerosols (OA) in Pasadena are characterized using multiple measurements from the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. Five OA components are identified using positive matrix factorization including hydrocarbon-like OA (HOA) ...

  7. Project Overview: Cumulus Humilis Aerosol Processing Study (CHAPS): Proposed Summer 2007 ASP Field Campaign

    SciTech Connect

    Berkowitz, Carl M.; Berg, Larry K.; Ogren, J. A.; Hostetler, Chris A.; Ferrare, Richard

    2006-05-18

    This white paper presents the scientific motivation and preliminary logistical plans for a proposed ASP field campaign to be carried out in the summer of 2007. The primary objective of this campaign is to use the DOE Gulfstream-1 aircraft to make measurements characterizing the chemical, physical and optical properties of aerosols below, within and above large fields of fair weather cumulus and to use the NASA Langley Research Center’s High Spectral Resolution Lidar (HSRL) to make independent measurements of aerosol backscatter and extinction profiles in the vicinity of these fields. Separate from the science questions to be addressed by these observations will be information to add in the development of a parameterized cumulus scheme capable of including multiple cloud fields within a regional or global scale model. We will also be able to compare and contrast the cloud and aerosol properties within and outside the Oklahoma City plume to study aerosol processes within individual clouds. Preliminary discussions with the Cloud and Land Surface Interaction Campaign (CLASIC) science team have identified overlap between the science questions posed for the CLASIC Intensive Operation Period (IOP) and the proposed ASP campaign, suggesting collaboration would benefit both teams.

  8. Aerosol transport over Siberia: analysis of the summer 2013 YAK-AEROSIB aircraft campaign

    NASA Astrophysics Data System (ADS)

    Ancellet, Gerard; Penner, Johannes; Kokhanenko, Grigorii; Arshinov, Mikhail; Chernov, Dimitry; Kozlov, Valery; Paris, Jean Daniel; Pruvost, Arnaud; Belan, Boris; Nedelec, Philippe; Pelon, Jacques; Law, Kathy

    2014-05-01

    Transport and transformation of aerosols related to forest fires and Eastern Asia anthropogenic emissions have been identified as very important questions to understand the Arctic climate. Two aircraft campaigns have been conducted over Siberia in summer 2012 and 2013 with in-situ measurements by aerosol spectrometers and also by a 532 nm backscatter lidar in 2013. The aerosol data can be also combined with CO measurements measured on-board the aircraft to identify the aerosol pollution sources. The analysis of the transport processes has been performed with the FLEXPART Lagrangian model run either in the forward or backward mode. While the 2012 campaign is characterized by anticyclonic conditions and strong forest fire emissions, the 2013 campaign corresponds to upward lifting of Northern China emissions. Comparisons with satellite data obtained with the CALIPSO mission for the two summer periods will be presented to identify the spatial extent and the temporal evolution of the pollution plumes and also to test the ability of the satellite data to derive the aerosol types. This work was funded by CNRS (France), the French Ministry of Foreign Affairs, CEA (France), Presidium of RAS (Program No. 4), Brunch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5), Interdisciplinary integration projects of Siberian Branch of RAS (No. 35, No. 70, No. 131), Russian Foundation for Basic Research (grants No 14-05-00526, 14-05-00590).

  9. Simultaneous Retrieval of Aerosol and Cloud Properties During the MILAGRO Field Campaign

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, K.; Cairns, B.; Redemann, J.; Bergstrom, R. W.; Stohl, A.

    2011-01-01

    Estimation of Direct Climate Forcing (DCF) due to aerosols in cloudy areas has historically been a difficult task, mainly because of a lack of appropriate measurements. Recently, passive remote sensing instruments have been developed that have the potential to retrieve both cloud and aerosol properties using polarimetric, multiple view angle, and multi spectral observations, and therefore determine DCF from aerosols above clouds. One such instrument is the Research Scanning Polarimeter (RSP), an airborne prototype of a sensor on the NASA Glory satellite, which unfortunately failed to reach orbit during its launch in March of 2011. In the spring of 2006, the RSP was deployed on an aircraft based in Veracruz, Mexico, as part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign. On 13 March, the RSP over flew an aerosol layer lofted above a low altitude marine stratocumulus cloud close to shore in the Gulf of Mexico. We investigate the feasibility of retrieving aerosol properties over clouds using these data. Our approach is to first determine cloud droplet size distribution using the angular location of the cloud bow and other features in the polarized reflectance. The selected cloud was then used in a multiple scattering radiative transfer model optimization to determine the aerosol optical properties and fine tune the cloud size distribution. In this scene, we were able to retrieve aerosol optical depth, the fine mode aerosol size distribution parameters and the cloud droplet size distribution parameters to a degree of accuracy required for climate modeling. This required assumptions about the aerosol vertical distribution and the optical properties of the coarse aerosol size mode. A sensitivity study was also performed to place this study in the context of future systematic scanning polarimeter observations, which found that the aerosol complex refractive index can also be observed accurately if the aerosol optical depth is

  10. Insights into Submicron Aerosol Composition and Sources from the WINTER Aircraft Campaign Over the Eastern US.

    NASA Astrophysics Data System (ADS)

    Schroder, J. C.; Campuzano Jost, P.; Day, D. A.; Fibiger, D. L.; McDuffie, E. E.; Blake, N. J.; Hills, A. J.; Hornbrook, R. S.; Apel, E. C.; Weinheimer, A. J.; Campos, T. L.; Brown, S. S.; Jimenez, J. L.

    2015-12-01

    The WINTER aircraft campaign was a recent field experiment to probe the sources and evolution of gas pollutants and aerosols in Northeast US urban and industrial plumes during the winter. A highly customized Aerodyne aerosol mass spectrometer (AMS) was flown on the NCAR C-130 to characterize submicron aerosol composition and evolution. Thirteen research flights were conducted covering a wide range of conditions, including rural, urban, and marine environments during day and night. Organic aerosol (OA) was a large component of the submicron aerosol in the boundary layer. The fraction of OA (fOA) was smaller (35-40%) than in recent US summer campaigns (~60-70%). Biomass burning was observed to be an important source of OA in the boundary layer, which is consistent with recent wintertime studies that show a substantial contribution of residential wood burning to the OA loadings. OA oxygenation (O/C ratio) shows a broad distribution with a substantial fraction of smaller O/C ratios when compared to previous summertime campaigns. Since measurements were rarely made very close to primary sources (i.e. directly above urban areas), this is consistent with oxidative chemistry being slower during winter. SOA formation and aging in the NYC plume was observed during several flights and compared with summertime results from LA (CalNex) and Mexico City (MILAGRO). Additionally, an oxidation flow reactor (OFR) capable of oxidizing ambient air up to several equivalent days of oxidation was deployed for the first time in an aircraft platform. The aerosol outflow of the OFR was sampled with the AMS to provide real-time snapshots of the potential for aerosol formation and aging. For example, a case study of a flight through the Ohio River valley showed evidence of oxidation of SO2 to sulfate. The measured sulfate enhancements were in good agreement with our OFR chemical model. OFR results for SOA will be discussed.

  11. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.; Song, Chul H.; Lim, Jae-Hyun; Song, Chang-Keun

    2016-04-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGON-NE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Ångström exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 × AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better

  12. Satellite and in-situ derived aerosol optical properties over the TCAP campaign region

    NASA Astrophysics Data System (ADS)

    Chand, D.; Berg, L. K.; Ferrare, R. A.; Barnard, J.; Berkowitz, C. M.; Chapman, E.; Comstock, J. M.; Fast, J. D.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Kassianov, E.; Kluzek, C. D.; Pekour, M. S.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.

    2012-12-01

    The direct radiative effect of natural and anthropogenic aerosol is one of the largest uncertainties in the prediction of climate change at regional and global scales. The uncertainties in atmospheric radiative forcing are in part a result of limited knowledge of aerosol optical properties. In this presentation we discuss in-situ and satellite derived aerosol optical properties obtained within the Two-Column Aerosol Project (TCAP) campaign region, and explore their links with aerosol chemical and physical properties. The TCAP field campaign is designed to provide observations of the size distribution, chemical properties, and optical properties of aerosol within and between two atmospheric columns along the eastern seaboard of the United States. These columns are separated by 200-300 km and were sampled in July 2012 during a summer intensive operation period (IOP) using the U.S. Department of Energy's Gulfstream-1 (G-1) and NASA's B200 aircraft and the surface-based DOE Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) located at Cape Cod. In contrast to the aircraft IOP, the AMF will be operated continuously until the summer of 2013.The surface observations will test the veracity of cloud and radiative transfer models over a wider range of conditions than can be observed via the short-term aircraft IOPs. In this presentation we will examine the spectral dependence of the aerosol optical properties with a focus on in-situ as well as remote sensing observations during the summer (July) over the TCAP region. We will also use multiple years of observations from MODIS, CALIPSO, and OMI satellite sensors and develop the climatology of aerosol optical depth (AOD), single scattering albedo (SSA) and aerosol layer altitudes to put the TCAP observations into a larger perspective. In addition, in-situ observations of light scattering and absorption coefficients made using the G-1, and AOD and aerosol features derived from the NASA High Spectral Resolution Lidar

  13. Solar irradiance and aerosol optical properties during the CARES field campaign

    NASA Astrophysics Data System (ADS)

    Barnard, J.; Kassianov, E.

    2010-12-01

    Measurements of both broadband and spectral solar irradiances were made during the Carbonaceous Aerosols and Radiative Effects Study (CARES) field campaign at the T0 and T1 sites. The broadband irradiances were measured using a typical Eppley Precision Spectral Pyranometer (PSP), while the spectral irradiances were measured by a Multi-Filter Rotating Shadowband Radiometer (MFRSR) at six wavelengths (415, 500, 615, 673, 870, and 940 nm). The aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (AP), can be inferred from the MFRSR measurements for the first five of these wavelengths. Analyses of these data show three distinct aerosol regimes. The first period, at the beginning of the field campaign, was extremely clean, with AOD values at 500nm as low as 0.03 (with uncertainty of 0.02). Such clear air rivals that at other pristine locations, such as Barrow, Alaska, in late summer. Next, a brief episode of biomass burning took place on June 16, as indicated by increased AOD. Finally, towards the end of the campaign, progressively deteriorating air quality was observed with a concomitant increase in AOD, with values 0.1 (500 nm) and larger. However, at no time during the campaign did the air quality deteriorate to the extent that might be observed in less clean locations such as Mexico City, or more humid places were significant hydroscopic growth occurs. The broadband irradiances also reflect clean conditions, with midday total, hemispherical irradiances often exceeding 1000 W/m^2. We also show some initial results of columnar SSA and AP values derived during the three aerosol regimes. MFRSR data taken near the T1 site during the summer of 2009 also indicate generally clear skies, except during episodes of biomass burning when the AOD approaches 1.0 at 500 nm. Such dirty air was never observed during the CARES campaign.

  14. Water Soluble Ions in Bulk Aerosol During the WINTER 2015 Campaign.

    NASA Astrophysics Data System (ADS)

    Dibb, J. E.; Scheuer, E. M.; Brown, S. S.; Campuzano Jost, P.; Fibiger, D. L.; Guo, H.; Jimenez, J. L.; Lopez-Hilfiker, F.; McDuffie, E. E.; Schroder, J. C.; Sullivan, A.; Thornton, J. A.; Veres, P. R.; Weber, R. J.

    2015-12-01

    Aerosol samples were collected on filters from the NCAR C-130 during the WINTER campaign using an inlet believed to transmit particles up to 4 micron in diameter. Filter integration times were nominally 7 minutes. Aqueous extracts of the filter samples were analyzed by ion chromatography for 5 anions and 5 cations, we focus primarily on chloride and nitrate due to their roles coupling chlorine and nitrogen oxide chemistry. Comparison to measurements of submicron aerosol (by PILS and AMS) indicates that there was significant coarse chloride in the boundary layer on all WINTER flights, including the 7 flights over the continent. Significant super micron chloride at altitudes above 2 km was seen in just 3 of the filter samples from the entire mission, all of these were well inland. During the 6 flights over the Atlantic ocean we observed displacement of chloride from the dominant seasalt aerosol at times, but evidence for coarse mode nitrate or sulfate aerosol to explain this is less clear. While coarse aerosol chloride mixing ratios were sufficient to support observed production of nitryl chloride, no correlations between these compounds were observed on any flights. However, nitrate was positively correlated with nitryl chloride, as expected, on all flights when the latter exceeded several 100's of pptv for extended periods. Aerosol nitrate was also positively correlated with dinitrogen pentoxide when mixing ratios of the latter exceeded ~500 pptv for significant portions of a flight. On the WINTER flights in February aerosol nitrate was often more abundant than nitric acid, this was less often the case for the flights in March. This change in partitioning of nitrate between gas and particle phases reflects an increasing trend of nitric acid and a small decrease in abundance of aerosol nitrate through the campaign.

  15. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE PAGES

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2015-04-17

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  16. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during DRAGON-NE Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y. Je; Jeong, U.; Kim, W.; Holben, B.; Eck, T. F.; Lim, J. H.; Song, C. K.

    2015-09-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorology Satellites (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm over ocean and land together with validation results during the DRAGON-NE Asia 2012 campaign. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type from selected aerosol models in calculating AOD. Assumed aerosol models are compiled from global Aerosol Robotic Networks (AERONET) inversion data, and categorized according to AOD, FMF, and SSA. Nonsphericity is considered, and unified aerosol models are used over land and ocean. Different assumptions for surface reflectance are applied over ocean and land. Surface reflectance over the ocean varies with geometry and wind speed, while surface reflectance over land is obtained from the 1-3 % darkest pixels in a 6 km × 6 km area during 30 days. In the East China Sea and Yellow Sea, significant area is covered persistently by turbid waters, for which the land algorithm is used for aerosol retrieval. To detect turbid water pixels, TOA reflectance difference at 660 nm is used. GOCI YAER products are validated using other aerosol products from AERONET and the MODIS Collection 6 aerosol data from "Dark Target (DT)" and "Deep Blue (DB)" algorithms during the DRAGON-NE Asia 2012 campaign from March to May 2012. Comparison of AOD from GOCI and AERONET gives a Pearson correlation coefficient of 0.885 and a linear regression equation with GOCI AOD =1.086 × AERONET AOD - 0.041. GOCI and MODIS AODs are more highly correlated

  17. Case study of modeled aerosol optical properties during the SAFARI 2000 campaign.

    PubMed

    Kuzmanoski, Maja; Box, Michael A; Schmid, Beat; Russell, Philip B; Redemann, Jens

    2007-08-01

    We present modeled aerosol optical properties (single scattering albedo, asymmetry parameter, and lidar ratio) in two layers with different aerosol loadings and particle sizes, observed during the Southern African Regional Science Initiative 2,000 (SAFARI 2,000) campaign. The optical properties were calculated from aerosol size distributions retrieved from aerosol layer optical thickness spectra, measured using the NASA Ames airborne tracking 14-channel sunphotometer (AATS-14) and the refractive index based on the available information on aerosol chemical composition. The study focuses on sensitivity of modeled optical properties in the 0.3-1.5 microm wavelength range to assumptions regarding the mixing scenario. We considered two models for the mixture of absorbing and nonabsorbing aerosol components commonly used to model optical properties of biomass burning aerosol: a layered sphere with absorbing core and nonabsorbing shell and the Maxwell-Garnett effective medium model. In addition, comparisons of modeled optical properties with the measurements are discussed. We also estimated the radiative effect of the difference in aerosol absorption implied by the large difference between the single scattering albedo values (approximately 0.1 at midvisible wavelengths) obtained from different measurement methods for the case with a high amount of biomass burning particles. For that purpose, the volume fraction of black carbon was varied to obtain a range of single scattering albedo values (0.81-0.91 at lambda=0.50 microm). The difference in absorption resulted in a significant difference in the instantaneous radiative forcing at the surface and the top of the atmosphere (TOA) and can result in a change of the sign of the aerosol forcing at TOA from negative to positive.

  18. Aerosol optical properties in the Marine Environment during the TCAP-I campaign

    NASA Astrophysics Data System (ADS)

    Chand, D.; Berg, L. K.; Barnard, J.; Berkowitz, C. M.; Burton, S. P.; Chapman, E. G.; Comstock, J. M.; Fast, J. D.; Ferrare, R. A.; Connor, F. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Kluzek, C.; Mei, F.; Pekour, M. S.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk-Imre, A.

    2013-12-01

    The role of direct radiative forcing by atmospheric aerosol is one of the largest sources of uncertainty in predicting climate change. Much of this uncertainty comes from the limited knowledge of observed aerosol optical properties. In this presentation we discuss derived aerosol optical properties based on measurements made during the summer 2012 Two-Column Aerosol Project-I (TCAP) campaign and relate these properties to the corresponding chemical and physical properties of the aerosol. TCAP was designed to provide simultaneous, in-situ observations of the size distribution, chemical properties, and optical properties of aerosol within and between two atmospheric columns over the Atlantic Ocean near the eastern seaboard of the United States. These columns are separated by 200-300 km and were sampled in July 2012 during a summer intensive operation period (IOP) using the U.S. Department of Energy's Gulfstream-1 (G-1) and NASA's B200 aircraft, winter IOP using G-1 aircraft in February 2013, and the surface-based DOE Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) located on Cape Cod. In this presentation we examine the spectral dependence of the aerosol optical properties measured from the aircraft over the TCAP-I domain, with an emphasis on in-situ derived intensive properties measured by a 3-λ Nephelometer, a Particle Soot Absorption Photometer (PSAP), a humidograph (f(RH)), and a Single Particle Soot Photometer (SP2). Preliminary results indicate that the aerosol are more light-absorbing as well as more hygroscopic at higher altitudes (2-4 km) compared to the corresponding values made within residual layers near the surface (0-2 km altitude). The average column (0-4 km) single scattering albedo (ω) and hygroscopic scattering factor (F) are found to be ~0.96 and 1.25, respectively. Additional results on key aerosol intensive properties such as the angstrom exponent (å), asymmetry parameter (g), backscattering fraction (b), and gamma parameter (

  19. Aerosol optical hygroscopicity measurements during the 2010 CARES Campaign

    DOE PAGES

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2014-12-10

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 CARES study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GF) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles, yielding κ = 0.1–0.15 and 0.9–1.0, respectively. Themore » derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  20. Measurements of mesospheric aerosol particles during the ECOMA/MASS campaign 2007.

    NASA Astrophysics Data System (ADS)

    Strelnikova, Irina; Rapp, Markus; Strelnikov, Boris; Latteck, Ralph; Baumgarten, Gerd; Brattli, Alvin; Friedrich, Martin; Gumbel, Jorg; Robertson, Scott

    In August 2007 the joint European-American ECOMA/MASS (Existence and Charge state Of Meteoric smoke particles in the middle Atmosphere/Dust MASS Analyzer) sounding rocket and ground-based campaign took place at the Andøya Rocket Range (ARR) (69° N). This campaign was devoted to the investigation of mesospheric aerosol particles. During this campaign, three instrumented sounding rockets were launched under the PMSE and NLC conditions. All rockets were carrying instruments to characterize mesospheric aerosol particles and their environment. The ECOMA rocket was launched during the first salvo shortly (30 min) after the MASS payload. At that time, the EISCAT (69° N, 19° E) VHF and ALWIN radars observed a double layered PMSE. Also an NLC layer was detected by lidar and photometers onboard each rocket. The main instrument of the ECOMA payload is the "ECOMA particle detector". This instrument comprises a classical Faraday cup with a xenon-flash lamp for the active photoionization/photodetachment of mesospheric smoke particles (MSPs) and the subsequent detection of corresponding photoelectrons. Comparing direct Faraday cup measurements and photocurrents we are able to derive particle properties like number densities and particle radii. We present the results of these measurements that show the presence of aerosol particles inside the NLC and PMSE layer, but not below or above these layers. These results are consistent with model predictions, which account for global transport of meteoric smoke. This implies that ice nucleation in the polar summer needs to be reconsidered.

  1. Characteristics of aerosol at a lower atmospheric layer in DRAGON field campaign

    NASA Astrophysics Data System (ADS)

    KUJI, M.; Azuma, Y.; Kitakoga, S.; Sano, I.; Holben, B. N.

    2013-12-01

    Air pollution arises severely over East Asia with the rapid economic development nowadays. Monitoring the atmospheric environment, as one of the purposes, an intensive field campaign, Distributed Regional Aerosol Gridded Observation Networks (DRAGON), was carried out in the spring of year 2012, led by National Aeronautics and Space Administration (NASA). At that time, atmospheric phenomena such as Yellow sand and haze events were observed at Nara in the western part of Japan, as one of the DRAGON observation sites. The atmospheric events were characterized with the AErosol RObotic NETwork (AERONET) data. As a result of the data analysis, it was found that more light-absorbing and smaller particles dominated at the lower than upper atmospheric layer for the Kosa event in particular. A backward trajectory analysis suggested that the Yellow sand event traveled over the East Asian industrial cities, which could lead to a mixture of sand and air pollutants with moderate particle size and light-absorptivity. In addition, visibility observation was evaluated quantitatively with AERONET data in the DRAGON campaign since eye observation was inherently semi-quantitative. The extinction coefficient estimated from visibility was compared to that from AERONET. As a result, it was found that the extinction coefficients were generally consistent to each other. But there were some discrepancies, which could be caused with the atmospheric phenomena or aerosol types. It is confirmed that visibility is strongly influenced with aerosols in the case of severe atmospheric phenomena in particular.

  2. Ceilometer aerosol profiling vs. Raman lidar in the frame of INTERACT campaign of ACTRIS

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Vande Hey, J.; Pappalardo, G.

    2014-12-01

    Despite their differences from more advanced and more powerful lidars, the low construction and operation cost of ceilometers, originally designed for cloud base height monitoring, has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represents a strong motivation to investigate both the extent to which they can be used to fill in the geographical gaps between advanced lidar stations and also how their continuous data flow can be linked to existing networks of the more advanced lidars, like EARLINET (European Aerosol Research LIdar NETwork). In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol content through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of six months. The comparison of the attenuated backscatter profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the SNR but also due to effect of changes in the ambient temperature on the short and mid-term stability of ceilometer calibration. A large instability of ceilometers in the incomplete overlap region has also been observed, making the use of a single overlap correction function for the whole duration of the campaign critical. Therefore, technological improvements of ceilometers towards their operational use in the monitoring of the atmospheric aerosol in the low and free troposphere are needed.

  3. Mixing State and Optical Properties of Biomass Burning Aerosol during the SAMBBA 2012 Campaign

    NASA Astrophysics Data System (ADS)

    Brooke, Jennifer; Brooks, Barbara; McQuaid, Jim; Osborne, Simon

    2013-04-01

    Emissions of black carbon are a global phenomenon associated with combustion activities with an estimated 40 % of global emissions from biomass burning. These emissions are typically dominated in regional hotspots, such as along the edges of the Amazon Basin, and contribute to the regional air quality and have associated health impacts as well as the global climatic impacts of this major source of black carbon as well as other radiatively active species. New airborne measurements will be presented of biomass burning emissions across the Amazon region from the South AMerican Biomass Burning Analysis (SAMBBA) campaign based at Porto Vehlo, Rondônia, Brazil in September 2012. This airborne campaign aboard the FAAM BAe-146 coincided with the seasonal peak in South American biomass burning emissions, which make up the most dominant source of atmospheric pollutants in the region at this time. SAMBBA included dedicated flights involving in-situ measurements and remote sensing of single plume studies through to multi-plume sampling of smouldering and flaming vegetation fires, regional haze sampling, and measurements of biogenic aerosol and gases across Amazonas. This presentation summarises early findings from the SAMBBA aircraft observations focusing on the relationship between biomass burning aerosol properties; size distributions, aerosol mixing state and optical properties from a suite of instruments onboard the FAAM BAe-146. The interplay of these properties influences the regional radiative balance impacting on weather and climate. The Leeds airborne VACC (Volatile Aerosol Concentration and Composition) instrument is designed to investigate the volatility properties of different aerosol species in order to determine aerosol composition; furthermore it can be used to infer the mixing state of the aerosol. Size distributions measured with the volatility system will be compared with ambient size distribution measurements this allows information on organic coating

  4. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; Zhou, J.; Tomlinson, J.; Collins,D. R.; Knapp, D.; Weinheimer, A. J.; Montzka,D. D.; Campos,T.; Jimenez, J. L.

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  5. Radiative Forcing, Satellite Validation, and Thermodynamic Impact of Aerosols during Aerose Campaigns

    NASA Astrophysics Data System (ADS)

    Flores, A.; Joseph, E.; Nalli, N. R.; Smirnov, A.; Morris, V. R.; Wolfe, D. E.; Aerose Team

    2011-12-01

    An estimated three billion metric tons of mineral aerosols are injected into the troposphere annually from the Saharan desert [Prospero et al., 1996]. These windswept aerosols from the African continent are responsible for a variety of climate, health, and environmental impacts on both global and regional scales that span the Western Hemisphere [Morris et al., 2006]. The Aerosol and Ocean Science Expeditions (AEROSE) are a great opportunity to tackle these impacts. The Saharan Air Layer (SAL) appears to retain its Saharan characteristics of warm, stable air near its base, and dryness and dustiness throughout its depth as it is carried as far as the western Caribbean Sea [Dunion & Velden, 2004]. AEROSE provides insitu characterization of the impact of aerosols of African origin on energy balance and microphysical evolution of mineral dust outflow over the tropical Atlantic Ocean. By quantifying the radiative properties of the SAL, aerosol optical depths (AOD) as high as 1.6 was detected over the Atlantic [Nalli et al., 2011], producing a shortwave forcing of 200 W/m2 and therefore a warming just above the marine boundary layer for this particular case. Also in this study, AOD values from AEROSE have been compared with the Moderate Resolution Imaging Spectroradiometer (MODIS), showing variety on each campaign.

  6. The 2005 and 2006 DANDELIONS NO2 and aerosol intercomparison campaigns

    NASA Astrophysics Data System (ADS)

    Brinksma, E. J.; Pinardi, G.; Volten, H.; Braak, R.; Richter, A.; SchöNhardt, A.; van Roozendael, M.; Fayt, C.; Hermans, C.; Dirksen, R. J.; Vlemmix, T.; Berkhout, A. J. C.; Swart, D. P. J.; Oetjen, H.; Wittrock, F.; Wagner, T.; Ibrahim, O. W.; de Leeuw, G.; Moerman, M.; Curier, R. L.; Celarier, E. A.; Cede, A.; Knap, W. H.; Veefkind, J. P.; Eskes, H. J.; Allaart, M.; Rothe, R.; Piters, A. J. M.; Levelt, P. F.

    2008-08-01

    Dutch Aerosol and Nitrogen Dioxide Experiments for Validation of OMI and SCIAMACHY (DANDELIONS) is a project that encompasses validation of spaceborne measurements of NO2 by the Ozone Monitoring Instrument (OMI) and Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), and of aerosol by OMI and Advanced Along-Track Scanning Radiometer (AATSR), using an extensive set of ground-based and balloon measurements over the polluted area of the Netherlands. We present an extensive data set of ground-based, balloon, and satellite data on NO2, aerosols, and ozone obtained from two campaigns within the project, held during May-June 2005 and September 2006. We have used these data for first validation of OMI NO2, and the data are available through the Aura Validation Data Center website for use in other validation efforts. In this paper we describe the available data, and the methods and instruments used, including the National Institute of Public Health and the Environment (RIVM) NO2 lidar. We show that NO2 from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) compares well with in situ measurements. We show that different MAX-DOAS instruments, operating simultaneously during the campaign, give very similar results. We also provide unique information on the spatial homogeneity and the vertical and temporal variability of NO2, showing that during a number of days, the NO2 columns derived from measurements in different directions varied significantly, which implies that, under polluted conditions, measurements in one single azimuth direction are not always representative for the averaged field that the satellite observes. In addition, we show that there is good agreement between tropospheric NO2 from OMI and MAX-DOAS, and also between total NO2 from OMI and direct-sun observations. Observations of the aerosol optical thickness (AOT) show that values derived with three ground-based instruments correspond well with each other, and with

  7. An Overview of the DAURE Campaign: Aerosols Emissions and Evolution in the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Pandolfi, Marco; Querol, Xavier; Alastuey, Andrés.; Jimenez, Jose L.

    2010-05-01

    DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean) is a multidisciplinary international measurement campaign mainly aimed at estimating the sources and origin of atmospheric fine aerosols in the Western Mediterranean Basin (WMB), with particular attention to the carbonaceous fraction. Main focuses of the campaign are the study of the origin of the intense pollution episodes frequently occurring at regional scale in summer and winter in the WMB (Perez et al., 2008) and the emission, formation, transport and transformation of aerosols during these polluted scenarios. The peculiar atmospheric dynamics in the WMB, regulated by complex climatic and orographic effects (Millán et al., 1997), together with the large pollutant emissions from densely populated areas, large industrial areas and ports located along the coastline, give rise to a complex phenomenology for aerosol formation and transformation. In this context, extremely high concentrations of fine particulate matter (mainly PM1, particulate matter with aerodynamic diameter < 1um) are usually registered at regional background stations, with levels even higher than those simultaneously registered at urban stations. DAURE brings together state-of-the-art measurements and modeling techniques from about 20 International and Spanish Institutions. The DAURE campaign took place during winter (February-March 2009) and summer (July 2009) at an urban site (Barcelona, 80 m a.s.l., NE Spain) and a regional background site (Montseny, 720 m a.s.l., NE Spain, a Supersite of the EUSAAR network). Widespread in situ aerosol sampling techniques (such as PM optical counters, PM samplers, MAAP, CPC, SMPS, Rotating Drum Impactor, among others) and remote sensing techniques (LIDAR, sunphotometer) have been applied together with state-of-the-art methods such as 14C (Szidat et al., 2006), Proton-Transfer Reaction Mass Spectrometry (PTRMS) for VOCs, and High

  8. Hygroscopic Measurements of Aerosol Particles in Colorado during the Discover AQ Campaign 2014

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Espinosa, R.; Martins, J. V.; Hoff, R. M.

    2014-12-01

    In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground observations with other optical aerosol measurements such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. In the summer of 2014, the DISCOVER-AQ campaign was held in Colorado, where systematic and concurrent observations of column- integrated surface, and vertically-resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Aerosol optical properties were measured in the UMBC trailer at the city of Golden using a TSI-3563 nephelometer and an in-situ Polarized Imaging Nephelometer (PI-NEPH) designed and built by the LACO group at UMBC. The PI-NEPH measures aerosol phase matrix components in high angular range between 2 and 178 degrees scattering angle at three wavelengths (λ=473, 532 and 671nm). The two measured elements of the phase matrix, intensity (P11) and linear polarization (P12) provide extensive characterization of the scattering properties of the studied aerosol. The scattering coefficient, P11 and P12 were measured under different humidity conditions to obtain the enhancement factor f(RH) and the dependence of P11 and P12 to RH using a humidifier dryer system covering a RH range from 20 to 90%. The ratio between scattering coefficients at high and low humidity in Golden Colorado showed relatively low hygroscopic growth in the aerosol particles f(RH=80%) was 1.27±0.19 for the first three weeks of sampling. According to speciated measurements performed at the UMBC trailer, the predominance of dust and organic aerosols over more hygroscopic nitrate and sulfate in the

  9. Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign

    NASA Astrophysics Data System (ADS)

    Ye, Xingnan; Tang, Chen; Yin, Zi; Chen, Jianmin; Ma, Zhen; Kong, Lingdong; Yang, Xin; Gao, Wei; Geng, Fuhai

    2013-01-01

    The hygroscopic properties of submicrometer urban aerosol particles were studied during the 2009 Mirage-Shanghai Campaign. The urban aerosols were composed of more-hygroscopic and nearly-hydrophobic particles, together with a trace of less-hygroscopic particles. The mean hygroscopicity parameter κ of the more-hygroscopic mode varied in the range of 0.27-0.39 depending on particle size. The relative abundance of the more-hygroscopic particles at any size was ca. 70%, slightly increasing with particle size. The number fraction of the nearly-hydrophobic particles fluctuated between 0.1 and 0.4 daily, in accordance with traffic emissions and atmospheric diffusion. The results from relative humidity dependence on hygroscopic growth and chemical analysis of fine particles indicated that particulate nitrate formation through the homogenous gas-phase reaction was suppressed under ammonia-deficient atmosphere in summer whereas the equilibrium was broken by more available NH3 during adverse meteorological conditions.

  10. Lidar Measurements of Stratospheric Ozone, Aerosols and Temperature during the SAUNA Campaign at Sodankyla, Finland

    NASA Technical Reports Server (NTRS)

    McGee, T.; Twigg, L.; Sumnicht, G.; McPeters, R.; Bojkov, B.; Kivi, R.

    2008-01-01

    The Sodankyla Total Column Ozone Intercomparison (SAUNA) campaign took place at the Finnish Meteorological Institute Arctic Research Center (FMI-ARC) at Sodankyla, Finland (67.37 N) in two separate phases during early spring 2006, and winter 2007. These campaigns has several goals: to determine and improve the accuracy of total column ozone measurements during periods of low solar zenith angle and high total column ozone; to determine the effect of ozone profile shape on the total column retrieval; and to make validate satellite ozone measurements under these same conditions. The GSFC Stratospheric Ozone Lidar (STROZ), which makes profile measurements of ozone temperature, aerosols and water vapor participated in both phases of the campaign. During the deployments, more than 30 profile measurements were made by the lidar instrument, along with Dobson, Brewer, DOAS, ozonesonde, and satellite measurements. The presentation will concentrate on STROZ lidar results from the second phase of the campaign and comparisons with other instruments will be discussed. This will include both ground-based and satellite comparisons.

  11. Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Vande Hey, J.; Pappalardo, G.

    2015-05-01

    Despite their differences from more advanced and more powerful lidars, the low construction and operation cost of ceilometers (originally designed for cloud base height monitoring) has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represents a strong motivation to investigate both the extent to which they can be used to fill in the geographical gaps between advanced lidar stations and also how their continuous data flow can be linked to existing networks of the more advanced lidars, like EARLINET (European Aerosol Research Lidar Network). In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol properties through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E), in the framework of the ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of 6 months. The comparison of the attenuated backscatter coefficient profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the signal to noise ratio (SNR) but also due to changes in the ambient temperature on the short and mid-term stability of ceilometer calibration. Therefore, technological improvements are needed to move ceilometers towards operational use in the monitoring of atmospheric aerosols in the low and free troposphere.

  12. Impact of aerosol direct effect on East Asian air quality during the EAST-AIRE campaign

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Allen, Dale J.; Pickering, Kenneth E.; Li, Zhanqing; He, Hao

    2016-06-01

    WRF-Chem simulations were performed for the March 2005 East Asian Studies of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) Intensive Observation Campaign (IOC) to investigate the direct effects of aerosols on surface radiation and air quality. Domain-wide, WRF-Chem showed a decrease of 20 W/m2 in surface shortwave (SW) radiation due to the aerosol direct effect (ADE), consistent with observational studies. The ADE caused 24 h surface PM2.5 (particulate matter with diameter < 2.5 µm) concentrations to increase in eastern China (4.4%), southern China (10%), western China (2.3%), and the Sichuan Basin (9.6%), due to different aerosol compositions in these four regions. Conversely, surface 1 h maximum ozone was reduced by 2.3% domain-wide and up to 12% in eastern China because less radiation reached the surface. We also investigated the impact of reducing SO2 and black carbon (BC) emissions by 80% on aerosol amounts via two sensitivity simulations. Reducing SO2 decreased surface PM2.5 concentrations in the Sichuan Basin and southern China by 5.4% and decreased ozone by up to 6 ppbv in the Sichuan Basin and Southern China. Reducing BC emissions decreased PM2.5 by 3% in eastern China and the Sichuan Basin but increased surface ozone by up to 3.6 ppbv in eastern China and the Sichuan Basin. This study indicates that the benefits of reducing PM2.5 associated with reducing absorbing aerosols may be partially offset by increases in ozone at least for a scenario when NOx and VOC emissions are unchanged.

  13. Microphysical Properties of Aerosols Encountered During the 2012 TCAP Campaign Using the Research Scanning Polarimeter

    NASA Astrophysics Data System (ADS)

    Stamnes, S.; Ferrare, R. A.; Hostetler, C. A.; Burton, S. P.; Liu, X.; Cairns, B.

    2015-12-01

    The Two-Column Aerosol Project (TCAP) campaign was conducted during the summer of 2012, off the East coast of the United States by Cape Cod. The NASA GISS Research Scanning Polarimeter, a multi-angle, multi-spectral polarimeter measured the upwelling polarized radiances from a B200 aircraft over a period of several weeks and over a distance of several hundred kilometers. A new algorithm based on optimal estimation that can retrieve aerosol microphysical properties using highly accurate radiative transfer and Mie calculations is presented. First, results for synthetic simulated data are discussed. The algorithm is then applied to real data collected during TCAP to retrieve the aerosol microphysical state vector and corresponding uncertainty for the aerosols that were encountered. Simultaneous measurements were also made by the NASA Langley airborne High Spectral Resolution Lidar (HSRL2), which provided extinction and backscatter profiles. The RSP-retrieved microphysical properties are compared to the extinction and backscatter products, and to the HSRL2-retrieved microphysical products.

  14. Daily variation of organic aerosol concentration and composition in Seoul, Korea during KORUS pre-campaign

    NASA Astrophysics Data System (ADS)

    Shin, H. J.; Lee, J.; Choi, A. Y.; Park, S. M.; Park, J. S.; Song, I. H.; Hong, Y. D.

    2015-12-01

    Daily variation of Organic Aerosol (OA) as well as organic tracer compounds have been observed in aerosol samples collected during KORUS-AQ (Korea-US Air Quality Study) pre-campaign (From May 18 to June 12) in Seoul, Korea. NR-PM1 bounded OA was measured by HR-TOF-AMS (Aerodyne) and the temporal variation, composition of OA by family group characterization, and oxidation state of OA was studied. And to distinguish the source characteristics (such as HOA, COA, NOA, SV-OOA, LV-OOA, etc…) of the organic, AMS-PMF model will be used.For the observation of organic tracer compounds, solvent extractable fractions were analyzed by GC-MS. More than 80 organic compounds were detected in the aerosol samples and grouped by source characterized classes, including vehicular emission tracers, biomass burning tracers, coal emission tracers, secondary organic aerosol (SOA) tracers. The main objective of this study is evaluation of the validity of OA fractionation based on the AMS measurement. So, we will compare daily variation of OA composition measured by AMS with daily variation of organic tracer compounds. Further, we will specify source characteristics estimated using AMS-PMF model by comparing the results of source apportionment of OA using PMF of organic tracer compounds.

  15. Ceilometer Aerosol Profiling versus Raman Lidar in the Frame of Interact Campaign of Actris

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Rosoldi, M.; Vande Hey, J.; Pappalardo, G.

    2016-06-01

    In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol properties through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60 N, 15.72 E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of six month. The comparison of the attenuated backscatter coefficient profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the SNR but also due to effect of changes in the ambient temperature on the stability of ceilometer calibration over short and mid-term. Technological improvements of ceilometers towards their operational use in the monitoring of the atmospheric aerosol in the low and free troposphere are likely needed.

  16. Light-absorbing Aerosol Properties in the Kathmandu Valley during SusKat-ABC Field Campaign

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; Kim, J.; Cho, C.; Jung, J.

    2013-12-01

    Light-absorbing aerosols, such as black carbon (BC), are major contributors to the atmospheric heating and the reduction of solar radiation reaching at the earth's surface. In this study, we investigate light-absorption and scattering properties of aerosols (i.e., BC mass concentration, aerosol solar-absorption/scattering efficiency) in the Kathmandu valley during Sustainable atmosphere for the Kathmandu valley (SusKat)-ABC campaign, from December 2012 to February 2013. Kathmandu City is among the most polluted cities in the world. However, there are only few past studies that provide basic understanding of air pollution in the Kathmandu Valley, which is not sufficient for designing effective mitigation measures (e.g., technological, financial, regulatory, legal and political measures, planning strategies). A distinct diurnal variation of BC mass concentration with two high peaks observed during wintertime dry monsoon period. BC mass concentration was found to be maximum around 09:00 and 20:00 local standard time (LST). Increased cars and cooking activities including substantial burning of wood and other biomass in the morning and in the evening contributed to high BC concentration. Low BC concentrations during the daytime can be explain by reduced vehicular movement and cooking activities. Also, the developmements of the boundary layer height and mountain-valley winds in the Kathmandu Valley paly a crucial role in the temproal variation of BC mass concentrations. Detailed radiative effects of light-absorbing aerosols will be presented.

  17. Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign

    NASA Astrophysics Data System (ADS)

    Cerully, K. M.; Raatikainen, T.; Lance, S.; Tkacik, D.; Tiitta, P.; Petäjä, T.; Ehn, M.; Kulmala, M.; Worsnop, D. R.; Laaksonen, A.; Smith, J. N.; Nenes, A.

    2011-12-01

    Measurements of size-resolved cloud condensation nuclei (CCN) concentrations, subsaturated hygroscopic growth, size distribution, and chemical composition were collected from March through May, 2007, in the remote Boreal forests of Hyytiälä, Finland, as part of the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) campaign. Hygroscopicity parameter, κ, distributions were derived independently from Continuous Flow-Streamwise Thermal Gradient CCN Chamber (CFSTGC) and Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) measurements. CFSTGC-derived κ values for 40, 60, and 80 nm particles range mostly between 0.10 and 0.40 with an average characteristic of highly oxidized organics of 0.20 ± 0.10, indicating that organics play a dominant role for this environment. HTDMA-derived κ were generally 30% lower. Diurnal trends of κ show a minimum at sunrise and a maximum in the late afternoon; this trend covaries with inorganic mass fraction and the m/z 44 organic mass fraction given by a quadrupole aerosol mass spectrometer, further illustrating the importance of organics in aerosol hygroscopicity. The chemical dispersion inferred from the observed κ distributions indicates that while 60 and 80 nm dispersion increases around midday, 40 nm dispersion remains constant. Additionally, 80 nm particles show a markedly higher level of chemical dispersion than both 40 and 60 nm particles. An analysis of droplet activation kinetics for the sizes considered indicates that most of the CCN activate as rapidly as (NH4)2SO4 calibration aerosol.

  18. Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign

    NASA Astrophysics Data System (ADS)

    Cerully, K. M.; Raatikainen, T.; Lance, S.; Tkacik, D.; Tiitta, P.; Petäjä, T.; Ehn, M.; Kulmala, M.; Worsnop, D. R.; Laaksonen, A.; Smith, J. N.; Nenes, A.

    2011-05-01

    Measurements of size-resolved cloud condensation nuclei (CCN), subsaturated hygroscopic growth, size distribution, and chemical composition were collected from March through May, 2007, in the remote Boreal forests of Hyytiälä, Finland, as part of the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) campaign. Hygroscopicity parameter, κ, distributions were derived independently from Continuous Flow-Streamwise Thermal Gradient CCN Chamber (CFSTGC) and Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) measurements. CFSTGC-derived κ values for 40, 60, and 80 nm particles range mostly between 0.10 and 0.40 with an average of 0.20 ± 0.10; this is characteristic of highly oxidized organics and reflect their dominant influence in this environment. HTDMA-derived κ were generally 30 % lower. Diurnal trends of κ show a minimum at sunrise and a maximum in the late afternoon; this trend covaries with inorganic mass fraction and the m/z 44 organic mass fraction given by a quadrupole aerosol mass spectrometer, further illustrating the importance of ageing on aerosol hygroscopicity. The chemical dispersion inferred from the observed κ distributions indicates that while 60 and 80 nm dispersion increases around midday, 40 nm dispersion remains constant. Additionally, 80 nm particles show a markedly higher level of chemical dispersion than both 40 and 60 nm particles. An analysis of droplet activation kinetics for the sizes considered indicates that the CCN activate as rapidly as (NH4)2SO4 calibration aerosol.

  19. Chemical Characterization of Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Aircraft in the ISDAC 2008 Study

    SciTech Connect

    Hiranuma, Naruki; Brooks, Sarah D.; Moffet, Ryan C.; Glen, Andrew; Laskin, Alexander; Gilles, Marry K.; Liu, Peter; MacDonald, A. M.; Strapp, J. Walter; McFarquhar, Greg

    2013-06-24

    Although it has been shown that size of atmospheric particles has a direct correlation with their ability to act as cloud droplet and ice nuclei, the influence of composition of freshly emitted and aged particles in nucleation processes is poorly understood. In this work we combine data from field measurements of ice nucleation with chemical imaging of the sampled particles to link aerosol composition with ice nucleation ability. Field measurements and sampling were conducted during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, Alaska, in the springtime of 2008. In-situ ice nucleation measurements were conducted using a Continuous Flow Diffusion Chamber (CFDC). Measured number concentrations of ice nuclei (IN) varied from frequent values of 0.01 per liter to more than 10 per liter. Residuals of airborne droplets and ice crystals were collected through a counterflow virtual impactor (CVI). The compositions of individual atmospheric particles and the residuals were studied using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis (CCSEM/EDX) and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (STXM/NEXAFS). Chemical analysis of cloud particle residuals collected during an episode of high ice nucleation suggests that both size and composition may influence aerosol's ability to act as IN. The STXM/NEXAFS chemical composition maps of individual residuals have characteristic structures of either inorganic or black carbon cores coated by organic materials. In a separate flight, particle samples from a biomass burning plume were collected. Although it has previously been suggested that episodes of biomass burning contribute to increased numbers of highly effective ice nuclei, in this episode we observed that only a small fraction were effective ice nuclei. Most of the particles from the biomass plume episode were smaller in size and were composed of

  20. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-01

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality.

  1. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-01

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality. PMID:26953969

  2. Aerosol light-scattering enhancement due to water uptake during the TCAP campaign

    NASA Astrophysics Data System (ADS)

    Titos, G.; Jefferson, A.; Sheridan, P. J.; Andrews, E.; Lyamani, H.; Alados-Arboledas, L.; Ogren, J. A.

    2014-07-01

    Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign deployed at Cape Cod, Massachusetts, for a 1-year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0 to 180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine if

  3. Aerosol Properties over the Eastern North Pacific based on Measurements from the MAGIC Field Campaign

    NASA Astrophysics Data System (ADS)

    Lewis, E. R.; Senum, G.; Springston, S. R.; Kuang, C.

    2015-12-01

    The MAGIC field campaign, funded and operated by the ARM (Atmospheric Radiation Measurement) Climate Research Facility of the US Department of Energy, occurred between September 2012 and October, 2013 aboard the Horizon Lines cargo container ship Spirit making regular trips between Los Angeles, CA and Honolulu, HI. Along this route, which lies very near the GPCI (GCSS Pacific Cross-section Intercomparison) transect, the predominant cloud regime changes from stratocumulus near the California coast to trade-wind cumulus near Hawaii. The transition between these two regimes is poorly understood and not accurately represented in models. The goal of MAGIC was to acquire statistic of this transition and thus improve its representation in models by making repeated transects through this region and measuring properties of clouds and precipitation, aerosols, radiation, and atmospheric structure. To achieve these goals, the Second ARM Mobile Facility (AMF2) was deployed on the Horizon Spirit as it ran its regular route between Los Angeles and Honolulu. AMF2 consists of three 20-foot SeaTainers and includes three radars and other instruments to measure properties of clouds and precipitation; the Aerosol Observing System (AOS), which has a suite of instruments to measure properties of aerosols; and other instruments to measure radiation, meteorological quantities, and sea surface temperature. Two technicians accompanied the AMF2, and scientists rode the ship as observers. MAGIC made nearly 20 round trips between Los Angeles and Honolulu (and thus nearly 40 excursions through the stratocumulus-to-cumulus transition) and spent 200 days at sea, collecting an unprecedented data set. Aerosol properties measured with the AOS include number concentration and size distribution, CCN activity, hygroscopic growth, and light-scattering and absorption. Additionally, more than one hundred filter samples were collected. Aerosol properties and their spatial and temporal behavior are discussed

  4. Impact of springtime biomass-burning aerosols on radiative forcing over northern Thailand during the 7SEAS campaign

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn

    2016-04-01

    Biomass-burning (BB) aerosols are the significant contributor to the regional/global aerosol loading and radiation budgets. BB aerosols affect the radiation budget of the earth and atmosphere by scattering and absorbing directly the incoming solar and outgoing terrestrial radiation. These aerosols can exert either cooling or warming effect on climate, depending on the balance between scattering and absorption. BB activities in the form of wildland forest fires and agricultural crop burning are very pronounced in the Indochina peninsular regions in Southeast Asia mainly in spring (late February to April) season. The region of interest includes Doi Ang Khang (19.93° N, 99.05° E, 1536 msl) in northern Thailand, as part of the Seven South East Asian Studies (7-SEAS)/BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment) campaign in 2013. In this study, for the first time, the direct aerosol radiative effects of BB aerosols over near-source BB emissions, during the peak loading spring season, in northern Indochina were investigated by using ground-based physical, chemical, and optical properties of aerosols as well as the aerosol optical and radiative transfer models. Information on aerosol parameters in the field campaign was used in the OPAC (Optical Properties of Aerosols and Clouds) model to estimate various optical properties corresponding to aerosol compositions. Clear-sky shortwave direct aerosol radiative effects were further estimated with a raditive transfer model SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer). The columnar aerosol optical depth (AOD500) was found to be ranged from 0.26 to 1.13 (with the mean value 0.71 ± 0.24). Fine-mode (fine mode fraction ≈0.98, angstrom exponent ≈1.8) and significantly absorbing aerosols (columnar single-scattering albedo ≈0.89, asymmetry-parameter ≈0.67 at 441 nm wavelength) dominated in this region. Water soluble and black carbon (BC) aerosols mainly

  5. Application of AERONET Single Scattering Albedo and Absorption Angstrom Exponent to Classify Dominant Aerosol Types during DRAGON Campaigns

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Schafer, J.; Crawford, J. H.; Kim, J.; Sano, I.; Liew, S.; Salinas Cortijo, S. V.; Chew, B. N.; Lim, H.; Smirnov, A.; Sorokin, M.; Kenny, P.; Slutsker, I.

    2013-12-01

    Aerosols can have major implications on human health by inducing respiratory diseases due to inhalation of fine particles from biomass burning smoke or industrial pollution and on radiative forcing whereby the presence of absorbing aerosol particles (e.g., black carbon) increases atmospheric heating. Aerosol classification techniques have utilized aerosol loading and aerosol properties derived from multi-spectral and multi-angle observations by ground-based (e.g., AERONET) and satellite instrumentation (e.g., MISR). Aerosol Robotic Network (AERONET) data have been utilized to determine aerosol types by implementing various combinations of measured aerosol optical depth or retrieved size and absorption aerosol properties (e.g., Gobbi et al., 2007; Russell et al., 2010). Giles et al. [2012] showed single scattering albedo (SSA) relationship with extinction Angstrom exponent (EAE) can provide an estimate of the general classification of dominant aerosol types (i.e., desert dust, urban/industrial pollution, biomass burning smoke, and mixtures) based on data from ~20 AERONET sites located in known aerosol source regions. In addition, the absorption Angstrom exponent relationship with EAE can provide an indication of the dominant absorbing aerosol type such as dust, black carbon, brown carbon, or mixtures of them. These classification techniques are applied to the AERONET Level 2.0 quality assured data sets collected during Distributed Regional Aerosol Gridded Observational Network (DRAGON) campaigns in Maryland (USA), Japan, South Korea, Singapore, Penang (Malaysia), and California (USA). An analysis of aerosol type classification for DRAGON sites is performed as well as an assessment of the spatial variability of the aerosol types for selected DRAGON campaigns. Giles, D. M., B. N. Holben, T. F. Eck, A. Sinyuk, A. Smirnov, I. Slutsker, R. R. Dickerson, A. M. Thompson, and J. S. Schafer (2012), An analysis of AERONET aerosol absorption properties and classifications

  6. Ambient aerosol chlorine concentrations and artefacts during the MEGAPOLI Paris campaigns

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Visser, Suzanne; Slowik, Jay; Crippa, Monica; Poulain, Laurent; Sciare, Jean; Flechsig, Uwe; Prévôt, André; Baltensperger, Urs

    2015-04-01

    Trace elements, especially those that are toxic, can affect the environment in significant ways. Studying them is advantageous with respect to a refinement of source apportionment when measured with high time resolution and appropriate size segregation. This approach is especially useful in urban environments with numerous time-variant emission sources distributed across a relatively narrow space. Two field campaigns took place in the framework of the MEGAPOLI project in Paris, France: one in the summer of 2009 (1-31 July), the other in the winter of 2010 (11 Jan - 10 Feb). Rotating drum impactors (RDI) were operated at an urban and a suburban site in each campaign. The RDI segregated the aerosols into three size ranges (PM10-2.5, PM2.5-1.0 and PM1.0-0.3) and sampled with 2-hour time resolution. The samples were analyzed with synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF) at the synchrotron facility of the Paul Scherrer Institute (SLS), where a broad range of elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn) was analyzed for each size range. Time series of the analyzed elements for the different sites and campaigns were prepared to characterize the aerosol trace element composition and temporal behavior for different weather situations and urban environments. Quality assurance was performed partly by intercomparison with independent measurements. An exceptional behavior was observed for chlorine (Cl), where periods with zero RDI concentration alternated with periods of normal load. Zero concentrations were not observed in particle-into-liquid (PILS) measurements. This identifies the observed behavior as a RDI sampling artefact. Nevertheless, the non-zero periods of Cl concentrations are still a gain in information compared to conventional sampling techniques, mainly due to the high time resolution.

  7. Highly time-resolved trace element concentrations in aerosols during the Megapoli Paris campaigns

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Visser, Suzanne; Slowik, Jay G.; Crippa, Monica; Poulain, Laurent; Appel, Karen; Flechsig, Uwe; Prevot, Andre S. H.; Baltensperger, Urs

    2014-05-01

    Trace elements contribute typically only a few percent to the total mass of air pollutants, however, they can affect the environment in significant ways, especially those that are toxic. Furthermore, they are advantageous with respect to a refinement of source apportionment when measured with high time resolution and appropriate size segregation. This approach is especially advantageous in an urban environment with numerous time-variant emission sources distributed across a relatively narrow space, as is typically the setting of a megacity. Two 1-month long field campaigns took place in the framework of the Megapoli project in Paris, France, in the summer of 2009 and in the winter of 2010. Rotating drum impactors (RDI) were operated at two sites in each campaign, one urban, the other one suburban. The RDI segregated the aerosols into three size ranges (PM10-2.5, PM2.5-1 and PM1-0.1) and sampled with 2-hour time resolution. The samples were analyzed with synchrotron radiation induced X-ray fluorescence spectrometry (SR-XRF) at the synchrotron facilities of Paul Scherrer Institute (SLS) and Deutsches Elektronen-Synchrotron (HASYLAB), where a broad range of elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Sr, Zr, Cd, Sn, Sb, Ba, Pb) was analyzed for each size range. Time series of the analyzed elements for the different sites and campaigns were prepared to characterize the aerosol trace element composition and temporal behavior for the different weather situations and urban environments. They allow for the distinction of regional vs. local sources and transport, and provide a basis for source apportionment calculations. Local and regional contributions of traffic, including re-suspension, break wear and exhaust, wood burning, marine and other sources will be discussed. Indications of long-range transport from Polish coal emissions in the city center of Paris were also found.

  8. Variability of tropospheric pollutants and aerosols in the context of the airborne GLAM campaign

    NASA Astrophysics Data System (ADS)

    Zbinden, Régina; Ricaud, Philippe; El Amraoui, Laaziz; Attié, Jean-Luc; Catoire, Valery; Brocchi, Vanessa; Nabat, Pierre; Dulac, François; Dayan, Uri

    2015-04-01

    In the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment) program, the airborne campaign GLAM (Gradient in Longitude of Atmospheric constituents above the Mediterranean basin) has been set up to study the variability of gazeous pollutants with different lifetimes and of aerosols over the Mediterranean Basin (MB). The project mainly focuses on the East-West gradients in pollutants within the mid to upper-troposphere induced by the impact of the Asian Monsoon Anticyclone on the pollutants in the Eastern MB, and on the comparisons with space-borne measurements and model results. On board the Falcon-20, together with an ozone analyzer, humidity and temperature sensors and optical particle counters, a laser absorption spectrometer SPIRIT developed at LPC2E was able to detect very weak changes in the concentration of greenhouse gases. GLAM performed measurements of O3, CO, CH4, N2O, CO2, H2O, temperature and the winds components over the Mediterranean Basin in summer (6-10 August 2014), flying at 5000 m altitude from France to Cyprus and at 9000 m on the flight back. In addition, GLAM performed vertical profiles between about 0.3 and 11 km altitude near the different landing sites. These in situ profiles are an original source to validate what the space-borne instruments detect within the same altitudes. Some of these profiles are also performed close to the surface stations of Lampedusa, Finokalia (Crete) and Ineia (Cyprus), allowing comparison between aircraft and surface measurements. This presentation will provide the first major GLAM results, highlight the variability of the chemical pollutants and aerosols and synthesize what is learnt from this campaign when compared to model results.

  9. Ground-based aerosol measurements during CHARMEX/ADRIMED campaign at Granada station

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, Maria Jose; Bravo-Aranda, Juan Antonio; Navas-Guzman, Francisco; Guerro-Rascado, Juan Luis; Titos, Gloria; Lyamani, Hassan; Valenzuela, Antonio; Cazorla, Alberto; Olmo, Francisco Jose; Mallet, Marc; Alados-Arboledas, Lucas

    2015-04-01

    In the framework of ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/; Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) projects, a field experiment based on in situ and remote sensing measurements from surface and airborne platforms was performed. The ADRIMED project aimed to capture the high complexity of the Mediterranean region by using an integrated approach based on intensive experimental field campaign and spaceborne observations, radiative transfer calculations and climate modelling with Regional Climate Models better adapted than global circulation models. For this purpose, measurements were performed at different surface super-sites (including Granada station) over the Occidental Mediterranean region during summer 2013 for creating an updated database of the physical, chemical, optical properties and the vertical distribution of the major "Mediterranean aerosols". Namely, measurements at Granada station were performed on 16 and 17 July 2013, in coincidence with the overpasses of the ATR aircraft over the station. The instrumentation used for the campaign includes both remote sensing instruments (a multiwavelength Raman lidar and a sun photometer) and in-situ measurements (a nephelometer, a Multi-Angle Absorption Photometer (MAAP), an Aerodynamic particle sizer (APS), a high volume sampler of PM10 and an aethalometer). During the measurement period a mineral dust event was detected, with similar dust load on both days. According to in-situ measurements, the event reached the surface level on 16 of June. Vertically resolved lidar measurements indicated presence of mineral dust layers up to 5 km asl both on 16 and 17 June 2013. Temporal evolution analysis indicated that on 17 June the dust layer decoupled from the boundary layer and disappeared around 14:00 UTC. In addition, lidar and sun-photometer data were used to retrieve volume concentration profiles by means of LIRIC (Lidar

  10. A Campaign Study of Sea Spray Aerosol Properties in the Bay of Aarhus

    NASA Astrophysics Data System (ADS)

    Nguyen, Quynh; Rasmussen, Berit; Kristensen, Kasper; Sloth Nielsen, Lærke; Bilde, Merete

    2016-04-01

    The oceans of the world are a dominant source of atmospheric aerosol. Together with mineral dust, sea spray aerosols (SSA) constitute the largest mass flux of particulate matter in the atmosphere (Andreae and Rosenfeld, 2008). Due to their effects on the global radiative budget - both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN), SSA are considered an important component of the climate system. The sea-surface microlayer (SML) is an ultra-thin boundary layer between the ocean and the atmosphere. The high concentration of surface-active organic compounds in the SML, compared to that of the underlying water column, creates rigid film-like layer over the surface of the ocean. The SML is believed to play an important role in the formation and composition of SSA. However, current knowledge on the SML and its impacts on SSA remain limited. To characterize the SML of natural seawater and examine its impacts on aerosol properties, a field campaign was conducted in the bay of Aarhus, Denmark, during spring 2015. Bulk seawater was collected 1-2 times every week along with selective sampling of the SML. Characterization of the sea water and SML included a wide range of measurements, including surface tension, water activity, dissolved organic matter, and chemical composition analysis by liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS). SSA was generated from sampled sea water by diffusion of air bubbles through a 10L seawater sample situated in a sea spray tank. Particle number concentration and CCN measurements were conducted along with measurements of the organic share in the aerosol phase as indicated by volatility measurements. To investigate the effect of the SML, spiking of the seawater samples with additional SML was performed and measurements repeated for comparison. Preliminary results show that the SML samples

  11. Using FLEXPART-WRF to Identify Source Regions Influencing Arctic Trace Gases and Aerosols During the Summer 2014 NETCARE Campaign

    NASA Astrophysics Data System (ADS)

    Thomas, J. L.

    2015-12-01

    In July and August 2014 the Canadian Network on Aerosols and Climate: Addressing Key Uncertainties in Remote Canadian Regions (NETCARE) project conducted aircraft and ship based campaigns with the goal of identifying both emissions and atmospheric processes influencing Arctic trace gas and aerosol concentrations. The aircraft campaign was conducted using the Alfred Wegener Institute's POLAR 6 aircraft (based in Resolute Bay, Canada) and the ship based campaign was conducted onboard the CCGS Amundsen (icebreaker and Arctic Ocean research vessel). Here, we use the Weather Research and Forecasting Model (WRF) to study meteorology and transport patterns that influence airmasses sampled during the aircraft campaign (5-21 July 2012) and research Legs 1a and 1b for Amundsen (1a: 8 - 24 July Quebec City to Resolute and 24 July - 14 August Resolute to Kugluktuk). The FLEXible PARTicle dispersion model driven by WRF meteorology (FLEXPART-WRF) run in backwards mode is used to study source regions that influenced enhanced concentrations in trace gases including DMS and NH3 as well as aerosols. Links between biomass burning in Northern Canada and measurements during the campaign are discussed. Finally FLEXPART-WRF run in forward mode is used to study links between shipping emissions from the Amundsen and enhanced pollution sampled by the POLAR 6 aircraft when both were operating in the same region of Lancaster Sound during the campaigns.

  12. Analysis of DIAL/HSRL aerosol backscatter and extinction profiles during the SEAC4RS campaign with an aerosol assimilation system

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; da Silva, A. M., Jr.; Colarco, P. R.; Randles, C. A.

    2015-12-01

    We retrieve aerosol concentrations and optical information from vertical profiles of airborne 532 nm extinction and 532 and 1064 nm backscatter measurements made during the SEAC4RS summer 2013 campaign. The observations are from the High Spectral Resolution Lidar (HSRL) Airborne Differential Absorption Lidar (DIAL) on board the NASA DC-8. Instead of retrieving information about aerosol microphysical properties such as indexes of refraction, we seek information more directly applicable to an aerosol transport model - in our case the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module used in the GEOS-5 Earth modeling system. A joint atmosphere/aerosol mini-reanalysis was performed for the SEAC4RS period using GEOS-5. The meteorological reanalysis followed the MERRA-2 atmospheric reanalysis protocol, and aerosol information from MODIS, MISR, and AERONET provided a constraint on the simulated aerosol optical depth (i.e., total column loading of aerosols). We focus on the simulated concentrations of 10 relevant aerosol species simulated by the GOCART module: dust, sulfate, and organic and black carbon. Our first retrieval algorithm starts with the SEAC4RS mini-reanalysis and adjusts the concentration of each GOCART aerosol species so that differences between the observed and simulated backscatter and extinction measurements are minimized. In this case, too often we are unable to simulate the observations by simple adjustment of the aerosol concentrations. A second retrieval approach adjusts both the aerosol concentrations and the optical parameters (i.e., assigned mass extinction efficiency) associated with each GOCART species. We present results from DC-8 flights over smoke from forest fires over the western US using both retrieval approaches. Finally, we compare our retrieved quantities with in-situ observations of aerosol absorption, scattering, and mass concentrations at flight altitude.

  13. A Lidar and Backscatter Sonde Aerosol Measurement Campaign at Table Mountain During February-March 1997: Observations of Stratospheric Background Aerosols and Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Gross, M.; Haner, D.; Kjome, N.; McDermid, I.; McGee, T.; Rosen, J.; Schafer, H. J.; Schrems, O.

    1999-01-01

    Altitude profiles of backscater ratio of the stratospheric background aerosol layer at altitudes between 15 and 25 km and high-altitude cirrus clouds at altitudes below 13 km are analyzed and discussed. Cirrus clouds were present on 16 of the 26 campaign nights.

  14. Aerosol Characterization at Skukuza, South Africa, During the SAFARI 2000 Final dry Season Campaign

    NASA Astrophysics Data System (ADS)

    Maenhaut, W.; Cafmeyer, J.; Schwarz, J.; Chi, X.; Annegarn, H. J.

    2001-12-01

    Various collection devices, including single filter samplers with PM10 or PM2.5 inlet, PM10 stacked filter units and cascade impactors were used to take atmospheric aerosol samples at Skukuza in the Kruger National Park, South Africa, during the SAFARI 2000 final dry season campaign. Samples were collected continuously from 16 August until 19 September 2001, and the collection time per sample was either 12 or 24 hours. Depending upon the sampler type and collection substrates, the samples were analysed for the particulate mass (PM), organic carbon (OC), elemental carbon (EC), and/or over 40 elements. Besides the aerosol collections, also in-situ (real-time) measurements were performed for the PM and for black carbon (BC). These aerosol parameters were obtained with a Rupprecht and Patashnick tapered element oscillating microbalance (TEOM) and a Magee Scientific aethalometer. These instruments were provided with a PM2.5 inlet and were operated with 5 min time resolution. The real-time data showed that there were occasionally episodes (of several hours duration) with very elevated levels of PM and BC in the PM2.5 fraction. This was the case in the period from 30 August to 4 September and on 14 September. Maximum hourly-averaged concentrations were obtained in the early morning of 1 September, with levels of over 250 and over 7 micrograms per cubic meter for PM and BC, respectively. The analyses of the filter samples indicated that the average PM2.5/PM10 ratio was 0.66 +/- 0.12 for the PM. The ratio of total carbon (TC = OC + EC) to PM in the PM2.5 aerosol was on average 0.33 +/- 0.07 and the ratio EC/TC was 0.082 +/- 0.022 in this same size fraction.

  15. Characterization of the inorganic aerosol in Barcelona site during DAURE 2009 field campaigns

    NASA Astrophysics Data System (ADS)

    Plaza, Javier; Gómez-Moreno, Francisco J.; Aránzazu Revuelta, M.; Coz, Esther; Moreno, Natalia; Pujadas, Manuel; Artíñano, Begoña.

    2010-05-01

    Inorganic compounds account for a significant mass of the ambient aerosol. However this contribution varies with time and aerosol size fraction, depending on the influence of source emissions and ambient conditions, which can be relevant in the formation processes of secondary species. Time series of particulate nitrate, 10 m time resolution, have been obtained during the February-March and July 2009 DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean) field campaigns in the urban area of Barcelona by means of an R&P8400N monitor. Meteorological conditions during these periods were relevant for the photochemical formation and accumulation of secondary species. Ambient concentrations were higher in winter, specially coinciding with development of atmospheric stagnant episodes that enhanced the accumulation of pollutants including particulate nitrate that reached concentrations of 25 µgm-3 in some occasions, day or night, under these conditions. High humidity periods favored in occasions the formation of nitrates at submicronic scale. Variations in wind direction resulted in transport of particulate nitrate from near emission areas. Size segregated aerosol was sampled during the winter campaign with a micro-orifice uniform deposit impactor (MOUDI) using eleven size stages with aluminum substrates and a quartz fiber backup filter. Samples were collected twice per day for day/night periods. The first sampling period tried to collect secondary aerosol as it started after the early morning emission period. The second sample collected the night aerosol and the emission period. Soluble ions (sulfate, nitrate, ammonium and calcium) were later analyzed by IC. The nitrate mass was concentrated in two modes, the accumulation one around 0.75 µm and the coarse one around 3.90 µm. The sulfate and ammonium masses were concentrated in the accumulation mode, around 0.50 µm, although a small peak close to 5 µm

  16. Impact of Aerosol Direct Effect on East Asian Air Quality During the EAST-AIRE Campaign

    NASA Astrophysics Data System (ADS)

    Wang, J.; Allen, D. J.; Pickering, K. E.; Li, Z.

    2015-12-01

    Three WRF-Chem simulations were conducted for East Asia region during March 2005 East Asian Studies of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) Intensive Observation Campaign (IOC) period to investigate the direct effects of aerosols on surface radiation and air quality. WRF-Chem captured the temporal and spatial variations of meteorological fields, trace gases, and aerosol loadings. Surface shortwave radiation changes due to the aerosol direct effect (ADE) were calculated and compared with data from six World Radiation Data Center (WRDC) stations. The comparison indicated that WRF-Chem can simulate the surface short wave radiation moderately well, with temporal correlations between 0.4 and 0.7, and high biases between 9 to 120 W/m2. Domain-wide, WRF-Chem showed a decrease of 22 W/m2 in surface SW radiation due to the aerosol direct effect, consistent with observational studies. The ADE demonstrates diverse influences on air quality in East Asian. For example, the surface concentration of PM2.5 increases in eastern China (~11.1%) due to ADE, but decreases in central China (-7.3%), western China (-8.8%), and Sichuan Basin (-4%). Surface 1-hour maximum ozone is reduced by 2.3%, owing to less radiation reaching the surface due to the ADE. Since PM2.5 pollution raises serious public concern in China, regulations that control the emissions of PM2.5 and its precursors have been implemented. We investigate the impact of reducing two different types of aerosols, sulfate (scattering) and black carbon (absorbing), by cutting 80% of SO2 and black carbon (BC) emissions in two sensitivity simulations. We found that reducing SO2 emissions results in the decline of PM2.5 as much as 16mg/m3 in eastern China, and 20mg/m3 in the Sichuan Basin. Reducing the BC emissions by the same percentage causes the PM2.5 to decrease as much as 40mg/m3 in eastern China, and 25mg/m3 in the Sichuan Basin. The monthly averaged surface 1-hour maximum ozone increases 3

  17. Evaluation of aerosol optical properties of GEOS-Chem over East Asia during the DRAGON-Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jo, D. S.; Park, R.; Kim, J.

    2015-12-01

    A nested version of 3-D chemical transport model (GEOS-Chem v9-01-02) is evaluated over East Asia during the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia 2012 campaign period, focusing on fine-mode aerosol optical depth (fAOD) and single scattering albedo (SSA). Both are important to assess the effect of anthropogenic aerosols on climate. We compare the daily mean simulated optical properties of aerosols with the observations from DRAGON-Asia campaign for March-May, 2012 (provided in level 2.0: cloud screened and quality assured). We find that the model reproduces the observed daily variability of fAOD (R=0.67), but overestimates the magnitude by 30%, which is in general consistent with other global model comparisons from ACCMIP. However, a significant high bias in the model is found compared to the observed SSA at 440 nm, which is important for determining the sign of aerosol radiative forcing. In order to understand causes for this gap we conduct several sensitivity tests by changing source magnitudes and input parameters of aerosols, affecting the aerosol optical properties under various atmospheric conditions, which allows us to reduce the gap and to find the optimal values in the model.

  18. Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Gysel, M.; Rubach, F.; Mentel, T. F.; Goger, B.; Poulain, L.; Schlag, P.; Miettinen, P.; Pajunoja, A.; Virtanen, A.; Bialek, J.; Klein Baltink, H.; Henzing, J. S.; Größ, J.; Gobbi, G. P.; Wiedensohler, A.; Kiendler-Scharr, A.; O'Dowd, C.; Decesari, S.; Facchini, M. C.; Weingartner, E.; Baltensperger, U.

    2015-03-01

    Airborne measurements of the aerosol hygroscopic and optical properties as well as chemical composition were performed in the Netherlands and northern Italy on board of a Zeppelin NT airship during the PEGASOS field campaigns in 2012. The vertical changes in aerosol properties during the development of the mixing layer were studied. Hygroscopic growth factors (GF) at 95% relative humidity were determined using the white-light humidified optical particles spectrometer (WHOPS) for dry diameters of 300 and 500 nm particles. These measurements were supplemented by an aerosol mass spectrometer (AMS) and an aethalometer providing information on the aerosol chemical composition. Several vertical profiles between 100 and 700 m a.g. were flown just after sunrise close to the San Pietro Capofiume ground station in the Po Valley, Italy. During the early morning hours the lowest layer (newly developing mixing layer) contained a high nitrate fraction (20%) which was coupled with enhanced hygroscopic growth. In the layer above (residual layer) small nitrate fractions of ~ 2% were measured as well as low GFs. After full mixing of the layers, typically around noon and with increased temperature, the nitrate fraction decreased to 2% at all altitudes and led to similar hygroscopicity values as found in the residual layer. These distinct vertical and temporal changes underline the importance of airborne campaigns to study aerosol properties during the development of the mixed layer. The aerosol was externally mixed with 22 and 67% of the 500 nm particles in the range GF < 1.1 and GF > 1.5, respectively. Contributors to the non-hygroscopic mode in the observed size range are most likely mineral dust and biological material. Mean hygroscopicity parameters (κ) were 0.34, 0.19 and 0.18 for particles in the newly forming mixing layer, residual layer and fully mixed layer, respectively. These results agree well with those from chemical analysis which found values of κ = 0.27, 0.21 and 0

  19. Aerosols upwind of Mexico City during the MILAGRO campaign: regional scale biomass burning, dust and volcanic ash from aircraft measurements

    NASA Astrophysics Data System (ADS)

    Junkermann, W.; Steinbrecher, R.

    2009-04-01

    During the MILAGRO Campaign March/April 2006 a series of aircraft flights with the FZK microlight D-MIFU were performed in the area southeast of Mexico City starting from Puebla airport, circling the national park area of Ixtachiuatl and Popocatepetl and scanning the Chalco valley down to Cuautla in the Cuernavaca province. All flights were combined with vertical profiles up to 4500 m a.s.l. in several locations, typically north of volcano Ixtachiuatl on the Puebla side, above Chalco or Tenago del Aire and south of volcano Popocatepetl, either at Cuautla or Atlixco. In Tenango del Aire a ceilometer was additionally operated continuously for characterization of the planetary boundary layer. The aircraft carried a set of aerosol instrumentation, fine and coarse particles and size distributions as well as a 7 wavelength aethalometer. Additionally meteorological parameters, temperature and dewpoint, global radiation and actinic radiation balance, respectively photolysis rates, and ozone concentrations were measured. The instrumentation allowed to characterize the aerosol according to their sources and also their impact on radiation transfer. Biomass burning aerosol, windblown dust and volcanic ash were identified within the upwind area of Mexico City with large differences between the dry season in the first weeks of the campaign and the by far cleaner situation after beginning thunderstorm activity towards the end of the campaign. Also the aerosol characteristics inside and outside the Mexico City basin were often completely different. With wind speeds of ~ 5 m/sec from southerly directions in the Chalco valley the aerosol mixture can reach the City within ~ 2 h. Rural aerosol mixtures from the Cuernavaca plain were mixed during the transport with dust from the MC basin. Very high intensity biomass burning plumes normally reached higher altitudes and produced pyrocumulus clouds. These aerosols were injected mainly into the free troposphere. Within the MC basin a large

  20. Analysis of aerosol optical properties over Korea during the 2015 MAPS-Seoul campaign using AERONET and GOCI

    NASA Astrophysics Data System (ADS)

    Kim, J.; Choi, M.; Lee, J.; Lee, S.; Holben, B. N.; Eck, T. F.; KIM, M.

    2015-12-01

    To investigate aerosol characteristics over East Asia, many campaigns using in-situ measurements, ground and satellite based remote sensing, and air quality modeling have been conducted as ACE-Asia in 2001, ABC-EAREX in 2005, and DRAGON-NE Asia in 2012, and planned KORUS-AQ in 2016. Planned KORUS-AQ 2016 campaigns provides excellent opportunity to monitor and analyze air quality including aerosol and trace gases from diverse platform including ground-based, airborne, shipborne and satellite platform. Prior to the upcoming KORUS-AQ campaign, the Megacity Air Pollution Studies (MAPS)-Seoul campaign was held from May 18 to June14, 2015. During the campaign, total 8 AERONET sunphotometers are deployed over Korea. GOCI Yonsei aerosol retrieval (YAER) algorithm was developed, improved and evaluated through the DRAGON-NE Asia campaign. GOCI YAER AOD at 550 nm with spatial resolution of 6 km showed good agreement with AERONET AOD (R > 0.88) during the DRAGON-NE Asia campaign. In this study, aerosol optical properties from AERONET and GOCI are analyzed together during the MAPS-Seoul campaign. Mean AERONET AOD at 550 nm over a megacity site, Seoul and a coastal site Gosan shows the lowest values in 2015 as 0.338 and 0.214, respectively, compared with values during the same period from 2011 to 2014 (0.557-0.645 at Seoul, and 0.447-0.618 at Gosan). GOCI YAER algorithm uses the minimum reflectivity technique from the composited Rayleigh-corrected reflectance during a month thus low AOD increase a possibility to find clear pixels to obtain accurate surface reflectance. To improve surface reflectance quality, multi-year GOCI data are also analyzed. Furthermore higher spatial resolution retrieval in 3 km is tested to detect small-scale aerosol features and point sources in megacities. DRAGON-NE Asia in 2012, MAPS-Seoul in 2015, and planned KORUS-AQ in 2016 field campaigns contribute to the continuous assessment of GOCI YAER algorithm performance for the improvements.

  1. Intercomparison of aerosol optical parameters from WALI and R-MAN510 aerosol Raman lidars in the framework of HyMeX campaign

    NASA Astrophysics Data System (ADS)

    Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent

    2013-04-01

    The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.

  2. Measurements of Black Carbon and aerosol absorption during global circumnavigation and Arctic campaigns

    NASA Astrophysics Data System (ADS)

    Močnik, Griša; Drinovec, Luka; Vidmar, Primož; Lenarčič, Matevž

    2015-04-01

    During two flight campaigns: around the world (2012) and over the Arctic (2013) we demonstrated the feasibility of scientific research and aerial measurements of aerosolized Black Carbon with ultra-light aircraft. Conducted measurements provided first ever information on Black Carbon concentrations and sources over such a large area at altitude. Ground-level measurements of atmospheric aerosols are routinely performed around the world, but there exists very little data on their vertical and geographical distribution in the global atmosphere. These data is a crucial requirement for our understanding of the dispersion of pollutant species of anthropogenic origin, and their possible effects on radiative forcing, cloud condensation, and other phenomena which can contribute to adverse outcomes. Light absorbing carbonaceous aerosols and black carbon (BC) in particular are a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. A single-seat ultra-light aircraft flew around the world and on a Arctic expedition. The flights covered all seven continents; crossed all major oceans; and operated at altitudes around 3000 m ASL and up to 8900 m ASL. The aircraft carried a specially-developed high-sensitivity miniaturized dual-wavelength Aethalometer, which recorded BC concentrations with very high temporal resolution and sensitivity [1, 2]. We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas. Measuring the dependence of the aerosol absorption on the wavelength, we show that aerosols produced during biomass combustion can be transported to high altitude in high concentrations and we estimate the underestimation of the direct forcing by models assuming a simple linear relationship between BC concentration and forcing in comparison to observations [3,4]. 1. , Carbon Sampling Takes Flight, Science 2012, 335, 1286. 2. G. Močnik, L. Drinovec, M

  3. Evaluating Aerosol Process Modules within the Framework of the Aerosol Modeling Testbed

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Velu, V.; Gustafson, W. I.; Chapman, E.; Easter, R. C.; Shrivastava, M.; Singh, B.

    2012-12-01

    MILAGRO, 2008 ISDAC, 2008 VOCALS, 2010 CARES, and 2010 CalNex campaigns, have been incorporated into the AMT as testbed cases. Data from operational networks (e.g. air quality, meteorology, satellite) are also included in the testbed cases to supplement the field campaign data. The CARES and CalNex testbed cases are used to demonstrate how the AMT can be used to assess the strengths and weaknesses of simple and complex representations of aerosol processes in relation to computational cost. Anticipated enhancements to the AMT and how this type of testbed can be used by the scientific community to foster collaborations and coordinate aerosol modeling research will also be discussed.

  4. Comparative analysis of hygroscopic properties of atmospheric aerosols at ZOTTO Siberian background station during summer and winter campaigns of 2011

    NASA Astrophysics Data System (ADS)

    Ryshkevich, T. I.; Mironov, G. N.; Mironova, S. Yu.; Vlasenko, S. S.; Chi, X.; Andreae, M. O.; Mikhailov, E. F.

    2015-09-01

    The results of measurements of hygroscopic properties and chemical analysis of atmospheric aerosol samples collected from June 10 to 20 and December 15 to 25, 2011, at the ZOTTO background stations (60.8° N, 89.35° E) in Central Siberia are presented. The sorption properties of aerosols are studied with the help of a differential analyzer of absorbed water mass in the relative humidity range of 5 to 99%. It has been found that the hygroscopic growth factor of aerosol particles collected during the winter campaign is on average 45% higher than that of the aerosol collected in the summer campaign, which leads to a 40% decrease in the critical supersaturation threshold of cloud activation of particles. The measurement data are analyzed and parameterized using a new approach that takes into account the concentration effects in the particle—water vapor system at low humidities. Based on the chemical analysis, the content of water-soluble substances in the winter sample is 2.5 times higher than in the summer sample. Here, the amount of sulfates and nitrates increases 20 and 88 times, respectively. A trajectory analysis of air mass motion shows that the increased content of inorganic ions in aerosols for the winter sample is caused by long-range transport of pollutants from industrial areas of Siberia. This difference in the chemical composition is the main source of the observed difference in hygroscopic and condensation properties of the aerosol particles.

  5. Aerosol hygroscopicity and its impact on atmospheric visibility and radiative forcing in Guangzhou during the 2006 PRIDE-PRD campaign

    NASA Astrophysics Data System (ADS)

    Liu, Xingang; Zhang, Yuanhang; Cheng, Yafang; Hu, Min; Han, Tingting

    2012-12-01

    The objective of this study is to quantify the relation of aerosol chemical compositions and optical properties, and to assess the impact of relative humidity (RH) on atmospheric visibility and aerosol direct radiative forcing (ADRF). Mass concentration and size distribution of aerosol chemical compositions as well as aerosol optical properties were concurrently measured at Guangzhou urban site during the PRD (Pearl River Delta) campaign from 1 to 31 July, 2006. Gaseous pollutant NO2 and meteorological parameter were simultaneously monitored. Compared with its dry condition, atmospheric ambient extinction coefficient σext(RH) averagely increased about 51% and atmospheric visibility deceased about 35%, among which RH played an important role on the optical properties of water soluble inorganic salts. (NH4)2SO4 is the most important component responsible for visibility degradation at Guangzhou. In addition, the asymmetry factor g increased from 0.64 to 0.74 with the up-scatter fraction β decreasing from 0.24 to 0.19 when RH increasing from 40% to 90%. At 80% RH, the ADRF increased about 280% compared to that at dry condition and it averagely increased about 100% during the campaign under ambient conditions. It can be inferred that aerosol water content is a key factor and could not be ignored in assessing the role of aerosols in visibility impairment and radiative forcing, especially in the regions with high RH.

  6. Intercomparison of Aerosol Optical Properties Derived from PREDE Skyradiometer and CIMEL Sunphotometer Measurements for the DRAGON-Korea Campaign

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Ghim, Y.; Holben, B. N.

    2012-12-01

    The Distributed Regional Aerosol Gridded Observation Networks (DRAGON) campaign for validation of satellite aerosol products and comparison/validation of ground-based aerosol retrievals has been launched in Asia. It was conducted in Korea (DRAGON-Korea) between March and May 2012, with CIMEL sunphotometers being operated at around 20 sites throughout the country. The Hankuk University of Foreign Studies site (Hankuk_UFS, 37.02oN, 127.16oE, 167 m above sea level) is located about 35 km southeast of downtown Seoul. A PREDE skyradiometer (POM-02) is operated along with CIMEL sunphotometer (CE 318-1) to compare the aerosol optical properties derived from the two instruments. The operation for intercomparison study started with the DRAGON-Korea campaign and will continue for a year. POM-02 and CE 318-1 measure diffuse radiation at 6-minute intervals and 11 wavelengths and at 1-hour intervals and 4 wavelengths, respectively. Aerosol optical depths from these two instruments are compared at 440, 675, 870, and 1020 nm when the measurement time coincides within 3 minutes. Other aerosol optical properties such as Angstrom exponent and single scattering albedo (SSA) from the two instruments are also compared in a similar way. It is reported that SSA from the skyradiometer tends to be larger than that from sunphotometer. Factors causing the difference are closely examined.

  7. Multi-year Satellite and Surface Observations of AOD in support of Two-Column Aerosol Project (TCAP) Field Campaign

    SciTech Connect

    Kassianov, Evgueni I.; Chand, Duli; Berg, Larry K.; Fast, Jerome D.; Tomlinson, Jason M.; Ferrare, R.; Hostetler, Chris A.; Hair, John

    2012-11-01

    We use combined multi-year measurements from the surface and space for assessing the spatial and temporal distribution of aerosol properties within a large (~400x400 km) region centered on Cape Cod, Massachusetts, along the East Coast of the United States. The ground-based Aerosol Robotic Network (AERONET) measurements at Martha’s Vineyard Coastal Observatory (MVCO) site and Moderate Resolution Imaging Spectrometer (MODIS) sensors on board the Terra and Aqua satellites provide horizontal and temporal variations of aerosol optical depth, while the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) offers the altitudes of aerosol-layers. The combined ground-based and satellite measurements indicated several interesting features among which were the large differences in the aerosol properties observed in July and February. We applied the climatology of aerosol properties for designing the Two-Column Aerosol Project (TCAP), which is supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program. The TCAP field campaign involves 12-month deployment (started July 1, 2012) of the ground-based ARM Mobile Facility (AMF) and Mobile Aerosol Observing System (MAOS) on Cape Cod and complimentary aerosol observations from two research aircraft: the DOE Gulfstream-1 (G-1) and the National Aeronautics and Space Administration (NASA) B200 King Air. Using results from the coordinated G-1 and B200 flights during the recent (July, 2012) Intensive Observation Period, we demonstrated that the G-1 in situ measurements and B200 active remote sensing can provide complementary information on the temporal and spatial changes of the aerosol properties off the coast of North America.

  8. Influences of relative humidity and particle chemical composition on aerosol scattering properties during the 2006 PRD campaign

    NASA Astrophysics Data System (ADS)

    Liu, Xingang; Cheng, Yafang; Zhang, Yuanhang; Jung, Jinsang; Sugimoto, Nobuo; Chang, Shih-Yu; Kim, Young J.; Fan, Shaojia; Zeng, Limin

    In situ measurements of the physical, chemical, and optical properties of aerosols were carried out in Guangzhou city, China, from 1 to 31 July 2006 during the Pearl River Delta (PRD) Campaign. The light extinction coefficient of the ambient atmosphere, the aerosol scattering coefficient under dry conditions, the aerosol absorption coefficient under ambient conditions, NO 2 concentration, and relative humidity (RH) were measured by transmissionmeter, an integrating nephelometer, a multi-angle absorption photometer (MAAP), a NO X analyzer, and an automatic meteorological station, respectively. Meanwhile, the molecular scattering coefficient was calculated by the Rayleigh scattering function using the US Standard Atmosphere. A method to calculate the aerosol hygroscopic growth factor f(RH), defined as the ratio of the aerosol scattering coefficient under a wet condition to that under a dry condition (40% RH), is proposed based on these optical parameters. The mean and standard deviation aerosol hygroscopic growth factors at 80% RH ( f(RH)=80%) in Ganzhou were 2.04±0.28, 2.29±0.28, and 2.68±0.59 for urban aerosols, mixed aerosols, and marine aerosols, respectively, with the air mass classification being based on the air mass source region. The relationship between f(RH) and RH is fitted by empirical equations and the fitting parameters are calculated. The relationships between f(RH)=80% and total carbon mass fraction (TCF) in PM 2.5, the water-soluble mass fraction (WSF) in PM 10, and the sea-salt aerosol mass fraction (SSF) in PM 10 reveal that the hygroscopic properties of the observed aerosol have a good positive correlation with the WSF and SSF, but have a negative correlation with the TCF.

  9. Aerosol Optical Thickness comparisons between NASA LaRC Airborne HSRL and AERONET during the DISCOVER-AQ field campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Hoff, R. M.; Holben, B. N.; Schafer, J.; McGill, M. J.; Yorks, J. E.; Lantz, K. O.; Michalsky, J. J.; Hodges, G.

    2013-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD and during January and February 2013 over the San Joaquin Valley (SJV) of California and also a scheduled deployment during September 2013 over Houston, TX. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the Mixing Layer Height (MLH). HSRL AOT is compared to AOT measured by the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) and long-term AERONET sites. For the 2011 campaign, comparisons of AOT at 532nm between HSRL-1 and AERONET showed excellent agreement (r = 0.98, slope = 1.01, intercept = 0.037) when the King Air flights were within 2.5 km of the ground site and 10 min from the retrieval time. The comparison results are similar for the 2013 DISCOVER-AQ campaign in the SJV. Additional ground-based (MPL) and airborne (CPL) lidar data were used to help screen for clouds in the AERONET observations during the SJV portion. AOT values from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) located at the Porterville, CA site during the SJV campaign are also compared to HSRL-2 AOT. Lastly, using the MLH retrieved from HSRL aerosol backscatter profiles, we describe the distribution of AOT relative to the MLH.

  10. Improvements in AOD retrieval from geostationary measurements over Asia with aerosol optical properties derived from the DRAGON-Asia campaign

    NASA Astrophysics Data System (ADS)

    Kim, M.; Kim, J.; Jeong, U.; Kim, W.; Holben, B.; Eck, T. F.; Lim, J. H.; Song, C. K.; Lee, S.

    2015-04-01

    An aerosol model optimized for East Asia is improved by applying inversion data from both long-term monitoring of the Aerosol Robotic Network (AERONET) sun photometer and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia campaign from 2012. This model plays an important role in retrieving accurate aerosol optical depth (AOD) from satellite-based measurements. In particular, the performance of a single visible channel algorithm, limited to a specific aerosol type, from real-time measurements is strongly affected by the assumed aerosol optical properties (AOPs) for the measured scene. In sensitivity tests, a 4% difference in single scattering albedo (SSA) between modeled and measured values can cause a retrieval error in AOD of over 20%, and the overestimation of SSA leads to an underestimation of AOD. Based on the AERONET inversion datasets obtained over East Asia before 2011, seasonally analyzed AOPs can be summarized by SSAs (measured at 675 nm) of 0.92, 0.94, 0.92, and 0.91 for spring (March, April, and May), summer (June, July, and August), autumn (September, October, and November), and winter (December, January, and February), respectively. After DRAGON-Asia 2012, the SSA during spring shows a slight increase to 0.93. The large volume of data and spatially concentrated measurements from this campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the AOD datasets retrieved from a single channel algorithm, which uses a pre-calculated look-up table (LUT) with the new aerosol model, show an improved correlation with the measured AOD during the DRAGON-Asia campaign (March to May 2012). Compared with the correlation of the AOD retrieved using the original aerosol model, the regression slope between the new AOD and the AERONET values is reduced from 1.08 to 1.00, while the change of the y-offset of -0.08 is significant. The correlation coefficients for the comparisons are 0.87 and 0.85, respectively. The

  11. Evolution of wavelength-dependent mass absorption cross sections of carbonaceous aerosols during the 2010 DOE CARES campaign

    NASA Astrophysics Data System (ADS)

    Flowers, B. A.; Dubey, M. K.; Subramanian, R.; Sedlacek, A. J.; Kelley, P.; Luke, W. T.; Jobson, B. T.; Zaveri, R. A.

    2011-12-01

    Predictions of aerosol radiative forcing require process level optical property models that are built on precise and accurate field observations. Evolution of aerosol optical properties for urban influenced carbonaceous aerosol undergoing transport and mixing with rural air masses was a focal point of the DOE Carbonaceous Aerosol and Radiative Effects (CARES) campaign near Sacramento, CA in summer 2010. Urban aerosol was transported from Sacramento, CA (T0) to the foothills of the Sierra Nevada Mountains to a rural site located near Cool, CA (T1). Aerosol absorption and scattering coefficients were measured at the T0 and T1 sites using integrated photoacoustic acoustic/nephelometer instruments (PASS-3 and PASS-UV) at 781, 532, 405, and 375 nm. Single particle soot photometry (SP2) instrumentation was used to monitor black carbon (BC) mass at both sites. Combining data from these sensors allows estimate of the wavelength-dependent mass absorption coefficient (MAC(λ)) and partitioning of MAC(λ) into contributions from the BC core and from enhancements from coating of BC cores. MAC(λ) measured in this way is free of artifacts associated with filter-based aerosol absorption measurements and takes advantage of the single particle sensitivity of the SP2 instrument, allowing observation of MAC(λ) on 10 minute and faster time scales. Coating was observed to enhance MAC(λ) by 20 - 30 % and different wavelength dependence for MAC(λ) was observed for urban and biomass burning aerosol. Further, T0 - T1 evolution of MAC(λ) was correlated with separately measured NO/NOy ratios and CO/CO2 ratios to understand the effects of aging & transport on MAC(λ) and the implications of aerosol processing that links air quality to radiative forcing on a regional scale. Aircraft observations made from the Gulfstream-1 during CARES are also analyzed to enhance process level understanding of the optical properties of fresh and aged carbonaceous aerosol in the urban-rural interface.

  12. Observations of the Interaction and/or Transport of Aerosols with Cloud or Fog during DRAGON Campaigns from AERONET Ground-Based Remote Sensing

    NASA Astrophysics Data System (ADS)

    Eck, Thomas; Holben, Brent; Schafer, Joel; Giles, David; Kim, Jhoon; Kim, Young; Sano, Itaru; Reid, Jeffrey; Pickering, Kenneth; Crawford, James; Sinyuk, Alexander; Trevino, Nathan

    2014-05-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. AERONET has established Distributed Regional Aerosol Gridded Observation Networks (DRAGON) during field campaigns that are short-term (~2-3 months) relatively dense spatial networks of ~15 to 45 sun and sky scanning photometers. Recent major DRAGON field campaigns in Japan and South Korea (Spring 2012) and California (Winter 2013) have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth signal for these cases of persistent and extensive cloud cover. Additionally, extensive fog that was coincident with aerosol layer height on some days in both Korea and California resulted in large increases in fine mode aerosol radius, with a mode of cloud-processed or residual aerosol of radius ~0.4-0.5 micron sometimes observed. Cloud processed aerosol may occur much more frequently than AERONET data suggest due to inherent difficulty in observing aerosol properties near clouds from remote sensing observations. These biases of aerosols associated with clouds would likely be even greater for satellite remote sensing retrievals of aerosol properties near clouds due to 3-D effects and sub-pixel cloud contamination issues.

  13. Measurements of Biogenic and Anthropogenic Ozone and Aerosol Precursors during the SENEX (Southeast Nexus) Campaign 2013

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Trainer, M.; De Gouw, J. A.

    2013-12-01

    Natural emissions of ozone and aerosol precursor gases such as isoprene and monoterpenes are the highest in the southeast of the U.S. and rival those found in tropical forests. In addition, anthropogenic emissions are significant in the Southeast and photochemistry is rapid. The southeast U.S. has not warmed like other parts of the U.S. in response to global climate change, and the temperature anomaly has been suggested to be related to aerosols derived from a combination of anthropogenic and biogenic precursors. The NOAA SENEX aircraft campaign took place in June-July 2013 in the southeast U.S. as part of the Southeast Atmosphere Study (SAS). The NOAA WP-3 aircraft conducted 20 research flights between May 27 and July 10, 2013 based out of Smyrna, TN. To investigate the combination of anthropogenic and biogenic emissions several flights were designed to follow the emissions of cities and power plants as they are transported over forested regions in the Southeast. For example, over-flights of Atlanta, Birmingham and Nashville were performed and the plumes were followed to the forested areas with high isoprene and monoterpene emissions. The same was done for several power plants such as EC Gaston, Scherer and Johnsonville. In the anthropogenic plumes, effects such as the modulation of the isoprene chemistry by high NOx and particle formation and growth were investigated. The same strategy was used for three nighttime flights over Atlanta, Birmingham and the New Madrid and White Bluff power plants. Flights over and downwind of St Lois and Indianapolis were used as a contrast in areas with smaller biogenic emissions. Other anthropogenic emissions sources that were investigated during SENEX included bio refineries, paper mills, coalmines, poultry and pork farming. Also biomass burning emissions were observed during one daytime and one nighttime flight. Another focus of the SENEX campaign was to determine the emissions of natural gas and oil production from the

  14. Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Cubison, M. J.; Froyd, K. D.; Zhao, Y.; Cliff, S. S.; Hu, W. W.; Toohey, D. W.; Flynn, J. H.; Lefer, B. L.; Grossberg, N.; Alvarez, S.; Rappenglück, B.; Taylor, J. W.; Allan, J. D.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; Gouw, J. A.; Massoli, P.; Zhang, X.; Liu, J.; Weber, R. J.; Corrigan, A. L.; Russell, L. M.; Isaacman, G.; Worton, D. R.; Kreisberg, N. M.; Goldstein, A. H.; Thalman, R.; Waxman, E. M.; Volkamer, R.; Lin, Y. H.; Surratt, J. D.; Kleindienst, T. E.; Offenberg, J. H.; Dusanter, S.; Griffith, S.; Stevens, P. S.; Brioude, J.; Angevine, W. M.; Jimenez, J. L.

    2013-08-01

    Organic aerosols (OA) in Pasadena are characterized using multiple measurements from the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. Five OA components are identified using positive matrix factorization including hydrocarbon-like OA (HOA) and two types of oxygenated OA (OOA). The Pasadena OA elemental composition when plotted as H : C versus O : C follows a line less steep than that observed for Riverside, CA. The OOA components from both locations follow a common line, however, indicating similar secondary organic aerosol (SOA) oxidation chemistry at the two sites such as fragmentation reactions leading to acid formation. In addition to the similar evolution of elemental composition, the dependence of SOA concentration on photochemical age displays quantitatively the same trends across several North American urban sites. First, the OA/ΔCO values for Pasadena increase with photochemical age exhibiting a slope identical to or slightly higher than those for Mexico City and the northeastern United States. Second, the ratios of OOA to odd-oxygen (a photochemical oxidation marker) for Pasadena, Mexico City, and Riverside are similar, suggesting a proportional relationship between SOA and odd-oxygen formation rates. Weekly cycles of the OA components are examined as well. HOA exhibits lower concentrations on Sundays versus weekdays, and the decrease in HOA matches that predicted for primary vehicle emissions using fuel sales data, traffic counts, and vehicle emission ratios. OOA does not display a weekly cycle—after accounting for differences in photochemical aging —which suggests the dominance of gasoline emissions in SOA formation under the assumption that most urban SOA precursors are from motor vehicles.

  15. Raman lidar measurements of water vapor and aerosol/clouds during the FIRE/SPECTRE field campaign

    SciTech Connect

    Melfi, S.H.; Whiteman, D.; Ferrare, R.; Evans, K.; Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E.

    1992-07-01

    The FIRE/SPECTRE field campaign was conducted during November- December 1991 in Coffeyville, Kansas. The main objective of FIRE [First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment] was to study the development and radiative characteristics of cirrus clouds. The SPECTRE [Spectral Radiation Experiment] project was designed to acquire the necessary atmospheric observations to compare radiative measurements with radiative transfer theory, with special emphasis on understanding the water vapor spectral continuum. A complete understanding of water vapor, its distribution with height, and its temporal variation was important for both experiments. A ground-based Raman Lidar was deployed at Coffeyville, Kansas from November 12 until December 7, 1991. During the campaign, the lidar operated during 14 observation periods. The periods ranged in length from 3.5 hours to 12 hours for a total operating time of approximately 119 hours. During each of the operational periods the lidar obtained vertical profiles of water vapor mixing ratio and aerosol scattering ratio once every minute with vertical resolution of 75 meters from near the earth`s surface to an altitude of 9--10 km for water vapor and higher for aerosols. Several balloon-sondes were launched during each operational period providing an independent measurement of humidity with altitude. For each operational period, the 1-minute profiles of water vapor mixing ratio and aerosol scattering ratio are composited to give a color- coded time-height display of water vapor and aerosol scattering, respectively.

  16. Raman lidar measurements of water vapor and aerosol/clouds during the FIRE/SPECTRE field campaign

    SciTech Connect

    Melfi, S.H.; Whiteman, D. . Goddard Space Flight Center); Ferrare, R. ); Evans, K. ); Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E. )

    1992-01-01

    The FIRE/SPECTRE field campaign was conducted during November- December 1991 in Coffeyville, Kansas. The main objective of FIRE (First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment) was to study the development and radiative characteristics of cirrus clouds. The SPECTRE (Spectral Radiation Experiment) project was designed to acquire the necessary atmospheric observations to compare radiative measurements with radiative transfer theory, with special emphasis on understanding the water vapor spectral continuum. A complete understanding of water vapor, its distribution with height, and its temporal variation was important for both experiments. A ground-based Raman Lidar was deployed at Coffeyville, Kansas from November 12 until December 7, 1991. During the campaign, the lidar operated during 14 observation periods. The periods ranged in length from 3.5 hours to 12 hours for a total operating time of approximately 119 hours. During each of the operational periods the lidar obtained vertical profiles of water vapor mixing ratio and aerosol scattering ratio once every minute with vertical resolution of 75 meters from near the earth's surface to an altitude of 9--10 km for water vapor and higher for aerosols. Several balloon-sondes were launched during each operational period providing an independent measurement of humidity with altitude. For each operational period, the 1-minute profiles of water vapor mixing ratio and aerosol scattering ratio are composited to give a color- coded time-height display of water vapor and aerosol scattering, respectively.

  17. Simulations of the Aerosol Index and the Absorption Aerosol Optical Depth and Comparisons with OMI Retrievals During ARCTAS-2008 Campaign

    NASA Technical Reports Server (NTRS)

    2010-01-01

    We have computed the Aerosol Index (AI) at 354 nm, useful for observing the presence of absorbing aerosols in the atmosphere, from aerosol simulations conducted with the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module running online the GEOS-5 Atmospheric GCM. The model simulates five aerosol types: dust, sea salt, black carbon, organic carbon and sulfate aerosol and can be run in replay or data assimilation modes. In the assimilation mode, information's provided by the space-based MODIS and MISR sensors constrains the model aerosol state. Aerosol optical properties are then derived from the simulated mass concentration and the Al is determined at the OMI footprint using the radiative transfer code VLIDORT. In parallel, model derived Absorption Aerosol Optical Depth (AAOD) is compared with OMI retrievals. We have focused our study during ARCTAS (June - July 2008), a period with a good sampling of dust and biomass burning events. Our ultimate goal is to use OMI measurements as independent validation for our MODIS/MISR assimilation. Towards this goal we document the limitation of OMI aerosol absorption measurements on a global scale, in particular sensitivity to aerosol vertical profile and cloud contamination effects, deriving the appropriate averaging kernels. More specifically, model simulated (full) column integrated AAOD is compared with model derived Al, this way identifying those regions and conditions under which OMI cannot detect absorbing aerosols. Making use of ATrain cloud measurements from MODIS, C1oudSat and CALIPSO we also investigate the global impact on clouds on OMI derived Al, and the extent to which GEOS-5 clouds can offer a first order representation of these effects.

  18. Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign

    NASA Astrophysics Data System (ADS)

    Rinaldi, M.; Gilardoni, S.; Paglione, M.; Sandrini, S.; Fuzzi, S.; Massoli, P.; Bonasoni, P.; Cristofanelli, P.; Marinoni, A.; Poluzzi, V.; Decesari, S.

    2015-10-01

    High-resolution aerosol mass spectrometer measurements were performed, for the first time, at the Mt. Cimone Global Atmosphere Watch (GAW) station between June and July 2012, within the EU project PEGASOS and the ARPA-Emilia-Romagna project SUPERSITO. Submicron aerosol was dominated by organics (63 %), with sulfate, ammonium and nitrate contributing the remaining 20, 9 and 7 %, respectively. Organic aerosol (OA) was in general highly oxygenated, consistent with the remote character of the site; our observations suggest that oxidation and secondary organic aerosol (SOA) formation processes occurred during aerosol transport to high altitudes. All of the aerosol component concentrations as well as the OA elemental ratios showed a clear daily trend, driven by the evolution of the planetary boundary layer (PBL) and by the mountain wind regime. Higher loadings and lower OA oxidation levels were observed during the day, when the site was within the PBL, and therefore affected by relatively fresh aerosol transported from lower altitudes. Conversely, lower loadings and higher OA oxidation levels were observed at night, when the top of Mt. Cimone resided in the free troposphere although affected by the transport of residual layers on several days of the campaign. Analysis of the elemental ratios in a Van Krevelen space shows that OA oxidation follows a slope comprised between -0.5 and -1, consistent with addition of carboxylic groups, with or without fragmentation of the parent molecules. The increase of carboxylic groups during OA ageing is confirmed by the increased contribution of organic fragments containing more than one oxygen atom in the free troposphere night-time mass spectra. Finally, positive matrix factorization was able to deconvolve the contributions of relatively fresh OA (OOAa) originating from the PBL, more aged OA (OOAb) present at high altitudes during periods of atmospheric stagnation, and very aged aerosols (OOAc) transported over long distances in the

  19. Airborne measurements of hygroscopicity and mixing state of aerosols in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Weingartner, Ernest; Gysel, Martin; Rubach, Florian; Mentel, Thomas; Baltensperger, Urs

    2014-05-01

    properties and mixing state. By combining these results with measurements from an aerosol mass spectrometer (AMS) and an aethalometer, insights can be gathered to explain their hygroscopicity. In this work we will present vertical profiles of the hygroscopic growth and mixing state of aerosol particles measured during Zeppelin flights of the PEGASOS campaigns in the Netherlands, Italy and Finland. Results from ground measurements will also be included to compare the aerosol directly at the surface with different heights. W.T. Morgan et al., Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: Airborne measurements in North-Western Europe, Atmospheric Chemistry and Physics 10(2010), pp. 8151-8171. P. Zieger et al., Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw, Atmospheric Chemistry and Physics 11(2011), pp. 2603-2624.

  20. Model Evaluation of Aerosol Wet Scavenging in Deep Convective Clouds Based on Observations Collected during the DC3 Campaign

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Easter, R. C.; Fast, J. D.; Wang, H.; Ghan, S. J.; Campuzano Jost, P.; Barth, M. C.; Fan, J.; Morrison, H.; Jimenez, J. L.; Bela, M. M.; Markovic, M. Z.

    2014-12-01

    Deep convective storms greatly influence the vertical distribution of aerosols by transporting aerosols from the boundary layer to the upper troposphere and by removing aerosols through wet scavenging processes. Model representation of wet scavenging is a major uncertainty in simulating the vertical distribution of aerosols due partly to limited constraints by observations. The effect of wet scavenging on ambient aerosols in deep mid-latitude continental convective clouds is studied for a severe storm case in the vicinity of the ARM Southern Great Plains site on May 29, 2012 during the Deep Convective Clouds and Chemistry Project (DC3) field campaign. A new budget analysis approach is developed to characterize the convective transport to the upper troposphere based on the vertical distribution of several slowly reacting and nearly insoluble trace gases (i.e., CO, acetone, and benzene). A similar budget framework is applied to aerosols combined with the known transport efficiency to estimate wet-scavenging efficiency. The chemistry version of the Weather Research and Forecasting model (WRF-Chem) simulates the storm initiation timing and structure reasonably well when compared against radar observations from the NSSL national 3-D reflectivity Mosaic data. Simulated vertical profiles of humidity and temperature also closely agree with radiosonde measurements before and during the storm. High scavenging efficiencies (~80%) for aerosol number (Dp < 2.5μm) and mass (Dp < 1μm) are obtained from the observations. Both observation analyses and the simulation show that, between the two dominant aerosol species, organic aerosol shows a slightly higher scavenging efficiency than sulfate aerosol, and higher scavenging efficiency is found for larger particle sizes (0.15 - 2.5μm versus 0.03 - 0.15μm). However, the model underestimates the wet scavenging efficiency (by up to 50%), in general, for both mass and number concentrations. The effect of neglecting secondary

  1. Assessment of the Aerosol Optics Component of the Coupled WRF-CMAQ Model usingCARES Field Campaign data and a Single Column Model

    EPA Science Inventory

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) – Community Multisc...

  2. Multiwavelength In-Situ Aerosol Scattering and Absorption During the NEAQS-ITCT 2004 Field Campaign: Aerosol Classification, Case Studies, and Data Interpretation

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Covert, D.; Coffman, D.; Quinn, P.; Bates, T.

    2005-12-01

    In-situ, three wavelength measurements of aerosol scattering and absorption of the New York and Boston urban pollution outflow were carried out aboard the NOAA research vessel Ronald H. Brown during the NEAQS-ITCT 2004 (New England Air Quality Study-Intercontinental Transport and Chemical Transformation Study) field campaign during July 2004 in the Gulf of Maine. Aerosol scattering, backscattering and absorption-coefficients were measured using integrating nephelometers and multiwavelength, filter-based absorption photometers (PSAPs) at ~55-60% RH (nephelometers). Two data sets were collected, one for particles with diameters dp<10μm and one for particles <1μm. The purpose of the latter was to focus on the largely pollution related accumulation mode and to minimize the uncertainty due to highly variable near-surface sea salt aerosol. Combining the aerosol scattering and absorption coefficients σsp and σap yields the derived, intensive parameters, single-scattering albedo, ω=σsp/(σsp+σap), Ångström exponents, å, for σsp, and σap, the hemispheric backscattering ratio, and the fine mode fraction of the aerosol, FMF =σsp(dp<1μm)/σsp(dp<10μm). These are key parameters in estimating aerosol direct radiative forcing and they provide constraints on model building and closure studies with physical and chemical aerosol properties. They are important for relating in-situ optical properties to those sensed remotely, e.g., optical depth from ground- or aircraft-based sun photometry or optical depth from satellite, and to the FMF retrieved from satellite data. The measured and derived data will be classified based on a trajectory analysis of the sampled air masses to identify distinct aerosol populations and sources. Case studies describing the aging of pollution plumes are calculated and analyzed in context of other measurements and the prevailing meteorology and the upwind sources. The obtained relationship between in-situ Ångström and FMF will be compared

  3. Measurements of Ultra-fine and Fine Aerosol Particles over Siberia: Large-scale Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail; Paris, Jean-Daniel; Stohl, Andreas; Belan, Boris; Ciais, Philippe; Nédélec, Philippe

    2010-05-01

    In this paper we discuss the results of in-situ measurements of ultra-fine and fine aerosol particles carried out in the troposphere from 500 to 7000 m in the framework of several International and Russian State Projects. Number concentrations of ultra-fine and fine aerosol particles measured during intensive airborne campaigns are presented. Measurements carried over a great part of Siberia were focused on particles with diameters from 3 to 21 nm to study new particle formation in the free/upper troposphere over middle and high latitudes of Asia, which is the most unexplored region of the Northern Hemisphere. Joint International airborne surveys were performed along the following routes: Novosibirsk-Salekhard-Khatanga-Chokurdakh-Pevek-Yakutsk-Mirny-Novosibirsk (YAK-AEROSIB/PLARCAT2008 Project) and Novosibirsk-Mirny-Yakutsk-Lensk-Bratsk-Novosibirsk (YAK-AEROSIB Project). The flights over Lake Baikal was conducted under Russian State contract. Concentrations of ultra-fine and fine particles were measured with automated diffusion battery (ADB, designed by ICKC SB RAS, Novosibirsk, Russia) modified for airborne applications. The airborne ADB coupled with CPC has an additional aspiration unit to compensate ambient pressure and changing flow rate. It enabled to classify nanoparticles in three size ranges: 3-6 nm, 6-21 nm, and 21-200 nm. To identify new particle formation events we used similar specific criteria as Young et al. (2007): (1) N3-6nm >10 cm-3, (2) R1=N3-6/N621 >1 and R2=N321/N21200 >0.5. So when one of the ratios R1 or R2 tends to decrease to the above limits the new particle formation is weakened. It is very important to notice that space scale where new particle formation was observed is rather large. All the events revealed in the FT occurred under clean air conditions (low CO mixing ratios). Measurements carried out in the atmospheric boundary layer over Baikal Lake did not reveal any event of new particle formation. Concentrations of ultra

  4. Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Schwarzenboeck, A.; Roger, J. C.; Sellegri, K.; Burkhart, J. F.; Stohl, A.; Gomes, L.; Quennehen, B.; Roberts, G.; Weigel, R.; Villani, P.; Pichon, J. M.; Bourrianne, T.; Laj, P.

    2013-05-01

    Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project, the Météo-France aircraft ATR-42 performed 22 research flights over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped to study the aerosol physical, chemical, hygroscopic and optical properties, as well as cloud microphysics. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sectors of origin, allowing for a qualitative evaluation of emission influence on the respective air parcel. This study shows that the extensive aerosol parameters (aerosol mass and number concentrations) show vertical decreasing gradients and in some air masses maximum mass concentrations (mainly organics) in an intermediate layer (1-3 km). The observed mass concentrations (in the boundary layer (BL): between 10 and 30 μg m-3; lower free troposphere (LFT): 0.8 and 14 μg m-3) are high especially in comparison with the 2015 European norms for PM2.5 (25 μg m-3) and with previous airborne studies performed over England (Morgan et al., 2009; McMeeking et al., 2012). Particle number size distributions show a larger fraction of particles in the accumulation size range in the LFT compared to BL. The chemical composition of submicron aerosol particles is dominated by organics in the BL, while ammonium sulphate dominates the submicron aerosols in the LFT, especially in the aerosol particles originated from north-eastern Europe (~ 80%), also experiencing nucleation events along the transport. As a consequence, first the particle CCN acting ability, shown by the CCN/CN ratio, and second the average values of the scattering cross sections of optically active particles (i.e. scattering coefficient divided by the optical active particle concentration) are increased in the LFT compared to BL.

  5. Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign

    SciTech Connect

    Barnard, James C.; Fast, Jerome D.; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Laskin, Alexander

    2010-08-09

    A comparison between observed aerosol optical properties from the MILAGRO field campaign, which took place in the Mexico City Metropolitan Area (MCMA) during March 2006, and values simulated by the Weather Research and Forecasting model (WRF-Chem) model, reveals large differences. To help identify the source of the discrepancies, data from the MILAGRO campaign are used to evaluate the "aerosol chemical to aerosol optical properties" module implemented in the full chemistry version of the WRF-Chem model. The evaluation uses measurements of aerosol size distributions and chemical properties obtained at the MILAGRO T1 site. These observations are fed to the module, which makes predictions of various aerosol optical properties, including the scattering coefficient, Bscat; the absorption coefficient, Babs; and the single-scattering albedo, v0; all as a function of time. This simulation is compared with independent measurements obtained from a photoacoustic spectrometer (PAS) at a wavelength of 870 nm. Because of line losses and other factors, only "fine mode" aerosols with aerodynamic diameters less than 2.5 mm are considered here. Over a 10-day period, the simulations of hour-by-hour variations of Bscat are not satisfactory, but simulations of Babs and v0 are considerably better. When averaged over the 10-day period, the computed and observed optical properties agree within the uncertainty limits of the measurements and simulations. Specifically, the observed and calculated values are, respectively: (1) Bscat, 34.1 ± 5.1 Mm-1 versus 30.4 ± 4.3 Mm-1; (2) Babs, 9.7 ± 1.0 Mm-1 versus 11.7 ± 1.5 Mm-1; and (3) v0, 0.78 ± 0.04 and 0.74 ± 0.03. The discrepancies in values of v0 simulated by the full WRF-Chem model thus cannot be attributed to the "aerosol chemistry to optics" module. The discrepancy is more likely due, in part, to poor characterization of emissions near the T1 site, particularly black carbon emissions.

  6. Observation and simulation of dust aerosol cycle and impact on radiative fluxes during the FENNEC campaign in summer 2011

    NASA Astrophysics Data System (ADS)

    Minvielle, Fanny; Derimian, Yevgeny; Pere, Jean-Christophe; Flamant, Cyrille; Brogniez, Gérard

    2013-04-01

    The Sahara desert is one of the principal worldwide sources of dust aerosol emissions that play significant role in the climatic system. In the framework of the FENNEC campaign, conducted during the summer 2011, we focus on dust radiative effect and impact on the atmospheric dynamics and profile structure. We study the variability of the measured radiative parameters and model atmospheric dynamics during dust plume observations at the FENNEC sites, therefore, trying to understand the link between the Saharan heat low system and dust aerosols. Due to its large size the airborne dust can absorb and scatter not only solar, but also thermal infrared radiation, which requires consideration of both spectral ranges. Analysis of AERONET and other optical observations during the period of intensive campaign in summer 2011 provides information on variability of aerosol optical characteristics and perturbation of solar and TIR flux. We use these observations in conjunction with the meso-scale model RAMS to understand the impact of the dust plumes on the atmospheric dynamics. We also simulate the dust cycle in order to find the contribution of the different emission sources and identify structure of transport over an extended domain. Then, coupling the radiative code (GAME) we calculate the radiative forcing of dust and compare it to the radiative flux observed and computed based on the AERONET observations. Validation of simulations is made using measurements from space-borne CALIOP lidar, SEVIRI and OMI satellites, AERONET ground-based stations and observations acquired onboard the SAFIRE Falcon 20 research aircraft.

  7. Analysis of the Interaction and Transport of Aerosols with Cloud or Fog in East Asia from AERONET and Satellite Remote Sensing: 2012 DRAGON Campaigns and Climatological Data

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Lynch, P.; Schafer, J.; Giles, D. M.; Kim, J.; Kim, Y. J.; Sano, I.; Arola, A. T.; Munchak, L. A.; O'Neill, N. T.; Lyapustin, A.; Sayer, A. M.; Hsu, N. Y. C.; Randles, C. A.; da Silva, A. M., Jr.; Govindaraju, R.; Hyer, E. J.; Pickering, K. E.; Crawford, J. H.; Sinyuk, A.; Smirnov, A.

    2015-12-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. Major Distributed Regional Aerosol Gridded Observation Networks (DRAGON) field campaigns involving multiple AERONET sites in Japan and South Korea during Spring of 2012 have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth (AODf) signal from AERONET data for these cases of persistent and extensive cloud cover. Satellite retrievals of AOD from MODIS sensors (from Dark Target, Deep Blue and MAIAC algorithms) were also investigated to assess the issue of detectability of high AOD events associated with high cloud fraction. Underestimation of fine mode AOD by the Navy Aerosol Analysis and Prediction System (NAAPS) and by the NASA Modern-Era Retrospective Analysis For Research And Applications Aerosol Re-analysis (MERRAaero) models at very high AOD at sites in China and Korea was observed, especially for observations that are cloud screened by AERONET (Level 2 data). Additionally, multi-year monitoring at several AERONET sites are examined for climatological statistics of cloud screening of fine mode aerosol events. Aerosol that has been affected by clouds or the near-cloud environment may be more prevalent than AERONET data suggest due to inherent difficulty in

  8. Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes of biogenic secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Gómez-González, Y.; Wang, W.; Vermeylen, R.; Chi, X.; Neirynck, J.; Janssens, I. A.; Maenhaut, W.; Claeys, M.

    2012-01-01

    Measurements of organic marker compounds and inorganic species were performed on PM2.5 aerosols from a Belgian forest site that is severely impacted by urban pollution ("De Inslag", Brasschaat, Belgium) during a 2007 summer period within the framework of the "Formation mechanisms, marker compounds, and source apportionment for biogenic atmospheric aerosols (BIOSOL)" project. The measured organic species included (i) low-molecular weight (MW) dicarboxylic acids (LMW DCAs), (ii) methanesulfonate (MSA), (iii) terpenoic acids originating from the oxidation of α-pinene, β-pinene, d-limonene and Δ3-carene, and (iv) organosulfates related to secondary organic aerosol from the oxidation of isoprene and α-pinene. The organic tracers explained, on average, 5.3 % of the organic carbon (OC), of which 0.7 % was due to MSA, 3.4 % to LMW DCAs, 0.6 % to organosulfates, and 0.6 % to terpenoic acids. The highest atmospheric concentrations of most species were observed during the first five days of the campaign, which were characterised by maximum day-time temperatures >22 °C. Most of the terpenoic acids and the organosulfates peaked during day-time, consistent with their local photochemical origin. High concentrations of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and low concentrations of cis-pinonic acid were noted during the first five days of the campaign, indicative of an aged biogenic aerosol. Several correlations between organic species were very high (r>0.85), high (0.70.7) and showed an Arrhenius-type relationship, consistent with their formation through OH radical chemistry.

  9. Characterization of carbonaceous aerosols during the MINOS campaign in Crete, July-August 2001: a multi-analytical approach

    NASA Astrophysics Data System (ADS)

    Sciare, J.; Cachier, H.; Oikonomou, K.; Ausset, P.; Sarda-Estève, R.; Mihalopoulos, N.

    2003-07-01

    During the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T=550°C) under the pure helium step of the analysis. During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) concentrations were on average respectively 1.19±0.56 and 3.62±1.08 μgC/m3 for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 μgC/m3 for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope = 1.00, r2=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO4), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between

  10. Characterization of carbonaceous aerosols during the MINOS campaign in Crete, July August 2001: a multi-analytical approach

    NASA Astrophysics Data System (ADS)

    Sciare, J.; Cachier, H.; Oikonomou, K.; Ausset, P.; Sarda-Estève, R.; Mihalopoulos, N.

    2003-10-01

    During the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T>550ºC) under the pure helium step of the analysis. During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) mass concentrations were on average respectively 1.19±0.56 and 3.62±1.08 mgC/m3 for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 mgC/m3 for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope=1.00, r2=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO4), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between these

  11. Manifestation of Aerosol Indirect Effects in Arctic Clouds

    NASA Astrophysics Data System (ADS)

    Lubin, D.; Vogelmann, A. M.

    2009-12-01

    The first aerosol indirect effect has traditionally been conceived as an enhancement of shortwave cloud reflectance in response to decreased effective droplet size at fixed liquid water path, as cloud nucleating aerosol becomes entrained in the cloud. The high Arctic, with its pervasive low-level stratiform cloud cover and frequent episodes of anthropogenic aerosol (Artic "haze"), has in recent years served as a natural laboratory for research on actual manifestations of aerosol indirect effects. This paper will review the surprising set of developments: (1) the detection of the indirect effect as a source of surface warming, rather than cooling, throughout early spring, (2) a transition to a cooling effect in late spring, corresponding to the beginning of the sea ice melt season, and (3) detection of an indirect effect during summer, outside of the "Arctic haze" season. This paper will also discuss measurements of spectral shortwave irradiance (350-2200 nm) made at Barrow, Alaska, during the U.S. Department of Energy's Indirect and Semi-Direct Aerosol Campaign (ISDAC), which reveal complications in our conception of the indirect effect related to the ice phase in Arctic stratiform clouds.

  12. Analysis of the horizontal distributions of trace gases and aerosols in summer 2013 during the MADCAT campaign in Mainz, Germany

    NASA Astrophysics Data System (ADS)

    Remmers, Julia; Beirle, Steffen; Wagner, Thomas

    2016-04-01

    With the MAX-DOAS technique it is possible to retrieve vertical profiles of trace gases and aerosols in the lower troposphere. Often these instruments monitor the atmosphere in one azimuthal direction only. Therefore horizontal variability is not resolved. Especially the comparison to satellite data close to strong emission sources (one main application of MAX-DOAS) is possibly biased. Many new developed MAX-DOAS instruments are capable to measure automatically in more than one azimuthal direction. During the MADCAT campaign in summer 2013 in Mainz, Germany, several instruments of this kind were operated simultaneously, which provides the opportunity to monitor the horizontal distribution of trace gases and aerosols with a high temporal and spatial resolution. The observed variation for different azimuth angles does not only reflect gradients in the trace gas concentrations, but also differences in the light path length, which is affected by sun and viewing geometry as well as aerosol distribution. Information about the aerosol profile, the total AOD and the phase function is gathered from a Ceilometer and an Aeronet sun photometer on the same site. To distinguish between the different effects comparisons with radiative transfer models are performed. Here especially the influence of the simplified model of Henyey-Greenstein phase functions against measured phase functions from Aeronet is investigated. Also the influence on the observed azimuthal gradients of different wind patterns and cloud conditions is studied.

  13. Analysis of the Interaction and Transport of Aerosols with Cloud or Fog during DRAGON Campaigns in Asia from AERONET and Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Eck, Thomas; Holben, Brent; Reid, Jeffrey; Lynch, Peng; Schafer, Joel; Giles, David; Kim, Jhoon; Kim, Young; Sano, Itaru; Platnick, Steven; Arnold, George; Lyapustin, Alexei; Pickering, Kenneth; Crawford, James; Siniuk, Alexander; Smirnov, Alexander; Wang, Pucai; Xia, Xiangao; Li, Zhanqing

    2015-04-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. AERONET has established Distributed Regional Aerosol Gridded Observation Networks (DRAGON) during field campaigns that are short-term (~2-3 months) relatively dense spatial networks of ~15 to 45 sun and sky scanning photometers. Major DRAGON field campaigns in Japan and South Korea during Spring of 2012 have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth (AOD) signal from AERONET data for these cases of persistent and extensive cloud cover. Satellite retrievals of AOD from MODIS sensors (from both dark target and MAIAC algorithms) were also investigated to assess the issue of detectability of high AOD events associated with high cloud fraction. Cloud properties retrieved from MODIS are also investigated in relation to the AERONET and satellite measurements of AOD. Underestimation of AOD by the Navy Aerosol Analysis and Prediction System (NAAPS) model at very high AOD at sites in China and Korea was observed, especially for observations that are cloud screened by AERONET (L2 data). Additionally, extensive fog that was coincident with aerosol layer height on some days in Korea resulted in large increases in fine mode aerosol radius, with a mode of cloud

  14. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; Denjean, C.; Brogniez, G.; di Sarra, A.; Alados-Arboledas, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, T.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Waquet, F.; Wenger, J.; Zapf, P.

    2016-01-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high

  15. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; di Sarra, A.; Alados, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Brogniez, G.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Denjean, C.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, J.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Wenger, J.; Zapf, P.

    2015-07-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental set-up also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modelling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to produce high level of atmospheric pollutants nor

  16. Application of the LIRIC algorithm for the characterization of aerosols during the Airborne Romanian Measurements of Aerosols and Trace gases (AROMAT) campaign

    NASA Astrophysics Data System (ADS)

    Stefanie, Horatiu; Nicolae, Doina; Nemuc, Anca; Belegante, Livio; Toanca, Florica; Ajtai, Nicolae; Ozunu, Alexandru

    2015-04-01

    The ESA/ESTEC AROMAT campaign (Airborne Romanian Measurements of Aerosols and Trace gases) was held between 1st and 14th of September 2014 with the purpose to test and inter-compare newly developed airborne and ground-based instruments dedicated to air quality studies in the context of validation programs of the forthcoming European Space Agency satellites (Sentinel 5P, ADM-Aeolus and EarthCARE). Ground-based remote sensing and airborne in situ measurements were made in southern Romania in order to assess the level and the variability of NO2 and particulate matter, focusing on two areas of interest: SW (Turceni), where many coal based power plants are operating, and SE (Bucharest), affected by intense traffic and partially by industrial pollution. In this paper we present the results obtained after the application of the Lidar - Radiometer Inversion Code (LIRIC) algorithm on combined lidar and sunphotometer data collected at Magurele, 6 km South Bucharest. Full lidar data sets in terms of backscatter signals at 355, 532 and 1064 nm, as well as depolarization at 532 nm were used and combined with Aerosol Robotic Network (AERONET) data, in order to retrieve the profiles of aerosol volume concentrations, separated as fine, spherical and spheroidal coarse modes. Preliminary results showed that aerosols generated by traffic and industrial activities were present in the Planetary Boundary Layer, while biomass burning aerosols transported from the Balkan Peninsula were detected in the upper layers. Acknowledgements: ***This work has been supported by Programme for Research- Space Technology and Advanced Research - STAR, project number 55/2013 - CARESSE. ***The financial support by the European Community's FP7 - PEOPLE 2011 under ITaRS Grant Agreement n° 289923 is gratefully acknowledged.

  17. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign.

    PubMed

    Collier, Sonya; Zhou, Shan; Onasch, Timothy B; Jaffe, Daniel A; Kleinman, Lawrence; Sedlacek, Arthur J; Briggs, Nicole L; Hee, Jonathan; Fortner, Edward; Shilling, John E; Worsnop, Douglas; Yokelson, Robert J; Parworth, Caroline; Ge, Xinlei; Xu, Jianzhong; Butterfield, Zachary; Chand, Duli; Dubey, Manvendra K; Pekour, Mikhail S; Springston, Stephen; Zhang, Qi

    2016-08-16

    Wildfires are important contributors to atmospheric aerosols and a large source of emissions that impact regional air quality and global climate. In this study, the regional and nearfield influences of wildfire emissions on ambient aerosol concentration and chemical properties in the Pacific Northwest region of the United States were studied using real-time measurements from a fixed ground site located in Central Oregon at the Mt. Bachelor Observatory (∼2700 m a.s.l.) as well as near their sources using an aircraft. The regional characteristics of biomass burning aerosols were found to depend strongly on the modified combustion efficiency (MCE), an index of the combustion processes of a fire. Organic aerosol emissions had negative correlations with MCE, whereas the oxidation state of organic aerosol increased with MCE and plume aging. The relationships between the aerosol properties and MCE were consistent between fresh emissions (∼1 h old) and emissions sampled after atmospheric transport (6-45 h), suggesting that biomass burning organic aerosol concentration and chemical properties were strongly influenced by combustion processes at the source and conserved to a significant extent during regional transport. These results suggest that MCE can be a useful metric for describing aerosol properties of wildfire emissions and their impacts on regional air quality and global climate.

  18. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign.

    PubMed

    Collier, Sonya; Zhou, Shan; Onasch, Timothy B; Jaffe, Daniel A; Kleinman, Lawrence; Sedlacek, Arthur J; Briggs, Nicole L; Hee, Jonathan; Fortner, Edward; Shilling, John E; Worsnop, Douglas; Yokelson, Robert J; Parworth, Caroline; Ge, Xinlei; Xu, Jianzhong; Butterfield, Zachary; Chand, Duli; Dubey, Manvendra K; Pekour, Mikhail S; Springston, Stephen; Zhang, Qi

    2016-08-16

    Wildfires are important contributors to atmospheric aerosols and a large source of emissions that impact regional air quality and global climate. In this study, the regional and nearfield influences of wildfire emissions on ambient aerosol concentration and chemical properties in the Pacific Northwest region of the United States were studied using real-time measurements from a fixed ground site located in Central Oregon at the Mt. Bachelor Observatory (∼2700 m a.s.l.) as well as near their sources using an aircraft. The regional characteristics of biomass burning aerosols were found to depend strongly on the modified combustion efficiency (MCE), an index of the combustion processes of a fire. Organic aerosol emissions had negative correlations with MCE, whereas the oxidation state of organic aerosol increased with MCE and plume aging. The relationships between the aerosol properties and MCE were consistent between fresh emissions (∼1 h old) and emissions sampled after atmospheric transport (6-45 h), suggesting that biomass burning organic aerosol concentration and chemical properties were strongly influenced by combustion processes at the source and conserved to a significant extent during regional transport. These results suggest that MCE can be a useful metric for describing aerosol properties of wildfire emissions and their impacts on regional air quality and global climate. PMID:27398804

  19. A modeling perspective of the ChArMEx intensive campaign: origin of photo-oxidant and organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Cholakian, Arineh; Beekmann, Matthias; Siour, Guillaume; Coll, Isabelle; Colette, Augustin; Gros, Valerie; Marchand, Nicolas; Sciare, Jean; Colomb, Aurélie; Gheusi, François; Sauvage, Stéphane

    2016-04-01

    During the summers of 2013 and 2014, two three-week intensive campaigns took place over the western Mediterranean in order to investigate the origins of photo-oxidants as well as the sources and processes of formation of organic aerosols in this region. Within the frame of the MISTRAL/ChArMEx program, an extensive number of chemical compounds were investigated by means of ground-based and also airborne measurements. In this paper, a modeling perspective of the 2013 campaign is given, using the CHIMERE chemistry-transport model, dealing with two aspects: 1) representativeness of the simulations with respect to the complex orography of Cape Corsica, 2) evaluation of secondary organic aerosol simulations in the western Mediterranean region with different model configurations using a variety of experimental data. The model has been configured in a way to fit the specificities of this unique region. The base simulations are performed in a domain covering the entire Europe as well as the northern Africa with a low resolution (30 km). In order to take into account the orographic complexity of the area where the ground-based measurements were performed (Ersa, Cape Corsica), nested simulations with a high resolution (1km horizontal resolution) focused on this site were performed with the goal of increasing the representativeness of the simulations. Still, this resolution does not allow to correctly represent the altitude of the Cape Corsica measurement site (533 m asl). To solve this problem, a large number of grid cells in the vicinity of the measurements site, all having different altitudes, were used to find the extrapolated concentration of an indicative list of species towards the exact altitude of the aforementioned site and to estimate an orographic representativeness error, which was shown to be less important for organic aerosols among said species. Alongside the base simulations, other series of simulations using multiple configurations of the Volatility Basis Set

  20. Analysis of the Interaction and Transport of Aerosols with Cloud or Fog during Dragon Campaigns from Aeronet and Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Schafer, J.; Giles, D. M.; Kim, J.; Kim, Y. J.; Sano, I.; Lynch, P.; Pickering, K. E.; Crawford, J. H.; Sinyuk, A.; Smirnov, A.; Trevino, N.

    2014-12-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. AERONET has established Distributed Regional Aerosol Gridded Observation Networks (DRAGON) during field campaigns that are short-term (~2-3 months) relatively dense spatial networks of ~15 to 45 sun and sky scanning photometers. Recent major DRAGON field campaigns in Japan and South Korea (Spring 2012) and California (Winter 2013) have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth signal for these cases of persistent and extensive cloud cover. Satellite retrievals of AOD from MODIS sensors were also investigated to assess the issue of detectability of high AOD events associated with high cloud fraction. AERONET is updating the cloud-screening algorithm applied to AOD data in the upcoming Version 3 database. Comparisons of cloud screening from Versions 2 and 3 of cases with high AOD associated with clouds will be studied. Additionally, extensive fog that was coincident with aerosol layer height on some days in both Korea and California resulted in large increases in fine mode aerosol radius, with a mode of cloud-processed or residual aerosol of radius ~0.4-0.5 micron sometimes observed. Cloud processed aerosol may occur much more frequently than AERONET

  1. 2014 iAREA campaign on aerosol in Spitsbergen - Part 1: Study of physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Lisok, J.; Markowicz, K. M.; Ritter, C.; Makuch, P.; Petelski, T.; Chilinski, M.; Kaminski, J. W.; Becagli, S.; Traversi, R.; Udisti, R.; Rozwadowska, A.; Jefimow, M.; Markuszewski, P.; Neuber, R.; Pakszys, P.; Stachlewska, I. S.; Struzewska, J.; Zielinski, T.

    2016-09-01

    This paper presents the results of measurements of aerosol physical and chemical properties during iAREA2014 campaign that took place on Svalbard between 15th of Mar and 4th of May 2014. With respect to field area, the experiment consisted of two sites: Ny-Ålesund (78°55‧N, 11°56‧E) and Longyearbyen (78°13‧N, 15°33‧E) with further integration of Aerosol Robotic Network (AERONET) station in Hornsund (77°00‧N, 15°33‧E). The subject of this study is to investigate the in-situ, passive and active remote sensing observations as well as numerical simulations to describe the temporal variability of aerosol single-scattering properties during spring season on Spitsbergen. The retrieval of the data indicates several event days with enhanced single-scattering properties due to the existence of sulphate and additional sea-salt load in the atmosphere which is possibly caused by relatively high wind speed. Optical results were confirmed by numerical simulations made by the GEM-AQ model and by chemical observations that indicated up to 45% contribution of the sea-salt to a PM10 total aerosol mass concentration. An agreement between the in-situ optical and microphysical properties was found, namely: the positive correlation between aerosol scattering coefficient measured by the nephelometer and effective radius obtained from laser aerosol spectrometer as well as negative correlation between aerosol scattering coefficient and the Ångstrom exponent indicated that slightly larger particles dominated during special events. The in-situ surface observations do not show any significant enhancement of the absorption coefficient as well as the black carbon concentration which might occur during spring. All of extensive single-scattering properties indicate a diurnal cycle in Longyearbyen, where 21:00-5:00 data stays at the background level, however increasing during the day by the factor of 3-4. It is considered to be highly connected with local emissions originating

  2. Gravity-wave effects on tracer gases and stratospheric aerosol concentrations during the 2013 ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Chane Ming, Fabrice; Vignelles, Damien; Jegou, Fabrice; Berthet, Gwenael; Renard, Jean-Baptiste; Gheusi, François; Kuleshov, Yuriy

    2016-07-01

    Coupled balloon-borne observations of Light Optical Aerosol Counter (LOAC), M10 meteorological global positioning system (GPS) sondes, ozonesondes, and GPS radio occultation data, are examined to identify gravity-wave (GW)-induced fluctuations on tracer gases and on the vertical distribution of stratospheric aerosol concentrations during the 2013 ChArMEx (Chemistry-Aerosol Mediterranean Experiment) campaign. Observations reveal signatures of GWs with short vertical wavelengths less than 4 km in dynamical parameters and tracer constituents, which are also correlated with the presence of thin layers of strong local enhancements of aerosol concentrations in the upper troposphere and the lower stratosphere. In particular, this is evident from a case study above Ile du Levant (43.02° N, 6.46° E) on 26-29 July 2013. Observations show a strong activity of dominant mesoscale inertia GWs with horizontal and vertical wavelengths of 370-510 km and 2-3 km respectively, and periods of 10-13 h propagating southward at altitudes of 13-20 km during 27-28 July. The European Centre for Medium-Range Weather Forecasts (ECMWF) analyses also show evidence of mesoscale inertia GWs with similar horizontal characteristics above the eastern part of France. Ray-tracing experiments indicate the jet-front system as the main source of observed GWs. Using a simplified linear GW theory, synthetic vertical profiles of dynamical parameters with large stratospheric vertical wind maximum oscillations of ±40 mms-1 are produced for the dominant mesoscale GW observed at heights of 13-20 km. Parcel advection method reveals signatures of GWs in the ozone mixing ratio and the tropospheric-specific humidity. Simulated vertical wind perturbations of the dominant GWs and small-scale perturbations of aerosol concentration (aerosol size of 0.2-0.7 µm) are revealed to be in phase in the lower stratosphere. Present results support the importance of vertical wind perturbations in the GW-aerosol relationship

  3. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.

    2014-01-01

    4STAR capabilities for airborne field campaigns, with an emphasis on comparisons between 4STAR and AERONET sky radiances, and retrievals of aerosol microphysical properties based on sky radiance measurements, column trace gas amounts from spectral direct beam measurements and cloud property retrievals from zenith mode observations for a few select case studies in the SEAC4RS and TCAP experiments. We summarize the aerosol, trace gas, cloud and airmass characterization studies made possible by the combined 4STAR direct beam, and sky/zenith radiance observations.

  4. Balloon-borne and ground-based aerosol measurements with the aerosol counter LOAC during the ChArMEx 2013 campaign

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dulac, François; Vignelles, Damien; Jeannot, Matthieu; Durand, Pierre; Mallet, Marc; Totems, Julien; Chazette, Patrick; Sciare, Jean; Barret, Brice; Jambert, Corrine; Verdier, Nicolas

    2014-05-01

    LOAC (Light Optical Aerosol Counter) is a small optical particle counter/sizer of ~250 grams that can fly under all kinds of balloons. The measurements are conducted at two scattering angles: the first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of ~0.2-100 micrometers. The second angle is at 60°, is used to discriminate between the different types of particles dominating the different size classes. The sensor particularly discriminates wet or liquid particles, mineral dust and carbon particles. 30 flights of LOAC have been conducted during the ChAMEx campaign (Chemistry Aerosol Mediterranean Experiment) on summer 2013, from Minorca Island (Spain) and Ile du Levant (south of France): 19 flights under meteorological balloons and 12 flights under low altitude drifting balloons. Most of the flights were also coupled with ozone concentration measurements. LOAC balloons were especially, but not only, dedicated to study the various Saharan dust events that occurred during the campaign. In particular, flights were conducted every 12 hours during the 15-19 June dust event. Turbid air masses from North America were also sampled in late June over Minorca. The flights allow us to determine the vertical extent of the dust plume and various aerosol layers, and to follow the particle size distribution and the concentration evolution along the vertical. The low altitude drifting balloons, which stayed at constant altitude (between 0.4 and 3 km) for several hours, allow us to study the time-evolution of the aerosol concentrations in the same air mass. Under both balloon types, LOAC has detected larges particles up to ~30 micrometers in diameter. The flights drifting within dust layers indicate that there is a relatively stable particle size distribution during transport over the sea, with no clear sedimentation loss of large particles. LOAC is used to tentatively identify the various kinds of particles (marine

  5. Preliminary results from two intensive campaigns characterizing urban aerosols at two high altitude cities in the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Andrade, M. F.; Wiedensohler, A.; Velarde, F.; Moreno, I.; Weinhold, K.; Avila, F.

    2013-05-01

    Preliminary results from a short campaign carried out between September and December of 2012 at the cities of El Alto (16°30'36.09"S; 68°11'55.31"W; 4040 masl) and La Paz (16°30'13.83"S; 68° 7'45.56"W; 3580 masl), Bolivia are presented on this work. Particle size distribution was measured using a Mobility Particle Size Spectrometer (Reference of the World Calibration Center for Aerosol Physics) whereas concentration of black carbon was measured using a Multi Angle Absorption Photometer (MAAP). In addition meteorological parameters as well as CO concentration were collected on both locations. In the case of El Alto, the instruments were located within the International Airport of the city at approximately 300 m from the main and only landing strip and at least 1.5 km away from the main roads. On the other hand, in the case of La Paz, the instruments were set up at the Planetarium of University Mayor de San Andres. The building is located besides a road with heavy traffic. Because the two cities are part of the same metropolitan area (the sites were located 7.5 km apart), the cars and trucks produce a similar signature and therefore both background and non-background urban aerosols were sampled during the campaign. In addition, an interesting case was registered at La Paz where a day with practically no vehicular traffic was studied.

  6. Observations of Ozone-aerosol Correlated Behaviour in the Lower Stratosphere During the EASOE Campaign

    NASA Technical Reports Server (NTRS)

    Digirolamo, P.; Cacciani, M.; Disarra, A.; Fiocco, G.; Fua, D.; Joergensen, T. S.; Knudsen, B.; Larsen, N.

    1992-01-01

    The question of possible interactions between ozone and stratospheric aerosol has been open for a long time. Measurements carried out after the Mt. Agung and El Chicon eruptions showed evidence of negative correlations between the presence of volcanic stratospheric aerosols and ozone concentration. Evidence for negative correlations in the polar winter has been also found. It is only after the discovery of the Antarctic ozone hole that catalytic effects related to low temperature heterogeneous chemistry have become the object of much investigation, now extended to the role of volcanic aerosol in the ozone reduction. These phenomena can be the object of various interpretations, not mutually exclusive, including the effect of transport, diffuse radiation as well as heterogeneous chemistry. The present paper provides preliminary results of simultaneous measurements of ozone and aerosol, carried out at Thule, Greenland, during the winter 1991-92. The European Stratospheric Ozone Experiment (EASOE) was aimed at monitoring the winter Arctic stratosphere in order to obtain a deeper insight of the ozone destruction processes taking place in the polar regions. A large amount of aerosol was injected into the lower stratosphere by the recent eruption of Volcano Pinatubo. A lidar system, already operational in Thule since November 1990, has provided detailed measurements of the stratospheric aerosol concentration during EASOE. In the same period, a large number of ozonesondes were launched. Although no PSC formation was detected over Thule, the simultaneous measurement of the stratospheric aerosol and ozone profiles give the possibility to study interactions occurring in the stratosphere between these two constituents.

  7. Vertical distribution of aerosols in the vicinity of Mexico City during MILAGRO-2006 Campaign

    SciTech Connect

    Lewandowski, P.A.; Kleinman, L.; Eichinger, W. E.; Holder, H.; Prueger, J.; Wang, J.

    2010-02-01

    On 7 March 2006, a mobile, ground-based, vertical pointing, elastic lidar system made a North-South transect through the Mexico City basin. Column averaged, aerosol size distribution (ASD) measurements were made on the ground concurrently with the lidar measurements. The ASD ground measurements allowed calculation of the column averaged mass extinction efficiency (MEE) for the lidar system (1064 nm). The value of column averaged MEE was combined with spatially resolved lidar extinction coefficients to produce total aerosol mass concentration estimates with the resolution of the lidar (1.5 m vertical spatial and 1 s temporal). Airborne ASD measurements from DOE G-1 aircraft made later in the day on 7 March 2006, allowed the evaluation of the assumptions of constant ASD with height and time used for estimating the column averaged MEE. The results showed that the aerosol loading within the basin is about twice what is observed outside of the basin. The total aerosol base concentrations observed in the basin are of the order of 200 {mu}g/m{sup 3} and the base levels outside are of the order of 100 {mu}g/m{sup 3}. The local heavy traffic events can introduce aerosol levels near the ground as high as 900 {mu}g/m{sup 3}. The article presents the methodology for estimating aerosol mass concentration from mobile, ground-based lidar measurements in combination with aerosol size distribution measurements. An uncertainty analysis of the methodology is also presented.

  8. The Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES): An Observational Campaign for Determining Role of Clouds, Aerosols and Radiation in Climate System

    NASA Astrophysics Data System (ADS)

    McFarquhar, G. M.; Wood, R.; Bretherton, C. S.; Alexander, S.; Jakob, C.; Marchand, R.; Protat, A.; Quinn, P.; Siems, S. T.; Weller, R. A.

    2014-12-01

    The Southern Ocean (SO) region is one of the cloudiest on Earth, and as such clouds determine its albedo and play a major role in climate. Evidence shows Earth's climate sensitivity and the Intertropical Convergence Zone location depend upon SO clouds. But, climate models are challenged by uncertainties and biases in the simulation of clouds, aerosols, and air-sea exchanges in this region which trace back to a poor process-level understanding. Due to the SO's remote location, there have been sparse observations of clouds, aerosols, precipitation, radiation and the air-sea interface apart from those from satellites. Plans for an upcoming observational program, SOCRATES, are outlined. Based on feedback on observational and modeling requirements from a 2014 workshop conducted at the University of Washington, a plan is described for obtaining a comprehensive dataset on the boundary-layer structure and associated vertical distributions of liquid and mixed-phase cloud and aerosol properties across a range of synoptic settings, especially in the cold sector of cyclonic storms. Four science themes are developed: improved climate model simulation of SO cloud and boundary layer structure in a rapidly varying synoptic setting; understanding seasonal and synoptic variability in SO cloud condensation and ice nucleus concentration and the role of local biogenic sources; understanding supercooled liquid and mixed-phase clouds and their impacts; and advancing retrievals of clouds, precipitation, aerosols, radiation and surface fluxes. Testable hypotheses for each theme are identified. The observational strategy consists of long-term ground-based observations from Macquarie Island and Davis, continuous data collection onboard Antarctic supply ships, satellite retrievals, and a dedicated field campaign covering 2 distinct seasons using in-situ and remote sensors on low- and high-altitude aircraft, UAVs, and a ship-borne platform. A timeline for these activities is proposed.

  9. Measurements of physical and chemical properties of urban aerosols and their CCN activities in Seoul during the KORUS-AQ pre-campaign

    NASA Astrophysics Data System (ADS)

    Kim, N.; Yum, S. S.; Park, M.; Shin, H. J.; Bae, G. N.; Kwak, K. H.; Park, J. S.; Park, S. M.; Ahn, J.

    2015-12-01

    Interest in cloud condensation nuclei (CCN) has been increasing for the last few decades due to their first order effects on radiative and microphysical properties of clouds. Particularly, scientific understanding of CCN from anthropogenic sources becomes important because it is now considered that large uncertainties in climate change predictions stem from insufficient understanding of CCN. CCN activity is influenced by size and chemical component of aerosols. The KORUS-AQ campaign, jointly organized by National Institute of Environmental Research (NIER) of Korea and National Aeronautics and Space Administration (NASA) aims at understanding various aspects of air quality problem in Korea and will be held in spring, 2016. In preparation for this campaign, pre-campaign was held during May 18-June 13, 2015, in Seoul where numerous local anthropogenic sources exist and influence of Chinese continental outflow directly affects. Here we present some of the important results from the pre-campaign. Chemical properties of aerosols were measured with AMS. Aerosol and CCN number concentrations, aerosol size distribution and aerosol hygroscopic growth factor were measured by CPC, CCN counter, SMPS and H-TDMA, respectively. Average diurnal variation of aerosol number concentration showed three dominant peaks at around 0600_UTC and morning and evening rush hours. Each peak seemed to have different characteristics and therefore detailed analyses of physical and chemical properties of aerosols during the peaks as well as during some special events will be made. The hygroscopicity parameter, kappa, will be estimated by examining CCN activity, H-TDMA measured hygroscopic growth factor and mixing rule of aerosol chemical components, and the result will be compared as well.

  10. Overview of balloon-borne aerosol measurements with the aerosol counter LOAC, with focus on the ChArMEx 2013 campaign

    NASA Astrophysics Data System (ADS)

    Dulac, François; Renard, Jean-Baptiste

    LOAC (Light Optical Aerosol Counter) is a new small optical particle counter/sizer of 250 grams designed to fly under all kinds of balloons. The measurements are conducted at two scattering angles: the first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.2-100 mm; the second angle, at 60°, is used to discriminate between different types of particles dominating different size classes. The sensor particularly discriminates wet or liquid particles, mineral dust, soot carbon particles and salts. Comparisons with measurements from other sensors at the surface are shown. We shall give a quick review of balloon-borne experiences since 2011 with LOAC under all kinds of balloons including tethered, sounding, open stratospheric, and new boundary-layer pressurized drifting balloons (BLBP) from CNES. Observation domains include the atmospheric surface layer, the boundary layer, the free troposphere and the lower stratosphere up to more than 35 km in altitude. Operations encompass a variety of environments including the Arctic (Reykjavik, Island, and Kiruna, Sweden), Brazil (Sao Paolo), the western Mediterranean Basin, southwestern France, peri-urban (Ile de France) and urban areas (Paris and Vienna). Results from the various campaigns will be illustrated including the study of fog events, urban aerosols, Saharan dust transport over France, stratospheric soot... Emphasis will be put on the ChArMEx campaign (the Chemistry-Aerosol Mediterranean Experiment) performed in summer 2013 in the Mediterranean basin: 19 LOAC flights have been performed under meteorological balloons and 12 under low altitude drifting balloons, most of them from Minorca Island (Spain) in June and early July and others from Levant Island (south of France) in late July and early August. Most of the flights were coupled with ozone concentration measurements (see presentation by F. Gheusi et al.). LOAC balloons were especially, but not

  11. First results of tropospheric and stratospheric aerosols measurements during the Iceland Polar Vortex 2016 (IPV2016) campaign

    NASA Astrophysics Data System (ADS)

    Ólafsson, Haraldur; Renard, Jean-Baptiste; Berthet, Gwenaël; Duverger, Vincent; Vignelles, Damien

    2016-04-01

    The Iceland Polar Vortex 2016 (IPV2016) campaign was carried out during the passage of the stratospheric polar vortex over Iceland in early January 2016. During the period 9-13 January, a total of four meteorological balloon sondes were sent into the stratosphere, carrying the Light Optical Aerosol Counter (LOAC) up to altitude of 26 km. LOAC provides concentrations, size distribution and typology of the aerosols in the 0.2 - 100 micrometer size range. The measurements show background liquid and solid aerosol concentrations greater than conventional values in the mid-latitude stratosphere. LOAC has detected layers of cirrus around the tropopause and has provided their size distribution in the 5 - 40 micrometre range. Liquid polar stratospheric cloud particles, greater than a few micrometre, were detected in the 12 - 24 km altitude range. Finally, abornmal high concentrations of submicronic carbonaceus particles were observed from the middle tropopshere to the middle stratosphere. The origin of all these particles will be tentatively interpreted using modelling calculation and backward trajectories

  12. Microspectroscopic Analysis of Anthropogenic- and Biogenic-Influenced Aerosol Particles during the SOAS Field Campaign

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Bondy, A. L.; Nhliziyo, M. V.; Bertman, S. B.; Pratt, K.; Shepson, P. B.

    2013-12-01

    During the summer, the southeastern United States experiences a cooling haze due to the interaction of anthropogenic and biogenic aerosol sources. An objective of the summer 2013 Southern Oxidant and Aerosol Study (SOAS) was to improve our understanding of how trace gases and aerosols are contributing to this relative cooling through light scattering and absorption. To improve understanding of biogenic-anthropogenic interactions through secondary organic aerosol (SOA) formation on primary aerosol cores requires detailed physicochemical characterization of the particles after uptake and processing. Our measurements focus on single particle analysis of aerosols in the accumulation mode (300-1000 nm) collected using a multi orifice uniform deposition impactor (MOUDI) at the Centreville, Alabama SEARCH site. Particles were characterized using an array of microscopic and spectroscopic techniques, including: scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and Raman microspectroscopy. These analyses provide detailed information on particle size, morphology, elemental composition, and functional groups. This information is combined with mapping capabilities to explore individual particle spatial patterns and how that impacts structural characteristics. The improved understanding will be used to explore how sources and processing (such as SOA coating of soot) change particle structure (i.e. core shell) and how the altered optical properties impact air quality/climate effects on a regional scale.

  13. First results from the aerosol lidar and backscatter sonde intercomparison campaign STRAIT'1997 at table mountain facility during February-March 1997

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Gross, M. R.; Haner, D. A.; Kjome, N. T.; McDermid, I. S.; McGee, T. J.; Rosen, J. M.; Schaefer, H. - J.; Schrems, O.

    1998-01-01

    First results of an intercomparison measurement campaign between three aerosol lidar instruments and in-situ backscatter sondes performed at Table Mountain Facility (34.4 deg N, 117.7 deg E, 2280 m asl) in February-March 1997 are presented. During the campaign a total of 414 hours of lidar data were acquired by the Aerosol-Temperature-Lidar (ATL, Goddard Space Flight Center) the Mobile-aerosol-Raman-Lidar (MARL, Alfred Wegener Institute), and the TMF-Aerosol-Lidar (TAL, Jet Propulsion Laboratory), and four backscatter sondes were launched. From the data set altitude profiles of backscatter ratio and volume depolarization of stratospheric background aerosols at altitudes between 15 and 25 km and optically thin high-altitude cirrus clouds at altitudes below 13 km are derived. On the basis of a sulfuric acid aerosol model color ratio profiles obtained from two wavelength lidar data are compared to the corresponding profiles derived from the sonde observations. We find an excellent agreement between the in-situ and ATL lidar data with respect to backscatter and color ratio. Cirrus clouds were present on 16 of 26 nights during the campaign. Lidar observations with 17 minute temporal and 120-300 m spatial resolution indicate high spatial and temporal variability of the cirrus layers. Qualitative agreement is found between concurrent lidar measurements of backscatter ratio and volume depolarization.

  14. The analysis of in situ and retrieved aerosol properties measured during three airborne field campaigns

    NASA Astrophysics Data System (ADS)

    Corr, Chelsea A.

    Aerosols can directly influence climate, visibility, and photochemistry by scattering and absorbing solar radiation. Aerosol chemical and physical properties determine how efficiently a particle scatters and/or absorbs incoming short-wave solar radiation. Because many types of aerosol can act as nuclei for cloud droplets (CCN) and a smaller population of airborne particles facilitate ice crystal formation (IN), aerosols can also alter cloud-radiation interactions which have subsequent impacts on climate. Thus aerosol properties determine the magnitude and sign of both the direct and indirect impacts of aerosols on radiation-dependent Earth System processes. This dissertation will fill some gaps in our understanding of the role of aerosol properties on aerosol absorption and cloud formation. Specifically, the impact of aerosol oxidation on aerosol spectral (350nm < lambda< 500nm) absorption was examined for two biomass burning plumes intercepted by the NASA DC-S aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission in Spring and Summer 2008. Spectral aerosol single scattering albedo (SSA) retrieved using actinic flux measured aboard the NASA DC-8 was used to calculate the aerosol absorption Angstrom exponents (AAE) for a 6-day-old plume on April 17 th and a 3-hour old plume on June 29th. Higher AAE values for the April 17th plume (6.78+/-0.38) indicate absorption by aerosol was enhanced in the ultraviolet relative to the visible portion of the short-wave spectrum in the older plume compared to the fresher plume (AAE= 3.34 0.11). These differences were largely attributed to the greater oxidation of the organic aerosol in the April 17th plume which can arise either from the aging of primary organic aerosol or the formation of spectrally-absorbing secondary organic aerosol. The validity of the actinic flux retrievals used above were also evaluated in this work by the comparison of SSA retrieved using

  15. Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2 years (2011-2012) of field campaigns

    NASA Astrophysics Data System (ADS)

    Ferrero, Luca; Cappelletti, David; Busetto, Maurizio; Mazzola, Mauro; Lupi, Angelo; Lanconelli, Christian; Becagli, Silvia; Traversi, Rita; Caiazzo, Laura; Giardi, Fabio; Moroni, Beatrice; Crocchianti, Stefano; Fierz, Martin; Močnik, Griša; Sangiorgi, Giorgia; Perrone, Maria G.; Maturilli, Marion; Vitale, Vito; Udisti, Roberto; Bolzacchini, Ezio

    2016-10-01

    We present results from a systematic study of vertical profiles of aerosol number size distribution and black carbon (BC) concentrations conducted in the Arctic, over Ny-Ålesund (Svalbard). The campaign lasted 2 years (2011-2012) and resulted in 200 vertical profiles measured by means of a tethered balloon (up to 1200 m a.g.l.) during the spring and summer seasons. In addition, chemical analysis of filter samples, aerosol size distribution and a full set of meteorological parameters were determined at ground. The collected experimental data allowed a classification of the vertical profiles into different typologies, which allowed us to describe the seasonal phenomenology of vertical aerosol properties in the Arctic. During spring, four main types of profiles were found and their behavior was related to the main aerosol and atmospheric dynamics occurring at the measuring site. Background conditions generated homogenous profiles. Transport events caused an increase of aerosol concentration with altitude. High Arctic haze pollution trapped below thermal inversions promoted a decrease of aerosol concentration with altitude. Finally, ground-based plumes of locally formed secondary aerosol determined profiles with decreasing aerosol concentration located at different altitude as a function of size. During the summer season, the impact from shipping caused aerosol and BC pollution plumes to be constrained close to the ground, indicating that increasing shipping emissions in the Arctic could bring anthropogenic aerosol and BC in the Arctic summer, affecting the climate.

  16. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Megaritis, A. G.; Skyllakou, K.; Charalampidis, P. E.; Denier van der Gon, H. A. C.; Crippa, M.; Prévôt, A. S. H.; Freutel, F.; Wiedensohler, A.; Pilinis, C.; Pandis, S. N.

    2015-09-01

    We use a three dimensional regional chemical transport model (PMCAMx) with high grid resolution and high resolution emissions (4 km × 4 km) over the Paris greater area to simulate the formation of carbonaceous aerosol during a summer (July 2009) and a winter (January/February 2010) period as part of the MEGAPOLI (Megacities: Emissions, urban, regional, and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) campaigns. Model predictions of carbonaceous aerosol are compared against Aerodyne aerosol mass spectrometer and black carbon (BC) high time resolution measurements from three ground sites. PMCAMx predicts BC concentrations reasonably well reproducing the majority (70 %) of the hourly data within a factor of two during both periods. The agreement for the summertime secondary organic aerosol (OA) concentrations is also encouraging (mean bias = 0.1 μg m-3) during a photochemically intense period. The model tends to underpredict the summertime primary OA concentrations in the Paris greater area (by approximately 0.8 μg m-3) mainly due to missing primary OA emissions from cooking activities. The total cooking emissions are estimated to be approximately 80 mg d-1 per capita and have a distinct diurnal profile in which 50 % of the daily cooking OA is emitted during lunch time (12:00-14:00 LT) and 20 % during dinner time (20:00-22:00 LT). Results also show a large underestimation of secondary OA in the Paris greater area during wintertime (mean bias = -2.3 μg m-3) pointing towards a secondary OA formation process during low photochemical activity periods that is not simulated in the model.

  17. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns

    NASA Astrophysics Data System (ADS)

    Fountoukis, Christos; Megaritis, Athanasios G.; Skyllakou, Ksakousti; Charalampidis, Panagiotis E.; Denier van der Gon, Hugo A. C.; Crippa, Monica; Prévôt, André S. H.; Fachinger, Friederike; Wiedensohler, Alfred; Pilinis, Christodoulos; Pandis, Spyros N.

    2016-03-01

    We use a three-dimensional regional chemical transport model (PMCAMx) with high grid resolution and high-resolution emissions (4 × 4 km2) over the Paris greater area to simulate the formation of carbonaceous aerosol during a summer (July 2009) and a winter (January/February 2010) period as part of the MEGAPOLI (megacities: emissions, urban, regional, and global atmospheric pollution and climate effects, and Integrated tools for assessment and mitigation) campaigns. Model predictions of carbonaceous aerosol are compared against Aerodyne aerosol mass spectrometer and black carbon (BC) high time resolution measurements from three ground sites. PMCAMx predicts BC concentrations reasonably well reproducing the majority (70 %) of the hourly data within a factor of two during both periods. The agreement for the summertime secondary organic aerosol (OA) concentrations is also encouraging (mean bias = 0.1 µg m-3) during a photochemically intense period. The model tends to underpredict the summertime primary OA concentrations in the Paris greater area (by approximately 0.8 µg m-3) mainly due to missing primary OA emissions from cooking activities. The total cooking emissions are estimated to be approximately 80 mg d-1 per capita and have a distinct diurnal profile in which 50 % of the daily cooking OA is emitted during lunch time (12:00-14:00 LT) and 20 % during dinner time (20:00-22:00 LT). Results also show a large underestimation of secondary OA in the Paris greater area during wintertime (mean bias = -2.3 µg m-3) pointing towards a secondary OA formation process during low photochemical activity periods that is not simulated in the model.

  18. Analysis of Aerosol Distribution over North East Asia Using a Geostationary Satellite Measurement during Filed Campaigns of DRAGON-Asia 2012 and MAPS-Seoul 2015

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Jeong, U.; Kim, W.; Choi, M.; Holben, B. N.; Eck, T. F.; Lim, J.; Ahn, J.

    2015-12-01

    Considering diverse source and high concentration of aerosol, numerous manners have been applied to detect aerosol properties in North East Asia (NEA). Above all, a geostationary orbit satellite, COMS has monitored atmosphere and ocean conditions over the NEA using two payloads of Meteorological Imager (MI) and Geostationary Ocean Color Imager (GOCI) since 2010. By using the MI measurements, an AOD retrieval algorithm was developed (Kim et al., 2014). Additionally, a number of ground-based network such as Aerosol Robotic Network (AERONET), Sky Radiometer Network (SKYNET), and Mie-scattering Light Detector and Ranging (LIDAR) Network have been in operation to capture aerosol variability. And, occasionally, field campaigns were conducted. In 2012 (March to May), the DRAGON-Asia campaign was performed by AERONET science team and NIER (National Institute of Environmental Research), and 40 sun/sky-radiometer was deployed. Subsequently, MAPS-Seoul campaign for detecting air quality was performed with 8 AERONET sites and 6 Pandora instruments in Korea. Those ground-based measurements provide validation dataset for satellite retrieval algorithm, as well as detect detail of aerosol characteristics at each local point. Thus, in this study, the AODs obtained from the aforementioned campaigns were applied to assess and improve the accuracy of MI AOD. For the DRAGON-Asia 2012, the comparison between MI AOD and AERONET AOD shows correlation coefficient of 0.85, regression slope of 1.00 and RMSE of 0.18. Furthermore, AOPs obtained from those field campaign results and the MI AOD were analyzed to understand temporal and spatial variance of aerosol in NEA during spring.

  19. First results of the aerosol measurements at San Pietro Capofiume during the PEGASOS Po Valley campaign 2012

    NASA Astrophysics Data System (ADS)

    Poulain, Laurent; Größ, Johannes; Iinuma, Yoshiteru; van Pinxteren, Dominik; Wiedensohler, Alfred; Herrmann, Hartmut

    2014-05-01

    In the frame of the Pan-European Gas-Aerosol-Climate Interaction Study (PEGASOS) a field campaign was carried out at the San Pietro Capofiume site in the North Eastern of the Po Valley, Northern Italy, from June 9 to July 10, 2012. A large set of online instruments measuring aerosol physico-chemical properties were sitting in a laboratory container and connecting to a common PM10 inlet. These instruments were including SMPS, APS, HR-ToF-AMS, MAAP, Nephelometer and HH-TDMA. In parallel off-line aerosol measurements including DIGITEL High-Volume PM1 sampler and 5-stages BERNER impactor were deployed and collected twice a day (day time, 09:00 to 21:00 and nighttime 21:00 to 09:00). Additionally, VOC samples were also collected with TENAX TA cartridges six times a day (1:00-5:00, 5:00-9:00, 9:00-13:00, 13:00-17:00, 17:00-21:00, 21:00-01:00) and subsequently analyzed by thermal desorption GC-MS. The data quality insurance of the aerosol measurements was performed by successfully comparing our measurements with collocated instrumentation including SP-AMS, Nephelometer, MAAP, PILS and MARGA. The first results of these measurements will be presented. During the sampling period, different meteorological conditions occurred: for example at the beginning of the measurements, anticyclonic conditions with very low wind and extremely high temperature brought to the highest aerosol concentrations while different wind regimes and air mass origins characterized the second part of the sampling periods. In averaged over the period, aerosols were mainly made of organics (46 %) and sulfate (27%). Nitrate appears to be more important during nighttime than day time, indicating an important temperature dependency. However, a strong increase of the nitrate concentration after sunrise early in the morning when temperature already started to increase was also regularly observed and can be related to either influence of mixing layer higher or local nitrate formation after sunrise. Almost

  20. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; Denjean, C.; Brogniez, G.; di Sarra, A.; Alados-Arboledas, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, T.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Waquet, F.; Wenger, J.; Zapf, P.

    2016-01-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high

  1. Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Gysel, Martin; Rubach, Florian; Mentel, Thomas F.; Goger, Brigitta; Poulain, Laurent; Schlag, Patrick; Miettinen, Pasi; Pajunoja, Aki; Virtanen, Annele; Klein Baltink, Henk; Bas Henzing, J. S.; Größ, Johannes; Gobbi, Gian Paolo; Wiedensohler, Alfred; Kiendler-Scharr, Astrid; Decesari, Stefano; Facchini, Maria Cristina; Weingartner, Ernest; Baltensperger, Urs

    2016-06-01

    Vertical profiles of the aerosol particles hygroscopic properties, their mixing state as well as chemical composition were measured above northern Italy and the Netherlands. An aerosol mass spectrometer (AMS; for chemical composition) and a white-light humidified optical particle spectrometer (WHOPS; for hygroscopic growth) were deployed on a Zeppelin NT airship within the PEGASOS project. This allowed one to investigate the development of the different layers within the planetary boundary layer (PBL), providing a unique in situ data set for airborne aerosol particles properties in the first kilometre of the atmosphere. Profiles measured during the morning hours on 20 June 2012 in the Po Valley, Italy, showed an increased nitrate fraction at ˜ 100 m above ground level (a.g.l.) coupled with enhanced hygroscopic growth compared to ˜ 700 m a. g. l. This result was derived from both measurements of the aerosol composition and direct measurements of the hygroscopicity, yielding hygroscopicity parameters (κ) of 0.34 ± 0.12 and 0.19 ± 0.07 for 500 nm particles, at ˜ 100 and ˜ 700 m a. g. l., respectively. The difference is attributed to the structure of the PBL at this time of day which featured several independent sub-layers with different types of aerosols. Later in the day the vertical structures disappeared due to the mixing of the layers and similar aerosol particle properties were found at all probed altitudes (mean κ ≈ 0.18 ± 0.07). The aerosol properties observed at the lowest flight level (100 m a. g. l.) were consistent with parallel measurements at a ground site, both in the morning and afternoon. Overall, the aerosol particles were found to be externally mixed, with a prevailing hygroscopic fraction. The flights near Cabauw in the Netherlands in the fully mixed PBL did not feature altitude-dependent characteristics. Particles were also externally mixed and had an even larger hygroscopic fraction compared to the results in Italy. The mean κ from

  2. Aerosol light-scattering enhancement due to water uptake during TCAP campaign

    NASA Astrophysics Data System (ADS)

    Titos, G.; Jefferson, A.; Sheridan, P. J.; Andrews, E.; Lyamani, H.; Alados-Arboledas, L.; Ogren, J. A.

    2014-02-01

    Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility in the framework of the Two-Column Aerosol Project (TCAP) deployed at Cape Cod, Massachusetts, for a~one year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0-180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically-influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically-influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air-masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in-situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine

  3. Aerosol radiative effects on the meteorology and distribution of pollutants in the Mexico City Metropolitan Area during MCMA-2006/MILAGRO Campaign

    NASA Astrophysics Data System (ADS)

    Li, Guohui; Bei, Naifang; Molina, Luisa

    2013-04-01

    Aerosols scatter or absorb incoming solar radiation, perturb the temperature structure of the atmosphere, and impact meteorological fields and further the distribution of gas phase species and aerosols. In the present study, the aerosol radiative effects on the meteorology and photochemistry in the Mexico City Metropolitan Area (MCMA) are investigated using the WRF-CHEM model during the period from March 24th to 29th associated with the MILAGRO-2006 campaign. Aerosols decrease incoming solar radiation by up to 20% and reduce the surface temperature by up to 0.5 °C due to scattering and absorbing the incoming solar radiation in Mexico City. The absorption of black carbon aerosols can also enhance slightly the temperature in the planetary boundary layer (PBL). Generally, the change of the PBL height in the city is less than 200 m during daytime due to the aerosol-induced perturbation of temperature profile. Wind fields are also adjusted with the variation of temperatures, but all the aerosol-induced meteorological changes cannot significantly influence the distribution of pollutants in the city. In addition, when convective events occur in the city, the aerosol radiative effects reduce the convective available potential energy (CAPE) and the convective precipitation is generally decreased. Further studies still need to be performed to evaluate the aerosol indirect effect on precipitation in Mexico City.

  4. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Final Campaign Report

    SciTech Connect

    Wood, R.

    2016-01-01

    The extensive coverage of low clouds over the subtropical eastern oceans greatly impacts the current climate. In addition, the response of low clouds to changes in atmospheric greenhouse gases and aerosols is a major source of uncertainty, which thwarts accurate prediction of future climate change. Low clouds are poorly simulated in climate models, partly due to inadequate long-term simultaneous observations of their macrophysical and microphysical structure, radiative effects, and associated aerosol distribution in regions where their impact is greatest. The thickness and extent of subtropical low clouds is dependent on tight couplings between surface fluxes of heat and moisture, radiative cooling, boundary layer turbulence, and precipitation (much of which evaporates before reaching the ocean surface and is closely connected to the abundance of cloud condensation nuclei). These couplings have been documented as a result of past field programs and model studies. However, extensive research is still required to achieve a quantitative understanding sufficient for developing parameterizations, which adequately predict aerosol indirect effects and low cloud response to climate perturbations. This is especially true of the interactions between clouds, aerosol, and precipitation. These processes take place in an ever-changing synoptic environment that can confound interpretation of short time period observations.

  5. Aerosol Charge Model Consistent with Flight Data from the ECOMA/MASS Rocket Campaign

    NASA Astrophysics Data System (ADS)

    Knappmiller, S.; Robertson, S. H.; Rapp, M.; Gumbel, J.; Horanyi, M.; Sternovsky, Z.; Friedrich, M.; Baumgarten, G.; Latteck, R.

    2009-12-01

    In August of 2007 two sounding rockets were launched from the Andoya Rocket Range, Norway carrying the MASS instrument (Mesospheric Aerosol Sampling Spectrometer). The instrument detects charged aerosols in four different mass ranges on four pairs of biased collector plates, one set for positive particles and one set for negative particles. The first sounding rocket was launched into PMSE and NLC on 3 August. The solar zenith angle was 93 degrees and NLC were seen in the previous hour at 83 km by the ALOMAR RMR lidar. NLC were also detected at the same altitude by rocket-borne photometer measurements. The data from the MASS instrument shows a negatively charged population with radii >3 nm in the 83-89 km altitude range, which is collocated with PMSE detected by the ALWIN radar. Smaller particles, 1-2 nm in radius with both positive and negative polarity were detected between 86-88 km. Positively charged particles <1 nm in radius were detected at the same altitude. A charging model is developed to investigate the coexistence of positively and negatively charged aerosols in the NLC environment. Natanson’s rate equations are used for the attachment of free electrons and ions and the model includes charging by photo-electron emission and photo-detachment. Although the MASS flight occurred during night time conditions, the solar flux was still significant to affect the charge state of the aerosols. The calculations are done assuming three types of particles with different photo-electron charging properties: 1) Icy NLC particles, 2) Hematite particles of meteoric origin as condensation nuclei, and 3) Hematite particles coated with ice. The charge model results are consistent with the MASS rocket data, displaying both positively and negatively charged aerosols for small radii and only negatively charged particles for large radii.

  6. Ozone and secondary aerosol formation — Analysis of particle observations in the 2009 SHARP campaign

    NASA Astrophysics Data System (ADS)

    Cowin, J.; Yu, X.; Laulainen, N.; Iedema, M.; Lefer, B. L.; Anderson, D.; Pernia, D.; Flynn, J. H.

    2010-12-01

    Particulate matters (PM) play important roles in the formation and transformation of ozone. Although photooxidation of volatile organic compounds with respect to ozone formation in the gas phase is well understood, many unknowns still exist in heterogeneous mechanisms that process soot, secondary aerosols (both inorganic and organic), and key radical precursors such as formaldehyde and nitrous acid. Our main objective is to answer two key science questions: 1) will reduction of fine PM reduce ozone formation? 2) What sources of PM are most culpable? Are they from local chemistry or long-range transport? The field data collected in the 2009 Study of Houston Atmospheric Radical Precursors (SHARP) by our group at the Moody Tower consist of 1) real-time photolysis rates of ozone precursors, 2) particle size distributions, 3) organic carbon and elemental carbon, and 4) an archive of single particle samples taken with the Time Resolved Aerosol Collector (TRAC) sampler. The time resolution of the TRAC sampler is 30 minutes for routine measurements, and 15 minutes during some identified “events” (usually in the mid-afternoon) of high ozone and secondary organic or sulfate particle formation. The latter events last typically about an hour. Five ozone exceedance days occurred during the 6 weeks of deployment. Strong correlation between photochemical activities and organic carbon was observed. Initial data analysis indicates that secondary organic aerosol is a major component of the carbonaceous aerosols observed in Houston. Soot, secondary sulfate, seal salt, and mineral dust particles are determined from single particle analysis using scanning electron microscope and transmission electron microcopy coupled with energy dispersive X-ray spectroscopy. Compared with observations in 2000, the mass percentage of organics is higher (60 vs. 30%), and lower for sulfate (20% vs. 32%). On-going data analysis will focus on the composition, sources, and transformation of primary and

  7. Chemical composition and sources of coastal marine aerosol particles during the 2008 VOCALS-REx campaign

    SciTech Connect

    Lee, Y. -N.; Springston, S.; Jayne, J.; Wang, J.; Hubbe, J.; Senum, G.; Kleinman, L.; Daum, P. H.

    2014-01-01

    The chemical composition of aerosol particles (Dp ≤ 1.5 μm) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO42−, followed by Na+, Cl, Org (total organics), NH4+, and NO3, in decreasing order of importance; CH3SO3 (MSA), Ca2+, and K+ rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH4+ to SO42− equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl deficits caused by both HNO3 and H2SO4, but for the most part were externally mixed with particles, mainly SO42−. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH3 is present between 72° W and 76° W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31° S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol

  8. Field calibration of multi-scattering correction factor for aethalometer aerosol absorption coefficient during CAPMEX Campaign, 2008

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Kim, S. W.; Yoon, S. C.; Park, R.; Ogren, J. A.

    2014-12-01

    Filter-based instrument, such as aethalometer, is being widely used to measure equivalent black carbon(EBC) mass concentration and aerosol absorption coefficient(AAC). However, many other previous studies have poited that AAC and its aerosol absorption angstrom exponent(AAE) are strongly affected by the multi-scattering correction factor(C) when we retrieve AAC from aethalometer EBC mass concentration measurement(Weingartner et al., 2003; Arnott et al., 2005; Schmid et al., 2006; Coen et al., 2010). We determined the C value using the method given in Weingartner et al. (2003) by comparing 7-wavelngth aethalometer (AE-31, Magee sci.) to 3-wavelength Photo-Acoustic Soot Spectrometer (PASS-3, DMT) at Gosan climate observatory, Korea(GCO) during Cheju ABC plume-asian monsoon experiment(CAPMEX) campaign(August and September, 2008). In this study, C was estimated to be 4.04 ± 1.68 at 532 nm and AAC retrieved with this value was decreased as approximately 100% as than that retrieved with soot case value from Weingartner et al (2003). We compared the AAC determined from aethalomter measurements to that from collocated Continuous Light Absorption Photometer (CLAP) measurements from January 2012 to December 2013 at GCO and found good agreement in both AAC and AAE. This result suggests the determination of site-specific C is crucially needed when we calculate AAC from aethalometer measurements.

  9. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; di Sarra, A.; Alados, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Brogniez, G.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Denjean, C.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, J.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Wenger, J.; Zapf, P.

    2015-07-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental set-up also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modelling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to produce high level of atmospheric pollutants nor

  10. Speciation of water-soluble organic carbon compounds in boundary layer aerosols during the LBA/CLAIRE/SMOCC-2002 campaign

    NASA Astrophysics Data System (ADS)

    Claeys, M.; Pashynska, V.; Vermeylen, R.; Vas, G.; Cafmeyer, J.; Maenhaut, W.; Artaxo, P.

    2003-04-01

    The water-soluble, hygroscopic aerosol fraction is of climatic interest because of its role as cloud condensation nuclei (CCN) and the associated effects on cloud formation and cloud properties. As part of the LBA/CLAIRE/SMOCC experiment in Amazonia, September-November 2002, aerosol samples were collected using various types of samplers. The campaign spanned from the peak of the burning season, with high smoke concentrations, to fairly clean conditions in the early rainy season. Separate day and night samples were collected, and the collection time per sample varied from 12 hours in September to up to 48 hours in November. Fine (< 2.5 μm) and coarse (> 2.5 μm) aerosol size fractions were obtained using a Hi-Vol dichotomous sampler, and the samples were analysed for organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and various water-soluble organic carbon compounds. The latter compounds included the anhydrosugars, levoglucosan, mannosan, and galactosan, which are markers for wood combustion, the polyols, arabitol and mannitol, which originate from the natural forest environment, as well as the hydroxydicarboxylic acid, malic acid, which is a late product in the photochemistry of fatty acids and n-alkanes. Preliminary results including the mass concentrations of OC, EC, WSOC and the water-soluble organic compounds will be presented. By far the major water-soluble organic carbon compound in the fine size fraction was levoglucosan, showing concentrations in the range of 1-6 μg m-3 in the peak of the burning season (17-24 September).

  11. Mass Analysis of Charged Aerosol Particles During the MASS/ECOMA Campaign

    NASA Astrophysics Data System (ADS)

    Knappmiller, S.; Robertson, S.; Horanyi, M.; Sternovsky, Z.

    2008-12-01

    . The Mesospheric Aerosol Sampling Spectrometer (MASS) instrument was launched on two sounding rockets in August 2007 from Andoya, Norway to find the masses of charged aerosol particles in the polar mesosphere in NLC/PMSE conditions (3 August) and PMSE conditions alone (6 August). We compare and contrast the four data sets from the uplegs and downlegs. The MASS instrument collected ions, cluster ions, and charged nanometer-sized particles on four pairs of electrically-biased graphite plates that collect positive and negative particles separately. Electron collection was prevented by the negative potential on the rocket body. For the 3 August upleg, the data show charged particle collection on all channels with number densities of order several thousand per cubic centimeter in the four size ranges < 0.5 nm, 0.5-1 nm, 1-2 nm, and > 3 nm. The occurrence of positively charged aerosol particles in the smallest sizes suggests positive ions as the nucleation sites because the smallest particles have negligible probability of charging by photoionization. The signals were smaller on the 3 August downleg as a consequence of the spatial variability of the cloud. For the 6 August upleg into PMSE alone, only smaller particles (< 2 nm) were detected and these were both positive and negative with number densities of several thousand per cubic centimeter. On the downleg, 1-2 nm negatively charged particles were detected, but there were no positive particles in this mass range.

  12. MISR Field Campaign Imagery

    Atmospheric Science Data Center

    2014-07-23

      MISR Support of Field Campaigns Aerosol Arctic Research of the Composition of the ... Daily ARCTAS Aerosol Polar Imagery ​Gulf of Mexico Atmospheric Composition and Climate Study ( GoMACCS ) ​July - ...

  13. Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)

    SciTech Connect

    Kumar, R.; Barth, M. C.; Nair, V. S.; Pfister, G. G.; Babu, S. Suresh; Satheesh, S. K.; Moorthy, K. Krishna; Carmichael, G. R.; Lu, Z.; Streets, D. G.

    2015-01-01

    This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March-May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inland sites. In general, the model underestimates the observed BC mass concentrations. However, the model-observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average +/- standard deviation (representing spatial and temporal variability) BC mass concentration (1341 +/- 2353 ng m(-3)) in South Asia. BC emissions from residential (61 %) and industrial (23 %) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.

  14. Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)

    SciTech Connect

    Kumar, R.; Barth, M. C.; Nair, V. S.; Pfister, G. G.; Suresh Babu, S.; Satheesh, S. K.; Moorthy, K. Krishna; Carmichael, G. R.; Lu, Z.; Streets, D. G.

    2015-05-19

    This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March–May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inland sites. In general, the model underestimates the observed BC mass concentrations. However, the model–observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average ± standard deviation (representing spatial and temporal variability) BC mass concentration (1341 ± 2353 ng m-3) in South Asia. BC emissions from residential (61%) and industrial (23%) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.

  15. Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)

    DOE PAGES

    Kumar, R.; Barth, M. C.; Nair, V. S.; Pfister, G. G.; Suresh Babu, S.; Satheesh, S. K.; Moorthy, K. Krishna; Carmichael, G. R.; Lu, Z.; Streets, D. G.

    2015-05-19

    This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March–May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inlandmore » sites. In general, the model underestimates the observed BC mass concentrations. However, the model–observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average ± standard deviation (representing spatial and temporal variability) BC mass concentration (1341 ± 2353 ng m-3) in South Asia. BC emissions from residential (61%) and industrial (23%) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.« less

  16. Highlights from 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    2016-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET (Aerosol Robotic Network)-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyperspectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT). From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy's TCAP (Two-Column Aerosol Project) I & II campaigns, and NASA's SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) and ARISE (Arctic Radiation - IceBridge Sea & Ice Experiment) campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2 (High Spectral Resolution Lidar), and from in situ measurements.

  17. Tropospheric Vertical Profiles of Aerosol Optical, Microphysical and Concentration Properties in the Frame of the Hygra-CD Campaign (Athens, Greece 2014): A Case Study of Long-Range Transport of Mixed Aerosols

    NASA Astrophysics Data System (ADS)

    Papayannis, Alexandros; Argyrouli, Athina; Müller, Detlef; Tsaknakis, Georgios; Kokkalis, Panayotis; Binietoglou, Ioannis; Kazadzis, Stelios; Solomos, Stavros; Amiridis, Vassilis

    2016-06-01

    Combined multi-wavelength aerosol Raman lidar and sun photometry measurements were performed during the HYGRA-CD campaign over Athens, Greece during May-June 2014. The retrieved aerosol optical properties (3 aerosol backscatter at 355-532-1064 nm and 2 aerosol extinction profiles at 355-532 nm) were used as input to an inversion code to retrieve the aerosol microphysical properties (effective radius reff and number concentration N) using regularization techniques. Additionally, the volume concentration profile was derived for fine particles using the LIRIC code. In this paper we selected a complex case study of long-range transport of mixed aerosols (biomass burning particles mixed with dust) arriving over Athens between 10-12 June 2014 in the 1.5-4 km height. Between 2-3 km height we measured mean lidar ratios (LR) ranging from 45 to 58 sr (at 355 and 532 nm), while the Ångström exponent (AE) aerosol extinction-related values (355nm/532nm) ranged between 0.8-1.3. The retrieved values of reff and N ranged from 0.19±0.07 to 0.22±0.07 μm and 460±230 to 2200±2800 cm-3, respectively. The aerosol linear depolarization ratio (δ) at 532 nm was lower than 5-7% (except for the Saharan dust cases, where δ~10-15%).

  18. Aircraft observations of aerosol composition and ageing in New England and Mid-Atlantic States during the summer 2002 New England Air Quality Study field campaign

    NASA Astrophysics Data System (ADS)

    Kleinman, Lawrence I.; Daum, Peter H.; Lee, Yin-Nan; Senum, Gunnar I.; Springston, Stephen R.; Wang, Jian; Berkowitz, Carl; Hubbe, John; Zaveri, Rahul A.; Brechtel, Fred J.; Jayne, John; Onasch, Timothy B.; Worsnop, Douglas

    2007-05-01

    Aerosol chemical composition, size distribution, and optical properties were measured during 17 aircraft flights in New England and Middle Atlantic States as part of the summer 2002 New England Air Quality Study field campaign. An Aerodyne aerosol mass spectrometer (AMS) was operated with a measurement cycle of 30 s, about an order of magnitude faster than used for ground-based measurements. Noise levels within a single measurement period were sub μg m-3. Volume data derived from the AMS were compared with volume measurements from a Passive Cavity Aerosol Spectrometer (PCASP) optical particle detector and a Twin Scanning Electrical Mobility Spectrometer (TSEMS); calculated light scattering was compared with measured values from an integrating nephelometer. The median ratio for AMS/TSEMS volume was 1.25 (1.33 with an estimated refractory component); the median ratio for AMS/nephelometer scattering was 1.18. A dependence of the AMS collection efficiency on aerosol acidity was quantified by a comparison between AMS and PCASP volumes in two high sulfate plumes. For the entire field campaign, the average aerosol concentration was 11 μg m-3. Compared with monitoring data from the IMPROVE network, the organic component made up a large fraction of total mass, varying from 70% in clean air to 40% in high concentration sulfate plumes. In combination with other optical and chemical measurements, the AMS gave information on secondary organic aerosol (SOA) production and the time evolution of aerosol light absorption. CO is taken as a conservative tracer of urban emissions and the ratios of organic aerosol and aerosol light absorption to CO examined as a function of photochemical age. Comparisons were made to ratios determined from surface measurements under conditions of minimal atmospheric processing. In air masses in which the NOx to NOy ratio has decreased to 10%, the ratio of organic aerosol to CO has quadrupled indicating that 75% of the organic aerosol is secondary

  19. Temporal consistency of lidar observations during aerosol transport events in the framework of the ChArMEx/ADRIMED campaign at Minorca in June 2013

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Totems, Julien; Ancellet, Gérard; Pelon, Jacques; Sicard, Michaël

    2016-03-01

    We performed synergetic daytime and nighttime active and passive remote-sensing observations at Minorca (Balearic Islands, Spain), over more than 3 weeks during the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Effect in the Mediterranean (ChArMEx/ADRIMED) special observation period (SOP 1a, June-July 2013). We characterized the aerosol optical properties and type in the low and middle troposphere using an automated procedure combining Rayleigh-Mie-Raman lidar (355, 387 and 407 nm) with depolarization (355 nm) and AERONET Cimel® sun-photometer data. Results show a high variability due to varying dynamical forcing. The mean column-averaged lidar backscatter-to-extinction ratio (BER) was close to 0.024 sr-1 (lidar ratio of ˜ 41.7 sr), with a large dispersion of ±33 % over the whole observation period due to changing atmospheric transport regimes and aerosol sources. The ground-based remote-sensing measurements, coupled with satellite observations, allowed the documentation of (i) dust particles up to 5 km (above sea level) in altitude originating from Morocco and Algeria from 15 to 18 June with a peak in aerosol optical thickness (AOT) of 0.25 ± 0.05 at 355 nm, (ii) a long-range transport of biomass burning aerosol (AOT = 0.18 ± 0.16) related to North American forest fires detected from 26 to 28 June 2013 by the lidar between 2 and 7 km and (iii) mixture of local sources including marine aerosol particles and pollution from Spain. During the biomass burning event, the high value of the particle depolarization ratio (8-14 %) may imply the presence of dust-like particles mixed with the biomass burning aerosols in the mid-troposphere. For the field campaign period, we also show linearity with SEVIRI retrievals of the aerosol optical thickness despite 35 % relative bias, which is discussed as a function of aerosol type.

  20. Variability of fine and coarse aerosol over the Western Mediterranean Basin during the Minerva 2015 research cruise campaign

    NASA Astrophysics Data System (ADS)

    Castagna, Jessica; Carbone, Francesco; Naccarato, Attilio; Moretti, Sacha; Esposito, Giulio; Bencardino, Mariantonia; D'Amore, Francesco; Sprovieri, Francesca; Pirrone, Nicola

    2016-04-01

    The Mediterranean Basin, due to its semi-enclosed configuration, is heavily affected by air pollution and it is becoming, in the last years, a region of particular interest of study for its implications regarding both health effects and environmental impacts. The area is surrounded by a densely populated as well as industrialized coast, and even affected by natural sources. So, it is important to know how the various sources contributes to increase air pollution levels and discriminate among them. With special regard to aerosol pollution, natural sources, like Saharan dust, volcanoes, and fires, as well as anthropogenic sources, such as industry, road and marine traffic, and fuel combustion from heating, can equally increase the values of this dangerous pollutant. While on the land we can find numerous monitoring sites, there are not continuous measurements on the sea. For this reason, since 2000 the Institute of Atmospheric Pollution of the National Research Council (CNR-IIA) is conducting regular oceanographic campaigns of measurements in the Mediterranean Sea. In this context, here we report the results obtained during the last cruise campaign, which took place in the Western Mediterranean sector and was conducted on-board the Italian research vessel Minerva during summer 2015 (from June 27th to July 13th). Fine (PM2.5) and Coarse (PM2.5-10) particulate size fractions were collected on PTFE membrane filters (Advantec MFS) and their mass concentrations determined gravimetrically. Successively, all the filters were digested with a mixture of HNO3/H2O2 in an microwaves digestion system and then analyzed by ICP-MS for the determination of the major and trace elements. Outcomes regarding the particulate mass concentration, the content and the distribution of the analyzed elements over both PM size fractions will be discussed taking into account potential contributing sources as well as different meteorological conditions.

  1. Surface Measurements of dust/local aerosol properties over Northern China during 2008 China-US joined dust field campaign

    NASA Astrophysics Data System (ADS)

    Wang, X.; Huang, J.

    2009-12-01

    The objective of this study is to understand the detailed characteristics and underlying mechanisms of aerosol physical and optical parameters over China Loess Plateau and its potential impacts on the regional/global climate. In order to characterize the emission, transport, and removal of atmospheric pollutants emitted from East Asia, the 2008 China-US joined field campaign are conducted from late April to May 2008 focused specifically on the Asian direct measurements of dust and pollution transport, following the plume from the Northern China which from the Taklamakan desert and Gobi desert to the Eastern Pacific and into North America. Such measurements are crucial to understanding how the dust and the pollution plume (including black carbon) are modified as their age. Three sites involved this campaign, including one permanent site (Semi-Arid Climate & Environment Observatory of Lanzhou University (SACOL)) (located in Yuzhong, 35.95N/104.1E), one SACOL's Mobile Facility (SMF) (deployed in Jintai, 37.57N/104.23E) and the U.S. Department of Energy Atmospheric Radiation Measurements(ARM) Ancillary Facility (AAF mobile laboratories, SMART-COMMIT) (deployed in Zhangye, 39.08N/100.27E). Results indicate that the dust plumes are transported from the surface to a long distance from their sources have a significant influence on the air quality in the study area. The meteorological analysis indicates that these polluted layers are not from local sources during dust plume and this large-scale transport of dust and pollutants remains a major uncertainty in quantifying the global effect of emissions from Northern China.

  2. Composition of Stratospheric Aerosol Particles collected during the SOLVE campaign 2000

    NASA Astrophysics Data System (ADS)

    Schütze, Katharina; Nathalie, Benker; Martin, Ebert; Ralf, Weigel; Wilson James, C.; Stephan, Borrmann; Stephan, Weinbruch

    2016-04-01

    Stratospheric Aerosol particles were collected during the SAGE III Ozone loss and validation Experiment (SOLVE) in January-March 2000 in Kiruna/ Sweden onboard the scientific ER-2 aircraft with the Multi-Sample Aerosol Collection System. The particles are deposited on Cu transmission electron microscopy (TEM) grids. Particles of six samples from different flights (including one PSC sample) were analyzed by TEM and Energy Dispersive X-ray detection (EDX) regarding their size, chemical composition and morphology. Most particles are sulfates (formed from droplets of sulfuric acid) which are not resistant to the electron beam. In addition, refractory particles in the size range of 100-500 nm are found. They are either embedded in the sulfates or occur as single particles. The refractory particles are mainly carbonaceous showing only C and O as major peaks in their X-ray spectra. Some particles contain minor amounts of Si and Fe. Both, the O/C (median from 0.10-0.40), as well as Si/C (median from 0.05-0.32) ratios are increasing with time, from the middle of January to the end of February. The largest Fe/C ratio (median: 0.37) is found in a sample of the end of January. Based on the nanostructure and the absence of potassium as a tracer, biomass burning can be excluded as a source. Soot from diesel engines as well as from aircrafts show a nanostructure which is not found in the refractory particles. Due to the fact that large volcanic eruptions, which introduced material directly into the stratosphere, were missing since the eruption of Mt. Pinatubo in 1991, they are a very unlikely source of the refractory particles. The most likely source of the refractory particles is thus extraterrestrial material.

  3. The Role of Aerosol Composition in Arctic Cloud Formation

    NASA Astrophysics Data System (ADS)

    Brooks, S. D.; Hiranuma, N.; Moffet, R.; Laskin, A.; Gilles, M. K.; Glen, A.

    2010-12-01

    While it has been shown that aerosol size has a direct correlation with its ability to act as an ice nucleus, the role of the composition of freshly emitted and evolving aerosol in nucleation is poorly understood. Here we use combined measurements of ice nucleation and high resolution single particle composition to provide insight on the connection between aerosol composition in ice nucleation. These measurements were collected during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, AK in the springtime of 2008. In-situ ice nucleation measurements were conducted using the Texas Continuous Flow Diffusion Chamber (CFDC). The composition of ambient particles as well as residuals of cloud droplets and ice crystals were studied on a particle by particle basis using computer controlled scanning electron microscopy with energy dispersive X-ray analysis (CCSEM/EDX) and scanning transmission X-Ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFAS). Observed IN concentrations varied from frequent values of 0.01 per liter to more than 10 per liters, depending on conditions and the availability of ice-nucleating aerosols. Ice crystals residuals collected in a fully glaciated cloud demonstrate that both particle chemistry and size requirement must be met for a particle to be an efficient ice nucleus. According to the STXM/NEXAFAS spectral maps, ice crystals residuals are characterized by insoluble cores of either large brown or black carbon (BBC) or carbonates coated by water soluble organics. In contrast, in ambient air samples collected from a biomass burning plume, many organic particles were also observed, but these were smaller and did not have insoluble cores. In-situ ice nucleation measurements show that these biomass particles have inferior ice nuclei ability, relative to those collected in the glaciated cloud. Taken together our measurements suggest that two key elements, a critical size (provided by BBC and/or carbonate

  4. Size-segregated compositional analysis of aerosol particles collected in the European Arctic during the ACCACIA campaign

    NASA Astrophysics Data System (ADS)

    Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.

    2016-03-01

    Single-particle compositional analysis of filter samples collected on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size-segregated particle compositions and size distributions, and these were compared to corresponding data from wing-mounted optical particle counters. Reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  5. Validation of the on-line aerosol retrieval and error characterization algorithm from the OMI Near-UV observations during the DRAGON-NE Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Ahn, C.; Kim, J.; Bhartia, P. K.; Torres, O.; Spurr, R. J. D.; Liu, X.; Chance, K.; Holben, B. N.

    2014-12-01

    One of the representative advantages of using ultraviolet channel to retrieve aerosol optical property is that the results are less affected by the uncertainty of surface reflectance database. The retrieved aerosol products have relatively uniform quality at both land and ocean except the ice-snow surface. The near UV technique of aerosol remote sensing has additional merit that it has long period database since TOMS (Total Ozone Mapping Spectrometer) including aerosol absorption properties. Thus the retrieved product using the near UV technique using TOMS and OMI (Ozone Monitoring Instrument) measurement is quite appropriate for climatological research. For such purposes, assessment of accuracy of the retrieved product is essential to evaluate the radiative forcing of the aerosols. In this study, the error characterizations of the near UV technique using OMI measurements have been performed with the optimal estimation method during the DRAGON-NE Asia 2012 campaign. In order to avoid the interpolation error, we developed the on-line retrieval scheme based on the traditional near UV method. The retrieval noise and smoothing error of retrieved AOT (Aerosol Optical Thickness) were compared with the biases between 380 nm AOT from AERONET and retrieved 388 nm AOT. They showed positive correlations which infer the possibility of the estimated errors using the optimal estimation method to be used to evaluate the error of retrieved products. Forward model parameter errors were analyzed separately which depends on the quality of the used database, thus can be reduced by improving the database.

  6. Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS)

    NASA Astrophysics Data System (ADS)

    Kim, M.; Kim, J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T. F.; Lim, J. H.; Song, C. K.; Lee, S.; Chung, C.-Y.

    2016-02-01

    An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-northeast (NE) Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD) from a Meteorological Imager (MI) on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS). This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 ± 0.04) in the assumed single scattering albedo (SSA) can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET) inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs) were categorized by SSAs at 675 nm of 0.92 ± 0.035 for spring (March, April, and May). After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 ± 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 ± 0.40 to 2.14 ± 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT) with the new aerosol model, show an

  7. Wet removal of black carbon in Asian outflow: Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign

    NASA Astrophysics Data System (ADS)

    Oshima, N.; Kondo, Y.; Moteki, N.; Takegawa, N.; Koike, M.; Kita, K.; Matsui, H.; Kajino, M.; Nakamura, H.; Jung, J. S.; Kim, Y. J.

    2012-02-01

    The Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign was conducted over East Asia in March-April 2009. During the A-FORCE campaign, 120 vertical profiles of black carbon (BC) and carbon monoxide (CO) were obtained in the planetary boundary layer (PBL) and the free troposphere. This study examines the wet removal of BC in Asian outflow using the A-FORCE data. The concentrations of BC and CO were greatly enhanced in air parcels sampled at 3-6 km in altitude over the Yellow Sea on 30 March 2009, associated with upward transport due to a cyclone with modest amounts of precipitation over northern China. In contrast, high CO concentrations without substantial enhancements of BC concentrations were observed in air parcels sampled at 5-6 km over the East China Sea on 23 April 2009, caused by uplifting due to cumulus convection with large amounts of precipitation over central China. The transport efficiency of BC (TEBC, namely the fraction of BC particles not removed during transport) in air parcels sampled above 2 km during the entire A-FORCE period decreased primarily with the increase in the precipitation amount that air parcels experienced during vertical transport, although their correlation was modest (r2 = 0.43). TEBC also depended on the altitude to which air parcels were transported from the PBL and the latitude where they were uplifted locally over source regions. The median values of TEBC for air parcels originating from northern China (north of 33°N) and sampled at 2-4 km and 4-9 km levels were 86% and 49%, respectively, during the A-FORCE period. These median values were systematically greater than the corresponding median values (69% and 32%, respectively) for air parcels originating from southern China (south of 33°N). Use of the A-FORCE data set will contribute to the reduction of large uncertainties in wet removal process of BC in global- and regional-scale models.

  8. Highlights from 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    NASA Astrophysics Data System (ADS)

    Flynn, C. J.; Dahlgren, R. P.; Dunagan, S. E.; Johnson, R. R.; Kacenelenbogen, M. S.; LeBlanc, S. E.; Livingston, J. M.; Redemann, J.; Schmid, B.; Segal-Rosenhaimer, M.; Shinozuka, Y.; Zhang, Q.; Schmidt, S.; Holben, B. N.; Sinyuk, A.; Hair, J. W.; Anderson, B. E.; Ziemba, L. D.

    2015-12-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyperspectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT). From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy's TCAP I & II campaigns, and NASA's SEAC4RS and ARISE campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2, and from in situ measurements.

  9. 2014 iAREA campaign on aerosol in Spitsbergen - Part 2: Optical properties from Raman-lidar and in-situ observations at Ny-Ålesund

    NASA Astrophysics Data System (ADS)

    Ritter, C.; Neuber, R.; Schulz, Alexander; Markowicz, K. M.; Stachlewska, I. S.; Lisok, J.; Makuch, P.; Pakszys, P.; Markuszewski, P.; Rozwadowska, A.; Petelski, T.; Zielinski, T.; Becagli, S.; Traversi, R.; Udisti, R.; Gausa, M.

    2016-09-01

    In this work multi wavelength Raman lidar data from Ny-Ålesund, Spitsbergen have been analysed for the spring 2014 Arctic haze season, as part of the iAREA campaign. Typical values and probability distributions for aerosol backscatter, extinction and depolarisation, the lidar ratio and the color ratio for 4 different altitude intervals within the troposphere are given. These quantities and their dependencies are analysed and the frequency of altitude-dependent observed aerosol events are given. A comparison with ground-based size distribution and chemical composition is performed. Hence the aim of this paper is to provide typical and statistically meaningful properties of Arctic aerosol, which may be used in climate models or to constrain the radiative forcing. We have found that the 2014 season was only moderately polluted with Arctic haze and that sea salt and sulphate were the most dominant aerosol species. Moreover the drying of an aerosol layer after cloud disintegration has been observed. Hardly any clear temporal evolution over the 4 week data set on Arctic haze is obvious with the exception of the extinction coefficient and the lidar ratio, which significantly decreased below 2 km altitude by end April. In altitudes between 2 and 5 km the haze season lasted longer and the aerosol properties were generally more homogeneous than closer to the surface. Above 5 km only few particles were found. The variability of the lidar ratio is discussed. It was found that knowledge of the aerosol's size and shape does not determine the lidar ratio. Contrary to shape and lidar ratio, there is a clear correlation between size and backscatter: larger particles show a higher backscatter coefficient.

  10. 2014 iAREA campaign on aerosol in Spitsbergen - Part 2: Optical properties from Raman-lidar and in-situ observations at Ny-Ålesund

    NASA Astrophysics Data System (ADS)

    Ritter, C.; Neuber, R.; Schulz, Alexander; Markowicz, K. M.; Stachlewska, I. S.; Lisok, J.; Makuch, P.; Pakszys, P.; Markuszewski, P.; Rozwadowska, A.; Petelski, T.; Zielinski, T.; Becagli, S.; Traversi, R.; Udisti, R.; Gausa, M.

    2016-09-01

    In this work multi wavelength Raman lidar data from Ny-Ålesund, Spitsbergen have been analysed for the spring 2014 Arctic haze season, as part of the iAREA campaign. Typical values and probability distributions for aerosol backscatter, extinction and depolarisation, the lidar ratio and the color ratio for 4 different altitude intervals within the troposphere are given. These quantities and their dependencies are analysed and the frequency of altitude-dependent observed aerosol events are given. A comparison with ground-based size distribution and chemical composition is performed. Hence the aim of this paper is to provide typical and statistically meaningful properties of Arctic aerosol, which may be used in climate models or to constrain the radiative forcing. We have found that the 2014 season was only moderately polluted with Arctic haze and that sea salt and sulphate were the most dominant aerosol species. Moreover the drying of an aerosol layer after cloud disintegration has been observed. Hardly any clear temporal evolution over the 4 week data set on Arctic haze is obvious with the exception of the extinction coefficient and the lidar ratio, which significantly decreased below 2 km altitude by end April. In altitudes between 2 and 5 km the haze season lasted longer and the aerosol properties were generally more homogeneous than closer to the surface. Above 5 km only few particles were found. The variability of the lidar ratio is discussed. It was found that knowledge of the aerosol's size and shape does not determine the lidar ratio. Contrary to shape and lidar ratio, there is a clear correlation between size and backscatter: larger particles show a higher backscatter coefficient.

  11. In-situ, sunphotometer and Raman lidar observations of aerosol transport events in the western Mediterranean during the June 2013 ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Totems, Julien; Sicard, Michael; Bertolin, Santi; Boytard, Mai-Lan; Chazette, Patrick; Comeron, Adolfo; Dulac, Francois; Hassanzadeh, Sahar; Lange, Diego; Marnas, Fabien; Munoz, Constantino; Shang, Xiaoxia

    2014-05-01

    We present a preliminary analysis of aerosol observations performed in June 2013 in the western Mediterranean at two stations set up in Barcelona and Menorca (Spain) in the framework of the ChArMEx (Chemistry Aerosol Mediterranean Experiment) project. The Barcelona station was equipped with the following fixed instruments belonging to the Universitat Politècnica de Catalunya (UPC): an AERONET (Aerosol Robotic Network) sun-photometer, an MPL (Micro Pulse Lidar) lidar and the UPC multi-wavelength lidar. The MPL lidar works at 532 nm and has a depolarization channel, while the UPC lidar works at 355, 532 and 1064 nm, and also includes two N2- (at 387 and 607 nm) and one H2O-Raman (at 407 nm) channels. The MPL system works continuously 24 hour/day. The UPC system was operated on alert in coordination with the research aircrafts plans involved in the campaign. In Cap d'en Font, Menorca, the mobile laboratory of the Laboratoire des Sciences du Climat et de l'Environnement hosted an automated (AERONET) and a manual (Microtops) 5-lambda sunphotometer, a 3-lambda nephelometer, a 7-lambda aethalometer, as well as the LSCE Water vapor Aerosol LIdar (WALI). This mini Raman lidar, first developed and validated for the HyMEX (Hydrological cycle in the Mediterranean eXperiment) campaign in 2012, works at 355 nm for eye safety and is designed with a short overlap distance (<300m) to probe the lower troposphere. It includes depolarization, N2- and H2O-Raman channels. H2O observations have been calibrated on-site by different methods and show good agreement with balloon measurements. Observations at Cap d'en Font were quasi-continuous from June 10th to July 3rd, 2013. The lidar data at both stations helped direct the research aircrafts and balloon launches to interesting plumes of particles in real time for in-situ measurements. Among some light pollution background from the European continent, a typical Saharan dust event and an unusual American dust/biomass burning event are

  12. Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Saarikoski, S.; Carbone, S.; Hillamo, R.; Facchini, M. C.; Finessi, E.; Giulianelli, L.; Carbone, C.; Fuzzi, S.; Moretti, F.; Tagliavini, E.; Swietlicki, E.; Eriksson Stenström, K.; Prévôt, A. S. H.; Massoli, P.; Canaragatna, M.; Worsnop, D.; Decesari, S.

    2013-12-01

    Atmospheric organic aerosols are generally classified into primary and secondary (POA and SOA) according to their formation processes. An actual separation, however, is challenging when the timescales of emission and of gas-to-particle formation overlap. The presence of SOA formation in biomass burning plumes leads to scientific questions about whether the oxidized fraction of biomass burning aerosol is rather of secondary or primary origin, as some studies would suggest, and about the chemical compositions of oxidized biomass burning POA and SOA. In this study, we apply nuclear magnetic resonance (NMR) spectroscopy to investigate the functional group composition of fresh and aged biomass burning aerosols during an intensive field campaign in the Po Valley, Italy. The campaign was part of the EUCAARI project and was held at the rural station of San Pietro Capofiume in spring 2008. Factor analysis applied to the set of NMR spectra was used to apportion the wood burning contribution and other organic carbon (OC) source contributions, including aliphatic amines. Our NMR results, referred to the polar, water-soluble fraction of OC, show that fresh wood burning particles are composed of polyols and aromatic compounds, with a sharp resemblance with wood burning POA produced in wood stoves, while aged samples are clearly depleted of alcohols and are enriched in aliphatic acids with a smaller contribution of aromatic compounds. The comparison with biomass burning organic aerosols (BBOA) determined by high resolution aerosol mass spectrometry (HR-TOF-AMS) at the site shows only a partial overlap between NMR BB-POA and AMS BBOA, which can be explained by either the inability of BBOA to capture all BB-POA composition, especially the alcohol fraction, or the fact that BBOA account for insoluble organic compounds unmeasured by the NMR. Therefore, an unambiguous composition for biomass burning POA could not be derived from this study, with NMR analysis indicating a higher O / C

  13. Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (1H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Saarikoski, S.; Carbone, S.; Hillamo, R.; Facchini, M. C.; Finessi, E.; Giulianelli, L.; Carbone, C.; Fuzzi, S.; Moretti, F.; Tagliavini, E.; Swietlicki, E.; Eriksson Stenström, K.; Prévôt, A. S. H.; Massoli, P.; Canaragatna, M.; Worsnop, D.; Decesari, S.

    2014-05-01

    Atmospheric organic aerosols are generally classified as primary and secondary (POA and SOA) according to their formation processes. An actual separation, however, is challenging when the timescales of emission and gas-to-particle formation overlap. The presence of SOA formation in biomass burning plumes leads to scientific questions about whether the oxidized fraction of biomass burning aerosol is rather of secondary or primary origin, as some studies would suggest, and about the chemical compositions of oxidized biomass burning POA and SOA. In this study, we apply nuclear magnetic resonance (NMR) spectroscopy to investigate the functional group composition of fresh and aged biomass burning aerosols during an intensive field campaign in the Po Valley, Italy. The campaign was part of the EUCAARI project and was held at the rural station of San Pietro Capofiume in spring 2008. Factor analysis applied to the set of NMR spectra was used to apportion the wood burning contribution and other organic carbon (OC) source contributions, including aliphatic amines. Our NMR results, referred to the polar, water-soluble fraction of OC, show that fresh wood burning particles are composed of polyols and aromatic compounds, with a sharp resemblance to wood burning POA produced in wood stoves, while aged samples are clearly depleted of alcohols and are enriched in aliphatic acids with a smaller contribution of aromatic compounds. The comparison with biomass burning organic aerosols (BBOA) determined by high-resolution aerosol mass spectrometry (HR-TOF-AMS) at the site shows only a partial overlap between NMR BB-POA and AMS BBOA, which can be explained by either the inability of BBOA to capture all BB-POA composition, especially the alcohol fraction, or the fact that BBOA account for insoluble organic compounds unmeasured by the NMR. Therefore, an unambiguous composition for biomass burning POA could not be derived from this study, with NMR analysis indicating a higher O / C ratio

  14. Characteristics of carbonaceous aerosols in Emilia-Romagna (Northern Italy) based on two fall/winter field campaigns

    NASA Astrophysics Data System (ADS)

    Costa, V.; Bacco, D.; Castellazzi, S.; Ricciardelli, I.; Vecchietti, R.; Zigola, C.; Pietrogrande, M. C.

    2016-01-01

    The carbonaceous aerosol in Emilia-Romagna region (Northern Italy) was characterized in two fall/winter monitoring campaigns conducted through the years 2011-2012 and 2012-2013. Nearly 650 PM2.5 samples were collected at three monitoring stations describing urban background (main city Bologna, MS, Parma and Rimini) and one rural background site (San Pietro, SP). OC and EC values were measured by the thermal-optical transmittance method (TOT). Low flow-rate sampling strategy (24 m3 air volume per day) was used to reduce loading of light absorbing material on the filter surface in order to ensure the correct OC/EC discrimination. The TC values measured in winter 2011-2012 ranged from 9.8 μgC m- 3 at San Pietro to 12.0 μgC m- 3 at Parma, consisting of OC from 8.6 μgC m- 3 at SP to 9.9 μgC m- 3 at MS and EC from 1.3 μgC m- 3 at SP to 2.5 μgC m- 3 at Rimini. In winter 2012-2013, lower values were in general found with TC values ranging from 7.8 to 9.1 μgC m- 3 consisting of OC from 5.1 to 7.0 μgC m- 3 and EC from 1.5 to 2.2 μgC m- 3. Such differences can be likely explained by higher pollutant emissions related to domestic heating in colder fall/winter 2011/2012 (mean temperature ≈ 2 °C in comparison with ≈ 7 °C in winter 2012/2013). This hypothesis is supported by high levels of levoglucosan, as unambiguous tracer for biomass burning emission, and of polycyclic aromatic hydrocarbons related to combustion (levoglucosan ≃ 1000 ng m- 3 and burning PAHs ≃ 4 ng m- 3 at MS and SP sites).

  15. Simulating secondary organic aerosol from missing diesel-related intermediate-volatility organic compound emissions during the Clean Air for London (ClearfLo) campaign

    NASA Astrophysics Data System (ADS)

    Ots, Riinu; Young, Dominique E.; Vieno, Massimo; Xu, Lu; Dunmore, Rachel E.; Allan, James D.; Coe, Hugh; Williams, Leah R.; Herndon, Scott C.; Ng, Nga L.; Hamilton, Jacqueline F.; Bergström, Robert; Di Marco, Chiara; Nemitz, Eiko; Mackenzie, Ian A.; Kuenen, Jeroen J. P.; Green, David C.; Reis, Stefan; Heal, Mathew R.

    2016-05-01

    We present high-resolution (5 km × 5 km) atmospheric chemical transport model (ACTM) simulations of the impact of newly estimated traffic-related emissions on secondary organic aerosol (SOA) formation over the UK for 2012. Our simulations include additional diesel-related intermediate-volatility organic compound (IVOC) emissions derived directly from comprehensive field measurements at an urban background site in London during the 2012 Clean Air for London (ClearfLo) campaign. Our IVOC emissions are added proportionally to VOC emissions, as opposed to proportionally to primary organic aerosol (POA) as has been done by previous ACTM studies seeking to simulate the effects of these missing emissions. Modelled concentrations are evaluated against hourly and daily measurements of organic aerosol (OA) components derived from aerosol mass spectrometer (AMS) measurements also made during the ClearfLo campaign at three sites in the London area. According to the model simulations, diesel-related IVOCs can explain on average ˜ 30 % of the annual SOA in and around London. Furthermore, the 90th percentile of modelled daily SOA concentrations for the whole year is 3.8 µg m-3, constituting a notable addition to total particulate matter. More measurements of these precursors (currently not included in official emissions inventories) is recommended. During the period of concurrent measurements, SOA concentrations at the Detling rural background location east of London were greater than at the central London location. The model shows that this was caused by an intense pollution plume with a strong gradient of imported SOA passing over the rural location. This demonstrates the value of modelling for supporting the interpretation of measurements taken at different sites or for short durations.

  16. Spatial and Temporal Variability of Aerosol Particles in Arctic Spring

    SciTech Connect

    Shantz, Nicole C.; Gultepe, Ismail; Liu, Peter; Earle, Michael; Zelenyuk, Alla

    2012-10-01

    The objective of this work is to investigate the variability in the particle number concentration that may affect climate change assessment for Arctic regions. The Indirect and Semi-Direct Aerosol Campaign (ISDAC) was conducted in April 2008, in the vicinities of Fairbanks and Barrow, Alaska. Measurements of particle number concentrations and size distributions were conducted using a Passive Cavity Aerosol Spectrometer Probe (PCASP-100X) mounted under the Convair-580 aircraft wing. Total number concentration of particles (Na) with diameters in the range 0.12-3 μm was determined for polluted and clean air masses during times when the air was free of clouds and/or precipitation. Variability in Na was considered for both vertical profiles and constant altitude (horizontal) flight legs. This variability can have important implications for estimates of particle properties used in global climate model (GCM) simulations. When aerosol particle layers were encountered, Na rapidly increased from 25 cm-3 up to 550 cm-3 within relatively clean air masses, and reached up to 2200 cm-3 within polluted air masses, dominated by biomass burning pollution. When averaging Na over different distance scales, it was found that Na=140 cm-3 represent an average value for the majority of the encountered clean cases; while Na=720 cm-3 is a mean for polluted cases dominated by biomass burning plumes. These estimates, however, would not capture the details of particle layers encountered during most of the flights. Average aerosol particle characteristics can be difficult to interpret, especially during polluted cases, due to small-scale spatial and temporal variability.

  17. Secondary organic aerosol (SOA) derived from isoprene epoxydiols: Insights into formation, aging and distribution over the continental US from the DC3 and SEAC4RS campaigns

    NASA Astrophysics Data System (ADS)

    Campuzano Jost, P.; Palm, B. B.; Day, D. A.; Hu, W.; Ortega, A. M.; Jimenez, J. L.; Liao, J.; Froyd, K. D.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; St Clair, J. M.; Crounse, J.; Wennberg, P. O.; Mikoviny, T.; Wisthaler, A.; Ziemba, L. D.; Anderson, B. E.

    2014-12-01

    Isoprene-derived SOA formation has been studied extensively in the laboratory. However, it is still unclear to what extent isoprene contributes to the overall SOA burden over the southeastern US, an area with both strong isoprene emissions as well as large discrepancies between modeled and observed aerosol optical depth. For the low-NO isoprene oxidation pathway, the key gas-phase intermediate is believed to be isoprene epoxide (IEPOX), which can be incorporated into the aerosol phase by either sulfate ester formation (IEPOX sulfate) or direct hydrolysis. As first suggested by Robinson et al, the SOA formed by this mechanism (IEPOX-SOA) has a characteristic fragmentation pattern when analyzed by an Aerodyne Aerosol Mass Spectrometer (AMS) with enhanced relative abundances of the C5H6O+ ion (fC5H6O). Based on data from previous ground campaigns and chamber studies, we have developed a empirical method to quantify IEPOX-SOA and have applied it to the data from the DC3 and SEAC4RS aircraft campaigns that sampled the SE US during the Spring of 2012 and the Summer of 2013. We used Positive Matrix Factorization (PMF) to extract IEPOX-SOA factors that show good correlation with inside or downwind of high isoprene emitting areas and in general agree well with the IEPOX-SOA mass predicted by the empirical expression. According to this analysis, the empirical method performs well regardless of (at times very strong) BBOA or urban OA influences. On average 17% of SOA in the SE US boundary layer was IEPOX-SOA. Overall, the highest concentrations of IEPOX-SOA were typically found around 1-2 km AGL, several hours downwind of the isoprene source areas with high gas-phase IEPOX present. IEPOX-SOA was also detected up to altitudes of 6 km, with a clear trend towards more aged aerosol at altitude, likely a combination of chemical aging and physical airmass mixing. The unique instrument package aboard the NASA-DC8 allows us to examine the influence of multiple factors (aerosol

  18. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008

    SciTech Connect

    Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth; Earle, Michael; MacDonald, A. M.; Liu, Peter S.K.; Leaitch, W. R.

    2014-03-06

    Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 μm (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm-3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust. For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 μm) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of

  19. Light absorption properties of water soluble organic aerosol from Residential Wood Burning in Fresno, CA: Results from 2013 NASA DISCOVER-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Kim, H.; Zhang, Q.; Young, D. E.; Parworth, C.

    2015-12-01

    Light absorption properties of water soluble organic aerosol were investigated at Fresno, CA from 13 January to 11 February, 2013 as part of the NASA DISCOVER-AQ campaign. The light absorption spectra of water soluble organic aerosol in PM2.5 was measured using a UV/vis diode array detector (DAD) coupled with a particle into liquid sampler (PILS) that sampled downstream of a PM2.5 cyclone (URG). The PILS was also coupled with two ion chromatographs (IC) to measure inorganic and organic ionic species in PM2.5. In addition, an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at the same site to measure size-resolved chemical composition of submicrometer aerosol (PM1) in real time during this study. Light absorption at 365 nm (Abs365), which is typically used as a proxy of water-soluble brown carbon (BrC), showed strong enhancement during night time and appeared to correlate well (r = 0.71) with biomass burning organic aerosol (BBOA) from residential wood burning for heating in the Fresno area. The tight correlations between Abs365 and biomass burning relevant tracers such as acetonitrile (r = 0.69), AMS-signature ions for phenolic compounds (r = 0.52-0.71), PAH (r = 0.74), and potassium (r = 0.67) further confirm that biomass burning contributed significantly to water soluble brown carbon during this study. The absorption angstrom exponent (Åa) values fitted between 300 and 700 nm wavelength were 3.3 ± 1.1, 2.0 ± 0.9 and 4.0 ± 0.8, respectively, in the morning, afternoon and nighttime, indicating that BrC is prevalent at night in Fresno during wintertime. However, there are also indications that small amount of BrC existed during the daytime as well, likely due to daytime wood burning and other sources such as the formation of light-absorbing secondary organic aerosol (SOA). Finally, light absorption at 300 nm, 330 nm, and 390 nm were found to correlate tightly with BBOA, which indicate that biomass burning also emits

  20. Aircraft Observations of Aerosol Composition and Ageing in New England and Mid-Atlantic States during the Summer 2002 New England Air Quality Study Field Campaign

    SciTech Connect

    Kleinman, Lawrence I.; Daum, Peter H.; Lee, Y.- N.; Senum, Gunar; Springston, Stephen R.; Wang, Jian; Berkowitz, Carl M.; Hubbe, John M.; Zaveri, Rahul A.; Brechtel, Fred J.; Jayne, J. T.; Onasch, Timothy B.; Worsnop, Douglas R.

    2007-05-11

    Aerosol chemical composition, size distributions, and optical properties were measured during 17 aircraft flights in New England and Middle Atlantic States as part of the summer 2002 NEAQS field campaign. An Aerodyne Aerosol Mass Spectrometer (AMS) was operated with a measurement cycle of 30 s, about an order of magnitude faster than used for ground-based measurements. Noise levels within a single measurement period were sub μg m-3. Volume data derived from the AMS were compared with volume measurements from a PCASP optical particle detector and an Scanning Mobility Particle Spectrometer (SMPS); calculated light scattering was compared with measured values from an integrating nephelometer. The median ratio for AMS/SMPS volume was 1.25; the median ratio for AMS/nephelometer scattering was 1.18. Size spectra were compared for subsets of samples with different effective diameters (Deff). There is good agreement between the AMS, PCASP, and SMPS spectra for larger values of Deff but an unexplained over-prediction in the AMS for small values. A dependence of the AMS collection efficiency on aerosol acidity was quantified by a comparison between AMS and PCASP volumes in 2 high sulfate plumes. Average aerosol concentrations were 11 μg m-3. The organic content was high in comparison to monitoring data from the IMPROVE network, varying from 70% in clean air to 40% in high concentration sulfate plumes. The ratio of organic aerosol to CO and light absorption acting were examined as a function of photochemical age. CO is a conservative tracer for urban emissions and light absorption is a surrogate for black carbon which is also conservative. Comparisons were made to surface ratios measured under conditions where there is little secondary organic aerosol (SOA). An increase in these ratios relative to surface values indicates that 70 - 80% of the organic aerosol in polluted air masses was secondary. Most of this SOA is rapidly formed within a few hours. At longer time scales

  1. On the radiative impact of aerosols on photolysis rates: comparison of simulations and observations in the Lampedusa island during the ChArMEx/ADRIMED campaign

    NASA Astrophysics Data System (ADS)

    Mailler, S.; Menut, L.; di Sarra, A. G.; Becagli, S.; Di Iorio, T.; Bessagnet, B.; Briant, R.; Formenti, P.; Doussin, J.-F.; Gómez-Amo, J. L.; Mallet, M.; Rea, G.; Siour, G.; Sferlazzo, D. M.; Traversi, R.; Udisti, R.; Turquety, S.

    2016-02-01

    The Mediterranean basin is characterized by large concentrations of aerosols from both natural and anthropogenic sources. These aerosols affect tropospheric photochemistry by modulating the photolytic rates. Three simulations of the atmospheric composition at basin scale have been performed with the CHIMERE chemistry-transport model for the period from 6 June to 15 July 2013 covered by the ADRIMED campaign, a campaign of intense measurements in the western Mediterranean basin. One simulation takes into account the radiative effect of the aerosols on photochemistry, the second one does not, and the third one is designed to quantify the model sensitivity to a bias in the ozone column. These simulations are compared to satellite and ground-based measurements, with a particular focus on the area of Lampedusa. Values of the aerosol optical depth (AOD) are obtained from the MODIS instrument on the AQUA and TERRA satellites as well as from stations in the AERONET network and from the MFRSR sun photometer deployed at Lampedusa. Additional measurements from instruments deployed at Lampedusa either permanently or exceptionally are used for other variables: MFRSR sun photometer for AOD, diode array spectrometer for actinic fluxes, LIDAR for the aerosol backscatter, sequential sampler for speciation of aerosol and Brewer spectrophotometer for the total ozone column. It is shown that CHIMERE has a significant ability to reproduce observed peaks in the AOD, which in Lampedusa are mainly due to dust outbreaks during the ADRIMED period, and that taking into account the radiative effect of the aerosols in CHIMERE considerably improves the ability of the model to reproduce the observed day-to-day variations of the photolysis rate of ozone to O2 and O(1D), J(O1D), and that of NO2 to NO and O(3P), J(NO2). While in the case of J(O1D) other variation factors such as the stratospheric ozone column are very important in representing correctly the day-to-day variations, the day

  2. Study on optical and microphysical properties of mixed aerosols from lidar during the EMEP 2012 summer campaign at 45oN 26oE

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Nicolae, Doina; Belegante, Livio; Marmureanu, Luminita

    2013-04-01

    Aerosols optical and chemical properties in the upper layers of the atmosphere and near ground are variable, as function of the different mixtures of aerosol components resulting from their origin and transport over polluted areas. Due to a complex dynamics of air masses, the Romanian atmosphere has strong influences from dust and biomass-burning transported from South, West or East Europe. The dominant transport, and consequently the dominant aerosol type, depends on the season. As a result of the transport distance from the source and depending on the chemical and physical characteristics of the particles, tropospheric aerosols detected at Magurele, Romania, show different optical and microphysical properties than at the originating source. The differences are caused by the mixing with local particles, and also by the ageing processes and hygroscopic growth during the transport. This paper presents a statistical analysis of tropospheric aerosol optical properties during the EMEP (European Monitoring and Evaluation Programme) summer campaign (08 June - 17 July 2012), as retrieved from multiwavelength Raman and depolarization lidar data. Three elastic (1064, 532 and 355 nm), two Raman (607 and 387 nm) and one depolarization channel (532 nm parallel / 532 nm cross) are used to independently retrieve the backscatter coefficient, extinction coefficient and linear particle depolarization ratio of aerosols between 0.8 and 10 km altitude. Intensive optical parameters (Angstrom exponent, color ratios and color indexes) and microphysical parameters (effective radius, complex refractive index) from multiwavelength optical data inversion of the layer mean values are obtained. During the campaign, aerosol profiles were measured daily around sunset, following EARLINET standards. An intensive 3-days continuous measurements exercise was also performed. Layers were generally present above 2 km and bellow 6 km altitude, but descent of air masses from the free troposphere to the

  3. Aerosol optical extinction during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014 summertime field campaign, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Dingle, Justin H.; Vu, Kennedy; Bahreini, Roya; Apel, Eric C.; Campos, Teresa L.; Flocke, Frank; Fried, Alan; Herndon, Scott; Hills, Alan J.; Hornbrook, Rebecca S.; Huey, Greg; Kaser, Lisa; Montzka, Denise D.; Nowak, John B.; Reeves, Mike; Richter, Dirk; Roscioli, Joseph R.; Shertz, Stephen; Stell, Meghan; Tanner, David; Tyndall, Geoff; Walega, James; Weibring, Petter; Weinheimer, Andrew

    2016-09-01

    Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign during July-August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex) was deployed to measure βext (at average relative humidity of 20 ± 7 %) of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext / ΔCO) were higher in aged urban air masses compared to fresh air masses by ˜ 50 %. The resulting increase in Δβext / ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.51 to 2.27 m2 g-1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11-12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.

  4. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Jimenez, J. L.; Aiken, A. C.; Gaffney, J. S.; Marley, N. A.

    2008-09-01

    A photoacoustic spectrometer, a nephelometer, an aetholemeter, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in north east Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethelometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 7 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the same-day photochemical production of secondary aerosol (inorganic and organic) is approximately 40 percent of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  5. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Jimenez, J. L.; Aiken, A. C.; Gaffney, J. S.; Marley, N. A.

    2009-06-01

    A photoacoustic spectrometer, a nephelometer, an aethalometer, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in North East Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethalometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 07:00 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the photochemical production of secondary aerosol (inorganic and organic) is approximately 75% of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  6. Resolving Organized Aerosol Structures (Rolls and Layers) with Airborne Fast Mobility Particle Sizer (FMPS) During MILAGRO/INTEX Campaign

    NASA Astrophysics Data System (ADS)

    Kapustin, V.; Clarke, A.; Zhou, J.; Howell, S.; Shinozuka, Y.; Brekhovskikh, V.; McNaughton, C.

    2007-12-01

    The Hawaii Group for Environmental Aerosol Research [http://www.soest.hawaii.edu/HIGEAR] deployed a wide range of aerosol instrumentation aboard the C-130 and the NASA DC-8 as part of MILAGRO/INTEX. These were designed to provide rapid information on aerosol composition, state of mixing (internal or external), spectral optical properties (scattering and absorption), the humidity dependence of light scattering-f(RH), and the role of condensed species in changing the absorption properties of black carbon (BC) and inferred properties of organic carbon (OC). These measurements included size distributions from about 7 nm up to about 10,000 nm and their volatility at 150, 300 and 400 C; size selected response to heating (volatility) to resolve the state of mixing of the aerosol; continuous measurements of the light scattering and absorption at 3 wavelengths; measurements of the f(RH). We also flew the first airborne deployment of the new Fast Mobility Particle Sizer (FMPS, TSI Inc.) that provided information on rapid (1Hz) size variations in the Aitken mode. This revealed small scale structure of the aerosol and allowed us to examine size distributions varying over space and time associated with mixing processes previously unresolved etc. Rapid measurements during profiles also revealed variations in size over shallow layers. Other dynamic processes included rapid size distribution measurements within orographically induced aerosol layers and size distribution evolution of the nanoparticles formed by nucleation (C-130 flights 5, 6 and 9). Evidence for fluctuations induced by underlying changes in topography was also detected. These measurements also frequently revealed the aerosol variability in the presence of boundary layer rolls aligned along the wind in the Marine Boundary Layer (Gulf region) both with and without visible cloud streets (DC-8 flight 4 and C-130 flight 7). This organized convection over 1-2 km scales influences the mixing processes (entrainment, RH

  7. Environmental Snapshots for Satellite Multi-Angle Aerosol Retrieval Validation During the ACE-Asia Field Campaign

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Anderson, Jim; Anderson, Theodore L.; Bates, Tim; Brechtel, Fred; Clarke, Antony; Dutton, Ellsworth; Flagan, Richard; Fouin, Robert; Fukushima, Hajime

    2003-01-01

    On five occasions spanning the ACE-Asia field experiment in spring 2001, the multi-angle imaging MISR instrument, flying aboard the NASA Earth Observing System s Terra satellite, took quarter-kilometer data over a 400-km-wide swath, coincident with high-quality observations by multiple instruments on two or more participating surface and airborne platforms. The cases capture a range of clean, polluted, and dusty aerosol conditions. They represent some of the best opportunities during ACE- Asia for comparative studies among intensive and extensive aerosol observations in their environmental context. We inter-compare related measurements and discuss the implications of apparent discrepancies for each case, at a level of detail appropriate to the analysis of satellite observations. With a three-stage optical modeling process, we synthesize data from multiple sources into layer-by-layer snapshots that summarize what we know about the state of the atmosphere and surface at key locations during each event, to be used for satellite vicarious calibration and aerosol retrieval validation. Aerosols within a few kilometers of the surface were composed primarily of pollution and Asian dust mixtures, as expected. Accumulation and coarse-mode particle size distributions varied little among the events studied, but column aerosol optical depth changed by more than a factor of four, and the near-surface proportion of dust ranged from about 25% to 50%. The amount of absorbing material in the sub-micron fraction was highest when near-surface winds crossed Beijing and the Korean Peninsula, and was considerably lower for all other cases. Ambiguities remain in segregating size distributions by composition; having simultaneous single scattering albedo measurements at more than a single wavelength would significantly reduce the resulting optical model uncertainties, as would integral constraints from surface and atmospheric radiative flux observations. The consistency of component

  8. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  9. Aerosol properties derived from airborne sky radiance and direct beam measurements in recent NASA and DoE field campaigns

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S. E.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-12-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and airmass characterization studies made possible by the combined 4STAR direct beam and sky radiance observations.

  10. Assessing Aerosol Mixed Layer Heights from the NASA Larc Airborne High Spectral Resolution Lidar (HSRL) during the Discover-AQ Field Campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Sawamura, P.; Collins, J. E., Jr.; Seaman, S. T.; Cook, A. L.; Harper, D. B.; Follette-Cook, M. B.; daSilva, A.; Randles, C. A.

    2014-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD, during January and February 2013 over the San Joaquin Valley of California, during September 2013 over Houston, TX and during July and August 2014 over Denver, CO. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the mixed layer (ML) height. Analysis of the ML height at these four locations is presented, including temporal and horizontal variability and comparisons between land and water, including the Chesapeake Bay and Galveston Bay. Using the ML heights, the distribution of AOT relative to the ML heights is determined, which is relevant for assessing the long-range transport of aerosols. The ML heights are also used to help relate column AOT measurements and extinction profiles to surface PM2.5 concentrations. The HSRL ML heights are also used to evaluate the performance in simulating the temporal and spatial variability of ML heights from both chemical regional models and global forecast models.

  11. Aerosol Optical Extinction during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) 2014 Summertime Field Campaign, Colorado U.S.A.

    NASA Astrophysics Data System (ADS)

    Dingle, J. H.; Vu, K. K. T.; Bahreini, R.; Apel, E. C.; Campos, T. L.; Cantrell, C. A.; Cohen, R. C.; Ebben, C. J.; Flocke, F. M.; Fried, A.; Herndon, S. C.; Hills, A. J.; Hornbrook, R. S.; Huey, L. G.; Kaser, L.; Mauldin, L.; Montzka, D. D.; Nowak, J. B.; Richter, D.; Roscioli, J. R.; Shertz, S.; Stell, M. H.; Tanner, D.; Tyndall, G. S.; Walega, J.; Weibring, P.; Weinheimer, A. J.

    2015-12-01

    Aerosol optical extinction (βext) was measured in the Colorado Front Range Denver Metropolitan Area as part of the summertime air quality airborne field campaign to characterize the influence of sources, photochemical processing, and transport of pollution on local air quality. An Aerodyne Cavity Attenuated Phase Shift particle light extinction monitor (CAPS-PMex) was deployed to measure dry βext at λ=632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret the βext under various categories of aged air masses and sources. Extinction enhancement ratios of Δβext/ΔCO were evaluated under 3 differently aged air mass categories (fresh, intermediately aged, and aged) to investigate impacts of photochemistry on βext. Δβext/ΔCO was significantly increased in heavily aged air masses compared to fresh air masses (0.17 Mm-1/ppbv and 0.094 Mm-1/ppbv respectively). The resulting increase in Δβext/ΔCO under heavily aged air masses was represented by secondary organic aerosols (SOA) formation. Aerosol composition and sources from urban, natural oil and gas wells (OG), and agriculture and livestock operations were also evaluated for their impacts on βext. Linear regression fits to βext vs. organic aerosol mass showed higher correlation coefficients under the urban and OG plumes (r=0.55 and r=0.71 respectively) and weakest under agricultural and livestock plumes (r=0.28). The correlation between βext and nitrate aerosol mass however was best under the agriculture and livestock plumes (r=0.81), followed by OG plumes (r=0.74), suggesting co-location of aerosol nitrate precursor sources with OG emissions. Finally, non-refractory mass extinction efficiency (MEE) was analyzed. MEE was observed to be 1.37 g/m2 and 1.30 g/m2 in OG and urban+OG plumes, respectively.

  12. Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes, time series, diel variations, and temperature dependencies

    NASA Astrophysics Data System (ADS)

    Gómez-González, Y.; Wang, W.; Vermeylen, R.; Chi, X.; Neirynck, J.; Janssens, I. A.; Maenhaut, W.; Claeys, M.

    2011-08-01

    Measurements of organic marker compounds and inorganic species were performed on PM2.5 aerosols from a Belgian forest site that is severely impacted by urban pollution ("De Inslag", Brasschaat, Belgium) during a 2007 summer period within the framework of the "Formation mechanisms, marker compounds, and source apportionment for biogenic atmospheric aerosols (BIOSOL)" project. The objectives of this study were to determine sources, source processes, time series, and diel variations of the organic species, and to explore the relationships between their concentrations and those of trace gases (O3, NO2, SO2, and CO2) or meteorological parameters (temperature, relative humidity, wind speed, and rain fall). The measured organic species included (i) low-molecular weight (MW) dicarboxylic acids (LMW DCAs), (ii) methanesulfonate (MSA), and (iii) terpenoic acids originating from the oxidation of α-pinene, β-pinene, d-limonene and Δ3-carene, and (iv) organosulfates related to secondary organic aerosol (SOA) from the oxidation of isoprene and α-pinene. The measurements of MSA, the LMW DCAs and selected inorganic species were done with ion chromatography (IC), while those of the terpenoic acids and organosulfates were performed using liquid chromatography with negative ion electrospray ionisation mass spectrometry [LC/(-)ESI-MS]. The organic tracers explained, on average, 5.3 % of the organic carbon (OC), of which 0.7 % was due to MSA, 3.4 % to LMW DCAs, and 1.2 % to organosulfates and terpenoic acids. The highest atmospheric concentrations of most species were observed during the first five days of the campaign, which were characterised by maximum day-time temperatures >22 °C. Most of the terpenoic acids and the organosulfates peaked during day-time, consistent with their photochemical origin, except the MW 295 α-pinene-related nitrooxy organosulfates and the terpenoic acids, cis-pinic, caric, and limonic acid. High concentrations of 3-methyl-1,2,3-butanetricarboxylic

  13. Lidar measurements of aerosol at Varanasi (25.28° N, 82.96° E), India during CAIPEEX scientific campaign

    NASA Astrophysics Data System (ADS)

    Vishnu, R.; Bhavani Kumar, Y.; Rao, Y. Jaya; Samuel, E. James J.; Thara, P.; Jayaraman, A.

    2016-05-01

    A compact dual polarization lidar (DPL) was designed and developed at National Atmospheric Research Laboratory (NARL) for daytime measurements of the boundary layer aerosol distribution and depolarization properties with very high vertical and temporal resolution. The lidar employs a compact flashlamp pumped Q-switched Nd:YAG laser and operates at 532 nm wavelength. The lidar system uses a stable biaxial configuration between transmitter and receiver units. The receiver utilizes a 150 mm Schmidt Cassegranin telescope for collecting laser returns from the atmosphere. The collected backscattered light is separated into co and cross-polarization signals using a polarization beam splitter cube. A set of mini-PMTs have been used for detection of light from atmosphere during daylight period. A two channel transient recorder system with built-in ADC has been employed for recording the detected light. The entire lidar system is housed in a compact cabinet which can be easily transported for field measurements. During 2014, the lidar system was installed at the Banaras Hindu University (BHU) campus, Varanasi (25.28° N, 82.96° E, 82 m AMSL) and operated for a period of three months in to support the cloud aerosol interaction and precipitation enhancement experiment (CAIPEEX) conducted by Indian Institute of tropical meteorology (IITM). During this campaign period, the lidar measurements were carried out in the vertical direction with spatial resolution of 7.5 m and time sampling of 30s. The lidar measurements revealed the occurrence of boundary layer growth during convective periods and also detected the long-range transport dust layers with significant depolarization. In the present paper, we present the lidar measurements obtained during the campaign period and discuss the observation of transport of dust layer over the experimental site with support of back trajectory analysis and satellite data. The Lidar observations were compared with the available satellite

  14. Levoglucosan and Lipid Class Compounds in the Asian Dusts and Marine Aerosols Collected During the ACE-Asia Campaign

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Simoneit, B. R.; Kawamura, K.; Mochida, M.; Lee, M.; Lee, G.; Huebert, B. J.

    2002-12-01

    In order to characterize organic aerosols in the Asian Pacific region, we collected filter samples at Gosan (formerly Kosan) and Sapporo sites as well as on mobile platforms (R.V. R.H. Brown and NCAR C-130) in the western North Pacific. The aerosol extracts were analyzed by capillary GC-MS employing a TMS derivatization technique. We identified over 100 organic compounds in the samples. They are categorized into seven different classes in terms of functional groups and sources. First, sugar-type compounds were detected in the aerosols, including levoglucosan, galactosan and mannosan, which are tracers for biomass burning. Second, a homologous series of fatty acids (C12-C30) and fatty alcohols (C12-C30) mainly from plant waxes and marine lipids were present. The third group includes dicarboxylic acids (>C3) and other atmospheric oxidation products. Although oxalic (C2) and malonic (C3) acids were not detected by this method, they are very abundant in the aerosols. The fourth group includes n-alkanes (C18-C35) which usually showed a strong odd/even predominance, suggesting an important contribution from higher plant waxes. The fifth includes polynuclear aromatic hydrocarbons (PAH) ranging from phenanthrene to coronene, all combustion products of petroleum and mainly coal. Saccharides were the sixth group and consisted mainly of a- and b- glucose, sucrose and its alditol, and minor amounts of xylitol, sorbitol and arabitol. These saccharides are tracers for soil dust. Phthalates were detected as the seventh class, with a dominance of dioctyl phthalate. The results suggest that organic aerosols originate primarily from (1) natural emissions of terrestrial plant wax and marine lipids, (2) smoke from biomass burning (mainly non-conifer fuels), (3) soil resuspension due to spring agricultural activity, (4) urban/industrial emissions from fossil fuel use (coal), and (5) secondary reaction products. These compounds are transported by the strong westerly winds and therefore

  15. Formation of organic aerosol in the Paris region during the MEGAPOLI summer campaign: evaluation of the volatility-basis-set approach within the CHIMERE model

    NASA Astrophysics Data System (ADS)

    Zhang, Q. J.; Beekmann, M.; Drewnick, F.; Freutel, F.; Schneider, J.; Crippa, M.; Prevot, A. S. H.; Baltensperger, U.; Poulain, L.; Wiedensohler, A.; Sciare, J.; Gros, V.; Borbon, A.; Colomb, A.; Michoud, V.; Doussin, J.-F.; Denier van der Gon, H. A. C.; Haeffelin, M.; Dupont, J.-C.; Siour, G.; Petetin, H.; Bessagnet, B.; Pandis, S. N.; Hodzic, A.; Sanchez, O.; Honoré, C.; Perrussel, O.

    2013-06-01

    Simulations with the chemistry transport model CHIMERE are compared to measurements performed during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) summer campaign in the Greater Paris region in July 2009. The volatility-basis-set approach (VBS) is implemented into this model, taking into account the volatility of primary organic aerosol (POA) and the chemical aging of semi-volatile organic species. Organic aerosol is the main focus and is simulated with three different configurations with a modified treatment of POA volatility and modified secondary organic aerosol (SOA) formation schemes. In addition, two types of emission inventories are used as model input in order to test the uncertainty related to the emissions. Predictions of basic meteorological parameters and primary and secondary pollutant concentrations are evaluated, and four pollution regimes are defined according to the air mass origin. Primary pollutants are generally overestimated, while ozone is consistent with observations. Sulfate is generally overestimated, while ammonium and nitrate levels are well simulated with the refined emission data set. As expected, the simulation with non-volatile POA and a single-step SOA formation mechanism largely overestimates POA and underestimates SOA. Simulation of organic aerosol with the VBS approach taking into account the aging of semi-volatile organic compounds (SVOC) shows the best correlation with measurements. High-concentration events observed mostly after long-range transport are well reproduced by the model. Depending on the emission inventory used, simulated POA levels are either reasonable or underestimated, while SOA levels tend to be overestimated. Several uncertainties related to the VBS scheme (POA volatility, SOA yields, the aging parameterization), to emission input data, and to simulated OH levels can be responsible for this behavior

  16. Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC4RS campaign

    NASA Astrophysics Data System (ADS)

    Shingler, Taylor; Crosbie, Ewan; Ortega, Amber; Shiraiwa, Manabu; Zuend, Andreas; Beyersdorf, Andreas; Ziemba, Luke; Anderson, Bruce; Thornhill, Lee; Perring, Anne E.; Schwarz, Joshua P.; Campazano-Jost, Pedro; Day, Douglas A.; Jimenez, Jose L.; Hair, Johnathan W.; Mikoviny, Tomas; Wisthaler, Armin; Sorooshian, Armin

    2016-04-01

    In situ aerosol particle measurements were conducted during 21 NASA DC-8 flights in the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys field campaign over the United States, Canada, Pacific Ocean, and Gulf of Mexico. For the first time, this study reports rapid, size-resolved hygroscopic growth and real refractive index (RI at 532 nm) data between the surface and upper troposphere in a variety of air masses including wildfires, agricultural fires, biogenic, marine, and urban outflow. The Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) quantified size-resolved diameter growth factors (GF = Dp,wet/Dp,dry) that are used to infer the hygroscopicity parameter κ. Thermokinetic simulations were conducted to estimate the impact of partial particle volatilization within the DASH-SP across a range of sampling conditions. Analyses of GF and RI data as a function of air mass origin, dry size, and altitude are reported, in addition to κ values for the inorganic and organic fractions of aerosol. Average RI values are found to be fairly constant (1.52-1.54) for all air mass categories. An algorithm is used to compare size-resolved DASH-SP GF with bulk scattering f(RH = 80%) data obtained from a pair of nephelometers, and the results show that the two can only be reconciled if GF is assumed to decrease with increasing dry size above 400 nm (i.e., beyond the upper bound of DASH-SP measurements). Individual case studies illustrate variations of hygroscopicity as a function of dry size, environmental conditions, altitude, and composition.

  17. Development of a Detailed Microphysics Cirrus Model Tracking Aerosol Particles’ Histories for Interpretation of the Recent INCA Campaign.

    NASA Astrophysics Data System (ADS)

    Monier, Marie; Wobrock, Wolfram; Gayet, Jean-François; Flossmann, Andrea

    2006-02-01

    Cirrus clouds play an important role in the earth’s energy balance. To quantify their impact, information is needed on their microstructure and more precisely on the number and size of the ice crystals. With the anthropogenic activity, more and more aerosol particles and water vapor are released even at the altitude where cirrus clouds are formed. Cirrus clouds formed in a polluted air mass may have different microphysical properties and, therefore, a different impact on the climate system via the changed radiative properties compared to background cirrus clouds. To study this aspect, the European project called the Interhemispheric Differences in Cirrus Properties due to Anthropogenic Emissions (INCA) measured the microphysical properties of cirrus clouds together with the physical and chemicals properties of aerosol particles in clean air (at Punta Arenas, Chile) and polluted air (at Prestwick, Scotland). The goal of the present work was to develop a detailed microphysics model for cirrus clouds for the interpretation and the generalization of the INCA observations. This model considers moist aerosol particles through the Externally Mixed (EXMIX) model, so that the chemical composition of solution droplets can be followed. Ice crystal formation is described through homogeneous or heterogeneous nucleation. The crystals then grow by deposition. With this model, the interactions between the microphysical processes, simulated ice crystal concentrations, and dimensional distributions of the INCA observations were studied, and explanations were provided for the observed differences between background and polluted cirrus clouds.


  18. Anthropogenic Effects on the Mixing State of Aerosols over Manaus during the Green Ocean Amazon (GoAmazon) Campaign

    NASA Astrophysics Data System (ADS)

    Fraund, M. W.; Pham, D.; Harder, T.; O'Brien, R.; Wang, B.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2015-12-01

    The role that anthropogenic aerosols play in cloud formation is uncertain and contributes largely to the uncertainty in predicting future climate. One region of particular importance is the Amazon rainforest, which accounts for over half of the world's rainforest. During GoAmazon2014/15 IOP2, aerosol samples were collected at multiple sites in and around the rapidly growing industrial city of Manaus in the Amazon basin. Manaus is of scientific interest due to the pristine nature of the surrounding rainforest and the high levels of pollution coming from the city in the form of SO2, NOx, and soot. Some sites, such as the Terrestrial Ecosystem Science center (TES, also designated ZF2) located to the north of Manaus, represent air masses which have not interacted with emissions from the city. The comparison of pristine atmosphere with heavy pollution allows both for the determination of a natural baseline level of pollutants, as well as the study of pollutant's impact on the conversion of biogenic volatile organic compounds to secondary organic aerosols. Towards this goal, samples from ZF2 and other unpolluted sites will be compared to samples from the Atmospheric Radiation Measurement (ARM) climate research facility in Manacapuru (T3), which is southwest (downwind) of Manaus. Spatially resolved spectra were recorded at the sub-particle level using scanning transmission X-ray microscopy (STXM) at the carbon, nitrogen, and oxygen K-absorption edges. Scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (SEM/EDX) was also performed on to characterize higher Z elements. These two techniques together will allow for the mass fraction of atmospherically relevant elements to be determined on a per-particle basis. We will apply established procedures to determine the mixing state index for samples collected at ZF2 and T3 using elemental mass fractions. Preliminary results will be presented which focus on investigating the difference between mixing

  19. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    SciTech Connect

    McFarquhar, Greg

    2015-12-28

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.

  20. Distribution and Properties of Aerosol and Gas Phase Constituents within Biomass Burning Regional Haze in Brazil, 2012, during the Sambba (South American Biomass Burning Analysis) Field Campaign

    NASA Astrophysics Data System (ADS)

    Darbyshire, E.; Morgan, W.; Allan, J. D.; Flynn, M.; Liu, D.; O'Shea, S.; Trembath, J.; Szpek, K.; Langridge, J.; Brooke, J.; Ferreira De Brito, J.; Johnson, B. T.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2014-12-01

    Biomass Burning (BB) aerosols (BBA) impact upon weather, climate, ecosystems and human health at global and regional scales. Yet quantitative evaluation is impeded by a limited understanding of BB processes and a dearth of in-situ measurements. Thus large model uncertainties prevail, especially in data poor, intensive BB regions such as Brazil. Hence the timely nature of the SAMBBA campaign, utilizing aircraft (UK Facility for Airborne Atmospheric Measurement BAe-146) and ground based observations out of Porto Velho in Sept-Oct 2012. This work utilizes aircraft measurements to characterize BB regional haze - the inhomogeneous accumulation of aged BBA capped within the boundary layer, present across swathes of Brazil. As context, aerosol optical depth (AOD) and meteorological climatologies are presented and compared to the synoptic conditions of 2012. Throughout the early flights an expansive area of elevated (>1) AOD persisted, although in transitioning toward the wet season, rain out and advection significantly reduced its spatial extent and magnitude in western regions of Brazil. Concurrent decreases in haze BBA concentrations (~50%) were observed from the aircraft measurements sampling in these deforested/forested areas. However, the relative vertical structure, composition, physical and optical properties remained similar. The lofted maxima in aerosol concentrations at ~1.5km, typically not captured in models, is potentially important for regional climate. Significant differences were observed, however, during flights over the eastern savannah-like regions of Brazil, which remained drier throughout. Here, haze BBA concentrations resembled those in the west prior to wash out, with the exception of high loadings of refractive black carbon. This acted to lower the single scattering albedo and alter the number size distribution. The observed haze BBA west-east split is also present at source and remains similar throughout fresh plume evolution, thus we conclude

  1. Polar organic compounds in rural PM2.5 aerosols from K-puszta, Hungary, during a 2003 summer field campaign: sources and diurnal variations

    NASA Astrophysics Data System (ADS)

    Ion, A. C.; Vermeylen, R.; Kourtchev, I.; Cafmeyer, J.; Chi, X.; Gelencsér, A.; Maenhaut, W.; Claeys, M.

    2005-03-01

    In the present study, we examined PM2.5 continental rural background aerosols, which were collected during a summer field campaign at K-puszta, Hungary (4 June-10 July 2003), a mixed coniferous/deciduous forest site characterized by intense solar radiation during summer. Emphasis was placed on polar oxygenated organic compounds that provide information on aerosol sources and source processes. Analysis was performed using gas chromatography/mass spectrometry (GC/MS) after suitable sample workup consisting of extraction with methanol and derivatisation into trimethylsilyl (TMS) derivatives. The major components detected at significant atmospheric concentrations were: (a) photo-oxidation products of isoprene including the 2-methyltetrols (2-methylthreitol and 2-methylerythritol) and 2-methylglyceric acid, (b) levoglucosan, a marker for biomass burning, (c) malic acid, an end-oxidation product of unsaturated fatty acids, and (d) the sugar alcohols, arabitol and mannitol, markers for fungal spores. Diurnal patterns with highest concentrations during day-time were observed for the isoprene oxidation products, i.e., the 2-methyltetrols and 2-methylglyceric acid, which can be regarded as supporting evidence for their fast photochemical formation from their locally emitted precursor. In addition, a diurnal pattern with highest concentrations during day-time was observed for the fungal markers, arabitol and mannitol, suggesting that the release of fungal fragments that are associated with the PM2.5 aerosol is enhanced during that time. Furthermore, a diurnal pattern was also found for levoglucosan with the highest concentrations at night when wood burning may take place in the settlements around the sampling site. In contrast, malic acid did not show day/night differences but was found to follow quite closely the particulate and organic carbon mass. This is interpreted as an indication that malic acid is formed in photochemical reactions which have a much longer overall time

  2. Polar organic compounds in rural PM2.5 aerosols from K-puszta, Hungary, during a 2003 summer field campaign: Sources and diel variations

    NASA Astrophysics Data System (ADS)

    Ion, A. C.; Vermeylen, R.; Kourtchev, I.; Cafmeyer, J.; Chi, X.; Gelencsér, A.; Maenhaut, W.; Claeys, M.

    2005-07-01

    In the present study, we examined PM2.5 continental rural background aerosols, which were collected during a summer field campaign at K-puszta, Hungary (4 June-10 July 2003), a mixed coniferous/deciduous forest site characterized by intense solar radiation during summer. Emphasis was placed on polar oxygenated organic compounds that provide information on aerosol sources and source processes. The major components detected at significant atmospheric concentrations were: (a) photo-oxidation products of isoprene including the 2-methyltetrols (2-methylthreitol and 2-methylerythritol) and 2-methylglyceric acid, (b) levoglucosan, a marker for biomass burning, (c) malic acid, an intermediate in the oxidation of unsaturated fatty acids, and (d) the sugar alcohols, arabitol and mannitol, markers for fungal spores. Diel patterns with highest concentrations during day-time were observed for the 2-methyltetrols, which can be regarded as supporting evidence for their fast photochemical formation from locally emitted isoprene. In addition, a diel pattern with highest concentrations during day-time was observed for the fungal markers, suggesting that the release of fungal fragments that are associated with the PM2.5 aerosol is enhanced during that time. Furthermore, a diel pattern was also found for levoglucosan with the highest concentrations at night when wood burning may take place in the settlements around the sampling site. In contrast, malic acid did not show day/night differences but was found to follow quite closely the particulate and organic carbon mass. This is interpreted as an indication that malic acid is formed in photochemical reactions which have a much longer overall time-scale than that of isoprene photo-oxidation, and the sources of its precursors are manifold, including both anthropogenic and natural emissions. On the basis of the high concentrations found for the isoprene oxidation products during day-time, it can be concluded that rapid photo-oxidation of

  3. Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.; Kobayashi, Minoru; Mochida, Michihiro; Kawamura, Kimitaka; Lee, Meehye; Lim, Ho-Jin; Turpin, Barbara J.; Komazaki, Yuichi

    2004-10-01

    The organic compound tracers of atmospheric particulate matter, as well as organic carbon (OC) and elemental carbon (EC), have been characterized for samples acquired during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) from Gosan, Jeju Island, Korea, from Sapporo, Japan, and from Chichi-jima Island in the western North Pacific, as well as on the National Oceanic and Atmospheric Administration R/V Ronald H. Brown. Total extracts were analyzed by gas chromatography-mass spectrometry to determine both polar and aliphatic compounds. Total particles, organic matter, and lipid and saccharide compounds were high during the Asian dust episode (early April 2001) compared to levels at other times. The organic matter can be apportioned to seven emission sources and to significant oxidation-producing secondary products during long-range transport. Terrestrial natural background compounds are vascular plant wax lipids derived from direct emission and as part of desert sand dust. Fossil fuel utilization is obvious and derives from petroleum product and coal combustion emissions. Saccharides are a major polar (water-soluble) carbonaceous fraction derived from soil resuspension (agricultural activities). Biomass-burning smoke is evident in all samples and seasons. It contributes up to 13% of the total compound mass as water-soluble constituents. Burning of refuse is another source of organic particles. Varying levels of marine-derived lipids are superimposed during aerosol transport over the ocean. Secondary oxidation products increase with increasing transport distance and time. The ACE-Asia aerosols are composed not only of desert dust but also of soil dust, smoke from biomass and refuse burning, and emissions from fossil fuel use in urban areas.

  4. Salt in the Air during the Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) Campaign

    NASA Astrophysics Data System (ADS)

    Pszenny, A.; Keene, W. C.; Sander, R.; Bearekman, R.; Deegan, B.; Maben, J. R.; Warrick-Wriston, C.; Young, A.

    2011-12-01

    Bulk and size-segregated aerosol samples were collected 22 m AGL at the Boulder Atmospheric Observatory (40°N, 105°W, 1563 m ASL) from 18 February to 13 March 2011. Total concentrations of Na, Mg, Al, Cl, V, Mn, Br and I in bulk samples were determined by neutron activation analysis. Ionic composition of all size-segregated and a subset of bulk samples was determined by ion chromatography of aqueous extracts. Mg, Al, V and Mn mass concentrations were highly correlated and present in ratios similar to those in Denver area surface soils. Na and Cl were less well correlated with these soil elements but, after correction for soil contributions, highly correlated with each other. Linear regression of non-soil Cl vs. non-soil Na yielded a slope of 1.69 ± 0.09 (95% C.I.; n = 173), a value between the mass ratios of sea salt (1.80) and halite (1.54). The median Na and Cl concentrations (6.8 and 6.6 nmol m-3 STP, respectively) were factors of 25 to 35 less than those typically measured in the marine boundary layer. Br and I were somewhat correlated and appeared to represent a third aerosol component. The average bulk Cl-:total Cl ratio was 0.99 ± 0.03 (n = 44) suggesting that essentially all aerosol chlorine was water-soluble. Na+ and Cl- mass distributions were bimodal with most of the masses (medians 75% and 78%, respectively, n = 45) in supermicrometer particles. Possible origins of the "salt" component will be discussed based on consideration of 5-day HYSPLIT back trajectories and other information on sampled air mass characteristics.

  5. A brief overview of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) database and campaign operation centre (ChOC)

    NASA Astrophysics Data System (ADS)

    Ferré, Hélène; Dulac, François; Belmahfoud, Nizar; Brissebrat, Guillaume; Cloché, Sophie; Descloitres, Jacques; Fleury, Laurence; Focsa, Loredana; Henriot, Nicolas; Ramage, Karim; Vermeulen, Anne

    2016-04-01

    Initiated in 2010 in the framework of the multidisciplinary research programme MISTRALS (Mediterranean Integrated Studies at Regional and Local Scales; http:www.mistrals-home.org), the Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) aims at federating the scientific community for an updated assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The project combines mid- and long-term monitoring, intensive field campaigns, use of satellite data, and modelling studies. In this presentation we provide an overview of the campaign operation centre (http://choc.sedoo.fr/) and project database (http://mistrals.sedoo.fr/ChArMEx), at the end of the first experimental phase of the project that included a series of large campaigns based on airborne means (including balloons and various aircraft) and a network of surface stations. Those campaigns were performed mainly in the western Mediterranean basin in the summer of 2012, 2013 and 2014 with the help of the ChArMEx Operation Centre (ChOC), an open web site that has the objective to gather and display daily quick-looks from model forecasts and near-real time in situ and remote sensing observations of physical and chemical weather conditions relevant for the everyday campaign operation decisions. The ChOC is also useful for post campaign analyses and can be completed with a number of quick-looks of campaign results obtained later in order to offer an easy access to, and comprehensive view of all available data during the campaign period. The items included are selected according to the objectives and location of the given campaigns. The second experimental phase of ChArMEx from 2015 on is more focused on the eastern basin. In addition, the project operation centre is planned to be adapted for a joint MERMEX-ChArMEx oceanographic cruise (PEACETIME) for a study at

  6. A brief overview of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) database and campaign operation centre (ChOC)

    NASA Astrophysics Data System (ADS)

    Ferré, Hélène; Dulac, François; Belmahfoud, Nizar; Brissebrat, Guillaume; Cloché, Sophie; Descloitres, Jacques; Fleury, Laurence; Focsa, Loredana; Henriot, Nicolas; Ramage, Karim; Vermeulen, Anne

    2016-04-01

    Initiated in 2010 in the framework of the multidisciplinary research programme MISTRALS (Mediterranean Integrated Studies at Regional and Local Scales; http:www.mistrals-home.org), the Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) aims at federating the scientific community for an updated assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The project combines mid- and long-term monitoring, intensive field campaigns, use of satellite data, and modelling studies. In this presentation we provide an overview of the campaign operation centre (http://choc.sedoo.fr/) and project database (http://mistrals.sedoo.fr/ChArMEx), at the end of the first experimental phase of the project that included a series of large campaigns based on airborne means (including balloons and various aircraft) and a network of surface stations. Those campaigns were performed mainly in the western Mediterranean basin in the summer of 2012, 2013 and 2014 with the help of the ChArMEx Operation Centre (ChOC), an open web site that has the objective to gather and display daily quick-looks from model forecasts and near-real time in situ and remote sensing observations of physical and chemical weather conditions relevant for the everyday campaign operation decisions. The ChOC is also useful for post campaign analyses and can be completed with a number of quick-looks of campaign results obtained later in order to offer an easy access to, and comprehensive view of all available data during the campaign period. The items included are selected according to the objectives and location of the given campaigns. The second experimental phase of ChArMEx from 2015 on is more focused on the eastern basin. In addition, the project operation centre is planned to be adapted for a joint MERMEX-ChArMEx oceanographic cruise (PEACETIME) for a study at

  7. Characterization of atmospheric aerosols in the Po valley during the supersito campaigns - Part 3: Contribution of wood combustion to wintertime atmospheric aerosols in Emilia Romagna region (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Pietrogrande, Maria Chiara; Bacco, Dimitri; Ferrari, Silvia; Kaipainen, Jussi; Ricciardelli, Isabella; Riekkola, Marja-Liisa; Trentini, Arianna; Visentin, Marco

    2015-12-01

    This paper investigates the influence of wood combustion on PM in fall/winter that are the most favorable seasonal periods with presumed intense biomass burning for residential heating due to low temperatures. As a part of the Supersito project, nearly 650 PM2.5 samples were daily collected at urban and rural sites in Emilia Romagna (Northern Italy) in five intensive experimental campaigns throughout the years from 2011 to 2014. From specific compounds related to wood combustion a set of 58 organic compounds was determined, such as anhydrosugars, primary biological sugars, low-molecular-weight carboxylic acids, methoxylated phenols, PAHs and carbonaceous components (EC/OC). Levoglucosan was by far the most dominant anhydrosugar, both on a relative and an absolute basis (35-1043 ng m-3), followed by mannosan (7-121 ng m-3) and galactosan (4-52 ng m-3), indicating that wood burning for domestic heating is a diffuse regional source during the seasons studied. Different diagnostic ratios between anhydrosugars and methoxylated phenols were computed to discriminate the prevalent contribution of hardwood as combustion fuel. The investigated 19 high molecular weight PAHs were more abundant at the urban than at the rural site, with mean total value of 4.3 and 3.2 ng m-3 at MS and SP, respectively. The strong contribution of wood combustion to atmospheric PAHs was indicated by the positive correlation between levoglucosan and the most abundant PAHs (R2 = 0.71÷0.79) and individually with benzo(a)pyrene (R2 = 0.79). By using this correlation, it was estimated that wood burning contributed nearly 77% to BaP concentration in the winter months. Based on the ratio between levoglucosan and OC data, it could be concluded that the wood burning contributed about 35% to OC during the cold November-February periods and the contribution was similar at both sampling sites.

  8. Raman lidar measurements of water vapor and aerosol/clouds during the FIRE/SPECTRE field campaign

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Whiteman, D.; Ferrare, R.; Evans, K.; Goldsmith, J. E. M.; Lapp, M.; Bisson, S. E.

    1992-01-01

    Water vapor is one of the most important constituents of the earth's atmosphere. It has a major impact on both atmospheric dynamics and radiative transfer. From a dynamic standpoint, the distribution of water vapor with height determines convective stability which is the major indicator of destructive storm development. Also, water vapor stored in the planetary boundary layer acts as the fuel to intensify severe weather. In regards to radiative transfer, water vapor is the most active IR molecule in the atmosphere. It is more effective in absorbing and emitting IR radiation than either carbon dioxide or methane, and thus plays an important role in global change. The main objective of FIRE (First ISSCCP (International Satellite Cloud Climatology Project) Regional Experiment) was to study the development and radiative characteristics of cirrus clouds. The SPECTRE (Spectral Radiation Experiment) project was designed to acquire the necessary atmospheric observations to compare radiative measurements with radiative transfer theory, with special emphasis on understanding the water vapor spectral continuum. The FIRE/SPECTRE field campaign was conducted during Nov. - Dec. 1991 in Coffeyville, Kansas. A complete understanding of water vapor, its distribution with height, and its temporal variation was important for both experiments.

  9. Polar organic marker compounds in atmospheric aerosol in the Po Valley during the Supersito campaigns - Part 1: Low molecular weight carboxylic acids in cold seasons

    NASA Astrophysics Data System (ADS)

    Pietrogrande, Maria Chiara; Bacco, Dimitri; Visentin, Marco; Ferrari, Silvia; Poluzzi, Vanes

    2014-04-01

    In the framework of the “Supersito” project, three intensive experimental campaigns were conducted in the Po Valley (Northern Italy) in cold seasons, such as late autumn, pre-winter and deep-winter, over three years from 2011 to 2013. As a part of a study on polar marker compounds, including carboxylic acids, sugar derivatives and lignin phenols, the present study reports a detailed discussion on the atmospheric concentrations of 14 low molecular weight carboxylic acids, mainly dicarboxylic and oxo-hydroxy carboxylic acids, as relevant markers of primary and secondary organic aerosols. PM2.5 samples were collected in two monitoring sites, representing urban and rural background stations. The total quantities of carboxylic acids were 262, 167 and 249 ng m-3 at the urban site and 308, 115, 248 ng m-3 at the rural site in pre-winter, fall and deep-winter, respectively. These high concentrations can be explained by the large human emission sources in the urbanized region, combined with the stagnant atmospheric conditions during the cold seasons that accumulate the organic precursors and accelerate the secondary atmospheric reactions. The distribution profiles of the investigated markers suggest the dominant contributions of primary anthropogenic sources, such as traffic, domestic heating and biomass burning. These results are confirmed by comparison with additional emission tracers, such as anhydro-saccharides for biomass burning and fatty acids originated from different anthropogenic sources. In addition, some secondary constituents were detected in both sites, as produced by in situ photo-chemical reactions from both biogenic (e.g. pinonic acid) and anthropogenic precursors (e.g. phthalic and adipic acids). The impact of different sources from human activities was elucidated by investigating the week pattern of carboxylic and fatty acid concentrations. The weekly trends of analytes during the warmer campaign (fall 2012; mean temperature: 12 °C) may be related to

  10. Concentration of trace elements in fine and coarse aerosol over the Mediterranean basin during the Urania 2011 and 2012 cruise campaigns

    NASA Astrophysics Data System (ADS)

    Malaj, Naim; Ammoscato, Ivano; Andreoli, Virginia; Bencardino, Mariantonia; Cofone, Franco; Cosentino, Ugo; Mannarino, Valentino; Piazzalunga, Andrea; Pirrone, Nicola; Pitea, Demetrio; Servidio, Alessandro; Vardè, Massimiliano; Sprovieri, Francesca

    2015-04-01

    The almost unique geographic position as well as meteo-climatic characteristics of the Mediterranean basin surrounded by several anthropogenic and natural pollution sources, delineate it as one of the most polluted area. The intense maritime traffic and the industries of developed countries bordering the basin have been indicated as the major impact factors amongst the anthropogenic pollution sources while biomass burning, volcanoes fumes and frequent Saharan dust events represent the principal pollution coming from natural fonts. Land generated pollutants transported via air masses into marine atmosphere exert their impact on aquatic ecosystem, air quality and global climate. Although land-based air pollution monitoring sites are diffused through the Mediterranean countries, those regarding the atmospheric aerosol measured directly at sea surface are limited, leading to a scarce availability of the information. In order to fill this gap and to have more insights into the atmospheric dynamical and chemical mechanisms leading to high surface aerosol levels, the Institute of Atmospheric Pollution of the National Research Council (CNR-IIA) has started regular ship borne measurements over the Mediterranean Sea since 20001. In this context, here we report the results obtained during two cruise campaigns performed in two distinct routs and periods: i) Urania 2011 made within the Tyrrhenian Sea during the fall season, and ii) Urania 2012 performed during summer within the Eastern sector of the Mediterranean sea basin. Fine (PM2.5) and coarse (PM2.5-10) particles were collected on PTFE membrane filters (Advantec MFS) and their mass concentrations were determined gravimetrically. Successively, all the filters were digested with a mixture of HNO3/H2O2 in an open vessel digestion system (DigiPrep-MS, SCP SCIENCE, Canada) and analyzed by ICP-MS for the determination of the following elements: Be, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Ba, Tl

  11. Polar organic marker compounds in atmospheric aerosol in the Po Valley during the Supersito campaigns - Part 2: Seasonal variations of sugars

    NASA Astrophysics Data System (ADS)

    Pietrogrande, Maria Chiara; Bacco, Dimitri; Visentin, Marco; Ferrari, Silvia; Casali, Patrizia

    2014-11-01

    Four intensive experimental campaigns were conducted in the Po Valley (Northern Italy) in different seasons through the years 2012 and 2013, in the framework of the “Supersito” project. As a part of a study on polar tracers in atmospheric PM2.5, the present paper describes the abundances and temporal variations of sugars, as primary biogenic biomarkers, being the major form of photosynthetically assimilated carbon in the biosphere. The study includes primary saccharides (glucose, sucrose, arabinose, galactose and mycose), sugar alcohols (arabitol and mannitol) and anhydrosugars (levoglucosan, galactosan and mannosan). Strong seasonality was observed with total sugars concentration nearly 10 times higher in the cold seasons (mean 377 ng m-3) than in summer/spring (mean 36 ng m-3). Also sugar composition profiles varied seasonally, being dominated by anhydrosugars in fall and winter, i.e., levoglucosan (mean 271 ng m-3), followed by mannosan (mean 53 ng m-3) and galactosan (mean 29 ng m-3). These data indicate that in the cold seasons the biomass combustion for domestic heating is the main sugar source representing nearly 94% of the total saccharides mass measured in PM2.5. Accordingly, glucose, arabinose and galactose show the highest concentrations, since these saccharides are also emitted during the burning process as uncombusted biomass materials. In spring/summer the primary saccharides are dominant in PM2.5, with mannitol as the most abundant, followed by mycose, glucose and ribitol that are emitted by the terrestrial biomass, reflecting the higher sugar production and utilization by the ecosystem in the warm seasons. These results were confirmed by investigating other molecular markers, such as low-molecular-weight carboxylic acids and n-alkane homologs. Principal Component Analysis was applied to the data to extract three PCs that may be attributed to different saccharide sources, such as biomass burning and primary bio aerosol.

  12. Parameterization of the Extinction Coefficient in Ice and Mixed-Phase Arctic Clouds during the ISDAC Field Campaign

    SciTech Connect

    Korolev, A; Shashkov, A; Barker, H

    2012-03-06

    This report documents the history of attempts to directly measure cloud extinction, the current measurement device known as the Cloud Extinction Probe (CEP), specific problems with direct measurement of extinction coefficient, and the attempts made here to address these problems. Extinction coefficient is one of the fundamental microphysical parameters characterizing bulk properties of clouds. Knowledge of extinction coefficient is of crucial importance for radiative transfer calculations in weather prediction and climate models given that Earth's radiation budget (ERB) is modulated much by clouds. In order for a large-scale model to properly account for ERB and perturbations to it, it must ultimately be able to simulate cloud extinction coefficient well. In turn this requires adequate and simultaneous simulation of profiles of cloud water content and particle habit and size. Similarly, remote inference of cloud properties requires assumptions to be made about cloud phase and associated single-scattering properties, of which extinction coefficient is crucial. Hence, extinction coefficient plays an important role in both application and validation of methods for remote inference of cloud properties from data obtained from both satellite and surface sensors (e.g., Barker et al. 2008). While estimation of extinction coefficient within large-scale models is relatively straightforward for pure water droplets, thanks to Mie theory, mixed-phase and ice clouds still present problems. This is because of the myriad forms and sizes that crystals can achieve, each having their own unique extinction properties. For the foreseeable future, large-scale models will have to be content with diagnostic parametrization of crystal size and type. However, before they are able to provide satisfactory values needed for calculation of radiative transfer, they require the intermediate step of assigning single-scattering properties to particles. The most basic of these is extinction coefficient, yet it is rarely measured directly, and therefore verification of parametrizations is difficult. The obvious solution is to be able to measure microphysical properties and extinction at the same time and for the same volume. This is best done by in situ sampling by instruments mounted on either balloon or aircraft. The latter is the usual route and the one employed here. Yet the problem of actually measuring extinction coefficient directly for arbitrarily complicated particles still remains unsolved.

  13. Airborne Trace Gas and Aerosol Measurements in Several Shale Gas Basins during the SONGNEX (Shale Oil and Natural Gas Nexus) Campaign 2015

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Trainer, M.; De Gouw, J. A.

    2015-12-01

    Oil and natural gas from tight sand and shale formations has increased strongly over the last decade. This increased production has been associated with emissions of methane, non-methane hydrocarbons and other trace gases to the atmosphere, which are concerns for air quality, climate and air toxics. The NOAA Shale Oil and Natural Gas Nexus (SONGNEX) aircraft campaign took place in 2015, when the NOAA WP-3 aircraft conducted 20 research flights between March 19 and April 27, 2015 in the following shale gas regions: Denver-Julesberg, Uintah, Upper Green River, San Juan, Bakken, Barnett, Eagle Ford, Haynesville, Woodford, and Permian. The NOAA P3 was equipped with an extensive set of gas phase measurements, including instruments for methane, ethane, CO, CO2, a new H3O+CIMS, canister and cartridge samples for VOCs, HCHO, glyoxal, HNO3, NH3, NOx, NOy, PANs, ozone, and SO2. Aerosol number and size distributions were also measured. This presentation will focus on an overview of all the measurements onboard the NOAA WP-3 aircraft and discuss the differences between the shale gas regions. Due to a drop in oil prices, drilling for oil decreased in the months prior to the mission, but nevertheless the production of oil and natural gas were near the all-time high. Many of the shale gas basins investigated during SONGNEX have quite different characteristics. For example, the Permian Basin is a well-established field, whereas the Eagle Ford and the Bakken saw an almost exponential increase in production over the last few years. The basins differ by the relative amounts of natural gas versus oil that is being produced. Previous work had shown a large variability in methane emissions relative to the production (leak rate) between different basins. By including more and qualitatively different basins during SONGNEX, the study has provided an extensive data set to address how emissions depend on raw gas composition, extraction techniques and regulation. The influence of these

  14. Improvement of GOCI Yonsei Aerosol retrieval algorithm and validation during DRAGON campaign: Surface reflectance issue according to land, clear water and turbid water

    NASA Astrophysics Data System (ADS)

    Kim, Jhoon; Choi, Myungje; Lee, Jaehwa

    2015-04-01

    Aerosol optical properties (AOPs) over East Asia are retrieved hourly from the first Geostationary Ocean Color Imager (GOCI). GOCI Yonsei aerosol retrieval (YAER) algorithm was developed and improved continuously. Final products of GOCI YAER are aerosol optical depth (AOD), fine-mode fraction (FMF), single scattering albedo (SSA), Angstrom exponent (AE) and aerosol type in high spatial and temporal resolution. Previous aerosol retrieval algorithm over ocean adopts surface reflectance using cox and munk technique as fixed wind speed or the minimum reflectivity technique for continuous characteristics between ocean and land. This study adopt cox and munk technique using real time ECMWF wind speed data over clear water and the minimum reflectivity technique over turbid water. For detecting turbid water, TOA reflectance of 412, 660, and 865nm was used. Over the turbid water, TOA reflectance at 660nm increases more than 412 and 865nm. It also shows more sensitivity over turbid water than dust aerosol. We evaluated the accuracy of GOCI aerosol products using ground-based AERONET Level 2.0 products from total 38 East Asia sites and satellite-based MODIS-Aqua aerosol C6 products. The period of assessment is 3 months from March to May, 2012. Comparison results show that a correlation coefficient between the AODs at 550 nm of AERONET and GOCI is 0.884. Comparison results over ocean between GOCI and MODIS DT algorithm shows good agreement as R = 0.915.

  15. Temporal consistency of lidar observables during aerosol transport events in the framework of the ChArMEx/ADRIMED campaign at Menorca Island in June 2013

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Totems, J.; Ancellet, G.; Pelon, J.; Sicard, M.

    2015-11-01

    We performed synergetic daytime and night-time active and passive remote sensing observations at Menorca (Balearic Island, Spain), over more than 3 weeks during the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Effect in the Mediterranean (ChArMEx/ADRIMED) special observation period (SOP 1a, June-July 2013). We characterized the aerosol optical properties and type in the low and middle troposphere using an automated procedure combining Rayleigh-Mie-Raman lidar (355, 387 and 407 nm) with depolarization (355 nm) and AERONET Cimel® sun-photometer data. Results show a high variability due to varying dynamical forcing. The mean column-averaged lidar backscatter-to-extinction ratio (BER) was close to 0.024 sr-1 (lidar ratio of ∼ 41.7 sr), with a large dispersion of ±33 % over the whole observation period due to changing atmospheric transport regimes and aerosol sources. The ground-based remote sensing measurements, coupled with satellite observations, allowed to document (i) dust particles up to 5 km a.s.l. in altitude originating from Morocco and Algeria from 15 to 18 June with a peak in aerosol optical thickness (AOT) of 0.25 ± 0.05 at 355 nm, (ii) a long-range transport of biomass burning aerosol (AOT = 0.18 ± 0.16) related to North American forest fires detected from 26 to 28 June 2013 by the lidar between 2 and 7 km and (iii) mixture of local sources including marine aerosol particles and pollution from Spain. During the biomass burning event, the high value of the particle depolarization ratio (8-14 %) may imply the presence of dust-like particles mixed with the biomass burning aerosols in the mid troposphere. We show also linearity with SEVIRI retrievals of the aerosol optical thickness within 35 % relative bias, which is discussed as a function of aerosol type.

  16. Measurements of aerosol absorption and scattering in the Mexico City Metropolitan Area during the MILAGRO field campaign: a comparison of results from the T0 and T1 sites

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Gaffney, J. S.; Castro, T.; Salcido, A.; Frederick, J.

    2008-07-01

    Measurements of aerosol absorption and scattering were obtained in Mexico City during the MILAGRO (Megacity Initiative: Local and Global Research Observations) field campaign in March 2006. A comparison of aerosol absorption and scattering was obtained in Mexico City at site T0 located in the northern part of Mexico City at the Instituto Mexicano del Petróleo Laboratories and at site T1 located at the Universidad Tecnológica de Tecamac, 18 miles northwest of T0. Hourly averages of aerosol absorption were similar at both sites, ranging from 6 93 Mm-1 with an average of 31 Mm-1 at T0; and from 2 104 Mm-1 with an average of 19 Mm-1 at T1. Aerosol scattering at T0 ranged from 16 344 Mm-1 with an average of 105 Mm-1; while the scattering values at T1 were lower than T0 ranging from 2 136 with an average of 53 Mm-1. Aerosol single scattering albedos (SSAs) were determined at both sites using these data. SSAs at T1 ranged from 0.44 0.90 with an average 0.75 as compared to hose at T0, range 0.51 0.93 with an average of 0.77. Broadband UV-B intensity was found to be higher at site T0, with an average of 64 μW/cm2 at solar noon, than at site T1, which had an average of 54 μW/cm2 at solar noon. Comparisons of clear-sky modeled UV-B intensities with the simultaneous UV-B measurements obtained at site T0 and at site T1 for cloudless days indicate a larger diffuse radiation field at site T0 than at site T1. The determination of aerosol scattering Ångstrom coefficient at T0 suggests the larger diffuse radiation is due to the predominance of submicron aerosols at T0 with aerosol scattering of UV-B radiation peaked in the forward direction, leading to the enhancement observed at ground level.

  17. Carbonaceous aerosols in the Western Mediterranean during summertime and their contribution to the aerosol optical properties at ground level: First results of the ChArMEx-ADRIMED 2013 intensive campaign in Corsica

    NASA Astrophysics Data System (ADS)

    Sciare, Jean; Dulac, Francois; Feron, Anais; Crenn, Vincent; Sarda Esteve, Roland; Baisnee, Dominique; Bonnaire, Nicolas; Hamonou, Eric; Mallet, Marc; Lambert, Dominique; Nicolas, Jose B.; Bourrianne, Thierry; Petit, Jean-Eudes; Favez, Olivier; Canonaco, Francesco; Prevot, Andre; Mocnik, Grisa; Drinovec, Luka; Marpillat, Alexandre; Serrie, Wilfrid

    2014-05-01

    As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/), the CORSiCA (http://www.obs-mip.fr/corsica) and the ANR-ADRIMED programs, a large set of real-time measurements of carbonaceous aerosols was deployed in June 2013 at the Cape Corsica atmospheric supersite (http://gaw.empa.ch/gawsis/reports.asp?StationID=2076203042). Submicron organic aerosols (OA) were monitored every 30 min using an Aerosol Chemical Speciation Monitor (ACSM; Aerodyne Res. Inc. MA, USA); Fine (PM2.5) Organic Carbon (OC) and Elemental Carbon (EC) were measured every 2h using an OCEC Sunset Field Instrument (Sunset Lab, OR, USA) and every 12h using a low-vol (Leckel) filter sampler running at 2.3m3/h. Equivalent Black Carbon (BC) was monitored using two Aethalometers (models AE31 and AE33, Magee Scientific, US & Aerosol d.o.o., Slovenia) and a MAAP instrument (Thermo). Quality control of this large dataset was performed through chemical mass closure studies (using co-located SMPS and TEOM-FDMS) and direct comparisons with other real-time instruments running in parallel (Particle-Into-Liquid-Sampler-Ion-Chromatograph for ions, filter sampling, ...). Source apportionment of OA was then performed using the SourceFinder software (SoFi v4.5, http://www.psi.ch/acsm-stations/me-2) allowing the distinction between hydrogen- and oxygen-like organic aerosols (HOA and OOA, respectively) and highlighting the major contribution of secondary OA in the Western Mediterranean during summer. Using this time-resolved chemical information, reconstruction of the optical aerosol properties were performed and compared with integrating nephelometer (Model 3563, TSI, US) and photoacoustic extinctiometer (PAX, DMT, US) measurements performed in parallel. Results of these different closure studies (chemical/physical/optical) are presented and discussed here in details. They highlight the central role of carbonaceous aerosols on the optical properties of aerosols at ground level

  18. Vertical Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over Northern Indochina during the 7-SEAS/BASELInE field campaign

    NASA Astrophysics Data System (ADS)

    Lin, N. H.; Wang, S. H.; Welton, E. J.; Holben, B. N.; Tsay, S. C.; Giles, D. M.; Stewart, S. A.; Janjai, S.; Anh, N. X.; Hsiao, T. C.; Chen, W. N.; Lin, T. H.; Buntoung, S.; Chantara, S.; Wiriya, W.

    2015-12-01

    In this study, the aerosol optical properties and vertical distributions in major biomass-burning emission area of northern Indochina were investigated using ground-based remote sensing (i.e., four Sun-sky radiometers and one lidar) during the Seven South East Asian Studies/Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment conducted during spring 2014. Despite the high spatial variability of the aerosol optical depth (AOD; which at 500 nm ranged from 0.75 to 1.37 depending on the site), the temporal variation of the daily AOD demonstrated a consistent pattern among the observed sites, suggesting the presence of widespread smoke haze over the region. Smoke particles were characterized as small (Ångström exponent at 440-870 nm of 1.72 and fine mode fraction of 0.96), strongly absorbing (single-scattering albedo at 440 nm of 0.88), mixture of black and brown carbon particles (absorption Ångström exponent at 440-870 nm of 1.5) suspended within the planetary boundary layer (PBL). Smoke plumes driven by the PBL dynamics in the mountainous region reached as high as 5 km above sea level; these plumes subsequently spread out by westerly winds over northern Vietnam, southern China, and the neighboring South China Sea. Moreover, the analysis of diurnal variability of aerosol loading and optical properties as well as vertical profile in relation to PBL development, fire intensity, and aerosol mixing showed that various sites exhibited different variability based on meteorological conditions, fuel type, site elevation, and proximity to biomass-burning sources. These local factors influence the aerosol characteristics in the region and distinguish northern Indochina smoke from other biomass-burning regions in the world.

  19. Survey of aerosol optical properties measured as a function of wavelength with multiple photoacoustic instruments in Sacramento during the CARES campaign

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Flowers, B. A.; Arnott, W. P.; Mazzoleni, C.; Lack, D. A.; Gyawali, M. S.; Gorkowski, K.; Fast, J. D.; Zaveri, R. A.; Hubbe, J.; Aiken, A. C.

    2010-12-01

    The goal of the Carbonaceous Aerosols and Radiative Effects Study (CARES) in Central California was to develop scientific knowledge on the life cycle of black carbon and organic aerosols in a mixed urban and forested region. The focus was to improve mechanisms by which carbonaceous aerosols are produced and modified and how they alter their optical properties. To achieve this we deployed ten photoacoustic instruments at ground sites (T0 in Sacramento, and T1 in Cool) and on aircraft (DOE-G1 and NOAA-P3) to measure aerosol absorption and scattering as a function of wavelength. Optical properties were measured at 1064, 871, 780, 532, 405, 375 and 355 nm. Analysis of optical properties over this wide spectral range is being used to attribute the contributions of black, brown and organic carbon as it mixes with other aerosol constituents. Diurnal variations of optical properties measured at T0 reflect urban sources while those at T1 are influenced by local biogenic emissions mixed with transported urban emissions. We present optical evidence of particle nucleation and secondary organic formation at the ground sites. Airborne observations on the G-1 are used to gain a regional perspective and also test for self-consistency and/or performances of instruments. We focus on the inter-comparison flight on 18th June, 2010 where photoacoustic data from the NOAA-P3 (Calnex) and G-1 instruments are compared. Our data are combined with measurements of tracers (e.g. CO 2 and CO) and output from WRF-models to gain a predictive understanding of radiative forcing by carbonaceous aerosols in a mixed urban and forested regime.

  20. Ganges valley aerosol experiment.

    SciTech Connect

    Kotamarthi, V.R.; Satheesh, S.K.

    2011-08-01

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  1. Aerosol Activity and Hygroscopicity Combined with Lidar Data in the Urban Atmosphere of Athens, Greece in the Frame of the HYGRA_CD Campaign

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Papayannis, Alexandros; Vratolis, Stergios; Argyrouli, Athina; Mihalopoulos, Nikolaos; Tsagkaraki, Maria; Nenes, Athanasios; Eleftheriadis, Konstantinos

    2016-06-01

    Measurements of cloud condensation nuclei (CCN) concentrations between 0.2-1.0% supersaturation and aerosol size distribution were performed at an urban background site of Athens during HygrA-CD. The site is affected by local and long-range transported emissions as portrayed by the external mixing of the particles, as the larger ones appear to be more hygroscopic and more CCN-active than smaller ones. Activation fractions at all supersaturations exhibit a diurnal variability with minimum values around noon, which are considerably lower than unity. This reinforces the conclusion that the aerosol is mostly externally mixed between "fresher", less hygroscopic components with more aged, CCN active constituents.

  2. Campaign graphs

    SciTech Connect

    Simmons, G.J.

    1988-01-01

    We define a class of geometrical constructions in the plane in which each (unextended) line lies on (precisely) k points, and every point is an endpoint of (precisely) one line. We will refer to any construction satisfying these conditions as a campaign graph, or as a k-campaign graph if the value of k isn't clear from the context. A k-campaign graph, G, is said to be critical if no subgraph of G is also a k-campaign graph. 11 figs.

  3. Capital Campaigns.

    ERIC Educational Resources Information Center

    Dalessandro, David; And Others

    1989-01-01

    Eight articles focus on capital campaigns including setting goals (D. Dalessandro), the lead gift (D. A. Campbell), motivating trustees (J. J. Ianolli, Jr.), alumni associations (W. B. Adams), role of public relations officers (R. L. Williams), special events( H.R. Gilbert), the campaign document (R. King), and case statements (D. R. Treadwell,…

  4. Spatial heterogeneities in aerosol properties over Bay of Bengal inferred from ship-borne and MODIS observations during ICARB-W cruise campaign: Implications to radiative forcing

    NASA Astrophysics Data System (ADS)

    Raghavendra Kumar, K.; Narasimhulu, K.; Balakrishnaiah, G.; Suresh Kumar Reddy, B.; Rama Gopal, K.; Reddy, R. R.; Reddy, L. S. S.; Krishna Moorthy, K.; Suresh Babu, S.; Dutt, C. B. S.

    2011-01-01

    Comprehensive investigations during the last decade have clearly established that aerosols have a significant impact on the climate. This paper reports the results of the spatial variations in aerosol optical depth (AOD) and fine mode fraction (FMF) characteristics as a function of latitude and longitude over the Bay of Bengal (BoB) and the Northern Indian Ocean (NIO) during ICARB-W cruise period of 27th December 2008-30th January 2009 from onboard Sunphotometer and MODIS (Terra, Aqua) satellite measurements. Very high AOD 500 (0.7-0.8) occurred over the north head BoB adjacent to the northeastern Indian coast and the lowest AOD 500 (0.1-0.2) occurred in central BoB far away from the coasts, and in a small area in the northeastern part close to Myanmar coast as well as over NIO. The highest values (as high as 1.2) of Ångström exponent, α occurring over northeast BoB (regions close to Bangladesh and Myanmar) indicate relative abundance of accumulation mode particles and very low values of α (below 0.7) over central part of BoB as well as southern BoB/NIO suggesting dominance of coarse-mode sea spray aerosols. Terra/Aqua MODIS AOD 550 and cruise measured AOD 500 using Sunphotometer showed good agreement ( R2 = 0.92) over the BoB. The total mass concentrations over BoB during cruise period were remarkably high, with a mean value of 28.4 ± 5.7 μg m -3. Aerosol FMF was higher than 0.7 over the BoB, while FMF over NIO was about 0.5. NCEP reanalysis data on winds at 850 hPa, along with 5-days airmass back trajectories via HYSPLIT model, suggested transport of continental aerosols from the central and northern India over the BoB by the strong westerly/northwesterly winds. Regionally averaged clear sky aerosol (net) forcing over BoB during the winter is -28.9 W m -2 at the surface and -10.4 W m -2 at the top of the atmosphere whereas, the ARF values estimated over NIO at TOA, surface and in the atmosphere are -6.4, -18.3 and +11.9 W m -2, respectively.

  5. High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar Aerosol Optical Property Retrieval Intercomparison During the 2012 7-SEAS Field Campaign at Singapore

    NASA Technical Reports Server (NTRS)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boon Ning; Salinas, Santo V.

    2014-01-01

    From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.

  6. VELETA 2002 Field Campaign.

    NASA Astrophysics Data System (ADS)

    Alados-Arboledas, L.; Veleta2002 Team

    2003-04-01

    Depletion of the Earth's ozone layer is considered responsible of an increase in the solar ultraviolet irradiance incoming at surface level (WMO, 1998). For this reason, it is important to know the amount of ultraviolet radiation received by plants and animal organisms to evaluate the potential impact of increased UV radiation on biological systems. During recent years several studies has investigated the differences in UV radiation between places located at different altitude. Depending on the choice of the experimental area altitudinal gradients in erythemal UV have been reported ranging from 0.08 to 0.40 at different regions. Rather high altitudinal gradients were obtained when the studies have been undertaken at sites with important tropospheric pollution or when snow cover was present in the high-level sites. In this sense, it seems of interest to study these altitudinal gradients including comprehensive observations of the environmental conditions relevant to the incoming UV irradiance in order to separate the different contributions to this altitudinal effect. This paper presents the field campaign VELETA2002 (eValuation of the Effects of eLevation and aErosols on the ultravioleT rAdiation), developed during the month of July 2002 in the area of Sierra Nevada (Spain). This field campaign was designed to obtain experimental data on elevation and atmospheric aerosol effects on the solar ultraviolet irradiance. For this purpose a set of radiometers and spectroradiometers has been installed at both slopes of Sierra Nevada Massif, from coastal to inland locations. The field stations include Motril, a coastal location at sea level, Pitres (1200 m a.s.l.) located in the South slope of Sierra Nevada Massif, the Veleta Peak (3398 m a.s.l.), Las Sabinas (2200 m a.s.l.) located on the north slope of the mountain range and Armilla (680 m a.s.l.) located in the valley. The principal feature of the locations is that they provide a strong altitudinal gradient considering

  7. Final Report for "Improved Representations of Cloud Microphysics for Model and Remote Sensing Evaluation using Data Collected during ISDAC, TWP-ICE and RACORO

    SciTech Connect

    McFarquhar, Greg M.

    2003-06-11

    We were funded by ASR to use data collected during ISDAC and TWP-ICE to evaluate models with a variety of temporal and spatial scales, to evaluate ground-based remote sensing retrievals and to develop cloud parameterizations with the end goal of improving the modeling of cloud processes and properties and their impact on atmospheric radiation. In particular, we proposed to: 1) Calculate distributions of microphysical properties observed in arctic stratus during ISDAC for initializing and evaluating LES and GCMs, and for developing parameterizations of effective particle sizes, mean fall velocities, and mean single-scattering properties for such models; 2) Improve representations of particle sizes, fall velocities and scattering properties for tropical and arctic cirrus using TWP-ICE, ISDAC and M-PACE data, and to determine the contributions that small ice crystals, with maximum dimensions D less than 50 μm, make to mass and radiative properties; 3) Study fundamental interactions between clouds and radiation by improving representations of small quasi-spherical particles and their scattering properties. We were additionally funded 1-year by ASR to use RACORO data to develop an integrated product of cloud microphysical properties. We accomplished all of our goals.

  8. Aerosol particles collected on aircraft flights over the northwestern Pacific region during the ACE-Asia campaign: Composition and major sources of the organic compounds

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.; Kobayashi, Minoru; Mochida, Michihiro; Kawamura, Kimitaka; Huebert, Barry J.

    2004-10-01

    Atmospheric particulate matter, collected over the polluted east Asia/Pacific region in spring 2001 during research flights with the National Center for Atmospheric Research (NCAR) C-130 aircraft, was analyzed for different types of organic compounds using capillary gas chromatography-mass spectrometry. More than 70 organic species were detected in the aerosols and grouped into different compound classes on the basis of functional groups, including n-alkanes, polycyclic aromatic hydrocarbons, fatty acids, dehydroabietic acid, alkanols, water-soluble sugars (including glucose, sucrose, mycose, and levoglucosan), monocarboxylic and dicarboxylic acids, urea, and phthalates. Interestingly, the water-soluble compounds (72-133 ng m-3) were found to account for 16-50% (average 34%) of the total identified compound mass (TCM). Organic compounds were further categorized into several groups to suggest their sources. Fossil fuel combustion was recognized as the most significant source for the TCM (contributing 33-80% of TCM, average 50%), followed by soil resuspension (5-25%, average 19%) and secondary oxidation products (4-15%, average 9%). In contrast, the contribution of natural sources such as terrestrial plant wax and marine lipids (fatty acids and alkanols) was relatively small (3.4% and 9.4% on average, respectively). Biomass burning was suggested to contribute only a minor portion to the TCM of the Asian aerosols during the spring season (1.4% on average based on levoglucosan). However, levoglucosan may have been hydrolyzed and/or oxidized in part during long-range transport, and therefore this value represents a lower limit. The organic compound compositions of these samples are very different from those reported for aerosol particles of the Atlantic Ocean and from the earlier data for the mid-Pacific in terms of the abundant presence of water-soluble compounds consisting of saccharides, anhydrosaccharides, and the secondary dicarboxylic acids. This study

  9. Final Technical Report for "Ice nuclei relation to aerosol properties: Data analysis and model parameterization for IN in mixed-phase clouds" (DOE/SC00002354)

    SciTech Connect

    Anthony Prenni; Kreidenweis, Sonia M.

    2012-09-28

    Clouds play an important role in weather and climate. In addition to their key role in the hydrologic cycle, clouds scatter incoming solar radiation and trap infrared radiation from the surface and lower atmosphere. Despite their importance, feedbacks involving clouds remain as one of the largest sources of uncertainty in climate models. To better simulate cloud processes requires better characterization of cloud microphysical processes, which can affect the spatial extent, optical depth and lifetime of clouds. To this end, we developed a new parameterization to be used in numerical models that describes the variation of ice nuclei (IN) number concentrations active to form ice crystals in mixed-phase (water droplets and ice crystals co-existing) cloud conditions as these depend on existing aerosol properties and temperature. The parameterization is based on data collected using the Colorado State University continuous flow diffusion chamber in aircraft and ground-based campaigns over a 14-year period, including data from the DOE-supported Mixed-Phase Arctic Cloud Experiment. The resulting relationship is shown to more accurately represent the variability of ice nuclei distributions in the atmosphere compared to currently used parameterizations based on temperature alone. When implemented in one global climate model, the new parameterization predicted more realistic annually averaged cloud water and ice distributions, and cloud radiative properties, especially for sensitive higher latitude mixed-phase cloud regions. As a test of the new global IN scheme, it was compared to independent data collected during the 2008 DOE-sponsored Indirect and Semi-Direct Aerosol Campaign (ISDAC). Good agreement with this new data set suggests the broad applicability of the new scheme for describing general (non-chemically specific) aerosol influences on IN number concentrations feeding mixed-phase Arctic stratus clouds. Finally, the parameterization was implemented into a regional

  10. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    NASA Astrophysics Data System (ADS)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J.-D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-03-01

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water soluble fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ∼34% in the accumulation vs. ∼47% in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5-99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ∼70%, while efflorescence occurred at different humidities, i.e., at ∼35% RH for submicron particles vs. ∼50% RH for supermicron particles. This ∼15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5-99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was estimated to be ∼0.15 for

  11. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    DOE PAGES

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J. -D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; et al

    2015-03-16

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water solublemore » fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34% in the accumulation vs. ~ 47% in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ~ 70%, while efflorescence occurred at different humidities, i.e., at ~ 35% RH for submicron particles vs. ~ 50% RH for supermicron particles. This ~ 15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was estimated to be ~ 0.15 for the

  12. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    NASA Astrophysics Data System (ADS)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J.-D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-08-01

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia (61° N, 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical compositions of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38 % of particulate matter (PM) in the accumulation mode and coarse mode, respectively. The water-soluble fraction of organic matter was estimated to be 52 and 8 % of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34 % in the accumulation mode vs. ~ 47 % in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5-99.4 % RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same relative humidity (RH), starting at ~ 70 %, while efflorescence occurred at different humidities, i.e., at ~ 35 % RH for submicron particles vs. ~ 50 % RH for supermicron particles. This ~ 15 % RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5-99.4 % RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv,ws value related to the water-soluble (ws

  13. The stratospheric aerosol particle measurement by balloon at Syowa Station (69.00 deg S, 39.35 deg E): Outline of special sonde (rubber) campaign JARE 24

    NASA Technical Reports Server (NTRS)

    Iwasaka, Y.; Morita, T.; Itoh, T.; Shibazaki, K.; Makino, Y.; Tanaka, T.; Tsukamura, K.; Yano, T.; Kondoh, K.; Iwashita, G.

    1985-01-01

    During the period of AMA (Antarctic Middle Atmosphere), various style balloons were used to measure atmospheric parameters at Syowa Station (69.00 deg S, 39.35 deg E), Antarctica. The measurements which were made using balloons specially designed to monitor stratospheric aerosol particles are discussed. This type balloon was first used by JARE (Japan Antarctic Research Expedition) 24th Team in 1983. Until that time, the Japan Antarctic Research Expedition Team had been using only a large plastic balloon to monitor various minor constituents in the stratosphere. The plastic balloon was very useful, but it took a long time to arrange a balloon launching. Additionally, launching time strongly depended on weather conditions. A timely launching of the balloon was carried out with this specially designed sonde.

  14. Original sounding and drifting balloon-borne measurements in the western Mediterranean with the aerosol counter/sizer LOAC during summer ChArMEx campaigns, with a focus on desert dust events

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dulac, François; Vignelles, Damien; Jeannot, Matthieu; Verdier, Nicolas; Chazette, Patrick; Crenn, Vincent; Sciare, Jean; Totems, Julien; Durand, Pierre; Barret, Brice; Jambert, Corinne; Mallet, Marc; Menut, Laurent; Mailler, Sylvain; Basart, Sara; Baldasano, José Maria

    2015-04-01

    LOAC (Light Optical Aerosol Counter) is a new small optical particle counter/sizer of ~250 grams designed to fly under all kinds of balloons. The measurements are conducted at two scattering angles (12° and 60°), allowing the determination of the aerosol particle concentrations in 19 size classes within a diameter range of ~0.2-100 µm and some identification of the nature of particles dominating different size classes. Following laboratory calibration, the sensor particularly discriminates wet or liquid particles, mineral dust, soot carbon particles and salts. Comparisons with other in situ sensors at the surface and with remote sensing measurements on the vertical were performed to give confidence in measurements. The instrument has been operated at the surface, under all kinds of balloons up to more than 35 km in altitude, including tethered, sounding, open stratospheric and new boundary-layer pressurized drifting balloons (BLPB) from CNES, and was tested on board a small UAV. Operations encompass a variety of environments including the Arctic (Reykjavik, Island, and Kiruna, Sweden), Brazil (Sao Paolo), the western Mediterranean Basin, southwestern France, peri-urban (Ile de France) and urban areas (Paris and Vienna). Presented results are focused on the LOAC balloon-borne measurements performed in the western Mediterranean basin during MISTRALS/ChArMEx campaigns (Mediterranean Integrated Studies aT Regional And Local Scales/the Chemistry-Aerosol Mediterranean Experiment; http://www.mistrals-hjome.org; http://charmex.lsce.ipsl.fr), with a focus on African dust events. Two test flights with a first version of LOAC under sounding balloons were first successfully performed in late June 2012 near Marseille during an intense dust event. In 2013, 19 LOAC flights have been performed under meteorological balloons and 12 under low altitude drifting balloons, most of them from Minorca Island (Spain) in June and early July and others from Levant Island (south of France

  15. Original sounding and drifting balloon-borne measurements in the western Mediterranean with the aerosol counter/sizer LOAC during summer ChArMEx campaigns, with a focus on desert dust events

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dulac, François; Vignelles, Damien; Jeannot, Matthieu; Verdier, Nicolas; Chazette, Patrick; Crenn, Vincent; Sciare, Jean; Totems, Julien; Durand, Pierre; Barret, Brice; Jambert, Corinne; Mallet, Marc; Menut, Laurent; Mailler, Sylvain; Basart, Sara; Baldasano, José Maria

    2015-04-01

    LOAC (Light Optical Aerosol Counter) is a new small optical particle counter/sizer of ~250 grams designed to fly under all kinds of balloons. The measurements are conducted at two scattering angles (12° and 60°), allowing the determination of the aerosol particle concentrations in 19 size classes within a diameter range of ~0.2-100 µm and some identification of the nature of particles dominating different size classes. Following laboratory calibration, the sensor particularly discriminates wet or liquid particles, mineral dust, soot carbon particles and salts. Comparisons with other in situ sensors at the surface and with remote sensing measurements on the vertical were performed to give confidence in measurements. The instrument has been operated at the surface, under all kinds of balloons up to more than 35 km in altitude, including tethered, sounding, open stratospheric and new boundary-layer pressurized drifting balloons (BLPB) from CNES, and was tested on board a small UAV. Operations encompass a variety of environments including the Arctic (Reykjavik, Island, and Kiruna, Sweden), Brazil (Sao Paolo), the western Mediterranean Basin, southwestern France, peri-urban (Ile de France) and urban areas (Paris and Vienna). Presented results are focused on the LOAC balloon-borne measurements performed in the western Mediterranean basin during MISTRALS/ChArMEx campaigns (Mediterranean Integrated Studies aT Regional And Local Scales/the Chemistry-Aerosol Mediterranean Experiment; http://www.mistrals-hjome.org; http://charmex.lsce.ipsl.fr), with a focus on African dust events. Two test flights with a first version of LOAC under sounding balloons were first successfully performed in late June 2012 near Marseille during an intense dust event. In 2013, 19 LOAC flights have been performed under meteorological balloons and 12 under low altitude drifting balloons, most of them from Minorca Island (Spain) in June and early July and others from Levant Island (south of France

  16. Single-particle characterization of atmospheric aerosols collected at Gosan, Korea, during the Asian Pacific Regional Aerosol Characterization Experiment field campaign using low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Geng, Hong; Cheng, Fangqin; Ro, Chul-Un

    2011-11-01

    A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.

  17. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    SciTech Connect

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J. -D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-03-16

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water soluble fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34% in the accumulation vs. ~ 47% in the coarse mode.

    The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ~ 70%, while efflorescence occurred at different humidities, i.e., at ~ 35% RH for submicron particles vs. ~ 50% RH for supermicron particles. This ~ 15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments.

    The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was

  18. Merger campaign.

    PubMed

    2007-01-01

    Through using the Web, TV, radio, and print advertisements, The Hospital of Central Connecticut announced in October 2006 its new name and the merger of two hospitals: New Britain General Hospital and Bradley Memorial Hospital. A campaign consisting of TV and radio ads was created to promote the merger. The ads are also featured on the hospital's Web site. PMID:17450950

  19. Molecular composition of PM 2.5 organic aerosol measured at an urban site of Korea during the ACE-Asia campaign

    NASA Astrophysics Data System (ADS)

    Park, Seung Shik; Bae, Min-Suk; Schauer, James J.; Kim, Young J.; Yong Cho, Sung; Jai Kim, Seung

    Daily fine particulate matter (PM 2.5) samples were collected at Gwangju, Korea, during the ACE-Asia campaign between 26 March and 4 May 2001, to characterize individual organic compounds. Daily air volumes per sample (˜24 m 3) were too low for detailed organic analysis by gas chromatography-mass spectrometry (GC-MS), so were grouped based on their air mass trajectories. A total of 9 composites (Groups A-I), seven containing 4-6 daily samples and two containing 2 daily samples, were analyzed to determine the n-alkanes, n-alkanoic acids, dicarboxylic acids, aromatic acids, resin acids, PAHs, oxy-PAHs, and levoglucosan, etc. Two-day composite samples were formed during the Asian dust storm events (10-13 April) due to the high PM 2.5 mass concentration. The concentrations of n-alkanes and n-alkanoic acids were highly elevated when air masses are transported through Korean peninsula (Group B), local anthropogenic pollution strongly impacted on the measurement site (Group C), or when a biomass burning event had occurred (Group H). Of the n-alkanoic acids, octadecanoic acid (C 18) was the most abundant species in most of the composite samples, followed by hexadecanoic acid (C 16), but with lower concentrations for the higher molecular weight acids (⩾C 20), suggesting a greater contribution from petroleum-based emission sources, such as gasoline and diesel vehicles, fuel oil combustion, etc. Also, the concentrations of resin acids were enriched in Groups B and C. A high levoglucosan concentration was observed in the Group H, in which a biomass-burning plume passing through Korean peninsula was transported to the sampling region. For the periods with Asian dust events (Groups D and E), most of the organic species were less abundant than in the other composite sample groups. Additionally, two 12-h PM 2.5 ambient samples, collected nearby an agricultural land during agricultural waste burning episode, were used to analyze individual organic species and examine the

  20. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  1. Field Campaign Guidelines

    SciTech Connect

    Voyles, J. W.; Chapman, L. A.

    2015-12-01

    This document establishes a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking System and are specifically tailored to meet the scope of each field campaign.

  2. RACORO aerosol data processing

    SciTech Connect

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  3. The "Know Stroke" Campaign

    MedlinePlus

    ... Current Issue Past Issues Special Section The "Know Stroke" Campaign Past Issues / Summer 2007 Table of Contents ... campaign for the U.S. Hispanic community. 1 Know Stroke A stroke occurs when the blood supply to ...

  4. Diversity: A Corporate Campaign

    ERIC Educational Resources Information Center

    Akiyama, Diana D.

    2008-01-01

    In this article, the author calls for a "campaign" because she believes there is a need to build upon the successes of diversity initiatives with renewed commitment, in much the same way as capital campaigns build upon past successes and refocus campuses on their work. Just as a capital campaign invests in financial stability by stimulating…

  5. Political Campaign Techniques.

    ERIC Educational Resources Information Center

    Institute for Political/Legal Education, Sewell, NJ.

    Techniques, materials, and coordinating efforts used in a political campaign are outlined for high school students. The objective is to familiarize students with these techniques so that they can become effective campaign volunteers. Topics include the candidate and the press, campaign publicity materials, organization of headquarters, receptions,…

  6. Dual Wavelength Lidar Observation of Tropical High-Altitude Cirrus Clouds During the ALBATROSS 1996 Campaign

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Schafer, J.; Neuber, R.; Schrems, O.; McDermid, I. S.

    1998-01-01

    Dual wavelength aerosol lidar observations of tropical high-altitude cirrus clouds were performed during the ALBATROSS 1996 campaign aboard the research vessel POLARSTERN on the Atlantic ocean in October-November 1996.

  7. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  8. Pre-Cloud Aerosol, Cloud Droplet Concentration, and Cloud Condensation Nuclei from the VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign First Quarter 2010 ASR Program Metric Report

    SciTech Connect

    Kleinman, LI; Springston, SR; Daum, PH; Lee, Y-N; Sedlacek, AJ; Senum, G; Wang, J

    2011-08-31

    In this, the first of a series of Program Metric Reports, we (1) describe archived data from the DOE G-1 aircraft, (2) illustrate several relations between sub-cloud aerosol, CCN, and cloud droplets pertinent to determining the effects of pollutant sources on cloud properties, and (3) post to the data archive an Excel spreadsheet that contains cloud and corresponding sub-cloud data.

  9. An overview of the AROMAT campaigns

    NASA Astrophysics Data System (ADS)

    Merlaud, Alexis; Dekemper, Emmanuel; Van Roozendael, Michel; Constantin, Daniel; Georgescu, Lucian; Meier, Andreas; Richter, Andreas; Den Hoed, Mirjam; Allaart, Marc; Boscornea, Andreea; Vajaiac, Sorin; Bellegante, Livio; Nemuc, Anca; Nicolae, Doina; Shaifangar, Reza; Dörner, Steffen; Wagner, Thomas; Stebel, Kerstin; Schuettemeyer, Dirk

    2016-04-01

    The Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign and its follow-up AROMAT-2 were held in September 2014 and August 2015, respectively. Both campaigns focused on two geophysical targets: the city of Bucharest and the large power plants of the Jiu Valley, which are located in a rural area 170 km West of Bucharest. These two areas are complementary in terms of emitted chemical species and their spatial distributions. The objectives of the AROMAT campaigns were (i) to test recently developed airborne observation systems dedicated to air quality satellite validation studies such as the AirMAP imaging DOAS system (University of Bremen), the NO2 sonde (KNMI), and the compact SWING whiskbroom imager (BIRA), and (ii) to prepare the validation programme of the future Atmospheric Sentinels, starting with Sentinel-5 Precursor (S5P) to be launched in early summer 2016. We present results from the different airborne instrumentations and from coincident ground-based measurements (lidar, in-situ, and mobile DOAS systems) performed during both campaigns. The AROMAT dataset addresses several of the mandatory products of TROPOMI/S5P, in particular NO2 and SO2 (horizontal distribution and profile from aircraft, plume image with ground-based SO2 and NO2 cameras, transects with mobile DOAS, in-situ), H2CO (mobile MAX-DOAS), and aerosols (lidar, airborne FUBISS-ASA2 sun-photometer, and aircraft in-situ). We investigate the information content of the AROMAT dataset for satellite validation studies based on co-located OMI and GOME-2 data, and simulations of TROPOMI measurements. The experience gained during AROMAT and AROMAT-2 will be used in support of a large-scale TROPOMI/S5P validation campaign in Romania scheduled for summer 2017.

  10. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  11. The STAR Grants Contribution to the SOAS Campaign

    EPA Science Inventory

    The Southern Oxidant and Aerosol Study (SOAS) is a community-led field campaign that was part of the Southeast Atmosphere Study (SAS). As one of the largest field studies in decades to characterize air quality in the Southeastern United States, SAS is a collaborative project invo...

  12. [Positive Activities Campaign.

    ERIC Educational Resources Information Center

    Substance Abuse and Mental Health Services Administration (DHHS/PHS), Rockville, MD. Center for Substance Abuse Prevention.

    This packet contains four pamphlets that are part of a campaign to encourage adults to provide and promote positive activities for youth and to serve as role models for young people. "Positive Activities: A Campaign for Youth" includes information on what positive activities are, how to get involved in helping to provide positive activities for…

  13. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    The reliability of aerosol radiative forcing estimates from climate models depends on the accuracy of simulated global aerosol distribution and composition, as well as on the models' representation of the aerosol-cloud and aerosol-radiation interactions. To help improve on previous modeling studies, we recently developed the new aerosol microphysics submodel MADE3 that explicitly tracks particle mixing state in the Aitken, accumulation, and coarse mode size ranges. We implemented MADE3 into the global atmospheric chemistry general circulation model EMAC and evaluated it by comparison of simulated aerosol properties to observations. Compared properties include continental near-surface aerosol component concentrations and size distributions, continental and marine aerosol vertical profiles, and nearly global aerosol optical depth. Recent studies have shown the specific importance of aerosol vertical profiles for determination of the aerosol radiative forcing. Therefore, our focus here is on the evaluation of simulated vertical profiles. The observational data is taken from campaigns between 1990 and 2011 over the Pacific Ocean, over North and South America, and over Europe. The datasets include black carbon and total aerosol mass mixing ratios, as well as aerosol particle number concentrations. Compared to other models, EMAC with MADE3 yields good agreement with the observations - despite a general high bias of the simulated mass mixing ratio profiles. However, BC concentrations are generally overestimated by many models in the upper troposphere. With MADE3 in EMAC, we find better agreement of the simulated BC profiles with HIPPO data than the multi-model average of the models that took part in the AeroCom project. There is an interesting difference between the profiles from individual campaigns and more "climatological" datasets. For instance, compared to spatially and temporally localized campaigns, the model simulates a more continuous decline in both total

  14. Sun photometer aerosol retrievals during SALTRACE

    NASA Astrophysics Data System (ADS)

    Toledano, Carlos; Torres, Benjamin; Althausen, Dietrich; Groß, Silke; Freudenthaler, Volker; Weinzierl, Bernadett; Gasteiger, Josef; Ansmann, Albert; Wiegner, Matthias; González, Ramiro; Cachorro, Victoria

    2015-04-01

    The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE), aims at investigating the long-range transport of Saharan dust across the Atlantic Ocean. A large set of ground-based and airborne aerosol and meteorological instrumentation was used for this purpose during a 5-week campaign that took place during June-July 2013. Several Sun photometers were deployed at Barbados Island during this campaign. Two Cimels included in AERONET and the Sun and Sky Automatic Radiometer (SSARA) were co-located with the ground-based lidars BERTHA and POLIS. A set of optical and microphysical aerosol properties derived from Sun and Sky spectral observations (principal plane and almucantar configurations) in the range 340-1640nm are analyzed, including aerosol optical depth (AOD), volume size distribution, complex refractive index, sphericity and single scattering albedo. The Sun photometers include polarization capabilities, therefore apart from the inversion of sky radiances as it is routinely done in AERONET, polarized radiances are also inverted. Several dust events are clearly identified in the measurement period, with moderated AOD (500nm) in the range 0.3 to 0.6. The clean marine background was also observed during short periods. The retrieved aerosol properties are compared with the lidar and in-situ observations carried out within SALTRACE, as well as with data collected during the SAMUM campaigns in Morocco and Cape Verde, in order to investigate possible changes in the dust plume during the transport.

  15. Aerosol Enhancements in the Upper Troposphere Over The Amazon Forest: Do Amazonian Clouds Produce Aerosols?

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Afchine, A.; Albrecht, R. I.; Artaxo, P.; Borrmann, S.; Cecchini, M. A.; Costa, A.; Dollner, M.; Fütterer, D.; Järvinen, E.; Klimach, T.; Konemann, T.; Kraemer, M.; Krüger, M. L.; Machado, L.; Mertes, S.; Pöhlker, C.; Poeschl, U.; Sauer, D. N.; Schnaiter, M.; Schneider, J.; Schulz, C.; Spanu, A.; Walser, A.; Weinzierl, B.; Wendisch, M.

    2015-12-01

    The German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) on the German research aircraft HALO took place over the Amazon Basin in September/October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with trace gases, aerosol particles, and atmospheric radiation. The aircraft was equipped with about 30 remote sensing and in-situ instruments for meteorological, trace gas, aerosol, cloud, precipitation, and solar radiation measurements. Fourteen research flights were conducted during this campaign. Observations during ACRIDICON-CHUVA showed high aerosol concentrations in the upper troposphere (UT) over the Amazon Basin, with concentrations after normalization to standard conditions often exceeding those in the boundary layer (BL). This behavior was consistent between several aerosol metrics, including condensation nuclei (CN), cloud condensation nuclei (CCN), and chemical species mass concentrations. These UT aerosols were different in their composition and size distribution from the aerosol in the BL, making convective transport of particles unlikely as a source. The regions in the immediate outflow of deep convective clouds were found to be depleted in aerosol particles, whereas enhanced aerosol number and mass concentrations were found in UT regions that had experienced outflow from deep convection in the preceding 24-48 hours. This suggests that aerosol production takes place in the UT based on volatile and condensable material brought up by deep convection. Subsequently, downward mixing and transport of upper tropospheric aerosol may be a source of particles to the BL, where they increase in size by the condensation of biogenic volatile organic carbon (BVOC) oxidation products. This may be an important source of aerosol particles in the Amazonian BL, where aerosol nucleation and new

  16. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; Ault, A.; Bondy, A.; Takahama, S.; Modini, R. L.; Baumann, K.; Edgerton, E.; Knote, C.; et al

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3more » and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  17. Automated campaign system

    NASA Astrophysics Data System (ADS)

    Vondran, Gary; Chao, Hui; Lin, Xiaofan; Beyer, Dirk; Joshi, Parag; Atkins, Brian; Obrador, Pere

    2006-02-01

    To run a targeted campaign involves coordination and management across numerous organizations and complex process flows. Everything from market analytics on customer databases, acquiring content and images, composing the materials, meeting the sponsoring enterprise brand standards, driving through production and fulfillment, and evaluating results; all processes are currently performed by experienced highly trained staff. Presented is a developed solution that not only brings together technologies that automate each process, but also automates the entire flow so that a novice user could easily run a successful campaign from their desktop. This paper presents the technologies, structure, and process flows used to bring this system together. Highlighted will be how the complexity of running a targeted campaign is hidden from the user through technologies, all while providing the benefits of a professionally managed campaign.

  18. Pride Campaign Overcomes Vandalism.

    ERIC Educational Resources Information Center

    Lucas, Donald W.

    1984-01-01

    A San Jose high school's campaign to develop student pride in the school and its appearance includes publicity measures, painting garbage cans in school colors, and cafeteria supervision. Results in diminishing acts of vandalism have been encouraging. (MJL)

  19. Campaigning for change.

    PubMed

    Hirschhorn, Larry

    2002-07-01

    Most organizations must change if they're to stay alive. Change is tough to accomplish, but it's not impossible and can be systematized. The author, who has been involved in change initiatives at scores of companies, believes that the success of such programs has more to do with execution than with conceptualization. The successful change programs he observed had one thing in common: They employed three distinct but linked campaigns--political, marketing, and military. The author cites examples from such companies as Hewlett-Packard, Bristol-Myers Squibb, and Saturn to illustrate how effective such campaigns can be. A political campaign creates a coalition strong enough to support and guide the initiative. Sometimes, coalitions arise from changes to a company's formal structure. But they may come out of the informal structure, or they could stem from a temporary counterstructure. A marketing campaign must go beyond simply publicizing the initiative's benefits. It focuses on listening to ideas that bubble up from the field as well as on working with lead customers to design the initiative. A clearly articulated theme for the transformation program must also be developed. A military campaign deploys executives' scarce resources of attention and time. Successful executives secure their supply lines by, for instance, piggybacking onto initiatives that have already captured people's interests or already exist as bootleg projects. These managers also set up pilot projects that turn into beachheads because the projects expose them to the difficult dynamics they will ultimately face. Successful executives launch all three campaigns simultaneously. The three always feed on one another, and if any one campaign is not properly implemented, the change initiative is bound to fail.

  20. Japanese respond to campaign.

    PubMed

    1994-08-01

    A unique campaign launched by JOICFP in August 1993 had by the end of June 1994 netted US $41,200 to support activities of the integrated Project (IP) in developing countries. Under the campaign, the public, institutions, organizations, and businesses have been sending in used prepaid cards for sale to collectors in Japan and abroad. Prepaid cards are widely used throughout Japan for phones, subways, railways and highways. Nippon Telegraph and Telephone Corporation (NTT) alone issues 20 million cards annually. The campaign, which has been widely featured in the media, has proved effective for drawing attention to JOICFP and to population and family planning issues. Gaining the understanding of the Japanese public about population issues has grown in importance since the government's announcement of the new Global Issues Initiative (GII). Word about the campaign was carried by radio, television, newspapers, and magazines nationwide. The number of cards sent in escalated with the attention. By the end of June, JOICFP had received around 700,000 cards, of which 550,000 have been exchanged for cash. The funds generated by the card sales have been allocated to support grassroots IP activities and encourage the self-reliance of projects in China, Ghana, Guatemala, Nepal, Tanzania, and Zambia. Responses to the campaign have come from individuals as well as local governments, hospitals, enterprises, and educational institutions. Many of these have initiated their own card-collection system and information-dissemination activities to support JOICFP. Over 5000 different organizations are now collaborating with JOICFP for the campaign, including Tenmaya Department Store in Okayama City.

  1. Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol

    NASA Astrophysics Data System (ADS)

    Gyawali, Madhu S.

    a shell-core model, we verified, for the first time, that AEA can be as high as 1.6 even for non-absorbing coating on BC, suggesting that the organic coating need not be intrinsically brown to observe effects commonly attributed to BrC absorption. Additionally, for laboratory generated incense burning aerosols, AEA varied as lambda -4.5for wavelengths ranging from 355 to 1047 nm. In contrast, the wood smoke aerosols during winter had a much weaker wavelength dependence (lambda-1.1), comparable to that of traffic emission aerosols. During these observations, the multispectral SSA decreased with the wavelength for traffic-related emissions, yet it increased for biomass and incense burning aerosol. The strong spectral dependence was due to the enhanced light absorption by BrC at UV and blue wavelengths. In all cases, results of this analysis suggested that inefficient smoldering combustion processes can emit predominantly BrC, in comparison to high-temperature and flaming burning processes. During the CARES field campaign, aerosols were dominated by biogenic emissions. Aerosol light absorption was modestly enhanced (lambda -1.6) at shorter wavelengths (355, 375, 405, and 532 nm) compared to 870 and 1047 nm, likely due to the spectral dependence of coating on BC. The secondary organic aerosol (SOA) mass concentration steadily increased in the latter half of the campaign, with strong 355 nm aerosol light scattering. Overall, results of this field campaign showed that the biogenic SOA was not BrC, i.e. it didn't have intrinsic characteristics near UV absorption. These results should be further tested and analyzed to assess the full implications of BrC aerosol light absorption.

  2. Antipiracy Campaign Exasperates Colleges

    ERIC Educational Resources Information Center

    Rampell, Catherine

    2008-01-01

    This article reports on the withdrawal of some universities' support of a music industry's campaign against music piracy on their campuses. Talk to the chief information officer at just about any American university, and he will probably say that his institution has bent over backward to help the Recording Industry Association of America curb…

  3. Campaign Finance: Reporter Guide

    ERIC Educational Resources Information Center

    Wieder, Ben

    2014-01-01

    Campaign finance might seem like the exclusive province of political reporters, but there are many good reasons why authors should be paying attention--both in races for education positions and in other key races at the local, state, and federal levels with implications for education. Basic math is a necessary skill and familiarity with a…

  4. Campaign Drama, Classroom Lessons

    ERIC Educational Resources Information Center

    Manzo, Kathleen Kennedy

    2008-01-01

    The hoopla surrounding the New Hampshire presidential primaries earlier this month stirred some students at Timberlane High School to watch the candidates' debates, read news coverage, attend rallies, and even volunteer in local campaign offices. That interest, in turn, stimulated discussions in Bob Dawson's government classes at the school,…

  5. The STAR Grants Contribution to the SOAS Campaign

    NASA Astrophysics Data System (ADS)

    Hunt, S.

    2013-12-01

    The Southern Oxidant and Aerosol Study (SOAS) is a community-led field campaign that was part of the Southeast Atmosphere Study (SAS). As one of the largest field studies in decades to characterize air quality in the Southeastern United States, SAS is a collaborative project involving the US Environmental Protection Agency (EPA), the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the Electric Power Research Institute (EPRI) and dozens of domestic and international research institutions. In 2013, the EPA's Science to Achieve Results (STAR) grants program funded fourteen projects, resulting in a research portfolio addressing a number of scientific needs outlined in the solicitation. These projects fall into two categories: field measurements of key chemical species and supporting laboratory experiments and model development. Awardees participating in the SOAS campaign are studying key chemical species (including volatile organic compounds, formaldehyde, reactive nitrogen species, reactive oxidant species, organonitrates and organosulfates) for understanding the interactions between anthropogenic and biogenic emissions. Measurements were made by instruments both on the ground and from aircrafts. Additionally, projects characterized and investigated the climatically-relevant properties of aerosol from the field site. Work also includes several chamber experiments that will result in a detailed analysis of secondary organic aerosol components and precursors. Certain species measured in the field campaign will be analyzed and characterized in a laboratory setting. Finally, three projects focus on improving air quality and climate models, particularly in areas dealing with cloud droplets, aqueous chemistry, and organic aerosol mixtures. This poster will provide an overview of the STAR grants program's contribution to the SAS and SOAS campaign and highlight some of the challenges and benefits of leveraging funds in this way.

  6. Aerosolized Antibiotics.

    PubMed

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  7. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  8. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  9. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    SciTech Connect

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-15

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  10. Campaigns in Agricultural Extension Programs.

    ERIC Educational Resources Information Center

    Spaven, John W.

    A booklet designed to aid those who use agricultural campaigns in their educational and advisory programs is presented. It is pointed out that a good campaign works as a chain reaction, inciting enthusiasm among workers and planners. The five steps in a well-organized campaign are: (1) planning, (2) preparing people for their jobs, (3) producing…

  11. Leadership Transitions during Fundraising Campaigns

    ERIC Educational Resources Information Center

    Nehls, Kimberly

    2012-01-01

    Capital campaigns are intense efforts to build the financial assets of an institution in a specified amount of time. This study provides an empirical view of how changes in leadership affected concomitant capital campaigns at ten colleges and universities. The transitions during these 10 campaigns influenced morale on campus, altered timing of the…

  12. Coordinated Field Campaigns in Chesapeake Bay and Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Novak, Michael; Tzortziou, Maria A.

    2015-01-01

    NASA's GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission concept recommended by the U.S. National Research Council (2007) focuses on measurements of atmospheric trace gases and aerosols and aquatic coastal ecology and biogeochemistry from geostationary orbit (35,786 km altitude). Two GEO-CAPE-sponsored multi-investigator ship-based field campaigns were conducted to coincide with the NASA Earth Venture Suborbital project DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaigns: (1) Chesapeake Bay in July 2011 and (2) northwestern Gulf of Mexico in September 2013. Goal: to evaluate whether GEO-CAPE coastal mission measurement and instrument requirements are optimized to address science objectives while minimizing ocean color satellite sensor complexity, size and cost - critical mission risk reduction activities. NASA continues to support science studies related to the analysis of data collected as part of these coordinated field campaigns and smaller efforts.

  13. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  14. Blowing Snow - A Major Source of Aerosol in the Polar Regions?

    NASA Astrophysics Data System (ADS)

    Kalnajs, L.; DeCarlo, P. F.; Giordano, M.; Davis, S. M.; Deshler, T.; Johnson, A.; Goetz, J. D.; Mukherjee, A. D.; Slater, A. G.

    2015-12-01

    Sea salt aerosol is the dominant aerosol component in unpolluted Polar Regions, particularly in the sea ice zone. In the lower latitude liquid ocean, wave action and bubble bursting is thought to be the main mechanism for sea salt aerosol production. However there is growing evidence that in the Polar Regions, particularly near sea ice, that the sublimation of wind lofted salty snow may be a dominant source of sea salt aerosol. An extensive set of aerosol sizing and compositional measurements was made at sea ice location near Ross Island, Antarctica during two field measurement campaigns - a summer campaign in 2014 and late winter campaign in 2015. Sizing measurements from both open and closed path aerosol instruments, and compositional measurements from an Aerosol Mass Spectrometer suggest that there is a significant enhancement in both super and sub micron aerosol associated with high wind events and blowing snow in the boundary layer. While the composition of this aerosol indicates that it is primarily of marine origin, the ratios of the major sea salt ions suggest that processing in the snow pack significantly modifies the aerosol. This alternate sea salt aerosol production mechanism could have significant impact on the modeling of tropospheric halogen chemistry and on the interpretation of sea salt-based proxies in the ice core record.

  15. Remote sensing of aerosol properties during CARES

    NASA Astrophysics Data System (ADS)

    Kassianov, Evgueni; Barnard, James; Pekour, Mikhail; Flynn, Connor; Ferrare, Richard; Hostetler, Chris; Hair, John; Jobson, Bertram T.

    2011-11-01

    One month of MFRSR data collected at two sites in the central California (USA) region during the CARES campaign are processed and the MFRSR-derived AODs at 500 nm wavelength are compared with available AODs provided by AERONET measurements. We find that the MFRSR and AERONET AODs are small (~0.05) and comparable. A reasonable quantitative agreement between column aerosol size distributions (up to 2 μm) from the MFRSR and AERONET retrievals is illustrated as well. Analysis of the retrieved (MFRSR and AERONET) and in situ measured aerosol size distributions suggests that the contribution of the coarse mode to aerosol optical properties is substantial for several days. The results of a radiative closure experiment performed for the two sites and one-month period show a favorable agreement between the calculated and measured broadband downwelling irradiances (bias does not exceed about 3 Wm-2), and thus imply that the MFRSR-derived aerosol optical properties are reasonable.

  16. Remote Sensing of Aerosol Properties during CARES

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Flynn, Connor J.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Jobson, Bertram Thomas

    2011-10-01

    One month of MFRSR data collected at two sites in the central California (USA) region during the CARES campaign are processed and the MFRSR-derived AODs at 500 nm wavelength are compared with available AODs provided by AERONET measurements. We find that the MFRSR and AERONET AODs are small ({approx}0.05) and comparable. A reasonable quantitative agreement between column aerosol size distributions (up to 2 um) from the MFRSR and AERONET retrievals is illustrated as well. Analysis of the retrieved (MFRSR and AERONET) and in situ measured aerosol size distributions suggests that the contribution of the coarse mode to aerosol optical properties is substantial for several days. The results of a radiative closure experiment performed for the two sites and one-month period show a favorable agreement between the calculated and measured broadband downwelling irradiances (bias does not exceed about 3 Wm-2), and thus imply that the MFRSR-derived aerosol optical properties are reasonable.

  17. Ground Based Aerosol Measurements: Applications, Methods and Plans

    NASA Astrophysics Data System (ADS)

    Hume, E. E.; Cahill, C. F.; Carr, S. S.

    2004-05-01

    Anthropogenic and naturally occurring aerosols are linked to visibility degradation, changes in the earth's radiative balance, human health issues, acid rain, and the introduction of pollutants and/or nutrients to sensitive ecosystems. Understanding aerosols requires knowledge of the chemical constituents, sizes, the location and strength of sources, and the transport of the generated aerosols. Remote sensing techniques are used to study aerosols on large scales but are unable to retrieve the exact size distributions and chemical compositions of the observed aerosols. In situ measurements are required to interpret and understand the remotely sensed data. Details of a developing program for in situ aerosol measurement will be presented. A brief description of new aerosol sampling equipment being acquired for use in field campaigns will be given. The equipment being acquired for field campaigns are improved 8-stage rotating drum impactors designed and manufactured at the University of California, Davis. Results from previous measurement programs involving similar instruments will be presented to illustrate how these data can be utilized. Initial plans for using the instruments in measurement campaigns will be discussed.

  18. Black carbon in aerosol during BIBLE B

    NASA Astrophysics Data System (ADS)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2002-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  19. Black carbon in aerosol during BIBLE B

    NASA Astrophysics Data System (ADS)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  20. TYCHO Brahe's Copernican Campaign

    NASA Astrophysics Data System (ADS)

    Gingerich, O.; Voelkel, J. R.

    1997-12-01

    Historians of astronomy have generally assumed that the Ptolemaic and Copernican systems give equivalent predictions of planetary positions, but Tycho Brahe knew that in the Ptolemaic arrangement Mars' distance was always greater than the sun's, whereas in the Copernican system Mars at opposition approached to half the sun's distance. Because Tycho accepted the traditional solar distance scale, 20 times too small, he expected to measure a Martian diurnal parallax of 4.5' at opposition if the Copernican system was true. (In reality the horizontal parallax was too small to measure by naked-eye observations.) Hence, during the golden decade of the 1580s at Hven, Tycho undertook a major campaign to find Mars' parallax. Observations at the opposition of 1582-83 failed, according to a letter he wrote in 1584. The campaign at the next opposition led to frustration, but after the 1587 opposition he claimed that in fact he had already found the parallax in 1582. Was Tycho merely prevaricating because he wanted to have an observational basis for his new Tychonic cosmology? During this decade Tycho gradually became aware of the role of refraction, and much of the new instrumentation built at Stjerneborg seems to have been motivated by this problem. Using an erroneously chosen refraction table Tycho apparently convinced himself of a large parallax for Mars. He may well have discovered his error by 1592, for he never again claimed to have found the large parallax. Because of the failure of this major goal, Tycho's reputation as a very smart and program-motivated observer has suffered, but because of this particular observational campaign, there were ultimately enough astonishingly accurate Mars observations for Kepler's later studies to succeed in finding the law of areas and the elliptical form of planetary orbits.

  1. Stratospheric ozone intercomparison campaign (STOIC) 1989: Overview

    NASA Astrophysics Data System (ADS)

    Margitan, J. J.; Barnes, R. A.; Brothers, G. B.; Butler, J.; Burris, J.; Connor, B. J.; Ferrare, R. A.; Kerr, J. B.; Komhyr, W. D.; McCormick, M. P.; McDermid, I. S.; McElroy, C. T.; McGee, T. J.; Miller, A. J.; Owens, M.; Parrish, A. D.; Parsons, C. L.; Torres, A. L.; Tsou, J. J.; Walsh, T. D.; Whiteman, D.

    1995-05-01

    The NASA Upper Atmosphere Research Program organized a Stratospheric Ozone Intercomparison Campaign (STOIC) held in July-August 1989 at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL). The primary instruments participating in this campaign were several that had been developed by NASA for the Network for the Detection of Stratospheric Change: the JPL ozone lidar at TMF, the Goddard Space Flight Center trailer-mounted ozone lidar which was moved to TMF for this comparison, and the Millitech/LaRC microwave radiometer. To assess the performance of these new instruments, a validation/intercomparison campaign was undertaken using established techniques: balloon ozonesondes launched by personnel from the Wallops Flight Facility and from NOAA Geophysical Monitoring for Climate Change (GMCC) (now Climate Monitoring and Diagnostics Laboratory), a NOAA GMCC Dobson spectrophotometer, and a Brewer spectrometer from the Atmospheric Environment Service of Canada, both being used for column as well as Umkehr profile retrievals. All of these instruments were located at TMF and measurements were made as close together in time as possible to minimize atmospheric variability as a factor in the comparisons. Daytime rocket measurements of ozone were made by Wallops Flight Facility personnel using ROCOZ-A instruments launched from San Nicholas Island. The entire campaign was conducted as a blind intercomparison, with the investigators not seeing each others data until all data had been submitted to a referee and archived at the end of the 2-week period (July 20 to August 2, 1989). Satellite data were also obtained from the Stratospheric Aerosol and Gas Experiment (SAGE II) aboard the Earth Radiation Budget Satellite and the total ozone mapping spectrometer (TOMS) aboard Nimbus 7. An examination of the data has found excellent agreement among the techniques, especially in the 20- to 40-km range. As expected, there was little atmospheric variability during the

  2. Stratospheric Ozone Intercomparison Campaign (STOIC) 1989: Overview

    NASA Technical Reports Server (NTRS)

    Margitan, J. J.; Barnes, R. A.; Brothers, G. B.; Butler, J.; Burris, J.; Connor, B. J.; Ferrare, R. A.; Kerr, J. B.; Komhyr, W. D.; McCormick, M. P.; McDermid, I. S.; McElroy, C. T.; McGee, T. J.; Miller, A. J.; Owens, M.; Parrish, A. D.; Parsons, C. L.; Torres, A. L.; Tsou, J. J.; Walsh, T. D.

    1995-01-01

    The NASA Upper Atmosphere Research Program organized a Stratospheric Ozone Intercomparison Campaign (STOIC) held in July-August 1989 at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL). The primary instruments participating in this campaign were several that had been developed by NASA for the Network for the Detection of Stratospheric Change: the JPL ozone lidar at TMF, the Goddard Space Flight Center trailer-mounted ozone lidar which was moved to TMF for this comparison, and the Millitech/LaRC microwave radiometer. To assess the performance of these new instruments, a validation/intercomparison campaign was undertaken using established techniques: balloon ozonesondes launched by personnel from the Wallops Flight Facility and from NOAA Geophysical Monitoring for Climate Change (GMCC) (now Climate Monitoring and Diagnostics Laboratory), a NOAA GMCC Dobson spectrophotometer, and a Brewer spectrometer from the Atmospheric Environment Service of Canada, both being used for column as well as Umkehr profile retrievals. All of these instruments were located at TMF and measurements were made as close together in time as possible to minimize atmospheric variability as a factor in the comparisons. Daytime rocket measurements of ozone were made by Wallops Flight Facility personnel using ROCOZ-A instruments launched from San Nicholas Island. The entire campaign was conducted as a blind intercomparison, with the investigators not seeing each others data until all data had been submitted to a referee and archived at the end of the 2-week period (July 20 to August 2, 1989). Satellite data were also obtained from the Stratospheric Aerosol and Gas Experiment (SAGE 2) aboard the Earth Radiation Budget Satellite and the Total Ozone Mapping Spectrometer (TOMS) aboard Nimbus 7. An examination of the data has found excellent agreement among the techniques, especially in the 20- to 40-km range. As expected, there was little atmospheric variability during the

  3. The thermodynamic and kinetic impacts of organics on marine aerosols

    NASA Astrophysics Data System (ADS)

    Crahan, Kathleen

    Organics can change the manner in which aerosols scatter radiation directly as hydrated aerosols and indirectly as in-cloud activated aerosols, through changing the solution activity, the surface tension, and the accommodation coefficient of the hydrated aerosol. This work explores the kinetic and thermodynamic impacts of the organic component of marine aerosols through data collected over four field campaigns and through several models used to reproduce observations. The Rough Evaporation Duct (RED) project was conducted in the summer of 2001 off the coast of Oahu using the Twin Otter Aircraft and the Floating Instrument Platform research platform for data collection. The Cloud-Aerosol Research in the Marine Atmosphere (CARMA) campaigns were conducted over three summers (2002, 2004, 2005) off the coast of Monterey, California. During the CARMA campaigns, a thick, moist, stratocumulus deck was present during most days, and the Twin Otter Aircraft was the primary research platform used to collect data. However, the research goals and exact instrumentation onboard the Twin Otter varied from campaign to campaign, and each data set was analyzed individually. Data collected from CARMA I were used to explore the mechanism of oxalic acid production in cloud droplets. Oxalate was observed in the clouds in excess to below cloud concentrations by an average of 0.11 mug m-3, suggesting an in-cloud production. The tentative identification in cloud water of an intermediate species in the aqueous oxalate production mechanism lends further support to an in-cloud oxalate source. The data sets collected during the RED campaign and the CARMA II and CARMA III campaigns were used to investigate the impact of aerosol chemical speciation on aerosol hygroscopic behavior. Several models were used to correlate the observations in the subsaturated regime to theory including an explicit thermodynamic model, simple Kohler theory, and a parameterization of the solution activity. These models

  4. Meteorological and Aerosol Sensing with small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Born, J.; Möhler, O.; Haunold, W.; Schrod, J.; Brooks, I.; Norris, S.; Brooks, B.; Hill, M.; Leisner, T.

    2012-04-01

    Unmanned Aerial Systems (UAS) facilitate the monitoring of several meteorological and aerosol parameters with high resolution in space and time. They are small, easy to operate, cost efficient and allow for flexible application during field campaigns. We present two experimental payloads for measurement of relative humidity, temperature, aerosol size distribution and the collection of aerosol samples on board the small UAS SIRIUS II. The payload modules are light weight (<1kg) and can be easily switched between two flights. All sensors can be controlled from the ground and the measured data is recorded by the autopilot together with the position data. The first module contains a sensor package for measurement of relative humidity and temperature and the Compact Lightweight Aerosol Spectrometer Prope (CLASP) for acquisition of aerosol size distributions. CLASP measures aerosol particles with diameters from 0.12μm to 9.25μm in up to 32 channels at a frequency of 10 Hz. The second module also contains a humidity and temperature sensor package and the aerosol sample collection device. The aerosol sampler collects air samples at 2 l/min onto a sample holder. After the flight the ice nuclei on the sample holder are activated in the lab and counted. In August 2012 the complete setup will be used during a measurement campaign at mount "Kleiner Feldberg" close to Frankfurt. Until then we will perform test flights and additional laboratory tests.

  5. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3- aerosol during the 2013 Southern Oxidant and Aerosol Study

    SciTech Connect

    Allen, Hannah M.; Draper, Danielle C.; Ayres, Benjamin R.; Ault, Andrew P.; Bondy, Amy L.; Takahama, S.; Modini, Robert; Baumann, K.; Edgerton, Eric S.; Knote, Christoph; Laskin, Alexander; Wang, Bingbing; Fry, Juliane L.

    2015-09-25

    The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA), an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO3 ) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 um) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.

  6. Morpheus Lander Testing Campaign

    NASA Technical Reports Server (NTRS)

    Hart, Jeremy J.; Mitchell, Jennifer D.

    2011-01-01

    NASA s Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing designed to serve as a testbed for advanced spacecraft technologies. The Morpheus vehicle has successfully performed a set of integrated vehicle test flights including hot-fire and tether tests, ultimately culminating in an un-tethered "free-flight" This development and testing campaign was conducted on-site at the Johnson Space Center (JSC), less than one year after project start. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper documents the integrated testing campaign, including descriptions of test types (hot-fire, tether, and free-flight), test objectives, and the infrastructure of JSC testing facilities. A major focus of the paper will be the fast pace of the project, rapid prototyping, frequent testing, and lessons learned from this departure from the traditional engineering development process at NASA s Johnson Space Center.

  7. AH Her Observing Campaign

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2013-05-01

    Dr. Juan Echevarria (Universidad Nacional Autónoma de México) and colleagues request AAVSO assistance in a campaign on the Z Cam-type cataclysmic variable AH Her being carried out 2013 May 29 - June 18. They will be making photometric and spectroscopic observations of AH Her using the 2.1m and 0.84m telescopes at San Pedro Martir Observatory (SPM). Their goal is to carry out a radial velocity study of the system components using modern detectors; no study of AH Her has been made since the one by Horne, Wade, and Szkody in 1980-1981 (1986MNRAS.219..791H). Photometry and spectroscopy are requested. AH Her, for decades a reasonably "regular" Z Cam system, began exhibiting significantly anomalous behavior in ~2007. Since then it has experienced brief periods of fairly typical behavior interspersed with more anomalous intervals, including some unprecedented behavior. Most recently, it has returned to a more normal pattern of outbursts shape-wise but it is not back to its normal amplitude or frequency. AAVSO data will be essential for correlation in order to determine the precise time(s) of minimum occurring during the campaign. Finder charts with sequences may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  8. [Aerosol therapy].

    PubMed

    Wildhaber, J H

    1998-08-15

    Aerosol therapy plays a major role in the diagnosis and treatment of various lung diseases. The aim of inhalation therapy is to deposit a reproducible and adequate dose of a specific drug to the airways, in order to achieve a high, local, clinical effect while avoiding serious systemic side effects. To achieve this goal, it is therefore important to have an efficient inhalation device to deliver different medications. However, the currently available therapeutic inhalation devices (nebuliser, pressurised metered-dose inhaler and dry powder inhaler) are not very efficient in aerosol delivery and have several disadvantages. Inhalation devices can be assessed by in vitro studies, filter studies and radiolabelled deposition studies. Several radiolabelled deposition studies have shown that nebulisers and pressurised metered-dose inhalers are not very efficient in aerosol delivery. In children, before 1997, only 0.5% to 15% of the total nebulised or actuated dose from a nebuliser or pressurised metered-dose inhaler actually reached the lungs. These numbers were somewhat improved in adults, 30% of the total nebulised or actuated dose reaching the airways. Aerosol therapy with dry powder inhalers was the most efficient before 1997, 30% of the total dose being deposited in the lungs of adults and children. In 1997, new developments in pressurised metered-dose inhalers much improved their efficiency in aerosol delivery. Lung deposition can be increased by up to 60% with use of a non-electrostatic holding chamber and/or a pressurised metered-dose inhaler with a hydrofluoroalkane propellant possessing superior aerosol characteristics. Several studies comparing the clinical efficiency of different inhalation devices have shown that the choice of an optimal inhalation device is crucial. In addition to the aerosol characteristics, ventilation parameters and airway morphology have an important bearing on deposition patterns. These parameters may be greatly influenced by the

  9. Aged organic aerosol in the Eastern Mediterranean: the Finokalia aerosol measurement experiment-2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Engelhart, G. J.; Mohr, C.; Kostenidou, E.; Lanz, V. A.; Bougiatioti, A.; Decarlo, P. F.; Prévôt, A. S. H.; Baltensperger, U.; Mihalopoulos, N.; Donahue, N. M.; Pandis, S. N.

    2010-01-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008), which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS) was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA) was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with time of day, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm-3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  10. Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment - 2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Engelhart, G. J.; Mohr, C.; Kostenidou, E.; Lanz, V. A.; Bougiatioti, A.; Decarlo, P. F.; Prevot, A. S. H.; Baltensperger, U.; Mihalopoulos, N.; Donahue, N. M.; Pandis, S. N.

    2010-05-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008), which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS) was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA) was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with source region, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm-3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  11. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  12. The Ocean Literacy Campaign

    NASA Astrophysics Data System (ADS)

    Schoedinger, S. E.; Strang, C.

    2008-12-01

    "Ocean Literacy is an understanding of the ocean's influence on you and your influence on the ocean." This simple statement captures the spirit of a conceptual framework supporting ocean literacy (COSEE et al., 2005). The framework comprises 7 essential principles and 44 fundamental concepts an ocean literate person would know (COSEE et al., 2005). The framework is the result of an extensive grassroots effort to reach consensus on (1) a definition for ocean literacy and (2) an articulation of the most important concepts to be understood by ocean-literate citizen (Cava et al., 2005). In the process of reaching consensus on these "big ideas" about the ocean, what began as a series of workshops has emerged as a campaign "owned" by an ever-expanding community of individuals, organizations and networks involved in developing and promoting the framework. The Ocean Literacy Framework has provided a common language for scientists and educators working together and serves as key guidance for the ocean science education efforts. This presentation will focus on the impact this Ocean Literacy Campaign has had to date as well as efforts underway to provide additional tools to enable educators and educational policy makers to further integrate teaching and learning about the ocean and our coasts into formal K-12 education and informal education. COSEE, National Geographic Society, NOAA, College of Exploration (2005). Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12, a jointly published brochure, URL: http://www.coexploration.org/oceanliteracy/documents/OceanLitChart.pdf Cava, F., S. Schoedinger , C. Strang, and P. Tuddenham (2005). Science Content and Standards for Ocean Literacy: A Report on Ocean Literacy, URL: http://www.coexploration.org/oceanliteracy/documents/OLit2004-05_Final_Report.pdf.

  13. 75 FR 43395 - Campaign Travel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... of 2007. See Final Rules on Campaign Travel, 74 FR 63951 (Dec. 7, 2009) (the ``Travel Rules... 11 CFR 9004.7 at a later date. Travel Rules, 74 FR at 63951. Through this Notice, the Commission... of the Honest Leadership and Open Government Act governing campaign travel on noncommercial...

  14. Foreign Policy: A Campaign Primer

    ERIC Educational Resources Information Center

    Glenn, David

    2008-01-01

    Presidential campaigns are usually eager to provide mind-numbingly detailed domestic-policy proposals. When it comes to foreign policy, however, campaigns often prefer to operate on the plane of generality and gesture. In the absence of blueprints, journalists and tea-leaf readers scrutinize the foreign-policy advisers attached to each candidate:…

  15. Langley Mobile Ozone Lidar (LMOL) results from the Denver, CO DISCOVER-AQ campaign

    NASA Astrophysics Data System (ADS)

    De Young, Russell; Carrion, William; Pliutau, Denis; Ganoe, Rene

    2015-10-01

    The Langley Mobile Ozone Lidar (LMOL) is a compact mobile differential absorption lidar (DIAL) system that was developed at NASA Langley Research Center, Hampton, VA, USA to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric air quality campaigns. This lidar is part of the Tropospheric Ozone Lidar Network (TOLNet) currently made up of six other ozone lidars across the U.S and Canada. This lidar has been deployed to Denver, CO July 15-August 15, 2014 for the DISCOVER-AQ air quality campaign. Ozone and aerosol profiles were taken showing the influence of emissions from the Denver region. Results of ozone concentration, aerosol scattering ratio, boundary layer height and clouds will be presented with emphasis on regional air quality.

  16. The DIAMET campaign

    NASA Astrophysics Data System (ADS)

    Vaughan, G.

    2012-04-01

    DIAMET (DIAbatic influences on Mesoscale structures in ExTratropical storms) is a joint project between the UK academic community and the Met Office. Its focus is on understanding and predicting mesoscale structures in synoptic-scale storms, and in particular on the role of diabatic processes in generating and maintaining them. Such structures include fronts, rain bands, secondary cyclones, sting jets etc, and are important because much of the extreme weather we experience (e.g. strong winds, heavy rain) comes from such regions. The project conducted two field campaigns in the autumn of 2011, from September 14 - 30 and November 24 - December 14, based around the FAAM BAe146 aircraft with support from ground-based radar and radiosonde measurements. Detailed modelling, mainly using the Met Office Unified model, supported the planning and interpretation of these campaigns. This presentation will give a brief overview of the campaigns. Both in September and November-December the weather regime was westerly, with a strong jet stream directed across the Atlantic. Three IOPs were conducted in September, to observe a convective band ahead of an upper-level trough, waves on a long trailing cold front, and a warm conveyor belt associated with a secondary cyclone. In November-December six IOPs were conducted, to observe frontal passages and high winds. This period was notable for a number of very strong windstorms passing across the north of the UK, and gave us an opportunity to examine bent-back warm fronts in the southern quadrant of these storms where the strongest winds are found. The case studies fell into two basic patterns. In the majority of cases, dropsonde legs at high level were used to obtain a cross-section of winds and thermodynamic structure (e.g. across a front), followed by in situ legs at lower levels (generally where the temperature was between 0 and -10°) to examine microphysical processes, especially ice multiplication and the extent of supercooled water

  17. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  18. Kinetics of droplet growth observed in recent field campaigns

    NASA Astrophysics Data System (ADS)

    Mei, F.; Wang, J.

    2012-12-01

    Atmospheric aerosols can indirectly influence global climate budget by changing the microphysical structure, lifetime, and coverage of clouds. While it is generally agreed that aerosol indirect effects act to cool the Earth-atmosphere system by increasing cloud reflectivity and coverage, the magnitudes of the indirect effects are poorly understood. The formation of cloud droplets from aerosol particles is kinetically controlled by the availability of water vapor, equilibrium water vapor pressure above the growing droplet surface, and both the gas phase and aerosol phase mass transfer resistances. It has been hypothesized that the formation of surface organic films or the delay in dissolution of solute could significantly delay the growth of cloud droplets. Such delay could lead to a higher maximum supersaturation within a rising cloud parcel, therefore higher droplet number concentration and smaller droplet size at constant liquid water content. When only a subset of the droplets experiences significant growth delay, the overall droplet size spectrum will be broadened, which facilitates the formation of precipitation. During three recent field campaigns (CalNex-LA, CARES, and Aerosol Intensive Observation Period at Brookhaven National Laboratory), the CCN activity and droplet growth of size selected particles ranging from 25 to 320 nm were characterized by a CCN counter under supersaturations from 0.1% to 0.8%. The three campaigns allow us to examine the droplet growth for many representative organic aerosol types, including biogenic SOA, anthropogenic SOA, and organic aerosols from biomass burning. The droplet growth of size-selected ambient particles inside the CCN counter was found to be influenced by a number of parameters, including particle critical supersaturation, heterogeneity in particle composition, and particle concentration. For example, reduced droplet growth due to water vapor depletion was observed when particle concentration was higher than 200 cm

  19. EARLINET instrument intercomparison campaigns: overview on strategy and results

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Freudenthaler, Volker; Baars, Holger; Amodeo, Aldo; Engelmann, Ronny; Mattis, Ina; Groß, Silke; Pappalardo, Gelsomina; Giunta, Aldo; D'Amico, Giuseppe; Chaikovsky, Anatoli; Osipenko, Fiodor; Slesar, Alexander; Nicolae, Doina; Belegante, Livio; Talianu, Camelia; Serikov, Ilya; Linné, Holger; Jansen, Friedhelm; Apituley, Arnoud; Wilson, Keith M.; de Graaf, Martin; Trickl, Thomas; Giehl, Helmut; Adam, Mariana; Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Sicard, Michaël; Tomás, Sergio; Lange, Diego; Kumar, Dhiraj; Pujadas, Manuel; Molero, Francisco; Fernández, Alfonso J.; Alados-Arboledas, Lucas; Bravo-Aranda, Juan Antonio; Navas-Guzmán, Francisco; Guerrero-Rascado, Juan Luis; José Granados-Muñoz, María; Preißler, Jana; Wagner, Frank; Gausa, Michael; Grigorov, Ivan; Stoyanov, Dimitar; Iarlori, Marco; Rizi, Vincenco; Spinelli, Nicola; Boselli, Antonella; Wang, Xuan; Lo Feudo, Teresa; Perrone, Maria Rita; De Tomasi, Ferdinando; Burlizzi, Pasquale

    2016-03-01

    This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009. We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607 nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below ±2 %. Particle backscatter and extinction coefficients agree within ±2 × 10-4 km-1 sr-1 and ± 0.01 km-1, respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future.

  20. Aerosol classification using EARLINET measurements for an intensive observational period

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, Nikolaos; Mona, Lucia; Pappalardo, Gelsomina

    2016-04-01

    ACTRIS (Aerosols, Clouds and Trace gases Research Infrastructure Network) organized an intensive observation period during summer 2012. This campaign aimed at the provision of advanced observations of physical and chemical aerosol properties, at the delivery of information about the 3D distribution of European atmospheric aerosols, and at the monitoring of Saharan dust intrusions events. EARLINET (European Aerosol Research Lidar Network) participated in the ACTRIS campaign through the addition of measurements according to the EARLINET schedule as well as daily lidar-profiling measurements around sunset by 11 selected lidar stations for the period from 8 June - 17 July. EARLINET observations during this almost two-month period are used to characterize the optical properties and vertical distribution of long-range transported aerosol over the broader area of Mediterranean basin. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, Angstrom exponents) are shown to vary with location and aerosol type. A methodology based on EARLINET observations of frequently observed aerosol types is used to classify aerosols into seven separate types. The summertime Mediterranean basin is prone to African dust aerosols. Two major dust events were studied. The first episode occurred from the 18 to 21 of the June and the second one lasted from 28 June to 6 July. The lidar ratio within the dust layer was found to be wavelength independent with mean values of 58±14 sr at 355 nm and 57±11 sr at 532 nm. For the particle linear depolarization ratio, mean values of 0.27±0.04 at 532 nm have been found. Acknowledgements. The financial support for EARLINET in the ACTRIS Research Infrastructure Project by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654169 and previously under grant agreement no. 262254 in the Seventh Framework Programme (FP7/2007-2013) is gratefully acknowledged.

  1. The Arctic Lower Troposphere Observed Structure (ALTOS) Campaign

    SciTech Connect

    Verlinde, J

    2010-10-18

    The ALTOS campaign focuses on operating a tethered observing system for routine in situ sampling of low-level (< 2 km) Arctic clouds. It has been a long-term hope to fly tethered systems at Barrow, Alaska, but it is clear that the Federal Aviation Administration (FAA) will not permit in-cloud tether systems at Barrow, even if unmanned aerial vehicle (UAV) operations are allowed in the future. We have provided the scientific rationale for long-term, routine in situ measurements of cloud and aerosol properties in the Arctic. The existing restricted air space at Oliktok offers an opportunity to do so.

  2. Modelling Aerosol Dispersion in Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Tay, B. K.; Jones, D. P.; Gallagher, M. W.; McFiggans, G. B.; Watkins, A. P.

    2009-04-01

    Flow patterns within an urban street canyon are influenced by various micrometeorological factors. It also represents an environment where pollutants such as aerosols accumulate to high levels due to high volumes of traffic. As adverse health effects are being attributed to exposure to aerosols, an investigation of the dispersion of aerosols within such environments is of growing importance. In particular, one is concerned with the vertical structure of the aerosol concentration, the ventilation characteristics of the street canyon and the influence of aerosol microphysical processes. Due to the inherent heterogeneity of the aerosol concentrations within the street canyon and the lack of spatial resolution of measurement campaigns, these issues are an on-going debate. Therefore, a modelling tool is required to represent aerosol dispersion patterns to provide insights to results of past measurement campaigns. Computational Fluid Dynamics (CFD) models are able to predict detailed airflow patterns within urban geometries. This capability may be further extended to include aerosol dispersion, by an Euler-Euler multiphase approach. To facilitate the investigation, a two-dimensional, multiphase CFD tool coupled with the k-epsilon turbulence model and with the capability of modelling mixed convection flow regimes arising from both wind driven flows and buoyancy effects from heated walls was developed. Assuming wind blowing perpendicularly to the canyon axis and treating aerosols as a passive scalar, an attempt will be made to assess the sensitivities of aerosol vertical structure and ventilation characteristics to the various flow conditions. Numerical studies were performed using an idealized 10m by 10m canyon to represent a regular canyon and 10m by 5m to represent a deep one. An aerosol emission source was assigned on the centerline of the canyon to represent exhaust emissions. The vertical structure of the aerosols would inform future directives regarding the

  3. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    PubMed Central

    Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-01-01

    Abstract A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size‐resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1‐CARMA is approximately ∼2.6 times as much computer time as the standard three‐mode aerosol model in CESM1 (CESM1‐MAM3) and twice as much computer time as the seven‐mode aerosol model in CESM1 (CESM1‐MAM7) using similar gas phase chemistry codes. Aerosol spatial‐temporal distributions are simulated and compared with a large set of observations from satellites, ground‐based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data.

  4. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    PubMed Central

    Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-01-01

    Abstract A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size‐resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1‐CARMA is approximately ∼2.6 times as much computer time as the standard three‐mode aerosol model in CESM1 (CESM1‐MAM3) and twice as much computer time as the seven‐mode aerosol model in CESM1 (CESM1‐MAM7) using similar gas phase chemistry codes. Aerosol spatial‐temporal distributions are simulated and compared with a large set of observations from satellites, ground‐based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data. PMID:27668039

  5. Continuation of Lithium Aerosol Injection Experiments on NSTX

    NASA Astrophysics Data System (ADS)

    Mansfield, D. K.; Roquemore, A. L.; Kugel, H.; Maingi, R.; Irby, J.; Wang, Z.

    2009-11-01

    During the 2008 run campaign, a Li powder dropper was installed on NSTX that successfully injected up to 35 mg/s of Li aerosol into the SOL. Initial improvements in the plasma performance from these initial experiments warranted the installation of a second Li dropper for the 2009 campaign. Design improvements in the dropper have resulted in accurate control of the flux of Li powder injected. The improved duel-dropper system has injected lithium fluxes of from 30 - 140 mg/s. At the highest flux, plasmas of 950 kA with 6 MW off NBI auxiliary heating have been successfully operated. This flux corresponds to 2.5 x106 - 5.8 x106 aerosol particles/s and is stoichiometrically equivalent 80 - 187 Torr L/s of D2. Operation of the Li dropper and the effects of the Li aerosol on the plasma performance will be discussed.

  6. Mass spectroscopy of single aerosols from field measurements

    SciTech Connect

    Thomson, D.S.; Murphy, D.M.

    1995-12-31

    We are developing an aircraft instrument for the chemical analysis of individual ambient aerosols in real time. In order to test the laboratory version of this instrument, we participated in a field campaign near the continental divide in Colorado in September, 1993. During this campaign, over 5000 mass spectra of ambient aerosols were collected. Analysis of the negative ion spectra shows that sulfate was the most commonly seen component of smaller particles, while nitrate was more common in larger particles. Organic compounds are present in most particles, and we believe we can distinguish inorganic carbon in some particles. Although numerous distinct classes of particles were observed, indicating external mixtures, almost all of these particle types were themselves mixtures of several compounds. Finally, we note that although the field site experienced distinct polluted and unpolluted episodes, aerosol composition did not correlate with gas phase chemistry.

  7. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Klein Baltink, H.; Beirle, S.; Clémer, K.; Hendrick, F.; Henzing, B.; Irie, H.; de Leeuw, G.; Li, A.; Moerman, M. M.; van Roozendael, M.; Shaiganfar, R.; Wagner, T.; Wang, Y.; Xie, P.; Yilmaz, S.; Zieger, P.

    2016-07-01

    A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R>0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.

  8. Organic nitrate aerosol formation via NO3 + BVOC in the Southeastern US

    NASA Astrophysics Data System (ADS)

    Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.; Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K. C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Goldstein, A. H.; Olson, K.; Fry, J. L.

    2015-06-01

    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOC) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are calculated and correlated to gas and aerosol organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol as measured by Aerosol Mass Spectrometry (AMS) and Thermal Dissociation - Laser Induced Fluorescence (TD-LIF) suggests a range of molar yield of aerosol phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to terpenes and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 0.5 % of the total organic nitrate in the aerosol-phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading comparable to that of organic nitrate produced via NO3 + BVOC.

  9. Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.; Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K. C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Wennberg, P. O.; Nguyen, T. B.; Teng, A.; Goldstein, A. H.; Olson, K.; Fry, J. L.

    2015-12-01

    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are correlated with increase in gas- and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO3 + BVOCs.

  10. Complex Contagion of Campaign Donations

    PubMed Central

    2016-01-01

    Money is central in US politics, and most campaign contributions stem from a tiny, wealthy elite. Like other political acts, campaign donations are known to be socially contagious. We study how campaign donations diffuse through a network of more than 50000 elites and examine how connectivity among previous donors reinforces contagion. We find that the diffusion of donations is driven by independent reinforcement contagion: people are more likely to donate when exposed to donors from different social groups than when they are exposed to equally many donors from the same group. Counter-intuitively, being exposed to one side may increase donations to the other side. Although the effect is weak, simultaneous cross-cutting exposure makes donation somewhat less likely. Finally, the independence of donors in the beginning of a campaign predicts the amount of money that is raised throughout a campaign. We theorize that people infer population-wide estimates from their local observations, with elites assessing the viability of candidates, possibly opposing candidates in response to local support. Our findings suggest that theories of complex contagions need refinement and that political campaigns should target multiple communities. PMID:27077742

  11. Complex Contagion of Campaign Donations.

    PubMed

    Traag, Vincent A

    2016-01-01

    Money is central in US politics, and most campaign contributions stem from a tiny, wealthy elite. Like other political acts, campaign donations are known to be socially contagious. We study how campaign donations diffuse through a network of more than 50,000 elites and examine how connectivity among previous donors reinforces contagion. We find that the diffusion of donations is driven by independent reinforcement contagion: people are more likely to donate when exposed to donors from different social groups than when they are exposed to equally many donors from the same group. Counter-intuitively, being exposed to one side may increase donations to the other side. Although the effect is weak, simultaneous cross-cutting exposure makes donation somewhat less likely. Finally, the independence of donors in the beginning of a campaign predicts the amount of money that is raised throughout a campaign. We theorize that people infer population-wide estimates from their local observations, with elites assessing the viability of candidates, possibly opposing candidates in response to local support. Our findings suggest that theories of complex contagions need refinement and that political campaigns should target multiple communities. PMID:27077742

  12. Evaluation of Aerosol-Cloud Interactions in GISS ModelE Using ASR Observations

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Menon, S.; Bauer, S. E.; Toto, T.; Bennartz, R.; Cribb, M.

    2011-12-01

    The impacts of aerosol particles on clouds continue to rank among the largest uncertainties in global climate simulation. In this work we assess the capability of the NASA GISS ModelE, coupled to MATRIX aerosol microphysics, in correctly representing warm-phase aerosol-cloud interactions. This evaluation is completed through the analysis of a nudged, multi-year global simulation using measurements from various US Department of Energy sponsored measurement campaigns and satellite-based observations. Campaign observations include the Aerosol Intensive Operations Period (Aerosol IOP) and Routine ARM Arial Facility Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) at the Southern Great Plains site in Oklahoma, the Marine Stratus Radiation, Aerosol, and Drizzle (MASRAD) campaign at Pt. Reyes, California, and the ARM mobile facility's 2008 deployment to China. This combination of datasets provides a variety of aerosol and atmospheric conditions under which to test ModelE parameterizations. In addition to these localized comparisons, we provide the results of global evaluations completed using measurements derived from satellite remote sensors. We will provide a basic overview of simulation performance, as well as a detailed analysis of parameterizations relevant to aerosol indirect effects.

  13. Vertical profiles of cloud condensation nuclei, aerosol hygroscopicity, water uptake, and scattering across the United States

    NASA Astrophysics Data System (ADS)

    Lin, J. J.; Bougiatioti, A.; Nenes, A.; Anderson, B. E.; Beyersdorf, A. J.; Brock, C. A.; Gordon, T. D.; Lack, D.; Law, D. C.; Liao, J.; Middlebrook, A. M.; Richardson, M.; Thornhill, K. L., II; Winstead, E.; Wagner, N. L.; Welti, A.; Ziemba, L. D.

    2014-12-01

    The evolutions of vertical distributions of aerosol chemical, microphysical, hygroscopic, and optical properties present fundamental challenges to the understanding of ground-level air quality and radiative transfer, and few datasets exist to date for evaluation of atmospheric models. Data collected from recent NASA and NOAA field campaigns in the California Central Valley (DISCOVER-AQ), southeast United States (SENEX, SEAC4RS) and Texas (DISCOVER-AQ) allow for a unique opportunity to constrain vertical profiles of climate-relevant aerosol properties. This work presents in-situ aircraft measurements of cloud condensation nuclei (CCN) concentration and derivations of aerosol hygroscopicity, water uptake, and light scattering. Aerosol hygroscopicity is derived from CCN and aerosol measurements. Inorganic water uptake is calculated from aerosol composition using ISORROPIA, a chemical thermodynamic model, while organic water uptake is calculated from organic hygroscopicity. Aerosol scattering closure is performed between scattering from water uptake calculations and in-situ scattering measurements.

  14. Cloud and Aerosol Characterization During CAEsAR 2014

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Tesche, M.; Krejci, R.; Baumgardner, D.; Walther, A.; Rosati, B.; Widequist, U.; Tunved, P.; O'Connor, E.; Ström, J.

    2015-12-01

    The Cloud and Aerosol Experiment at Åre (CAEsAR 2014) campaign took place from June to October 2014 at Mt. Åreskutan, Sweden, a remote mountain site in Northern Sweden. The campaign was designed to study the physical and chemical properties of clouds and aerosols under orographic forcing. A unique and comprehensive set-up allowed an in-situ characterization of both constituents at a mountain top station at 1200 m a.s.l. including instruments to measure cloud droplet size distribution, meteorological parameters, cloud residual properties (using a counterflow virtual impactor inlet), cloud water composition and various aerosol chemical and microphysical properties (e.g. size, optical and hygroscopic properties). At the same time, a remote sensing site was installed below the mountain site at 420 m a.s.l. in the immediate vicinity (< 3 km horizontally), with vertical profiling from an aerosol lidar, winds and turbulence from a scanning Doppler lidar, a Sun photometer measuring aerosol columnar optical properties, and a precipitation sampler taking rain water for chemical analysis. In addition, regular radiosoundings were performed from the valley. Here, we present the results of this intensive campaign which includes approx. 900 hours of in-cloud sampling. Various unique cloud features were frequently observed such as dynamically-driven droplet growth, bimodal droplet distributions, and the activation of particles down to approx. 20 nm in dry particle diameter. During the campaign, a forest fire smoke plume was transported over the site with measureable impacts on the cloud properties. This data will be used to constrain cloud and aerosol models, as well as to validate satellite retrievals. A first comparison to VIIRS and MODIS satellite retrievals will also be shown.

  15. Air Quality Campaign Results from the Langley Mobile Ozone Lidar

    NASA Astrophysics Data System (ADS)

    De Young, R.; Carrion, W.; Pliutau, D.; Gano, R.

    2014-12-01

    A compact differential absorption ozone lidar (DIAL) system has been developed called the Langley Mobile Ozone Lidar (L-MOL) which can provide ozone, aerosol and cloud atmospheric profiles from a mobile trailer for ground-based atmospheric air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars, three of which are mobile, across the country. The laser transmitter consist of a Coherent Evolution 30 TEM00 1-kHz diode pumped Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser. The transmitter transmits ~60 mW at two wavelengths between 280 and 293-nm for ozone and 2.5-W at 527-nm for aerosol profiling. The lidar operates at 1-kHz with 500-Hz at each 0f two UV wavelength. A fiber coupled 40-cm diameter parabolic telescope collets the backscattered return and records analog and photon counting signals. A separate 30-cm diameter telescope collects very near field returns for ozone profiles close to the surface. The lidar is capable of recording ozone profiles from 100-500-m with the very near field telescope and from 800-m to approximately 6000-m with the far field channel depending on sky background conditions. The system has been configured to enable mobile operation from a trailer which is environmentally controlled, and is towed with a truck with the objective to make the system mobile such that it can be setup at remote sites to support air quality field campaigns such as the July-August 2014 Denver, CO DISCOVER_AQ campaign. Before the lidar was deployed in the DISCOVER-AQ campaign the lidar operated for 15 hours at NASA Langley in Hampton, VA to test the ability of the system to accurately record ozone profiles. The figure below shows the results of that test. Six ozonesondes were launched during this period and show reasonable agreement with the ozone (ppbv) curtain plot. Ozone of stratospheric origin at 4-14 UTC was noted as well as local ozone

  16. Measurements of aerosol chemical composition in boreal forest summer conditions

    NASA Astrophysics Data System (ADS)

    ńijälä, M.; Junninen, H.; Ehn, M.; Petäjä, T.; Vogel, A.; Hoffmann, T.; Corrigan, A.; Russell, L.; Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Kulmala, M.; Worsnop, D.

    2012-04-01

    Boreal forests are an important biome, covering vast areas of the northern hemisphere and affecting the global climate change via various feedbacks [1]. Despite having relatively few anthropogenic primary aerosol sources, they always contain a non-negligible aerosol population [2]. This study describes aerosol chemical composition measurements using Aerodyne Aerosol Mass Spectrometer (C-ToF AMS, [3]), carried out at a boreal forest area in Hyytiälä, Southern Finland. The site, Helsinki University SMEAR II measurement station [4], is situated at a homogeneous Scots pine (Pinus sylvestris) forest stand. In addition to the station's permanent aerosol, gas phase and meteorological instruments, during the HUMPPA (Hyytiälä United Measurements of Photochemistry and Particles in Air) campaign in July 2010, a very comprehensive set of atmospheric chemistry measurement instrumentation was provided by the Max Planck Institute for chemistry, Johannes Gutenberg-University, University of California and the Finnish Meteorological institute. In this study aerosol chemical composition measurements from the campaign are presented. The dominant aerosol chemical species during the campaign were the organics, although periods with elevated amounts of particulate sulfates were also seen. The overall AMS measured particle mass concentrations varied from near zero to 27 μg/m observed during a forest fire smoke episode. The AMS measured aerosol mass loadings were found to agree well with DMPS derived mass concentrations (r2=0.998). The AMS data was also compared with three other aerosol instruments. The Marga instrument [5] was used to provide a quantitative semi-online measurement of inorganic chemical compounds in particle phase. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed on daily filter samples, enabling the identification and quantification of organic aerosol subspecies. Finally an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI

  17. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to

  18. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  19. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  20. Reactive nitrogen fate in the southeastern U.S.: Preliminary results from the SOAS campaign

    NASA Astrophysics Data System (ADS)

    Ayres, B. R.; Draper, D. C.; Allen, H.; Fry, J.; Wild, R.; Brown, S. S.; Koss, A.; De Gouw, J. A.; Olson, K. F.; Goldstein, A. H.; Baumann, K.; Edgerton, E.

    2013-12-01

    High biogenic volatile organic compound (BVOC) emissions and regional NOx pollution influence make the southeastern U.S. ideal for studying the fate of reactive nitrogen. At the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign, we measured a variety of reactive nitrogen species using a Monitor of AeRosols and Gasses in Ambient air (MARGA) and two cavity ringdown spectrometers (NO, NO2, O3, NOy and NO3, N2O5 CRDS). Initial analysis suggests fast reaction of anthropogenic NO3 with BVOC produces gas- and aerosol-phase organonitrates from the ambient mix of predominantly isoprene, alpha-pinene, beta-pinene and limonene. The inorganic aerosol composition is observed to be acidic, with excess of both SO42- and NO3- under the high-RH conditions of the southeastern U.S. summer. Episodic changes in inorganic composition will be compared to organonitrate production to assess regional reactive nitrogen fate.

  1. Evaluating secondary inorganic aerosols in three dimensions

    NASA Astrophysics Data System (ADS)

    Mezuman, Keren; Bauer, Susanne E.; Tsigaridis, Kostas

    2016-08-01

    The spatial distribution of aerosols and their chemical composition dictates whether aerosols have a cooling or a warming effect on the climate system. Hence, properly modeling the three-dimensional distribution of aerosols is a crucial step for coherent climate simulations. Since surface measurement networks only give 2-D data, and most satellites supply integrated column information, it is thus important to integrate aircraft measurements in climate model evaluations. In this study, the vertical distribution of secondary inorganic aerosol (i.e., sulfate, ammonium, and nitrate) is evaluated against a collection of 14 AMS flight campaigns and surface measurements from 2000 to 2010 in the USA and Europe. GISS ModelE2 is used with multiple aerosol microphysics (MATRIX, OMA) and thermodynamic (ISORROPIA II, EQSAM) configurations. Our results show that the MATRIX microphysical scheme improves the model performance for sulfate, but that there is a systematic underestimation of ammonium and nitrate over the USA and Europe in all model configurations. In terms of gaseous precursors, nitric acid concentrations are largely underestimated at the surface while overestimated in the higher levels of the model. Heterogeneous reactions on dust surfaces are an important sink for nitric acid, even high in the troposphere. At high altitudes, nitrate formation is calculated to be ammonia limited. The underestimation of ammonium and nitrate in polluted regions is most likely caused by a too simplified treatment of the NH3 / NH4+ partitioning which affects the HNO3 / NO3- partitioning.

  2. The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules

    SciTech Connect

    Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

    2011-03-02

    This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

  3. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  4. Development the EarthCARE aerosol classification scheme

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Baars, Holger; Hünerbein, Anja; Donovan, Dave; van Zadelhoff, Gerd-Jan; Fischer, Jürgen; von Bismarck, Jonas; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2015-04-01

    the consistency of EarthCARE retrievals, to support aerosol description in the EarthCARE simulator ECSIM, and to facilitate a uniform specification of broad-band aerosol optical properties, a hybrid end-to-end aerosol classification model (HETEAC) is developed which serves as a baseline for EarthCARE algorithm development and evaluation procedures. The model's theoretical description of aerosol microphysics (bi-modal size distribution, spectral refractive index, and particle shape distribution) is adjusted to experimental data of aerosol optical properties, i.e. lidar ratio, depolarization ratio, Ångström exponents (hybrid approach). The experimental basis is provided by ground-based observations with sophisticated multi-wavelength, polarization lidars applied in the European Aerosol Research Lidar Network (EARLINET) and in dedicated field campaigns in the Sahara (SAMUM-1), Cape Verde (SAMUM-2), Barbados (SALTRACE), Atlantic Ocean (Polarstern and Meteor cruises), and Amazonia. The model is designed such that it covers the entire loop from aerosol microphysics via aerosol classification to optical and radiative properties of the respective types and allows consistency checks of modeled and measured parameters (end-to-end approach). Optical modeling considers scattering properties of spherical and non-spherical particles. A suitable set of aerosol types is defined which includes dust, clean marine, clean continental, pollution, smoke, and stratospheric aerosol. Mixtures of these types are included as well. The definition is consistent with CALIPSO approaches and will thus enable the establishment of a long-term global four-dimensional aerosol dataset.

  5. Field Campaign Guidelines (ARM Climate Research Facility)

    SciTech Connect

    Voyles, JW

    2011-01-17

    The purpose of this document is to establish a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking database tool and are tailored to meet the scope of each specific field campaign.

  6. The Theory of the Mass Literacy Campaign.

    ERIC Educational Resources Information Center

    Bhola, H. S.

    After an analysis of eight mass literacy campaigns (USSR 1919-39; Vietnam, 1945-77; China, 1950-58; Cuba, 1961; Burma, 1960-1981; Brazil, 1967-80; Tanzania, 1971-81; and Somalia, 1973-75), a campaign strategy for a mass literacy campaign is proposed. A potentially successful mass literacy campaign has to be both an educational and a political…

  7. Final Report, The Influence of Organic-Aerosol Emissions and Aging on Regional and Global Aerosol Size Distributions and the CCN Number Budget

    SciTech Connect

    Donahue, Neil M.

    2015-12-23

    We conducted laboratory experiments and analyzed data on aging of organic aerosol and analysis of field data on volatility and CCN activity. With supplemental ASR funding we participated in the FLAME-IV campaign in Missoula MT in the Fall of 2012, deploying a two-chamber photochemical aging system to enable experimental exploration of photochemical aging of biomass burning emissions. Results from that campaign will lead to numerous publications, including demonstration of photochemical production of Brown Carbon (BrC) from secondary organic aerosol associated with biomass burning emissions as well as extensive characterization of the effect of photochemical aging on the overall concentrations of biomass burning organic aerosol. Excluding publications arising from the FLAME-IV campaign, project research resulted in 8 papers: [11, 5, 3, 10, 12, 4, 8, 7], including on in Nature Geoscience addressing the role of organic compounds in nanoparticle growth [11

  8. Awareness campaigns: experience in Mexico.

    PubMed

    Hernández Tepichin, G

    2000-02-18

    The current total of AIDS cases in Mexico is 37,000 of which 86% have occurred in men. The major route of transmission is sexual. The campaign to prevent AIDS has fallen into four phases, and has now been extended to other sexually transmitted diseases, including hepatitis B. The first phase (1985-1989) was based around question and answer brochures, which increased awareness but did not remove misconceptions. A mass media campaign addressed these misconceptions and stressed preventive measures. The campaign was halted by opposition to the promotion of condom use on the grounds that it encouraged promiscuity. The second phase (1989-1992) used more conservative messages, but these were too obscure and failed to reach the target audience. A poster campaign using popular lottery characters was widely accepted. In the third phase (1992-1994), a combination of messages was targeted at different populations, including parents and women, and general public sympathy for social support for people with AIDS was encouraged. In the fourth phase (1996-2000), a mass media campaign was aimed at teenagers, with parents and teachers as support groups. The campaign was widened to include HBV infection, and posters and brochures for teenagers were produced. These are distributed as part of a collaboration with non-governmental organizations providing sex education. The private medical sector is being encouraged to provide facilities for hepatitis B vaccination. So far the campaign has only been established in Mexico City, but it is hoped that this will be extended nationwide. Hepatitis B vaccination has been recently included in the National Immunization Programme for infants in the first year of life and it is officially recommended for at-risk populations.

  9. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  10. CARES Helps Explain Secondary Organic Aerosols

    SciTech Connect

    Zaveri, Rahul

    2014-03-28

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  11. CARES Helps Explain Secondary Organic Aerosols

    ScienceCinema

    Zaveri, Rahul

    2016-07-12

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  12. UV and global irradiance measurements and analysis during the Marsaxlokk (Malta) campaign

    NASA Astrophysics Data System (ADS)

    Bilbao, J.; Román, R.; Yousif, C.; Mateos, D.; de Miguel, A.

    2015-07-01

    A solar radiation measurement campaign was performed in the south-eastern village of Marsaxlokk (35°50' N; 14°33' E; 10 m a.s.l), Malta, between 15 May and 15 October 2012. Erythemal solar radiation data (from a UVB-1 pyranometer), and total horizontal solar radiation (global and diffuse components) from two CM21 pyranometer were recorded. A comparison of atmospheric compounds from ground measurements and satellites shows that TOC (total ozone column) data from the Ozone Monitoring Instrument OMI, TOMS and DOAS algorithms correlate well with ground-based recorded data. The water vapour column and the aerosol optical depth at 550 nm show a significant correlation at the confidence level of 99 %. Parametric models for evaluating the solar UV erythemal (UVER), global (G) and diffuse (D) horizontal irradiances are calibrated, from which aerosol effects on solar irradiance are evaluated using the Aerosol Modification Factor (AMF). The AMFUVER values are lower than AMFG, indicating a greater aerosol effect on UVER than on global solar irradiance. In this campaign, several dust event trajectories are identified by means of the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and by synoptic conditions for characterizing desert dust events. Hence, changes in the UV index due to atmospheric aerosols are described.

  13. Investigating Types and Sources of Organic Aerosol in Rocky Mountain National Park Using Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L.

    2011-12-01

    The Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS) focuses on identifying pathways and sources of nitrogen deposition in Rocky Mountain National Park (RMNP). Past work has combined measurements from a range of instrumentation such as annular denuders, PILS-IC, Hi-Vol samplers, and trace gas analyzers. Limited information from early RoMANS campaigns is available regarding organic aerosol. While prior measurements have produced a measure of total organic carbon mass, high time resolution measures of organic aerosol concentration and speciation are lacking. One area of particular interest is characterizing the types, sources, and amounts of organic nitrogen aerosol. Organic nitrogen measurements in RMNP wet deposition reveal a substantial contribution to the total reactive nitrogen deposition budget. In this study an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in summer 2010 at RMNP to investigate organic aerosol composition and its temporal variability. The species timeline and diurnal species variations are combined with meteorological data to investigate local transport events and chemistry; transport from the Colorado Front Range urban corridor appears to be more significant for inorganic species than for the overall organic aerosol mass. Considerable variation in organic aerosol concentration is observed (0.5 to 20 μg/m3), with high concentration episodes lasting between hours and two days. High resolution AMS data are analyzed for organic aerosol, including organic nitrogen species that might be expected from local biogenic emissions, agricultural activities, and secondary reaction products of combustion emissions. Positive matrix factorization reveals that semi-volatile oxidized OA, low-volatility oxidized OA, and biomass burning OA comprise most organic mass; the diurnal profile of biomass burning OA peaks at four and nine pm and may arise from local camp fires, while constant concentrations of

  14. Radiative Impacts of Elevated Aerosol Layers from Different Origins

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Weinzierl, B.; Gasteiger, J.; Heimerl, K.

    2014-12-01

    Aerosol particles are omnipresent in the Earth's atmosphere and have important impacts on weather and climate by their effects on the atmospheric radiative balance. With the advent of more and more sophisticated representations of atmospheric processes in earth system models, the lack of reliable input data on aerosols leads to significant uncertainties in the prediction of future climate scenarios. In recent years large discrepancies in radiative forcing estimates from aerosol layers in modeling studies have been revealed emphasizing the need for detailed and systematic observations of aerosols. Airborne in-situ measurements represent an important pillar for validating both model results and retrievals of aerosol distributions and properties from remote sensing methods on global scales. However, detailed observations are challenging and therefore are subject to substantial uncertainties themselves. Here we use data from airborne in-situ measurements of elevated aerosol layers from various field experiments in different regions of the world. The data set includes Saharan mineral dust layers over Africa, the Atlantic Ocean and the Caribbean from the SALTRACE and the SAMUM campaigns as well as long-range transported biomass burning aerosol layers from wild fires in the Sahel region and North America measured over the tropical Atlantic Ocean, Europe and the Arctic detected during SAMUM2, CONCERT2011, DC3 and ACCESS 2012. We aim to characterize the effects of the measured aerosol layers, in particular with respect to ageing, mixing state and vertical structure, on the overall atmospheric radiation budget as well as local heating and cooling rates. We use radiative transfer simulations of short and long-wave radiation and aerosol optical properties derived in a consistent way from the in-situ observations of microphysical properties using T-matrix calculations. The results of this characterization will help to improve the parameterization of the effects of elevated

  15. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  16. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    SciTech Connect

    Tsay, S.

    2002-09-30

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (i) the spectral and spectrally-averaged surface albedo, and (ii) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  17. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    NASA Technical Reports Server (NTRS)

    Tsay, S. C.; Holben, B. N.; Privette, J. L.

    2005-01-01

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (1) the spectral and spectrally-averaged surface albedo, and (2) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  18. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  19. Overview of the SHARP campaign: Motivation, design, and major outcomes

    NASA Astrophysics Data System (ADS)

    Olaguer, Eduardo P.; Kolb, Charles E.; Lefer, Barry; Rappenglück, Bernhard; Zhang, Renyi; Pinto, Joseph P.

    2014-03-01

    The Study of Houston Atmospheric Radical Precursors (SHARP) was a field campaign developed by the Houston Advanced Research Center on behalf of the Texas Environmental Research Consortium. SHARP capitalized on previous research associated with the Second Texas Air Quality Study and the development of the State Implementation Plan (SIP) for the Houston-Galveston-Brazoria (HGB) ozone nonattainment area. These earlier studies pointed to an apparent deficit in ozone production in the SIP attainment demonstration model despite the enhancement of simulated emissions of highly reactive volatile organic compounds in accordance with the findings of the original Texas Air Quality Study in 2000. The scientific hypothesis underlying the SHARP campaign was that there are significant undercounted primary and secondary sources of the radical precursors, formaldehyde, and nitrous acid, in both heavily industrialized and more typical urban areas of Houston. These sources, if properly taken into account, could increase the production of ozone in the SIP model and the simulated efficacy of control strategies designed to bring the HGB area into ozone attainment. This overview summarizes the precursor studies and motivations behind SHARP, as well as the overall experimental design and major findings of the 2009 field campaign. These findings include significant combustion sources of formaldehyde at levels greater than accounted for in current point source emission inventories; the underestimation of formaldehyde and nitrous acid emissions, as well as CO/NOx and NO2/NOx ratios, by mobile source models; and the enhancement of nitrous acid by atmospheric organic aerosol.

  20. Assessing the Performance of Computationally Simple and Complex Representations of Aerosol Processes using a Testbed Methodology

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Ma, P.; Easter, R. C.; Liu, X.; Zaveri, R. A.; Rasch, P.

    2012-12-01

    Predictions of aerosol radiative forcing in climate models still contain large uncertainties, resulting from a poor understanding of certain aerosol processes, the level of complexity of aerosol processes represented in models, and the ability of models to account for sub-grid scale variability of aerosols and processes affecting them. In addition, comparing the performance and computational efficiency of new aerosol process modules used in various studies is problematic because different studies often employ different grid configurations, meteorology, trace gas chemistry, and emissions that affect the temporal and spatial evolution of aerosols. To address this issue, we have developed an Aerosol Modeling Testbed (AMT) to systematically and objectively evaluate aerosol process modules. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series of testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from a global climate model, Community Atmosphere Model version 5 (CAM5), has also been ported to WRF so that these parameterizations can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. In this study, we evaluate simple and complex treatments of the aerosol size distribution and secondary organic aerosols using the AMT and measurements collected during three field campaigns: the Megacities Initiative Local and Global Observations (MILAGRO) campaign conducted in the vicinity of Mexico City during March 2006, the

  1. Biomass Burning Observation Project (BBOP) Final Campaign Report

    SciTech Connect

    Kleinman, LI; Sedlacek, A. J.

    2016-01-01

    The Biomass Burning Observation Project (BBOP) was conducted to obtain a better understanding of how aerosols generated from biomass fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning—enough to affect regional and global climate. Several biomass-burning studies have focused on tropical climates; however, few campaigns have been conducted within the United States, where millions of acres are burned each year, trending to higher values and greater climate impacts because of droughts in the West. Using the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the BBOP deployed the Gulfstream-1 (G-1) aircraft over smoke plumes from active wildfire and agricultural burns to help identify the impact of these events and how impacts evolve with time. BBOP was one of very few studies that targeted the near-field time evolution of aerosols and aimed to obtain a process-level understanding of the large changes that occur within a few hours of atmospheric processing.

  2. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  3. Aerosols and environmental pollution

    NASA Astrophysics Data System (ADS)

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues; ranging from the Earth’s radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  4. Aerosols and environmental pollution.

    PubMed

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth's atmosphere and are central to many environmental issues; ranging from the Earth's radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  5. Dominant Aerosol Particle Type/Mixture Identification at Worldwide Locations Using the Aerosol Robotic Network (AERONET)

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2011-12-01

    mean AAE by ~±0.1 for all aerosol types using SSA; AAE had negligible deviations for coarse mode aerosol categories within the uncertainty estimates of AOD but AAE varied by ~±0.05 from the unperturbed mean AAE for fine mode aerosol categories; and the increase/decrease in spectral AOD or SSA decreased/increased mean AAE for fine mode aerosols. In addition, AOD and SSA input parameters were varied to assess the impact on wavelength pairs (e.g., 440 and 870 nm) and the effects of non-linearity. The AAE and aerosol size [AE (440-870 nm) and FMF of AOD (500 nm)] relationships showed partitioning among dust and mixed aerosol types with significant overlap between urban/industrial and biomass burning categories. The SSA (440 nm) to the FMF of AOD (550 nm) relationship showed good consistency and partitioning with respect to the expected aerosol types/mixtures. Furthermore, aerosol identification techniques will be compared to results from recent field campaigns (e.g., DISCOVER-AQ).

  6. e-Campaigning: The Present and Future

    NASA Astrophysics Data System (ADS)

    Batra, Sonali

    The practices of E-Campaigning are gradually gaining momentum in the world. This paper discusses the Democratic campaign of the 2008 American Presidential Election. It contends that the effective use of E-Campaigning techniques was the key to their success. It also deliberates upon the tremendous increase in public involvement over the Internet during the campaigning period. Also, it predicts the future of E-Campaigning and gives an in depth analysis of what the world can expect to see in future elections. Lastly, it examines the relation between E-Campaigning and E-Democracy in the context of the aftermath of the election.

  7. Up, Up & Away. Strategic Campaigns.

    ERIC Educational Resources Information Center

    O'Shea, Catherine L.

    1999-01-01

    Uses a ballooning analogy to offer nine suggestions for universities conducting major fund-raising campaigns: study the map and choose a direction; test the prevailing winds; choose and train your crew; gear up for the journey; stay on course; make every bit count; change course as needed; and capitalize on your successful landing. (DB)

  8. Advanced Fuels Campaign 2012 Accomplishments

    SciTech Connect

    Not Listed

    2012-11-01

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  9. The SHARE 2012 data campaign

    NASA Astrophysics Data System (ADS)

    Giannandrea, AnneMarie; Raqueno, Nina; Messinger, David W.; Faulring, Jason; Kerekes, John P.; van Aardt, Jan; Canham, Kelly; Hagstrom, Shea; Ontiveros, Erin; Gerace, Aaron; Kaufman, Jason; Vongsy, Karmon M.; Griffith, Heather; Bartlett, Brent D.; Ientilucci, Emmett; Meola, Joseph; Scarff, Lauwrence; Daniel, Brian

    2013-05-01

    A multi-modal (hyperspectral, multispectral, and LIDAR) imaging data collection campaign was conducted just south of Rochester New York in Avon, NY on September 20, 2012 by the Rochester Institute of Technology (RIT) in conjunction with SpecTIR, LLC, the Air Force Research Lab (AFRL), the Naval Research Lab (NRL), United Technologies Aerospace Systems (UTAS) and MITRE. The campaign was a follow on from the SpecTIR Hyperspectral Airborne Rochester Experiment (SHARE) from 2010. Data was collected in support of the eleven simultaneous experiments described here. The airborne imagery was collected over four different sites with hyperspectral, multispectral, and LIDAR sensors. The sites for data collection included Avon, NY, Conesus Lake, Hemlock Lake and forest, and a nearby quarry. Experiments included topics such as target unmixing, subpixel detection, material identification, impacts of illumination on materials, forest health, and in-water target detection. An extensive ground truthing effort was conducted in addition to collection of the airborne imagery. The ultimate goal of the data collection campaign is to provide the remote sensing community with a shareable resource to support future research. This paper details the experiments conducted and the data that was collected during this campaign.

  10. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  11. Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere

    PubMed Central

    2012-01-01

    2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C5H12O6S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM2.5) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM2.5 collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA. PMID:22849588

  12. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3 aerosol during the 2013 Southern Oxidant and Aerosol Study

    SciTech Connect

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; Ault, A.; Bondy, A.; Takahama, S.; Modini, R. L.; Baumann, K.; Edgerton, E.; Knote, C.; Laskin, A.; Wang, B.; Fry, J. L.

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.

  13. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  14. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  15. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  16. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  17. Reprieve for Thailand's AIDS campaign.

    PubMed

    Clements, A

    1992-07-25

    A promilitary coalition began to govern Thailand in March 1992. It reduced the budget for the original proposed national AIDS awareness campaign from 30 million British pounds to almost 15 million British pounds. The Ministry of Health professed that the campaign had exaggerated the problem of AIDS in Thailand and had damaged tourism. Yet prodemocracy demonstrations in Bangkok in which troops killed many protesters restored the politicians who started the AIDS campaign to power in May 1992. There were to remain in power until new elections in September 1992. In July, the Minister of Health, Mechai Viravaidya, said he would step down if the government did not completely restore the 30 million British pounds for the AIDS campaign. It then increased the budget to almost that amount. Mr. Viravaidya initiated Thailand's open policy on the AIDS crisis and was known as Mr. Condom. He claimed that at the present HIV prevalence rate, Thailand may have between 2-4 million HIV infected people by 2000. If the country would take on anti-AIDS efforts now, however, they could cut the spread of HIV by 75%. As of mid-1992, about 400,000 people living in Thailand were HIV positive. The AIDS campaign planned to sue the mass media to inform people about AIDS especially those in universities and schools and high risk occupational groups. The increasing number of construction workers in Bangkok and existing sex workers were a high risk occupational group. At the 2nd national seminar of AIDS, the Minister of Health reproached tourists who come to Thailand for its sex industry. He said that Thailand does not need the 1 billion British pounds they bring to Thailand annually, and Thais do not want their homeland to be referred to as the sex capital.

  18. Reprieve for Thailand's AIDS campaign.

    PubMed

    Clements, A

    1992-07-25

    A promilitary coalition began to govern Thailand in March 1992. It reduced the budget for the original proposed national AIDS awareness campaign from 30 million British pounds to almost 15 million British pounds. The Ministry of Health professed that the campaign had exaggerated the problem of AIDS in Thailand and had damaged tourism. Yet prodemocracy demonstrations in Bangkok in which troops killed many protesters restored the politicians who started the AIDS campaign to power in May 1992. There were to remain in power until new elections in September 1992. In July, the Minister of Health, Mechai Viravaidya, said he would step down if the government did not completely restore the 30 million British pounds for the AIDS campaign. It then increased the budget to almost that amount. Mr. Viravaidya initiated Thailand's open policy on the AIDS crisis and was known as Mr. Condom. He claimed that at the present HIV prevalence rate, Thailand may have between 2-4 million HIV infected people by 2000. If the country would take on anti-AIDS efforts now, however, they could cut the spread of HIV by 75%. As of mid-1992, about 400,000 people living in Thailand were HIV positive. The AIDS campaign planned to sue the mass media to inform people about AIDS especially those in universities and schools and high risk occupational groups. The increasing number of construction workers in Bangkok and existing sex workers were a high risk occupational group. At the 2nd national seminar of AIDS, the Minister of Health reproached tourists who come to Thailand for its sex industry. He said that Thailand does not need the 1 billion British pounds they bring to Thailand annually, and Thais do not want their homeland to be referred to as the sex capital. PMID:1392821

  19. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments.

    PubMed

    Gopalakrishnan, V; Subramanian, V; Baskaran, R; Venkatraman, B

    2015-07-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging. PMID:26233420

  20. Airborne Cavity Ring-Down Measurement of Aerosol Extinction and Scattering During the Aerosol IOP

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Ricci, K.; Provencal, R.; Schmid, B.; Covert, D.; Elleman, R.; Arnott, P.

    2003-01-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Min-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects.= We present comparisons between the Cadenza measurements and those friom a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  1. Understanding the Processes Controlling Aerosol-Cloud Interactions in the Arctic Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Browse, J.; Carslaw, K. S.; Pringle, K.; Mann, G.; Reddington, C.; Brooks, I. M.; Mulcahy, J.; Young, G.; Allan, J. D.; Liu, D.; Trembath, J.; Dean, A.; Yoshioka, M.

    2015-12-01

    Here we use multiple configurations of the UKCA chemistry and aerosol scheme in a global climate model, capable of simulating cloud condensation nuclei (CCN) and cloud droplet number, to understand the processes controlling aerosol-cloud interactions in the marine Arctic boundary layer. Evaluation against an unprecedented number of aerosol and cloud observations made available through the Global Aerosol Synthesis and Science Project (GASSP), International Arctic Systems for Observing the Atmosphere (IASOA) and the 2013 ACCACIA campaign, suggest that Arctic summertime CCN is well represented in the model. Sensitivity studies indicate that DMS derived nucleation events are the primary source of Arctic summertime aerosol increasing mean (median) surface CCN concentrations north of 70N from 21(14) cm-3 to 46(33) cm-3. However, evaluation against observed aerosol size distributions suggests that UKCA overestimates nucleation mode (~10nm) particle concentrations either due to overestimation of boundary layer nucleation rates or underestimation of the Arctic marine boundary layer condensation sink.

  2. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  3. Simulating Aerosol-cloud-radiation Feedbacks over East Asia Using Wrf-chem

    NASA Astrophysics Data System (ADS)

    Wang, J.; Allen, D. J.; Pickering, K. E.; Li, Z.; Dickerson, R. R.

    2011-12-01

    Aerosols play an important role in climate change through their impact on the radiative balance of the atmosphere. Recently much effort has been put into studying the radiative forcing of aerosols in East Asia. In this study, we apply the regional chemistry and transport model, WRF-Chem, to study aerosol radiative forcing over eastern Asia. Version 3.3 of the model is used with the CBMZ chemical mechanism and the MOSAIC aerosol treatment. The time period of interest is Feb 21, 2005 to April 12, 2005, since there were extensive measurements of radiation, trace gases, and aerosol properties available from EAST-AIRE (East Asian Study of Tropospheric Aerosols: An International Regional Experiment ) campaign during that period. We conduct model simulations with and without aerosol forcing and compare the results to measurements. We investigate the aerosol radiative forcing as well as aerosol direct and indirect effects by analyzing the differences between short wave flux, temperature, and cloud fraction from these two runs. We evaluate our model simulated incoming short wave radiation at the surface with in situ measurements from EAST-AIRE site Xianghe (70 km southeast of Beijing, China). We find that shortwave radiation decreases when aerosols are added lessening the high-bias between model-calculated and observed short wave radiation. We further compare the model simulated cloud fraction from two runs with MODIS Level 2 retrievals, demonstrating aerosol indirect effects in cloud formations.

  4. Studies of Ambient and Chamber Aerosol Composition using the Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Craven, Jill Suzanne

    (LVOOA). The HOA/OA was only 0.08--0.23, indicating that most of Pasadena OA in the summer months is dominated by oxidized OA resulting from transported emissions that have undergone photochemistry and/or moisture-influenced processing, as apposed to only primary organic aerosol emissions. Airborne measurements and model predictions of aerosol composition are reported for the 2010 CalNex field campaign.

  5. CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-07-12

    The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

  6. TIGERZ I: Aerosols, Monsoon and Synergism

    NASA Astrophysics Data System (ADS)

    Holben, B. N.; Tripathi, S. N.; Schafer, J. S.; Giles, D. M.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Krishnmoorthy, K.; Sorokin, M. G.; Newcomb, W. W.; Tran, A. K.; Sikka, D. R.; Goloub, P.; O'Neill, N. T.; Abboud, I.; Randles, C.; Niranjan, K.; Dumka, U. C.; Tiwari, S.; Devara, P. C.; Kumar, S.; Remer, L. A.; Kleidman, R.; Martins, J. V.; Kahn, R.

    2008-12-01

    The Indo-Gangetic Plain of northern India encompasses a vast complex of urban and rural landscapes, cultures that serve as anthropogenic sources of fine mode aerosols mixed with coarse mode particles transported from SW Asia. The summer monsoon and fall Himalayan snowmelt provide the agricultural productivity to sustain an extremely high population density whose affluence is increasing. Variations in the annual monsoon precipitation of 10% define drought, normal and a wet season; the net effects on the ecosystems and quality of life can be dramatic. Clearly investigation of anthropogenic and natural aerosol impacts on the monsoon, either through the onset, monsoon breaks or end points are a great concern to understand and ultimately mitigate. Many national and international field campaigns are being planned and conducted to study various aspects of the Asian monsoon and some coordinated under the Asian Monsoon Years (AMY) umbrella. A small program called TIGERZ conducted during the pre-monsoon of 2008 in North Central India can serve as a model for contributing significant resources to existing field programs while meeting immediate project goals. This poster will discuss preliminary results of the TIGERZ effort including ground-based measurements of aerosol properties in the I-G from AERONET and synergism with various Indian programs, satellite observations and aerosol modeling efforts.

  7. The Two-Column Aerosol Project (TCAP) Science Plan

    SciTech Connect

    Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

    2011-07-27

    The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

  8. Atmospheric DMS and Biogenic Sulfur aerosol measurements in the Arctic

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Wentworth, G.; Burkart, J.; Leaitch, W. R.; Abbatt, J.; Sharma, S.; Desiree, T. S.

    2014-12-01

    Dimethyl Sulfide (DMS) and its oxidation products were measured on the board of the Canadian Coast Guard Ship (CCGS) Amundsen and above melt ponds in the Arctic during July 2014 in the context of the NETCARE study which seeks to understand the effect of DMS and its oxidation products with respect to aerosol nucleation, as well as its effect on cloud and precipitation properties. The objective of this study is to quantify the role of DMS in aerosol growth and activation in the Arctic atmosphere. Atmospheric DMS samples were collected from different altitudes, from 200 to 9500 feet, aboard the POLAR6 aircraft expedition to determine variations in the DMS concentration and a comparison was made to shipboard DMS measurements and its effects on aerosol size fractions. The chemical and isotopic composition of sulfate aerosol size fractions was studied. Sulfur isotope ratios (34S/32S) offer a way to determine the oceanic DMS contribution to aerosol growth. The results are expected to address the contribution of anthropogenic as well as biogenic sources of aerosols to the growth of the different aerosol size fractions. In addition, aerosol sulfate concentrations were measured at the same time within precipitation and fogs to compare with the characteristics of aerosols in each size fraction with the characteristics of the sulfate in each medium. This measurement is expected to explain the contribution of DMS oxidation in aerosol activation in the Arctic summer. Preliminary results from the measurement campaign for DMS and its oxidation products in air, fog and precipitation will be presented.

  9. Final Project Report - ARM CLASIC CIRPAS Twin Otter Aerosol

    SciTech Connect

    John A. Ogren

    2010-04-05

    The NOAA/ESRL/GMD aerosol group made three types of contributions related to airborne measurements of aerosol light scattering and absorption for the Cloud and Land Surface Interaction Campaign (CLASIC) in June 2007 on the Twin Otter research airplane operated by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). GMD scientists served as the instrument mentor for the integrating nephelometer and particle soot absorption photometer (PSAP) on the Twin Otter during CLASIC, and were responsible for (1) instrument checks/comparisons; (2) instrument trouble shooting/repair; and (3) data quality control (QC) and submittal to the archive.

  10. In situ Measurements of Absorbing Aerosols from Urban Sources, in Maritime Environments and during Biomass Combustion

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Manvendra, D.; Chylek, P.; Arnott, P.

    2006-12-01

    Absorbing aerosols have important but still ill quantified effects on climate, visibility, cloud processes, and air quality. The compilation of aerosol scattering and absorption databases from reliable measurements is essential to reduce uncertainties in these inter-linked research areas. The atmospheric radiative balance for example, is modeled using the aerosol single scattering albedo (ratio of scattering to scattering plus absorption, SSA) as a fundamental input parameter in climate models. Sulfate aerosols with SSA values close to 1 scatter solar radiation resulting in a negative radiative forcing. However aerosol SSA values less than 1 are common when combustion processes are contributing to the aerosol sources. Absorbing aerosols directly heat the atmosphere and reduce the solar radiation at the surface. Currently, the net global anthropogenic aerosol direct radiative forcing is estimated to be around -0.5W m-2 with uncertainty of about 80% largely due to lack of understanding of SSA of sulfate-organic-soot aerosols. We present a rapidly expanding data set of direct in situ aerosol absorption and scattering measurements performed since June 2005 by photoacoustic instrument (at 781 and 870 nm), with integrated a total scattering sensor, during numerous field campaigns. Data have been collected over a wide range of aerosol sources, local environments and anthropogenic activities. Airborne measurements were performed in marine stratus off shore of the California coast and in cumulus clouds and clear air in the Houston, TX area; ground-based measurements have been performed in many locations in Mexico City; while laboratory measurements have been collected during a controlled combustion experiment of many different biomass fuels. The large dynamic range of aerosol types and conditions from these different field campaigns will be integrated to help quantify the SSA values, their variability, and their implications on the radiative forcing of climate.

  11. North Atlantic Aerosol Properties and Direct Radiative Effects: Key Results from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Schmid, B.; Bergstrom, R. A.; Hignett, P.; Hobbs, P. V.; Durkee, P. A.; Condon, Estelle (Technical Monitor)

    1998-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative Forcing is a major source of uncertainty in understanding the observed climate change of the past century and in predicting, future climate. To help reduce this uncertainty, the International Global Atmospheric Chemistry Project (IGAC) has endorsed a series of multiplatform aerosol field campaigns. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the second Aerosol Characterization Experiment (ACE-2) were the first IGAC campaigns to address the impact of anthropogenic aerosols. Both TARFOX and ACE-2 gathered extensive data sets on aerosol properties and radiative effects. TARFOX focused on the urban-industrial haze plume flowing from the eastern United States over the western Atlantic Ocean, whereas ACE-2 studied aerosols carried over the eastern Atlantic from both European urban/industrial and African mineral sources. These aerosols often have a marked influence on the top-of-atmosphere radiances measured by satellites, as illustrated in Figure 1. Shown there are contours of aerosol optical depth derived from radiances measured by the AVHRR sensor on the NOAA-11 satellite. The contours readily show that aerosols originating in North America, Europe, and Africa impact the radiative properties of air over the North Atlantic. However, the accurate derivation of flux chances, or radiative forcing, from the satellite-measured radiances or 'etrieved optical depths remains a difficult challenge. In this paper we summarize key Initial results from TARFOX and, to a lesser extent ACE-2, with a focus on those results that allow an improved assessment of the flux changes caused by North Atlantic aerosols at middle and high latitudes.

  12. North Atlantic Aerosol Properties and Direct Radiative Effects: Key Results from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Schmid, B.; Bergstrom, Robert A.; Hignett, P.; Hobbs, P. V.; Durkee, P. A.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate In potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the observed climate change of the past century and in predicting future climate. To help reduce this uncertainty, the International Global Atmospheric Chemistry Project (IGAC) has endorsed a series of multiplatform aerosol field campaigns. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the second Aerosol Characterization Experiment (ACE-2) were the first IGAC campaigns to address the impact of anthropogenic aerosols, Both TARFOX and ACE-2 gathered extensive data sets on aerosol properties and radiative effects, TARFOX focused on the urban-industrial haze plume flowing from the eastern United States over the western Atlantic Ocean, whereas ACE-2 studied aerosols carried over the eastern Atlantic from both European urban/industrial and African mineral sources. These aerosols often have a marked influence on the top-of-atmosphere radiances measured by satellites. Shown there are contours of aerosol optical depth derived from radiances measured by the AVHRR sensor on the NOAA-11 satellite. The contours readily show that aerosols originating in North America, Europe, and Africa impact the radiative properties of air over the North Atlantic. However, the accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved optical depths remains a difficult challenge. In this paper we summarize key initial results from TARFOX and, to a lesser extent, ACE-2, with a focus on those results that allow an improved assessment of the flux changes caused by North Atlantic aerosols at middle latitudes.

  13. Optical characteristics of the aerosol in Spain and Austria and its effect on radiative forcing

    NASA Astrophysics Data System (ADS)

    Horvath, H.; Alados Arboledas, L.; Olmo, F. J.; Jovanović, O.; Gangl, M.; Kaller, W.; SáNchez, C.; Sauerzopf, H.; Seidl, S.

    2002-10-01

    The horizontal and vertical attenuation of the aerosol, the sky radiance, and the light absorption coefficient of the aerosol have been determined at wavelengths in the visible. From this set of data the following optical characteristics of the atmospheric aerosol could be derived: vertical optical depth, horizontal extinction and absorption coefficient, scattering phase function, asymmetry parameter, and single scattering albedo. Campaigns have been performed in Almería, Spain, and Vienna, Austria. The aerosol undergoes a considerable variation, as experienced by many other studies. Sometimes the vertical and the horizontal measurements gave similar data; on other days the aerosol at the surface and the aerosol aloft were completely different. The "clearest" aerosol always had the smallest single scattering albedo and thus relatively the highest light absorption. The optical characteristics of the aerosol in the two very different locations were very similar. Using the measured optical data, a radiative transfer calculation was performed, and the radiation reaching the ground was calculated. Comparing the values for the clear aerosol and the days with higher aerosol load, the radiative forcing due to the additional aerosol particles could be determined. The forcing of the aerosol at the ground is always negative, and at the top of the atmosphere it is close to zero or slightly negative. Its dependence on wavelength and zenith angle is presented. The preindustrial aerosol in Europe was estimated, and the forcing due to the present-day aerosol was determined. At the surface it is negative, but at the top of the atmosphere it is close to zero or positive. This is caused by the light absorption of the European aerosol, which is higher than in most other locations.

  14. Ceilometer for aerosol profiling: comparison with the multiwavelength in the frame of INTERACT (INTERcomparison of Aerosol and Cloud Tracking)

    NASA Astrophysics Data System (ADS)

    Madonna, Fabio; Vande Hey, Joshua; Rosoldi, Marco; Amato, Francesco; Pappalardo, Gelsomina

    2015-04-01

    Observations of cloud base height are important for meteorology, observations of aerosols are important for air quality applications, observations of cloud cover and aerosols address key uncertainties in climate study. To improve parameterization and uncertainties of numerical models, observations provided by high resolution networks of ground-based instruments are needed. In order to achieve broad, high resolution coverage, low-cost instruments are preferable, though it is essential that the sensitivity, stability, biases and uncertainties of these instruments are well-understood. Despite of their differences from more advanced and more powerful lidars, low construction and operation cost of ceilometer, originally designed for cloud base height monitoring, has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represent a strong motivation to investigate to which extent they can be used to fill the geographical gaps between advanced lidar stations and how their continuous data flow can be linked to existing networks of the advanced lidars, like EARLINET (European Aerosol research LIdar NETwork). In order to make the best use of existing and future ceilometer deployments, ceilometer must be better characterized. This is the purpose of the INTERACT campaign carried out in the frame of ACTRIS Transnational Access activities at CNR-IMAA Atmospheric Observatory (CIAO - 760 m a.s.l., 40.60 N, 15.72 E). In this paper, an overview of the results achieved during the campaign is provided. In particular multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol content through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60N, 15.72E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7

  15. Exploring Dust Impacts on Tropical Systems from the NASA HS-3 Field Campaign

    NASA Technical Reports Server (NTRS)

    Nowottnick, Ed; Colarco, Pete; da Silva, Arlindo; Barahona, Donifan; Hlavka, Dennis

    2015-01-01

    One of the overall scientific goals of the NASA Hurricane and Severe Storm Sentinel (HS-3) field campaign is to better understand the role of the Saharan Air Layer (SAL) in tropical storm development. During the 2012 HS-3 deployment, the Cloud Physics Lidar (CPL) observed dust within SAL air in close proximity to a developing Nadine (September 11, 2012). Throughout the mission, the NASA GEOS-5 modeling system supported HS-3 by providing 0.25 degrees resolution 5-day global forecasts of aerosols, which were used to support mission planning. The aerosol module was radiatively interactive within the GEOS-5 model, but aerosols were not directly coupled to cloud and precipitation processes. In this study we revisit the aerosol forecasts with an updated version of the GEOS-5 model. For the duration of Hurricane Nadine, we run multiday climate simulations leading up to each respective Global Hawk flight with and without aerosol direct interaction. For each set of simulations, we compare simulated dust mass fluxes to identify differences in SAL entrainment related to the interaction between dust aerosols and the atmosphere. We find that the direct effects of dust induce a low level anticyclonic circulation that temporarily shields Nadine from the intrusion of dry air, leading to a more intense storm.

  16. Abortion Rights: Anatomy of a Negative Campaign.

    ERIC Educational Resources Information Center

    Olasky, Marvin N.

    1987-01-01

    Analyzes a highly successful negative public relations campaign carried on by major pro-choice organizations from October 1985 through March 1987. Explores the effectiveness of this campaign (much of it carried on in the media), and questions the ethics of such a campaign. (NKA)

  17. Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest.

    PubMed

    Alföldy, B; Osán, J; Tóth, Z; Török, S; Harbusch, A; Jahn, C; Emeis, S; Schäfer, K

    2007-09-20

    The dependence of aerosol optical depth (AOD) on air particulate concentrations in the mixing layer height (MLH) was studied in Budapest in July 2003 and January 2004. During the campaigns gaseous (CO, SO(2), NO(x), O(3)), solid components (PM(2.5), PM(10)), as well as ionic species (ammonium, sulfate and nitrate) were measured at several urban and suburban sites. Additional data were collected from the Budapest air quality monitoring network. AOD was measured by a ground-based sun photometer. The mixing layer height and other common meteorological parameters were recorded. A linear relationship was found between the AOD and the columnar aerosol burden; the best linear fit (R(2)=0.96) was obtained for the secondary sulfate aerosol due to its mostly homogeneous spatial distribution and its optically active size range. The linear relationship is less pronounced for the PM(2.5) and PM(10) fractions since local emissions are very heterogeneous in time and space. The results indicate the importance of the mixing layer height in determining pollutant concentrations. During the winter campaign, when the boundary layer decreases to levels in between the altitudes of the sampling stations, measured concentrations showed significant differences due to different local sources and long-range transport. In the MLH time series unexpected nocturnal peaks were observed. The nocturnal increase of the MLH coincided with decreasing concentrations of all pollutants except for ozone; the ozone concentration increase indicates nocturnal vertical mixing between different air layers.

  18. Influence of atmospheric parameters on vertical profiles and horizontal transport of aerosols generated in the surf zone

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Tedeschi, G.; Van Eijk, A. M. J.; Piazzola, J.

    2013-10-01

    The vertical and horizontal transport of aerosols generated over the surf zone is discussed. Experimental data were collected during the second campaign of the Surf Zone Aerosol Experiment that took place in Duck NC (USA) in November 2007. The Empirical Orthogonal Function (EOF) method was used to analyze the vertical concentration gradients, and allowed separating the surf aerosols from aerosols advected from elsewhere. The numerical Marine Aerosol Concentration Model (MACMod) supported the analysis by confirming that the concentration gradients are more pronounced under stable conditions and that aerosol plumes are then more confined to the surface. The model also confirmed the experimental observations made during two boat runs along the offshore wind vector that surf-generated aerosols are efficiently advected out to sea over several tens of kilometers.

  19. STROZ Lidar Results at the MOHAVE III Campaign, October, 2009, Table Mountain, CA

    NASA Technical Reports Server (NTRS)

    McGee, T. J.; Twigg, L.; Sumnicht, G.; Whiteman, D.; Leblanc, T.; Voemel, H.; Gutman, S.

    2010-01-01

    During October, 2009 the GSFC STROZ Lidar participated in a campaign at the JPL Table Mountain Facility (Wrightwood, CA, 2285 m Elevation) to measure vertical profiles of water vapor from near the ground to the lower stratosphere. On eleven nights, water vapor, aerosol, temperature and ozone profiles were measured by the STROZ lidar, two other similar lidars, frost-point hygrometer sondes, and ground-based microwave instruments made measurements. Results from these measurements and an evaluation of the performance of the STROZ lidar during the campaign will be presented in this paper. The STROZ lidar was able to measure water vapor up to 13-14 km ASL during the campaign. We will present results from all the STROZ data products and comparisons with other instruments made. Implications for instrumental changes will be discussed.

  20. Ash Stabilization Campaign Blend Plan

    SciTech Connect

    Winstead, M.L.

    1995-06-21

    This Stabilization Blend Plan documents the material to be processed and the processing order for the FY95 Ash Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing ash. The source of the ash is from Rocky Flats and the 232-Z incinerator at the Plutonium Finishing Plant (PFP). The ash is currently being stored in Room 235B and Vault 174 in building 234-5Z. The sludge is to be thermally stabilized in a glovebox in room 230A of the 234-5Z building and material handling for the process will be done in room 230B of the same building. The campaign is scheduled for approximately 12--16 weeks. A total of roughly 4 kg of Pu will be processed.

  1. Influence of a Counteradvertising Media Campaign on Initiation of Smoking: The Florida "Truth" Campaign.

    ERIC Educational Resources Information Center

    Sly, David F.; Hopkins, Richard S.; Trapido, Edward; Ray, Sarah

    2001-01-01

    Assessed the short-term effects of a television counteradvertising media campaign, the Florida "truth" campaign, on rates of adolescents' smoking initiation. Followup surveys of adolescents interviewed during the first 6 months of the advertising campaign indicated that exposure to the "truth" campaign lowered the risk of youth smoking initiation.…

  2. CASE Campaign Standards: Management and Reporting Standards for Educational Fund-Raising Campaigns.

    ERIC Educational Resources Information Center

    Council for Advancement and Support of Education, Washington, DC.

    This document establishes guidance for managing educational fund-raising campaigns and standards for reporting campaign gifts in the United States and Canada. The guidelines offer an objective means to compare one campaign to another and a rational way to discern how well a campaign has met its goals. The standards depend upon three fundamental…

  3. Airborne measurements performed by a light aircraft during Pegasos spring 2013 campaign

    NASA Astrophysics Data System (ADS)

    Väänänen, Riikka; Krejci, Radovan; Manninen, Hanna E.; Nieminen, Tuomo; Yli-Juuti, Taina; Kangasluoma, Juha; Pohja, Toivo; Aalto, Pasi P.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    To fully understand the chemical and physical processes in atmosphere, measuring only on-ground is not sufficient. To extend the measurements into the lower troposphere, the University of Helsinki has performed airborne campaigns since 2009. During spring 2013, a light aircraft was used to measure the aerosol size distribution over boreal forests as a part of the Pegasos 'Norhern Mission'. The aims of the measurements were to quantify the vertical profiles of aerosols up to the altitude of 3.5 km, to study the new particle formation in the lower troposphere, to measure the planetary boundary layer evolution, and to support the measurements performed by Zeppelin NT. We used a Cessna 172 light aircraft as a platform. An aerosol and gas inlet was mounted under the right wing and the sample air was conducted inside the cabin where most of the instruments were placed. The aerosol measurement instruments included a TSI 3776 condensation particle counter (CPC) with a cut-off size of 3 nm, a Scanning Mobility Particle Sizer (SMPS), with a size range of 10-350 nm, and a Particle Size Magnifier (PSM) connected with a TSI 3772 condensation particle counter. As the properties of the PSM measuring in airborne conditions were still under testing during the campaign, the setups of the PSM varied between the measurements. Other instruments on board included a Li-Cor Li-840 H2O/Co2-analyzer, a temperature sensor, a relative humidity sensor, and a GPS receiver. Total amount of 45 flights with 118 flight hours were performed between 24th April and 15th June 2013. The majority of the flights were flown around SMEAR II station located in Hyytiälä, and when possible, the flights were synchronized with the Zeppelin flights. Simultaneously, an extensive field campaign to measure aerosol and gas properties was performed on-ground at SMEAR II station. A time series of airborne aerosol data of around 1.5 months allows us to construct statistical vertical profiles of aerosol size

  4. An AIDS campaign in Brazil.

    PubMed

    Janoff, D

    1987-01-01

    The Acquired Immune Deficiency Syndrome (AIDS) distribution program in Brazil, spearheaded by the National Division of Sanitary Surveillance in Ports, Airports, and Borders, was part of the government's massive education campaign to prevent the transmission of HIV-AIDS in Brazil. Beginning in February 1987, the climate was sufficiently favorable to operate a coordinated information campaign during the Carnival celebration, and tourists arriving in the cities of Brazil for the annual Carnival celebration were handed an educational brochure in Portugese, Spanish, English, and French. Yet, beyond reaching the tourist populations, it is particularly important to reach large portions of the Brazilian population. Planners of the national AIDS campaign intend to use television, radio, and all major newspapers in their effort to cover the country. Initial television coverage is comprised of short informational messages directed at high-risk groups. There also are plans to use radio and the print media in order to reach a wider audience. It is estimated that US $6 million will be needed to adequately meet the costs of AIDS prevention and medical care, but due to extreme budget constraints, only $45,000 has been earmarked for ongoing AIDS activities at this time. PMID:12281284

  5. T Tauri stars observing campaign

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2013-12-01

    Darryl Sergison (University of Exeter) has requested AAVSO assistance with a campaign he is carrying out on five T Tauri stars. This study is the one for which AAVSO observers carried out a preliminary campaign last year (see Alert Notice 473 and Special Notice #306). The star list is revised and expanded from last year's list of targets. This campaign will run from now at least through the end of the 2013-2014 observing season. This is part of an on-going study into the nature of pre-main-sequence low mass stars, using time series optical spectroscopy and UV-Visual-IR photometry and offers a great opportunity for professional-amateur collaboration as the objects (with V magnitudes of 10-13) are well within the reach of photometry by small telescopes. Amateur observations are uniquely useful in the study of chaotically variable young stars as they offer crucial datapoints in the light curve between observations made by professional telescopes. Targets are BP Tau, DN Tau, V827 Tau, V1068 Tau, and V1264 Tau. Finder charts with sequences may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and instructions.

  6. Importance of Physico-Chemical Properties of Aerosols in the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, S. A.; Girard, E.

    2014-12-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation are poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating very small (radar-unseen) ice crystals whereas TIC-2 are detected by both sensors and are characterized by a low concentration of large precipitating ice crystals. It is hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibit the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a smaller concentration of larger ice crystals. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation have been developed to reflect the various physical and chemical properties of aerosols. These parameterizations are derived from laboratory studies on aerosols of different chemical compositions. The parameterizations are also developed according to two main approaches: stochastic (that nucleation is a probabilistic process, which is time dependent) and singular (that nucleation occurs at fixed conditions of temperature and humidity and time-independent). This research aims to better understand the formation process of TICs using a newly-developed ice nucleation parameterizations. For this purpose, we implement some parameterizations (2 approaches) into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Arctic Cloud (ISDAC) in Alaska. We use both approaches but special attention is focused on the new parameterizations of the singular approach. Simulation

  7. Direct and Indirect Effects of Aerosols in China

    NASA Astrophysics Data System (ADS)

    Li, Z.; Chen, H.; Tsay, S.; Huang, J.; Zhang, W.

    2009-12-01

    By modulating atmospheric heating profile, surface energy balance and cloud microphysics, the heavy loading of aerosols in China have been hypothesized to interact with the Asian monsoon system and play a significant role in observed changes in precipitation, temperature and atmospheric circulation. Testing the hypotheses requires extensive and reliable measurements concerning their properties, radiative fluxes, cloud microphysics, precipitation, and other atmospheric variables, which is the primary goal of two major ongoing field campaigns conducted before, during and after the Beijing Olympic Games under the East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) and the ARM Mobile Facility deployment in China (AMF-China). In my talk, I will review the status of the two observation campaigns; present some preliminary findings; elaborate the potential usage of the data in dealing with the aforementioned issues.

  8. Aerosol-cloud associations over Gangetic Basin during a typical monsoon depression event using WRF-Chem simulation

    NASA Astrophysics Data System (ADS)

    Sarangi, Chandan; Tripathi, S. N.; Tripathi, Shivam; Barth, Mary C.

    2015-10-01

    To study aerosol-cloud interactions over the Gangetic Basin of India, the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) has been applied to a typical monsoon depression event prevalent between the 23 and 29 August 2009. This event was sampled during the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX) aircraft campaign, providing measurements of aerosol and cloud microphysical properties from two sorties. Comparison of the simulated meteorological, thermodynamical, and aerosol fields against satellite and in situ aircraft measurements illustrated that the westward propagation of the monsoon depression and the cloud, aerosol, and rainfall spatial distribution was simulated reasonably well using anthropogenic emission rates from Monitoring Atmospheric Composition and Climate project along with cityZEN projects (MACCity)+Intercontinental Chemical Transport Experiment Phase B anthropogenic emission rates. However,the magnitude of aerosol optical depth was underestimated by up to 50%. A simulation with aerosol emissions increased by a factor of 6 over the CAIPEEX campaign domain increased the simulated aerosol concentrations to values close to the observations, mainly within boundary layer. Comparison of the low-aerosol simulation and high-aerosol simulation for the two sorties illustrated that more anthropogenic aerosols increased the cloud condensing nuclei (CCN) and cloud droplet mass concentrations. The number of simulated cloud droplets increased while the cloud droplet effective radii decreased, highlighting the importance of CCN-cloud feedbacks over this region. The increase in simulated anthropogenic aerosols (including absorbing aerosols) also increased the temperature of air parcels below clouds and thus the convective available potential energy (CAPE). The increase in CAPE intensified the updraft and invigorated the cloud, inducing formation of deeper clouds with more ice-phase hydrometeors for both cases

  9. Microphysical properties of transported biomass burning aerosols in coastal regions, and application to improving retrievals of aerosol optical depth from SeaWiFS data

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.

    2013-05-01

    Due to the limited measurement capabilities of heritage and current spaceborne passive imaging radiometers, algorithms for the retrieval of aerosol optical depth (AOD) and related quantities must make assumptions relating to aerosol microphysical properties and surface reflectance. Over the ocean, surface reflectance can be relatively well-modelled, but knowledge of aerosol properties can remain elusive. Several field campaigns and many studies have examined the microphysical properties of biomass burning (smoke) aerosol. However, these largely focus on properties over land and near to the source regions. In coastal and open-ocean regions the properties of transported smoke may differ, due to factors such as aerosol aging, wet/dry deposition, and mixture with other aerosol sources (e.g. influence of maritime, pollution, or mineral dust aerosols). Hence, models based on near-source aerosol observations may be less representative of such transported smoke aerosols, introducing additional uncertainty into satellite retrievals of aerosol properties. This study examines case studies of transported smoke from select globally-distributed coastal and island Aerosol Robotic Network (AERONET) sites. These are used to inform improved models for over-ocean transported smoke aerosol for AOD retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). These models are used in an updated version of the SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm, which has been combined with the Deep Blue algorithm over land to create a 13-year (1997-2010) high-quality record of AOD over land and ocean. Applying these algorithms to other sensors will enable the creation of a long-term global climate data record of spectral AOD.

  10. Gas-aerosol cycling of ammonia and nitric acid in The Netherlands

    NASA Astrophysics Data System (ADS)

    Roelofs, Geert-Jan; Derksen, Jeroen

    2010-05-01

    Atmospheric ammonia and nitric acid are present over NW Europe in large abundance. Observations made during the IMPACT measurement campaign (May 2008, Cabauw, The Netherlands) show a pronounced diurnal cycle of aerosol ammonium and nitrate on relatively dry days. Simultaneously, AERONET data show a distinct diurnal cycle in aerosol optical thickness (AOT). We used a global aerosol-climate model (ECHAM5-HAM) and a detailed aerosol-cloud column model to help analyse the observations from this period. The study shows that the diurnal cycle in AOT is partly associated with particle number concentration, with distinct peaks in the morning and evening. More important is relative humidity (RH). RH maximizes in the night and early morning, decreases during the morning and increases again in the evening. The particle wet radius, and therefore AOT, changes accordingly. In addition, the RH variability also influences chemistry associated with ammonia and nitric acid (formation of ammonium nitrate, dissolution in aerosol water), resulting in the observed diurnal cycle of aerosol ammonium and nitrate. The additional aerosol matter increases the hygroscopicity of the particles, and this leads to further swelling by water vapor condensation and a further increase of AOT. During the day, as RH decreases and the particles shrink, aerosol ammonium and nitrate are again partly expelled to the gas phase. This behaviour contributes significantly to the observed diurnal cycle in AOT, and it illustrates the complexity of using AOT as a proxy for aerosol concentrations in aerosol climate studies in the case of heavily polluted areas.

  11. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  12. Retrieval of Aerosol Within Cloud Fields Using the MODIS Airborne Simulator (MAS)

    NASA Astrophysics Data System (ADS)

    Munchak, L. A.; Levy, R. C.; Mattoo, S.; Patadia, F.; Wilcox, E. M.; Marshak, A.

    2015-12-01

    Passive satellite remote sensing has become essential for obtaining global information about aerosol properties, including aerosol optical depth (AOD) and aerosol fine mode fraction (FMF). However, due to the spatial resolution of satellite aerosol products (typically 3 km and larger), observing aerosol within dense partly cloudy fields is difficult from space. Here, we apply an adapted version of the MODIS Collection 6 dark target algorithm to the 50-meter MODIS airborne simulator retrieved reflectances measured during the SEAC4RS campaign during 2013 to robustly retrieve aerosol with a 500 m resolution. We show good agreement with AERONET and MODIS away from cloud, suggesting that the algorithm is working as expected. However, closer to cloud, significant AOD increases are observed. We investigate the cause of these AOD increases, including examining the potential for undetected cloud contamination, reflectance increases due to unconsidered 3D radiative effects, and the impact of humidification on aerosol properties. In combination with other sensors that flew in SEAC4RS, these high-resolution observations of aerosol in partly cloudy fields can be used to characterize the radiative impact of the "twilight zone" between cloud and aerosol which is typically not considered in current estimates of direct aerosol radiative forcing.

  13. MISR Aerosol Air Mass Type Mapping over Mega-City: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.

    2010-12-01

    Most aerosol air-quality monitoring in mega-city environments is done from scattered ground stations having detailed chemical and optical sampling capabilities. Satellite instruments such as the Multi-angle Imaging SpectroRadiometer (MISR) can retrieve total-column Aerosol Optical Depth (AOD), along with some information about particle microphysical properties. Although the particle property information from MISR is much less detailed than that obtained from the ground sampling stations, the coverage is extensive, making it possible to put individual surface observations into the context of regional aerosol air mass types. This paper presents an analysis of MISR aerosol observations made coincident with aircraft and ground-based instruments during the INTEX-B field campaign. These detailed comparisons of satellite aerosol property retrievals against dedicated field measurements provide the opportunity to validate the retrievals quantitatively at a regional level, and help to improve aerosol representation in retrieval algorithms. Validation of MISR retrieved AOD and other aerosol properties over the INTEX-B study region in and around Mexico City will be presented. MISR’s ability to distinguish among aerosol air mass types will be discussed. The goal of this effort is to use the MISR aerosol property retrievals for mapping both aerosol air mass type and AOD gradients in mega-city environments over the decade-plus that MISR has made global observations.

  14. Radiative Effects of Carbonaceous and Inorganic Aerosols over California during CalNex and CARES: Observations versus Model Predictions

    NASA Astrophysics Data System (ADS)

    Vinoj, V.; Fast, J. D.; Liu, Y.

    2012-12-01

    Aerosols have been identified to be a major contributor to the uncertainty in understanding the present climate. Most of this uncertainty arises due to the lack of knowledge of their micro-physical and chemical properties as well as how to adequately represent their spatial and temporal distributions. Increased process level understanding can be achieved through carefully designed field campaigns and experiments. These measurements can be used to elucidate the aerosol properties, mixing, transport and transformation within the atmosphere and also to validate and improve models that include meteorology-aerosol-chemistry interactions. In the present study, the WRF-Chem model is used to simulate the evolution of carbonaceous and inorganic aerosols and their impact on radiation during May and June of 2010 over California when two field campaigns took place: the California Nexus Experiment (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES). We merged CalNex and CARES data along with data from operational networks such as, California Air Resources Board (CARB's) air quality monitoring network, the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, the AErosol RObotic NETwork (AERONET), and satellites into a common dataset for the Aerosol Modeling Test bed. The resulting combined dataset is used to rigorously evaluate the model simulation of aerosol mass, size distribution, composition, and optical properties needed to understand uncertainties that could affect regional variations in aerosol radiative forcing. The model reproduced many of the diurnal, multi-day, and spatial variations of aerosols as seen in the measurements. However, regionally the performance varied with reasonably good agreement with observations around Los Angeles and Sacramento and poor agreement with observations in the vicinity of Bakersfield (although predictions aloft were much better). Some aerosol species (sulfate and nitrate) were better represented

  15. Total ozone column, aerosol optical depth and precipitable water effects on solar erythemal ultraviolet radiation recorded in Malta.

    NASA Astrophysics Data System (ADS)

    Bilbao, Julia; Román, Roberto; Yousif, Charles; Mateos, David; Miguel, Argimiro

    2013-04-01

    The Universities of Malta and Valladolid (Spain) developed a measurement campaign, which took place in the Institute for Energy Technology in Marsaxlokk (Southern Malta) between May and October 2012, and it was supported by the Spanish government through the Project titled "Measurement campaign about Solar Radiation, Ozone, and Aerosol in the Mediterranean area" (with reference CGL2010-12140-E). This campaign provided the first ground-based measurements in Malta of erythemal radiation and UV index, which indicate the effectiveness of the sun exposure to produce sunburn on human skin. A wide variety of instruments was involved in the campaign, providing a complete atmospheric characterization. Data of erythemal radiation and UV index (from UVB-1 pyranometer), total shortwave radiaton (global and diffuse components from CM-6B pyranometers), and total ozone column, aerosol optical thickness, and precitable water column (from a Microtops-II sunphotometer) were available in the campaign. Ground-based and satellite instruments were used in the analysis, and several intercomparisons were carried out to validate remote sensing data. OMI, GOME, GOME-2, and MODIS instruments, which provide data of ozone, aerosol load and optical properties, were used to this end. The effects on solar radiation, ultraviolet and total shortwave ranges, of total ozone column, aerosol optical thickness and precipitable water column were obtained using radiation measurements at different fixed solar zenith angles. The empirical results shown a determinant role of the solar position, a negligible effect of ozone on total shortwave radiation, and a stronger attenuation provided by aerosol particles in the erythemal radiation. A variety of aerosol types from different sources (desert dust, biomass burning, continental, and maritime) reach Malta, in this campaign several dust events from the Sahara desert occurred and were analyzed establishing the air mass back-trajectories ending at Malta at

  16. Lidar Inter-Comparison Exercise Final Campaign Report

    SciTech Connect

    Protat, A; Young, S

    2015-02-01

    The objective of this field campaign was to evaluate the performance of the new Leosphere R-MAN 510 lidar, procured by the Australian Bureau of Meteorology, by testing it against the MicroPulse Lidar (MPL) and Raman lidars, at the Darwin Atmospheric Radiation Measurement (ARM) site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To accomplish this evaluation, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer (VCEIL) for three months (from 20 January 2013 to 20 April 2013) in order to collect a sufficient sample size for statistical comparisons.

  17. Near-highway aerosol and gas-phase measurements in a high-diesel environment

    NASA Astrophysics Data System (ADS)

    DeWitt, H. L.; Hellebust, S.; Temime-Roussel, B.; Ravier, S.; Polo, L.; Jacob, V.; Buisson, C.; Charron, A.; André, M.; Pasquier, A.; Besombes, J. L.; Jaffrezo, J. L.; Wortham, H.; Marchand, N.

    2015-04-01

    Diesel-powered passenger cars currently outnumber gasoline-powered cars in many countries, particularly in Europe. In France, diesel cars represented 61% of light duty vehicles in 2011 and this percentage is still increasing (French Environment and Energy Management Agency, ADEME). As part of the September 2011 joint PM-DRIVE (Particulate Matter - DiRect and Indirect on-road Vehicular Emissions) and MOCOPO (Measuring and mOdeling traffic COngestion and POllution) field campaign, the concentration and high-resolution chemical composition of aerosols and volatile organic carbon species were measured adjacent to a major urban highway south of Grenoble, France. Alongside these atmospheric measurements, detailed traffic data were collected from nearby traffic cameras and loop detectors, which allowed the vehicle type, traffic concentration, and traffic speed to be quantified. Six aerosol age and source profiles were resolved using the positive matrix factorization model on real-time high-resolution aerosol mass spectra. These six aerosol source/age categories included a hydrocarbon-like organic aerosol (HOA) commonly associated with primary vehicular emissions, a nitrogen-containing aerosol with a diurnal pattern similar to that of HOA, oxidized organic aerosol (OOA), and biomass burning aerosol. While quantitatively separating the influence of diesel from that of gasoline proved impossible, a low HOA : black carbon ratio, similar to that measured in other high-diesel environments, and high levels of NOx, also indicative of diesel emissions, were observed. Although the measurement site was located next to a large source of primary emissions, which are typically found to have low oxygen incorporation, OOA was found to comprise the majority of the measured organic aerosol, and isotopic analysis showed that the measured OOA contained mainly modern carbon, not fossil-derived carbon. Thus, even in this heavily vehicular-emission-impacted environment, photochemical processes

  18. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    SciTech Connect

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  19. Evolution of Asian aerosols during transpacific transport in INTEX-B

    SciTech Connect

    Dunlea, E. J.; DeCarlo, Peter; Aiken, Allison; Kimmel, Joel; Peltier, R. E.; Weber, R. J.; Tomlinson, Jason M.; Collins, Donald R.; Shinozuka, Yohei; McNaughton, C. S.; Howell, S. G.; Clarke, A. D.; Emmons, L.; Apel, Eric; Pfister, G. G.; van Donkelaar, A.; Martin, R. V.; Millet, D. B.; Heald, C. L.; Jimenez, J. L.

    2009-10-01

    Measurements of aerosol composition were made with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) on board the NSF/NCAR C-130 aircraft as part of the Intercontinental Chemical Transport Experiment Phase B 5 (INTEX-B) field campaign over the Eastern Pacific Ocean. The HR-ToF-AMS measurements of non-refractory submicron aerosol mass are shown to compare well with other aerosol instrumentation in the INTEX-B field study. Two case studies are described for pollution layers transported across the Pacific from the Asian continent, intercepted 3–4 days and 7–10 days downwind of Asia, respectively. Aerosol chemistry is shown to 10 be a robust tracer for air masses originating in Asia, specifically the presence of sulfate dominated aerosol is a distinguishing feature of Asian pollution layers that have been transported to the Eastern Pacific. We examine the time scales of processing for sulfate and organic aerosol in the atmosphere and show that our observations confirm a conceptual model for transpacific transport from Asia proposed by Brock et al. (2004). 15 Our observations of both sulfate and organic aerosol in aged Asian pollution layers are consistent with fast formation near the Asian continent, followed by washout during lofting and subsequent transformation during transport across the Pacific. Our observations are the first atmospheric measurements to indicate that although secondary organic aerosol (SOA) formation from pollution happens on the timescale of one day, 20 the oxidation of organic aerosol continues at longer timescales in the atmosphere. Comparisons with chemical transport models of data from the entire campaign reveal an under-prediction of SOA mass in the MOZART model, but much smaller discrepancies with the GEOS-Chem model than found in previous studies over the Western Pacific. No evidence is found to support a previous hypothesis for significant secondary 25 organic aerosol formation in the free troposphere.

  20. The Multi-Dimensional Challenge of Validating Remote-Sensing Aerosol-Type Retrievals

    NASA Astrophysics Data System (ADS)

    Kahn, R. A.; Gaitley, B. J.; Limbacher, J.

    2014-12-01

    In addition to aerosol optical depth (AOD), aerosol type is required globally for climate-forcing calculations, constraining aerosol transport models, and other applications. However, validating satellite aerosol type retrievals is much more challenging than testing AOD results, because aerosol type is a more complex quantity, and ground-truth data are far less numerous and generally not as robust. We employ a combination of assessment relative to climatological expectation, statistical comparisons with surface-based observations, and near-coincident field campaign measurements, to evaluate MISR aerosol-type retrieval results. Although the retrievals are not constrained by a priori expectations, there is general regional coherence in the dominant retrieved aerosol types, indicating consistency in the retrieval process. Comparisons with expectation, on a regional, seasonal basis, demonstrate qualitative consistency with regard to particle size (three-to-five bins), shape (spherical vs. non-spherical), and single-scattering albedo (SSA; two-to-four bins) when mid-visible AOD exceeds about 0.15 or 0.2. Statistical comparisons with surface-based sun and sky-scanning photometer retrievals provide both qualitative and quantitative illustration of retrieval sensitivity, identifying strengths and limitations of the MISR Standard Version 22 aerosol product, and pointing to specific areas where improvements could be made. Field campaign results offer the most detailed and robust aerosol-type constraints. They allow us, with the help of the MISR Research aerosol retrieval algorithm, to test the limits of the MISR data information content, which in specific cases substantially exceeds the general sensitivity. This presentation will briefly review the statistical techniques employed and summarize the key MISR aerosol-type retrieval validation results of this work.

  1. Aerosol MTF revisited

    NASA Astrophysics Data System (ADS)

    Kopeika, Norman S.; Zilberman, Arkadi; Yitzhaky, Yitzhak

    2014-05-01

    Different views of the significance of aerosol MTF have been reported. For example, one recent paper [OE, 52(4)/2013, pp. 046201] claims that the aerosol MTF "contrast reduction is approximately independent of spatial frequency, and image blur is practically negligible". On the other hand, another recent paper [JOSA A, 11/2013, pp. 2244-2252] claims that aerosols "can have a non-negligible effect on the atmospheric point spread function". We present clear experimental evidence of common significant aerosol blur and evidence that aerosol contrast reduction can be extremely significant. In the IR, it is more appropriate to refer to such phenomena as aerosol-absorption MTF. The role of imaging system instrumentation on such MTF is addressed too.

  2. Field and Laboratory Studies of Atmospheric Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Coggon, Matthew Mitchell

    This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation. The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate. Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f 99) was found to coincide with periods of heavy (f 42 > 0.15; f99 > 0.04), moderate (0.05 < f42 < 0.15; 0.01 < f99 < 0.04), and negligible (f42 < 0.05; f99 < 0.01) ship influence. Application of

  3. Impact of Asian Aerosols on Precipitation Over California: An Observational and Model Based Approach

    NASA Technical Reports Server (NTRS)

    Naeger, Aaron R.; Molthan, Andrew L.; Zavodsky, Bradley T.; Creamean, Jessie M.

    2015-01-01

    Dust and pollution emissions from Asia are often transported across the Pacific Ocean to over the western United States. Therefore, it is essential to fully understand the impact of these aerosols on clouds and precipitation forming over the eastern Pacific and western United States, especially during atmospheric river events that account for up to half of California's annual precipitation and can lead to widespread flooding. In order for numerical modeling simulations to accurately represent the present and future regional climate of the western United States, we must account for the aerosol-cloud-precipitation interactions associated with Asian dust and pollution aerosols. Therefore, we have constructed a detailed study utilizing multi-sensor satellite observations, NOAA-led field campaign measurements, and targeted numerical modeling studies where Asian aerosols interacted with cloud and precipitation processes over the western United States. In particular, we utilize aerosol optical depth retrievals from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS), NOAA Geostationary Operational Environmental Satellite (GOES-11), and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT) to effectively detect and monitor the trans-Pacific transport of Asian dust and pollution. The aerosol optical depth (AOD) retrievals are used in assimilating the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) in order to provide the model with an accurate representation of the aerosol spatial distribution across the Pacific. We conduct WRF-Chem model simulations of several cold-season atmospheric river events that interacted with Asian aerosols and brought significant precipitation over California during February-March 2011 when the NOAA CalWater field campaign was ongoing. The CalWater field campaign consisted of aircraft and surface measurements of aerosol and precipitation processes that help extensively validate our WRF

  4. Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006

    SciTech Connect

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; VanReken, T.; Fischer, M.; Matias, E.; Moya, M.; Farmer, D.; Cohen, R.C.

    2008-12-05

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM{sub 2.5} is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1 {micro}m diameter, semi-volatile partitioning requires 30-60 min to equilibrate; longer time is typically required during the night and early morning hours. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as 'equivalent sodium' (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  5. Dry season aerosol iron solubility in tropical northern Australia

    NASA Astrophysics Data System (ADS)

    Winton, V. Holly L.; Edwards, Ross; Bowie, Andrew R.; Keywood, Melita; Williams, Alistair G.; Chambers, Scott D.; Selleck, Paul W.; Desservettaz, Maximilien; Mallet, Marc D.; Paton-Walsh, Clare

    2016-10-01

    Marine nitrogen fixation is co-limited by the supply of iron (Fe) and phosphorus in large regions of the global ocean. The deposition of soluble aerosol Fe can initiate nitrogen fixation and trigger toxic algal blooms in nitrate-poor tropical waters. We present dry season soluble Fe data from the Savannah Fires in the Early Dry Season (SAFIRED) campaign in northern Australia that reflects coincident dust and biomass burning sources of soluble aerosol Fe. The mean soluble and total aerosol Fe concentrations were 40 and 500 ng m-3 respectively. Our results show that while biomass burning species may not be a direct source of soluble Fe, biomass burning may substantially enhance the solubility of mineral dust. We observed fractional Fe solubility up to 12 % in mixed aerosols. Thus, Fe in dust may be more soluble in the tropics compared to higher latitudes due to higher concentrations of biomass-burning-derived reactive organic species in the atmosphere. In addition, biomass-burning-derived particles can act as a surface for aerosol Fe to bind during atmospheric transport and subsequently be released to the ocean upon deposition. As the aerosol loading is dominated by biomass burning emissions over the tropical waters in the dry season, additions of biomass-burning-derived soluble Fe could have harmful consequences for initiating nitrogen-fixing toxic algal blooms. Future research is required to quantify biomass-burning-derived particle sources of soluble Fe over tropical waters.

  6. Community Members’ Input into Cancer Prevention Campaign Development and Experience Being Featured in the Campaign

    PubMed Central

    Katz, Mira L.; Keller, Brittney; Tatum, Cathy M.; Fickle, Darla K.; Midkiff, Courtney; Carver, Sharon; Krieger, Janice L.; Slater, Michael D.; Paskett, Electra D.

    2016-01-01

    Background Colorectal cancer (CRC) incidence and mortality rates are increased and CRC screening rates are lower among Appalachia Ohio residents. Objectives We sought to describe 1) a partnership of cancer researchers and community members that developed county-specific media campaigns to improve CRC screening rates (intervention) and fruit and vegetable consumption (control) and 2) the experience of community members featured in the campaigns. Methods Community members assisted with campaign-development, were featured in campaigns, identified locations for materials, and promoted the campaigns. Campaigns included billboards, posters, and information in local newspapers. A mailed survey assessed featured community members’ experiences in the campaigns. Lessons Learned Ongoing communication among members of the partnership was critical to successful community-level campaigns. Featured community members had mostly positive experiences about being included in the campaigns. Conclusions Having a shared vision, ongoing trust, and good communication are essential elements to maintaining a viable academic-community partnership. PMID:26412757

  7. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  8. Thermoluminescent aerosol analysis

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Long, E. R., Jr. (Inventor)

    1977-01-01

    A method for detecting and measuring trace amounts of aerosols when reacted with ozone in a gaseous environment was examined. A sample aerosol was exposed to a fixed ozone concentration for a fixed period of time, and a fluorescer was added to the exposed sample. The sample was heated in a 30 C/minute linear temperature profile to 200 C. The trace peak was measured and recorded as a function of the test aerosol and the recorded thermoluminescence trace peak of the fluorescer is specific to the aerosol being tested.

  9. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (<0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. Samples were collected on quartz fiber filters with high volume impactor samplers. Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples. These continuous spectra have also been used to obtain the

  10. Ground-based Network and Supersite Measurements for Studying Aerosol Properties and Aerosol-Cloud Interactions

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.

    2008-01-01

    capability of AERONET SMART-COMMIT in current Asian Monsoon Year-2008 campaigns that are designed and being executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., airborne dust, smoke, mega-city pollutant). Feedback mechanisms between aerosol radiative effects and monsoon dynamics have been recently proposed, however there is a lack of consensus on whether aerosol forcing would be more likely to enhance or reduce the strength of the monsoon circulation. We envision robust approaches which well-collocated ground-based measurements and space-borne observations will greatly advance our understanding of absorbing aerosols (e.g., "Global Dimming" vs. "Elevated Heat-Pump" effects) on aerosol cloud water cycle interactions.

  11. Retrieval of aerosol aspect ratio from optical measurements in Vienna

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Horvath, H.; Gangl, M.

    The phase function and extinction coefficient measured simultaneously are interpreted in terms of surface distribution function and mean effective aspect ratio of aerosol particles. All optical data were collected in the atmosphere of Vienna during field campaign in June 2005. It is shown that behavior of aspect ratio of Viennese aerosols has relation to relative humidity in such a way, that nearly spherical particles (with aspect ratio ɛ≈1) might became aspherical with ɛ≈1.3-1.6 under low relative humidity conditions. Typically, >80% of all Viennese aerosols have the aspect ratio <1.4, so the morphology of these particles behaves like perturbed spheres. The ɛ, exceptionally, can reach the value about 2, but these situations occur with probability <2%. Most typically, the aspect ratio peaks at ɛ≈1.2 in the atmosphere of Vienna.

  12. Formaldehyde content of atmospheric aerosol.

    PubMed

    Toda, Kei; Yunoki, Satoru; Yanaga, Akira; Takeuchi, Masaki; Ohira, Shin-Ichi; Dasgupta, Purnendu K

    2014-06-17

    Formaldehyde (HCHO) is a highly soluble polar molecule with a large sticking coefficient and thus likely exists in both gaseous and particulate forms. Few studies, however, address particulate HCHO (HCHO(p)). Some report that HCHO(p) concentrations (obtained only with long duration sampling) are very low. The lack of data partly reflects the difficulty of specifically measuring HCHO(p). Long duration filter sampling may not produce meaningful results for a variety of reasons. In this work, gaseous HCHO (HCHO(g)) and (HCHO(p)) were, respectively, collected with a parallel plate wet denuder (PPWD) followed by a mist chamber/hydrophilic filter particle collector (PC). The PPWD quantitatively removed HCHO(g) and the PC then collected the transmitted aerosol. The collected HCHO from either device was alternately analyzed by Hantzsch reaction-based continuous flow fluorometry. Each gas and particle phase measurement took 5 min each, with a 10 min cycle. The limits of detection were 0.048 and 0.0033 μg m(-3), respectively, for HCHO(g) and HCHO(p). The instrument was deployed in three separate campaigns in a forest station in western Japan in March, May, and July of 2013. Based on 1296 data pairs, HCHO(p), was on the average, 5% of the total HCHO. Strong diurnal patterns were observed, with the HCHO(p) fraction peaking in the morning. The relative humidity dependence of the partition strongly suggests that it is driven by the liquid water content of the aerosol phase. However, HCHO(p) was 100× greater than that expected from Henry's law. We propose that the low water activity in the highly saline droplets lead to HCHO oligomerization.

  13. Airborne Sun photometry and Closure Studies in SAFARI-2000 Dry Season Campaign

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Russell, P. B.; Pilewskie, P.; Redemann, J.; Livingston, J. M.; Hobbs, P. V.; Welton, E. J.; Campbell, J.; Holben, B. N.; McGill, M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    From August 13 to September 25, the Southern African Regional Science Initiative's (SAFARI 2000) dry-season airborne campaign studied the complex interactions between the region's ecosystems, air pollution, atmospheric circulation, land-atmosphere interactions, and land use change. The field campaign was timed to coincide with the annual winter fire season in Southern Africa. This challenging campaign. which coordinated ground-based measurement teams, multiple research aircraft, and satellite overpasses across nine African nations, was head quartered at the Petersburg International Airport in South Africa's Northern Province. Among many others, unique coordinated observations were made of the evolution of massive, thick haze layers produced by industrial emissions, biomass burning, marine and biogenic sources. The NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14) was operated successfully aboard the University of Washington CV-580 during 24 data flights. The AATS-14 instrument measures the transmission of the direct solar beam at 14 discrete wavelengths (3501558 nm) from which we derive spectral aerosol optical depths (AOD), columnar water vapor (CWV) and columnar ozone. Flying at different altitudes over a fixed location allows derivation of layer AOD and CWV. Data taken during feasible vertical profiles allows derivation of aerosol extinction and water vapor density. In the talk, we show comparisons with ground-based AERONET sun/sky photometer results, with ground based MPL-Net lidar data, and with measurements from a lidar aboard the high flying ER-2 aircraft. We will use measurements from the Ames Solar Spectral Flux Radiometer to derive estimates of solar spectral forcing as a function of aerosol thickness. Validations of TOMS and Terra satellite aerosol and water-vapor retrievals will also be discussed.

  14. The Magic Field Campaign in the Eastern North Pacific

    NASA Astrophysics Data System (ADS)

    Lewis, E. R.

    2013-12-01

    The MAGIC field campaign, funded and operated by the ARM (Atmospheric Radiation Measurement) Climate Research Facility of the US Department of Energy, occurred between September, 2012 and October, 2013 aboard the Horizon Lines cargo container ship Spirit making regular round trips between Los Angeles, CA and Honolulu, HI. Along this route, which lies very near the GPCI (GCSS Pacific Cross-Section Intercomparison) transect, the cloud regime changes from predominantly stratocumulus near the California coast to predominantly trade-wind cumulus near Hawaii. The transition between these two regimes is poorly understood and not accurately represented in climate models. The goal of the campaign was to improve the representation of this transition in models by acquiring statistics of the transition by making repeated transects through this region measuring properties of clouds and precipitation, aerosols, radiation, and atmospheric structure. To achieve these goals, the Second ARM Mobile Facility (AMF2) was deployed on the Horizon Spirit and nearly forty excursions through this transition were taken. The AMF2 consists of three 20-foot SeaTainers and other instruments that were installed on the Spirit. Two technicians accompanied the AMF2 and scientists rode as observers. Radiosondes were launched four times per day, and an overflight by the SPEC Learjet occurred in July. An overview of the deployment, preliminary results, and future plans will be presented.

  15. Street canyon aerosol pollutant transport measurements.

    PubMed

    Longley, I D; Gallagher, M W; Dorsey, J R; Flynn, M; Bower, K N; Allan, J D

    2004-12-01

    Current understanding of dispersion in street canyons is largely derived from relatively simple dispersion models. Such models are increasingly used in planning and regulation capacities but are based upon a limited understanding of the transport of substances within a real canyon. In recent years, some efforts have been made to numerically model localised flow in idealised canyons (e.g., J. Appl. Meteorol. 38 (1999) 1576-89) and stepped canyons (Assimakopoulos V. Numerical modelling of dispersion of atmospheric pollution in and above urban canopies. PhD thesis, Imperial College, London, 2001) but field studies in real canyons are rare. To further such an understanding, a measurement campaign has been conducted in an asymmetric street canyon with busy one-way traffic in central Manchester in northern England. The eddy correlation method was used to determine fluxes of size-segregated accumulation mode aerosol. Measurements of aerosol at a static location were made concurrently with measurements on a platform lift giving vertical profiles. Size-segregated measurements of ultrafine and coarse particle concentrations were also made simultaneously at various heights. In addition, a small mobile system was used to make measurements of turbulence at various pavement locations within the canyon. From this data, various features of turbulent transport and dispersion in the canyon will be presented. The concentration and the ventilation fluxes of vehicle-related aerosol pollutants from the canyon will be related to controlling factors. The results will also be compared with citywide ventilation data from a separate measurement campaign conducted above the urban canopy.

  16. Sources and transformations of atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Cross, Eben Spencer

    Aerosol particles are an important component of the Earth-Atmosphere system because of their influence on the radiation budget both directly (through absorption and scattering) and indirectly (through cloud condensation nuclei (CCN) activity). The magnitude of the raditaive forcing attributed to the direct and indirect aerosol effects is highly uncertain, leading to large uncertainties in projections of global climate change. Real-time measurements of aerosol properties are a critical step toward constraining the uncertainties in current global climate modeling and understanding the influence that anthropogenic activities have on the climate. The objective of the work presented in this thesis is to gain a more complete understanding of the atmospheric transformations of aerosol particles and how such transformations influence the direct and indirect radiative effects of the particles. The work focuses on real-time measurements of aerosol particles made with the Aerodyne Aerosol Mass Spectrometer (AMS) developed in collaboration with the Boston College research group. A key feature of the work described is the development of a light scattering module for the AMS. Here we present the first results obtained with the integrated light scattering - AMS system. The unique and powerful capabilities of this new instrument combination are demonstrated through laboratory experiments and field deployments. Results from two field studies are presented: (1) The Northeast Air Quality Study (NEAQS), in the summer of 2004, conducted at Chebogue Point, Nova Scotia and (2) The Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign conducted in and around Mexico City, Mexico in March of 2006. Both field studies were designed to study the transformations that occur within pollution plumes as they are transported throughout the atmosphere. During the NEAQS campaign, the pollution plume from the Northeastern United States was intercepted as it was

  17. Measurements of CCN-concentrations in the European alpine aerosol using a newly developed static thermal diffusion counter

    NASA Astrophysics Data System (ADS)

    Hitzenberger, R.; Giebl, H.; Berner, A.; Kromp, R.; Reischl, G.; Kasper-Giebl, A.; Puxbaum, H.

    2000-08-01

    The CCN counter developed at the University of Vienna operates on the principle of a static thermal diffusion chamber. Since 1997, it was used to obtain CCN concentrations in the European alpine background aerosol during intensive measurement campaigns. The 1997 campaign was performed on Mt. Sonnblick (3104 m a.s.l.), while in 1999 and 2000, intensive campaigns were performed on Mt. Rax (1644 m a.s.l.). CCN concentrations at 0.5% supersaturation were found to be comparable ar both sites and also comparable to earlier measurements performed with a commercial CCN counter (DH Associates) on Mt. Sonnblick. Simultaneous measurements of CCN concentration, aerosol number size distribution (measured with a differential mobility particle spectrometer) and cloud liquid water content provided insights into the aerosol/cloud dynamics on Mt. Rax

  18. AROTAL Ozone and Temperature Vertical Profile Measurements from the NASA DC-8 during the SOLVE II Campaign

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Twigg, Laurence; Sumnicht, Grant; Hoegy, Walter; Burris, John; Silbert, Donald; Heaps, William; Neuber, R.; Trepte, C. R.

    2004-01-01

    The AROTAL instrument (Airborne Raman Ozone Temperature and Aerosol Lidar) - a collaboration between scientists at NASA Goddard Space Flight Center, and Langley Research Center - was flown on the NASA DC-8 during the SOLVE II Campaign during January and February, 2003. The flights were flown from the Arena Arctica in Kiruna, Sweden. We report measurements of temperature and ozone profiles showing approximately a 600 ppbv loss in ozone near 17.5 km, over the time frame of the aircraft campaign. Comparisons of ozone profiles from AROTAL are made with the SAGE III instrument.

  19. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through