Science.gov

Sample records for aerosol characterization experiment-asia

  1. Analysis of shipboard aerosol optical thickness measurements from multiple sunphotometers aboard the R/V Ronald H. Brown during the Aerosol Characterization Experiment - Asia

    SciTech Connect

    Miller, Mark A.; Knobelspiesse, Kirk; Frouin, Robert; Bartholomew, Mary Jane; Reynolds, R. Michael; Pietras, Christophe; Fargion, Giulietta; Quinn, Patricia; Thieuleux, Francois

    2005-06-20

    Marine sunphotometer measurements collected aboard the R/V Ronald H. Brown during the Aerosol Characterization Experiment - Asia (ACE-Asia) are used to evaluate the ability of complementary instrumentation to obtain the best possible estimates of aerosol optical thickness and Angstrom exponent from ships at sea. A wide range of aerosol conditions, including clean maritime conditions and highly polluted coastal environments, were encountered during the ACE-Asia cruise. The results of this study suggest that shipboard hand-held sunphotometers and fast-rotating shadow-band radiometers (FRSRs) yield similar measurements and uncertainties if proper measurement protocols are used and if the instruments are properly calibrated. The automated FRSR has significantly better temporal resolution (2 min) than the hand-held sunphotometers when standard measurement protocols are used, so it more faithfully represents the variability of the local aerosol structure in polluted regions. Conversely, results suggest that the hand-held sunphotometers may perform better in clean, maritime air masses for unknown reasons. Results also show that the statistical distribution of the Angstrom exponent measurements is different when the distributions from hand-held sunphotometers are compared with those from the FRSR and that the differences may arise from a combination of factors.

  2. Characterization of Cooking-Related Aerosols

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Blanc, L. E.

    2010-12-01

    The temperatures at which food is cooked are usually high enough to drive oils and other organic compounds out of materials which are being prepared for consumption. As these compounds move away from the hot cooking surface and into the atmosphere, they can participate in chemical reactions or condense to form particles. Given the high concentration of cooking in urban areas, cooking-related aerosols likely contribute to the overall amount of particulate matter on a local scale. Reported here are results for the mid-infrared optical characterization of aerosols formed during the cooking of several meat and vegetable samples in an inert atmosphere. The samples were heated in a novel aerosol generator that is designed to collect particles formed immediately above the cooking surface and inject them into a laminar aerosol flow cell. Preliminary results for the chemical processing of cooking-related aerosols in synthetic air will also be presented.

  3. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, P.F.; Herceg, J.E.; Klocksieben, R.H.

    1984-04-11

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage t

  4. Characterization of Aerosols Containing Microcystin

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Irvin, C. Mitch; Kirkpatrick, Barbara; Backer, Lorraine C.

    2007-01-01

    Toxic blooms of cyanobacteria are ubiquitous in both freshwater and brackish water sources throughout the world. One class of cyanobacterial toxins, called microcystins, is cyclic peptides. In addition to ingestion and dermal, inhalation is a likely route of human exposure. A significant increase in reporting of minor symptoms, particularly respiratory symptoms was associated with exposure to higher levels of cyanobacteria during recreational activities. Algae cells, bacteria, and waterborne toxins can be aerosolized by a bubble-bursting process with a wind-driven white-capped wave mechanism. The purposes of this study were to: evaluate sampling and analysis techniques for microcystin aerosol, produce aerosol droplets containing microcystin in the laboratory, and deploy the sampling instruments in field studies. A high-volume impactor and an IOM filter sampler were tried first in the laboratory to collect droplets containing microcystins. Samples were extracted and analyzed for microcystin using an ELISA method. The laboratory study showed that cyanotoxins in water could be transferred to air via a bubble-bursting process. The droplets containing microcystins showed a bimodal size distribution with the mass median aerodynamic diameter (MMAD) of 1.4 and 27.8 μm. The sampling and analysis methods were successfully used in a pilot field study to measure microcystin aerosol in situ. PMID:18463733

  5. Optical Characterization of Tropospheric Aerosols.

    DTIC Science & Technology

    1987-09-01

    Transmission of Light Through Fog," Phys. Rev. Vol. 38, p 159 (1931). 27. Kerker, M., Matijevic , E., Espenscheid, W. F., Farone, W. A., and Kitani, S...Espensheid, W. F., Matijevic , E., and Kerker, M., "Aerosol Studies by Light Scattering. III. Preparation and Particle Size Analysis of Sodium Chloride

  6. Columnar aerosol characterization over Scandinavia and Svalbard

    NASA Astrophysics Data System (ADS)

    Toledano, C.; Cachorro, V. E.; Ortiz de Galisteo, J. P.; Bennouna, Y.; Berjón, A.; Torres, B.; Fuertes, D.; González, R.; de Frutos, A. M.

    2013-05-01

    An overview of sun photometer measurements of aerosol properties in Scandinavia and Svalbard was provided by Toledano et al. (2012) thanks to the collaborative effort of various research groups from different countries that maintain a number of observation sites in the European Arctic and sub-Arctic regions. The spatial coverage of this kind of data has remarkably improved in the last years, thanks, among other things, to projects carried out within the framework of the International Polar Year 2007-08. The data from a set of operational sun photometer sites belonging either to national or international measurement networks (AERONET, GAW-PFR) were evaluated. The direct sun observations provided spectral aerosol optical depth (AOD) and Ångström exponent (AE), that are parameters with sufficient long-term records for a first characterization at all sites. At the AERONET sites, microphysical properties derived from inversion of sun-sky radiance data were also examined. AOD (500nm) ranged from 0.08 to 0.10 in Arctic and sub-Arctic sites whereas the aerosol load was higher in more populated areas in Southern Scandinavia (average AOD about 0.10-0.12 at 500 nm). On the Norwegian coast, aerosols showed larger mean size than in continental areas. Columnar particle size distributions and related parameters were used to evaluate aerosol volume efficiencies. The aerosol optical depth characterization revealed that the seasonal patterns in the high Arctic (with the typical hazy spring), in the sub-Arctic region and Southern Scandinavia are all different. The clean continental, polluted continental and maritime aerosols constitute the three main aerosol types, although persistent (Asian) dust was also detected in Svalbard.

  7. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, Patrick F.; Herceg, Joseph E.; Klocksieben, Robert H.

    1986-01-01

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

  8. Characterization of Ambient Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Levy, M. E.; Zheng, J.; Molina, L. T.

    2013-12-01

    Because of the strong absorption over a broad range of the electromagnetic spectra, black carbon (BC) is a key short-lived climate forcer, which contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. The impact of BC on the radiative forcing of the Earth-Atmosphere system is highly dependent of the particle properties. In this presentation, emphasis will be placed on characterizing BC containing aerosols in at the California-Mexico border to obtain a greater understanding of the atmospheric aging and properties of ambient BC aerosols. A comprehensive set of directly measured aerosol properties, including the particle size distribution, effective density, hygroscopicity, volatility, and several optical properties, will be discussed to quantify the mixing state and composition of ambient particles. In Tijuana, Mexico, submicron aerosols are strongly influenced by vehicle emissions; subsequently, the BC concentration in Tijuana is considerably higher than most US cities with an average BC concentration of 2.71 × 2.65 g cm-3. BC accounts for 24.75 % × 9.44 of the total submicron concentration on average, but periodically accounts for over 50%. This high concentration of BC strongly influences many observed aerosol properties such as single scattering albedo, hygroscopicity, effective density, and volatility.

  9. Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)

    DOE Data Explorer

    The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

  10. Systematic aerosol characterization by combining GOME-2 UV Aerosol Indices with trace gas concentrations

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M.; Stammes, P.; Wagner, T.

    2012-04-01

    The task of determining aerosol type using passive remote sensing instruments is a daunting one. First, because the variety in aerosol (optical) properties is very large; and second, because the effect of aerosols on the detected top-of-atmosphere reflectance spectrum is smooth and mostly featureless. In addition, spectrometers like GOME-2 have a coarse spatial resolution, which makes aerosol characterization even more difficult due to interferences with clouds. On account of these problems, we do not attempt to derive aerosol properties from single measurements: instead, we combine time series of UV Aerosol Index and trace gas concentrations to derive the dominating aerosol type for each season. Aside from the Index values and trace gas concentrations themselves, the correlation between UV Aerosol Indices (which are indicative of aerosol absorption) with NO2, HCHO, and CHOCHO columns - or absence of it - provides clues to the (main) source of the aerosols in the investigated region and time range. For example: a high correlation of HCHO and Absorbing Aerosol Index points to aerosols from biomass burning, highly correlated CHOCHO, HCHO, and SCattering Index indicate biogenic secondary organic aerosols, and coinciding high NO2 concentrations with high SCattering Index values are associated with industrial and urban aerosols. We here present case studies for several regions to demonstrate the suitability of our approach. Then, we introduce a method to systematically derive the dominating aerosol type on a global scale on time scales varying from monthly to yearly.

  11. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H.; Henry, Mike; Baden, Daniel G.

    2009-01-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1 h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5–10 μg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m3. The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. PMID:19879288

  12. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G

    2010-05-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction.

  13. Generation and characterization of biological aerosols for laser measurements

    SciTech Connect

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  14. Multiwavelength multistatic optical scattering for aerosol characterization

    NASA Astrophysics Data System (ADS)

    Brown, Andrea M.

    The main focus of this research is the development of a technique to remotely characterize aerosol properties, such as particle size distribution, concentration, and refractive index as a function of wavelength, through the analysis of optical scattering measurements. The proposed technique is an extension of the multistatic polarization ratio technique that has been developed by prior students at the Penn State Lidar Lab to include multiple wavelengths. This approach uses the ratio of polarized components of the scattering phase functions at multiple wavelengths across the visible region of the electromagnetic spectrum to extract the microphysical and optical properties of aerosols. The scattering intensities at each wavelength are vertically separated across the face of the imager using a transmission diffraction grating, so that scattering intensities for multiple wavelengths at many angles are available for analysis in a single image. The ratio of the scattering phase function intensities collected using parallel and perpendicular polarized light are formed for each wavelength and analysis of the ratio is used to determine the microphysical properties of the aerosols. One contribution of the present work is the development of an inversion technique based on a genetic algorithm that retrieves lognormal size distributions from scattering measurements by minimizing the squared error between measured polarization ratios and polarization ratios calculated using the Mie solution to Maxwell's equations. The opportunities and limitations of using the polarization ratio are explored, and a genetic algorithm is developed to retrieve single mode and trimodal lognormal size distributions from multiwavelength, angular scattering data. The algorithm is designed to evaluate particles in the diameter size range of 2 nm to 60 im, and uses 1,000 linear spaced diameters within this range to compute the modeled polarization ratio. The algorithm returns geometric mean radii and

  15. Aerosol characterization of nebulized intranasal glucocorticoid formulations.

    PubMed

    Berlinski, A; Waldrep, J C

    2001-01-01

    Inhaled glucocorticoids (GCs) are the mainstay of long-term therapy for asthma. The lack of suitable preparations in the United States has induced clinicians to use intranasal (IN) GC formulations as "nebulizer suspensions" for off-label therapy. However, no data are available regarding aerosol production and characteristics. The aim of this study was to characterize drug outputs and aerodynamic profiles of four nebulized IN GC formulations with further analysis of flunisolide (Flu), and to test the influence of different delivery system/formulation combinations. The aerodynamic profiles and drug outputs were determined by impaction and chemical analysis. The solution output was determined by the gravimetric technique. Triamcinole acetonide (TAA), fluticasone propionate (Flut), beclomethasone dipropionate (Bec), and Flu (550, 500, 840, and 250 microg, respectively) diluted to 4 mL with saline solution were tested with the Sidestream (SID) and Aero-Tech II (AT2) nebulizers. Subsequently, Flu was tested with four additional nebulizers (Pari LC + [PARI] Acorn II, Hudson T Up-draft II, and Raindrop). All the aerosols were heterodisperse and had a particle size range optimal for peripheral airway deposition (1.85 to 3.67 microm). Flu had the highest drug output in the respirable range (22.8 and 20.3 microg/min with the AT and SID, respectively). Flu was 5-11 times more efficiently nebulized than the other formulations tested. No differences were detected in the solution outputs (0.25 to 0.3 mL/min). In subsequent testing of Flu, the PARI, AT, and SID showed the best performances. The LC+ achieved the highest drug and solution output (27.4 microg/min and 0.89 mL/min, respectively). In conclusion, Flu showed the best aerosol performance characteristics. These data do not endorse the off-label utilization of nebulized IN GC, but underscores the importance of in vitro testing before selecting any formulation/nebulizer combinations for clinical use.

  16. Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

    NASA Astrophysics Data System (ADS)

    Wahab, A. M.; Sarker, M. L. R.

    2014-02-01

    Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation.

  17. Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization

    SciTech Connect

    Friedman, Beth; Herich, Hanna; Kammermann, Lukas; Gross, Deborah S.; Ameth, Almut; Holst, Thomas; Lohmann, U.; Cziczo, Daniel J.

    2009-07-10

    Sub-Arctic aerosol was sampled during July 2007 at the Abisko Research Station Stordalen field site operated by the Royal Swedish Academy of Sciences. Located in northern Sweden at 68º latitude and 385 meters above sea level (msl), this site is classified as a semi-continuous permafrost mire. Number density, size distribution, cloud condensation nucleus properties, and chemical composition of the ambient aerosol were determined. Backtrajectories showed that three distinct airmasses were present over Stordalen during the sampling period. Aerosol properties changed and correlated with airmass origin to the south, northeast, or west. We observe that Arctic aerosol is not compositionally unlike that found in the free troposphere at mid-latitudes. Internal mixtures of sulfates and organics, many on insoluble biomass burning and/or elemental carbon cores, dominate the number density of particles from ~200 to 2000 nm aerodynamic diameter. Mineral dust which had taken up gas phase species was observed in all airmasses. Sea salt, and the extent to which it had lost volatile components, was the aerosol type that most varied with airmass.

  18. A thermoluminescent method for aerosol characterization

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.; Rogowski, R. S.

    1976-01-01

    A thermoluminescent method has been used to study the interactions of aerosols with ozone. The preliminary results show that ozone reacts with many compounds found in aerosols, and that the thermoluminescence curves obtained from ozonated aerosols are characteristic of the aerosol. The results suggest several important applications of the thermoluminescent method: development of a detector for identification of effluent sources; a sensitive experimental tool for study of heterogeneous chemistry; evaluation of importance of aerosols in atmospheric chemistry; and study of formation of toxic, electronically excited species in airborne particles.

  19. Characterization of aerosol events based on the column integrated optical aerosol properties and polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Mandija, Florian; Markowicz, Krzysztof; Zawadzka, Olga

    2016-12-01

    Aerosol optical properties are very useful tools for analyzing their radiative effects, which are directly or indirectly related to the global radiation budget. Investigation of column-integrated aerosol optical properties is a worldwide and well-accepted method. The introduction of new methodologies, like those of operation with polarimetric measurements, represent a new challenge to interpret the measurement data and give more detailed information about the aerosol events and their characteristics. Aerosol optical properties during the period June - August 2015 in AERONET Strzyzow station in Poland were analyzed. The aerosol properties like aerosol optical depth, Ångström exponent, fine mode fraction, fine mode contribution on AOD, asymmetry parameter, single scattering angle are analyzed synergistically with the polarimetric measurements of the degree of polarization in different solar zenith and zenith viewing angles at several wavelengths. The overall results show that aerosol events in Strzyzow were characterized mostly by fine mode aerosols. Backward-trajectories suggest that the majority of air masses come from the west. The principal component of the aerosol load was urban/industrial contamination, especially from the inner part of the continent. Additionally, the maximal values of the degree of linear polarization were found to be dependent on the solar zenith and zenith viewing angles and aerosol optical properties like aerosol optical depth and Ångström exponent. These dependencies were further analyzed in a specific case with very high mean values of AOD500 (0.59) and AE440-870 (1.91). The diurnal variations of aerosol optical properties investigated during this special case, suggest that biomass burning products are the main cause of that aerosol load over the stations.

  20. Detailed Aerosol Characterization using Polarimetric Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, Otto; di Noia, Antonio; Stap, Arjen; Rietjens, Jeroen; Smit, Martijn; van Harten, Gerard; Snik, Frans

    2016-04-01

    Anthropogenic aerosols are believed to cause the second most important anthropogenic forcing of climate change after greenhouse gases. In contrast to the climate effect of greenhouse gases, which is understood relatively well, the negative forcing (cooling effect) caused by aerosols represents the largest reported uncertainty in the most recent assessment of the International Panel on Climate Change (IPCC). To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. There is growing consensus in the aerosol remote sensing community that multi-angle measurements of intensity and polarization are essential to unambiguously determine all relevant aerosol properties. This presentations adresses the different aspects of polarimetric remote sensing of atmospheric aerosols, including retrieval algorithm development, validation, and data needs for climate and air quality applications. During past years, at SRON-Netherlands Instite for Space Research retrieval algorithms have been developed that make full use of the capabilities of polarimetric measurements. We will show results of detailed aerosol properties from ground-based- (groundSPEX), airborne- (NASA Research Scanning Polarimeter), and satellite (POLDER) measurements. Also we will discuss observational needs for future instrumentation in order to improve our understanding of the role of aerosols in climate change and air quality.

  1. Characterization of aerosols produced by surgical procedures

    SciTech Connect

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K.; Turner, R.S.

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  2. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol

    NASA Astrophysics Data System (ADS)

    Riva, Matthieu; Budisulistiorini, Sri Hapsari; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.

    2016-04-01

    Isoprene is the most abundant non-methane hydrocarbon emitted into Earth's atmosphere and is predominantly derived from terrestrial vegetation. Prior studies have focused largely on the hydroxyl (OH) radical-initiated oxidation of isoprene and have demonstrated that highly oxidized compounds, such as isoprene-derived epoxides, enhance the formation of secondary organic aerosol (SOA) through heterogeneous (multiphase) reactions on acidified sulfate aerosol. However, studies on the impact of acidified sulfate aerosol on SOA formation from isoprene ozonolysis are lacking and the current work systematically examines this reaction. SOA was generated in an indoor smog chamber from isoprene ozonolysis under dark conditions in the presence of non-acidified or acidified sulfate seed aerosol. The effect of OH radicals on SOA chemical composition was investigated using diethyl ether as an OH radical scavenger. Aerosols were collected and chemically characterized by ultra performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) and gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS). Analysis revealed the formation of highly oxidized compounds, including organosulfates (OSs) and 2-methylterols, which were significantly enhanced in the presence of acidified sulfate seed aerosol. OSs identified in the chamber experiments were also observed and quantified in summertime fine aerosol collected from two rural locations in the southeastern United States during the 2013 Southern Oxidant and Aerosol Study (SOAS).

  3. Capstone Depleted Uranium Aerosols: Generation and Characterization

    SciTech Connect

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  4. Improving Protection against Viral Aerosols Through Development of Novel Decontamination Methods and Characterization of Viral Aerosol

    DTIC Science & Technology

    2012-04-01

    AFRL-RX-TY-TP-2012-0040 IMPROVING PROTECTION AGAINST VIRAL AEROSOLS THROUGH DEVELOPMENT OF NOVEL DECONTAMINATION METHODS AND CHARACTERIZATION...Include area code) 16-APR-2012 Technical Paper (Thesis) 15-SEP-2007 -- 30-APR-2012 Improving Protection against Viral Aerosols Through Development of...medium showed that artificial saliva (AS) and beef serum extract (BE) produce a protective effect against UV compared to deionized (DI) water, that RH was

  5. Using Retrieved Aerosol Spectral Properties to Characterize Aerosol Composition and Mixing

    NASA Astrophysics Data System (ADS)

    Li, J.

    2015-12-01

    The spectral dependence of aerosol properties, such as aerosol absorption optical depth (AAOD) and single scattering albedo (SSA), can be used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, spectral AAOD and SSA measured in reality may differ from these extreme cases, due to the complicated composition and mixing states. In this study, we use spectral SSA and AAOD retrieved from AERONET measurements, assisted by CALIPSO aerosol type product and Mie calculations, to characterize aerosol mixtures over representative regions. Moreover, in addition to the monotonically increasing or decreasing AAOD and SSA spectra, we find the spectral dependence of these two parameters are frequently peaked (at 675 nm or 870 nm) over several places including East Asia, India, West Africa and South America. We thus suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Further analysis indicates that moderate mixing of black carbon with dust or organic carbon is mainly responsible for producing the SSA curvature. An optimization scheme was developed to match the observed AAOD and SSA spectra with Mie calculations assuming different aerosol composition and mixing states. Results suggest that while external mixing can explain most of the observed AAOD and SSA spectral dependence, internal mixing or core-shell mode is also likely under many circumstances, such as East Asia during winter and post-monsoon and winter seasons over India. This method offers the potential to quantitatively infer aerosol composition from these spectral measurements of aerosol optical properties.

  6. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  7. Lindenberg Aerosol Characterization Experiment 1998 (LACE 98): Overview

    NASA Astrophysics Data System (ADS)

    Ansmann, Albert; Wandinger, Ulla; Wiedensohler, Alfred; Leiterer, Ulrich

    2002-11-01

    Backscattering and absorption of solar radiation by aerosol particles are an important source of uncertainty in climate predictions. Integrated research on the radiative properties of aerosol may reduce this uncertainty. The Lindenberg Aerosol Characterization Experiment 1998 (LACE 98) contributes to this aim. LACE 98 took place between 13 July and 12 August 1998, near Berlin, Germany. The Lindenberg Meteorological Observatory (52.2°N, 14.1°E) was chosen as the central field site because of its long record with aerosol optical-depth data. Measurements were performed from three aircraft, with one airborne and four ground-based lidars, and at a ground station. The meteorological situations in which intensive observations were carried out included clean and polluted air masses as characterized by low and high aerosol optical depths. This introductory paper gives an overview of the LACE 98 goals, instrumentation, meteorological and aerosol properties, and reports on the key findings as a guide to the results presented in the more detailed papers that follow. A very remarkable finding should be mentioned beforehand because of its unique character: on 9-10 August 1998, a free-tropospheric aerosol layer was observed that originated from forest fires in western Canada.

  8. Apparatus and method for the characterization of respirable aerosols

    DOEpatents

    Clark, Douglas K.; Hodges, Bradley W.; Bush, Jesse D.; Mishima, Jofu

    2016-05-31

    An apparatus for the characterization of respirable aerosols, including: a burn chamber configured to selectively contain a sample that is selectively heated to generate an aerosol; a heating assembly disposed within the burn chamber adjacent to the sample; and a sampling segment coupled to the burn chamber and configured to collect the aerosol such that it may be analyzed. The apparatus also includes an optional sight window disposed in a wall of the burn chamber such that the sample may be viewed during heating. Optionally, the sample includes one of a Lanthanide, an Actinide, and a Transition metal.

  9. Characterizing the formation of secondary organic aerosols

    SciTech Connect

    Lunden, Melissa; Black, Douglas; Brown, Nancy

    2004-02-01

    Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the

  10. Characterizing Aerosolized Particulate As Part Of A Nanoprocess Exposure Assessment

    SciTech Connect

    Jankovic, John Timothy; Ogle, Burton R; Zontek, Tracy L; Hollenbeck, Scott M

    2010-01-01

    The purpose of this effort was to propose important aerosol characterization parameters that should be gathered as part of a nanomaterial hazard assessment and to offer a methodology for applying that data to daily operations. This study documents different ways of characterizing nanoscale materials using an aerosol from a process simulation consisting of a vacuum cleaner motor operating inside an enclosure. The aerosol is composed of insoluble carbon particles plus environmental background constituents. The average air concentration is 2.76E+5 p/cm3. Size measurements of the aerosol indicate > 70% of the particulate is blade-like in shape, 50% of which have a height dimension 100 nm. In terms of an equivalent spherical diameter 0.8% of the particulate is 100 nm in size. The carbon blades are characterized as having a root-mean-square roughness of 75 nm, and average fractal dimension of 2.25. These measures: aerosol chemistry, solubility, shape and size, surface area, number concentration and size distribution are important parameters to collect for current exposure assessment and toxicology and epidemiology studies.

  11. Generation and Characterization of Indoor Fungal Aerosols for Inhalation Studies.

    PubMed

    Madsen, Anne Mette; Larsen, Søren T; Koponen, Ismo K; Kling, Kirsten I; Barooni, Afnan; Karottki, Dorina Gabriela; Tendal, Kira; Wolkoff, Peder

    2016-04-01

    In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 10(7)CFU of fungi/m(3)air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans,Aspergillus niger, Aspergillus ustus, Aspergillus versicolor,Chaetomium globosum,Cladosporium herbarum,Penicillium brevicompactum,Penicillium camemberti,Penicillium chrysogenum,Penicillium commune,Penicillium glabrum,Penicillium olsonii,Penicillium rugulosum,Stachybotrys chartarum, and Wallemia sebi They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition.

  12. Generation and Characterization of Indoor Fungal Aerosols for Inhalation Studies

    PubMed Central

    Larsen, Søren T.; Koponen, Ismo K.; Kling, Kirsten I.; Barooni, Afnan; Karottki, Dorina Gabriela; Tendal, Kira; Wolkoff, Peder

    2016-01-01

    In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 107 CFU of fungi/m3 air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans, Aspergillus niger, Aspergillus ustus, Aspergillus versicolor, Chaetomium globosum, Cladosporium herbarum, Penicillium brevicompactum, Penicillium camemberti, Penicillium chrysogenum, Penicillium commune, Penicillium glabrum, Penicillium olsonii, Penicillium rugulosum, Stachybotrys chartarum, and Wallemia sebi. They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition. PMID:26921421

  13. Characterization of aerosols from eruptions of Mount St. Helens

    SciTech Connect

    Chuan, R.L.; Woods, D.C.; McCormick, M.P.

    1981-01-01

    Measurements of mass concentration and size distribution of aerosols from eruptions of Mount St. Helens as well as morphological and elemental analyses were obtained between 7 April and 7 August 1980. In situ measurements were made in early phreatic and later, minor phreatomagmatic eruption clouds near the vent of the volcano and in plumes injected into the stratosphere from the major eruptions of 18 and 25 May. The phreatic aerosol was characterized by an essentially monomodal size distribution dominated by silicate particles larger than 10 micrometers in diameter. The phreatomagmatic eruption cloud was multimodal; the large size mode consisted of silicate particles and the small size modes were made up of mixtures of sulfuric acid and silicate particles. The stratospheric aerosol from the main eruption exhibited a characteristic narrow single mode with particles less than 1 micrometer in diameter and nearly all of the mass made up of sulfuric acid droplets.

  14. Characterization of aerosols from eruptions of mount st. Helens.

    PubMed

    Chuan, R L; Woods, D C; McCormick, M P

    1981-02-20

    Measurements of mass concentration and size distribution of aerosols from eruptions of Mount St. Helens as well as morphological and elemental analyses were obtained between 7 April and 7 August 1980. In situ measurements were made in early phreatic and later, minor phreatomagmatic eruption clouds near the vent of the volcano and in plumes injected into the stratosphere from the major eruptions of 18 and 25 May. The phreatic aerosol was characterized by an essentially monomodal size distribution dominated by silicate particles larger than 10 micrometers in diameter. The phreatomagmatic eruption cloud was multimodal; the large size mode consisted of silicate particles and the small size modes were made up of mixtures of sulfuric acid and silicate particles. The stratospheric aerosol from the main eruption exhibited a characteristic narrow single mode with particles less than 1 micrometer in diameter and nearly all of the mass made up of sulfuric acid droplets.

  15. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; Prévôt, A. S. H.; El Haddad, I.

    2015-08-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make impractical its deployment at sufficient sites to determine regional characteristics. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, PM10) collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g. AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 μg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon, oxygen containing and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g. filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially-resolved long-term datasets.

  16. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; El Haddad, I.; Prévôt, A. S. H.

    2016-01-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 µm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 µg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.

  17. Cloud and Aerosol Characterization During CAEsAR 2014

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Tesche, M.; Krejci, R.; Baumgardner, D.; Walther, A.; Rosati, B.; Widequist, U.; Tunved, P.; O'Connor, E.; Ström, J.

    2015-12-01

    The Cloud and Aerosol Experiment at Åre (CAEsAR 2014) campaign took place from June to October 2014 at Mt. Åreskutan, Sweden, a remote mountain site in Northern Sweden. The campaign was designed to study the physical and chemical properties of clouds and aerosols under orographic forcing. A unique and comprehensive set-up allowed an in-situ characterization of both constituents at a mountain top station at 1200 m a.s.l. including instruments to measure cloud droplet size distribution, meteorological parameters, cloud residual properties (using a counterflow virtual impactor inlet), cloud water composition and various aerosol chemical and microphysical properties (e.g. size, optical and hygroscopic properties). At the same time, a remote sensing site was installed below the mountain site at 420 m a.s.l. in the immediate vicinity (< 3 km horizontally), with vertical profiling from an aerosol lidar, winds and turbulence from a scanning Doppler lidar, a Sun photometer measuring aerosol columnar optical properties, and a precipitation sampler taking rain water for chemical analysis. In addition, regular radiosoundings were performed from the valley. Here, we present the results of this intensive campaign which includes approx. 900 hours of in-cloud sampling. Various unique cloud features were frequently observed such as dynamically-driven droplet growth, bimodal droplet distributions, and the activation of particles down to approx. 20 nm in dry particle diameter. During the campaign, a forest fire smoke plume was transported over the site with measureable impacts on the cloud properties. This data will be used to constrain cloud and aerosol models, as well as to validate satellite retrievals. A first comparison to VIIRS and MODIS satellite retrievals will also be shown.

  18. Satellite Perspective of Aerosol Intercontinental Transport: From Qualitative Tracking to Quantitative Characterization

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Remer, Lorraine A.; Kahn, Ralph A.; Chin, Mian; Zhang, Yan

    2012-01-01

    Evidence of aerosol intercontinental transport (ICT) is both widespread and compelling. Model simulations suggest that ICT could significantly affect regional air quality and climate, but the broad inter-model spread of results underscores a need of constraining model simulations with measurements. Satellites have inherent advantages over in situ measurements to characterize aerosol ICT, because of their spatial and temporal coverage. Significant progress in satellite remote sensing of aerosol properties during the Earth Observing System (EOS) era offers opportunity to increase quantitative characterization and estimates of aerosol ICT, beyond the capability of pre-EOS era satellites that could only qualitatively track aerosol plumes. EOS satellites also observe emission strengths and injection heights of some aerosols, aerosol precursors, and aerosol-related gases, which can help characterize aerosol ICT. After an overview of these advances, we review how the current generation of satellite measurements have been used to (1) characterize the evolution of aerosol plumes (e.g., both horizontal and vertical transport, and properties) on an episodic basis, (2) understand the seasonal and inter-annual variations of aerosol ICT and their control factors, (3) estimate the export and import fluxes of aerosols, and (4) evaluate and constrain model simulations. Substantial effort is needed to further explore an integrated approach using measurements from on-orbit satellites (e.g., A-Train synergy) for observational characterization and model constraint of aerosol intercontinental transport and to develop advanced sensors for future missions.

  19. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization

    PubMed Central

    Chen, Bean T.; Schwegler-Berry, Diane; McKinney, Walter; Stone, Samuel; Cumpston, Jared L.; Friend, Sherri; Porter, Dale W.; Castranova, Vincent; Frazer, David G.

    2015-01-01

    This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT’s, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008–0.10 particles per µm2 filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT’s, resuspended at a concentration of 10 mg/m3, contained 2.7 × 104 particles/cm3. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm3. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm3, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol. PMID:23033994

  20. Aerosol characterization at the Saharan AERONET site Tamanrasset

    NASA Astrophysics Data System (ADS)

    Guirado, C.; Cuevas, E.; Cachorro, V. E.; Toledano, C.; Alonso-Pérez, S.; Bustos, J. J.; Basart, S.; Romero, P. M.; Camino, C.; Mimouni, M.; Zeudmi, L.; Goloub, P.; Baldasano, J. M.; de Frutos, A. M.

    2014-11-01

    More than 2 years of columnar atmospheric aerosol measurements (2006-2009) at the Tamanrasset site (22.79° N, 5.53° E, 1377 m a.s.l.), in the heart of the Sahara, are analysed. Aerosol Robotic Network (AERONET) level 2.0 data were used. The KCICLO (K is the name of a constant and ciclo means cycle in Spanish) method was applied to a part of the level 1.5 data series to improve the quality of the results. The annual variability of aerosol optical depth (AOD) and Ångström exponent (AE) has been found to be strongly linked to the convective boundary layer (CBL) thermodynamic features. The dry-cool season (autumn and winter) is characterized by a shallow CBL and very low mean turbidity (AOD ~ 0.09 at 440 nm, AE ~ 0.62). The wet-hot season (spring and summer) is dominated by high turbidity of coarse dust particles (AE ~ 0.28, AOD ~ 0.39 at 440 nm) and a deep CBL. The aerosol-type characterization shows desert mineral dust as the prevailing aerosol. Both pure Saharan dust and very clear sky conditions are observed depending on the season. However, several case studies indicate an anthropogenic fine mode contribution from the industrial areas in Libya and Algeria. The concentration weighted trajectory (CWT) source apportionment method was used to identify potential sources of air masses arriving at Tamanrasset at several heights for each season. Microphysical and optical properties and precipitable water vapour were also investigated.

  1. Characterization of aerosol composition and sources in the greater Atlanta area by aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Xu, L.; Suresh, S.; Weber, R. J. J.; Baumann, K.; Edgerton, E. S.

    2014-12-01

    An important and uncertain aspect of biogenic secondary organic aerosol (SOA) formation is that it is often associated with anthropogenic pollution tracers. Prior studies in Atlanta suggested that 70-80% of the carbon in water-soluble organic carbon (WSOC) is modern, yet it is well-correlated with the anthropogenic CO. In this study, we deployed a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) at multiple sites in different seasons (May 2012-February 2013) to characterize the sources and chemical composition of aerosols in the greater Atlanta area. This area in the SE US is ideal to investigate anthropogenic-biogenic interactions due to high natural and anthropogenic emissions. These extensive field studies are part of the Southeastern Center for Air Pollution and Epidemiology study (SCAPE). The HR-ToF-AMS is deployed at four sites (~ 3 weeks each) in rotation: Jefferson Street (urban), Yorkville (rural), roadside site (near Highway 75/85), and Georgia Tech site (campus), with the urban and rural sites being part of the SEARCH network. We obtained seven HR-ToF-AMS datasets in total. During the entire measurement period, the ACSM is stationary at the GIT site and samples continuously. We perform positive matrix factorization (PMF) analysis on the HR-ToF-AMS and ACSM data to deconvolve the OA into different components. While the diurnal cycle of the total OA is flat as what have been previously observed, the OA factors resolved by PMF analysis show distinctively different diurnal trends. We find that the "more-oxidized oxygenated OA" (MO-OOA) constitutes a major fraction of OA at all sites. In summer, OA is dominated by SOA, e.g., isoprene-OA and OOA with different degrees of oxidation. In contrary, biomass burning OA is more prominent in winter data. By comparing HR-ToF-AMS and ACSM data during the same sampling periods, we find that the aerosol time series are highly correlated, indicating the

  2. Characterization of aerosol particles at the forested site in Lithuania

    NASA Astrophysics Data System (ADS)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  3. Characterization of aerosols and fibers emitted from composite materials combustion.

    PubMed

    Chivas-Joly, C; Gaie-Levrel, F; Motzkus, C; Ducourtieux, S; Delvallée, A; De Lagos, F; Nevé, S Le; Gutierrez, J; Lopez-Cuesta, J-M

    2016-01-15

    This work investigates the aerosols emitted during combustion of aircraft and naval structural composite materials (epoxy resin/carbon fibers and vinyl ester/glass fibers and carbon nanotubes). Combustion tests were performed at lab-scale using a modified cone calorimeter. The aerosols emitted have been characterized using various metrological devices devoted to the analysis of aerosols. The influence of the nature of polymer matrices, the incorporation of fibers and carbon nanotubes as well as glass reinforcements on the number concentration and the size distribution of airborne particles produced, was studied in the 5 nm-10 μm range. Incorporation of carbon fibers into epoxy resin significantly reduced the total particle number concentration. In addition, the interlaced orientation of carbon fibers limited the particles production compared to the composites with unidirectional one. The carbon nanotubes loading in vinyl ester resin composites influenced the total particles production during the flaming combustion with changes during kinetics emission. Predominant populations of airborne particles generated during combustion of all tested composites were characterized by a PN50 following by PN(100-500).

  4. Characterization of aerosol emitted by the combustion of nanocomposites

    NASA Astrophysics Data System (ADS)

    Motzkus, C.; Chivas-Joly, C.; Guillaume, E.; Ducourtieux, S.; Saragoza, L.; Lesenechal, D.; Macé, T.

    2011-07-01

    Day after day, new applications using nanoparticles appear in industry, increasing the probability to find these particles in the workplace as well as in ambient air. As epidemiological studies have shown an association between increased particulate air pollution and adverse health effects in susceptible members of the population, it is particularly important to characterize aerosols emitted by different sources of emission, during the combustion of composites charged with nanoparticles for example. The present study is led in the framework of the NANOFEU project, supported by the French Research Agency (ANR), in order to characterize the fire behaviour of polymers charged with suitable nanoparticles and make an alternative to retardant systems usually employed. To determine the impact of these composites on the emission of airborne particles produced during their combustions, an experimental setup has been developed to measure the mass distribution in the range of 30 nm - 10 μm and the number concentration of submicrometric particles of the produced aerosol. A comparison is performed on the aerosol emitted during the combustion of several polymers alone (PMMA, PA-6), polymers containing nanofillers (silica, alumina, and carbon nanotubes) and polymers containing both nanofillers and a conventional flame retardant system (ammonium polyphosphate). The results on the morphology of particles were also investigated using AFM.

  5. Optical and Chemical Characterization of Aerosols Produced from Cooked Meats

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Foreman, E.; Blanc, L. E.

    2011-12-01

    Cooking processes can release a variety compounds into the air immediately above a cooking surface. The distribution of compounds will largely depend on the type of food that is being processed and the temperatures at which the food is prepared. High temperatures release compounds from foods like meats and carry them away from the preparation surface into cooler regions where condensation into particles can occur. Aerosols formed in this manner can impact air quality, particularly in urban areas where the amount of food preparation is high. Reported here are the results of laboratory experiments designed to optically and chemically characterize aerosols derived from cooking several types of meats including ground beef, salmon, chicken, and pork both in an inert atmosphere and in synthetic air. The laboratory-generated aerosols are studied using a laminar flow cell that is configured to accommodate simultaneous optical characterization in the mid-infrared and collection of particles for subsequent chemical analysis by gas chromatography. Preliminary optical results in the visible and ultra-violet will also be presented.

  6. Early-spring aerosol characterization across multiple Arctic stations

    NASA Astrophysics Data System (ADS)

    Baibakov, Konstantin; O'Neill, Norm; Ivanescu, Liviu; Perro, Chris; Ritter, Christoph; Herber, Andreas; Duck, Tom J.; Schulz, Karl-Heinz; Schrems, Otto

    2013-04-01

    The Arctic region is characterized by complex interactions between aerosols, clouds and precipitation. Ground-based observations of atmospheric optical properties are usually comprised of photometric aerosol optical depth (AOD) measurements and lidar extinction and backscatter profiles. The night-time AODs obtained with star- and moonphotometry have been extremely limited in the Arctic region. The first part of the paper is based on the synchronous starphotometry and lidar measurements obtained at Eureka (Canada, 80°N, 86°W) and Ny Alesund (Spitsbergen, 79°N, 12°E) in late winter-early spring periods of 2011 and 2012. We present several examples of process-level events as well as the winter to spring climatological dynamics of cloud-screened optical depths. The particular cases include aerosol, thin-cloud, ice crystals and polar stratospheric cloud events. An integral part of the process-level analysis, which ultimately informs the seasonal analysis, is the synergistic interpretation of the spectral, temporal and spatial information content of the passive and active data. In the second part of the paper we present the preliminary results obtained from the intercomparison field campaign at Barrow (Alaska, 71°N,156°W) that took place in spring 2013. The instrumentation suit included high-spectral resolution lidar, a starphotometer and a moonphotometer.

  7. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  8. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.

    PubMed

    Parkhurst, Mary Ann; Cheng, Yung Sung; Kenoyer, Judson L; Traub, Richard J

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65

  9. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  10. Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment

    NASA Astrophysics Data System (ADS)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera

    2017-02-01

    In this paper, for the first time, an effort has been made to seasonally characterize the absorbing aerosols into different types using ground and satellite based observations. For this purpose, optical properties of aerosol retrieved from AErosol RObotic NETwork (AERONET) and Ozone Monitoring Instrument (OMI) were utilized over Karachi for the period 2012 to 2014. Firstly, OMI AODabs was validated with AERONET AODabs and found to have a high degree of correlation. Then, based on this validation, characterization was conducted by analyzing aerosol Fine Mode Fraction (FMF), Angstrom Exponent (AE), Absorption Angstrom Exponent (AAE), Single Scattering Albedo (SSA) and Aerosol Index (AI) and their mutual correlation, to identify the absorbing aerosol types and also to examine the variability in seasonal distribution. The absorbing aerosols were characterized into Mostly Black Carbon (BC), Mostly Dust and Mixed BC & Dust. The results revealed that Mostly BC aerosols contributed dominantly during winter and postmonsoon whereas, Mostly Dust were dominant during summer and premonsoon. These types of absorbing aerosol were also confirmed with MODerate resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations.

  11. Molecular Characterization of Secondary Aerosol from Oxidation of Cyclic Methylsiloxanes.

    PubMed

    Wu, Yue; Johnston, Murray V

    2016-03-01

    Cyclic volatile methylsiloxanes (cVMS) have been identified as important gas-phase atmospheric contaminants, but knowledge of the molecular composition of secondary aerosol derived from cVMS oxidation is incomplete. Here, the chemical composition of secondary aerosol produced from the OH-initiated oxidation of decamethylcyclopentasiloxane (D5, C10H30O5Si5) is characterized by high performance mass spectrometry. ESI-MS reveals a large number of monomeric (300 < m/z < 470) and dimeric (700 < m/z < 870) oxidation products. With the aid of high resolution and MS/MS, it is shown that oxidation leads mainly to the substitution of a CH3 group by OH or CH2OH, and that a single molecule can undergo many CH3 group substitutions. Dimers also exhibit OH and CH2OH substitutions and can be linked by O, CH2, and CH2CH2 groups. GC-MS confirms the ESI-MS results. Oxidation of D4 (C8H24O4Si4) exhibits similar substitutions and oligomerizations to D5, though the degree of oxidation is greater under the same conditions and there is direct evidence for the formation of peroxy groups (CH2OOH) in addition to OH and CH2OH.

  12. CURRENT AND EMERGING TECHNIQUES FOR CHARACTERIZING TROPOSPHERIC AEROSOLS

    EPA Science Inventory

    Particulate matter generally includes dust, smoke, soot, or aerosol particles. Environmental research addresses the origin, size, chemical composition, and the formation mechanics of aerosols. In the troposphere, fine aerosols (e.g. with diameters < 2.5 um) remain suspended until...

  13. Aerosol Characterization and New Instrumentation for Better Understanding Snow Radiative Properties

    NASA Astrophysics Data System (ADS)

    Beres, N. D.

    2015-12-01

    Snow albedo is determined by snowpack thickness and grain size, but also affected by contamination with light-absorbing, microscopic (e.g., mineral dust, combustion aerosols, bio-aerosols) and macroscopic (e.g., microalgae, plant debris, sand, organisms) compounds. Most currently available instruments for measuring snow albedo utilize the natural, downward flux of solar radiation and the reflected upward flux. This reliance on solar radiation (and, thus, large zenith angles and clear-sky conditions) leads to severe constraints, preventing characterization of detailed diurnal snow albedo cycles. Here, we describe instrumentation and methodologies to address these limitations with the development and deployment of new snow radiation sensors for measuring surface spectral and in-snow radiative properties. This novel instrumentation will be tested at the CRREL/UCSB Eastern Sierra (CUES) Snow Study Site at Mammoth Mountain, which is extensively instrumented for characterizing snow properties including snow albedo and surface morphology. However, it has been lacking instrumentation for the characterization of aerosols that can be deposited on the snow surface through dry and wet deposition. Currently, we are installing aerosol instrumentation at the CUES site, which are also described. This includes instruments for the multi-wavelength measurement of aerosol scattering and absorption coefficients and for the characterization of aerosol size distribution. Knowledge of aerosol concentration and physical and optical properties will allow for the study of aerosol deposition and modification of snow albedo and for establishing an aerosol climatology for the CUES site.

  14. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  15. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles

    SciTech Connect

    Lin, Peng; Aiona, Paige K.; Li, Ying; Shiraiwa, Manabu; Laskin, Julia; Nizkorodov, Sergey A.; Laskin, Alexander

    2016-11-01

    Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly-emitted biomass burning organic aerosol (BBOA) samples collected during test burns of selected biomass fuels: sawgrass, peat, ponderosa pine, and black spruce. We characterize individual BrC chromophores present in these samples using high performance liquid chromatography coupled to a photodiode array detector and a high-resolution mass spectrometer. We demonstrate that both the overall BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels and burning conditions. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as potential markers of BrC originating from different biomass burning sources. On average, ~50% of the light absorption above 300 nm can be attributed to a limited number of strong BrC chromophores, which may serve as representative light-absorbing species for studying atmospheric processing of BrC aerosol. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of 16 hours. A “molecular corridors” analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low volatility (<1 g m-1) and will be retained in the particle phase under atmospherically relevant conditions.

  16. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  17. Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; Vanreken, T.; Fischer, M.; Matías, E.; Moya, M.; Farmer, D.; Cohen, R. C.

    2007-06-01

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM2.5 is insensitive to changes in ammonia but is to acidic semivolatile species. Semi-volatile partitioning equilibrates on a timescale between 6 and 20 min. When the aerosol sulfate-to-nitrate molar ratio is less than 1, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as "equivalent sodium" (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations are required to accurately predict the partitioning and phase state of aerosols.

  18. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-01-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the Southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8±8.4 μg m-3 and 13.5±8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva)~200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  19. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-07-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8 ± 8.4 μg m-3 and 13.5 ± 8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva) ∼200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  20. Generation and characterization of aerosols and vapors for inhalation experiments.

    PubMed Central

    Tillery, M I; Wood, G O; Ettinger, H J

    1976-01-01

    Control of aerosol and vapor characteristics that affect the toxicity of inhaled contaminants often determines the methods of generating exposure atmospheres. Generation methods for aerosols and vapors are presented. The characteristics of the resulting exposure atmosphere and the limitations of the various generation methods are discussed. Methods and instruments for measuring the airborne contaminant with respect to various charcteristics are also described. PMID:797565

  1. Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; van Reken, T.; Fischer, M.; Matías, E.; Moya, M.; Farmer, D.; Cohen, R. C.

    2009-03-01

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM2.5 is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1μm diameter, semi-volatile partitioning requires 15-30 min to equilibrate; longer time is typically required during the night and early morning hours. Aerosol and gas-phase speciation always exhibits substantial temporal variability, so that aerosol composition measurements (bulk or size-resolved) obtained over large integration periods are not reflective of its true state. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as "equivalent sodium" (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  2. Recent Improvements to CALIOP Level 3 Aerosol Profile Product for Global 3-D Aerosol Extinction Characterization

    NASA Astrophysics Data System (ADS)

    Tackett, J. L.; Getzewich, B. J.; Winker, D. M.; Vaughan, M. A.

    2015-12-01

    With nine years of retrievals, the CALIOP level 3 aerosol profile product provides an unprecedented synopsis of aerosol extinction in three dimensions and the potential to quantify changes in aerosol distributions over time. The CALIOP level 3 aerosol profile product, initially released as a beta product in 2011, reports monthly averages of quality-screened aerosol extinction profiles on a uniform latitude/longitude grid for different cloud-cover scenarios, called "sky conditions". This presentation demonstrates improvements to the second version of the product which will be released in September 2015. The largest improvements are the new sky condition definitions which parse the atmosphere into "cloud-free" views accessible to passive remote sensors, "all-sky" views accessible to active remote sensors and "cloudy-sky" views for opaque and transparent clouds which were previously inaccessible to passive remote sensors. Taken together, the new sky conditions comprehensively summarize CALIOP aerosol extinction profiles for a broad range of scientific queries. In addition to dust-only extinction profiles, the new version will include polluted-dust and smoke-only extinction averages. A new method is adopted for averaging dust-only extinction profiles to reduce high biases which exist in the beta version of the level 3 aerosol profile product. This presentation justifies the new averaging methodology and demonstrates vertical profiles of dust and smoke extinction over Africa during the biomass burning season. Another crucial advancement demonstrated in this presentation is a new approach for computing monthly mean aerosol optical depth which removes low biases reported in the beta version - a scenario unique to lidar datasets.

  3. The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles Basin aerosol

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; Craven, J. S.; Schilling, K. A.; Metcalf, A. R.; Sorooshian, A.; Chan, M. N.; Flagan, R. C.; Seinfeld, J. H.

    2011-02-01

    The Pasadena Aerosol Characterization Observatory (PACO) represents the first major aerosol characterization experiment centered in the Western/Central Los Angeles Basin. The sampling site, located on the campus of the California Institute of Technology in Pasadena, was positioned to sample a continuous afternoon influx of transported urban aerosol with a photochemical age of 1-2 h and generally free from major local contributions. Sampling spanned 5 months during the summer of 2009, which were broken into 3 regimes on the basis of distinct meteorological conditions. Regime I was characterized by a series of low pressure systems, resulting in high humidity and rainy periods with clean conditions. Regime II typified early summer meteorology, with significant morning marine layers and warm, sunny afternoons. Regime III was characterized by hot, dry conditions with little marine layer influence. Organic aerosol (OA) is the most significant constituent of Los Angeles aerosol (42, 43, and 55% of total submicron mass in regimes I, II, and III, respectively), and that the overall oxidation state remains relatively constant on timescales of days to weeks (O:C = 0.44 ± 0.08, 0.55 ± 0.05, and 0.48 ± 0.08 during regimes I, II, and III, respectively), with no difference in O:C between morning and afternoon periods. Periods characterized by significant morning marine layer influence followed by photochemically favorable afternoons displayed significantly higher aerosol mass and O:C ratio, suggesting that aqueous processes may be important in the generation of secondary aerosol and oxidized organic aerosol (OOA) in Los Angeles. Water soluble organic mass (WSOM) reaches maxima near 14:00-15:00 local time (LT), but the percentage of AMS organic mass contributed by WSOM remains relatively constant throughout the day. Sulfate and nitrate reside predominantly in accumulation mode aerosol, while afternoon SOA production coincides with the appearance of a distinct fine mode

  4. Characterization of intense aerosol episodes in the Mediterranean basin from satellite observations

    NASA Astrophysics Data System (ADS)

    Gkikas, Antonis; Hatzianastassiou, Nikos; Mihalopoulos, Nikolaos

    2014-05-01

    The properties and distribution of aerosols over the broader Mediterranean region are complex since particles of different nature are either produced within its boundaries or transported from other regions. Thus, coarse dust aerosols are transported primarily from Sahara and secondarily from Middle East, while fine polluted aerosols are either produced locally from anthropogenic activities or they are transported from neighbouring or remote European areas. Also during summer biomass aerosols are transported towards the Mediterranean, originating from massive and extended fires occurring in northern Balkans and Eastern Europe and favoured by the prevailing synoptic conditions. In addition, sea-salt aerosols originate from the Mediterranean Sea or the Atlantic Ocean. Occasionally, aerosols are encountered at very high concentrations (aerosol episodes or events) significantly affecting atmospheric dynamics and climate as well as human health. Given the coexistence of different aerosols as internal and external mixtures characterizing and discriminating between the different types of aerosol episodes is a big challenge. A characterization and classification of intense aerosol episodes in the Mediterranean basin (March 2000 - February 2007) is attempted in the present study. This is achieved by implementing an objective and dynamic algorithm which uses daily aerosol optical properties derived from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMI-Aura. The aerosol episodes are first classified into strong and extreme ones, according to their intensity, by means of aerosol optical depth at 550nm (AOD550nm). Subsequently, they are discriminated into the following aerosol types: (i) biomass/urban-industrial (BU), (ii) desert dust (DD), (iii) sea-salt like (SS), (iv) mixed (MX) and (v) undetermined (UN). The classification is based on aerosol optical properties accounting for the particles' size (Ångström exponent, Effective radius), the

  5. Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006

    SciTech Connect

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; VanReken, T.; Fischer, M.; Matias, E.; Moya, M.; Farmer, D.; Cohen, R.C.

    2008-12-05

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM{sub 2.5} is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1 {micro}m diameter, semi-volatile partitioning requires 30-60 min to equilibrate; longer time is typically required during the night and early morning hours. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as 'equivalent sodium' (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  6. Physical and Chemical Characterization of Carbonaceous Aerosols in Korea

    NASA Astrophysics Data System (ADS)

    Choung, S.; Jin, J. S.; Hwang, G. S.; Jang, K. S.; Han, W. S.; OH, J.; Kwon, Y.

    2014-12-01

    Atmospheric aerosols have been recently paid attention more in environmental research due to their negative effects on air quality, public health, and climate change. The aerosols contain approximately >20-50% carbonaceous components such as organic carbon (OC) and black carbon (BC) (or elemental carbon [EC]) derived from organic compounds, biomass burning, and incomplete combustion of fossil fuels. The physical, chemical, and biological properties of atmospheric aerosols are strongly dependent on the carbonaceous components. In particular, the BC could significantly affect the regional air quality in the northeastern Asia, because China is one of the foremost BC emission country in the world. Previous studies have mainly focused on the quantification and source identification for carbonaceous aerosols. However, understanding of physical and chemical properties for the carbonaceous aerosols related to environmental contamination and toxicity was still incomplete due to analytical difficulties. This study is addressed to evaluate the contribution of carbonaceous aerosols to air pollution through the surface, mass spectroscopic, and electron microscopic analyses, and determination of chemical composition and structure using the air particulate matter (PM2.5 and >PM2.5) samples.

  7. MODIS and AERONET Characterization of the Global Aerosol

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Reme, Lorraine; Tanre, Didier; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Recently produced daily MODIS aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere.

  8. Characterization of ambient aerosols at the San Francisco International Airport using BioAerosol Mass Spectrometry

    SciTech Connect

    Steele, P T; McJimpsey, E L; Coffee, K R; Fergenson, D P; Riot, V J; Tobias, H J; Woods, B W; Gard, E E; Frank, M

    2006-03-16

    The BioAerosol Mass Spectrometry (BAMS) system is a rapidly fieldable, fully autonomous instrument that can perform correlated measurements of multiple orthogonal properties of individual aerosol particles. The BAMS front end uses optical techniques to nondestructively measure a particle's aerodynamic diameter and fluorescence properties. Fluorescence can be excited at 266nm or 355nm and is detected in two broad wavelength bands. Individual particles with appropriate size and fluorescence properties can then be analyzed more thoroughly in a dual-polarity time-of-flight mass spectrometer. Over the course of two deployments to the San Francisco International Airport, more than 6.5 million individual aerosol particles were fully analyzed by the system. Analysis of the resulting data has provided a number of important insights relevant to rapid bioaerosol detection, which are described here.

  9. Characterization of aerosols from biomass burning--a case study from Mizoram (Northeast), India.

    PubMed

    Badarinath, K V S; Madhavi Latha, K; Kiran Chand, T R; Gupta, Prabhat K; Ghosh, A B; Jain, S L; Gera, B S; Singh, Risal; Sarkar, A K; Singh, Nahar; Parmar, R S; Koul, S; Kohli, R; Nath, Shambhu; Ojha, V K; Singh, Gurvir

    2004-01-01

    Physical and optical properties of biomass burning aerosols in Northeastern region, India analyzed based on measurements made during February 2002. Large spatial extent of Northeastern Region moist tropical to moist sub-tropical forests in India have high frequency of burning in annual dry seasons. Characterization of resultant trace gases and aerosols from biomass burning is important for the atmospheric radiative process. Aerosol optical depth (AOD) observed to be high during burning period compared to pre- and post-burning days. Peak period of biomass burning is highly correlated with measured AOD and total columnar water vapor. Size distribution of aerosols showed bimodal size distribution during burning day and unimodal size distribution during pre- and post-burning days. Size distribution retrievals from biomass burning aerosols show dominance of accumulation mode particles. Weighted mean radius is high (0.22 microm) during burning period. Columnar content of aerosols observed to be high during burning period in addition to the drastic reduction of visibility. During the burning day Anderson sampler measurements showed dominance of accumulation mode particles. The diurnal averaged values of surface shortwave aerosol radiative forcing af biomass burning aerosols varies from -59 to -87 Wm(-2) on different days. Measured and modeled solar irradiances are also discussed in the paper.

  10. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  11. Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols.

    PubMed

    Flora, Jason W; Meruva, Naren; Huang, Chorng B; Wilkinson, Celeste T; Ballentine, Regina; Smith, Donna C; Werley, Michael S; McKinney, Willie J

    2016-02-01

    E-cigarettes are gaining popularity in the U.S. as well as in other global markets. Currently, limited published analytical data characterizing e-cigarette formulations (e-liquids) and aerosols exist. While FDA has not published a harmful and potentially harmful constituent (HPHC) list for e-cigarettes, the HPHC list for currently regulated tobacco products may be useful to analytically characterize e-cigarette aerosols. For example, most e-cigarette formulations contain propylene glycol and glycerin, which may produce aldehydes when heated. In addition, nicotine-related chemicals have been previously reported as potential e-cigarette formulation impurities. This study determined e-liquid formulation impurities and potentially harmful chemicals in aerosols of select commercial MarkTen(®) e-cigarettes manufactured by NuMark LLC. The potential hazard of the identified formulation impurities and aerosol chemicals was also estimated. E-cigarettes were machine puffed (4-s duration, 55-mL volume, 30-s intervals) to battery exhaustion to maximize aerosol collection. Aerosols analyzed for carbonyls were collected in 20-puff increments to account for analyte instability. Tobacco specific nitrosamines were measured at levels observed in pharmaceutical grade nicotine. Nicotine-related impurities in the e-cigarette formulations were below the identification and qualification thresholds proposed in ICH Guideline Q3B(R2). Levels of potentially harmful chemicals detected in the aerosols were determined to be below published occupational exposure limits.

  12. Aerosol Optical Properties Characterization By Means Of The CNR-IMAA Multi-Wavelength Raman Lidar

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; D'Amico, G.; Pappalardo, G.

    2007-12-01

    A Raman/elastic lidar for tropospheric aerosol study is operational at CNR-IMAA (40°36'N, 15°44'E, 760 m above sea level) since May 2000 in the framework of EARLINET. Since August 2005, this system provides aerosol backscatter coefficient profiles at 1064 nm, and independent measurements of aerosol extinction and backscatter coefficient profiles at 355 and 532 nm. In this way, lidar ratio (i.e. extinction to backscatter ratio) profiles at 355 and 532 nm are also obtained. In addition, depolarization ratio measurements at 532 nm are obtained by means of detection of components of backscattered light polarized perpendicular and parallel to the direction of the linearly polarized transmitted laser beam. Depolarization ratio measurements provide information about shape and orientation of aerosolic particles, while lidar ratio measurements and wavelength dependences of both backscatter and extinction are important for aerosol characterization in terms of aerosol type and size. In addition, high quality multi-wavelength measurements (3 backscatter + 2 extinction) can allow the determination of microphysical aerosol properties (refractive index, single-scattering albedo and effective particles radii). Systematic measurements are performed three times per week according to the EARLINET schedule since May 2000, and further measurements are performed in order to investigate particular events, like dust intrusions, volcanic eruptions and forest fires. This extended dataset allows the optical characterization of aerosol located close to the surface, namely in the Planetary Boundary Layer, as well as in the free troposphere. In the free troposphere, an high occurrence of Saharan dust intrusions at CNR-IMAA (about 1 day of Saharan dust intrusion every 10 days) has been identified by means of back-trajectory analysis and in accordance with satellite images, because of the short distance from the Sahara region. In addition, CNR-IMAA is pretty close to Etna, the largest European

  13. Characterization of aerosols containing Legionella generated upon nebulization.

    PubMed

    Allegra, Séverine; Leclerc, Lara; Massard, Pierre André; Girardot, Françoise; Riffard, Serge; Pourchez, Jérémie

    2016-09-27

    Legionella pneumophila is, by far, the species most frequently associated with Legionnaires' disease (LD). Human infection occurs almost exclusively by aerosol inhalation which places the bacteria in juxtaposition with alveolar macrophages. LD risk management is based on controlling water quality by applying standardized procedures. However, to gain a better understanding of the real risk of exposure, there is a need (i) to investigate under which conditions Legionella may be aerosolized and (ii) to quantify bacterial deposition into the respiratory tract upon nebulization. In this study, we used an original experimental set-up that enables the generation of aerosol particles containing L. pneumophila under various conditions. Using flow cytometry in combination with qPCR and culture, we determined (i) the size of the aerosols and (ii) the concentration of viable Legionella forms that may reach the thoracic region. We determined that the 0.26-2.5 μm aerosol size range represents 7% of initial bacterial suspension. Among the viable forms, 0.7% of initial viable bacterial suspension may reach the pulmonary alveoli. In conclusion, these deposition profiles can be used to standardize the size of inoculum injected in any type of respiratory tract model to obtain new insights into the dose response for LD.

  14. Characterization of aerosols containing Legionella generated upon nebulization

    PubMed Central

    Allegra, Séverine; Leclerc, Lara; Massard, Pierre André; Girardot, Françoise; Riffard, Serge; Pourchez, Jérémie

    2016-01-01

    Legionella pneumophila is, by far, the species most frequently associated with Legionnaires’ disease (LD). Human infection occurs almost exclusively by aerosol inhalation which places the bacteria in juxtaposition with alveolar macrophages. LD risk management is based on controlling water quality by applying standardized procedures. However, to gain a better understanding of the real risk of exposure, there is a need (i) to investigate under which conditions Legionella may be aerosolized and (ii) to quantify bacterial deposition into the respiratory tract upon nebulization. In this study, we used an original experimental set-up that enables the generation of aerosol particles containing L. pneumophila under various conditions. Using flow cytometry in combination with qPCR and culture, we determined (i) the size of the aerosols and (ii) the concentration of viable Legionella forms that may reach the thoracic region. We determined that the 0.26–2.5 μm aerosol size range represents 7% of initial bacterial suspension. Among the viable forms, 0.7% of initial viable bacterial suspension may reach the pulmonary alveoli. In conclusion, these deposition profiles can be used to standardize the size of inoculum injected in any type of respiratory tract model to obtain new insights into the dose response for LD. PMID:27671446

  15. Characterization of aerosols containing Legionella generated upon nebulization

    NASA Astrophysics Data System (ADS)

    Allegra, Séverine; Leclerc, Lara; Massard, Pierre André; Girardot, Françoise; Riffard, Serge; Pourchez, Jérémie

    2016-09-01

    Legionella pneumophila is, by far, the species most frequently associated with Legionnaires’ disease (LD). Human infection occurs almost exclusively by aerosol inhalation which places the bacteria in juxtaposition with alveolar macrophages. LD risk management is based on controlling water quality by applying standardized procedures. However, to gain a better understanding of the real risk of exposure, there is a need (i) to investigate under which conditions Legionella may be aerosolized and (ii) to quantify bacterial deposition into the respiratory tract upon nebulization. In this study, we used an original experimental set-up that enables the generation of aerosol particles containing L. pneumophila under various conditions. Using flow cytometry in combination with qPCR and culture, we determined (i) the size of the aerosols and (ii) the concentration of viable Legionella forms that may reach the thoracic region. We determined that the 0.26–2.5 μm aerosol size range represents 7% of initial bacterial suspension. Among the viable forms, 0.7% of initial viable bacterial suspension may reach the pulmonary alveoli. In conclusion, these deposition profiles can be used to standardize the size of inoculum injected in any type of respiratory tract model to obtain new insights into the dose response for LD.

  16. Submicron Aerosol Characterization of Water by a Differential Mobility Particle Sizer.

    DTIC Science & Technology

    1987-02-01

    relevant to modern science and industry. N *% ~ ~ ~?1 *1?%~%~ 0.0 :~. % % his ’i tl’tt Security Classif ication KIEV WORDS Submricron aerosols Water ...7 :-711 no0 StIHICRON AEROSOL CHARACTERIZATION OF WATER DY A vi1 DIFFERENTIAL NOBILITY PA.. (U) DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON... WATER BY A DIFFERENTIAL MOBILITY PARTICLE SIZER (U) by B. Kournikakis, A. Gunning, J. Fildes and J. Ho Project No. 251SD EL .TE APR 099?07uD February

  17. Development of a model for characterizing pneumatically generated primary aerosols for inductively coupled plasma emission spectrometry

    SciTech Connect

    Msimanga, N.D.G.

    1992-01-01

    The study of aerosols plays a key role in the development of analytical atomic spectroscopy. While work has been carried out with Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) to improve transport efficiency, analyte signal, limits of detection, and to reduce matrix interferences, little study has focused on sample introduction processes. This study has focused on the characterization and optimization of pneumatic nebulizers used for liquid sample introduction to the ICP. Pneumatic nebulization is the most common means of sample introduction in atomic spectrometry. The pneumatic nebulizers most commonly used today for ICP spectrometry are the cross-flow type or all-glass concentric nebulizers. Aerosols undergo certain processes after the primary formation process before reaching the atomizer, the secondary and tertiary stages. In this work all three stages were looked at, focusing on the primary aerosols. The primary aerosol is the first stage in the formation of the aerosols and takes place at the tip of the nebulizer, as the liquid stream is shattered by the gas flow. The drop size diameters of primary aerosols were measured using a Fraunhofer Laser Diffraction instrument. The Sauter mean diameter (D3.2), which describes the volume of the aerosol with a given surface area, was determined for nebulizers at spray chambers operated under a variety of conditions. The characterization and optimization of sample introduction involved a study of aerosol technology, a study of different instruments for measuring the mean drop size, a description of the instrument, and the influence of some parameters on the D3.2. An empirical model summarizing the characteristics of the primary aerosols is proposed. Modeling is carried out using nonlinear software. The data for modelling were acquired using water, n-butanol, and methanol as the liquid solvents. The model was tested on data obtained from nebulizers with different cross-sectional areas.

  18. Characterization of the Aerosol Instrument Package for the In-service Aircraft Global Observing System IAGOS

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Berg, Marcel; Tettig, Frank; Franke, Harald; Petzold, Andreas

    2015-04-01

    The atmospheric aerosol influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the aerosol microphysical properties is needed to reduce the reported uncertainty of the aerosol climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The IAGOS Aerosol Package (IAGOS-P2C) consists of two modified Butanol based CPCs (Model Grimm 5.410) and one optical particle counter (Model Grimm Sky OPC 1.129). A thermodenuder at 250°C is placed upstream the second CPC, thus the number concentrations of the total aerosol and the non-volatile aerosol fraction is measured. The Sky OPC measures the size distribution in the rage theoretically up to 32 μ m. Because of the inlet cut off diameter of D50=3 μ m we are using the 16 channel mode in the range of 250 nm - 2.5 μ m at 1 Hz resolution. In this presentation the IAGOS Aerosol package is characterized for pressure levels relevant for the planned application, down to cruising level of 150 hPa including the inlet system. In our aerosol lab we have tested the system against standard instrumentation with different aerosol test substances in a long duration test. Particle losses are characterized for the inlet system. In addition first results for airborne measurements are shown from a first field campaign.

  19. Profile and Morphology of Fungal Aerosols Characterized by Field Emission Scanning Electron Microscopy (FESEM)

    PubMed Central

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Skaar, Ida; Hjeljord, Linda; Skare, Øivind; Green, Brett James; Tronsmo, Arne; Eduard, Wijnand

    2016-01-01

    Fungal aerosols consist of spores and fragments with diverse array of morphologies; however, the size, shape, and origin of the constituents require further characterization. In this study, we characterize the profile of aerosols generated from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum grown for 8 weeks on gypsum boards. Fungal particles were aerosolized at 12 and 20 L min−1 using the Fungal Spore Source Strength Tester (FSSST) and the Stami particle generator (SPG). Collected particles were analyzed with field emission scanning electron microscopy (FESEM). We observed spore particle fraction consisting of single spores and spore aggregates in four size categories, and a fragment fraction that contained submicronic fragments and three size categories of larger fragments. Single spores dominated the aerosols from A. fumigatus (median: 53%), while the submicronic fragment fraction was the highest in the aerosols collected from A. versicolor (median: 34%) and P. chrysogenum (median: 31%). Morphological characteristics showed near spherical particles that were only single spores, oblong particles that comprise some spore aggregates and fragments (<3.5 μm), and fiber-like particles that regroup chained spore aggregates and fragments (>3.5 μm). Further, the near spherical particles dominated the aerosols from A. fumigatus (median: 53%), while oblong particles were dominant in the aerosols from A. versicolor (68%) and P. chrysogenum (55%). Fiber-like particles represented 21% and 24% of the aerosols from A. versicolor and P. chrysogenum, respectively. This study shows that fungal particles of various size, shape, and origin are aerosolized, and supports the need to include a broader range of particle types in fungal exposure assessment. PMID:26855468

  20. Profile and Morphology of Fungal Aerosols Characterized by Field Emission Scanning Electron Microscopy (FESEM).

    PubMed

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Skaar, Ida; Hjeljord, Linda; Skare, Øivind; Green, Brett James; Tronsmo, Arne; Eduard, Wijnand

    Fungal aerosols consist of spores and fragments with diverse array of morphologies; however, the size, shape, and origin of the constituents require further characterization. In this study, we characterize the profile of aerosols generated from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum grown for 8 weeks on gypsum boards. Fungal particles were aerosolized at 12 and 20 L min(-1) using the Fungal Spore Source Strength Tester (FSSST) and the Stami particle generator (SPG). Collected particles were analyzed with field emission scanning electron microscopy (FESEM). We observed spore particle fraction consisting of single spores and spore aggregates in four size categories, and a fragment fraction that contained submicronic fragments and three size categories of larger fragments. Single spores dominated the aerosols from A. fumigatus (median: 53%), while the submicronic fragment fraction was the highest in the aerosols collected from A. versicolor (median: 34%) and P. chrysogenum (median: 31%). Morphological characteristics showed near spherical particles that were only single spores, oblong particles that comprise some spore aggregates and fragments (<3.5 μm), and fiber-like particles that regroup chained spore aggregates and fragments (>3.5 μm). Further, the near spherical particles dominated the aerosols from A. fumigatus (median: 53%), while oblong particles were dominant in the aerosols from A. versicolor (68%) and P. chrysogenum (55%). Fiber-like particles represented 21% and 24% of the aerosols from A. versicolor and P. chrysogenum, respectively. This study shows that fungal particles of various size, shape, and origin are aerosolized, and supports the need to include a broader range of particle types in fungal exposure assessment.

  1. Characterization of Organic Nitrogen in the Atmosphere Using High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ge, X.; Sun, Y.; Chen, M.; Zhang, Q.

    2015-12-01

    Despite extensive efforts on characterizing organic nitrogen (ON) compounds in atmospheric aerosols and aqueous droplets, knowledge of ON chemistry is still limited, mainly due to its chemical complexity and lack of highly time-resolved measurements. This work is aimed at optimizing the method of using Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) to characterize ON compounds in atmospheric aerosols. Seventy-five pure nitrogen-containing organic compounds covering a variety of functional groups were analyzed with the HR-AMS. Our results show that ON compounds commonly produce NHx+, NOx+, which are usually attributed to inorganic N species such as ammonium and nitrate, and CH2N+ at m/z = 28, which is rarely quantified in ambient aerosol due to large interference from N2+ in the air signal. As a result, using the nitrogen-to-carbon (N/C) calibration factor proposed by Aiken et al. (2008) on average leads to ~ 20% underestimation of N/C in ambient organic aerosol. A new calibration factor of 0.79 is proposed for determining the average N/C in organics. The relative ionization efficiencies (RIEs) of different ON species, on average, are found to be consistent with the default RIE value (1.4) for the total organics. The AMS mass spectral features of various types of ON species (amines, amides, amino acids, etc.) are examined and used for characterizing ON composition in ambient aerosols. Our results indicate that submicron organic aerosol measured during wintertime in Fresno, CA contains significant amounts of amino-compounds whereas more diversified ON species, including N-containing aromatic heterocycle (e.g., imidazoles), are observed in fog waters collected simultaneously. Our findings have important implications for understanding atmospheric ON behaviors via the widespread HR-AMS measurements of ambient aerosols and droplets.

  2. The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; Craven, J. S.; Schilling, K. A.; Metcalf, A. R.; Sorooshian, A.; Chan, M. N.; Flagan, R. C.; Seinfeld, J. H.

    2011-08-01

    The Pasadena Aerosol Characterization Observatory (PACO) represents the first major aerosol characterization experiment centered in the Western/Central Los Angeles Basin. The sampling site, located on the campus of the California Institute of Technology in Pasadena, was positioned to sample a continuous afternoon influx of transported urban aerosol with a photochemical age of 1-2 h and generally free from major local contributions. Sampling spanned 5 months during the summer of 2009, which were broken into 3 regimes on the basis of distinct meteorological conditions. Regime I was characterized by a series of low pressure systems, resulting in high humidity and rainy periods with clean conditions. Regime II typified early summer meteorology, with significant morning marine layers and warm, sunny afternoons. Regime III was characterized by hot, dry conditions with little marine layer influence. Regardless of regime, organic aerosol (OA) is the most significant constituent of nonrefractory submicron Los Angeles aerosol (42, 43, and 55 % of total submicron mass in regimes I, II, and III, respectively). The overall oxidation state remains relatively constant on timescales of days to weeks (O:C = 0.44 ± 0.08, 0.55 ± 0.05, and 0.48 ± 0.08 during regimes I, II, and III, respectively), with no difference in O:C between morning and afternoon periods. Periods characterized by significant morning marine layer influence followed by photochemically favorable afternoons displayed significantly higher aerosol mass and O:C ratio, suggesting that aqueous processes may be important in the generation of secondary aerosol and oxidized organic aerosol (OOA) in Los Angeles. Online analysis of water soluble organic carbon (WSOC) indicates that water soluble organic mass (WSOM) reaches maxima near 14:00-15:00 local time (LT), but the percentage of AMS organic mass contributed by WSOM remains relatively constant throughout the day. Sulfate and nitrate reside predominantly in accumulation

  3. Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes

    NASA Astrophysics Data System (ADS)

    Riva, Matthieu; Da Silva Barbosa, Thais; Lin, Ying-Hsuan; Stone, Elizabeth A.; Gold, Avram; Surratt, Jason D.

    2016-09-01

    We report the formation of aliphatic organosulfates (OSs) in secondary organic aerosol (SOA) from the photooxidation of C10-C12 alkanes. The results complement those from our laboratories reporting the formation of OSs and sulfonates from gas-phase oxidation of polycyclic aromatic hydrocarbons (PAHs). Both studies strongly support the formation of OSs from the gas-phase oxidation of anthropogenic precursors, as hypothesized on the basis of recent field studies in which aromatic and aliphatic OSs were detected in fine aerosol collected from several major urban locations. In this study, dodecane, cyclodecane and decalin, considered to be important SOA precursors in urban areas, were photochemically oxidized in an outdoor smog chamber in the presence of either non-acidified or acidified ammonium sulfate seed aerosol. Effects of acidity and relative humidity on OS formation were examined. Aerosols collected from all experiments were characterized by ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS). Most of the OSs identified could be explained by formation of gaseous epoxide precursors with subsequent acid-catalyzed reactive uptake onto sulfate aerosol and/or heterogeneous reactions of hydroperoxides. The OSs identified here were also observed and quantified in fine urban aerosol samples collected in Lahore, Pakistan, and Pasadena, CA, USA. Several OSs identified from the photooxidation of decalin and cyclodecane are isobars of known monoterpene organosulfates, and thus care must be taken in the analysis of alkane-derived organosulfates in urban aerosol.

  4. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  5. Characterization of fine mode atmospheric aerosols by Raman microscopy and diffuse reflectance FTIR.

    PubMed

    Gaffney, Jeffrey S; Marley, Nancy A; Smith, Kenneth J

    2015-05-14

    A combination of Raman microscopy and diffuse reflectance Fourier transform infrared spectroscopy (FTIR) has been used for the characterization of fine mode (<1 μm) tropospheric aerosols. Peak fitting was used to identify five overlapping bands in the Raman spectra. These bands have been identified as due to combustion generated carbon soot as well as large molecular organic carbon species. The fwhm of the D band at 1400 cm(-1) as well as the ratio of intensities of the D3 band at 1550 cm(-1) to the G band at 1580 cm(-1) can serve as a measure of the aerosol organic carbon content. Raman microscopy combined with spectral mapping capabilities was used to investigate the composition of the fine mode aerosols at the particle level, allowing for the direct determination of aerosol mixing state. Results showed that the fine aerosols were predominately internally mixed particles composed of carbon soot coated with molecular organic carbon species. Characterization of the aerosols by diffuse reflectance FTIR showed that the major organic carbon species were polycarboxylates and polysaccharide-like species typical of humic-like substances (HULIS).

  6. Characterization of aerosol properties from polarimetric satellite observations using GRASP algorithm

    NASA Astrophysics Data System (ADS)

    Dubovik, Oleg; Litvinov, Pavel; Lapyonok, Tatyana; Ducos, Fabrice; Huang, Xin; Lopatin, Anton; Fuertes, David; Derimian, Yevgeny

    2016-04-01

    GRASP (Generalized Retrieval of Aerosol and Surface Properties) is recently developed (Dubovik et al. 2011, 2014) sophisticated algorithm of new generation. The algorithm retrieves aerosol and surface properties simultaneously. It realizes statistically optimized fitting using multi-pixel concept when the retrieval is implemented simultaneously for a large group of satellite pixels. This allows for using additional a priori information about limited variability of aerosol of surface properties in time and/or space. GPASP searches in continuous space of solutions and doesn't utilize look-up-tables. GRASP doesn't use any location specific information about aerosol or surface type in the each observed pixel, and the results are essentially driven by observations. However GRASP retrieval takes longer computational time compare to most conventional algorithms. This main practical challenge of employing GRASP has been addressed during last two years and GRASP algorithm has been significantly optimized and adapted to operational needs. As a result of this optimization and GRASP has been accelerated to the level acceptable for processing large volumes of satellite observations. Recently GRASP has been applied to multi-years archives of PARASO/POLDER. The analysis of the results shows that GRASP retrievals provide rather robust and comprehensive aerosol characterization including such properties as absorption and aerosol type even for observations over bright surfaces and for monitoring very high aerosol loading events (with AOD up to 3 or 4). In addition, the attempts to estimate such aerosol characteristics as aerosol height, air quality, radiative forcing, etc. have been made. The results and illustrations will be presented.

  7. Detailed Characterization of aerosol properties from satellite Observations using GRASP algorithm

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Ducos, F.; Huang, X.; Lopatin, A.; Fuertes, D.; Torres, B.

    2015-12-01

    GRASP (Generalized Retrieval of Aerosol and Surface Properties) is rather sophisticated algorithm was developed recently by Dubovik et al. (2011, 2014) with objective of achieving more complete and accurate aerosols and surface retrieval. Specifically, GPASP searches in continuous space of solutions and doesn't utilize look-up-tables. It based on highly elaborated statistically optimized fitting. For example, it uses multi-pixel retrieval when statistically optimized inversion is implemented simultaneously for a group of satellite pixels. This allows using additional a priori information about limited variability of aerosol of surface properties in time and/or space. As a result, GRASP doesn't use any specific information about aerosol or surface type in the each observed pixel, and the results are essentially driven by observations. However GRASP retrieval takes longer computational time compare to most conventional algorithms that is the main practical challenge of employing GRASP for massive data processing. Nonetheless, in last two years, GRASP has been significantly optimized and adapted to operational needs. As a result of this optimization, GRASP has been accelerated to the level acceptable for processing large volumes of satellite observations. Recently GRASP has been applied to multi-years archives of PARASO/POLDER and ENVISAT/MERIS. Based, on the preliminary analysis GRASP results are very promising for comprehensive characterization of aerosol even for observations over bright surfaces and for monitoring very high aerosol loading events (with AOD 2 or 3). In addition, it was made the attempts to estimate such aerosol characteristics as aerosol height, air mass, radiative forcing, aerosol type, etc. The results and illustrations will be presented.

  8. Novel aerosol analysis approach for characterization of nanoparticulate matter in snow.

    PubMed

    Nazarenko, Yevgen; Rangel-Alvarado, Rodrigo B; Kos, Gregor; Kurien, Uday; Ariya, Parisa A

    2016-12-10

    Tropospheric aerosols are involved in several key atmospheric processes: from ice nucleation, cloud formation, and precipitation to weather and climate. The impact of aerosols on these atmospheric processes depends on the chemical and physical characteristics of aerosol particles, and these characteristics are still largely uncertain. In this study, we developed a system for processing and aerosolization of melted snow in particle-free air, coupled with a real-time measurement of aerosol size distributions. The newly developed technique involves bringing snow-borne particles into an airborne state, which enables application of high-resolution aerosol analysis and sampling techniques. This novel analytical approach was compared to a variety of complementary existing analytical methods as applied for characterization of snow samples from remote sites in Alert (Canada) and Barrow (USA), as well as urban Montreal (Canada). The dry aerosol measurements indicated a higher abundance of particles of all sizes, and the 30 nm size dominated in aerosol size distributions for the Montreal samples, closely followed by Barrow, with about 30% fewer 30 nm particles, and about four times lower 30 nm particle abundance in Alert samples, where 15 nm particles were most abundant instead. The aerosolization technique, used together with nanoparticle tracking analysis and electron microscopy, allowed measurement of a wide size range of snow-borne particles in various environmental snow samples. Here, we discuss the application of the new technique to achieve better physicochemical understanding of atmospheric and snow processes. The results showed high sensitivity and reduction of particle aggregation, as well as the ability to measure a high-resolution snow-borne particle size distribution, including nanoparticulate matter in the range of 10 to 100 nm.

  9. Two-wavelength lidar characterization of atmospheric aerosol fields at low altitudes over heterogeneous terrain

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Dreischuh, Tanja N.; Toncheva, Eleonora N.; Stoyanov, Dimitar V.

    2012-01-01

    The possibilities for applying multiwavelength elastic lidar probing of the atmosphere to help monitor air-quality over large industrial and densely populated areas, based predominantly on the use and analysis of commonly obtainable backscatter-related lidar quantities, are examined. Presented are two-wavelength (1064/532 nm) lidar observations on the spatial distribution, structure, composition, and temporal evolution of close-to-surface atmospheric aerosol fields over heterogeneous orographic areas (adjacent city, plain, and mountain) near Sofia, Bulgaria. Selected winter-time evening lidar measurements are described. Range profiles, histograms, and evolutional range-time diagrams of the aerosol backscatter coefficients, range-corrected lidar signals, normalized standard deviations, and backscatter-related Ångström exponents (BAE) are analyzed. Near-perfect correlation between the aerosol density distribution and orographic differentiation of the underlying terrain is established, finding expression in a sustained horizontal stratification of the probed atmospheric domains. Distinctive features in the spatial distribution and temporal evolution of both the fine- and coarse aerosol fractions are revealed in correlation with terrain's orography. Zonal aerosol particle size distributions are qualitatively characterized by using an approach based on BAE occurrence frequency distribution analysis. Assumptions are made about the aerosol particle type, origin, and dominating size as connected (by transport-modeling data) to local pollution sources. Specifics and patterns of temporal dynamics of the fine- and coarse aerosol fraction density distributions and movements, revealed by using statistical analysis of lidar data, are discussed. The obtained results prove the capability of the used two-wavelength lidar approach to perform fast-, reliable, and self-consistent characterization of important optical-, micro-physical-, and dynamical properties of atmospheric

  10. Identification and Characterization of Biogenic SOA Component in Ambient Aerosols Based on Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Jimenez, J.; Allan, J. D.; Kiendler-Scharr, A.; Tian, J.; Canagaratna, M. R.; Williams, B.; Worsnop, D. R.; Coe, H.; Goldstein, A.; Mentel, T. F.

    2008-12-01

    Recently studies have shown that multivariate factor analysis of the highly time-resolved mass spectral data obtained with an Aerodyne Aerosol Mass Spectrometer (AMS) may allow the classification and simplification of complex organic aerosol (OA) mixtures into components that are chemically meaningful and can be related to different sources and transformation processes. Two factor analysis techniques, including the Multiple Component Analysis (MCA) method (Zhang et al., 2007) and the Positive Matrix Factorization (PMF) method (Paatero and Tapper, 1994), were applied to a Quadrupole-AMS dataset acquired from Chebogue Pt., Nova Scotia in summer 2004. Multiple OA components were determined, including a hydrocarbon-like OA (HOA) component similar in mass spectra to the hydrocarbon substances observed at urban locations and two oxygenated OA (OA) components that show different fragmentation patterns and oxygen-to-carbon ratios in their mass spectra. The HOA component correlates with inert primary emission tracers (e.g., EC and CO) and likely represents diluted POA transported from urban locations. The highly oxygenated component (OOA-I) correlates well with sulfate and shows a mass spectrum resembling that of fulvic acid - a model compound representative for highly processed/oxidized organics in the environment. The less oxygenated OA component (OOA-II) reveals a mass spectral pattern that compares well with those of the biogenic SOA produced from the mixture of VOCs emitted by spruce, pine and birch trees during exposure to ozone and UV-photolysis in the Jülich plant chamber. In addition, the time series of OOA-II correlates with biogenic SOA tracer compounds determined by the thermal desorption aerosol GC/MS-FID (TAG) instrument. Furthermore, the time-resolved size distributions of OOA components, their correlations with parallel gas and aerosol measurements, and backtrajectory analysis of air masses all support the association of OOA-II to biogenic sources. Finally

  11. Multi- year Arctic and Antarctic aerosol chemical characterization

    NASA Astrophysics Data System (ADS)

    Udisti, Roberto; Becagli, Silvia; Caiazzo, Laura; Calzolai, Giulia; Cappelletti, David; Giardi, Fabio; Grotti, Marco; Malandrino, Mery; Nava, Silvia; Severi, Mirko; Traversi, Rita

    2016-04-01

    Long term measurements of aerosol chemical composition in polar region are particularly relevant to investigate potential climatic effects of atmospheric components arising from both natural and anthropogenic emissions. In order to improve our knowledge on the atmospheric load and chemical composition of polar aerosol, several measurements and sampling campaigns were carried out both in Antarctica and in the Arctic since 2005.The main results are here reported. As regard as Antarctica, a continuous all-year-round sampling of size-segregated aerosol was carried from 2005 to 2013 at Dome C (East Antarctica; 75° 60' S, 123° 200' E, 3220 m a.s.l. and 1100 km away from the nearest coast). Aerosol was collected by PM10 and PM2.5 samplers and by multi-stage impactors (Dekati 4-stage impactor). Chemical analysis was carried out by Ion Chromatography (ions composition) and ICP-MS (trace metals). Sea spray showed a sharp seasonal pattern, with winter (Apr-Nov) concentrations about ten times larger than summer (Dec-Mar). Besides, in winter, sea spray particles are mainly sub micrometric, while the summer size-mode is around 1-2 um. Meteorological analysis and air mass back trajectory reconstructions allowed the identification of two major air mass pathways: micrometric fractions for transport from the closer Indian-Pacific sector, and sub-micrometric particles for longer trajectories over the Antarctic Plateau. The markers of oceanic biogenic emission (methanesulfonic acid - MSA, and non-sea-salt sulphate) exhibit a seasonal cycle with summer maxima (Nov-Mar). Their size distributions show two modes (0.4- 0.7 um and 1.1-2.1 um) in early summer and just one sub-micrometric mode in full summer. The two modes are related to different transport pathways. In early summer, air masses came primarily from the Indian Ocean and spent a long time over the continent. The transport of sulphur compounds is related to sea spray aerosols and the resulting condensation of H2SO4 and MSA over

  12. Molecular Characterization of Free Tropospheric Aerosol Collected at the Pico Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Dzepina, K.; Mazzoleni, C.; Fialho, P. J.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Jacques, H.; Kumar, S.; Perlinger, J. A.; Kramer, L. J.; Dziobak, M.; Ampadu, M.; Olsen, S. C.; Wuebbles, D. J.; Mazzoleni, L. R.

    2014-12-01

    the two samples was corroborated by the changes in ozone, ethane, propane, morphology of particles, as well as by the FLEXPART retroplumes. In this presentation we will report the first detailed molecular characterization of free tropospheric aged aerosol intercepted at the Pico Mountain Observatory.

  13. Characterization of the sunset semi-continuous carbon aerosol analyzer.

    PubMed

    Bauer, Jace J; Yu, Xiao-Ying; Cary, Robert; Laulainen, Nels; Berkowitz, Carl

    2009-07-01

    The field-deployable Sunset Semi-Continuous Organic Carbon/Elemental Carbon (Sunset OCEC) aerosol analyzer utilizes the modified National Institute for Occupational Safety and Health thermal-optical method to determine total carbon (TC), organic carbon (OC), and elemental carbon (EC) at near real-time. Two sets of OC and EC are available: thermal OC and EC, and optical OC and EC. The former is obtained by the thermal-optical approach, and the latter is obtained by directly determining EC optically and deriving optical OC from TC. However, the performance of the Sunset OCEC is not yet fully characterized. Two collocated Sunset OCEC analyzers, Unit A and Unit B, were used to determine the pooled relative standard deviation (RSD) and limit of detection (LOD) between September 18 and November 6, 2007 in Richland, WA. The LOD of Unit A was approximately 0.2 microgC/m3 (0.1 microgC/cm2) for TC, optical OC, and thermal OC, and 0.01 microgC/m3 (0.01 microgC/cm2) for optical EC. Similarly, Unit B had an LOD of approximately 0.3 microgC/m3 (0.2 microgC/cm2) for TC, optical OC, and thermal OC, and 0.02 microgC/m3 (0.01 microgC/cm2) for optical EC. The LOD for thermal EC is estimated to be 0.2 microgC/m3 (0.1 microgC/cm2) for both units. The pooled RSDs were 4.9% for TC (carbon mass loadings 0.6-6.0 microgC/cm2), 5.6% for optical OC (carbon mass loadings 0.6-5.4 microgC/cm2), 5.3% for thermal OC (carbon mass loadings 0.6-5.3 microgC/ cm2), and 9.6% for optical EC (carbon mass loadings 0-1.4 microgC/cm2), which indicates good precision between the instruments. The RSD for thermal EC is higher at 24.3% (carbon mass loadings 0-1.2 microgC/cm2). Low EC mass loadings in Richland contributed to the poor RSD of EC. The authors found that excessive noise from the nondispersive infrared (NDIR) laser in the Sunset OCEC analyzer could result in a worsened determination of OC and EC. It is recommended that a "quieter" NDIR laser and detector be used in the Sunset OCEC analyzer to improve

  14. Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Saarikoski, S.; Carbone, S.; Decesari, S.; Giulianelli, L.; Angelini, F.; Teinilä, K.; Canagaratna, M.; Ng, N. L.; Trimborn, A.; Facchini, M. C.; Fuzzi, S.; Hillamo, R.; Worsnop, D.

    2012-03-01

    The chemistry of submicron particles was investigated at San Pietro Capofiume (SPC) measurement station in the Po Valley, Italy, in spring 2008. The measurements were performed by using both off-line and on-line instruments. Organic carbon (OC) and elemental carbon, organic acids and biomass burning tracers were measured off-line by using a 24-h PM1 filter sampling. More detailed particle chemistry was achieved by using an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and analyzing the data by positive matrix factorization (PMF). Oxalic acid had the highest concentrations of organic acids (campaign-average 97.4 ng m-3) followed by methane sulfonic, formic, malonic, and malic acids. Samples were also analyzed for glyoxylic, succinic, azelaic and maleic acids. In total, the nine acids composed 1.9 and 3.8% of OC and water-soluble OC, respectively (average), in terms of carbon atoms. Levoglucosan concentration varied from 17.7 to 495 ng m-3 with the concentration decreasing in the course of the campaign most likely due to the reduced use of domestic heating with wood. Six factors were found for organic aerosol (OA) at SPC by PMF: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), nitrogen-containing OA (N-OA) and three different oxygenated OAs (OOA-a, OOA-b and OOA-c). Most of the OA mass was composed of OOA-a, HOA and OOA-c (26, 24 and 22%, respectively) followed by OOA-b (13%), BBOA (8%) and N-OA (7%). As expected, OOAs were the most oxygenated factors with organic matter:organic carbon (OM:OC) ratios ranging from 1.9 to 2.2. The diurnal variability of the aerosol chemical composition was greatly affected by the boundary layer meteorology. Specifically, the effect of the nocturnal layer break-up in morning hours was most evident for nitrate and N-OA indicating that these compounds originated mainly from the local sources in the Po Valley. For sulfate and OOA-a the concentration did not change during the break-up suggesting their

  15. Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Saarikoski, S.; Carbone, S.; Decesari, S.; Giulianelli, L.; Angelini, F.; Canagaratna, M.; Ng, N. L.; Trimborn, A.; Facchini, M. C.; Fuzzi, S.; Hillamo, R.; Worsnop, D.

    2012-09-01

    The chemistry of submicron particles was investigated at San Pietro Capofiume (SPC) measurement station in the Po Valley, Italy, in spring 2008. The measurements were performed by using both off-line and on-line instruments. Organic carbon (OC) and elemental carbon, organic acids and biomass burning tracers were measured off-line by using a 24-h PM1 filter sampling. More detailed particle chemistry was achieved by using a Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and analyzing the data by positive matrix factorization (PMF). Oxalic acid had the highest concentrations of organic acids (campaign-average 97.4 ng m-3) followed by methane sulfonic, formic, malonic, and malic acids. Samples were also analyzed for glyoxylic, succinic, azelaic and maleic acids. In total, the nine acids composed 1.9 and 3.8% of OC and water-soluble OC, respectively (average), in terms of carbon atoms. Levoglucosan concentration varied from 17.7 to 495 ng m-3 with the concentration decreasing in the course of the campaign most likely due to the reduced use of domestic heating with wood. Six factors were found for organic aerosol (OA) at SPC by PMF: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), nitrogen-containing OA (N-OA) and three different oxygenated OAs (OOA-a, OOA-b and OOA-c). Most of the OA mass was composed of OOA-a, HOA and OOA-c (26, 24 and 22%, respectively) followed by OOA-b (13%), BBOA (8%) and N-OA (7%). As expected, OOAs were the most oxygenated factors with organic matter:organic carbon (OM : OC) ratios ranging from 1.9 to 2.2. The diurnal variability of the aerosol chemical composition was greatly affected by the boundary layer meteorology. Specifically, the effect of the nocturnal layer break-up in morning hours was most evident for nitrate and N-OA indicating that these compounds originated mainly from the local sources in the Po Valley. For sulfate and OOA-a the concentration did not change during the break-up suggesting their

  16. Characterization of aerosol episodes in the greater Mediterranean Sea area from satellite observations (2000-2007)

    NASA Astrophysics Data System (ADS)

    Gkikas, A.; Hatzianastassiou, N.; Mihalopoulos, N.; Torres, O.

    2016-03-01

    An algorithm able to identify and characterize episodes of different aerosol types above sea surfaces of the greater Mediterranean basin (GMB), including the Black Sea and the Atlantic Ocean off the coasts of Iberia and northwest Africa, is presented in this study. Based on this algorithm, five types of intense (strong and extreme) aerosol episodes in the GMB are identified and characterized using daily aerosol optical properties from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMI-Aura. These aerosol episodes are: (i) biomass-burning/urban-industrial (BU), (ii) desert dust (DD), (iii) dust/sea-salt (DSS), (iv) mixed (MX) and (v) undetermined (UN). The identification and characterization is made with our algorithm using a variety of aerosol properties, namely aerosol optical depth (AOD), Ångström exponent (α), fine fraction (FF), effective radius (reff) and Aerosol Index (AI). During the study period (2000-2007), the most frequent aerosol episodes are DD, observed primarily in the western and central Mediterranean Sea, and off the northern African coasts, 7 times/year for strong episodes and 4 times/year for extreme ones, on average. The DD episodes yield 40% of all types of strong aerosol episodes in the study region, while they account for 71.5% of all extreme episodes. The frequency of occurrence of strong episodes exhibits specific geographical patterns, for example the BU are mostly observed along the coasts of southern Europe and off the Atlantic coasts of Portugal, the MX episodes off the Spanish Mediterranean coast and over the Adriatic and northern Aegean Sea, while the DSS ones over the western and central Mediterranean Sea. On the other hand, the extreme episodes for all but DD aerosol display more patchy spatial patterns. The strong episodes exhibit AOD at 550 nm as high as 1.6 in the southernmost parts of central and eastern Mediterranean Sea, which rise up to 5 for the extreme, mainly DD and DSS, episodes. Although more

  17. Lidar-radar synergy for characterizing properties of ultragiant volcanic aerosol

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amodeo, A.; D'Amico, G.; Giunta, A.; Mona, L.; Pappalardo, G.

    2011-12-01

    The atmospheric aerosol has a relevant effect on our life influencing climate, aviation safety, air quality and natural hazards. The identification of aerosol layers through inspection of continuous measurements is strongly recommended for quantifying their contribution to natural hazards and air quality and to establish suitable alerting systems. In particular, the study of ultragiant aerosols may improve the knowledge of physical-chemical processes underlying the aerosol-cloud interactions and the effect of giant nuclei as a potential element to expedite the warm-rain process. Moreover, the identification and the characterization of ultragiant aerosols may strongly contribute to quantify their impact on human health and their role in airplane engine damages or in visibility problems, especially in case of extreme events as explosive volcanic eruptions. During spring 2010, volcanic aerosol layers coming from Eyjafjallajökull volcano were observed over most of the European countries, using lidar technique. From 19 April to 19 May 2010, they were also observed at CNR-IMAA Atmospheric Observatory (CIAO) with the multi-wavelength Raman lidar systems of the Potenza EARLINET station (40.60N, 15.72E, 760 m a.s.l), Southern Italy. During this period, ultragiant aerosol were also observed at CIAO using a co-located Ka-band MIRA-36 Doppler microwave radar operating at 8.45 mm (35.5 GHz). The Ka-band radar observed in four separate days (19 April, 7, 10, 13 May) signatures consistent with the observations of non-spherical ultragiant aerosol characterized by anomalous values of linear depolarization ratio higher than -4 dB, probably related to the occurrence of multiple effects as particle alignment and presence of an ice coating. 7-days backward trajectory analysis shows that the air masses corresponding to the ultragiant aerosol observed by the radar were coming from the Eyjafjallajökull volcano area. Only in one case the trajectories do not come directly from Iceland

  18. Ultrahigh resolution mass spectrometric characterization of organic aerosol from European and Chinese cities

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Huang, Ru-Jin; Hoffmann, Thorsten

    2016-04-01

    Organic aerosol constitutes a substantial fraction (20-90%) of submicrometer aerosol mass, playing an important role in air quality and human health. Over the past few years, ultra-high resolution mass spectrometry (UHRMS) has been applied to elucidate the chemical composition of ambient aerosols. However, most of the UHRMS studies used direct infusion without prior separation by liquid chromatography, which may cause the loss of individual compound information and interference problems. In the present study, urban ambient aerosol with particle diameter < 2.5 μm was collected in Mainz, Germany and Beijing, China, respectively. Two pretreatment procedures were applied to extract the organic compounds from the filter samples: One method uses a mixture of acetonitrile and water, the other uses pure water and prepared for the extraction of humic-like substances. The extracts were analyzed by ultra-high-performance liquid chromatography coupled with an Orbitrap mass spectrometer in both negative and the positive modes. The effects of pretreatment procedures on the characterization of organic aerosol and the city-wise difference in chemical composition of organic aerosol will be discussed in detail.

  19. Characterization of aerosols above the Northern Adriatic Sea: Case studies of offshore and onshore wind conditions

    NASA Astrophysics Data System (ADS)

    Piazzola, J.; Mihalopoulos, N.; Canepa, E.; Tedeschi, G.; Prati, P.; Zarmpas, P.; Bastianini, M.; Missamou, T.; Cavaleri, L.

    2016-05-01

    Aerosol particles in coastal areas result from a complex mixing between sea spray aerosols locally generated at the sea surface by the wind-waves interaction processes and a continental component resulting from natural and/or anthropogenic sources. This paper presents a physical and chemical analysis of the aerosol data acquired from May to September 2014 in the Adriatic Sea. Aerosol distributions were measured on the Acqua Alta platform located 15 km off the coast of Venice using two Particle Measuring System probes and a chemical characterization was made using an Ion Chromatography analysis (IC). Our aim is to study both the sea-spray contribution and the anthropogenic influence in the coastal aerosol of this Mediterranean region. To this end, we focus on a comparison between the present data and the aerosol size distributions measured south of the French Mediterranean coast. For air masses of marine origin transported by southern winds on the French coast and by the Sirocco in the Adriatic, we note a good agreement between the concentrations of super-micrometer aerosols measured in the two locations. This indicates a similar sea surface production of sea-spray aerosols formed by bubble bursting processes in the two locations. In contrast, the results show larger concentrations of submicron particles in the North-Western Mediterranean compared to the Adriatic, which result probably from a larger anthropogenic background for marine conditions. In contrast, for a coastal influence, the chemical analysis presented in the present paper seems to indicate a larger importance of the anthropogenic impact in the Northern Adriatic compared to the North-Western Mediterranean.

  20. Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Junke; Wang, Yuesi; Huang, Xiaojuan; Liu, Zirui; Ji, Dongsheng; Sun, Yang

    2015-06-01

    Fine particle of organic aerosol (OA), mostly arising from pollution, are abundant in Beijing. To achieve a better understanding of the difference in OA in summer and autumn, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research Inc., USA) was deployed in urban Beijing in August and October 2012. The mean OA mass concentration in autumn was 30±30 μg m-3, which was higher than in summer (13±6.9 μg m-3). The elemental analysis found that OA was more aged in summer (oxygen-to-carbon (O/C) ratios were 0.41 and 0.32 for summer and autumn, respectively). Positive matrix factorization (PMF) analysis identified three and five components in summer and autumn, respectively. In summer, an oxygenated OA (OOA), a cooking-emission-related OA (COA), and a hydrocarbon-like OA (HOA) were indentified. Meanwhile, the OOA was separated into LV-OOA (low-volatility OOA) and SV-OOA (semi-volatile OOA); and in autumn, a nitrogen-containing OA (NOA) was also found. The SOA (secondary OA) was always the most important OA component, accounting for 55% of the OA in the two seasons. Back trajectory clustering analysis found that the origin of the air masses was more complex in summer. Southerly air masses in both seasons were associated with the highest OA loading, while northerly air masses were associated with the lowest OA loading. A preliminary study of OA components, especially the POA (primary OA), in different periods found that the HOA and COA all decreased during the National Day holiday period, and HOA decreased at weekends compared with weekdays.

  1. Characterizations of atmospheric fungal aerosol in Beijing, China

    NASA Astrophysics Data System (ADS)

    Liang, Linlin; Engling, Guenter; He, Kebin; Du, Zhenyu

    2013-04-01

    Fungal aerosols constitute the most abundant fraction of biological aerosols in the atmosphere, influencing human health, the biosphere, atmospheric chemistry and climate. However, the total abundance of fungal spores in the atmosphere is still poorly understood and quantified. PM10 and PM2.5 samples were collected by high volume samplers simultaneously at a rural site (MY) and an urban site (THU) in Beijing, China. Various carbohydrates were quantified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), including the sugar alcohols mannitol and arabitol, proposed as molecular tracers for fungal aerosol. The annual average concentrations of arabitol in PM2.5 and PM10 at the THU site were 7.4±9.4 ng/m3 and 10.3±9.5 ng/m3, and the respective mannitol concentrations were 21.0±20.4 ng/m3 and 31.9±26.9 ng/m3. Compared to PM10, the monthly average concentrations of arabitol and mannitol in PM2.5 did not vary significantly and were present at nearly consistent levels in the different seasons. Moreover, during summer and autumn higher arabitol and mannitol levels than during spring and winter were observed in coarse particles, probably due to different dominant sources of fungal spores in different seasons. In the dry period (i.e., winter and spring) in Beijing, probably only the suspension from exposed surfaces, (e.g., soil resuspension, transported dust, etc.) can be regarded as the main sources for fungal aerosols. On the other hand, in summer and autumn, fungal spores in the atmosphere can be derived from more complex sources, including plants, vegetation decomposition and agricultural activity, such as ploughing; these fungal spore sources may contribute more to coarse PM. Mannitol and arabitol correlated well with each other, both in PM10 (R2 = 0.71) and PM2.5 (R2 = 0.81). Although fungal spore levels at rural sites were consistently higher than those at urban sites in other studies, the findings in our study were

  2. Characterization of Vapor and Aerosol Flows by Photothermal Methods.

    DTIC Science & Technology

    2014-09-26

    transient Mie-scattering. The main parts of our experimental set-up have been shown previously5 . A Q-switched CO2 laser beam (pulse duration I ps...indicated beam separations in a nitrogen/ethanol vapor flow.The CO2 laser is fired at t-0. Signal decrease and broadening is in agreement with eq. (I...20. AUSTRACT (Confliu W tover@ aede It nemsaem iaind Identif by bleck numier) Pulsed laser heating is used to label aerosols or absorbing vapors

  3. Electron Microscopy Characterization of Aerosols Collected at Mauna Loa Observatory During Asian Dust Storm Event

    EPA Science Inventory

    Atmospheric aerosol particles have a significant influence on global climate due to their ability to absorb and scatter incoming solar radiation. Size, composition, and morphology affect a particle’s radiative properties and these can be characterized by electron microscopy. Lo...

  4. Characterization of indoor cooking aerosol using neutron activation analysis

    SciTech Connect

    Wu, D.; Landsberger, S.; Larson, S. )

    1993-01-01

    Suspended particles in air are potentially harmful to human health, depending on their sizes and chemical composition. Residential indoor particles mainly come from (a) outdoor sources that are transported indoors, (b) indoor dust that is resuspended, and (c) indoor combustion sources, which include cigarette smoking, cooking, and heating. Jedrychowski stated that chronic phlegm in elderly women was strongly related to the cooking exposure. Kamens et al. indicated that cooking could generate small particles (<0.1 [mu]m), and cooking one meal could contribute [approximately]5 to 18% of total daytime particle volume exposure. Although cooking is a basic human activity, there are not many data available on the properties of particles generated by this activity. Some cooking methods, such as stir-frying and frying, which are the most favored for Chinese and other Far East people, generate a large quantity of aerosols. This research included the following efforts: 1. investigating particle number concentrations, distributions, and their variations with four different cooking methods and ventilation conditions; 2. measuring the chemical composition of cooking aerosol samples by instrumental neutron activation analysis.

  5. Characterizing the Spatial and Temporal Distribution of Aerosol Optical Thickness Over the Atlantic Basin Utilizing GOES-8 Multispectral Data

    NASA Technical Reports Server (NTRS)

    Fox, Robert; Prins, Elaine Mae; Feltz, Joleen M.

    2001-01-01

    In recent years, modeling and analysis efforts have suggested that the direct and indirect radiative effects of both anthropogenic and natural aerosols play a major role in the radiative balance of the earth and are an important factor in climate change calculations. The direct effects of aerosols on radiation and indirect effects on cloud properties are not well understood at this time. In order to improve the characterization of aerosols within climate models it is important to accurately parameterize aerosol forcing mechanisms at the local, regional, and global scales. This includes gaining information on the spatial and temporal distribution of aerosols, transport regimes and mechanisms, aerosol optical thickness, and size distributions. Although there is an expanding global network of ground measurements of aerosol optical thickness and size distribution at specific locations, satellite data must be utilized to characterize the spatial and temporal extent of aerosols and transport regimes on regional and global scales. This study was part of a collaborative effort to characterize aerosol radiative forcing over the Atlantic basin associated with the following three major aerosol components in this region: urban/sulfate, Saharan dust, and biomass burning. In-situ ground measurements obtained by a network of sun photometers during the Smoke Clouds and Radiation Experiment in Brazil (SCAR-B) and the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) were utilized to develop, calibrate, and validate a Geostationary Operational Environmental Satellite (GOES)-8 aerosol optical thickness (AOT) product. Regional implementation of the GOES-8 AOT product was used to augment point source measurements to gain a better understanding of the spatial and temporal distributions of Atlantic basin aerosols during SCAR-B and TARFOX.

  6. Effects of Data Quality on the Characterization of Aerosol Properties from Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Ichoku, Charles; Leptoukh, Gregory

    2011-01-01

    Cross-comparison of aerosol properties between ground-based and spaceborne measurements is an important validation technique that helps to investigate the uncertainties of aerosol products acquired using spaceborne sensors. However, it has been shown that even minor differences in the cross-characterization procedure may significantly impact the results of such validation. Of particular consideration is the quality assurance I quality control (QA/QC) information - an auxiliary data indicating a "confidence" level (e.g., Bad, Fair, Good, Excellent, etc.) conferred by the retrieval algorithms on the produced data. Depending on the treatment of available QA/QC information, a cross-characterization procedure has the potential of filtering out invalid data points, such as uncertain or erroneous retrievals, which tend to reduce the credibility of such comparisons. However, under certain circumstances, even high QA/QC values may not fully guarantee the quality of the data. For example, retrievals in proximity of a cloud might be particularly perplexing for an aerosol retrieval algorithm, resulting in an invalid data that, nonetheless, could be assigned a high QA/QC confidence. In this presentation, we will study the effects of several QA/QC parameters on cross-characterization of aerosol properties between the data acquired by multiple spaceborne sensors. We will utilize the Multi-sensor Aerosol Products Sampling System (MAPSS) that provides a consistent platform for multi-sensor comparison, including collocation with measurements acquired by the ground-based Aerosol Robotic Network (AERONET), The multi-sensor spaceborne data analyzed include those acquired by the Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and CalipsoCALIOP satellite instruments.

  7. Effects of Data Quality on the Characterization of Aerosol Properties from Multiple Sensors

    NASA Astrophysics Data System (ADS)

    Petrenko, M.; Ichoku, C. M.; Leptoukh, G. G.

    2011-12-01

    Cross-comparison of aerosol properties between ground-based and spaceborne measurements is an important validation technique that helps to investigate the uncertainties of aerosol products acquired using spaceborne sensors. However, it has been shown that even minor differences in the cross-characterization procedure may significantly impact the results of such validation. Of particular consideration is the quality assurance / quality control (QA/QC) information - an auxiliary data indicating a "confidence" level (e.g., Bad, Fair, Good, Excellent, etc.) conferred by the retrieval algorithms on the produced data. Depending on the treatment of available QA/QC information, a cross-characterization procedure has the potential of filtering out invalid data points, such as uncertain or erroneous retrievals, which tend to reduce the credibility of such comparisons. However, under certain circumstances, even high QA/QC values may not fully guarantee the quality of the data. For example, retrievals in proximity of a cloud might be particularly perplexing for an aerosol retrieval algorithm, resulting in an invalid data that, nonetheless, could be assigned a high QA/QC confidence. In this presentation, we will study the effects of several QA/QC parameters on cross-characterization of aerosol properties between the data acquired by multiple spaceborne sensors. We will utilize the Multi-sensor Aerosol Products Sampling System (MAPSS) that provides a consistent platform for multi-sensor comparison, including collocation with measurements acquired by the ground-based Aerosol Robotic Network (AERONET), The multi-sensor spaceborne data analyzed include those acquired by the Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP satellite instruments.

  8. Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface.

    PubMed

    Polk, William W; Sharma, Monita; Sayes, Christie M; Hotchkiss, Jon A; Clippinger, Amy J

    2016-04-23

    Aerosol generation and characterization are critical components in the assessment of the inhalation hazards of engineered nanomaterials (NMs). An extensive review was conducted on aerosol generation and exposure apparatus as part of an international expert workshop convened to discuss the design of an in vitro testing strategy to assess pulmonary toxicity following exposure to aerosolized particles. More specifically, this workshop focused on the design of an in vitro method to predict the development of pulmonary fibrosis in humans following exposure to multi-walled carbon nanotubes (MWCNTs). Aerosol generators, for dry or liquid particle suspension aerosolization, and exposure chambers, including both commercially available systems and those developed by independent researchers, were evaluated. Additionally, characterization methods that can be used and the time points at which characterization can be conducted in order to interpret in vitro exposure results were assessed. Summarized below is the information presented and discussed regarding the relevance of various aerosol generation and characterization techniques specific to aerosolized MWCNTs exposed to cells cultured at the air-liquid interface (ALI). The generation of MWCNT aerosols relevant to human exposures and their characterization throughout exposure in an ALI system is critical for extrapolation of in vitro results to toxicological outcomes in humans.

  9. Characterization of nitrocatechols and related tracers in atmospheric biomass burning organic aerosol

    NASA Astrophysics Data System (ADS)

    Grgic, I.; Kitanovski, Z.; Yasmeen, F.; Claeys, M.

    2011-12-01

    One of the largest primary sources of organic aerosols in the atmosphere is biomass burning (Laskin et al., 2009). The chemistry of compounds present in biomass burning aerosol (BBA) is diverse and directly dependent on the chemical composition of the burning material and the combustion conditions (Simoneit et al., 2002). A well-established tracer for primary BBA is levoglucosan (1,6-anhydro-β-anhydroglucose), which originates from the pyrolysis of cellulose or hemicellulose (Fine et al., 2002). Secondary BBA, which is formed after physical and chemical changes (aging) of the primary BBA in the atmosphere, contains more oxidized and polar compounds. An important class of compounds of secondary organic aerosols (SOA) is nitrocatechols, which are strong absorbers of UV and Vis light, and therefore, can affect the earth's radiative balance and climate. Recently, methyl nitrocatechols were proposed as suitable tracers for highly oxidized secondary BBA (Iinuma et al., 2010). These compounds are primarily formed from the photooxidation of m-cresol, that is emitted from biomass burning, in the presence of NOx. The objective of the present study was to characterize nitrocatechols in ambient aerosols using mass spectrometric and chromatographic techniques. Ambient aerosol samples were collected during a cold winter episode from an urban site in Maribor, Slovenia, where substantial residential wood burning for domestic purposes takes place. Emphasis was put on the development of a suitable LC-ESI-MS technique. In an initial step the chromatographic conditions were optimized for methyl nitrocatechols and related nitro-aromatic compounds using diode array UV/Vis detection. The optimized LC conditions were used for the development and validation of an LC-ESI-MS/MS method for identification and quantification of nitrocatechols in aerosol samples. LC/ESI-MS/MS data will be presented and interpreted for the nitro-aromatic compounds that are present in the collected ambient

  10. Satellite Characterization of Fire Emissions of Aerosols and Gases Relevant to Air-Quality Modeling

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Ellison, L.; Yue, Y.; Wang, J.

    2015-12-01

    Because of the transient and widespread nature of wildfires and other types of open biomass burning, satellite remote sensing has become an indispensable technique for characterizing their smoke emissions for modeling applications, especially at regional to global scales. Fire radiative energy (FRE), whose instantaneous rate of release or fire radiative power (FRP) is measurable from space, has been found to be proportional to both the biomass consumption and emission of aerosol particulate matter. We have leveraged this relationship to generate a global, gridded smoke-aerosol emission coefficients (Ce) dataset based on FRP and aerosol optical thickness (AOT) measurements from the MODIS sensors aboard the Terra and Aqua satellites. Ce is a simple coefficient to convert FRE to smoke aerosol emissions, in the same manner as traditional emission factors are used to convert burned biomass to emissions. The first version of this Fire Energetics and Emissions Research (FEER.v1) global gridded Ce product at 1°x1° resolution is available at http://feer.gsfc.nasa.gov/. Based on published emission ratios, the FEER.v1 Ce product for total smoke aerosol has also been used to generate similar products for specific fire-emitted aerosols and gases, including those that are regulated as 'criteria pollutants' under the US Environmental Protection Agency's National Ambient Air Quality Standards (NAAQS), such as particulate matter (PM) and carbon monoxide (CO). These gridded Ce products were used in conjunction with satellite measurements of FRP to derive emissions of several smoke constituents, which were applied to WRF-Chem fully coupled meteorology-chemistry-aerosol model simulations, with promising results. In this presentation, we analyze WRF-Chem simulations of surface-level concentrations of various pollutants based on FEER.v1 emission products to illustrate their value for air-quality modeling, particularly in parts of Africa and southeast Asia where ground-based air

  11. Cross-Characterization of Aerosol Properties from Multiple Spaceborne Sensors Facilitated by Regional Ground-Based Observations

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Ichoku, Charles; Leptoukh, Gregory

    2010-01-01

    Aerosol observations from space have become a standard source for retrieval of aerosol properties on both regional and global scales. Indeed, the large number of currently operational spaceborne sensors provides for unprecedented access to the most complete set of complimentary aerosol measurements ever to be available. Nonetheless, this resource remains under-utilized, largely due to the discrepancies and differences existing between the sensors and their aerosol products. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have designed and implemented an online Multi-sensor Aerosol Products Sampling System (MAPSS) that facilitates the joint sampling of aerosol data from multiple sensors. MAPSS consistently samples aerosol products from multiple spaceborne sensors using a unified spatial and temporal resolution, where each dataset is sampled over Aerosol Robotic Network (AERONET) locations together with coincident AERONET data samples. In this way, MAPSS enables a direct cross-characterization and data integration between aerosol products from multiple sensors. Moreover, the well-characterized co-located ground-based AERONET data provides the basis for the integrated validation of these products.

  12. Sampling, characterization, and remote sensing of aerosols formed in the atmospheric hydrolysis of uranium hexafluoride

    SciTech Connect

    Bostick, W.D.; McCulla, W.H.; Pickrell, P.W.

    1984-05-01

    When gaseous uranium hexafluoride (UF/sub 6/) is released into the atmosphere, it rapidly reacts with ambient moisture to form an aerosol of uranyl fluoride (UO/sub 2/F/sub 2/) and hydrogen fluoride (HF). As part of our Safety Analysis program, we have performed several experimental releases of HF/sub 6/ in contained volumes in order to investigate techniques for sampling and characterizing the aerosol materials. The aggregate particle morphology and size distribution have been found to be dependent upon several conditions, including the temperature of the UF/sub 6/ at the time of its release, the relative humidity of the air into which it is released, and the elapsed time after the release. Aerosol composition and settling rate have been investigated using stationary samplers for the separate collection of UO/sub 2/F/sub 2/ and HF and via laser spectroscopic remote sensing (Mie scatter and infrared spectroscopy). 25 refs., 16 figs., 5 tabs.

  13. Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument

    NASA Astrophysics Data System (ADS)

    van Harten, G.; de Boer, J.; Rietjens, J. H. H.; Di Noia, A.; Snik, F.; Volten, H.; Smit, J. M.; Hasekamp, O. P.; Henzing, J. S.; Keller, C. U.

    2014-06-01

    Characterization of atmospheric aerosols is important for understanding their impact on health and climate. A wealth of aerosol parameters can be retrieved from multi-angle, multi-wavelength radiance and polarization measurements of the clear sky. We developed a ground-based SPEX instrument (groundSPEX) for accurate spectropolarimetry, based on the passive, robust, athermal and snapshot spectral polarization modulation technique, and hence ideal for field deployment. It samples the scattering phase function in the principal plane in an automated fashion, using a motorized pan/tilt unit and automatic exposure time detection. Extensive radiometric and polarimetric calibrations were performed, yielding values for both random noise and systematic uncertainties. The absolute polarimetric accuracy at low degrees of polarization is established to be ~ 5 × 10-3. About 70 measurement sequences have been performed throughout four clear-sky days at Cabauw, the Netherlands. Several aerosol parameters were retrieved: aerosol optical thickness, effective radius, and complex refractive index for fine and coarse mode. The results are in good agreement with the co-located AERONET products, with a correlation coefficient of ρ = 0.932 for the total aerosol optical thickness at 550 nm.

  14. Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument

    NASA Astrophysics Data System (ADS)

    van Harten, G.; de Boer, J.; Rietjens, J. H. H.; Di Noia, A.; Snik, F.; Volten, H.; Smit, J. M.; Hasekamp, O. P.; Henzing, J. S.; Keller, C. U.

    2014-12-01

    Characterization of atmospheric aerosols is important for understanding their impact on health and climate. A wealth of aerosol parameters can be retrieved from multi-angle, multi-wavelength radiance and polarization measurements of the clear sky. We developed a ground-based SPEX instrument (groundSPEX) for accurate spectropolarimetry, based on the passive, robust, athermal, and snapshot spectral polarization modulation technique, and is hence ideal for field deployment. It samples the scattering phase function in the principal plane in an automated fashion, using a motorized pan/tilt unit and automatic exposure time detection. Extensive radiometric and polarimetric calibrations were performed, yielding values for both random noise and systematic uncertainties. The absolute polarimetric accuracy at low degrees of polarization is established to be ~5 × 10-3. About 70 measurement sequences have been performed throughout four clear-sky days at Cabauw, the Netherlands. Several aerosol parameters were retrieved: aerosol optical thickness, effective radius, and complex refractive index for fine and coarse mode. The results are in good agreement with the colocated AERONET products, with a correlation coefficient of ρ = 0.932 for the total aerosol optical thickness at 550 nm.

  15. Characterization of Electronic Cigarette Aerosol and Its Induction of Oxidative Stress Response in Oral Keratinocytes

    PubMed Central

    Zhao, Tongke; Shu, Shi; Chang, Chong Hyun; Messadi, Diana; Xia, Tian; Zhu, Yifang; Hu, Shen

    2016-01-01

    In this study, we have generated and characterized Electronic Cigarette (EC) aerosols using a combination of advanced technologies. In the gas phase, the particle number concentration (PNC) of EC aerosols was found to be positively correlated with puff duration whereas the PNC and size distribution may vary with different flavors and nicotine strength. In the liquid phase (water or cell culture media), the size of EC nanoparticles appeared to be significantly larger than those in the gas phase, which might be due to aggregation of nanoparticles in the liquid phase. By using in vitro high-throughput cytotoxicity assays, we have demonstrated that EC aerosols significantly decrease intracellular levels of glutathione in NHOKs in a dose-dependent fashion resulting in cytotoxicity. These findings suggest that EC aerosols cause cytotoxicity to oral epithelial cells in vitro, and the underlying molecular mechanisms may be or at least partially due to oxidative stress induced by toxic substances (e.g., nanoparticles and chemicals) present in EC aerosols. PMID:27223106

  16. Chemical Characterization of the Aerosol During the CLAMS Experiment Using Aircraft and Ground Stations

    NASA Astrophysics Data System (ADS)

    Castanho, A. D.; Martins, J.; Artaxo, P.; Hobbs, P. V.; Remer, L.; Yamasoe, M.; Fattori, A.

    2002-05-01

    During the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) Experiment Nuclepore filters were collected in two ground stations and aboard the University of Wasghington's Convair 580 Reserarch Aircraft. The two ground stations were chosen in strategic positions to characterize the chemical composition, the mass concentration, black carbon (BC) content, and the absorption properties of the aerosol particles at the surface level. One of the stations was located at the Cheasapeake lighthouse (25 km from the coast) and the other one was located at the Wallops Island. Aerosol particles where collected in two stages, fine (d<2.5um) and coarse mode (2.5characterize the elemental composition, mass concentration, BC content, and absorption properties of the aerosol in the atmospheric column in the CLAMS Experiment area. Some of the filters were also submitted to Scanning Electron Microscopy analysis. The particulate matter mass for all the samples were obtained gravimetrically. The concentration of black carbon in the fine filters was optically determined by a broadband reflectance technique. The spectral (from UV to near IR) reflectance in the fine and coarse mode filter were also obtained with a FieldSpec ASD spectrometer. Aerosol elemental characterization (Na through Pb) was obtained by the PIXE (Particle induced X ray emission) analyses of the nuclepore filters. The sources of the aerosol measured at the ground stations were estimated by principal component analyses mainly in the Wallops Island, where a longer time series was collected. One of the main urban components identified in the aerosol during the experiment was sulfate. Black carbon

  17. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery.

    PubMed

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug - cyclosporine A - for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters.

  18. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

    PubMed Central

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375

  19. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent

  20. A numerical testbed for the characterization and optimization of aerosol remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xu, X.; Ding, S.; Zeng, J.; Spurr, R. J.; Liu, X.; Chance, K.; Holben, B. N.; Dubovik, O.; Mishchenko, M. I.

    2013-12-01

    -Sparse kernels to compute the reflectance and the sensitivities to the kernel weighting factors; a linearized BPDF computes the angular polarized reflectance; (4) a linearized ocean surface model integrating the Cox-Munk glitter model with the chlorophyll-dependent water-leaving contribution; (5) a HITRAN-based gas absorption calculation of trace species cross sections (also linearized with respect to temperature and pressure); (6) the Levenberg-Marquardt inverse algorithm for cost-function minimization and optimal derivation of a posteriori solutions. In this presentation, we introduce our testbed and demonstrate applications to several sensor design and algorithm formulation concepts. This includes an evaluation of the use of polarization in the O2 A band for the retrieval of aerosol height information from space, and an assessment of the potential improvement in the characterization of aerosol scattering properties through the addition of more polarization channels to the AERONET sensors.

  1. Physicochemical Characterization of Lake Spray Aerosol Generated from Great Lakes Water Samples

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Axson, J. L.; May, N.; Pratt, K.

    2014-12-01

    Wave breaking across bodies of water releases particles into the air which can impact climate and human health. Similar to sea spray aerosols formed through marine wave breaking, freshwater lakes generate lake spray aerosol (LSA). LSA can impact climate directly through scattering/absorption and indirectly through cloud nucleation. In addition, these LSA are suggested to impact human health through inhalation of these particles during algal bloom periods characterized by toxic cyanobacteria. Few studies have been conducted to assess the physical and chemical properties of freshwater LSA. Herein, we discuss constructing a LSA generation system and preliminary physical and chemical characterization of aerosol generated from water samples collected at various sites across Lake Erie, Lake Huron, Lake Superior, and Lake Michigan. Information on aerosol size distributions, number concentrations, and chemical composition will be discussed as a function of lake water blue-green algae concentration, dissolved organic carbon concentration, temperature, conductivity, and dissolved oxygen concentration. These studies represent a first step towards evaluating the potential for LSA to impact climate and health in the Great Lakes region.

  2. Aromatic organosulfates in atmospheric aerosols: synthesis, characterization, and abundance.

    PubMed

    Staudt, Sean; Kundu, Shuvashish; Lehmler, Hans-Joachim; He, Xianran; Cui, Tianqu; Lin, Ying-Hsuan; Kristensen, Kasper; Glasius, Marianne; Zhang, Xiaolu; Weber, Rodney J; Surratt, Jason D; Stone1, Elizabeth A

    2014-09-01

    Aromatic organosulfates are identified and quantified in fine particulate matter (PM2.5) from Lahore, Pakistan, Godavari, Nepal, and Pasadena, California. To support detection and quantification, authentic standards of phenyl sulfate, benzyl sulfate, 3-and 4-methylphenyl sulfate and 2-, 3-, and 4-methylbenzyl sulfate were synthesized. Authentic standards and aerosol samples were analyzed by ultra-performance liquid chromatography (UPLC) coupled to negative electrospray ionization (ESI) quadrupole time-of-flight (ToF) mass spectrometry. Benzyl sulfate was present in all three locations at concentrations ranging from 4 - 90 pg m(-3). Phenyl sulfate, methylphenyl sulfates and methylbenzyl sulfates were observed intermittently with abundances of 4 pg m(-3), 2-31 pg m(-3), 109 pg m(-3), respectively. Characteristic fragment ions of aromatic organosulfates include the sulfite radical ((•)SO3(-), m/z 80) and the sulfate radical ((•)SO4(-),m/z 96). Instrumental response factors of phenyl and benzyl sulfates varied by a factor of 4.3, indicating that structurally-similar organosulfates may have significantly different instrumental responses and highlighting the need to develop authentic standards for absolute quantitation organosulfates. In an effort to better understand the sources of aromatic organosulfates to the atmosphere, chamber experiments with the precursor toluene were conducted under conditions that form biogenic organosulfates. Aromatic organosulfates were not detected in the chamber samples, suggesting that they form through different pathways, have different precursors (e.g. naphthalene or methylnaphthalene), or are emitted from primary sources.

  3. Aromatic organosulfates in atmospheric aerosols: Synthesis, characterization, and abundance

    NASA Astrophysics Data System (ADS)

    Staudt, Sean; Kundu, Shuvashish; Lehmler, Hans-Joachim; He, Xianran; Cui, Tianqu; Lin, Ying-Hsuan; Kristensen, Kasper; Glasius, Marianne; Zhang, Xiaolu; Weber, Rodney J.; Surratt, Jason D.; Stone, Elizabeth A.

    2014-09-01

    Aromatic organosulfates are identified and quantified in fine particulate matter (PM2.5) from Lahore, Pakistan, Godavari, Nepal, and Pasadena, California. To support detection and quantification, authentic standards of phenyl sulfate, benzyl sulfate, 3- and 4-methylphenyl sulfate and 2-, 3-, and 4-methylbenzyl sulfate were synthesized. Authentic standards and aerosol samples were analyzed by ultra-performance liquid chromatography (UPLC) coupled to negative electrospray ionization (ESI) quadrupole time-of-flight (ToF) mass spectrometry. Benzyl sulfate was present in all three locations at concentrations ranging from 4 to 90 pg m-3. Phenyl sulfate, methylphenyl sulfates and methylbenzyl sulfates were observed intermittently with abundances of 4 pg m-3, 2-31 pg m-3, 109 pg m-3, respectively. Characteristic fragment ions of aromatic organosulfates include the sulfite radical (rad SO3-, m/z 80) and the sulfate radical (rad SO4-, m/z 96). Instrumental response factors of phenyl and benzyl sulfates varied by a factor of 4.3, indicating that structurally-similar organosulfates have significantly different instrumental responses and highlighting the need to develop authentic standards for absolute quantitation organosulfates. In an effort to better understand the sources of aromatic organosulfates to the atmosphere, chamber experiments with the precursor toluene were conducted under conditions that form biogenic organosulfates. Aromatic organosulfates were not detected in the chamber samples, suggesting that they form through different pathways, have different precursors (e.g. naphthalene or methylnaphthalene), or are emitted from primary sources.

  4. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles.

    PubMed

    Lin, Peng; Aiona, Paige K; Li, Ying; Shiraiwa, Manabu; Laskin, Julia; Nizkorodov, Sergey A; Laskin, Alexander

    2016-11-01

    Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly emitted biomass burning organic aerosol (BBOA) samples collected during test burns of sawgrass, peat, ponderosa pine, and black spruce. We demonstrate that both the BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as source-specific markers of BrC. On average, ∼50% of the light absorption in the solvent-extractable fraction of BBOA can be attributed to a limited number of strong BrC chromophores. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of ∼16 h. A "molecular corridor" analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low saturation mass concentration (<1 μg m(-3)) and will be retained in the particle phase under atmospherically relevant conditions.

  5. Optical characterization of continental and biomass-burning aerosols over Bozeman, Montana: A case study of the aerosol direct effect

    NASA Astrophysics Data System (ADS)

    Nehrir, Amin R.; Repasky, Kevin S.; Reagan, John A.; Carlsten, John L.

    2011-11-01

    Atmospheric aerosol optical properties were observed from 21 to 27 September 2009 over Bozeman, Montana, during a transitional period in which background polluted rural continental aerosols and well-aged biomass-burning aerosols were the dominant aerosol types of extremely fresh biomass-burning aerosols resulting from forest fires burning in the northwestern United States and Canada. Aerosol optical properties and relative humidity profiles were retrieved using an eye-safe micropulse water vapor differential absorption lidar (DIAL) (MP-DIAL), a single-channel backscatter lidar, a CIMEL solar radiometer as part of the Aerosol Robotic Network (AERONET), a ground-based integrating nephelometer, and aerosol products from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua. Aerosol optical depths (AODs) measured during the case study ranged between 0.03 and 0.17 (0.015 and 0.075) at 532 nm (830 nm) as episodic combinations of fresh and aged biomass-burning aerosols dominated the optical depth of the pristinely clean background air. Here, a pristinely clean background refers to very low AOD conditions, not that the aerosol scattering and absorption properties are necessarily representative of a clean aerosol type. Diurnal variability in the aerosol extinction to backscatter ratio (Sa) of the background atmosphere derived from the two lidars, which ranged between 55 and 95 sr (50 and 90 sr) at 532 nm (830 nm), showed good agreement with retrievals from AERONET sun and sky measurements over the same time period but were consistently higher than some aerosol models had predicted. Sa measured during the episodic smoke events ranged on average from 60 to 80 sr (50 to 70 sr) at 532 nm (830 nm) while the very fresh biomass-burning aerosols were shown to exhibit significantly lower Sa ranging between 20 and 40 sr. The shortwave direct radiative forcing that was due to the intrusion of biomass-burning aerosols was calculated to be on average -10 W/m2 and was

  6. Physicochemical characterization of Capstone depleted uranium aerosols II: particle size distributions as a function of time.

    PubMed

    Cheng, Yung Sung; Kenoyer, Judson L; Guilmette, Raymond A; Parkhurst, Mary Ann

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing DU from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluate particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using proportional counting, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements were quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 microm and a large size mode between 2 and 15 microm. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 microm shortly after perforation to around 1 microm at the end of the 2-h sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.

  7. Characterization of Marine Aerosol for Assessment of Human Exposure to Brevetoxins

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Irvin, Clinton M.; Pierce, Richard H.; Naar, Jerome; Backer, Lorraine C.; Fleming, Lora E.; Kirkpatrick, Barbara; Baden, Dan G.

    2005-01-01

    Red tides in the Gulf of Mexico are commonly formed by the fish-killing dinoflagellate Karenia brevis, which produces nine potent polyether brevetoxins (PbTxs). Brevetoxins can be transferred from water to air in wind-powered white-capped waves. Inhalation exposure to marine aerosol containing brevetoxins causes respiratory symptoms. We describe detailed characterization of aerosols during an epidemiologic study of occupational exposure to Florida red tide aerosol in terms of its concentration, toxin profile, and particle size distribution. This information is essential in understanding its source, assessing exposure to people, and estimating dose of inhaled aerosols. Environmental sampling confirmed the presence of brevetoxins in water and air during a red tide exposure period (September 2001) and lack of significant toxin levels in the water and air during an unexposed period May 2002). Water samples collected during a red tide bloom in 2001 showed moderate-to-high concentrations of K. brevis cells and PbTxs. The daily mean PbTx concentration in water samples ranged from 8 to 28 μg/L from 7 to 11 September 2001; the daily mean PbTx concentration in air samples ranged from 1.3 to 27 ng/m3. The daily aerosol concentration on the beach can be related to PbTx concentration in water, wind speed, and wind direction. Personal samples confirmed human exposure to red tide aerosols. The particle size distribution showed a mean aerodynamic diameter in the size range of 6–12 μm, with deposits mainly in the upper airways. The deposition pattern correlated with the observed increase of upper airway symptoms in healthy lifeguards during the exposure periods. PMID:15866777

  8. Physicochemical Characterization of Capstone Depleted Uranium Aerosols II: Particle Size Distributions as a Function of Time

    SciTech Connect

    Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.; Parkhurst, MaryAnn

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.

  9. Chemical composition of Titan's aerosols analogues characterized with a systematic pyrolysis-gas chromatography-mass spectrometry characterization

    NASA Astrophysics Data System (ADS)

    Szopa, Cyril; Raulin, Francois; Coll, Patrice; Cabane, Michel; GCMS Team

    2014-05-01

    The in situ chemical characterization of Titan's atmosphere was achieved in 2005 with two instruments present onboard the Huygens atmospheric probe : the Aerosol Collector and Pyrolyzer (ACP) devoted to collect and pyrolyse Titan's aerosols ; the Gas Chromatograph-Mass Spectrometer (GCMS) experiment devoted to analyze gases collected in the atmosphere or coming from the aerosols pyrolysis. The GCMS was developed by Hasso Niemann in the filiation of the quadrupole mass spectrometers he built for several former space missions. The main objectives were to : determine the concentration profile of the most abundant chemical species; seek for minor atmospheric organic species not detected with remote observations ; give a first view of the organic aerosols structure; characterize the condensed volatiles present at the surface (e.g. lakes) in case of survival of the probe to the landing impact. Taking into account for the potential complexity of the gaseous samples to be analyzed, it was decided to couple to the MS analyzer a gas chromatograph capable to separate volatile species from light inorganic molecules and noble gases, to organic compounds including aromatics. This was the first GCMS analyzer that worked in an extraterrestrial environment since the Viking missions on Mars. Even if the GCMS coupling mode did not provide any result of interest, it has been demonstrated to be functional during the Huygens descent. But, the direct MS analysis of the atmosphere, and the pyrolysis-MS analysis of aerosols allowed to make great discoveries which are still of primary importance to describe the Titan's lower atmosphere composition. This contribution aims at presenting this instrument that worked in the Titan's atmosphere, and summarizing the most important discoveries it allowed.

  10. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery

    PubMed Central

    Duan, Jinghua; Vogt, Frederick G; Li, Xiaojian; Hayes, Don; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design and develop respirable antibiotics moxifloxacin (MOXI) hydrochloride and ofloxacin (OFLX) microparticles and nanoparticles, and multifunctional antibiotics particles with or without lung surfactant 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced by advanced spray-drying particle engineering from an organic solution in closed mode (no water) from dilute solution. Scanning electron microscopy indicated that these particles had both optimal particle morphology and surface morphology, and the particle size distributions were suitable for pulmonary delivery. Comprehensive and systematic physicochemical characterization and in vitro aerosol dispersion performance revealed significant differences between these two fluoroquinolone antibiotics following spray drying as drug aerosols and as cospray-dried antibiotic drug: DPPC aerosols. Fourier transform infrared spectroscopy and confocal Raman microspectroscopy were employed to probe composition and interactions in the solid state. Spray-dried MOXI was rendered noncrystalline (amorphous) following organic solution advanced spray drying. This was in contrast to spray-dried OFLX, which retained partial crystallinity, as did OFLX:DPPC powders at certain compositions. Aerosol dispersion performance was conducted using inertial impaction with a dry powder inhaler device approved for human use. The present study demonstrates that the use of DPPC offers improved aerosol delivery of MOXI as cospray-dried microparticulate/nanoparticulate powders, whereas residual partial crystallinity influenced aerosol dispersion of OFLX and most of the compositions of OFLX:DPPC inhalation powders. PMID:24092972

  11. Characterization and Cytotoxic Assessment of Ballistic Aerosol Particulates for Tungsten Alloy Penetrators into Steel Target Plates

    PubMed Central

    Machado, Brenda I.; Murr, Lawrence E.; Suro, Raquel M.; Gaytan, Sara M.; Ramirez, Diana A.; Garza, Kristine M.; Schuster, Brian E.

    2010-01-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified. PMID:20948926

  12. Characterization and cytotoxic assessment of ballistic aerosol particulates for tungsten alloy penetrators into steel target plates.

    PubMed

    Machado, Brenda I; Murr, Lawrence E; Suro, Raquel M; Gaytan, Sara M; Ramirez, Diana A; Garza, Kristine M; Schuster, Brian E

    2010-09-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified.

  13. Size-resolved trace metal characterization of aerosols emitted by four important source types in Switzerland

    NASA Astrophysics Data System (ADS)

    Buerki, Peter R.; Gaelli, Brigitte C.; Nyffeler, Urs P.

    In central Switzerland five types of emission sources are mainly responsible for airborne trace metals: traffic, industrial plants burning heavy oil, resuspension of soil particles, residential heatings and refuse incineration plants. The particulate emissions of each of these source types except refuse incineration were sampled using Berner impactors and the mass and elemental size distributions of Cd, Cu, Mn, Pb, Zn, As and Na determined. Cd, Na and Zn are not characteristic for any of these source types. As and Cu, occurring in the fine particle fractions are characteristic for heavy oil combustion, Mn for soil dust and sometimes for heavy and fuel oil combustion and Pb for traffic aerosols. The mass size distributions of aerosols originating from erosion and abrasion processes show a maximum mass fraction in the coarse particle range larger than about 1 μm aerodynamic equivalent diameters (A.E.D.). Aerosols originating from combustion processes show a second maximum mass fraction in the fine particle range below about 0.5μm A.E.D. Scanning electron microscopy combined with an EDS analyzer was used for the morphological characterization of emission and ambient aerosols.

  14. Optical, physical, and chemical properties of tar balls observed during the Yosemite Aerosol Characterization Study

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; Malm, W. C.; Laskin, A.; Day, D.; Lee, T.; Wang, C.; Carrico, C.; Carrillo, J.; Cowin, J. P.; Collett, J.; Iedema, M. J.

    2005-11-01

    The Yosemite Aerosol Characterization Study of summer 2002 (YACS) occurred during an active fire season in the western United States and provided an opportunity to investigate many unresolved issues related to the radiative effects of biomass burning aerosols. Single particle analysis was performed on field-collected aerosol samples using an array of electron microscopy techniques. Amorphous carbon spheres, or "tar balls," were present in samples collected during episodes of high particle light scattering coefficients that occurred during the peak of a smoke/haze event. The highest concentrations of light-absorbing carbon from a dual-wavelength aethalometer (λ = 370 and 880 nm) occurred during periods when the particles were predominantly tar balls, indicating they do absorb light in the UV and near-IR range of the solar spectrum. Closure experiments of mass concentrations and light scattering coefficients during periods dominated by tar balls did not require any distinct assumptions of organic carbon molecular weight correction factors, density, or refractive index compared to periods dominated by other types of organic carbon aerosols. Measurements of the hygroscopic behavior of tar balls using an environmental SEM indicate that tar balls do not exhibit deliquescence but do uptake some water at high (˜83%) relative humidity. The ability of tar balls to efficiently scatter and absorb light and to absorb water has important implications for their role in regional haze and climate forcing.

  15. Numerical Model to Characterize the Size Increase of Combination Drug and Hygroscopic Excipient Nanoparticle Aerosols.

    PubMed

    Longest, P Worth; Hindle, Michael

    2011-01-01

    Enhanced excipient growth is a newly proposed respiratory delivery strategy in which submicrometer or nanometer particles composed of a drug and hygroscopic excipient are delivered to the airways in order to minimize extrathoracic depositional losses and maximize lung retention. The objective of this study was to develop a validated mathematical model of aerosol size increase for hygroscopic excipients and combination excipient-drug particles and to apply this model to characterize growth under typical respiratory conditions. Compared with in vitro experiments, the droplet growth model accurately predicted the size increase of single component and combination drug and excipient particles. For typical respiratory drug delivery conditions, the model showed that droplet size increase could be effectively correlated with the product of a newly defined hygroscopic parameter and initial volume fractions of the drug and excipient in the particle. A series of growth correlations was then developed that successively included the effects of initial drug and excipient mass loadings, initial aerosol size, and aerosol number concentration. Considering EEG delivery, large diameter growth ratios (2.1-4.6) were observed for a range of hygroscopic excipients combined with both hygroscopic and non-hygroscopic drugs. These diameter growth ratios were achieved at excipient mass loadings of 50% and below and at realistic aerosol number concentrations. The developed correlations were then used for specifying the appropriate initial mass loadings of engineered insulin nanoparticles in order to achieve a predetermined size increase while maximizing drug payload and minimizing the amount of hygroscopic excipient.

  16. Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Mei; Huang, Zhengxu; Gao, Wei; Nian, Huiqing; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2014-09-01

    To investigate the composition and possible sources of aerosol particles in Beijing urban area, a single particle aerosol mass spectrometer (SPAMS) was deployed from April 22 to May 4, 2011. 510,341 particles out of 2,953,200 sized particles were characterized by SPAMS in combination with the ART-2a neural network algorithm. The particles were classified as rich-K (39.79%), carbonaceous species (32.7%), industry metal (19.2%), dust (5.7%), and rich-Na (1.76%). Industrial emissions related particles, rich-Fe, rich-Pb, and K-nitrate, were the major components of aerosol particles during haze periods, which were mainly from the steel plants and metal smelting processes around Beijing. Under stagnant meterological conditions, these regional emissions have a vital effect on haze formation. Organic carbon (OC) particles were attributed to biomass burning. NaK-EC was likely to come from local traffic emissions. Internally mixed organic and elemental carbon (OCEC) was found to be from possible sources of local traffic emission and biomass burning. It was found that coarse dust particles were mainly composed of four different types of dust particles, dust-Si, dust-Ca, dust-Al, and dust-Ti. It is the first time that SPAMS was used to study a dust storm in Beijing. Our results showed that SPAMS could be a powerful tool in the identification and apportionment of aerosol sources in Beijing, providing useful reference information for environmental control and management.

  17. Overview of the Capstone depleted uranium study of aerosols from impact with armored vehicles: test setup and aerosol generation, characterization, and application in assessing dose and risk.

    PubMed

    Parkhurst, Mary Ann; Guilmette, Raymond A

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study was conducted to generate data about DU aerosols generated during the perforation of armored combat vehicles with large-caliber DU penetrators, and to apply the data in assessments of human health risks to personnel exposed to these aerosols, primarily through inhalation, during the 1991 Gulf War or in future military operations. The Capstone study consisted of two components: 1) generating, sampling, and characterizing DU aerosols by firing at and perforating combat vehicles, and 2) applying the source-term quantities and characteristics of the aerosols to the evaluation of doses and risks. This paper reviews the background of the study including the bases for the study, previous reviews of DU particles and health assessments from DU used by the U.S. military, the objectives of the study components, the participants and oversight teams, and the types of exposures it was intended to evaluate. It then discusses exposure scenarios used in the dose and risk assessment and provides an overview of how the field tests and dose and risk assessments were conducted.

  18. Overview of the Capstone Depleted Uranium Study of Aerosols from Impact with Armored Vehicles: Test Setup and Aerosol Generation, Characterization, and Application in Assessing Dose and Risk

    SciTech Connect

    Parkhurst, MaryAnn; Guilmette, Raymond A.

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study was conducted to generate data about DU aerosols generated during the perforation of armored combat vehicles with large-caliber DU penetrators, and to apply the data in assessments of human health risks to personnel exposed to these aerosols, primarily through inhalation, during the 1991 Gulf War or in future military operations. The Capstone study consisted of two components: 1) generating, sampling and characterizing DU aerosols by firing at and perforating combat vehicles and 2) applying the source-term quantities and characteristics of the aerosols to the evaluation of doses and risks. This paper reviews the background of the study including the bases for the study, previous reviews of DU particles and health assessments from DU used by the U.S. military, the objectives of the study components, the participants and oversight teams, and the types of exposures it was intended to evaluate. It then discusses exposure scenarios used in the dose and risk assessment and provides an overview of how the field tests and dose and risk assessments were conducted.

  19. Physical and chemical characterization of marine atmospheric aerosols over the North and South Pacific Oceans using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Furutani, H.; Jung, J.; Miura, K.; Uematsu, M.

    2010-12-01

    Physical and chemical properties of marine atmospheric aerosols were characterized and compared over the North and South Pacific Ocean during two trans-Pacific cruises (from Japan to Chile and Australia to Japan) during the period of January-June 2009, which cover broad region of Pacific Ocean from 40°N to 55°S and 140°E to 70°W. The measured parameters of aerosol properties were single particle size-resolved chemical composition (D = 100 ~ 1500 nm), cloud condensation nuclei (CCN) and condensation nuclei (CN) concentrations, size distribution from 10 nm to 5 μm, total aerosol nitrate and sulfate concentrations, and filter-based chemical composition. Trace gas concentrations of O3 and CO were also measured to aid air parcel categorization during the cruises. Reflecting larger anthropogenic emission in the Northern Hemisphere, pronounced concentration gradient between the North and South Pacific Ocean was observed for aerosol nitrate, CO, and O3. Aerosol sulfate also showed a similar concentration drop in the equatorial region, relatively higher sulfate concentration was observed in 30°S-40°S and 55°S regions, which was associated with increased aerosol methanesulfonic acid (MSA) concentration but little increase in local marine chlorophyll concentration, suggesting contribution of long-range transported marine biogenic sulfur from the high primary production area over the South Pacific high latitude region. Aerosol chemical classification by single particle chemical analysis revealed that certain aerosol types, such as biomass burning, elemental carbon, and elemental/organic carbon mixed type, were mainly observed in the North Pacific region, while several specific organic aerosol types with abundant aged organic and disulfur composition were identified in the South Pacific region. Further comparison of aerosol properties, aerosol sources, and atmospheric aerosol processing in the North and South Pacific Oceans will be discussed.

  20. Toward Developing a New Occupational Exposure Metric Approach for Characterization of Diesel Aerosols

    PubMed Central

    Cauda, Emanuele G.; Ku, Bon Ki; Miller, Arthur L.; Barone, Teresa L.

    2015-01-01

    The extensive use of diesel-powered equipment in mines makes the exposure to diesel aerosols a serious occupational issue. The exposure metric currently used in U.S. underground noncoal mines is based on the measurement of total carbon (TC) and elemental carbon (EC) mass concentration in the air. Recent toxicological evidence suggests that the measurement of mass concentration is not sufficient to correlate ultrafine aerosol exposure with health effects. This urges the evaluation of alternative measurements. In this study, the current exposure metric and two additional metrics, the surface area and the total number concentration, were evaluated by conducting simultaneous measurements of diesel ultrafine aerosols in a laboratory setting. The results showed that the surface area and total number concentration of the particles per unit of mass varied substantially with the engine operating condition. The specific surface area (SSA) and specific number concentration (SNC) normalized with TC varied two and five times, respectively. This implies that miners, whose exposure is measured only as TC, might be exposed to an unknown variable number concentration of diesel particles and commensurate particle surface area. Taken separately, mass, surface area, and number concentration did not completely characterize the aerosols. A comprehensive assessment of diesel aerosol exposure should include all of these elements, but the use of laboratory instruments in underground mines is generally impracticable. The article proposes a new approach to solve this problem. Using SSA and SNC calculated from field-type measurements, the evaluation of additional physical properties can be obtained by using the proposed approach. PMID:26361400

  1. Single-particle characterization of summertime arctic aerosols collected at Ny-Alesund, Svalbard.

    PubMed

    Geng, Hong; Ryu, Jiyeon; Jung, Hae-Jin; Chung, Hyeok; Ahn, Kang-Ho; Ro, Chul-Un

    2010-04-01

    Single-particle characterization of summertime Arctic aerosols is useful to understand the impact of air pollutants on the polar atmosphere. In the present study, a quantitative single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was used to characterize 8100 individual particles overall in 16 sets of aerosol samples collected at Ny-Alesund, Svalbard, Norway on 25-31 July, 2007. Based on their X-ray spectral and secondary electron image data of individual particles, 13 particle types were identified, in which particles of marine origin were the most abundant, followed by carbonaceous and mineral dust particles. A number of aged (reacted) sea salt (and mixture) particles produced by the atmospheric reaction of genuine sea-salts, especially with NO(x) or HNO(3), were significantly encountered in almost all the aerosol samples. They greatly outnumbered genuine sea salt particles, implying that the summertime Arctic atmosphere, generally regarded as a clean background environment, is disturbed by anthropogenic air pollutants. The main sources of airborne NO(x) (or HNO(3)) are probably ship emissions around the Arctic Ocean, industry emission from northern Europe and northwestern Siberia, and renoxification of NO(3)(-) within or on the melting snow/ice surface.

  2. Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry

    SciTech Connect

    Laskin, Alexander; Smith, Jeffrey S.; Laskin, Julia

    2009-05-13

    Although nitrogen-containing organic compounds (NOC) are important components of atmospheric aerosols, little is known about their chemical compositions. Here we present detailed characterization of the NOC constituents of biomass burning aerosol (BBA) samples using high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA can play a significant role in dry and wet deposition of fixed nitrogen in this region.

  3. Aerosol sampling and characterization in the developing US oil-shale industry

    SciTech Connect

    Hargis, K.M.; Tillery, M.I.; Gonzales, M.; Garcia, L.L.

    1981-01-01

    Aerosol sampling and characterization studies of workplace air were conducted at four demonstration-scale oil shale facilities located in northwestern Colorado and northeastern Utah. These facilities consisted of an underground mining/aboveground retorting facility, two modified in situ retorting facilities with associated underground mining, and a true in situ retorting facility. Emphasis was placed on study of the retorting phase of operation at these facilities. Aerosol samples were collected on filter media by high volume air samplers, low volume portable sampling pumps with or without cyclone pre-separators, and cascade impactors. Samples were analyzed to determine total and respirable dust concentrations, particle size distributions, free silica content, total benzene or cyclohexane extractables, and selected polynuclear aromatic hydrocarbons. Total and respirable dust were observed to range from very low to very high concentrations, with significant free silica content. Measurable levels of polynuclear aromatic hydrocarbons were also observed at each of the facilities.

  4. Aerosol characterization over Sundarban mangrove forest at the north-east coast of Bay of Bengal, India

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Das, Sanat Kumar; Sarkar, Chirantan; Ghosh, Sanjay; Raha, Sibaji; Singh, Soumendra; Roy, Arindam

    2016-07-01

    A comprehensive study was conducted on chemical characterization of size segregated and cumulative aerosols during winter, 2015 and summer 2016 over a remote mangrove forest at Sundarban at the north-east coast of Bay of Bengal. Aerosols originated from the surf zone at the land-ocean boundary of Sundarban mangrove forest and aerosols advected from Kolkata and other metropolitan and urban cities at Indo-Gangetic Plain were characterized in terms of major water soluble inorganic species. Attempt was made to investigate the combined effect of locally generated sea-salt and advected anthropogenic aerosols could change the pristine marine character at this region during the above mentioned periods. Significant chloride depletion from sea-salt aerosols was observed in coarse and ultrafine mode compared to fine mode in winter whereas reverse trend was observed during summer. On an average the chloride to sodium ratio in PM10 aerosol was found to be around 0.6 which was much lower than that in sea-water. It was observed that non-sea-sulphate and nitrate aerosols were the major species depleting chloride from sea-salt aerosols. This supported the interaction between fresh marine and polluted anthropogenic aerosols. The average concentration of PM10 aerosols was 64 μg m-3 in winter and 89 μg m-3 in summer. Major water soluble ionic species were used for the source apportionment of aerosol during the two seasons. On an average it was observed that 60-70 % of total PM10 aerosols were constituted by the major water soluble ionic species. Emission flux and deposition flux of aerosols were also studied over this remote forest region. It was also observed that anthropogenic ionic species were mostly accumulated in the ultrafine and fine mode region both during winter and summer. On the other hand sea-salt species were mostly accumulated in the coarse mode region. Sulphate aerosol showed bimodal distribution with prominent peaks both at ultrafine/fine and coarse mode region

  5. Enhancement of aerosol characterization using synergy of lidar and sun - photometer coincident observations: the GARRLiC algorithm

    NASA Astrophysics Data System (ADS)

    Lopatin, A.; Dubovik, O.; Chaikovsky, A.; Goloub, Ph.; Lapyonok, T.; Tanré, D.; Litvinov, P.

    2013-03-01

    Currently most of experiments pursuing comprehensive characterization of atmosphere include coordinated observations by both lidar and radiometers in order to obtain important complimentary information about aerosol properties. The passive observations by radiometers from ground are mostly sensitive to the properties of aerosol in total atmospheric column and have very limited sensitivity to vertical structure of the atmosphere. Such observations are commonly used for measuring aerosol optical thickness and deriving the information about aerosol microphysics including aerosol particles shape, size distribution, and complex refractive index. In a contrast, lidar observations of atmospheric responses from different altitudes to laser pulses emitted from ground are designed to provide accurate profiling of the atmospheric properties. The interpretation of the lidar observation generally relies on some assumptions about aerosol type and loading. Here we present the GARRLiC algorithm (Generalized Aerosol Retrieval from Radiometer and Lidar Combined data) that simultaneously inverts co-incident lidar and radiometer observations and derives a united set of aerosol parameters. Such synergetic retrieval is expected to result in additional enhancements in derived aerosol properties because the backscattering observations by lidar add some sensitivity to the columnar properties of aerosol, while radiometric observations provide sufficient constraints on aerosol type and loading that generally are missing in lidar signals. GARRLiC is based on AERONET algorithm for inverting combined observations by radiometer and multi-wavelength elastic lidar observations. It is expected that spectral changes of backscattering signal obtained by multi-wavelength lidar at different altitudes provide some sensitivity to the vertical variability of aerosol particle sizes. In order to benefit from this sensitivity the algorithm is set to derive not only the vertical profile of total aerosol

  6. Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols.

    PubMed

    Park, Chun-Woong; Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Zwischenberger, Joseph B; Park, Eun-Seok; Mansour, Heidi M

    2013-10-15

    Respirable microparticles/nanoparticles of the antibiotics vancomycin (VCM) and clarithromycin (CLM) were successfully designed and developed by novel organic solution advanced spray drying from methanol solution. Formulation optimization was achieved through statistical experimental design of pump feeding rates of 25% (Low P), 50% (Medium P) and 75% (High P). Systematic and comprehensive physicochemical characterization and imaging were carried out using scanning electron microscopy (SEM), hot-stage microscopy (HSM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Karl Fischer titration (KFT), laser size diffraction (LSD), gravimetric vapor sorption (GVS), confocal Raman microscopy (CRM) and spectroscopy for chemical imaging mapping. These novel spray-dried (SD) microparticulate/nanoparticulate dry powders displayed excellent aerosol dispersion performance as dry powder inhalers (DPIs) with high values in emitted dose (ED), respirable fraction (RF), and fine particle fraction (FPF). VCM DPIs displayed better aerosol dispersion performance compared to CLM DPIs which was related to differences in the physicochemical and particle properties of VCM and CLM. In addition, organic solution advanced co-spray drying particle engineering design was employed to successfully produce co-spray-dried (co-SD) multifunctional microparticulate/nanoparticulate aerosol powder formulations of VCM and CLM with the essential lung surfactant phospholipid, dipalmitoylphosphatidylcholine (DPPC), for controlled release pulmonary nanomedicine delivery as inhalable dry powder aerosols. Formulation optimization was achieved through statistical experimental design of molar ratios of co-SD VCM:DPPC and co-SD CLM:DPPC. XRPD and DSC confirmed that the phospholipid bilayer structure in the solid-state was preserved following spray drying. Co-SD VCM:DPPC and co-SD CLM:DPPC dry powder aerosols demonstrated controlled release of antibiotic drug that was fitted to various

  7. Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Nicolae, Doina; Böckmann, Christine; Vasilescu, Jeni; Binietoglou, Ioannis; Labzovskii, Lev; Toanca, Florica; Papayannis, Alexandros

    2015-10-01

    In this work we extract the microphysical properties of aerosols for a collection of measurement cases with low volume depolarization ratio originating from fire sources captured by the Raman lidar located at the National Institute of Optoelectronics (INOE) in Bucharest. Our algorithm was tested not only for pure smoke but also for mixed smoke and urban aerosols of variable age and growth. Applying a sensitivity analysis on initial parameter settings of our retrieval code was proved vital for producing semi-automatized retrievals with a hybrid regularization method developed at the Institute of Mathematics of Potsdam University. A direct quantitative comparison of the retrieved microphysical properties with measurements from a Compact Time of Flight Aerosol Mass Spectrometer (CToF-AMS) is used to validate our algorithm. Microphysical retrievals performed with sun photometer data are also used to explore our results. Focusing on the fine mode we observed remarkable similarities between the retrieved size distribution and the one measured by the AMS. More complicated atmospheric structures and the factor of absorption appear to depend more on particle radius being subject to variation. A good correlation was found between the aerosol effective radius and particle age, using the ratio of lidar ratios (LR: aerosol extinction to backscatter ratios) as an indicator for the latter. Finally, the dependence on relative humidity of aerosol effective radii measured on the ground and within the layers aloft show similar patterns.

  8. Collection and characterization of aerosols from metal cutting techniques typically used in decommissioning nuclear facilities.

    PubMed

    Newton, G J; Hoover, M D; Barr, E B; Wong, B A; Ritter, P D

    1987-11-01

    This study was designed to collect and characterize aerosols released during metal cutting activities typically used in decommissioning radioactively contaminated facilities. Such information can guide in the selection of appropriate control technologies for these airborne materials. Mechanical cutting tools evaluated included a multi-wheel pipe cutter, reciprocating saw, band saw, chop saw, and large and small grinding wheels. Melting-vaporization cutting techniques included an oxy-acetylene torch, electric arc cut rod and plasma torch. With the exception of the multi-wheel pipe cutter, all devices created aerosols in the respirable size range (less than 10 micron aerodynamic diameter). Time required to cut 2-in. (5-cm) Schedule 40, Type 304L, stainless steel ranged from about 0.6 min for the plasma torch to about 3.0 min for the reciprocating saw. Aerosol production rate ranged from less than 10 mg/min for the reciprocating saw to more than 3000 mg/min for the electric arc cut rod. Particles from mechanical tools were irregular in shape, whereas particles from vaporization tools were spheres and ultrafine branched-chain aggregates.

  9. Experiment to Characterize Aircraft Volatile Aerosol and Trace-Species Emissions (EXCAVATE)

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Branham, H.-S.; Hudgins, C. H.; Plant, J. V.; Ballenthin, J. O.; Miller, T. M.; Viggiano, A. A.; Blake, D. R.; Boudries, H.; Canagaratna, M.

    2005-01-01

    The Experiment to Characterize Aircraft Volatile and Trace Species Emissions (EXCAVATE) was conducted at Langley Research Center (LaRC) in January 2002 and focused upon assaying the production of aerosols and aerosol precursors by a modern commercial aircraft, the Langley B757, during ground-based operation. Remaining uncertainty in the postcombustion fate of jet fuel sulfur contaminants, the need for data to test new theories of particle formation and growth within engine exhaust plumes, and the need for observations to develop air quality models for predicting pollution levels in airport terminal areas were the primary factors motivating the experiment. NASA's Atmospheric Effects of Aviation Project (AEAP) and the Ultra Effect Engine Technology (UEET) Program sponsored the experiment which had the specific objectives of determining ion densities; the fraction of fuel S converted from S(IV) to S(VI); the concentration and speciation of volatile aerosols and black carbon; and gas-phase concentrations of long-chain hydrocarbon and PAH species, all as functions of engine power, fuel composition, and plume age.

  10. Lidar observations and characterization of biomass burning aerosols over Sofia: Long-range transport of forest wildfire smoke

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Dreischuh, Tanja N.; Toncheva, Eleonora N.; Stoyanov, Dimitar V.

    2013-03-01

    Results of remote measurements and characterization of biomass burning aerosols observed in the low troposphere over Sofia, Bulgaria, are presented and discussed. Measurements are accomplished by using two-wavelength elastic-scatter lidar, operating at 1064 nm and 532 nm. The aerosols are identified as to be consisted mainly of aged smoke of wildfires raging in the USA in the last third of July 2012. The long-range transport of the smoke aerosols, taking place from 24 July to 6 August 2012, is determined to be driven by the Northern hemisphere Polar jet stream. Spatial distribution of the observed aerosols is displayed by retrieving averaged vertical profiles of the aerosol backscatter coefficients. The temporal evolution of the aerosol layers during the period of measurement is shown by height-time coordinate colormaps of range-corrected lidar data. In order to characterize qualitatively the size range of the aerosol particles, the vertical profile of the backscatter-related Ångström exponent (BAE) is also retrieved. As an accent of the work, distributions of BAE corresponding to distinguished aerosol layers, as well as the overall one, are obtained and analyzed, representing qualitative counterparts of the real particle size distributions. In the case of the fire smoke layer, BAE values vary in the range 1.0-1.3, indicating processes of considerable aggregation of the finest particle size mods during the aging period. The reliability of the results and conclusions concerning the fire smoke BAE distributions and their evolution are indirectly validated by the obtained typical distribution ranges of the observed urban- and water aerosols.

  11. Characterization of amphotericin B aerosols for inhalation treatment of pulmonary aspergillosis.

    PubMed

    Roth, C; Gebhart, J; Just-Nübling, G; von Eisenhart-Rothe, B; Beinhauer-Reeb, I

    1996-01-01

    In recent years, the incidence of invasive pulmonary aspergillosis has increased in patients receiving immunosuppressive therapy and/or organ transplantation. For prophylaxis against Aspergillus infections, amphotericin B may be a useful drug when inhaled as aerosol. In this study, the aerosolization of amphotericin B was investigated using eight different medical nebulizers under various operating conditions and with different amphotericin B concentrations in the solution. The output of each nebulizer was characterized by the mass flow of spray (drug) leaving the mouthpiece and by the size distribution of the droplets. An effective prevention of pulmonary aspergillosis via amphotericin B inhalation requires a high pulmonary deposition of the drug within an acceptable time of administration associated with a low deposition in the oropharyngeal region. To evaluate the dosages of drug delivered by various types of nebulizers to different regions of the respiratory tract, a semi-empirical deposition model was applied which is based on experimental aerosol deposition data from over 20 normal adults. The main results of the study are: Solutions with amphotericin B concentrations up to 10 mg/ml can be converted into sprays by means of medical nebulizers without any problems. For most nebulizers, the slight foaming of the amphotericin B solution has no effect on the production of the aerosol. To optimize amphotericin B treatment of the lungs via inhalation, sprays with mass flows above 100 mg/min and with mass median aerodynamic diameters (MMAD) below 3 microns should be slowly inhaled by the subject. Applying these criteria to the nebulizers investigated, three out of eight devices have proved suitable for amphotericin B treatment via inhalation.

  12. Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol

    NASA Astrophysics Data System (ADS)

    Aller, Josephine Y.; Radway, JoAnn C.; Kilthau, Wendy P.; Bothe, Dylan W.; Wilson, Theodore W.; Vaillancourt, Robert D.; Quinn, Patricia K.; Coffman, Derek J.; Murray, Benjamin J.; Knopf, Daniel A.

    2017-04-01

    Dissolved organic polymers released by phytoplankton and bacteria abiologically self-assemble in surface ocean waters into nano-to micro-sized gels containing polysaccharides, proteins, lipids and other components. These gels concentrate in the sea surface microlayer (SML), where they can potentially contribute to sea spray aerosol (SSA). Sea spray is a major source of atmospheric aerosol mass over much of the earth's surface, and knowledge of its properties (including the amount and nature of the organic content), size distributions and fluxes are fundamental for determining its role in atmospheric chemistry and climate. Using a cascade impactor, we collected size-fractionated aerosol particles from ambient air and from freshly generated Sea Sweep SSA in the western North Atlantic Ocean together with biological and chemical characterization of subsurface and SML waters. Spectrophotometric methods were applied to quantify the polysaccharide-containing transparent exopolymer (TEP) and protein-containing Coomassie stainable material (CSM) in these particles and waters. This study demonstrates that both TEP and CSM in surface ocean waters are aerosolized with sea spray with the greatest total TEP associated with particles <180 nm in diameter and >5 000 nm. The higher concentrations of TEP and CSM in particles >5 000 nm most likely reflects collection of microorganism cells and/or fragments. The greater concentration of CSM in larger size particles may also reflect greater stability of proteinaceous gels compared to polysaccharide-rich gels in surface waters and the SML. Both TEP and CSM were measured in the ambient marine air sample with concentrations of 2.1 ± 0.16 μg xanthan gum equivalents (XG eq.) m-3 and 14 ± 1.0 μg bovine serum albumin equivalents (BSA eq.) m-3. TEP in Sea Sweep SSA averaged 4.7 ± 3.1 μg XG eq. m-3 and CSM 8.6 ± 7.3 μg BSA eq. m-3. This work shows the transport of marine biogenic material across the air-sea interface through primary

  13. Three Compact, Robust Chemical Characterization Systems Suited To Sensitive, High Time Resolution Measurements Of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Barrie, L. A.; Cowin, J. P.; Worsnop, D. R.

    2001-12-01

    In the past decade, the advancement of compact, robust and sensitive instrumentation to measure the chemical characteristics of atmospheric aerosols has lagged behind their physical characterization. There is a need for chemical instrumentation with these three qualities for use on airborne platforms and at infrequently attended ground level surveillance sites. Now chemical techniques are appearing that promise to fill this need. We discuss three chemical characterization systems that are emerging in atmospheric chemistry and climate research applications. These are: (i) the Aerodyne mass spectrometer for real time measurement of particle composition and two post-collection analysis techniques (ii) non-destructive, multi-elemental chemical analysis of size-resolved samples by high spatial resolution synchrotron x-ray and proton beams (S-XRF/PIXE/PESA/STIM) (iii) single particle characterization by automated scanning electron microscopy with energy-dispersed detection of X-rays (SEM/EDX). The key to post-collection analysis is automated aerosol sizing and collection systems and automated chemical analysis systems. Together these techniques provide unique, comprehensive information on the organic and inorganic composition and morphology of particles and yet are easy to deploy in the field. The sensitivity of each technique is high enough to permit the rapid sampling needed to resolve spatial gradients in composition from a moving platform like the Battelle Gulfstream-159 aircraft, traveling at 100m/s.

  14. A Multi-Year Aerosol Characterization for the Greater Tehran Area Using Satellite, Surface, and Modeling Data

    PubMed Central

    Crosbie, Ewan; Sorooshian, Armin; Monfared, Negar Abolhassani; Shingler, Taylor; Esmaili, Omid

    2014-01-01

    This study reports a multi-year (2000–2009) aerosol characterization for metropolitan Tehran and surrounding areas using multiple datasets (Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), Total Ozone Mapping Spectrometer (TOMS), Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART), and surface and upper air data from local stations). Monthly trends in aerosol characteristics are examined in the context of the local meteorology, regional and local emission sources, and air mass back-trajectory data. Dust strongly affects the region during the late spring and summer months (May–August) when aerosol optical depth (AOD) is at its peak and precipitation accumulation is at a minimum. In addition, the peak AOD that occurs in July is further enhanced by a substantial number of seasonal wildfires in upwind regions. Conversely, AOD is at a minimum during winter; however, reduced mixing heights and a stagnant lower atmosphere trap local aerosol emissions near the surface and lead to significant reductions in visibility within Tehran. The unique meteorology and topographic setting makes wintertime visibility and surface aerosol concentrations particularly sensitive to local anthropogenic sources and is evident in the noteworthy improvement in visibility observed on weekends. Scavenging of aerosol due to precipitation is evident during the winter when aconsistent increase in surface visibility and concurrent decrease in AOD is observed in the days after rain compared with the days immediately before rain. PMID:25083295

  15. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube.

    PubMed

    Nájera, Juan J; Fochesatto, Javier G; Last, Deborah J; Percival, Carl J; Horn, Andrew B

    2008-12-01

    A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0+/-0.3) ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1 mum for size diameter and (0.8-4.9)x10(6) particles/cm(3) for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as d(p)=0.9 mum and N=5x10(3) particles/cm(3) with sigma=1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the

  16. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube

    NASA Astrophysics Data System (ADS)

    Nájera, Juan J.; Fochesatto, Javier G.; Last, Deborah J.; Percival, Carl J.; Horn, Andrew B.

    2008-12-01

    A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0±0.3) ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1 μm for size diameter and (0.8-4.9)×106 particles/cm3 for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as dp=0.9 μm and N =5×103 particles/cm3 with σ =1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the flow tube

  17. Long-term Chemical Characterization of Submicron Aerosol Particles in the Amazon Forest - ATTO Station

    NASA Astrophysics Data System (ADS)

    Carbone, S.; Brito, J.; Rizzo, L. V.; Holanda, B. A.; Cirino, G. G.; Saturno, J.; Krüger, M. L.; Pöhlker, C.; Ng, N. L.; Xu, L.; Andreae, M. O.; Artaxo, P.

    2015-12-01

    The study of the chemical composition of aerosol particles in the Amazon forest represents a step forward to understand the strong coupling between the atmosphere and the forest. For this reason submicron aerosol particles were investigated in the Amazon forest, where biogenic and anthropogenic aerosol particles coexist at the different seasons (wet/dry). The measurements were performed at the ATTO station, which is located about 150 km northeast of Manaus. At ATTO station the Aerosol chemical speciation monitor (ACSM, Aerodyne) and the Multiangle absorption photometer (MAAP, Thermo 5012) have been operated continuously from March 2014 to July 2015. In this study, long-term measurements (near-real-time, ~30 minutes) of PM1 chemical composition were investigated for the first time in this environment.The wet season presented lower concentrations than the dry season (~5 times). In terms of chemical composition, both seasons were dominated by organics (75 and 63%) followed by sulfate (11 and 13%). Nitrate presented different ratio values between the mass-to-charges 30 to 46 (main nitrate fragments) suggesting the presence of nitrate as inorganic and organic nitrate during both seasons. The results indicated that about 75% of the nitrate signal was from organic nitrate during the dry season. In addition, several episodes with elevated amount of chloride, likely in the form of sea-salt from the Atlantic Ocean, were observed during the wet season. During those episodes, chloride comprised up to 7% of the PM1. During the dry season, chloride was also observed; however, with different volatility, which suggested that Chloride was present in different form and source. Moreover, the constant presence of sulfate and BC during the wet season might be related to biomass burning emissions from Africa. BC concentration was 2.5 times higher during the dry season. Further characterization of the organic fraction was accomplished with the positive matrix factorization (PMF), which

  18. Physicochemical Characterization of Coarse Lake Spray Aerosol Particle from Lake Michigan

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Axson, J. L.; May, N.; Pratt, K.; Colon-Bernal, I. D.

    2015-12-01

    Wave breaking across bodies of water releases coarse particles into the air which can impact climate and human health. Freshwater lakes, such as the Great Lakes, can generate lake spray aerosols (LSA), similarly to how sea spray is generated, during periods of high winds and wave action. This LSA has the potential to impact climate through direct and indirect effects (ie. scattering/absorption and cloud nucleation) and are suggested to impact human health via inhalation of these particles during algal bloom periods characterized by toxic cyanobacteria. Very few studies have been conducted to assess the physicochemical properties of freshwater LSA. Prior work in our lab included the construction and characterization of a laboratory based LSA generator. In this work, we examine laboratory generated aerosol particles from laboratory based freshwater standards, freshwater samples collected from Lake Michigan, and ambient particles collected during a wave event on the shores of Lake Michigan in the summer of 2015. Particle size distributions, number concentrations, and chemical composition are presented and discussed as a function of laboratory generated and ambient collected LSA. Results indicate that there are characteristic particles that represent LSA. This study represents the next step towards evaluating and understanding the potential for coarse LSA to impact climate and health in the Great Lakes region.

  19. X-ray methods for the chemical characterization of atmospheric aerosols

    SciTech Connect

    Jaklevic, J.M.; Thompson, A.C.

    1981-05-01

    The development and use of several x-ray methods for the chemical characterization of atmospherical aerosol particulate samples are described. These methods are based on the emission, absorption, and scattering of x-ray photons with emphasis on the optimization for the non-destructive analysis of dilute specimens. Techniques discussed include photon induced energy dispersive x-ray fluorescence, extended x-ray absorption fine structure spectroscopy using synchrotron radiation and high-rate x-ray powder diffractometry using a position-sensitive gas proportional counter. These x-ray analysis methods were applied to the measurement of the chemical compositions of size-segregated aerosol particulate samples obtained with dichotomous samplers. The advantages of the various methods for use in such measurements are described and results are presented. In many cases, the complementary nature of the analytical information obtained from the various measurements is an important factor in the characterization of the sample. For example, the multiple elemental analyses obtained from x-ray fluorescence can be used as a cross check on the major compounds observed by powder diffraction.

  20. Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong

    NASA Astrophysics Data System (ADS)

    Li, Yunchun

    Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they can be emitted from a variety of sources as well as formed from photochemical reactions of numerous precursors. This thesis work aims to improve the characterization of polar organic compounds and source apportionment analysis of fine organic carbon (OC) in Hong Kong, which consists of two parts: (1) An improved analytical method to determine monocarboxylic acids, dicarboxylic acids, ketocarboxylic acids, and dicarbonyls collected on filter substrates has been established. These oxygenated compounds were determined as their butyl ester or butyl acetal derivatives using gas chromatography-mass spectrometry. The new method made improvements over the original Kawamura method by eliminating the water extraction and evaporation steps. Aerosol materials were directly mixed with the BF 3/BuOH derivatization agent and the extracting solvent hexane. This modification improves recoveries for both the more volatile and the less water-soluble compounds. This improved method was applied to study the abundances and sources of these oxygenated compounds in PM2.5 aerosol samples collected in Hong Kong under different synoptic conditions during 2003-2005. These compounds account for on average 5.2% of OC (range: 1.4%-13.6%) on a carbon basis. Oxalic acid was the most abundant species. Six C2 and C3 oxygenated compounds, namely oxalic, malonic, glyoxylic, pyruvic acids, glyoxal, and methylglyoxal, dominated this suite of oxygenated compounds. More efforts are therefore suggested to focus on these small compounds in understanding the role of oxygenated

  1. Characterization of particulate products for aging of ethylbenzene secondary organic aerosol in the presence of ammonium sulfate seed aerosol.

    PubMed

    Huang, Mingqiang; Zhang, Jiahui; Cai, Shunyou; Liao, Yingmin; Zhao, Weixiong; Hu, Changjin; Gu, Xuejun; Fang, Li; Zhang, Weijun

    2016-09-01

    Aging of secondary organic aerosol (SOA) particles formed from OH- initiated oxidation of ethylbenzene in the presence of high mass (100-300μg/m(3)) concentrations of (NH4)2SO4 seed aerosol was investigated in a home-made smog chamber in this study. The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with a Fuzzy C-Means (FCM) clustering algorithm. Experimental results showed that nitrophenol, ethyl-nitrophenol, 2,4-dinitrophenol, methyl glyoxylic acid, 5-ethyl-6-oxo-2,4-hexadienoic acid, 2-ethyl-2,4-hexadiendioic acid, 2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid, 1H-imidazole, hydrated N-glyoxal substituted 1H-imidazole, hydrated glyoxal dimer substituted imidazole, 1H-imidazole-2-carbaldehyde, N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight (HMW) components were the predominant products in the aged particles. Compared to the previous aromatic SOA aging studies, imidazole compounds, which can absorb solar radiation effectively, were newly detected in aged ethylbenzene SOA in the presence of high concentrations of (NH4)2SO4 seed aerosol. These findings provide new information for discussing aromatic SOA aging mechanisms.

  2. Chemical Characterization of Secondary Organic Aerosol Formed from Atmospheric Aqueous-phase Reactions of Phenolic Compounds

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Anastasio, C.; Zhang, Q.

    2012-12-01

    Phenolic compounds, which are released in significant amounts from biomass burning, may undergo fast aqueous-phase reactions to form secondary organic aerosol (SOA) in the atmosphere. Understanding the aqueous-phase reaction mechanisms of these compounds and the composition of their reaction products is thus important for constraining SOA sources and predicting organic aerosol properties in models. In this study, we investigate the aqueous-phase reactions of three phenols (phenol, guaiacol and syringol) with two oxidants - excited triplet states (3C*) of non-phenolic aromatic carbonyls and hydroxyl radical (OH). By employing four analytical methods including high-resolution aerosol mass spectrometry, total organic carbon analysis, ion chromatography, and liquid chromatography-mass spectrometry, we thoroughly characterize the chemical compositions of the low volatility reaction products of phenols and propose formation mechanisms based on this information. Our results indicate that phenolic SOA is highly oxygenated, with O/C ratios in the range of 0.83-1.03, and that the SOA of phenol is usually more oxidized than those of guaiacol and syringol. Among the three precursors, syringol generates the largest fraction of higher molecular weight (MW) products. For the same precursor, the SOA formed via reaction with 3C* is less oxidized than that formed via reaction with OH. In addition, oxidation by 3C* enhances the formation of higher MW species, including phenolic dimers, higher oligomers and hydroxylated products, compared to reactions initiated by OH, which appear to favor the formation of organic acids. However, our results indicate that the yields of small organic acids (e.g., formate, acetate, oxalate, and malate) are low for both reaction pathways, together accounting for less than 5% of total SOA mass.

  3. Enabling the identification, quantification, and characterization of organics in complex mixtures to understand atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Isaacman, Gabriel Avram

    Particles in the atmosphere are known to have negative health effects and important but highly uncertain impacts on global and regional climate. A majority of this particulate matter is formed through atmospheric oxidation of naturally and anthropogenically emitted gases to yield highly oxygenated secondary organic aerosol (SOA), an amalgamation of thousands of individual chemical compounds. However, comprehensive analysis of SOA composition has been stymied by its complexity and lack of available measurement techniques. In this work, novel instrumentation, analysis methods, and conceptual frameworks are introduced for chemically characterizing atmospherically relevant mixtures and ambient aerosols, providing a fundamentally new level of detailed knowledge on their structures, chemical properties, and identification of their components. This chemical information is used to gain insights into the formation, transformation and oxidation of organic aerosols. Biogenic and anthropogenic mixtures are observed in this work to yield incredible complexity upon oxidation, producing over 100 separable compounds from a single precursor. As a first step toward unraveling this complexity, a method was developed for measuring the polarity and volatility of individual compounds in a complex mixture using two-dimensional gas chromatography, which is demonstrated in Chapter 2 for describing the oxidation of SOA formed from a biogenic compound (longifolene: C15H24). Several major products and tens of substantial minor products were produced, but none could be identified by traditional methods or have ever been isolated and studied in the laboratory. A major realization of this work was that soft ionization mass spectrometry could be used to identify the molecular mass and formula of these unidentified compounds, a major step toward a comprehensive description of complex mixtures. This was achieved by coupling gas chromatography to high resolution time-of-flight mass spectrometry with

  4. Method for characterization of low molecular weight organic acids in atmospheric aerosols using ion chromatography mass spectrometry.

    PubMed

    Brent, Lacey C; Reiner, Jessica L; Dickerson, Russell R; Sander, Lane C

    2014-08-05

    The structural composition of PM2.5 monitored in the atmosphere is usually divided by the analysis of organic carbon, black (also called elemental) carbon, and inorganic salts. The characterization of the chemical composition of aerosols represents a significant challenge to analysts, and studies are frequently limited to determination of aerosol bulk properties. To better understand the potential health effects and combined interactions of components in aerosols, a variety of measurement techniques for individual analytes in PM2.5 need to be implemented. The method developed here for the measurement of organic acids achieves class separation of aliphatic monoacids, aliphatic diacids, aromatic acids, and polyacids. The selective ion monitoring capability of a triple quadropole mass analyzer was frequently capable of overcoming instances of incomplete separations. Standard Reference Material (SRM) 1649b Urban Dust was characterized; 34 organic acids were qualitatively identified, and 6 organic acids were quantified.

  5. Morphological characterization of soot aerosol particles during LACIS Experiment in November (LExNo)

    NASA Astrophysics Data System (ADS)

    Kiselev, A.; Wennrich, C.; Stratmann, F.; Wex, H.; Henning, S.; Mentel, T. F.; Kiendler-Scharr, A.; Schneider, J.; Walter, S.; Lieberwirth, I.

    2010-06-01

    Combined mobility and aerodynamic measurements were used to characterize the morphology of soot particles in an experimental campaign on the hygroscopic growth and activation of an artificial biomass burning aerosol. A custom-made, single-stage low-pressure impactor and two aerosol mass spectrometers (AMS) operating in the free molecular regime were used to measure the vacuum aerodynamic diameter of mobility-selected artificial soot particles that were produced in a spark discharge generator and then modified by condensation of ammonium hydrogen sulfate or levoglucosan as a coating to change their hydroscopic activity. Transmission electron microscope images revealed a relationship between the electrical mobility diameter and the diameter of the enveloping sphere, thus enabling evaluation of the effective density of soot agglomerates. A fractal description of the morphology of the soot aggregates allowed for evaluation of the average mass of the hygroscopic material per particle. The average mass of the hygroscopic material per particle was also measured directly with the two AMS instruments, and the agreement between the two methods was found satisfactory. This tandem approach allows detection of small changes in the particle effective density and morphology caused by condensation of organic material.

  6. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: chemical characterization of the products

    NASA Astrophysics Data System (ADS)

    Grgić, Irena; Kitanovski, Zoran; Kroflič, Ana; Čusak, Alen

    2014-05-01

    One of the largest primary sources of organic aerosol in the atmosphere is biomass burning (BB) (Laskin et al. 2009); in Europe its contribution to annual mean of PM10 is between 3 and 14 % (Maenhaut et al. 2012). During the process of wood burning many different products are formed via thermal degradation of wood lignin. Hardwood burning produces mainly syringol (2,6-dimetoxyphenol) derivatives, while softwood burning exclusively guaiacol (2-methoxyphenol) and its derivatives. Taking into account physical properties of methoxyphenols only, their concentrations in atmospheric waters might be underestimated. So, their aqueous phase reactions can be an additional source of SOA, especially in regions under significant influence of wood combustion. An important class of compounds formed during physical and chemical aging of the primary BBA in the atmosphere is nitrocatechols, known as strong absorbers of UV and Vis light (Claeys et al. 2012). Very recently, methyl-nitrocatechols were proposed as suitable markers for highly oxidized secondary BBA (Iinuma et al. 2010, Kitanovski et al. 2012). In the present work, the formation of SOA through aqueous phase photooxidation and nitration of guaiacol was examined. The key objective was to chemically characterize the main low-volatility products and further to check their possible presence in the urban atmospheric aerosols. The aqueous phase reactions were performed in a thermostated reactor under simulated sunlight in the presence of H2O2 and nitrite. Guaiacol reaction products were first concentrated by solid-phase extraction (SPE) and then subjected to semi-preparative liquid chromatography.The main product compounds were fractionated and isolated as pure solids and their structure was further elucidated by using nuclear magnetic resonance spectroscopy (1H, 13C and 2D NMR) and direct infusion negative ion electro-spray ionization tandem mass spectrometry (( )ESI-MS/MS). The main photonitration products of guaiacol (4

  7. Development and application of new instrumental techniques for real-time characterization of aerosol volatility and morphology

    NASA Astrophysics Data System (ADS)

    Huffman, John Alexander

    Aerosols represent the area of largest uncertainty in the radiative forcing of climate and contribute significantly to negative effects on human health and visibility. To better understand the balance between natural and anthropogenic aerosol emissions, and thus the systemic perturbations caused by human activity, advanced instrumentation is needed to measure ambient aerosol properties. This thesis presents the development of novel aerosol measurement instrumentation and resulting observations of aerosol morphology and volatility. A particle beam width probe (BWP) for use within the Aerosol Mass Spectrometer (AMS) and an associated computational model were developed to aid the direct determination of ambient particle morphology and investigate AMS quantification. BWP observations and model results helped determine that particles were not lost in the instrument by morphology-related effects, but were instead collected less efficiently due to particle bounce from the vaporizer surface. This study introduces psi, the lift-shape factor, which allows for the direct determination of particle non-sphericity through use of the BWP. The development and characterization of an instrument modified to directly measure chemically-resolved aerosol volatility is described. A thermodenuder operated between 50-230°C was coupled to a High-Resolution Time-of-Flight AMS (HR-ToF-AMS) with a fast-switching valve system, thus allowing direct and chemically-resolved aerosol volatility measurements to be made for the first time. The instrument was applied in two polluted, urban field studies (Riverside, CA and Mexico City, Mexico) and to sample several biomass-burning, meat-cooking and chamber-generated secondary organic aerosol (SOA) sources. Reduced hydrocarbon-like OA (HOA), biomass-burning OA (BBOA) and oxygenated OA (OOA) were all determined to be semi-volatile, with the most aged OOA-1 consistently showing the lowest volatility. This represents a significant departure from most

  8. A Characterization of Arctic Aerosols as Derived from Airborne Observations and their Influence on the Surface Radiation Budget

    NASA Astrophysics Data System (ADS)

    Herber, A.; Stone, R.; Liu, P. S.; Li, S.; Sharma, S.; Neuber, R.; Birnbaumn, G.; Vitale, V.

    2011-12-01

    Arctic climate is influenced by aerosols that affect the radiation balance at the surface and within the atmosphere. Impacts depend on the composition and concentration of aerosols that determine opacity, which is quantified by the measure of aerosol optical depth (AOD). During winter and spring, aerosols are transported into the Arctic from lower latitude industrial regions. Trans-Arctic flight missions PAMARCMiP (Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project) of the German POLAR 5 during spring 2009 and spring 2011 provided opportunities to collect a comprehensive data set from which properties of the aerosol were derived, including AOD. Measurements were made from near the surface to over 4 km in altitude during flights between Svalbard, Norway and Pt. Barrow, Alaska. These, along with measurements of particle size and concentration, and black carbon content (BC) provide a three-dimensional characterization of the aerosols encountered along track. The horizontal and vertical distribution of Arctic haze, in particular, was evaluated. During April 2009, the Arctic atmosphere was variably turbid with total column AOD (at 500 nm) ranging from ~ 0.12 to > 0.35, where clean background values are typically < 0.06 (Stone et al., 2010). The haze was concentrated within and just above the surface-based temperature inversion layer. Few, distinct elevated aerosol layers were observed, also with an aerosol airborne Lidar. The presence of these haze layers in the Arctic atmosphere during spring reduced the diurnally averaged net shortwave irradiance, which can cause cooling of the surface, depending on its Albedo (reflectivity). An overview of both campaigns will be given with results presented in the context of historical observations and current thinking about the impact aerosols have on the Arctic climate. Stone, R.S., A. Herber, V. Vitale, M. Mazzola, A. Lupi, R. Schnell, E.G. Dutton, P. Liu, S.M. Li, K. Dethloff, A. Lampert, C. Ritter

  9. Chemical characterization of submicron aerosol particles during wintertime in a northwest city of China using an Aerodyne aerosol mass spectrometry.

    PubMed

    Zhang, Xinghua; Zhang, Yangmei; Sun, Junying; Yu, Yangchun; Canonaco, Francesco; Prévôt, Andre S H; Li, Gang

    2017-03-01

    An Aerodyne quadrupole aerosol mass spectrometry (Q-AMS) was utilized to measure the size-resolved chemical composition of non-refractory submicron particles (NR-PM1) from October 27 to December 3, 2014 at an urban site in Lanzhou, northwest China. The average NR-PM1 mass concentration was 37.3 μg m(-3) (ranging from 2.9 to 128.2 μg m(-3)) under an AMS collection efficiency of unity and was composed of organics (48.4%), sulfate (17.8%), nitrate (14.6%), ammonium (13.7%), and chloride (5.7%). Positive matrix factorization (PMF) with the multi-linear engine (ME-2) solver identified six organic aerosol (OA) factors, including hydrocarbon-like OA (HOA), coal combustion OA (CCOA), cooking-related OA (COA), biomass burning OA (BBOA) and two oxygenated OA (OOA1 and OOA2), which accounted for 8.5%, 20.2%, 18.6%, 12.4%, 17.8% and 22.5% of the total organics mass on average, respectively. Primary emissions were the major sources of fine particulate matter (PM) and played an important role in causing high chemically resolved PM pollution during wintertime in Lanzhou. Back trajectory analysis indicated that the long-range regional transport air mass from the westerly was the key factor that led to severe submicron aerosol pollution during wintertime in Lanzhou.

  10. Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia,and Look Rock, Tennessee

    NASA Astrophysics Data System (ADS)

    Hapsari Budisulistiorini, Sri; Baumann, Karsten; Edgerton, Eric S.; Bairai, Solomon T.; Mueller, Stephen; Shaw, Stephanie L.; Knipping, Eladio M.; Gold, Avram; Surratt, Jason D.

    2016-04-01

    A year-long near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia, in 2012) and rural (Look Rock, Tennessee, in 2013) site in the southeastern US using the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA) and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region. The highest concentrations of NR-PM1 were observed during winter and fall seasons at the urban site and during spring and summer at the rural site. Across all seasons and at both sites, NR-PM1 was composed largely of OA (up to 76 %) and sulfate (up to 31 %). Six distinct OA sources were resolved by positive matrix factorization applied to the ACSM organic mass spectral data collected from the two sites over the 1 year of near-continuous measurements at each site: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), semi-volatile oxygenated OA (SV-OOA), low-volatility oxygenated OA (LV-OOA), isoprene-derived epoxydiols (IEPOX) OA (IEPOX-OA) and 91Fac (a factor dominated by a distinct ion at m/z 91 fragment ion previously observed in biogenic influenced areas). LV-OOA was observed throughout the year at both sites and contributed up to 66 % of total OA mass. HOA was observed during the entire year only at the urban site (on average 21 % of OA mass). BBOA (15-33 % of OA mass) was observed during winter and fall, likely dominated by local residential wood burning emission. Although SV-OOA contributes quite significantly ( ˜ 27 %), it was observed only at the urban site during colder seasons. IEPOX-OA was a major component (27-41 %) of OA at both sites, particularly in spring and summer. An ion fragment at m/z 75 is well correlated with the m/z 82 ion associated with the aerosol mass spectrum of IEPOX-derived secondary organic aerosol (SOA). The

  11. Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies

    NASA Astrophysics Data System (ADS)

    Kreyling, Wolfgang G.; Biswas, Pratim; Messing, Maria E.; Gibson, Neil; Geiser, Marianne; Wenk, Alexander; Sahu, Manoranjan; Deppert, Knut; Cydzik, Izabela; Wigge, Christoph; Schmid, Otmar; Semmler-Behnke, Manuela

    2011-02-01

    The intensive use of nano-sized titanium dioxide (TiO2) particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of TiO2 nanoparticles (NP) with biological systems ideally needs to be investigated using physico-chemically uniform and well-characterized NP. In this article, we describe the reproducible production of TiO2 NP aerosols using spark ignition technology. Because currently no data are available on inhaled NP in the 10-50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation studies in rodents. For anticipated in vivo dosimetry analyses, TiO2 NP were radiolabeled with 48V by proton irradiation of the titanium electrodes of the spark generator. The dissolution rate of the 48V label was about 1% within the first day. The highly concentrated, polydisperse TiO2 NP aerosol (3-6 × 106 cm-3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation, and number concentration. Extensive characterization of NP chemical composition, physical structure, morphology, and specific surface area was performed. The originally generated amorphous TiO2 NP were converted into crystalline anatase TiO2 NP by thermal annealing at 950 °C. Both crystalline and amorphous 20-nm TiO2 NP were chain agglomerated/aggregated, consisting of primary particles in the range of 5 nm. Disintegration of the deposited TiO2 NP in lung tissue was not detectable within 24 h.

  12. Characterizing the Vertical Distribution of Aerosols Over the ARM SGP Site

    SciTech Connect

    Richard Ferrare, Connor Flynn, David Turner

    2009-05-05

    This project focused on: 1) evaluating the performance of the DOE ARM SGP Raman lidar system in measuring profiles of water vapor and aerosols, and 2) the use of the Raman lidar measurements of aerosol and water vapor profiles for assessing the vertical distribution of aerosols and water vapor simulated by global transport models and examining diurnal variability of aerosols and water vapor. The highest aerosol extinction was generally observed close to the surface during the nighttime just prior to sunrise. The high values of aerosol extinction are most likely associated with increased scattering by hygroscopic aerosols, since the corresponding average relative humidity values were above 70%. After sunrise, relative humidity and aerosol extinction below 500 m decreased with the growth in the daytime convective boundary layer. The largest aerosol extinction for altitudes above 1 km occurred during the early afternoon most likely as a result of the increase in relative humidity. The water vapor mixing ratio profiles generally showed smaller variations with altitude between day and night. We also compared simultaneous measurements of relative humidity, aerosol extinction, and aerosol optical thickness derived from the ARM SGP Raman lidar and in situ instruments on board a small aircraft flown routinely over the ARM SGP site. In contrast, the differences between the CARL and IAP aerosol extinction measurements are considerably larger. Aerosol extinction derived from the IAP measurements is, on average, about 30-40% less than values derived from the Raman lidar. The reasons for this difference are not clear, but may be related to the corrections for supermicron scattering and relative humidity that were applied to the IAP data. The investigators on this project helped to set up a major field mission (2003 Aerosol IOP) over the DOE ARM SGP site. One of the goals of the mission was to further evaluate the aerosol and water vapor retrievals from this lidar system

  13. Characterization Of Industrial And Background Aerosols In The RhÔne-alpes Region Using Laser Remote Sensing Device.

    NASA Astrophysics Data System (ADS)

    Geffroy, S.; Rairoux, P.; Mondelain, D.; Boutou, V.; Wolf, J.-P.; Frejafon, E.

    Lack of reliable database on aerosol emission and dispersion is one of the main rea- sons for the incertitude of the impact of aerosol on the climate change. International statements and policies requested improvement on the global and on the regional scale. This new project is related to the characterisation of the spatial and time distribution of the aerosols in the Rhône-Alpes region. Actually, aerosols monitoring is mainly performed at ground level in this region and only few studies have been performed on the 3D distribution of urban aerosols (soot) using remote sensing laser device. The Rhône-Alpes region is representative for the regional impact of industry and traffic emission and also for the long-range transport of pollution over the East part of the Alps. The environmental situation of the region in term of sources and localization is especially dominated by: heavy traffic with several motorways (A6 from Paris, A7 to Marseille - both downtown - and A43 to the Alps and Italy) and industrial pollu- tion in particular for Lyon (refinery and several chemistry plants) and Saint Etienne agglomerations, which have a direct impact on the local air quality and also on the regional and national scale. Characterization of the aerosol load and dispersion in this region will be achieved applying two schemes. The first one will be related to the 3D quantitative characterization of diffuse aerosol emission in the industrial areas. Mon- itoring will be performed using a UV-infrared lidar remote sensing device. Emission cadastre elaboration and microphysical characterisation of the emission will be estab- lished. Direct access to several aerosol distribution modes will be used to describe the aerosol population dynamic: sedimentation, transport and aggregation. Studies on the direct impact of the emission on the region will be achieved coupling the 3D and ground level monitoring with dispersion model. The second scheme will be related to the long term remote sensing of

  14. Physical and Chemical Characterization of Particles in the Upper Troposphere and Lower Stratosphere: Microanalysis of Aerosol Impactor Samples

    NASA Technical Reports Server (NTRS)

    Sheridan, Patrick J.

    1999-01-01

    Herein is reported activities to support the characterization of the aerosol in the upper troposphere (UT) and lower stratosphere (LS) collected during the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) missions in 1994. Through a companion proposal, another group was to measure the size distribution of aerosols in the 0.008 to 2 micrometer diameter range and to collect for us impactor samples of particles larger than about 0.02 gm. In the first year, we conducted laboratory studies related to particulate deposition patterns on our collection substrates, and have performed the analysis of many ASHOE/MAESA aerosol samples from 1994 using analytical electron microscopy (AEM). We have been building an "aerosol climatology" with these data that documents the types and relative abundances of particles observed at different latitudes and altitudes. The second year (and non-funded extension periods) saw continued analyses of impactor aerosol samples, including more ASHOE/MAESA samples, some northern hemisphere samples from the NASA Stratospheric Photochemistry Aerosols and Dynamics Expedition (SPADE) program for comparison, and a few aerosol samples from the NASA Stratospheric TRacers of Atmospheric Transport (STRAT) program. A high-resolution field emission microscope was used for the analysis and re-analysis of a number of samples to determine if this instrument was superior in performance to our conventional electron microscope. In addition, some basic laboratory studies were conducted to determine the minimum detectable and analyzable particle size for different types of aerosols. In all, 61 aerosol samples were analyzed, with a total of over 30,000 individual particle analyses. In all analyzed samples, sulfate particles comprised the major aerosol number fraction. It must be stressed that particles composed of more than one species, for example sulfate and organic carbon, were classified

  15. Aircraft measurements over Europe of an air pollution plume from Southeast Asia - aerosol and chemical characterization

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Huntrieser, H.; Mannstein, H.; McMillan, W. W.; Petzold, A.; Schlager, H.; Weinzierl, B.

    2007-02-01

    An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24-25 March 2006. According to the model, the plume was exported from Southeast Asia six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO) from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy) and ozone (O3) measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17-34 ppbv on average (maximum 60 ppbv) and O3 by 2-9 ppbv (maximum 22 ppbv). Positive correlations existed between these species, and a ΔO3/ΔCO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface of the transported larger particles. Super-micron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters 0.25-0.70 Mm-1), as was the

  16. Aircraft measurements over Europe of an air pollution plume from Southeast Asia - aerosol and chemical characterization

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Huntrieser, H.; Mannstein, H.; McMillan, W. W.; Petzold, A.; Schlager, H.; Weinzierl, B.

    2006-12-01

    An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24-25 March 2006. According to the model, the plume was exported from Southeast Asia only six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO) from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was indeed found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy) and ozone (O3) measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17-34 ppbv on average (maximum 60 ppbv) and O3 by 2-9 ppbv (maximum 22 ppbv). Positive correlations existed between these species, and a ΔO3/ΔCO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface due to the transported larger particles. Super-micron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters 0.25-0.70 Mm-1

  17. Electron Microscopy and Raman Microspectroscopy as Characterization Tools and Probes of the Chemistry and Properties of Individual Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Grassian, V. H.

    2012-12-01

    Microscopic probes provide useful insights into the physicochemical properties of aerosol particles and their environmental and health effects. The focus of this talk is on the use of microscopic probes in a wide-range of laboratory studies to better understand the physicochemical properties (chemical heterogeneity, morphology, water uptake, infrared extinction and heterogeneous reactivity) of individual atmospheric aerosol particles. Microscopy coupled to energy dispersive X-ray analysis is used in these studies to characterize particles in terms of size and shape as individual particles or as aggregates particles as well as to follow chemical and physical transformations of particles as they undergo reactions under different environmental conditions. Raman microspectroscopy provides additional chemical specific information and the internal mixing of chemical constituents within individual particles. Several examples will be discussed for flyash, mineral dust and sea spray aerosol particles.

  18. Characterization of the aerosol type using simultaneous measurements of the lidar ratio and estimations of the single scattering albedo

    NASA Astrophysics Data System (ADS)

    Amiridis, Vassilis; Balis, Dimitrios; Giannakaki, Eleni; Kazadzis, Stylianos; Arola, Antti; Gerasopoulos, Evangelos

    2011-07-01

    Lidar measurements of the vertical distribution of the aerosol extinction and backscatter coefficient and the corresponding extinction to backscatter ratio (so-called lidar ratio) at 355 nm have been performed at Thessaloniki, Greece using a Raman lidar system in the frame of the EARLINET for the period 2001-2005. Coincident spectral UV irradiance measurements, total ozone observations and aerosol optical depth estimates were available from a double Brewer spectroradiometer. The retrieval of single scattering albedo employed the Brewer global irradiance measurements and radiative transfer modeling. Vertically averaged values of the lidar ratio ranged from a minimum of 16 sr to a maximum value of 90 sr, while the effective single scattering albedo ranged from 0.78 to 1.00. The mean value of the lidar ratio for the dataset under study was 45.5 ± 21.0 sr while the average value of the single scattering albedo was 0.94 ± 0.05. For the majority of our measurements (80%) the single scattering albedo found to be greater than 0.90. Using additional information from backward trajectory calculations and lidar-derived free tropospheric contribution of aerosols in the columnar aerosol optical depth, it is shown that the combined use of the directly measured lidar ratio, and the indirectly estimated single scattering albedo, leads to a better characterization of the aerosol type probed.

  19. Climatic context of the First Aerosol Characterization Experiment (ACE 1): A meteorological and chemical overview

    NASA Astrophysics Data System (ADS)

    Hainsworth, A. H. W.; Dick, A. L.; Gras, J. L.

    1998-01-01

    During the intensive field operations period (November 15 to December 14, 1995) of the First Aerosol Characterization Experiment (ACE 1) cold front activity was generally above average, resulting in below average temperatures, pressures, and rainfall. The principal cause was the presence for much of the experiment of a long wave trough. This trough was mobile, traversing the ACE area during the project, with some warm anomalies evident in the areas under the influence of the long wave ridges. There is evidence of greater convective activity than normal possibly leading to a slightly deeper than average mixing layer. A greater west to northwesterly component to the air flow than average during November appears to have led to higher than average concentrations of radon and particles in the clean, marine or "baseline" sector at Cape Grim (190° to 280°). This is likely to have resulted from inclusion of continental air from western parts of the Australian mainland in the baseline sector winds. Although aerosol-bound sulfur species were generally near their normal concentrations across the ACE 1 area, the overall pattern including atmospheric dimethylsulfide suggests slightly higher than usual sulfur species levels in the southern part of the region and lower concentrations in the northern part during November. This could be related to changes in marine biogenie productivity, air-sea exchange, or atmospheric removal. In December, the changing long wave pattern brought an increase in south and southwesterly flow over the entire region. The baseline sector became less affected by continental species, but it appears that the colder conditions brought by this pattern have led to lower than usual atmospheric concentrations of biogenie species, as the region went into one of the coldest summers on record.

  20. Dual carbon isotope characterization of total organic carbon in wintertime carbonaceous aerosols from northern India

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Andersson, August; Sarin, M. M.; Sheesley, R. J.; Kirillova, E.; Rengarajan, R.; Sudheer, A. K.; Ram, K.; Gustafsson, Örjan

    2016-05-01

    Large-scale emissions of carbonaceous aerosols (CA) from South Asia impact both regional climate and air quality, yet their sources are not well constrained. Here we use source-diagnostic stable and radiocarbon isotopes (δ13C and Δ14C) to characterize CA sources at a semiurban site (Hisar: 29.2°N, 75.2°E) in the NW Indo-Gangetic Plain (IGP) and a remote high-altitude location in the Himalayan foothills (Manora Peak: 29.4°N, 79.5°E, 1950 m above sea level) in northern India during winter. The Δ14C of total aerosol organic carbon (TOC) varied from -178‰ to -63‰ at Hisar and from -198‰ to -1‰ at Manora Peak. The absence of significant differences in the 14C-based fraction biomass of TOC between Hisar (0.81 ± 0.03) and Manora Peak (0.82 ± 0.07) reveals that biomass burning/biogenic emissions (BBEs) are the dominant sources of CA at both sites. Combining this information with δ13C, other chemical tracers (K+/OC and SO42-/EC) and air mass back trajectory analyses indicate similar source regions in the IGP (e.g., Punjab and Haryana). These results highlight that CA from BBEs in the IGP are not only confined to the atmospheric boundary layer but also extend to higher elevations of the troposphere, where the synoptic-scale circulations could substantially influence their abundances both to the Himalayas and over the downwind oceanic regions such as the Indian Ocean. Given the vast emissions of CA from postharvest crop residue combustion practices in the IGP during early Northeast Monsoon, this information is important for both improved process and model understanding of climate and health effects, as well as in guiding policy decision aiming at reducing emissions.

  1. Characterization of submicron aerosols during a serious pollution month in Beijing (2013) using an aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, J. K.; Sun, Y.; Liu, Z. R.; Ji, D. S.; Hu, B.; Liu, Q.; Wang, Y. S.

    2013-07-01

    In January 2013, Beijing experienced several serious haze events. To achieve a better understanding of the characteristics, sources and processes of aerosols during this month, an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at an urban site between 1 January and 1 February 2013 to obtain the size-resolved chemical composition of non-refractory submicron particles (NR-PM1). During this period, the mean measured NR-PM1 mass concentration was 87.4 μg m-3 and was composed of organics (49.8%), sulfate (21.4%), nitrate (14.6%), ammonium (10.4%), and chloride (3.8%). Moreover, inorganic matter, such as sulfate and nitrate comprised an increasing fraction of the NR-PM1 load as NR-PM1 loading increased, denoting their key roles in particulate pollution during this month. The average size distributions of the species were all dominated by an accumulation mode peaking at approximately 600 nm in vacuum aerodynamic diameter and organics characterized by an additional smaller size (∼200 nm). Elemental analyses showed that the average O/C, H/C, and N/C (molar ratio) of organic matter were 0.34, 1.44 and 0.015, respectively, corresponding to an OM/OC ratio (mass ratio of organic matter to organic carbon) of 1.60. Positive matrix factorization (PMF) analyses of the high-resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., oxygenated organic aerosols (OOA), cooking-related (COA), nitrogen-containing (NOA) and hydrocarbon-like (HOA), which on average accounted for 40.0, 23.4, 18.1 and 18.5% of the total organic mass, respectively. Back trajectory clustering analyses indicated that the WNW air masses were associated with the highest NR-PM1 pollution during the campaign. Aerosol particles in southern air masses were especially rich in inorganic and oxidized organic species, whereas northern air masses contained a large fraction of primary species.

  2. Premonsoon Aerosol Characterization and Radiative Effects Over the Indo-Gangetic Plains: Implications for Regional Climate Warming

    NASA Technical Reports Server (NTRS)

    Gautam, Ritesh; Hsu, N. Christina; Lau, K.-M.

    2010-01-01

    The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 W/sq m per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89+/- 0.01 (at approx.550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 W/sq m and +1.4 to +12 W/sq m, respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of approx.5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 C/decade+/-0.08 C

  3. Aerosol characterization and transport pathway using ground-based measurement and space borne remote sensing

    NASA Astrophysics Data System (ADS)

    Boyouk, Neda; Léon, Jean-François; Delbarre, Hervé

    2008-10-01

    Using two years measurements of aerosol extinction coefficient retrieval from CALIPSO as a joint NASA-CNES satellite mission along with ground-based measurements of particle mass concentration (PM2.5), we assess particulate matter air quality over different urban and periurban areas in France. In order to understanding the influence of the long range transport onto the local aerosol load we have focused on analysing of pollution event in Lille - urban area and Dunkerque - industrial area. We compared ground- based measurements with CALIPSO measurements. The CALIPSO level 2 aerosol records are more useful because the extinction coefficient is available. We use the extinction coefficient profiles which are provided by CALIPSO to depict the vertical structure of the aerosol properties. The combination of ground- based measurements of PM2.5, aerosol optical thickness (AOT's) obtained by Aeronet network data and CALIOP data enhances the possibilities of studying transport pathway of aerosol in the atmosphere and aerosol optical properties (aerosol extinction coefficient, aerosol optical depth, atmosphere transparency). The linear relationship between AOT _CALIPSO and AOT _ Aeronet network shows a slop of 0.4 in north of France. Moreover, we observed the good relationship between PM2.5 and AOT by CALIPSO profiles with a slope of 57.59 and correlation coefficient of 0.75 over France.

  4. Dust Aerosols at the Source Region During ACE-ASIA: A Surface/Satellite Perspective

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Lau, William K. M. (Technical Monitor)

    2001-01-01

    ACE (Aerosol Characterization Experiment)-Asia is designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. The phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of dust aerosol radiative flux in addition to measurements of loading and optical thickness. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. Preliminary results will be presented and discussed their implications in regional climatic effects.

  5. Atmospheric aerosol monitoring and characterization: An emission control strategy to protect tropical forests

    NASA Astrophysics Data System (ADS)

    Mateus, V. L.; do Valles, T. V.; de Oliveira, T. B.; de Almeida, A. C.; Maia, L. F. P. G.; Saint'Pierre, T. D.; Gioda, A.

    2013-12-01

    .87) than at Flonamax (r = 0.46), suggesting a marked anthropogenic influence in the former. WSOC and nss-SO42- showed a moderate correlation ( r = 0.3-0.5) at both sites suggesting secondary aerosol formation. The dissimilarity between the areas regarding to water-soluble species are probably due to the particle size. However, both sites are influenced by highways, which, at first glance, is the highest anthropogenic input. In the conference, we will provide more data related to chemical characterization as well as the enrichment factor (EF) and principal component analysis (PCA), to better understand the source apportionment.

  6. Characterizing the Retrieval of Cloud Optical Thickness and Droplet Effective Radius to Overlying Aerosols Using a General Inverse Theory Approach

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Pilewskie, P.; Schmidt, S.

    2013-12-01

    The upwelling shortwave irradiance measured by the airborne Solar Spectral Flux Radiometer (SSFR) flying above a cloud and aerosol layer is influenced by the properties of the cloud and aerosol particles below, just as would the radiance measured from satellite. Unlike satellite measurements, those from aircraft provide the unique capability to fly a lower-level leg above the cloud, yet below the aerosol layer, to characterize the extinction of the aerosol layer and account for its impact on the measured cloud albedo. Previous work [Coddington et al., 2010] capitalized on this opportunity to test the effects of aerosol particles (or more appropriately, the effects of neglecting aerosols in forward modeling calculations) on cloud retrievals using data obtained during the Intercontinental Chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution (INTEX-A/ITCT) study. This work showed aerosols can cause a systematic bias in the cloud retrieval and that such a bias would need to be distinguished from a true aerosol indirect effect (i.e. the brightening of a cloud due to aerosol effects on cloud microphysics) as theorized by Haywood et al., [2004]. The effects of aerosols on clouds are typically neglected in forward modeling calculations because their pervasiveness, variable microphysical properties, loading, and lifetimes makes forward modeling calculations under all possible combinations completely impractical. Using a general inverse theory technique, which propagates separate contributions from measurement and forward modeling errors into probability distributions of retrieved cloud optical thickness and droplet effective radius, we have demonstrated how the aerosol presence can be introduced as a spectral systematic error in the distributions of the forward modeling solutions. The resultant uncertainty and bias in cloud properties induced by the aerosols is identified by the shape and peak of the posteriori

  7. ATR-FTIR characterization of organic functional groups and inorganic ions in ambient aerosols at a rural site

    NASA Astrophysics Data System (ADS)

    Coury, Charity; Dillner, Ann M.

    An Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopic method was used to measure organic functional groups and inorganic ions at Tonto National Monument (TNM), an Interagency Monitoring of Protected Visual Environments (IMPROVE) sampling site in a rural area near Phoenix, Arizona. Functional groups and ions from common aerosol compound classes such as aliphatic and aromatic CH, methylene, methyl, aldehydes/ketones, carboxylic acids, ammonium sulfate and nitrate as well as functional groups from difficult to measure compound classes such as esters/lactones, acid anhydrides, carbohydrate hydroxyl and ethers, amino acids, and amines were quantified. On average, ˜33% of the PM 1.0 mass was composed of organic aerosol. The average (standard deviation) composition of the organic aerosol at TNM was 34% (6%) biogenic functional groups, 21% (5%) oxygenated functional groups, 28% (7%) aliphatic hydrocarbon functional groups (aliphatic CH, methylene and methyl) and 17% (1%) aromatic hydrocarbon functional groups. Compositional analysis, functional group correlations, and back trajectories were used to identify three types of events with source signatures: primary biogenic-influenced, urban-influenced, and regional background. The biogenic-influenced event had high concentrations of amino acids and carbohydrate hydroxyl and ether, as well as aliphatic CH and aromatic CH functional groups and qualitatively high levels of silicate. The urban-influenced events had back trajectories traveling directly from the Phoenix area and high concentrations of hydrocarbons, oxygenated functional groups, and inorganic ions. This aerosol characterization suggests that both primary emissions in Phoenix and secondary formation of aerosols from Phoenix emissions had a major impact on the aerosol composition and concentration at TNM. The regional background source had low concentrations of all functional groups, but had higher concentrations of biogenic functional

  8. Characterizing the Hygroscopicity of Nascent Sea Spray Aerosol from Synthetic Blooms

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Cappa, C. D.; Sultana, C. M.; Lee, C.; Wang, X.; Helgestad, T.; Moore, K.; Prather, K. A.; Cornwell, G.; Novak, G.; Bertram, T. H.

    2015-12-01

    Marine sea spray aerosol (SSA) particles make up a significant portion of natural aerosols and are therefore important in establishing the baseline for anthropogenic aerosol climate impacts. Scattering of solar radiation by aerosols affects Earth's radiative budget and the degree of scattering is size-dependent. Thus, aerosols scatter more light at elevated relative humidities when they grow larger via water uptake. This growth depends critically on chemical composition. SSA can become enriched in organics during phytoplankton blooms, becoming less salty and therefore less hygroscopic. Subsaturated hygroscopic growth factors at 85% relative humidity (GF(85%)) of SSA particles were quantified during two mesocosm experiments in enclosed marine aerosol reference tanks (MARTs). The two experiments were conducted with filtered seawater collected at separate times from the Scripps Institute of Oceanography Pier in La Jolla, CA. Phytoplankton blooms in each tank were induced via the addition of nutrients and photosynthetically active radiation. The "indoor" MART was illuminated with fluorescent light and the other "outdoor" MART was illuminated with sunlight. The peak chlorophyll-a concentrations were 59 micrograms/L and 341 micrograms /L for the indoor and outdoor MARTs, respectively. GF(85%) values for SSA particles were quantified using a humidified cavity ringdown spectrometer and particle size distributions. Particle composition was monitored with a single particle aerosol mass spectrometer (ATOFMS) and an Aerodyne aerosol mass spectrometer (AMS). Relationships between the observed particle GFs and the particle composition markers will be discussed.

  9. Using Single-Scattering Albedo Spectral Curvature to Characterize East Asian Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2015-01-01

    Spectral dependence of aerosol single-scattering albedo (SSA) has been used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, by analyzing SSA measured at four wavelengths, 440, 675, 870, and 1020 nm from the Aerosol Robotic Network data set, we find that the SSA spectra over East Asia are frequently peaked at 675 nm. In these cases, we suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Aerosol SSA spectral curvatures for East Asia during fall and winter are considerably larger than those found in places primarily dominated by biomass burning or dust aerosols. SSA curvature is found to increase as the SSA magnitude decreases. The curvature increases with coarse mode fraction (CMF) to a CMF value of about 0.4, then slightly decreases or remains constant at larger CMF. Mie calculations further verify that the strongest SSA curvature occurs at approx. 40% dust fraction, with 10% scattering aerosol fraction. The nonmonotonic SSA spectral dependence is likely associated with enhanced absorption in the shortwave by dust, absorption by black carbon at longer wavelengths, and also the flattened absorption optical depth spectral dependence due to the increased particle size.

  10. MODIS Satellite Data and GOCART Model Characterization of the Global Aerosol

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Chin, Mian; Remer, Lorraine; Tanre, Didier; Lau, William K.-M. (Technical Monitor)

    2003-01-01

    Recently produced daily MODIS aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The aerosol is observed above ocean and land. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere. The MODIS data are compared with the GOCART model and used to estimate the first observation based direct anthropogenic radiative forcing of climate by aerosol.

  11. A three-dimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAM-ARCMIP, April 2009

    NASA Astrophysics Data System (ADS)

    Stone, R. S.; Herber, A.; Vitale, V.; Mazzola, M.; Lupi, A.; Schnell, R. C.; Dutton, E. G.; Liu, P. S. K.; Li, S.-M.; Dethloff, K.; Lampert, A.; Ritter, C.; Stock, M.; Neuber, R.; Maturilli, M.

    2010-07-01

    The Arctic climate is modulated, in part, by atmospheric aerosols that affect the distribution of radiant energy passing through the atmosphere. Aerosols affect the surface-atmosphere radiation balance directly through interactions with solar and terrestrial radiation and indirectly through interactions with cloud particles. Better quantification of the radiative forcing by different types of aerosol is needed to improve predictions of future climate. During April 2009, the airborne campaign Pan-Arctic Measurements and Arctic Regional Climate Model Inter-comparison Project (PAM-ARCMIP) was conducted. The mission was organized by Alfred Wegener Institute for Polar and Marine Research of Germany and utilized their research aircraft, Polar-5. The goal was to obtain a snapshot of surface and atmospheric conditions over the central Arctic prior to the onset of the melt season. Characterizing aerosols was one objective of the campaign. Standard Sun photometric procedures were adopted to quantify aerosol optical depth AOD, providing a three-dimensional view of the aerosol, which was primarily haze from anthropogenic sources. Independent, in situ measurements of particle size distribution and light extinction, derived from airborne lidar, are used to corroborate inferences made using the AOD results. During April 2009, from the European to the Alaskan Arctic, from sub-Arctic latitudes to near the pole, the atmosphere was variably hazy with total column AOD at 500 nm ranging from ˜0.12 to >0.35, values that are anomalously high compared with previous years. The haze, transported primarily from Eurasian industrial regions, was concentrated within and just above the surface-based temperature inversion layer. Extinction, as measured using an onboard lidar system, was also greatest at low levels, where particles tended to be slightly larger than at upper levels. Black carbon (BC) (soot) was observed at all levels sampled, but at moderate to low concentrations compared with

  12. Los Angeles Basin airborne organic aerosol characterization during CalNex

    NASA Astrophysics Data System (ADS)

    Craven, J. S.; Metcalf, A. R.; Bahreini, R.; Middlebrook, A.; Hayes, P. L.; Duong, H. T.; Sorooshian, A.; Jimenez, J. L.; Flagan, R. C.; Seinfeld, J. H.

    2013-10-01

    We report airborne organic aerosol (OA) measurements over Los Angeles carried out in May 2010 as part of the CalNex field campaign. The principal platform for the airborne data reported here was the CIRPAS Twin Otter (TO); airborne data from NOAA WP-3D aircraft and Pasadena CalNex ground-site data acquired during simultaneous TO flybys are also presented. Aerodyne aerosol mass spectrometer measurements constitute the main source of data analyzed. The increase in organic aerosol oxidation from west to east in the basin was sensitive to OA mass loading, with a greater spatial trend in O:C associated with lower mass concentration. Three positive matrix factorization (PMF) components (hydrocarbon-like organic aerosol (HOA), semi-volatile oxidized organic aerosol (SVOOA), and low volatility oxidized organic aerosol (LVOOA)) were resolved for the one flight that exhibited the largest variability in estimated O:C ratio. Comparison of the PMF factors with two optical modes of refractory black carbon (rBC)-containing aerosol revealed that the coating of thinly coated rBC-containing aerosol, dominant in the downtown region, is likely composed of HOA, whereas more thickly coated rBC-containing aerosol, dominant in the Banning pass outflow, is composed of SVOOA and LVOOA. The correlation of water-soluble organic mass to oxidized organic aerosol (OOA) is higher in the outflows than in the basin due to the higher mass fraction of OOA/OA in the outflows. By comparison, the average OA concentration over Mexico City MILAGRO (Megacity Initiative: Local and Global Research Observations) campaign was ˜7 times higher than the airborne average during CalNex.

  13. Characterization of biological aerosol exposure risks from automobile air conditioning system.

    PubMed

    Li, Jing; Li, Mingzhen; Shen, Fangxia; Zou, Zhuanglei; Yao, Maosheng; Wu, Chang-yu

    2013-09-17

    Although use of automobile air conditioning (AC) was shown to reduce in-vehicle particle levels, the characterization of its microbial aerosol exposure risks is lacking. Here, both AC and engine filter dust samples were collected from 30 automobiles in four different geographical locations in China. Biological contents (bacteria, fungi, and endotoxin) were studied using culturing, high-throughput gene sequence, and Limulus amebocyte lysate (LAL) methods. In-vehicle viable bioaerosol concentrations were directly monitored using an ultraviolet aerodynamic particle sizer (UVAPS) before and after use of AC for 5, 10, and 15 min. Regardless of locations, the vehicle AC filter dusts were found to be laden with high levels of bacteria (up to 26,150 CFU/mg), fungi (up to 1287 CFU/mg), and endotoxin (up to 5527 EU/mg). More than 400 unique bacterial species, including human opportunistic pathogens, were detected in the filter dusts. In addition, allergenic fungal species were also found abundant. Surprisingly, unexpected fluorescent peaks around 2.5 μm were observed during the first 5 min use of AC, which was attributed to the reaerosolization of those filter-borne microbial agents. The information obtained here can assist in minimizing or preventing the respiratory allergy or infection risk from the use of automobile AC system.

  14. Characterization of indoor aerosol temporal variations for the real-time management of indoor air quality

    NASA Astrophysics Data System (ADS)

    Ciuzas, Darius; Prasauskas, Tadas; Krugly, Edvinas; Sidaraviciute, Ruta; Jurelionis, Andrius; Seduikyte, Lina; Kauneliene, Violeta; Wierzbicka, Aneta; Martuzevicius, Dainius

    2015-10-01

    The study presents the characterization of dynamic patterns of indoor particulate matter (PM) during various pollution episodes for real-time IAQ management. The variation of PM concentrations was assessed for 20 indoor activities, including cooking related sources, other thermal sources, personal care and household products. The pollution episodes were modelled in full-scale test chamber representing a standard usual living room with the forced ventilation of 0.5 h-1. In most of the pollution episodes, the maximum concentration of particles in exhaust air was reached within a few minutes. The most rapid increase in particle concentration was during thermal source episodes such as candle, cigarette, incense stick burning and cooking related sources, while the slowest decay of concentrations was associated with sources, emitting ultrafine particle precursors, such as furniture polisher spraying, floor wet mopping with detergent etc. Placement of the particle sensors in the ventilation exhaust vs. in the centre of the ceiling yielded comparable results for both measured maximum concentrations and temporal variations, indicating that both locations were suitable for the placement of sensors for the management of IAQ. The obtained data provides information that may be utilized considering measurements of aerosol particles as indicators for the real-time management of IAQ.

  15. Airborne Fungi in Sahara Dust Aerosols Reaching the Eastern Caribbean: I. Taxonomic Characterization by Morphological Features

    NASA Astrophysics Data System (ADS)

    Rivera-Denizard, O.; Betancourt, C.; Armstrong, R. A.; Detres, Y.

    2003-12-01

    A wide variety of microorganisms are dispersed into the Caribbean region due to the input of Saharan dust aerosols during the summer months. These microorganisms can cause diseases in plants and animals, and might be responsible for an increase incidence of asthma and respiratory diseases in this region. A PM 2.5 air sampling station was installed in Castle Bruce, Dominica from March through July of 2002. Fourteen filters were obtained by running the air sampler continuously for 24 hour periods. The samples were collected in sterile Teflon filters (47 mm in diameter, 0.2 um pore size), inoculated in Malt Extract Agar (MEA) with lactic acid and incubated at 29° C. Colonies were counted, isolated and cultured on separate Petri dishes. Fungal classification to the genus level used macroscopic features and microscopic evaluation. The Nomarski light microscopy technique was used for identification of reproductive structures. A total of 105 colonies were isolated. Six genera including Aspergillus, Penicillium, Cladosporium, Fusarium, Curvularia,and Nigrospora were identified. The protocol for the molecular characterization to species level is presented as the second part of this work.

  16. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; McKinney, K.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Brito, J.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Alexander, M. L.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-10-01

    large variations in its detailed molecular composition. The low fC5H6O (< 3 ‰) reported in non-IEPOX-derived isoprene-SOA from chamber studies indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a triangle plot of fCO2 vs. fC5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2, if the fC5H6O of the local IEPOX-SOA is not available. When only unit mass-resolution data are available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.

  17. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGES

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; ...

    2015-10-23

    to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3 ‰) reported in non-IEPOX-derived isoprene-SOA from chamber studies indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a triangle plot of fCO2 vs. fC5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2, if the fC5H6O of the local IEPOX-SOA is not available. When only unit mass-resolution data are available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.« less

  18. Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia and Look Rock, Tennessee

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Baumann, K.; Edgerton, E. S.; Bairai, S. T.; Mueller, S.; Shaw, S. L.; Knipping, E. M.; Gold, A.; Surratt, J. D.

    2015-08-01

    A yearlong near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia) and rural (Look Rock, Tennessee) site in the southeastern US using the Aerodyne aerosol chemical speciation monitor (ACSM) collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA) and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region. The highest concentrations of NR-PM1 were observed during winter and fall seasons at the urban site and during spring and summer at the rural site. Across all seasons and at both sites, NR-PM1 was composed largely of OA (50-76 %) and inorganic sulfate (12-31 %). Six distinct OA sources were resolved by positive matrix factorization applied to the ACSM organic mass spectral data collected from the two sites over the one year of near-continuous measurements at each site: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), semi-volatile oxygenated OA (SV-OOA), low-volatility oxygenated OA (OOA), isoprene-derived epoxydiol (IEPOX) OA (IEPOX-OA), and 91Fac OA (a factor dominated by a distinct ion at m/z 91 fragment ion previously observed in biogenic influenced areas). LV-OOA was observed throughout the year at both sites and contributed 30-66 % of total OA mass. HOA was also observed during the entire year only at the urban site (15-24 % of OA mass). BBOA (15-33 % of OA mass) was observed during winter and fall, likely dominated by local residential wood burning emission. Although SV-OOA contributes quite significantly (∼ 27 %), it was observed only at the urban site during colder seasons. IEPOX-OA was a major component (27-41 %) of OA at both sites, particularly in spring and summer. An ion fragment at m/z 75 is proposed as an additional marker for IEPOX-OA, as it is shown to correlate well with the m/z 82 ion shown to be associated with the aerosol mass spectrum of

  19. Extending the performances of stratospheric aerosol characterization in the 2002-2011 period through data merging of GOMOS and OSIRIS measurements

    NASA Astrophysics Data System (ADS)

    Bingen, Christine; Robert, Charles; Vanhellemont, Filip; Mateshvili, Nina; Dekemper, Emmanuel; Fussen, Didier; Bourassa, Adam

    2016-04-01

    Stratospheric extinction and size information are two important aerosol parameters used to model the role of stratospheric aerosols in the atmospheric system, and to assess the respective importance of volcanic and anthropogenic aerosols. Since the historical aerosol minimum in 1998-2000, several remote sensing experiments have provided radiative aerosol measurements, using various and often challenging measurement principles, and, for each of them, a specific set of spectral channels. This results in a rich patchwork of spectral information presenting gaps and discontinuities in space, time, and wavelength. Acquiring aerosol size information on a global scale is a very challenging task. Such information can be retrieved by radial inversion of the extinction spectrum, but this task is often a struggle due to the reduced number of spectral channels and mainly to a limitation of the spectral range. Combining aerosol radiative measurements from multiple remote experiments seems to be a promising way to provide modellers with an improved characterization of the aerosol extinction and size information they need. This work presents the current status of the development of merged aerosol datasets from the GOMOS and OSIRIS experiments. After presenting the methodology used for the data merging, we will present the latest results obtained in this study and show how the performances of the merged dataset can improve with respect to the ones of each of the individual retrievals.

  20. Airborne in situ characterization of dry urban aerosol optical properties around complex topography

    NASA Astrophysics Data System (ADS)

    Targino, Admir Créso; Noone, Kevin J.

    2006-02-01

    In situ data from the 1997 Southern California Ozone Study—NARSTO were used to describe the aerosol optical properties in an urban area whose aerosol distribution is modified as the aerosols are advected over the surrounding topography. The data consist of measurements made with a nephelometer and absorption photometer onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Pelican aircraft. The cases investigated in this study include vertical profiles flown over coastal sites as well as sites located along some important mountain ranges in southern California. The vertical distribution of the aerosol in the Los Angeles Basin showed a complex configuration, directly related with the local meteorological circulations and the surrounding topography. High spatial and temporal variability in air pollutant concentrations within a relatively small area was found, as indicated by the aerosol scattering and absorption coefficient data. The results suggest that in areas with such complex terrain, a high spatial resolution is required in order to adequately describe the aerosol optical quantities. Principal components analysis (PCA) has been applied to aerosol chemical samples in order to identify the major aerosol types in the Los Angeles Basin. The technique yielded four components that accounted for 78% of the variance in the data set. These were indicative of marine aerosols, urban aerosols, trace elements and secondary aerosol components of traffic emissions and agricultural activities. A Monte Carlo radiation transfer model has been employed to simulate the effects that different aerosol vertical profiles have on the attenuation of solar energy. The cases examined were selected using the results of the PCA and in situ data were used to describe the atmospheric optical properties in the model. These investigations comprise a number of sensitivity tests to evaluate the effects on the results of the location of the aerosol layers as well as

  1. Chemical Aerosol Characterization Sampling in Santa Ana during the MCMA-2003 Field Campaign

    NASA Astrophysics Data System (ADS)

    Bernabe, R.; Castro, T.; Marquez, C.; Cardenas, B.; Salcedo, D.

    2004-12-01

    Aerosol samples were collected during the intensive MCMA-2003 campaign in Santa Ana (19.1772° N, 98.99° W), Mexico City. This small rural town lies near the southeastern border of Mexico City and on the western rim of a mountain pass that channels the southern outflow of air from the city. Particles smaller than 10 μ m in aerodynamic diameter were collected on aluminum foils using three 8-stage micro orifice uniform deposit impactor (MOUDI), while fine particles (PM2.5) were collected in quartz fiber filters using manual samplers (MiniVol air samplers, Airmetrics). Samples were taken every 3 days starting at 2am in 6 hr intervals (total time 18 hrs for MOUDI and 24 hrs for MiniVol) from April 10-22, 2003. The MOUDI was operated at a flow rate of 30 l/min with calibrated impaction cut-points in the range of 10 - 0.18 μ m; while the MiniVol operation flow rate was 5 l/min. Prior to sampling, the aluminum foils were pre-conditioned (at 450° C) in a furnace for 8 hrs to eliminate impurities. Both types of filters were weighted using an Ultra Microbalance (Cahn, with a sensitivity of 0.1 μ g) for particulate matter under controlled conditions (20° C and 50% relative humidity). The aluminum foils were cut in halves, one half for Total Carbon (TC) determination with a thermal method, Evolved Gas Analysis (EGA), and the other half for analysis of inorganic ions (Cl-, NO3, SO42-, NA+, NH4+, K+, Ca2+ and Mg+) by liquid chromatography and mass spectrometer analytic method. Organic and elemental carbon was done according to the IMPROVE Thermal Protocol. Aerosol measurements made with MOUDI showed that the particle size distribution was bimodal in the three sampling periods. During daylight periods, 75% of the collected samples consisted of particles with aerodynamic diameter < 1 μ m whereas the major mass concentration was dominated by particles > 1 μ m during night. PM2.5 results reveal that the highest and lowest levels were obtained during the afternoon (60.6 μ g

  2. Chemical Characterization of Secondary Organic Aerosol Formed Through Cloud Processing of Methylglyoxal

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Seitzinger, S. P.; Carlton, A. G.; Turpin, B. J.; Klein, G. C.; Marshall, A. G.

    2007-12-01

    There is increasing evidence suggesting that secondary organic aerosol (SOA) forms as a result of low volatility product formation in atmospheric aqueous phase reactions. In this work aqueous phase photooxidation experiments between methylglyoxal (an isoprene oxidation product) and hydroxyl radical were conducted to simulate the cloud processing of methylglyoxal. The results verify that, as predicted, oxalic acid forms through cloud processing of methylglyoxal. This work adds to the growing body of literature (Altieri et al., 2006; Carlton et al., 2006; Carlton et al., 2007; Crahan et al., 2004; Warneck, 2003; 2005; Yu et al., 2005) supporting the hypothesis that cloud processing is a substantial source of oxalic acid to the atmosphere. Oxalic acid is the most abundant dicarboxylic acid in the atmosphere and a contributor to SOA. The formation of additional monomer products (e.g., malic acid, succinic acid, glycolic acid) and the development of an oligomer system were also identified through use of a combination of electrospray ionization mass spectrometry (ESI-MS) techniques: a quadrupole ESI-MS, an ion trap ESI-MS-MS, and an ultra-high resolution ESI FT-ICR MS. We propose a mechanism of oligomer formation through esterification of monomers with a hydroxy acid formed from hydroxyl radical initiated reactions. Oligomers were only recently identified as cloud processing products (Altieri et al., 2006), and this work is the first chemical characterization of oligomers formed through cloud processing reactions. The chemical characterization includes the distribution of molecular weights, elemental compositions, structure, and organic mass to organic carbon (OM:OC) ratio. Methylglyoxal is a water- soluble product of both biogenic and anthropogenic hydrocarbon oxidation. The varied and multiple sources of methylglyoxal suggest there is strong potential for these low volatility products (e.g., oxalic acid and oligomers) to significantly contribute to SOA.

  3. Combined X-Ray and Raman Spectroscopic Techniques for the Characterization of Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.; Alpert, P. A.; Knopf, D. A.; Kilthau, W.; Bothe, D.; Charnawskas, J. C.; Gilles, M. K.; OBrien, R. E.; Moffet, R.; Radway, J.

    2014-12-01

    Sea spray aerosol along with mineral dust dominates the global mass flux of particles to the atmosphere. Marine aerosol particles are of particular interest because of their continual impact on cloud formation, precipitation, atmospheric chemical processes, and thus global climate. Here we report on the physical/chemical characteristics of sub-surface waters, aerosolized sea spray particles, and particles/organic species present in surface microlayer (SML) samples collected during oceanic field campaigns and generated during laboratory experiments, revealing a biogenic primary source of the organic fraction of airborne particles. We also report on ice nucleation experiments with aerosolized particles collected during the May 2014 WACS II North Atlantic cruise and with laboratory generated exudate material from diatom cultures with the potential to impact cirrus and mixed phase clouds. Physicochemical analyses using a multi-modal approach which includes Scanning Transmission X-ray Microscopy coupled with Near-Edge Absorption Fine Structure Spectroscopy (STXM/NEXAFS) and Raman spectroscopy confirm the presence and chemical similarity of polysaccharide-rich transparent exopolymer (TEP) material and proteins in both SML sea spray aerosol and ice forming aerosol particles, regardless of the extent of biological activity in surface waters. Our results demonstrate a direct relationship between the marine environment and composition of marine aerosol through primary particle emission.

  4. Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system.

    PubMed

    Afshari, Aliakbar; Zeidler-Erdely, Patti C; McKinney, Walter; Chen, Bean T; Jackson, Mark; Schwegler-Berry, Diane; Friend, Sherri; Cumpston, Amy; Cumpston, Jared L; Leonard, H Donny; Meighan, Terence G; Frazer, David G; Antonini, James M

    2014-10-01

    Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes.

  5. Characterization of ice-nucleating bacteria using on-line electron impact ionization aerosol mass spectrometry.

    PubMed

    Wolf, R; Slowik, J G; Schaupp, C; Amato, P; Saathoff, H; Möhler, O; Prévôt, A S H; Baltensperger, U

    2015-04-01

    The mass spectral signatures of airborne bacteria were measured and analyzed in cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. Suspensions of cultured cells in pure water were sprayed into the aerosol and cloud chambers forming an aerosol which consisted of intact cells, cell fragments and residual particles from the agar medium in which the bacteria were cultured. The aerosol particles were analyzed with a high-resolution time-of-flight aerosol mass spectrometer equipped with a newly developed PM2.5 aerodynamic lens. Positive matrix factorization (PMF) using the multilinear engine (ME-2) source apportionment was applied to deconvolve the bacteria and agar mass spectral signatures. The bacteria mass fraction contributed between 75 and 95% depending on the aerosol generation, with the remaining mass attributed to agar. We present mass spectra of Pseudomonas syringae and Pseudomonas fluorescens bacteria typical for ice-nucleation active bacteria in the atmosphere to facilitate the distinction of airborne bacteria from other constituents in ambient aerosol, e.g. by PMF/ME-2 source apportionment analyses. Nitrogen-containing ions were the most salient feature of the bacteria mass spectra, and a combination of C4 H8 N(+) (m/z 70) and C5 H12 N(+) (m/z 86) may be used as marker ions.

  6. Urban aerosol in Oporto, Portugal: Chemical characterization of PM10 and PM2.5

    NASA Astrophysics Data System (ADS)

    Custódio, Danilo; Ferreira, Catarina; Alves, Célia; Duarte, Mácio; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Frosini, Daniele; Colombi, Cristina; Gianelle, Vorne; Karanasiou, Angeliki; Querol, Xavier

    2014-05-01

    Several urban and industrial areas in Southern Europe are not capable of meeting the implemented EU standards for particulate matter. Efficient air quality management is required in order to ensure that the legal limits are not exceeded and that the consequences of poor air quality are controlled and minimized. Many aspects of the direct and indirect effects of suspended particulate matter on climate and public health are not well understood. The temporal variation of the chemical composition is still demanded, since it enables to adopt off-set strategies and to better estimate the magnitude of anthropogenic forcing on climate. This study aims to provide detailed information on concentrations and chemical composition of aerosol from Oporto city, an urban center in Southern Europe. This city is located near the coast line in the North of Portugal, being the country's second largest urban area. Moreover, Oporto city economic prospects depend heavily on a diversified industrial park, which contribute to air quality degradation. Another strong source of air pollution is traffic. The main objectives of this study are: 1) to characterize the chemical composition of PM10 and PM2.5 by setting up an orchestra of aerosol sampling devices in a strategic place in Oporto; 2) to identify the sources of particles exploring parameters such as organic and inorganic markers (e.g. sugars as tracers for biomass burning; metals and elemental carbon for industrial and vehicular emissions); 3) to evaluate long range transport of pollutants using back trajectory analysis. Here we present data obtained between January 2013 and January 2014 in a heavy traffic roadside sampling site located in the city center. Different PM10 and PM2.5 samplers were operated simultaneously in order to collect enough mass on different filter matrixes and to fulfill the requirements of analytical methodologies. More than 100 aerosol samples were collected and then analysed for their mass concentration and

  7. Evaluation of Aerosol Properties over Ocean from Moderate Resolution Imaging Spectroradiometer (MODIS) during ACE-Asia

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Remer, L. A.; Kaufman, Y. J.; Schmid, B.; Redemann, J.; Knobelspiesse, K.; Chern, J.-D.; Livingston, J.; Russell, P. B.; Xiong, X.; Ridgway, W.

    2005-01-01

    The Aerosol Characterization Experiment-Asia (ACE-Asia) was conducted in March-May 2001 in the western North Pacific in order to characterize the complex mix of dust, smoke, urban/industrial pollution, and background marine aerosol that is observed in that region in springtime. The Moderate Resolution Imaging Spectroradiometer (MODIS) provides a large-scale regional view of the aerosol during the ACE-Asia time period. Focusing only on aerosol retrievals over ocean, MODIS data show latitudinal and longitudinal variation in the aerosol characteristics. Typically, aerosol optical depth (tau(sub a)) values at 0.55 micrometers are highest in the 30 deg. - 50 deg. latitude band associated with dust outbreaks. Monthly mean tau(sub a) in this band ranges approx. 0.40-70, although large differences between monthly mean and median values indicate the periodic nature of these dust outbreaks. The size parameters, fine mode fraction (eta), and effective radius (r(sub eff)) vary between monthly mean values of eta = 0.47 and r(sub eff)= 0.75 micrometers in the cleanest regions far offshore to approximately eta = 0.85 and r(sub eff) =.30 micrometers in near-shore regions dominated by biomass burning smoke. The collocated MODIS retrievals with airborne, ship-based, and ground-based radiometers measurements suggest that MODIS retrievals of spectral optical depth fall well within expected error (DELTA tau(sub a) = plus or minus 0.03 plus or minus 0.05 tau(sub a)) except in situations dominated by dust, in which cases MODIS overestimate both the aerosol loading and the aerosol spectral dependence. Such behavior is consistent with issues related to particle nonsphericity. Comparisons of MODIS-derived r(sub eff) with AERONET retrievals at the few occurrences of collocations show MODIS systematically underestimates particle size by 0.2 micrometers. Multiple-year analysis of MODIS aerosol size parameters suggests systematic differences between the year 2001 and the years 2000 and 2002

  8. Characterization and sources assignation of PM2.5 organic aerosol in a rural area of Spain

    NASA Astrophysics Data System (ADS)

    Pindado, Oscar; Pérez, Rosa M. a.; García, Susana; Sánchez, Miguel; Galán, Pilar; Fernández, Marta

    The results from a year-long study of the organic composition of PM2.5 aerosol collected in a rural area influenced by a highway of Spain are reported. The lack of prior information related to the organic composition of PM2.5 aerosol in Spain, concretely in rural areas, led definition of the goals of this study. As a result, this work has been able to characterize the main organic components of atmospheric aerosols, including several compounds of SOA, and has conducted a multivariate analysis in order to assign sources of particulate matter. A total of 89 samples were taken between April 2004 and April 2005 using a high-volume sampler. Features and abundance of n-alkanes, polycyclic aromatic hydrocarbons (PAHs), alcohols and acids were separately determined using gas chromatography/mass spectrometry and high performance liquid chromatography analysis. The Σ n-alkane and ΣPAHs ranged from 3 to 81 ng m -3 and 0.1 to 6 ng m -3 respectively, with higher concentrations during colder months. Ambient concentrations of Σalcohols and Σacids ranged from 21 to 184 ng m -3 and 39 to 733 ng m -3, respectively. Also, several components of secondary organic aerosol have been quantified, confirming the biogenic contribution to ambient aerosol. In addition, factor analysis was used to reveal origin of organic compounds associated to particulate matter. Eight factors were extracted accounting more than 83% of the variability in the original data. These factors were assigned to a typical high pollution episode by anthropogenic particles, crustal material, plant waxes, fossil fuel combustion, temperature, microbiological emissions, SOA and dispersion of pollutants by wind action. Finally, a cluster analysis was used to compare the organic composition between the four seasons.

  9. Characterization of submicron aerosols influenced by biomass burning at a site in the Sichuan Basin, southwestern China

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Hu, Min; Hu, Wei-Wei; Niu, Hongya; Zheng, Jing; Wu, Yusheng; Chen, Wentai; Chen, Chen; Li, Lingyu; Shao, Min; Xie, Shaodong; Zhang, Yuanhang

    2016-10-01

    Severe air pollution in Asia is often the consequence of a combination of large anthropogenic emissions and adverse synoptic conditions. However, limited studies on aerosols have been conducted under high emission intensity and under unique geographical and meteorological conditions. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) and other state-of-the-art instruments were utilized at a suburban site, Ziyang, in the Sichuan Basin during December 2012 to January 2013. The chemical compositions of atmospheric submicron aerosols (PM1) were determined, the sources of organic aerosols (OA) were apportioned, and the aerosol secondary formation and aging process were explored as well. Due to high humidity and static air, PM1 maintained a relatively stable level during the whole campaign, with the mean concentration of 59.7 ± 24.1 µg m-3. OA was the most abundant component (36 %) in PM1, characterized by a relatively high oxidation state. Positive matrix factorization analysis was applied to the high-resolution organic mass spectral matrix, which deconvolved OA mass spectra into four factors: low-volatility (LV-OOA) and semivolatile oxygenated OA (SV-OOA), biomass burning (BBOA) and hydrocarbon-like OA (HOA). OOA (sum of LV-OOA and SV-OOA) dominated OA as high as 71 %. In total, secondary inorganic and organic formation contributed 76 % of PM1. Secondary inorganic species correlated well (Pearson r = 0.415-0.555, p < 0.01) with relative humidity (RH), suggesting the humid air can favor the formation of secondary inorganic aerosols. As the photochemical age of OA increased with higher oxidation state, secondary organic aerosol formation contributed more to OA. The slope of OOA against Ox( = O3+NO2) steepened with the increase of RH, implying that, besides the photochemical transformation, the aqueous-phase oxidation was also an important pathway of the OOA formation. Primary emissions, especially biomass burning, resulted

  10. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA

  11. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    The MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris, using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), giving detailed information on the non-refractory submicron aerosol species. The mass concentration of black carbon (BC), measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), BC, and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy)). Plotting the equivalent ratios of different organic aerosol species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA) formation. Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in London, Mexico City, and in New England, USA. Using the measured SOA volatile organic compounds (VOCs) species together with organic aerosol formation

  12. Characterization of the Aerosol-based Synthesis of Uranium Particles as a Potential Reference Material for Micro Analytical Methods.

    PubMed

    Middendorp, Ronald; Dürr, Martin; Knott, Alexander; Pointurier, Fabien; Ferreira Sanchez, Dario; Samson, Valerie Ann; Grolimund, Daniel

    2017-03-27

    A process for production of micrometer-sized particles composed of uranium oxide using aerosol spray pyrolysis is characterized with respect to the various production parameters. The aerosol is generated using a vibrating orifice aerosol generator providing monodisperse droplets, which are oxidized in a subsequent heat treatment. The final particles are characterized with micro analytical methods to determine size, shape, internal morphology, chemical and structural properties in order to assess the suitability of the produced particles as a reference material for micro analytical methods, in particular for mass-spectrometry. It is demonstrated that physico-chemical processes during particle formation and the heat treatment to chemically transform particles into an oxide strongly influence the particle shape and the internal morphology. Synchrotron μ-X-ray based techniques combined with μ-Raman spectroscopy have been applied to demonstrate that the obtained micro particles consist of a triuranium octoxide phase. Our studies demonstrate that the process is capable of delivering spherical particles with determined uniform size and ele-mental as well as chemical composition. The particles therefore represent a suitable base material to fulfill the homogeneity and stability requirements of a reference material for micro analytical methods applied in, for example, international safeguards or nuclear forensics.

  13. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  14. Characterizing Aerosols over Southeast Asia using the AERONET Data Synergy Tool

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Slutsker, Ilya; Slutsker, Ilya; Welton, Ellsworth, J.; Chin, Mian; Kucsera, Thomas; Schmaltz, Jeffery E.; Diehl, Thomas; Singh, Ramesh P.; Boonjawat, Jariya; Snidvongs, Arond; Le, Huy V.

    2007-01-01

    Biomass burning, urban pollution and dust aerosols have significant impacts on the radiative forcing of the atmosphere over Asia. In order to better quanti@ these aerosol characteristics, the Aerosol Robotic Network (AERONET) has established over 200 sites worldwide with an emphasis in recent years on the Asian continent - specifically Southeast Asia. A total of approximately 15 AERONET sun photometer instruments have been deployed to China, India, Pakistan, Thailand, and Vietnam. Sun photometer spectral aerosol optical depth measurements as well as microphysical and optical aerosol retrievals over Southeast Asia will be analyzed and discussed with supporting ground-based instrument, satellite, and model data sets, which are freely available via the AERONET Data Synergy tool at the AERONET web site (http://aeronet.gsfc.nasa.gov). This web-based data tool provides access to groundbased (AERONET and MPLNET), satellite (MODIS, SeaWiFS, TOMS, and OMI) and model (GOCART and back trajectory analyses) databases via one web portal. Future development of the AERONET Data Synergy Tool will include the expansion of current data sets as well as the implementation of other Earth Science data sets pertinent to advancing aerosol research.

  15. Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Guazzotti, S. A.; Suess, D. T.; Coffee, K. R.; Quinn, P. K.; Bates, T. S.; Wisthaler, A.; Hansel, A.; Ball, W. P.; Dickerson, R. R.; Neusüß, C.; Crutzen, P. J.; Prather, K. A.

    2003-08-01

    A major objective of the Indian Ocean Experiment (INDOEX) involves the characterization of the extent and chemical composition of pollution outflow from the Indian Subcontinent during the winter monsoon. During this season, low-level flow from the continent transports pollutants over the Indian Ocean toward the Intertropical Convergence Zone (ITCZ). Traditional standardized aerosol particle chemical analysis, together with real-time single particle and fast-response gas-phase measurements provided characterization of the sampled aerosol chemical properties. The gas- and particle-phase chemical compositions of encountered air parcels changed according to their geographic origin, which was traced by back trajectory analysis. The temporal evolutions of acetonitrile, a long-lived specific tracer for biomass/biofuel burning, number concentration of submicrometer carbon-containing particles with potassium (indicative of combustion sources), and mass concentration of submicrometer non-sea-salt (nss) potassium are compared. High correlation coefficients (0.84 < r2 < 0.92) are determined for these comparisons indicating that most likely the majority of the species evolve from the same, related, or proximate sources. Aerosol and trace gas measurements provide evidence that emissions from fossil fuel and biomass/biofuel burning are subject to long-range transport, thereby contributing to anthropogenic pollution even in areas downwind of South Asia. Specifically, high concentrations of submicrometer nss potassium, carbon-containing particles with potassium, and acetonitrile are observed in air masses advected from the Indian subcontinent, indicating a strong impact of biomass/biofuel burning in India during the sampling periods (74 (±9)% biomass/biofuel contribution to submicrometer carbonaceous aerosol). In contrast, lower values for these same species were measured in air masses from the Arabian Peninsula, where dominance of fossil fuel combustion is suggested by results

  16. Chemical and optical characterization of aerosols measured in spring 2002 at the ACE-Asia supersite, Zhenbeitai, China

    NASA Astrophysics Data System (ADS)

    Alfaro, S. C.; Gomes, L.; Rajot, J. L.; Lafon, S.; Gaudichet, A.; Chatenet, B.; Maille, M.; Cautenet, G.; Lasserre, F.; Cachier, H.; Zhang, X. Y.

    2003-12-01

    direction and by the fact that dust layers had generally already acquired a significant vertical extension (˜1500 m) when reaching the measurement site. This transported dust had already incorporated an anthropogenic carbonaceous component upon reaching the measurement site. The size distribution of this transported mixture is relatively constant and is characterized by the presence of a particle population with a number mean diameter between 1 and 2 μm. The mass scattering efficiency of this aerosol is 1.05 ± 0.13 m2/g, relative to PM9, and its Angström exponent is close to 0.19. The single scattering albedo determined by data inversion of Sun photometer measurements is found to increase from 0.89 at 441 nm to 0.95 at 873 nm. These relatively large ϖ0 values indicate that, though mixing of mineral dust and anthropogenic aerosols is the rule rather than the exception at ZBT, the aerosol is still not very absorbent during intense dust events. In consequence, the dust optical characteristics measured at ZBT during dust storms are probably representative of the ones of pure dust emitted from the "northwestern high desert" sources.

  17. Characterization of Atmospheric Aerosol Particles from a Mining City in Southwest China Using Electron Probe microanalysis

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Huang, Y.; Lu, H., III; Liu, Z., IV; Wang, N. V.

    2015-12-01

    Xin Cheng1, Yi Huang1*, Huilin Lu2, Zaidong Liu2, Ningming Wang21 Key Laboratory of Geological Nuclear Technology of Sichuan Province, College of Earth Science, Chengdu University of Technology, Chengdu 610059, China. ; E-mail:chengxin_cdut@163.com 2 College of Earth Science, Chengdu University of Technology, Chengdu 610059, China. ; *Corresponding author: E-mail: huangyi@cdut.cn Panzhihua is a mining city located at Pan-Xi Rift valley, southwest China. It has a long industrial history of vanadium-titanium magnetite mining, iron and steel smelting, and coal-fired power plants. Atomospheric environment has been seriously contaminated with airborne paticles, which is threatening human health.The harmful effects of aerosols are dependent on certain characteristics such as microphysical properties. However, few studsies have been carried out on morphological information contained on single atmospheric particles in this area. In this study, we provide a detailed morphologically and chemically characterization of airborne particles collected at Panzhihua city in October, 2014, using a quantitative single particle analysis based on EPXMA. The results indicate that based on their chemical composition, five major types of particles were identified. Among these, aluminosilicate particles have typical spherical shapes and are produced during the high-temperature combustion; Fe-containing particles contains high level of Mn, and more likely originated from mineralogical and steel industry; Si-containing particles can originate from mineralogical source; V-Ti-Mn-containing particles are also produced by steel industry; Ca-containing particles,these particles are CaCO3, mainly from the mining of limestone mine. The results help us on tracing and partitioning different sources of atomospheric particles in the industrial area. Fig.1 Fe-rich shperical particles

  18. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  19. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles <100 nm generated by means of jets

  20. Characterization of PM2.5 aerosols dominated by local pollution and Asian dust observed at an urban site in Korea during aerosol characterization experiments (ACE)--Asia Project.

    PubMed

    Park, Seung Shik; Kim, Young J; Cho, Sung Yong; Kim, Seung Jai

    2007-04-01

    Daily fine particulate matter (PM2.5) samples were collected at Gwangju, Korea, during the Aerosol Characterization Experiments (ACE)-Asia Project to determine the chemical properties of PM2.5 originating from local pollution and Asian dust (AD) storms. During the study period, two significant events occurred on April 10-13 and 24-25, 2001, and a minor event occurred on April 19, 2001. Based on air mass transport pathways identified by back-trajectory calculation, the PM2.5 dataset was classified into three types of aerosol populations: local pollution and two AD aerosol types. The two AD types were transported along different pathways. One originated from Gobi desert area in Mongolia, passing through Hunshandake desert in Northern Inner Mongolia, urban and polluted regions of China (AD1), and the other originated in sandy deserts located in the Northeast Inner Mongolia Plateau and then flowed southward through the Korean peninsula (AD2). During the AD2 event, a smoke plume that originated in North Korea was transported to our study site. Mass balance closures show that crustal materials were the most significant species during both AD events, contributing -48% to the PM2.5 mass; sulfate aerosols (19.1%) and organic matter (OM; 24.6%) were the second greatest contributors during the AD1 and AD2 periods, respectively, indicating that aerosol properties were dependent on the transport pathway. The sulfate concentration constituted only 6.4% (4.5 microg/m3) of the AD2 PM2.5 mass. OM was the major chemical species in the local pollution-dominated PM2.5 aerosols, accounting for 28.7% of the measured PM2.5 mass, followed by sulfate (21.4%), nitrate (15%), ammonium (12.8%), elemental carbon (8.9%), and crustal material (6.5%). Together with substantial enhancement of the crustal elements (Mg, Al, K, Ca, Sc, Ti, Mn, Fe, Sr, Zr, Ba, and Ce), higher concentrations of pollution elements (S, V, Ni, Zn, As, Cd, and Pb) were observed during AD1 and AD2 than during the local

  1. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions.

    PubMed

    Che, H C; Zhang, X Y; Wang, Y Q; Zhang, L; Shen, X J; Zhang, Y M; Ma, Q L; Sun, J Y; Zhang, Y W; Wang, T T

    2016-04-14

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate.

  2. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    NASA Astrophysics Data System (ADS)

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-04-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate.

  3. Physicochemical characterization of Capstone depleted uranium aerosols IV: in vitro solubility analysis.

    PubMed

    Guilmette, Raymond A; Cheng, Yung Sung

    2009-03-01

    As part of the Capstone Depleted Uranium (DU) Aerosol Study, the solubility of selected aerosol samples was measured using an accepted in vitro dissolution test system. This static system was employed along with a SUF (synthetic ultrafiltrate) solvent, which is designed to mimic the physiological chemistry of extracellular fluid. Using sequentially obtained solvent samples, the dissolution behavior over a 46-d test period was evaluated by fitting the measurement data to two- or three-component negative exponential functions. These functions were then compared with Type M and S absorption taken from the International Commission on Radiological Protection Publication 66 Human Respiratory Tract Model. The results indicated that there was a substantial variability in solubility of the aerosols, which in part depended on the type of armor being impacted by the DU penetrator and the particle size fraction being tested. Although some trends were suggested, the variability noted leads to uncertainties in predicting the solubility of other DU-based aerosols. Nevertheless, these data provide a useful experimental basis for modeling the intake-dose relationships for inhaled DU aerosols arising from penetrator impact on armored vehicles.

  4. Characterize Aerosols from MODIS MISR OMI MERRA-2: Dynamic Image Browse Perspective

    NASA Technical Reports Server (NTRS)

    Wei, Jennifer; Yang, Wenli; Albayrak, Arif; Zhao, Peisheng; Zeng, Jian; Shen, Suhung; Johnson, James; Kempler, Steve

    2016-01-01

    Among the known atmospheric constituents, aerosols still represent the greatest uncertainty in climate research. To understand the uncertainty is to bring altogether of observational (in-situ and remote sensing) and modeling datasets and inter-compare them synergistically for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if these earth science data (satellite and modeling) are well utilized and interpreted. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite-borne sensors routinely measure aerosols. There is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) have developed a new visualization service (NASA Level 2 Data Quality Visualization, DQViz)supporting various visualization and data accessing capabilities from satellite Level 2(MODISMISROMI) and long term assimilated aerosols from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2 displaying at their own native physical-retrieved spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting.

  5. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    PubMed Central

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-01-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate. PMID:27075947

  6. Physicochemical characterization of smoke aerosol during large-scale wildfires: Extreme event of August 2010 in Moscow

    NASA Astrophysics Data System (ADS)

    Popovicheva, O.; Kistler, M.; Kireeva, E.; Persiantseva, N.; Timofeev, M.; Kopeikin, V.; Kasper-Giebl, A.

    2014-10-01

    Enhancement of biomass burning-related research is essential for the assessment of large-scale wildfires impact on pollution at regional and global scale. Starting since 6 August 2010 Moscow was covered with thick smoke of unusually high PM10 and BC concentrations, considerably affected by huge forest and peat fires around megacity. This work presents the first comprehensive physico-chemical characterization of aerosols during extreme smoke event in Moscow in August 2010. Sampling was performed in the Moscow center and suburb as well as one year later, in August 2011 during a period when no biomass burning was observed. Small-scale experimental fires of regional biomass were conducted in the Moscow region. Carbon content, functionalities of organic/inorganic compounds, tracers of biomass burning (anhydrosaccharides), ionic composition, and structure of smoke were analyzed by thermal-optical analysis, FTIR spectroscopy, liquid and ion chromatography, and electron microscopy. Carbonaceous aerosol in August 2010 was dominated by organic species with elemental carbon (EC) as minor component. High average OC/EC near 27.4 is found, comparable to smoke of regional biomass smoldering fire, and exceeded 3 times the value observed in August 2011. Organic functionalities of Moscow smoke aerosols were hydroxyl, aliphatic, aromatic, acid and non-acid carbonyl, and nitro compound groups, almost all of them indicate wildfires around city as the source of smoke. The ratio of levoglucosan (LG) to mannosan near 5 confirms the origin of smoke from coniferous forest fires around megacity. Low ratio of LG/OC near 0.8% indicates the degradation of major molecular tracer of biomass burning in urban environment. Total concentration of inorganic ions dominated by sulfates SO2- and ammonium NH was found about 5 times higher during large-scale wildfires than in August 2011. Together with strong sulfate and ammonium absorbance in smoke aerosols, these observations prove the formation of

  7. Sampling and characterization of aerosols produced under simulated nuclear reactor accident conditions

    SciTech Connect

    Schlenger, B.J.; Horton, E.L.; Herceg, J.E.; Dunn, P.F.

    1986-12-01

    An aerosol sampling system was designed and used in a series of nuclear reactor safety experiments. The system was designed to sample radioactive and chemically reactive aerosols of unknown size distributions and concentrations in high temperature, high pressure steam/hydrogen environments. The aerosol samples are being analyzed posttest to determine their composition and morphology by microanalytical techniques. Main steam particle size distributions and loadings are being computed from particle data generated from SEM micrograph images and collection efficiencies calculated with measured thermal-hydraulic data. The system would be applicable to other types of experiments in which the sampling environment is severe and/or a priori knowledge of the general particle size range and loading are limited.

  8. Aerosol characterization study using multi-spectrum remote sensing measurement techniques.

    SciTech Connect

    Glen, Crystal Chanea; Sanchez, Andres L.; Lucero, Gabriel Anthony; Schmitt, Randal L.; Johnson, Mark S.; Tezak, Matthew S; Servantes, Brandon Lee

    2013-09-01

    A unique aerosol flow chamber coupled with a bistatic LIDAR system was implemented to measure the optical scattering cross sections and depolarization ratio of common atmospheric particulates. Each of seven particle types (ammonium sulfate, ammonium nitrate, sodium chloride, potassium chloride, black carbon and Arizona road dust) was aged by three anthropogenically relevant mechanisms: 1. Sulfuric acid deposition, 2. Toluene ozonolysis reactions, and 3. m-Xylene ozonolysis reactions. The results of pure particle scattering properties were compared with their aged equivalents. Results show that as most particles age under industrial plume conditions, their scattering cross sections are similar to pure black carbon, which has significant impacts to our understanding of aerosol impacts on climate. In addition, evidence emerges that suggest chloride-containing aerosols are chemically altered during the organic aging process. Here we present the direct measured scattering cross section and depolarization ratios for pure and aged atmospheric particulates.

  9. Characterization and Transport of Aerosols in the El Paso- Juarez Airshed

    NASA Astrophysics Data System (ADS)

    Pearson, R. R.; Fitzgerald, R. M.

    2003-12-01

    Aerosol optical depth measurements, in conjunction with novel inversion techniques, are used to determine the size distribution of airborne particulates in the El Paso, TX-Juarez, MX region (El Paso-Juarez Airshed). The inversion method was developed using Twomey's regularization method as a foundation. In our methodology novel algorithms are developed to determine the constraint coefficient and the regularization matrices. The extinction coefficient of the airborne particulates is calculated utilizing the T-matrix code. SEM images of regional airborne particulates are analyzed to determine aerosol physical characteristics for input into the T-matrix. Subsequently, the Mesoscale Model 5 in combination with trajectory analysis is implemented to study the transport of particulates in the El Paso-Juarez Airshed. The impact of an urban area on the concentration of aerosols on the surrounding rural and pastoral areas is analyzed for the El Paso-Juarez Airshed.

  10. Special issue: Chemical characterization of secondary organic aerosol - Dedication to Professor Magda Claeys

    NASA Astrophysics Data System (ADS)

    Surratt, Jason D.; Szmigielski, Rafal; Faye McNeill, V.

    2016-04-01

    Atmospheric aerosols are suspensions of liquid and solid particles that have diameters ranging from a few nanometers to several micrometers (μm). Atmospheric fine particulate matter (PM2.5, aerosols with aerodynamic diameters of 2.5 μm or less) are especially important since they can adversely affect air quality and human health as well as play a critical role in Earth's climate system. In terms of aerosol climate effects, PM2.5 can directly affect climate by scattering or absorbing incoming solar radiation or indirectly by acting as nuclei on which cloud droplets and ice particles form. As a result, a better understanding of processes that determine the formation and sinks of PM2.5 is needed for developing effective policies that improve air quality and public health as well as to accurately predict the response of the climate system due to changes in anthropogenic emissions.

  11. Characterization of primary and tertiary aerosols produced for high-temperature plasma spectrometry

    SciTech Connect

    Liu, H.; Montaser, A.

    1995-12-31

    Laser light scattering interferometry and laser Fraunhofer diffraction are used for the diagnostic studies of aerosols produced by a simple, high-efficiency pneumatic nebulizer. The new device, utilized in plasma spectrochemical analysis, operates more efficiently at low solution uptake rate (down to 10 {micro}L/min) compared to the conventional nebulizers consuming 1--2 mL/min. The efficacy of the cited techniques for assessing droplet-size information is contrasted for test aerosols prior introduction into high-temperature plasmas. Both the primary and tertiary aerosols are probed at uptake rate ranging from 10 to 1,200 {micro}L/min. The relevance of these measurements and data in elemental analysis is discussed.

  12. Characterization of tropospheric desert aerosols at solar wavelengths by multispectral radiometry from Landsat

    USGS Publications Warehouse

    Otterman, Joseph; Fraser, R. S.; Bahethi, O. P.

    1982-01-01

    Characteristics of tropospheric desert aerosols are derived by comparing nadir spectral reflectivities computed from the radiative transfer models with reflectivities measured from Landsat. Over the ocean, reflectivities are compared, but over land the comparison is carried out by determining the ratios of the nadir reflectivity of the surface-atmosphere system over heavy aerosol concentration to the reflectivity of the underlying surface. This remote sensing technique is found to be a sensitive approach for measuring n2, the imaginary part of the refractive index. The desert aerosols under study, in the Iran and Pakistan area, are essentially pure scatterers, inasmuch as an n2 value of 0.001±0.001 was determined for each of the four Landsat spectral bands, that is, for a spectral interval from 0.5 to 1.1 μm.

  13. Improvement and characterization of an automatic aerosol sampler for remote (glacier) sites

    NASA Astrophysics Data System (ADS)

    Preunkert, Susanne; Wagenbach, Dietmar; Legrand, Michel

    An automatic prototype aerosol sampler has been specifically revised to gain reliable year round data sets of the chemical aerosol composition at high Alpine ice core drill sites. An unattended deployment of the new aerosol sampler at the Vallot Observatory (4361 m a.s.l., French Alps) showed that previous shortcoming such as sensitivity to lightning activities and strong passive sampling effects were successfully overcome. The latter effect was almost eliminated, leading to an improvement of the detection limits by up to a factor of 30. Detailed investigations of the blank variability and sampling characteristics revealed that the new sampler allows to quantify the aerosol species NH 4+, SO 42-, K +, oxalate as well as total Cl - and total NO 3-. In addition records of Na +, Mg 2+ and Ca 2+ can be provided though systematically underestimated. On the other hand unreliable results are derived for formate, acetate and SO 2. Considering a bi-weekly sampling interval, detection limits range from 0.2 to 2 ng m -3 STP (except for Na +: 16 ng m -3 STP). Such a detection limit is also accessible for Na + if PTFE filters are used. The aerosol data set gained at Vallot Observatory allowed preliminary estimates of mean firn/air ratios for NH 4+, SO 42- and total NO 3-. The air/firn relationship appeared to be consistent compared to other high elevation ice core drilling sites. With the improved detection limits at still minimized energy consumption, a year round deployment of the automatic aerosol sampler appears now to be feasible even at polar glacier sites.

  14. Aerosol Composition, Chemistry, and Source Characterization during the 2008 VOCALS Experiment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Springston, S.; Jayne, J. T.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L. I.; Daum, P. H.

    2009-12-01

    Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined on board the US DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field experiment between October 16 and November 15, 2008. Chemical species determined included SO42-, NO3-, NH4+, and total organics (Org) using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only ~0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are believed to be externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on non-acidic sea-salt aerosols, responsible partly for the Cl- deficit. Dust particles appeared to play a minor role judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations in the study domain were substantial (~0.5 - ~3 μg/m3) with a strong gradient (highest near the shore decreasing with distance from land), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., ≤ 40 parts per trillion and <0.05 μg/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4

  15. A study on characterization of stratospheric aerosol and gas parameters with the spacecraft solar occultation experiment

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1977-01-01

    Spacecraft remote sensing of stratospheric aerosol and ozone vertical profiles using the solar occultation experiment has been analyzed. A computer algorithm has been developed in which a two step inversion of the simulated data can be performed. The radiometric data are first inverted into a vertical extinction profile using a linear inversion algorithm. Then the multiwavelength extinction profiles are solved with a nonlinear least square algorithm to produce aerosol and ozone vertical profiles. Examples of inversion results are shown illustrating the resolution and noise sensitivity of the inversion algorithms.

  16. Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment

    SciTech Connect

    Lee, Y.; Springston, S.; Jayne, J.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L.; Daum, P.

    2010-03-15

    Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and <0.05 {micro}g/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model

  17. Use of Cavity Ring Down Spectroscopy to Characterize Organic Acids and Aerosols Emitted in Biomass Burning

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Fiddler, Marc; Singh, Sujeeta

    2012-02-01

    One poorly understood, but significant class of volatile organic compounds (VOC) present in biomass burning is gas-phase organic acids and inorganic acids. These acids are extremely difficult to measure because of their adsorptive nature. Particulates and aerosols are also produced during biomass burning and impact the radiation budget of the Earth and, hence, impact global climate. Use cavity ring down spectroscopy (CRD) to measure absorption cross sections for OH overtone induced photochemistry in some organic acids (acetic acid and peracetic acid) will be presented and planed measurements of optical properties of aerosols composed of mixtures of different absorbing and non-absorbing species using CRD will be discussed.

  18. Molecular characterization of polar organosulfates in secondary organic aerosol from the green leaf volatile 3-Z-hexenal

    NASA Astrophysics Data System (ADS)

    Safi Shalamzari, Mohammad; Kahnt, Ariane; Wang, Wu; Vermeylen, Reinhilde; Kleindienst, Tadeusz; Lewandovski, Michael; Maenhaut, Willy; Claeys, Magda

    2014-05-01

    Much information is available about secondary organic aerosol (SOA) formation from terpenes, including mono- and sesquiterpenes, and isoprene. However, information about SOA formation from green leaf volatiles (GLVs), an important class of biogenic volatile organic compounds, which are emitted when plants are wounded or attacked by insects, is very scarce. In the present study, we provide evidence that 3-Z-hexenal is a potential precursor for SOA through formation of organosulfates. Organosulfate formation from 3-Z-hexenal was studied by conducting smog chamber photooxidation experiments in the presence of NO and acidic ammonium seed aerosol, where OH radicals were generated from the NOx mediated photochemical chain reactions. The focus of the study was on the structural characterization of products, i.e., organosulfates (OSs) with a molecular weight (MW) of 226, which are also present in ambient fine aerosol from a forested site (K puszta, Hungary) at a substantial relative abundance that is comparable to that of the MW 216 isoprene-related OSs. Polar OSs are of climatic relevance because of their capacity to increase the hydrophilic properties of aerosols and as such their cloud-condensation nuclei effects. Two different liquid chromatography (LC) techniques were employed to separate the polar OSs: the first technique uses a reversed-phase trifunctionally bonded C18 stationary phase, whereas the second one is based on ion-pairing C18 LC using dibutylammonium acetate as ion-pairing reagent. With regard to mass spectrometry (MS) techniques, use was made of high-resolution MS to determine the accurate mass (measured mass, 225.00809; elemental composition, C6H9O7S) as well as linear ion trap MS to obtain detailed structural information. The MW 226 OSs were structurally characterized as sulfated derivatives of 3,4-dihydroxyhex-2-enoic acid with the sulfate group positioned at C-3 or C-4. The formation of these OSs is explained through photooxidation in the gas phase

  19. A new comprehensive approach to characterizing carbonaceous aerosol with an application to wintertime Fresno, California PM2.5

    USGS Publications Warehouse

    Herckes, P.; Leenheer, J.A.; Collett, J.L.

    2007-01-01

    Fine particulate matter (PM2.5) samples were collected during a three week winter period in Fresno (CA). A composite sample was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the aerosol samples was recovered and characterized. Only 35% of the organic matter was water soluble with another third soluble in dichloromethane and the remainder insoluble. Within the isolated water soluble material, hydrophobic acid and hydrophilic acids plus neutrals fractions contained the largest amounts of carbon. The hydrophobic acids fraction appears to contain significant amounts of lignin type structures, spectra of the hydrophilic acids plus neutrals fraction are indicative of carbohydrates and secondary organic material. The dichloromethane soluble fraction contains a variety of organic compound families typical of many previous studies of organic aerosol speciation, including alkanes, alkanols, alkanals and alkanoic acids. Finally the water and solvent insoluble fraction exhibits a strong aromaticity as one would expect from black or elemental carbon like material; however, these spectra also show a substantial amount of aliphaticity consistent with linear side chains on the aromatic structures.

  20. Characterization of Custom-Designed Charge-Coupled Devices for Applications to Gas and Aerosol Monitoring Sensorcraft Instrument

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Farnsworth, Glenn R.; Garcia, Christopher S.; Zawodny, Joseph M.

    2005-01-01

    Custom-designed charge-coupled devices (CCD) for Gas and Aerosols Monitoring Sensorcraft instrument were developed. These custom-designed CCD devices are linear arrays with pixel format of 512x1 elements and pixel size of 10x200 sq m. These devices were characterized at NASA Langley Research Center to achieve a full well capacity as high as 6,000,000 e-. This met the aircraft flight mission requirements in terms of signal-to-noise performance and maximum dynamic range. Characterization and analysis of the electrical and optical properties of the CCDs were carried out at room temperature. This includes measurements of photon transfer curves, gain coefficient histograms, read noise, and spectral response. Test results obtained on these devices successfully demonstrated the objectives of the aircraft flight mission. In this paper, we describe the characterization results and also discuss their applications to future mission.

  1. Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates

    NASA Astrophysics Data System (ADS)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-07-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particulate matter (NR-PM1) in the southeastern USA. Measurements were performed in both rural and urban sites in the greater Atlanta area, Georgia (GA), and Centreville, Alabama (AL), for approximately 1 year as part of Southeastern Center for Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR-PM1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important, but not dominant, contributions to total OA in urban sites (i.e., 21-38 % of total OA depending on site and season). Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA factor (isoprene-OA) is only deconvolved in warmer months and contributes 18-36 % of total OA. The presence of isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79 %) of OA in all sites. MO-OOA correlates well with ozone in summer but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based

  2. Chemical characterization of fine organic aerosol for source apportionment at Monterrey, Mexico

    NASA Astrophysics Data System (ADS)

    Mancilla, Y.; Mendoza, A.; Fraser, M. P.; Herckes, P.

    2015-07-01

    , source attribution results obtained using the CMB model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5. The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5). To our knowledge, this is the second study to explore the broad chemical characterization of fine organic aerosol in Mexico and the first for the MMA.

  3. Particle Characterization and Ice Nucleation Efficiency of Field-Collected Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Wang, B.; Gilles, M. K.; Laskin, A.; Moffet, R.; Nizkorodov, S.; Roedel, T.; Sterckx, L.; Tivanski, A.; Knopf, D. A.

    2011-12-01

    Atmospheric ice formation by heterogeneous nucleation is one of the least understood processes resulting in cirrus and mixed-phase clouds which affect the global radiation budget, the hydrological cycle, and water vapor distribution. In particular, how organic aerosol affect ice nucleation is not well understood. Here we report on heterogeneous ice nucleation from particles collected during the CalNex campaign at the Caltech campus site, Pasadena, on May 19, 2010 at 6am-12pm (A2) and 12pm-6pm (A3) and May 23 at 6am-12pm (B2) and 6pm-12am (B4). The ice nucleation onsets and water uptake were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). The ice nucleation efficiency was related to the particle chemical composition. Single particle characterization was provided by using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The STXM/NEXAFS analysis indicates that the morning sample (A2) constitutes organic particles and organic particles with soot and inorganic inclusions. The afternoon sample (A3) is dominated by organic particles with a potentially higher degree of oxidation associated with soot. The B2 sample shows a higher number fraction of magnesium-containing particle indicative of a marine source and ~93% of the particles contained sulfur besides oxygen and carbon as derived from CCSEM/EDX analysis. The B4 sample lacks the strong marine influence and shows higher organic content. Above 230 K, we observed water uptake followed by condensation freezing at mean RH of 93-100% and 89-95% for A2 and A3, respectively. This indicates that the aged A3 particles are efficient ice nuclei (IN) for condensation freezing. Below 230 K A2 and A3 induced deposition ice nucleation between 125-155% RHice (at mean values of 134-150% RHice). The B2 and B4

  4. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer.

    PubMed

    Pratt, Kerri A; Mayer, Joseph E; Holecek, John C; Moffet, Ryan C; Sanchez, Rene O; Rebotier, Thomas P; Furutani, Hiroshi; Gonin, Marc; Fuhrer, Katrin; Su, Yongxuan; Guazzotti, Sergio; Prather, Kimberly A

    2009-03-01

    Vertical and horizontal profiles of atmospheric aerosols are necessary for understanding the impact of air pollution on regional and global climate. To gain further insight into the size-resolved chemistry of individual atmospheric particles, a smaller aerosol time-of-flight mass spectrometer (ATOFMS) with increased data acquisition capabilities was developed for aircraft-based studies. Compared to previous ATOFMS systems, the new instrument has a faster data acquisition rate with improved ion transmission and mass resolution, as well as reduced physical size and power consumption, all required advances for use in aircraft studies. In addition, real-time source apportionment software allows the immediate identification and classification of individual particles to guide sampling decisions while in the field. The aircraft (A)-ATOFMS was field-tested on the ground during the Study of Organic Aerosols in Riverside, CA (SOAR) and aboard an aircraft during the Ice in Clouds Experiment-Layer Clouds (ICE-L). Initial results from ICE-L represent the first reported aircraft-based single-particle dual-polarity mass spectrometry measurements and provide an increased understanding of particle mixing state as a function of altitude. Improved ion transmission allows for the first single-particle detection of species out to approximately m/z 2000, an important mass range for the detection of biological aerosols and oligomeric species. In addition, high time resolution measurements of single-particle mixing state are demonstrated and shown to be important for airborne studies where particle concentrations and chemistry vary rapidly.

  5. Chemical Analysis of Aerosols for Characterization of Long-Range Transport at Mt. Lassen, CA

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Waddell, J. A.; Cliff, S. S.; Perry, K. D.; Kelly, P. B.

    2004-12-01

    Effective regional air pollution regulation requires an understanding of long-range aerosol transport and natural aerosol chemistry. Sample collection was performed at the Interagency Monitoring of Protected Visual Environments (IMPROVE) sampling site on Mt. Lassen in the Sierra Nevada range at 1755 m elevation. The site is in Northern California at Longitude 121° 34' 40", Latitude 40° 32' 25". Size segregated and time resolved aerosol samples were collected with an 8 DRUM sampler from April 15th to May 24th 2002 as part of the NOAA Intercontinental Transport and Chemical Transformation Experiment (ITCT). The samples were analyzed with Synchrotron X-Ray Fluorescence (S-XRF) and Time of Flight mass spectroscopy (TOFMS). The total aerosol concentration exhibits a clear daily cycling of total mass, due to a nighttime down-slope air circulation from the free troposphere. The sulfate peaked in concentration during the night. Elemental data is suggestive of dust transport from continental Asia. The micron size ranges were dominated by nitrate, while the sub-micron size ranges had high levels of sulfate. Chemical analysis shows oceanic influence through strong correlations between methyl sulfonic acid (MSA), iodine, and oxalate. The appearance of the oceanic biogenic tracers in the sub-micron fraction is most likely a result of vertical mixing over the Pacific Ocean. MSA follows a diurnal pattern similar to sulfate, however the differences suggest both an oceanic and continental source for sulfate. The carbon particulate signal did not show any diurnal pattern during the measurement period.

  6. Spent fuel sabotage test program, characterization of aerosol dispersal : technical review and analysis supplement.

    SciTech Connect

    Durbin, Samuel G.; Lindgren, Eric Richard

    2009-07-01

    This project seeks to provide vital data required to assess the consequences of a terrorist attack on a spent fuel transportation cask. One such attack scenario involves the use of conical shaped charges (CSC), which are capable of damaging a spent fuel transportation cask. In the event of such an attack, the amount of radioactivity that may be released as respirable aerosols is not known with great certainty. Research to date has focused on measuring the aerosol release from single short surrogate fuel rodlets subjected to attack by a small CSC device in various aerosol chamber designs. The last series of three experiments tested surrogate fuel rodlets made with depleted uranium oxide ceramic pellets in a specially designed double chamber aerosol containment apparatus. This robust testing apparatus was designed to prevent any radioactive release and allow high level radioactive waste disposal of the entire apparatus following testing of actual spent fuel rodlets as proposed. DOE and Sandia reviews of the project to date identified a number of issues. The purpose of this supplemental report is to address and document the DOE review comments and to resolve the issues identified in the Sandia technical review.

  7. Aerosol climatology over Mexico City basin: Characterization of their optical properties

    NASA Astrophysics Data System (ADS)

    Carabali-Sandoval, Giovanni; Valdéz-Barrón, Mauro; Bonifaz-Alfonso, Roberto; Riveros-Rosas, David; Estévez, Héctor

    2015-04-01

    Climatology of aerosol optical depth (AOD), single scattering albedo (SSA) and size parameters were analyzed using a 15-year (1999-2014) data set from AErosol RObotic NETwork (AERONET) observations over Mexico City basin. Since urban air pollution is one of the biggest problems that face this megacity, many studies addressing these issues have been published. However few studies have examined the climatology of aerosol taking into account their optical properties over long-time period. Pollution problems in Mexico City have been generated by the daily activities of some 21 million people coupled with the vast amount of industry located within the city's metropolitan area. Another contributing factor is the unique geographical setting of the basin encompassing Mexico City. The basin covers approximately 5000 km2 of the Mexican Plateau at an average elevation of 2250 m above sea level (ASL) and is surrounded on three sides by mountains averaging over 3000 m ASL. In this work we present preliminary results of aerosol climatology in Mexico City.

  8. Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report.

    SciTech Connect

    Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier; Klennert, Lindsay A.; Nolte, Oliver; Molecke, Martin Alan; Autrusson, Bruno A.; Koch, Wolfgang; Pretzsch, Gunter Guido; Brucher, Wenzel; Steyskal, Michele D.

    2008-03-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively

  9. Physicochemical characterization of Capstone depleted uranium aerosols III: morphologic and chemical oxide analyses.

    PubMed

    Krupka, Kenneth M; Parkhurst, Mary Ann; Gold, Kenneth; Arey, Bruce W; Jenson, Evan D; Guilmette, Raymond A

    2009-03-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using x-ray diffraction (XRD), and particle morphologies were examined using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles were spherical, occasionally with dendritic or lobed surface structures. Others appear to have fractures that perhaps resulted from abrasion and comminution, or shear bands that developed from plastic deformation of the DU material. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small bits of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of Health Physics to interpret the

  10. Characterizing particulate matter emissions from vehicles: chassis-dynamometer tests using a High-Resolution Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Collier, S.; Zhang, Q.; Forestieri, S.; Kleeman, M.; Cappa, C. D.; Kuwayama, T.

    2012-12-01

    During September of 2011 a suite of real-time instruments was used to sample vehicle emissions at the California Air Resources Board Haagen-Schmidt facility in El Monte, CA. A representative fleet of 8 spark ignition gasoline vehicles, a diesel passenger vehicle, a gasoline direct-injection vehicle and an ultra-low emissions vehicle were tested on a chassis dynamometer. The emissions were sampled into the facility's standard CVS tunnel and diluted to atmospherically relevant levels (5-30 μg/m3) while controlling other factors such as relative humidity or background black carbon particulate loading concentrations. An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-MS) was among the real-time instruments used and sampled vehicle emissions at 10 second time resolution in order to characterize the non-refractory organic and inorganic particulate matter (PM). PM composition and concentration were tracked throughout the cold start driving cycle which included periods of fast acceleration and high velocity cruise control, meant to recreate typical commuter driving behavior. Variations in inorganic and organic PM composition for a given vehicle throughout the driving cycle as well as for various vehicles with differing emissions loading were characterized. Differences in PM composition for a given vehicle whose emissions are being exposed to differing experimental conditions such as varying relative humidity will also be reported. In conjunction with measurements from a Multi Wavelength Photoacoustic Black Carbon Spectrometer (MWPA-BC) and real-time gas measurements from the CARB facility, we determine the real-time emission ratios of primary organic aerosols (POA) with respect to BC and common combustion gas phase pollutants and compared to different vehicle driving conditions. The results of these tests offer the vehicle emissions community a first time glimpse at the real-time behavior of vehicle PM emissions for a variety of conditions and

  11. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    PubMed Central

    Li, Xiaojian; Vogt, Frederick G.; Hayes, Don

    2014-01-01

    Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451

  12. Single-particle characterization of atmospheric aerosols collected at Gosan, Korea, during the Asian Pacific Regional Aerosol Characterization Experiment field campaign using low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Geng, Hong; Cheng, Fangqin; Ro, Chul-Un

    2011-11-01

    A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.

  13. The solvent-extractable organic compounds in the Indonesia biomass burning aerosols - characterization studies

    NASA Astrophysics Data System (ADS)

    Fang, M.; Zheng, M.; Wang, F.; To, K. L.; Jaafar, A. B.; Tong, S. L.

    The large-scale air pollution episode due to the out-of-control biomass burning for agricultural purposes in Indonesia started in June 1997, has become a severe environmental problem for itself and the neighboring countries. The fire lasted for almost five months. Its impact on the health and ecology in the affected areas is expected to be substantial, costly and possibly long lasting. Air pollution Index as high as 839 has been reported in Malaysia. API is calculated based on the five pollutants: NO 2, SO 2, O 3, CO, and respirable suspended particulates (PM10). It ranges in value from 0 to 500. An index above 101 is considered to be unhealthy and a value over 201 is very unhealthy (Abidin and Shin, 1996). The solvent-extractable organic compounds from four total suspended particulate (TSP) high-volume samples collected in Kuala Lumpur, Malaysia (Stations Pudu and SIRIM) were subjected to characterization - the abundance was determined and biomarkers were identified. Two of the samples were from early September when the fire was less intense, while the other two were from late September when Kuala Lumpur experienced very heavy smoke coverage which could be easily observed from NOAA/AVHRR satellite images. The samples contained mainly aliphatic hydrocarbons such as n-alkanes and triterpanes, alkanoic acids, alkanols, and polycyclic aromatic hydrocarbons. The difference between the early and late September samples was very significant. The total yield increased from 0.6 to 24.3 μg m -3 at Pudu and 1.9 to 20.1 μg m -3 at SIRIM, with increases in concentration in every class. The higher input of vascular plant wax components in the late September samples, when the fire was more intense, was characterized by the distribution patterns of the homologous series n-alkanes, n-alkanoic acids, and n-alkanols, e.g., lower U : R, higher >C 22/C 20/

  14. Light Absorption Properties of Brown Carbon from Fresh and Aged Biomass Burning Aerosols Characterized in a Smog Chamber

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Chuang, W.; Hennigan, C.; McMeeking, G. R.; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2011-12-01

    Black carbon is an important particulate phase light absorber in the atmosphere. Recent studies have shown that some organic matter also absorb visible light, especially at short wavelengths. These organic compounds are referred to as "brown carbon". Biomass burning is a major contributor to brown carbon in atmospheric particulate matter; however, its optical properties are poorly characterized. We have conducted smog chamber experiments to investigate light absorption properties of brown carbon in primary and aged biomass burning emissions, namely the imaginary refractive index. The aging was performed in a smog chamber, where dilute emissions were exposed to UV lights to initiate photo-oxidation, which often produced substantial secondary organic aerosol. The experiments took place at Carnegie Mellon University (CMU) and at the US Fire Science Laboratory in Missoula, MT as part of the Fire Lab at Missoula field campaign (FLAME 2009). The CMU experiments simulated household wood burning (oak), and the FLAME experiments simulated wildland fires with fuels including gallberry, lodgepole pine, black spruce and ponderosa pine. Absorption coefficients were measured using an Aethalometer (Magee Scientific) at 7 different wavelengths ranging between 370 nm and 950 nm. The black carbon size distributions were measured using a Single Particle Soot Photometer (SP2, DMT), and total aerosol size distributions were measured using a Scanning Mobility Particle Sizer (SMPS, TSI). The absorption coefficients of both the fresh and aged aerosol were significantly larger, and had stronger wavelength dependence than what would be expected for black carbon alone, and for a black carbon core with a non-absorbing shell. This indicates that biomass burning organic aerosol should be classified as brown carbon. A (black carbon) core - (brown carbon) shell absorption model based on Mie theory was optimized to determine the shell imaginary refractive index which produces model outputs that

  15. Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth A.; Schauer, James J.; Pradhan, Bidya Banmali; Dangol, Pradeep Man; Habib, Gazala; Venkataraman, Chandra; Ramanathan, V.

    2010-03-01

    This study focuses on improving source apportionment of carbonaceous aerosol in South Asia and consists of three parts: (1) development of novel molecular marker-based profiles for real-world biofuel combustion, (2) application of these profiles to a year-long data set, and (3) evaluation of profiles by an in-depth sensitivity analysis. Emissions profiles for biomass fuels were developed through source testing of a residential stove commonly used in South Asia. Wood fuels were combusted at high and low rates, which corresponded to source profiles high in organic carbon (OC) or high in elemental carbon (EC), respectively. Crop wastes common to the region, including rice straw, mustard stalk, jute stalk, soybean stalk, and animal residue burnings, were also characterized. Biofuel profiles were used in a source apportionment study of OC and EC in Godavari, Nepal. This site is located in the foothills of the Himalayas and was selected for its well-mixed and regionally impacted air masses. At Godavari, daily samples of fine particulate matter (PM2.5) were collected throughout the year of 2006, and the annual trends in particulate mass, OC, and EC followed the occurrence of a regional haze in South Asia. Maximum concentrations occurred during the dry winter season and minimum concentrations occurred during the summer monsoon season. Specific organic compounds unique to aerosol sources, molecular markers, were measured in monthly composite samples. These markers implicated motor vehicles, coal combustion, biomass burning, cow dung burning, vegetative detritus, and secondary organic aerosol as sources of carbonaceous aerosol. A molecular marker-based chemical mass balance (CMB) model provided a quantitative assessment of primary source contributions to carbonaceous aerosol. The new profiles were compared to widely used biomass burning profiles from the literature in a sensitivity analysis. This analysis indicated a high degree of stability in estimates of source

  16. Real-time continuous characterization of secondary organic aerosol derived from isoprene epoxydiols in downtown Atlanta, Georgia, using the Aerodyne Aerosol Chemical Speciation Monitor.

    PubMed

    Budisulistiorini, Sri Hapsari; Canagaratna, Manjula R; Croteau, Philip L; Marth, Wendy J; Baumann, Karsten; Edgerton, Eric S; Shaw, Stephanie L; Knipping, Eladio M; Worsnop, Douglas R; Jayne, John T; Gold, Avram; Surratt, Jason D

    2013-06-04

    Real-time continuous chemical measurements of fine aerosol were made using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) during summer and fall 2011 in downtown Atlanta, Georgia. Organic mass spectra measured by the ACSM were analyzed by positive matrix factorization (PMF), yielding three conventional factors: hydrocarbon-like organic aerosol (HOA), semivolatile oxygenated organic aerosol (SV-OOA), and low-volatility oxygenated organic aerosol (LV-OOA). An additional OOA factor that contributed to 33 ± 10% of the organic mass was resolved in summer. This factor had a mass spectrum that strongly correlated (r(2) = 0.74) to that obtained from laboratory-generated secondary organic aerosol (SOA) derived from synthetic isoprene epoxydiols (IEPOX). Time series of this additional factor is also well correlated (r(2) = 0.59) with IEPOX-derived SOA tracers from filters collected in Atlanta but less correlated (r(2) < 0.3) with a methacrylic acid epoxide (MAE)-derived SOA tracer, α-pinene SOA tracers, and a biomass burning tracer (i.e., levoglucosan), and primary emissions. Our analyses suggest IEPOX as the source of this additional factor, which has some correlation with aerosol acidity (r(2) = 0.3), measured as H(+) (nmol m(-3)), and sulfate mass loading (r(2) = 0.48), consistent with prior work showing that these two parameters promote heterogeneous chemistry of IEPOX to form SOA.

  17. Characterization of solvent-extractable organics in urban aerosols based on mass spectrum analysis and hygroscopic growth measurement.

    PubMed

    Mihara, Toshiyuki; Mochida, Michihiro

    2011-11-01

    To characterize atmospheric particulate organics with respect to polarity, aerosol samples collected on filters in the urban area of Nagoya, Japan, in 2009 were extracted using water, methanol, and ethyl acetate. The extracts were atomized and analyzed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a hygroscopicity tandem differential mobility analyzer. The atmospheric concentrations of the extracted organics were determined using phthalic acid as a reference material. Comparison of the organic carbon concentrations measured using a carbon analyzer and the HR-ToF-AMS suggests that organics extracted with water (WSOM) and ethyl acetate (EASOM) or those extracted with methanol (MSOM) comprise the greater part of total organics. The oxygen-carbon ratios (O/C) of the extracted organics varied: 0.51-0.75 (WSOM), 0.37-0.48 (MSOM), and 0.27-0.33 (EASOM). In the ion-group analysis, WSOM, MSOM, and EASOM were clearly characterized by the different fractions of the CH and CO(2) groups. On the basis of the hygroscopic growth measurements of the extracts, κ of organics at 90% relative humidity (κ(org)) were estimated. Positive correlation of κ(org) with O/C (r 0.70) was found for MSOM and EASOM, but no clear correlation was found for WSOM.

  18. Characterization of new particle and secondary aerosol formation during summertime in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. M.; Zhang, X. Y.; Sun, J. Y.; Lin, W. L.; Gong, S. L.; Shen, X. J.; Yang, S.

    2011-07-01

    Size-resolved aerosol number and mass concentrations and the mixing ratios of O3 and various trace gases were continuously measured at an urban station before and during the Beijing Olympic and Paralympic Games (5 June to 22 September, 2008). 23 new particle formation (NPF) events were identified; these usually were associated with changes in wind direction and/or rising concentrations of gas-phase precursors or after precipitation events. Most of the NPF events started in the morning and continued to noon as particles in the nucleation mode grew into the Aitken mode. From noon to midnight, the aerosols grew into the accumulation mode through condensation and coagulation. Ozone showed a gradual rise starting around 10:00 local time, reached its peak around 15:00 and then declined as the organics increased. The dominant new particle species were organics (40-75% of PM1) and sulphate; nitrate and ammonium were more minor contributors.

  19. Characterization and Pathogenesis of Aerosolized Eastern Equine Encephalitis in the Common Marmoset (Callithrix jacchus)

    DTIC Science & Technology

    2016-08-10

    vaccines to protect against eastern equine encephalitis virus 15 (EEEV) in humans currently do not exist. Animal models which faithfully recapitulate the...New Hampshire, Louisiana, and Georgia 63 (Gaensbauer, 2014). 64 The need for licensed vaccines and antiviral therapeutics for human use in the event...represent a recognized biological threat that can be intentionally 366 delivered by aerosol; new vaccines are being developed but must be tested for

  20. Rifapentine-loaded PLGA microparticles for tuberculosis inhaled therapy: Preparation and in vitro aerosol characterization.

    PubMed

    Parumasivam, Thaigarajan; Leung, Sharon S Y; Quan, Diana Huynh; Triccas, Jamie A; Britton, Warwick J; Chan, Hak-Kim

    2016-06-10

    Inhaled delivery of drugs incorporated into poly (lactic-co-glycolic acid) (PLGA) microparticles allows a sustained lung concentration and encourages phagocytosis by alveolar macrophages that harboring Mycobacterium tuberculosis. However, limited data are available on the effects of physicochemical properties of PLGA, including the monomer ratio (lactide:glycide) and molecular weight (MW) on the aerosol performance, macrophage uptake, and toxicity profile. The present study aims to address this knowledge gap, using PLGAs with monomer ratios of 50:50, 75:25 and 85:15, MW ranged 24 - 240kDa and an anti-tuberculosis (TB) drug, rifapentine. The PLGA-rifapentine powders were produced through a solution spray drying technique. The particles were spherical with a smooth surface and a volume median diameter around 2μm (span ~2). When the powders were dispersed using an Osmohaler(®) at 100L/min for 2.4s, the fine particle fraction (FPFtotal, wt.% particles in aerosol <5μm relative to the total recovered drug mass) was ranged between 52 and 57%, with no significant difference between the formulations. This result suggests that the monomer ratio and MW are not crucial parameters for the aerosol performance of PLGA. The phagocytosis analysis was performed using Thp-1 monocyte-derived macrophages. The highest rate of uptake was observed in PLGA 85:15 followed by 75:25 and 50:50 with about 90%, 80% and 70%, respectively phagocytosis over 4h of exposure. Furthermore, the cytotoxicity analysis on Thp-1 and human lung adenocarcinoma epithelial cells demonstrated that PLGA concentration up to 1.5mg/mL, regardless of the monomer composition and MW, were non-toxic. In conclusion, the monomer ratio and MW are not crucial in determining the aerosol performance and cytotoxicity profile of PLGA however, the particles with high lactide composition have a superior tendency for macrophage uptake.

  1. Characterization of Aerosols and Atmospheric Parameters From Space-Borne and Surface-Based Remote Sensing

    DTIC Science & Technology

    2016-06-07

    Ocean color and temperature exhibit strong gradients. White capping and sun glint (which are highly wind speed dependent) cause further ocean color...aircraft altitude causing spectral brightness shift due to changes in aerosol and molecular scattering, and repeat the sequence. The method for remote...sensing of smoke or sulfates over vegetated (dark) regions by Kaufman et al. (1997) is extended to include dust over the desert ( bright surface). Now

  2. An Investigation of a Cryogenic Matrix Isolation Approach for Characterizing Phosphorus Acid Aerosol.

    DTIC Science & Technology

    1984-07-01

    PChicago, Illinois 60616 CONTRACT NO. DAAK11-82-C-0149 JULY 1984 us Army Armmmnt, Munitiom & Chemicl Commmd Aberdeen Proving Ground, Mwuyn 21010...aqueous aerosols containing none volatile solutes, the water could be partially or completely removed by raising the temperature of the condensed material...and Recorded at 10K. (The absorption feature showing at 2800-3000 cmŕ is an impurity peak. The sharp peak at =250 cm-’ is an artifact due to a filter

  3. Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M.; Léon, J.-F.; Chiapello, I.; Tanré, D.

    2006-10-01

    We analyze the relationship between daily fine particle mass concentration (PM2.5) and columnar aerosol optical thickness derived from the Polarization and Directionality of Earth's Reflectances (POLDER) satellite sensor. The study is focused over France during the POLDER-2 lifetime between April and October 2003. We have first compared the POLDER derived aerosol optical thickness (AOT) with integrated volume size distribution derived from ground-based Sun Photometer observations. The good correlation (R=0.72) with sub-micron volume fraction indicates that POLDER derived AOT is sensitive to the fine aerosol mass concentration. Considering 1974 match-up data points over 28 fine particle monitoring sites, the POLDER-2 derived AOT is fairly well correlated with collocated PM2.5 measurements, with a correlation coefficient of 0.55. The correlation coefficient reaches a maximum of 0.80 for particular sites. We have analyzed the probability to find an appropriate air quality category (AQC) as defined by U.S. Environmental Protection Agency (EPA) from POLDER-2 AOT measurements. The probability can be up to 88.8% (±3.7%) for the "Good" AQC and 89.1% (±3.6%) for the "Moderate" AQC.

  4. Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M.; Léon, J.-F.; Chiapello, I.; Tanré, D.

    2006-07-01

    We analyze the relationship between daily fine particle mass concentration (PM2.5) and columnar aerosol optical thickness derived from the Polarization and Directionality of Earth's Reflectances (POLDER) satellite sensor. The study is focused over France during the POLDER-2 lifetime between April and October 2003. We have first compared the POLDER derived aerosol optical thickness (AOT) with integrated volume size distribution derived from ground-based Sun Photometer observations. The good correlation (R=0.72) with sub-micron volume fraction indicates that POLDER derived AOT is sensitive to the fine aerosol mass concentration. Considering 1974 match-up data points over 28 fine particle monitoring sites, the POLDER-2 derived AOT is fairly well correlated with collocated PM2.5 measurements, with a correlation coefficient of 0.55. The correlation coefficient reaches a maximum of 0.80 for particular sites. We have analyzed the probability to find an appropriate air quality category (AQC) as defined by the U.S. Environmental Protection Agency (EPA) from POLDER-2 AOT measurements. The probability can be up to 88.8% (±3.7%) for the "Good'' AQC and 89.1% (±3.6%) for the "Moderate'' AQC.

  5. Assessment of the improvements in accuracy of aerosol characterization resulted from additions of polarimetric measurements to intensity-only observations using GRASP algorithm (Invited)

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Herman, M.; Fedorenko, A.; Lopatin, A.; Goloub, P.; Ducos, F.; Aspetsberger, M.; Planer, W.; Federspiel, C.

    2013-12-01

    During last few years we were developing GRASP (Generalized Retrieval of Aerosol and Surface Properties) algorithm designed for the enhanced characterization of aerosol properties from spectral, multi-angular polarimetric remote sensing observations. The concept of GRASP essentially relies on the accumulated positive research heritage from previous remote sensing aerosol retrieval developments, in particular those from the AERONET and POLDER retrieval activities. The details of the algorithm are described by Dubovik et al. (Atmos. Meas. Tech., 4, 975-1018, 2011). The GRASP retrieves properties of both aerosol and land surface reflectance in cloud-free environments. It is based on highly advanced statistically optimized fitting and deduces nearly 50 unknowns for each observed site. The algorithm derives a similar set of aerosol parameters as AERONET including detailed particle size distribution, the spectrally dependent the complex index of refraction and the fraction of non-spherical particles. The algorithm uses detailed aerosol and surface models and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are done on-line without using traditional look-up tables. In addition, the algorithm uses the new multi-pixel retrieval concept - a simultaneous fitting of a large group of pixels with additional constraints limiting the time variability of surface properties and spatial variability of aerosol properties. This principle is expected to result in higher consistency and accuracy of aerosol products compare to conventional approaches especially over bright surfaces where information content of satellite observations in respect to aerosol properties is limited. The GRASP is a highly versatile algorithm that allows input from both satellite and ground-based measurements. It also has essential flexibility in measurement processing. For example, if observation data set includes spectral

  6. Particle size distribution and inorganic aerosol characterization during DAURE 2009 winter field campaign at Montseny site

    NASA Astrophysics Data System (ADS)

    Aranzazu Revuelta, M.; Gómez-Moreno, Francisco J.; Plaza, Javier; Coz, Esther; Pey, Jorge; Cusack, Michael; Pandolfi, Marco; Rodríguez-Maroto, Jesús J.; Pujadas, Manuel

    2010-05-01

    During DAURE 2009 winter field campaign, one of the sampling sites was Montseny, a rural background station located 40 km NNE from Barcelona and 25 km W from the Mediterranean Sea. It is a Natural Park and a protected area, thus with low human activity, mainly agriculture. The sampling station was located on a valley with it axis oriented on the direction NW-SE. At this site, a TSI-SMPS (DMA 3071 and CPC 3022) was installed in order to measure the particle number distribution in the size range 15-600 nm during the period March 19-27 with a measurement cycle of 12 minutes The particle mass distribution was measured by a micro-orifice uniform deposit impactor (MOUDI) using eleven size stages with aluminum substrates and a quartz fiber backup filter. Four samples were taken during the period 13-19 March, two during 24 hours and other two during 48 hours. This impactor has a wider size range allowing to measure from 56 to 18000 nm. The substrates and filters obtained were later analyzed for determining soluble ions (sulfate, nitrate, ammonium and calcium) by IC. There are mainly two different kinds of events measured with the SMPS. When the air masses were coming from SE, which meant that they could come from the park but also from the urban and industrial areas located in the pre-coastal depression, it was characterized by higher particle number concentrations and by size distributions centered on 80 nm. This meant it was an aged aerosol, which had grown up by coagulation, condensation and oxidation processes. When the air masses were coming from NW (the second valley axis side), the particle measured were much smaller, the instrument started to detect particles with 15 nm, but smaller ones could be possible. This meant that new particle nucleation could have occurred in the valley, just before arriving to the sampling point. From MOUDI samplings, two different types of events were also observed. Three of the four samplings coincided with stagnation of air masses or

  7. Characterization of carbonaceous aerosols during the MINOS campaign in Crete, July-August 2001: a multi-analytical approach

    NASA Astrophysics Data System (ADS)

    Sciare, J.; Cachier, H.; Oikonomou, K.; Ausset, P.; Sarda-Estève, R.; Mihalopoulos, N.

    2003-07-01

    During the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T=550°C) under the pure helium step of the analysis. During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) concentrations were on average respectively 1.19±0.56 and 3.62±1.08 μgC/m3 for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 μgC/m3 for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope = 1.00, r2=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO4), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between

  8. Characterization of carbonaceous aerosols during the MINOS campaign in Crete, July August 2001: a multi-analytical approach

    NASA Astrophysics Data System (ADS)

    Sciare, J.; Cachier, H.; Oikonomou, K.; Ausset, P.; Sarda-Estève, R.; Mihalopoulos, N.

    2003-10-01

    During the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T>550ºC) under the pure helium step of the analysis. During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) mass concentrations were on average respectively 1.19±0.56 and 3.62±1.08 mgC/m3 for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 mgC/m3 for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope=1.00, r2=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO4), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between these

  9. Production, Organic Characterization, and Phase Transformations of Marine Particles Aerosolized from a Laboratory Mesocosm Phytoplankton Bioreactor

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Knopf, D. A.; Aller, J. Y.; Radway, J.; Kilthau, W.

    2012-12-01

    Previous studies have shown that particles emitted from bubble bursting and wave breaking of ocean waters with high biological activity can contain sea salts associated with organic material, with smaller particles containing a larger mass fraction of organics than larger particles. This likely indicates a link between phytoplankton productivity in oceans and particulate organic material in marine air. Once aerosolized, particles with significant amount of organic material can affect cloud activation and formation of ice crystals, among other atmospheric processes, thus influencing climate. This is significant for clouds and climate particularly over nutrient rich polar seas, in which concentrations of biological organisms can reach up to 109 cells per ml during spring phytoplankton blooms. Here we present results of bubble bursting aerosol production from a seawater mesocosm containing artificial seawater, natural seawater and unialgal cultures of three representative phytoplankton species. These phytoplankton (Thalassiosira pseudonana, Emilianaia huxleyi, and Nannochloris atomus), possessed siliceous frustules, calcareous frustules and no frustules, respectively. Bubbles were generated employing recirculating impinging water jets or glass frits. Dry and humidified aerosol size distributions and bulk aerosol organic composition were measured as a function of phytoplankton growth, and chlorophyll composition and particulate and dissolved organic carbon in the water were determined. Finally, particles were collected on substrates for ice nucleation and water uptake experiments, their elemental compositions were determined using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEMEDAX), and their carbon speciation was determined using scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Particle size distributions exposed to dry and humidified air employing

  10. Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013

    NASA Astrophysics Data System (ADS)

    Zhang, J. K.; Sun, Y.; Liu, Z. R.; Ji, D. S.; Hu, B.; Liu, Q.; Wang, Y. S.

    2014-03-01

    In January 2013, Beijing experienced several serious haze events. To achieve a better understanding of the characteristics, sources and processes of aerosols during this month, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at an urban site between 1 January and 1 February 2013 to obtain the size-resolved chemical composition of non-refractory submicron particles (NR-PM1). During this period, the mean measured NR-PM1 mass concentration was 89.3 ± 85.6 μg m-3, and it peaked at 423 μg m-3. Positive matrix factorization (PMF) differentiated the organic aerosol into five components, including a highly oxidized, low-volatility oxygenated organic aerosol (LV-OOA), a less oxidized, semi-volatile oxygenated OA (SV-OOA), a coal combustion OA (CCOA), a cooking-related OA (COA), and a hydrocarbon-like OA (HOA), which on average accounted for 28%, 26%, 15%, 20% and 11% of the total organic mass, respectively. A detailed comparison between the polluted days and unpolluted days found many interesting results. First, the organic fraction was the most important NR-PM1 species during the unpolluted days (58%), while inorganic species were dominant on polluted days (59%). The OA composition also experienced a significant change; it was dominated by primary OA (POA), including COA, HOA and CCOA, on unpolluted days. The contribution of secondary OA (SOA) increased from 35% to 63% between unpolluted and polluted days. Second, meteorological effects played an important role in the heavy pollution in this month and differed significantly between the two types of days. The temperature and relative humidity (RH) were all increased on polluted days and the wind speed and air pressure were decreased. Third, the diurnal variation trend in NR-PM1 species and OA components showed some differences between the two types of days, and the OA was more highly oxidized on polluted days. Fourth, the effects of air masses were significantly different

  11. Chemical characterization of the main secondary organic aerosol (SOA) products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-04-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e. burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed in the atmospheric gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the low-volatility SOA products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of H2O2 and nitrite. The formed guaiacol reaction products were concentrated by using solid-phase extraction (SPE) and then purified by means of semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state 1H, 13C and 2D nuclear magnetic resonance (NMR) spectroscopy and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of UV and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  12. Physico-chemical characterization of secondary organic aerosol derived from catechol and guaiacol as a model substance for atmospheric humic-like substances

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Krüger, H.-U.; Grothe, H.; Schmitt-Kopplin, P.; Whitmore, K.; Zetzsch, C.

    2010-07-01

    Secondary organic aerosol was produced from the aromatic precursors catechol and guaiacol by reaction with ozone in the presence and absence of simulated sunlight and humidity and investigated for its properties as a proxy for humic-like substances (HULIS). Beside a small particle size, a relatively low molecular weight and typical optical features in the UV/VIS spectral range, HULIS contain a typical aromatic and/or olefinic chemical structure and highly oxidized functional groups within a high chemical diversity. Various methods were used to characterize the secondary organic aerosols obtained: Fourier transform infrared spectroscopy (FTIR) demonstrated the formation of different carbonyl containing functional groups as well as structural and functional differences between aerosols formed at different environmental conditions. UV/VIS spectroscopy of filter samples showed that the particulate matter absorbs far into the visible range up to more than 500 nm. Ultrahigh resolved mass spectroscopy (ICR-FT/MS) determined O/C-ratios between 0.3 and 1 and main molecular weights between 200 and 500 Da. Temperature-programmed-pyrolysis mass spectroscopy identified carboxylic acids and lactones as major functional groups. Particle sizing using CNC-DMPS demonstrated the formation of small particles during a secondary organic aerosol formation process. Particle imaging using field-emission-gun scanning electron microscopy (FEG-SEM) showed spherical particles, forming clusters and chains. Hence, secondary organic aerosols from catechol and guaiacol are appropriate model substances for studies of the processing of aromatic secondary organic aerosols and atmospheric HULIS on the laboratory scale.

  13. Validation of the on-line aerosol retrieval and error characterization algorithm from the OMI Near-UV observations during the DRAGON-NE Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Ahn, C.; Kim, J.; Bhartia, P. K.; Torres, O.; Spurr, R. J. D.; Liu, X.; Chance, K.; Holben, B. N.

    2014-12-01

    One of the representative advantages of using ultraviolet channel to retrieve aerosol optical property is that the results are less affected by the uncertainty of surface reflectance database. The retrieved aerosol products have relatively uniform quality at both land and ocean except the ice-snow surface. The near UV technique of aerosol remote sensing has additional merit that it has long period database since TOMS (Total Ozone Mapping Spectrometer) including aerosol absorption properties. Thus the retrieved product using the near UV technique using TOMS and OMI (Ozone Monitoring Instrument) measurement is quite appropriate for climatological research. For such purposes, assessment of accuracy of the retrieved product is essential to evaluate the radiative forcing of the aerosols. In this study, the error characterizations of the near UV technique using OMI measurements have been performed with the optimal estimation method during the DRAGON-NE Asia 2012 campaign. In order to avoid the interpolation error, we developed the on-line retrieval scheme based on the traditional near UV method. The retrieval noise and smoothing error of retrieved AOT (Aerosol Optical Thickness) were compared with the biases between 380 nm AOT from AERONET and retrieved 388 nm AOT. They showed positive correlations which infer the possibility of the estimated errors using the optimal estimation method to be used to evaluate the error of retrieved products. Forward model parameter errors were analyzed separately which depends on the quality of the used database, thus can be reduced by improving the database.

  14. Characterization of Halyomorpha halys (brown marmorated stink bug) biogenic volatile organic compound emissions and their role in secondary organic aerosol formation.

    PubMed

    Solomon, Danielle; Dutcher, Dabrina; Raymond, Timothy

    2013-11-01

    The formation of aerosols is a key component in understanding cloud formation in the context of radiative forcings and global climate modeling. Biogenic volatile organic compounds (BVOCs) are a significant source of aerosols, yet there is still much to be learned about their structures, sources, and interactions. The aims of this project were to identify the BVOCs found in the defense chemicals of the brown marmorated stink bug Halymorpha halys and quantify them using gas chromatography-mass spectrometry (GC/MS) and test whether oxidation of these compounds by ozone-promoted aerosol and cloud seed formation. The bugs were tested under two conditions: agitation by asphyxiation and direct glandular exposure. Tridecane, 2(5H)-furanone 5-ethyl, and (E)-2-decenal were identified as the three most abundant compounds. H. halys were also tested in the agitated condition in a smog chamber. It was found that in the presence of 100-180 ppm ozone, secondary aerosols do form. A scanning mobility particle sizer (SMPS) and a cloud condensation nuclei counter (CCNC) were used to characterize the secondary aerosols that formed. This reaction resulted in 0.23 microg/ bug of particulate mass. It was also found that these secondary organic aerosol particles could act as cloud condensation nuclei. At a supersaturation of 1%, we found a kappa value of 0.09. Once regional populations of these stink bugs stablilize and the populations estimates can be made, the additional impacts of their contribution to regional air quality can be calculated.

  15. Chemical characterization of submicron aerosol and particle growth events at a national background site (3295 m a.s.l.) on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Du, W.; Sun, Y. L.; Xu, Y. S.; Jiang, Q.; Wang, Q. Q.; Yang, W.; Wang, F.; Bai, Z. P.; Zhao, X. D.; Yang, Y. C.

    2015-09-01

    Atmospheric aerosols exert highly uncertain impacts on radiative forcing and also have detrimental effects on human health. While aerosol particles are widely characterized in megacities in China, aerosol composition, sources and particle growth in rural areas in the Tibetan Plateau remain less understood. Here we present the results from an autumn study that was conducted from 5 September to 15 October 2013 at a national background monitoring station (3295 m a.s.l.) in the Tibetan Plateau. The submicron aerosol composition and particle number size distributions were measured in situ with an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) and a Scanning Mobility Particle Sizer (SMPS). The average mass concentration of submicron aerosol (PM1) is 11.4 μg m-3 (range: 1.0-78.4 μg m-3) for the entire study, which is much lower than observed at urban and rural sites in eastern China. Organics dominated PM1, accounting for 43 % on average, followed by sulfate (28 %) and ammonium (11 %). Positive Matrix Factorization analysis of ACSM organic aerosol (OA) mass spectra identified an oxygenated OA (OOA) and a biomass burning OA (BBOA). The OOA dominated OA composition, accounting for 85 % on average, 17 % of which was inferred from aged BBOA. The BBOA contributed a considerable fraction of OA (15 %) due to the burning of cow dung and straw in September. New particle formation and growth events were frequently observed (80 % of time) throughout the study. The average particle growth rate is 2.0 nm h-1 (range: 0.8-3.2 nm h-1). By linking the evolution of particle number size distribution to aerosol composition, we found an elevated contribution of organics during particle growth periods and also a positive relationship between the growth rate and the fraction of OOA in OA, which potentially indicates an important role of organics in particle growth in the Tibetan Plateau.

  16. A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate

    NASA Astrophysics Data System (ADS)

    Huffman, Donald R.; Swanson, Benjamin E.; Huffman, J. Alex

    2016-08-01

    We describe a novel, low-cost instrument to acquire both elastic and inelastic (fluorescent) scattering spectra from individual supermicron-size particles in a multi-particle collection on a microscope slide. The principle of the device is based on a slitless spectroscope that is often employed in astronomy to determine the spectra of individual stars in a star cluster but had not been applied to atmospheric particles. Under excitation, most commonly by either a 405 nm diode laser or a UV light-emitting diode (LED), fluorescence emission spectra of many individual particles can be determined simultaneously. The instrument can also acquire elastic scattering spectra from particles illuminated by a white-light source. The technique also provides the ability to detect and rapidly estimate the number fraction of fluorescent particles that could contaminate a collection of non-fluorescent material, even without analyzing full spectra. Advantages and disadvantages of using black-and-white cameras compared to color cameras are given. The primary motivation for this work has been to develop an inexpensive technique to characterize fluorescent biological aerosol particles, especially particles such as pollen and mold spores that can cause allergies. An example of an iPhone-enabled device is also shown as a means for collecting data on biological aerosols at lower cost or by utilizing citizen scientists for expanded data collection.

  17. An Empirical Function for Bidirectional Reflectance Characterization for Smoke Aerosols Using Multi-angular Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Poudyal, R.; Singh, M. K.; Gatebe, C. K.; Gautam, R.; Varnai, T.

    2015-12-01

    Using airborne Cloud Absorption Radiometer (CAR) reflectance measurements of smoke, an empirical relationship between reflectances measured at different sun-satellite geometry is established, in this study. It is observed that reflectance of smoke aerosol at any viewing zenith angle can be computed using a linear combination of reflectance at two viewing zenith angles. One of them should be less than 30° and other must be greater than 60°. We found that the parameters of the linear combination computation follow a third order polynomial function of the viewing geometry. Similar relationships were also established for different relative azimuth angles. Reflectance at any azimuth angle can be written as a linear combination of measurements at two different azimuth angles. One must be in the forward scattering direction and the other in backward scattering, with both close to the principal plane. These relationships allowed us to create an Angular Distribution Model (ADM) for smoke, which can estimate reflectances in any direction based on measurements taken in four view directions. The model was tested by calculating the ADM parameters using CAR data from the SCAR-B campaign, and applying these parameters to different smoke cases at three spectral channels (340nm, 380nm and 470nm). We also tested our modelled smoke ADM formulas with Absorbing Aerosol Index (AAI) directly computed from the CAR data, based on 340nm and 380nm, which is probably the first study to analyze the complete multi-angular distribution of AAI for smoke aerosols. The RMSE (and mean error) of predicted reflectance for SCAR-B and ARCTAS smoke ADMs were found to be 0.002 (1.5%) and 0.047 (6%), respectively. The accuracy of the ADM formulation is also tested through radiative transfer simulations for a wide variety of situations (varying smoke loading, underlying surface types, etc.).

  18. Aerosol and Trace Gas Sources in Northern China: Changes in Concentrations Before and After the Official "Heating Season" Help Characterize Emissions From Coal-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Li, C.; Marufu, L. T.; Dickerson, R. R.; Li, Z.; Stehr, J. W.; Chen, H.; Wang, P.

    2006-05-01

    In March 2005, as a part of the project EAST-AIRE (East Asian Study of Tropospheric Aerosols: An International Regional Experiment), in-situ measurements of trace gases and aerosol optical properties were made at Xianghe, a rural surface site about 70 km east-southeast, generally downwind, of Beijing metropolitan area. CO, SO2, NO/NOy, O3, aerosol absorption coefficient, and aerosol scattering coefficients were determined simultaneously using the University of Maryland light aircraft instrument package. Pollutant ratios have been calculated to characterize the emission sources around the site. A dramatic drop in the NOy/CO ratio found around March 13/14 suggesting a sudden shutoff of a large fraction of the high- temperature combustion sources in the region. This observed change in concentrations occurred simultaneously with the transition from "heating season" to "non-heating season" in Northern China. Over the course of just a few days (around March 15), all boilers used to provide heat for cities and towns in this region are shut down in accordance with a governmental guideline. Most of these boilers operate with coal, and by using ratios of NOy/CO, SO2/CO, aerosol scattering/CO, and aerosol absorption/CO during and after the "heating season", emissions from these small to medium sized coal-fired boilers can be characterized. Results indicate that these residential and small-scale industrial heaters are a major source of NOy and SO2. Besides elevating the regional atmospheric pollutant level, the trace gases and aerosols emitted also have potential effects in other aspects such as the biogeochemical cycle of N and the agricultural production in this region.

  19. Functional characterization of the water-soluble organic carbon of size-fractionated aerosol in the southern Mississippi Valley

    PubMed Central

    Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; da Costa, G. Gamboa; Pollock, E. D.; Kavouras, I. G.

    2016-01-01

    The chemical content of water-soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for periods when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5 % of particle mass for particles with δp > 0.96 μm and 10 % of particle mass for particles with δp < 0.96 μm. Non-exchangeable aliphatic (H–C), unsaturated aliphatic (H–C–C=), oxygenated saturated aliphatic (H–C–O), acetalic (O–CH–O) and aromatic (Ar–H) protons were determined by proton nuclear magnetic resonance (1H-NMR). The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m−3 for particles with 1.5 < δp < 3.0 μm to 73.9 ± 12.3 nmol m−3 for particles with δp < 0.49 μm. The molar H/C ratios varied from 0.48 ± 0.05 to 0.92 ± 0.09, which were comparable to those observed for combustion-related organic aerosol. The R–H was the most abundant group, representing about 45 % of measured total non-exchangeable organic hydrogen concentrations, followed by H–C–O (27 %) and H–C–C= (26 %). Levoglucosan, amines, ammonium and methanesulfonate were identified in NMR fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosols and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from −26.81 ± 0.18 ‰ for the smallest particles to

  20. Ground based characterization of biomass burning aerosols during the South American Biomass Burning Analysis (SAMBBA) field experiment in Brazil during Sept - Oct 2012

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Johnson, Ben; Haywood, Jim; Longo, Karla; Freitas, Saulo; Coe, Hugh

    2013-04-01

    Biomass burning is one of the major drivers for atmospheric composition in the Southern hemisphere. In Amazonia, deforestation rates have been steadily decreasing, from 27,000 Km² in 2004 to about 5,000 Km² in 2011. This large reduction (by factor 5) was not followed by similar reduction in aerosol loading in the atmosphere due to the increase in agricultural fires. AERONET measurements from 5 sites show a large year-to year variability due to climatic and socio-economic issues. Besides this strong reduction in deforestation rate, biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. To complement the long term biomass burning measurements in Amazonia, it was organized in 2012 the intensive campaign of the South American Biomass Burning Analysis (SAMBBA) experiment with an airborne and a ground based components. A sampling site was set up at Porto Velho, with measurements of aerosol size distribution, optical properties such as absorption and scattering at several wavelengths, organic aerosol characterization with an ACSM - Aerosol Chemical Speciation Monitor. CO, CO2 and O3 were also measured to characterize combustion efficiency and photochemical processes. Filters for trace elements measured by XRF and for OC/EC determined using a Sunset instrument were also collected. An AERONET CIMEL sunphotometer was operated in parallel with a multifilter radiometer (MFR). A large data set was collected from August to October 2012. PM2.5 aerosol concentrations up to 250 ug/m3 were measured, with up to 20 ug/m3 of black carbon. Ozone went up to 60 ppb at mid-day in August. At night time ozone was consumed completely most of the time. ACSM shows that more than 85% of the aerosol mass was organic with a clear diurnal pattern. The organic aerosol volatility was very variable depending on the air mass sampled over Porto Velho. Aerosol optical depth at

  1. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried microparticulate/nanoparticulate antibiotic dry powders of tobramycin and azithromycin for pulmonary inhalation aerosol delivery.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-02-14

    The purpose of this study was to systematically design pure antibiotic drug dry powder inhalers (DPIs) for targeted antibiotic pulmonary delivery in the treatment of pulmonary infections and comprehensively correlate the physicochemical properties in the solid-state and spray-drying conditions effects on aerosol dispersion performance as dry powder inhalers (DPIs). The two rationally chosen model antibiotic drugs, tobramycin (TOB) and azithromycin (AZI), represent two different antibiotic drug classes of aminoglycosides and macrolides, respectively. The particle size distributions were narrow, unimodal, and in the microparticulate/nanoparticulate size range. The SD particles possessed relatively spherical particle morphology, smooth surface morphology, low residual water content, and the absence of long-range molecular order. The emitted dose (ED%), fine particle fraction (FPF%) and respirable fraction (RF%) were all excellent. The MMAD values were in the inhalable range (<10 μm) with smaller MMAD values for SD AZI powders in contrast to SD TOB powders. Positive linear correlations were observed between the aerosol dispersion performance parameter of FPF with increasing spray-drying pump rates and also with the difference between thermal parameters expressed as Tg-To (i.e. the difference between the glass transition temperature and outlet temperature) for SD AZI powders. The aerosol dispersion performance for SD TOB appeared to be influenced by its high water vapor sorption behavior (hygroscopicity) and pump rates or To. Aerosol dispersion performance of SD powders were distinct for both antibiotic drug aerosol systems and also between different pump rates for each system.

  2. In vitro characterization of nebulizer delivery of liposomal amphotericin B aerosols.

    PubMed

    Alexander, Barbara D; Winkler, Thomas P; Shi, Shuai; Dodds Ashley, Elizabeth S; Hickey, Anthony J

    2011-01-01

    Pharmaceutical aerosols have the potential to prevent pulmonary infectious diseases. Liposomal amphotericin B (LAMB, Ambisome, Astellas Pharma US, Deerfield, IL, USA) is approved as an intravenous infusion for empiric treatment of presumed fungal infections in neutropenic, febrile patients, as well as patients infected with Aspergillus, Cryptococcus, and other fungal pathogens. In this study, four different nebulizers were tested for their ability to deliver LAMB in aerodynamic droplet-size ranges relevant to lung deposition by an inertial sampling technique Mass median aerodynamic diameter (MMAD) and fine particle fraction percent <3.3 μm (FPF(3.3)) and <5.8 μm (FPF(5.8)) were determined by cascade impaction during a 2 min sampling period for each of three trials of all nebulizers. The MMADs for all nebulizers ranged from 1.72 ± 0.11 μm to 2.89 ± 0.12 μm; FPF(3.3) and FPF(5.8) were approximately 80% and 90%, respectively. Although all nebulizers appear acceptable for delivery of LAMB, the Pari LC Star and the Aeroeclipse II were considered the best in terms of delivery of aerosol efficiently and the proportion suitable for lung deposition. Additional research on pulmonary delivery and clinical tolerability is warranted.

  3. Characterization of Light Non-Methane Hydrocarbons, Surface Water DOC, and Aerosols over the Nordic Seas

    NASA Astrophysics Data System (ADS)

    Hudson, E. D.; Ariya, P. A.

    2006-12-01

    Whole air, size-fractionated marine aerosols, and surface ocean water DOC were sampled together during June-July 2004 on the Nordic seas, in order to explore factors leading to the formation of volatile organic compounds (VOCs) at the sea surface and their transfer to the atmosphere. High site-to-site variability in 19 non-methane hydrocarbon concentrations suggests highly variable, local sources for these compounds. Acetone, C5 and C6 hydrocarbons, and dimethylsulfide were identified in the seawater samples using solid-phase microextraction/GC-MS. The aerosols were analysed by SEM-EDX and contained primarily inorganic material (sea salt, marine sulfates, and carbonates) and little organic matter. However, a culturable bacterium was isolated from the large (9.9 - 18 μ m) fraction at one site, and identified as Micrococcus luteus. We will discuss the implication of these results on potential exchange processes at the ocean-atmosphere interface and the impact of bioaerosols in transferring marine organic carbon to atmospheric organic carbon.

  4. Molecular Characterization of Organosulfur Compounds in Biodiesel and Diesel Fuel Secondary Organic Aerosol.

    PubMed

    Blair, Sandra L; MacMillan, Amanda C; Drozd, Greg T; Goldstein, Allen H; Chu, Rosalie K; Paša-Tolić, Ljiljana; Shaw, Jared B; Tolić, Nikola; Lin, Peng; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey A

    2017-01-03

    Secondary organic aerosol (SOA), formed in the photooxidation of diesel fuel, biodiesel fuel, and 20% biodiesel fuel/80% diesel fuel mixture, are prepared under high-NOx conditions in the presence and absence of sulfur dioxide (SO2), ammonia (NH3), and relative humidity (RH). The composition of condensed-phase organic compounds in SOA is measured using several complementary techniques including aerosol mass spectrometry (AMS), high-resolution nanospray desorption electrospray ionization mass spectrometry (nano-DESI/HRMS), and ultrahigh resolution and mass accuracy 21T Fourier transform ion cyclotron resonance mass spectrometry (21T FT-ICR MS). Results demonstrate that sulfuric acid and condensed organosulfur species formed in photooxidation experiments with SO2 are present in the SOA particles. Fewer organosulfur species are formed in the high humidity experiments, performed at RH 90%, in comparison with experiments done under dry conditions. There is a strong overlap of organosulfur species observed in this study with previous field and chamber studies of SOA. Many MS peaks of organosulfates (R-OS(O)2OH) previously designated as biogenic or of unknown origin in field studies might have originated from anthropogenic sources, such as photooxidation of hydrocarbons present in diesel and biodiesel fuel.

  5. Microscopic Characterization of Carbonaceous Aerosol Particle Aging in the Outflow from Mexico City

    SciTech Connect

    Moffet, R. C.; Henn, T. R.; Tivanski, A. V.; Hopkins, R. J.; Desyaterik, Y.; Kilcoyne, A. L. D.; Tyliszczak, T.; Fast, J.; Barnard, J.; Shutthanandan, V.; Cliff, S.S.; Perry, K. D.; Laskin, A.; Gilles, M. K.

    2009-09-16

    This study was part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) field campaign conducted in Mexico City Metropolitan Area during spring 2006. The physical and chemical transformations of particles aged in the outflow from Mexico City were investigated for the transport event of 22 March 2006. A detailed chemical analysis of individual particles was performed using a combination of complementary microscopy and micro-spectroscopy techniques. The applied techniques included scanning transmission X-ray microscopy (STXM) coupled with near edge X-ray absorption fine structure spectroscopy (NEXAFS) and computer controlled scanning electron microscopy with an energy dispersive X-ray analyzer (CCSEM/EDX). As the aerosol plume evolves from the city center, the organic mass per particle increases and the fraction of carbon-carbon double bonds (associated with elemental carbon) decreases. Organic functional groups enhanced with particle age include: carboxylic acids, alkyl groups, and oxygen bonded alkyl groups. At the city center (T0) the most prevalent aerosol type contained inorganic species (composed of sulfur, nitrogen, oxygen, and potassium) coated with organic material. At the T1 and T2 sites, located northeast of T0 (~;;29 km and ~;;65 km, respectively), the fraction of homogenously mixed organic particles increased in both size and number. These observations illustrate the evolution of the physical mixing state and organic bonding in individual particles in a photochemically active environment.

  6. Scanning Backscatter Lidar Observations for Characterizing 4-D Cloud and Aerosol Fields to Improve Radiative Transfer Parameterizations

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.

    2005-01-01

    Clouds have a powerful influence on atmospheric radiative transfer and hence are crucial to understanding and interpreting the exchange of radiation between the Earth's surface, the atmosphere, and space. Because clouds are highly variable in space, time and physical makeup, it is important to be able to observe them in three dimensions (3-D) with sufficient resolution that the data can be used to generate and validate parameterizations of cloud fields at the resolution scale of global climate models (GCMs). Simulation of photon transport in three dimensionally inhomogeneous cloud fields show that spatial inhomogeneities tend to decrease cloud reflection and absorption and increase direct and diffuse transmission, Therefore it is an important task to characterize cloud spatial structures in three dimensions on the scale of GCM grid elements. In order to validate cloud parameterizations that represent the ensemble, or mean and variance of cloud properties within a GCM grid element, measurements of the parameters must be obtained on a much finer scale so that the statistics on those measurements are truly representative. High spatial sampling resolution is required, on the order of 1 km or less. Since the radiation fields respond almost instantaneously to changes in the cloud field, and clouds changes occur on scales of seconds and less when viewed on scales of approximately 100m, the temporal resolution of cloud properties should be measured and characterized on second time scales. GCM time steps are typically on the order of an hour, but in order to obtain sufficient statistical representations of cloud properties in the parameterizations that are used as model inputs, averaged values of cloud properties should be calculated on time scales on the order of 10-100 s. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) provides exceptional temporal (100 ms) and spatial (30 m) resolution measurements of aerosol and cloud backscatter in three

  7. Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen

    NASA Astrophysics Data System (ADS)

    Zhao, Jinping; Zhang, Fuwang; Xu, Ya; Chen, Jinsheng

    2011-03-01

    The samples of water-soluble inorganic ions (WSIs), including anions (F-, Cl-, SO42-, NO3-) and cations (NH4+, K+, Na+, Ca2+, Mg2+) in 8 size-segregated particle matter (PM), were collected using a sampler (with 8 nominal cut-sizes ranged from 0.43 to 9.0 μm) from October 2008 to September 2009 at five sites in both polluted and background regions of a coastal city, Xiamen. The results showed that particulate matters in the fine mode (PM2.1, Dp < 2.1 μm) comprised large part of mass concentrations of aerosols, which accounted for 45.56-51.27%, 40.04-60.81%, 42.02-60.81%, and 40.46-57.07% of the total particulate mass in spring, summer, autumn, and winter, respectively. The water-soluble ionic species in the fine mode at five sampling sites varied from 15.33 to 33.82 (spring), 14.03 to 28.06 (summer), 33.47 to 72.52 (autumn), and 48.39 to 69.75 μg m- 3 (winter), respectively, which accounted for 57.30 ± 6.51% of the PM2.1 mass concentrations. Secondary pollutants of NH4+, SO42- and NO3- were the dominant contributors of WSIs, which suggested that pollutants from anthropogenic activities, such as SO2, NOx were formed in aerosols by photochemical reactions. The size distributions of Na+, Cl-, SO42- and NO3- were bimodal, peaking at 0.43-0.65 μm and 3.3-5.8 μm. Although some ions, such as NH4+ presented bimodal distributions, the coarse mode was insignificant compared to the fine mode. Ca2+ and Mg2+ exhibited unimodal distributions at all sampling sites, peaking at 2.1-3.3 μm, while K+ having a bimodal distributions with a major peak at 0.43-0.65 μm and a minor one at 3.3-4.7 μm, were used in most of samples. Seasonal and spatial variations in the size-distribution profiles suggested that meteorological conditions (seasonal patterns) and sampling locations (geographical patterns) were the main factors determining the formation of secondary aerosols and characteristics of size distributions for WSIs.

  8. Characterization of Secondary Organic Aerosol Precursors Using Two-Dimensional Gas-Chromatography

    NASA Astrophysics Data System (ADS)

    Roskamp, M.; Lou, W.; Pankow, J. F.; Harley, P. C.; Turnipseed, A.; Barsanti, K. C.

    2012-12-01

    The oxidation of volatile organic compounds (VOCs) plays a role in both regional and global air quality. However, field and laboratory research indicate that the body of knowledge around the identities, quantities and oxidation processes of these compounds in the ambient atmosphere is still incomplete (e.g., Goldstein & Galbally, 2007; Robinson et al., 2009). VOCs emitted to the atmosphere largely are of biogenic origin (Guenther et al., 2006), and many studies of ambient secondary organic aerosol (SOA) suggest that SOA is largely of biogenic origin (albeit closely connected to anthropogenic activities, e.g., de Gouw and Jimenez, 2009). Accurate modeling of SOA levels and properties will require a more complete understanding of biogenic VOCs (BOCs) and their atmospheric oxidation products. For example, satellite measurements indicate that biogenic VOC emissions are two to three times greater than levels currently included in models (Heald et al., 2010). Two-dimensional gas chromatography (GC×GC) is a powerful analytical technique that shows much promise in advancing the state-of-knowledge regarding BVOCs and their role in SOA formation. In this work, samples were collected during BEACHON-RoMBAS (Bio-hydro-atmosphere Interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study) in July and August of 2011. The field site was a Ponderosa Pine forest near Woodland, CO, inside the Manitou Experimental Forest, which is operated by the US Forest Service. The area is characteristic of the central Rocky Mountains and trace gas monitoring indicates that little anthropogenic pollution is transported from the nearby urban areas (Kim et al. 2010 and references therein). Ambient and enclosure samples were collected on ATD (adsorption/thermal desorption) cartridges and analyzed for BVOCs using two-dimensional gas chromatography (GC×GC) with time of flight mass spectrometry (TOFMS) and flame ionized detection (FID). Measurements of

  9. Long-term measurements of aerosols and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian Taiga

    NASA Astrophysics Data System (ADS)

    Chi, X.; Winderlich, J.; Mayer, J.-C.; Panov, A. V.; Heimann, M.; Birmili, W.; Heintzenberg, J.; Cheng, Y.; Andreae, M. O.

    2013-07-01

    Siberia is one of few background regions in the Northern Hemisphere where the atmosphere may sometimes approach pristine conditions. We present the time series of aerosol and carbon monoxide (CO) measurements between September~2006 and December 2010 at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 90° E). We investigate the seasonal, weekly and diurnal variations of aerosol properties (including absorption and scattering coefficients and derived parameters, like equivalent black carbon (BCe), Ångström exponent, single scattering albedo, and backscattering ratio) and the CO mixing ratios. Criteria were established to distinguish polluted and near-pristine air masses and characterize them separately. Depending on the season, 15-47% of the sampling time at ZOTTO was representative of a clean atmosphere. The summer pristine data indicates that primary biogenic and/or secondary organic aerosol formation are quite strong particle sources in the Siberian Taiga. The summer seasons 2007-2008 are dominated by an Aitken mode of 80 nm size, whereas the summer 2009 with prevailing easterly winds produced aerosols in the accumulation mode around 200 nm size. We found these differences mainly related to air temperature, in parallel with production rates of biogenic volatile organic compounds (VOC). In winter, the footprint and aerosol size distribution (with a peak at 160 nm) of the clean background air are characteristic for aged aerosols from anthropogenic sources at great distances from ZOTTO and diluted biofuel burning emissions from heating. The wintertime polluted air originates from the large cities to the south and southwest of the site; these aerosols have a dominant mode around 100 nm, and the Δ BCe/Δ CO ratio of 7-11 ng m-3 ppb-1 suggests dominant contributions from coal and biofuel burning for heating. During summer, anthropogenic emissions are the dominant contributor to the pollution aerosols at ZOTTO, while only 12% of the polluted

  10. Smartphone Air Quality and Atmospheric Aerosol Characterization for Public Health Applications

    NASA Astrophysics Data System (ADS)

    Strong, S. B.; Brown, D. M.; Brown, A.

    2014-12-01

    Air quality is a major global concern. Tracking and monitoring air quality provides individuals with the knowledge to make personal decisions about their health and investigate the environment in which they live. Satellite remote sensing and ground-based observations (e.g. Environmental Protection Agency, NASA Aerosol Robotic Network) of air quality is spatially and temporarlly limited and often neglects to provide individuals with the freedom to understand their own personal environment using their personal observations. Given the ubiquitous nature of smartphones, individuals have access to powerful processing and sensing capabilities. When coupled with the appropriate sensor parameters, filters, and algorithms, smartphones can be used both for 'citizen science' air quality applications and 'professional' scientific atmospheric investigations, alike, simplifying data analysis, processing, and improving deployment efficiency. We evaluate the validity of smartphone technology for air quality investigations using standard Cimel CE 318 sun photometry and Fourier Transform Infrared Spectroradiometer (FTIR) observations at specific locations.

  11. Characterization of Fe–Cr alloy metallic interconnects coated with LSMO using the aerosol deposition process

    SciTech Connect

    Huang, Jian-Jia; Fu, Yen-Pei; Wang, Jian-Yih; Cheng, Yung-Neng; Lee, Shyong; Hsu, Jin-Cherng

    2014-03-01

    Graphical abstract: - Highlights: • Lanthanum strontium manganite (LSMO) as the protective layer for metallic interconnects was successfully prepared by aerosol deposition method (AD). • The microstructure, electrical resistance and composition for LSMO-coated Fe–Cr alloys undergoing high temperature, long-hour oxidation were investigated. • The denser protective layer prepared by AD might effectively prohibit the growth of oxidized scale after long time running at 800 °C in air. - Abstract: A Fe–Cr alloy, used for metallic interconnects, was coated with a protective layer of lanthanum strontium manganite (LSMO) using the aerosol deposition method (AD). The effects of the LSMO protective layer, which was coated on the Fe–Cr interconnects using AD, on the area specific resistance (ASR) during high temperature oxidation and the Cr evaporation behaviors were systematically investigated in this paper. The microstructures, morphologies, and compositions of the oxidized scales that appeared on the LSMO-coated Fe–Cr alloy after annealing at 800 °C for 750 h in air were examined using SEM equipped with EDS. The EPMA mapping of the LSMO-coated Fe–Cr interconnects undergoing long term, high-temperature oxidation was used to explain the formation layers of the oxidized scale, which consists of (Mn,Cr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} layers. Moreover, the experimental results revealed that the AD process is a potential method for preparing denser protective layers with highly desirable electrical properties for metallic interconnects.

  12. Characterization of Individual Aerosol Particles Associated with Clouds (CRYSTAL-FACE)

    NASA Technical Reports Server (NTRS)

    Buseck, Peter R.

    2004-01-01

    The aim of our research was to obtain data on the chemical and physical properties of individual aerosol particles from near the bottoms and tops of the deep convective systems that lead to the generation of tropical cirrus clouds and to provide insights into the particles that serve as CCN or IN. We used analytical transmission electron microscopy (ATEM), including energy-dispersive X-ray spectrometry (EDS) and electron energy-loss spectroscopy (EELS), and field-emission electron microscopy (FESEM) to compare the compositions, concentrations, size distributions, shapes, surface coatings, and degrees of aggregation of individual particles from cloud bases and the anvils near the tropopause. Aggregates of sea salt and mineral dust, ammonium sulfate, and soot particles are abundant in in-cloud samples. Cirrus samples contain many H2SO4 droplets, but acidic sulfate particles are rare at the cloud bases. H2SO4 probably formed at higher altitudes through oxidation of SO2 in cloud droplets. The relatively high extent of ammoniation in the upper troposphere in-cloud samples appears to have resulted from vertical transport by strong convection. The morphology of H2SO4 droplets indicates that they had been at least yartiy ammoniated at the time of collection. They are internally mixed with organic materials, metal sulfates, and solid particles of various compositions. Ammoniation and internal mixing of result in freezing at higher temperature than in pure H2SO4 aerosols. K- and S-bearing organic particles and Si-Al-rich particles are common throughout. Sea salt and mineral dust were incorporated into the convective systems from the cloud bases and worked as ice nuclei while being vertically transported. The nonsulfate particles originated from the lower troposphere and were transported to the upper troposphere and lower stratosphere.

  13. Influence of collecting substrates on the characterization of hygroscopic properties of inorganic aerosol particles.

    PubMed

    Eom, Hyo-Jin; Gupta, Dhrubajyoti; Li, Xue; Jung, Hae-Jin; Kim, Hyekyeong; Ro, Chul-Un

    2014-03-04

    The influence of six collecting substrates with different physical properties on the hygroscopicity measurement of inorganic aerosol particle surrogates and the potential applications of these substrates were examined experimentally. Laboratory-generated single salt particles, such as NaCl, KCl, and (NH4)2SO4, 1-5 μm in size, were deposited on transmission electron microscopy grids (TEM grids), parafilm-M, Al foil, Ag foil, silicon wafer, and cover glass. The particle hygroscopic properties were examined by optical microscopy. Contact angle measurements showed that parafilm-M is hydrophobic, and cover glass, silicon wafer, Al foil, and Ag foil substrates are hydrophilic. The observed deliquescence relative humidity (DRH) values for NaCl, KCl, and (NH4)2SO4 on the TEM grids and parafilm-M substrates agreed well with the literature values, whereas the DRHs obtained on the hydrophilic substrates were consistently ∼1-2% lower, compared to those on the hydrophobic substrates. The water layer adsorbed on the salt crystals prior to deliquescence increases the Gibb's free energy of the salt crystal-substrate system compared to the free energy of the salt droplet-substrate system, which in turn reduces the DRHs. The hydrophilic nature of the substrate does not affect the measured efflorescence RH (ERH) values. However, the Cl(-) or SO4(2-) ions in aqueous salt droplets seem to have reacted with Ag foil to form AgCl or Ag2SO4, respectively, which in turn acts as seeds for the heterogeneous nucleation of the original salts, leading to higher ERHs. The TEM grids were found to be most suitable for the hygroscopic measurements of individual inorganic aerosol particles by optical microscopy and when multiple analytical techniques, such as scanning electron microscopy-energy dispersive X-ray spectroscopy, TEM-EDX, and/or Raman microspectrometry, are applied to the same individual particles.

  14. Characterization of soluble iron in urban aerosols using near-real time data

    NASA Astrophysics Data System (ADS)

    Oakes, Michelle; Rastogi, Neeraj; Majestic, Brian J.; Shafer, Martin; Schauer, James J.; Edgerton, Eric S.; Weber, Rodney J.

    2010-08-01

    We present the first near-real time (12 min) measurements of fine particle (PM2.5) water soluble ferrous iron (WS_Fe(II)) measured in two urban settings: Dearborn Michigan, and Atlanta, Georgia. A new approach was used to measure WS_Fe(II) involving a Particle-into-Liquid Sampler (PILS) coupled to a liquid waveguide capillary cell (LWCC) and UV/VIS spectrometer. We found no clear diurnal trends in WS_Fe(II) at any urban site studied. High temporal variability, however, was observed at all urban sites, where concentrations often changed from the method limit of detection (4.6 ng m-3) to approximately 300 to 400 ng m-3, lasting only a few hours. These transient events predominately occurred during times of low wind speeds and appeared to be from local sources or processes. In Atlanta, several WS_Fe(II) events were associated with sulfate plumes, and highest WS_Fe(II) concentrations were found in plumes of highest apparent aerosol acidity. At all locations studied, WS_Fe(II) was poorly correlated (R2 < 0.34) with light-absorbing aerosol, indicating no direct linkage between mobile source emissions and enhanced WS_Fe(II) concentrations. WS_Fe(II) measured within a prescribed forest-burn was strongly correlated with water soluble potassium (R2 = 0.88; WS_Fe(II)/WS_K = 15 mg/g), pointing to biomass burning as a source of WS_Fe(II); however, peak concentrations within the fire were low compared to transient events observed at the urban sites. Overall, WS_Fe(II) temporal trends for these urban sites consisted of low background concentrations with periodic short duration transient events that appear to be linked to unique industrial emissions or atmospheric processing of industrial emissions that form WS_Fe(II).

  15. Characterization of metal aerosols in PM10 from urban, industrial, and Asian Dust sources.

    PubMed

    Park, Kihong; Dam, Hung Duy

    2010-01-01

    Metallic elements (As, Be, Ca, Cd, Co, Cr, Fe, K, Mn, Ni, Pb, Sb, Se, and Zn) in PM10 aerosols were determined at urban and industrial sites, which are affected by traffic and residential sources, metallurgical activity, and petrochemical and steel works. The effect of the long-range transported Asian Dust on the metal content of aerosols was also examined. At the urban sampling site, concentrations of As, Cd, Pb, Se, and Zn were assigned to road traffic and combustion sources, Ca and Fe to soil dust sources from long-range transported Asian Dusts, and Cr and Ni to metallurgical sources transported from the nearby industrial complex, based on Principal Component Analysis (PCA). Enhanced Cr and Ni concentrations at the metallurgical industrial site suggest that local emissions from metal-assembly facilities and manufacture of alloys contributed to elevated levels of those metals. We also observed that petrochemical activities contributed to increased levels of Sb and Zn. When Asian Dust events occurred, Ca, Fe, K, and Zn concentrations dramatically increased compared to values without the Asian Dust. Two different types of Asian Dust events were observed. For the Asian Dust event 1 (4/1/2007), the Fe and K concentrations were much higher by a factor of 2-3 than those for the Asian Dust event 2 (3/2/2008), while As, Mn, and Zn concentrations were significantly higher on the Asian Dust event 2. Backward trajectory analysis showed that for the Asian Dust event 2, the air mass had passed over the heavily industrialized zones in China during long-range transport to the current sampling site, suggesting that the As, Mn, and Zn may have originated from industrial sources.

  16. ACE-Asia: Size Resolved Sampling of Aerosols on the Ronald H Brown and US Western Receptor Sites

    NASA Astrophysics Data System (ADS)

    Jimenez-Cruz, M. P.; Cliff, S. S.; Perry, K. D.; Cahill, T. A.; Bates, T. S.

    2001-12-01

    The ACE (Aerosol Characterization Experiment)-Asia project was pre-dominantly performed during the spring of 2001. In addition to the core Asian sampling sites, we sampled at 4 Western US receptor sites. The receptor sites include, Mauna Loa Observatory, Hawaii, Crater Lake Oregon, Adak Island, Alaska and Rattlesnake Mountain, Washington. A small subset of sites (Rattlesnake Mtn., MLO, and Asian sites) continued during a 6-week intensive summer study. For the spring study, an 8-stage DRUM impactor also sampled aboard the NOAA ship RV Ronald H Brown, and mix of 8- and 3-DRUM impactors were used at the western US receptor sites. The impactors are capable of size-segregated, time-resolved aerosol collection. The size categories for the 8-DRUM are inlet-5.00, 5.00-2.50, 2.50-1.15, 1.15-0.75, 0.75-0.56, 0.56-0.34, 0.34-.026, 0.26-.09 microns and 3-DRUM: 2.50-1.10, 1.10-0.34, 0.34-0.12 microns. These samples were analyzed in 6 hour time bites using synchrotron-XRF for quantitative composition for elements sodium through uranium, when present. A major dust event occurring around April 13 was detected at all receptor sites. Comparisons of key elemental ratios and conservative tracers will be presented.

  17. Single particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium

    NASA Astrophysics Data System (ADS)

    Lee, A. K. Y.; Willis, M. D.; Healy, R. M.; Wang, J. M.; Jeong, C.-H.; Wenger, J. C.; Evans, G. J.; Abbatt, J. P. D.

    2015-11-01

    Biomass burning is a major source of black carbon (BC) and primary organic aerosol globally. In particular, biomass burning organic aerosol (BBOA) is strongly associated with atmospheric brown carbon (BrC) that absorbs near ultraviolet and visible light, resulting in significant impacts on regional visibility degradation and radiative forcing. The mixing state of BBOA can play a critical role in the prediction of aerosol optical properties. In this work, single particle measurements from a soot-particle aerosol mass spectrometer coupled with a light scattering module (LS-SP-AMS) were performed to examine the mixing state of BBOA, refractory black carbon (rBC) and potassium (K+, a tracer for biomass burning aerosol) in an air mass influenced by aged biomass burning. Cluster analysis of single particle measurements identified five BBOA-related particle types. rBC accounted for 3-14 w.t. % of these particle types on average. Only one particle type exhibited a strong ion signal for K+, with mass spectra characterized by low molecular weight organic species. The remaining four particle types were classified based on the apparent molecular weight of the BBOA constituents. Two particle types were associated with low potassium content and significant amounts of high molecular weight (HMW) organic compounds. Our observations indicate non-uniform mixing of particles within a biomass burning plume in terms of molecular weight and illustrate that HMW BBOA can be a key contributor to low-volatility BrC observed in BBOA particles.

  18. Characterization of Dust Properties during ACE-Asia and PRIDE: A Column Satellite-Surface Perspective

    NASA Technical Reports Server (NTRS)

    Lau, William K. M. (Technical Monitor); Tsay, Si-Chee; Hsu, N. Christina; Herman, Jay R.; Ji, Q. Jack

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentration over particular pathways around the globe. For example, the ACE-Asia (Aerosol Characterization Experiment-Asia) was conducted from March-May 2001 in the vicinity of the Taklimakan and Gobi deserts, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). The PRIDE (Puerto RIco Dust Experiment, July 2000) was designed to measure the properties of Saharan dust transported across the Atlantic Ocean to the Caribbean. Dust particles typically originate in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of dust aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the ocean. During ACE-Asia and PRIDE we had measured aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from ground-based remote sensing. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. We will present the results and discuss their implications in regional climatic effects.

  19. Application of the LIRIC algorithm for the characterization of aerosols during the Airborne Romanian Measurements of Aerosols and Trace gases (AROMAT) campaign

    NASA Astrophysics Data System (ADS)

    Stefanie, Horatiu; Nicolae, Doina; Nemuc, Anca; Belegante, Livio; Toanca, Florica; Ajtai, Nicolae; Ozunu, Alexandru

    2015-04-01

    The ESA/ESTEC AROMAT campaign (Airborne Romanian Measurements of Aerosols and Trace gases) was held between 1st and 14th of September 2014 with the purpose to test and inter-compare newly developed airborne and ground-based instruments dedicated to air quality studies in the context of validation programs of the forthcoming European Space Agency satellites (Sentinel 5P, ADM-Aeolus and EarthCARE). Ground-based remote sensing and airborne in situ measurements were made in southern Romania in order to assess the level and the variability of NO2 and particulate matter, focusing on two areas of interest: SW (Turceni), where many coal based power plants are operating, and SE (Bucharest), affected by intense traffic and partially by industrial pollution. In this paper we present the results obtained after the application of the Lidar - Radiometer Inversion Code (LIRIC) algorithm on combined lidar and sunphotometer data collected at Magurele, 6 km South Bucharest. Full lidar data sets in terms of backscatter signals at 355, 532 and 1064 nm, as well as depolarization at 532 nm were used and combined with Aerosol Robotic Network (AERONET) data, in order to retrieve the profiles of aerosol volume concentrations, separated as fine, spherical and spheroidal coarse modes. Preliminary results showed that aerosols generated by traffic and industrial activities were present in the Planetary Boundary Layer, while biomass burning aerosols transported from the Balkan Peninsula were detected in the upper layers. Acknowledgements: ***This work has been supported by Programme for Research- Space Technology and Advanced Research - STAR, project number 55/2013 - CARESSE. ***The financial support by the European Community's FP7 - PEOPLE 2011 under ITaRS Grant Agreement n° 289923 is gratefully acknowledged.

  20. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a

  1. Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols

    NASA Astrophysics Data System (ADS)

    Urban, Roberta Cerasi; Lima-Souza, Michele; Caetano-Silva, Letícia; Queiroz, Maria Eugênia C.; Nogueira, Raquel F. P.; Allen, Andrew G.; Cardoso, Arnaldo A.; Held, Gerhard; Campos, Maria Lucia A. M.

    2012-12-01

    Three chemical species related to biomass burning, levoglucosan, potassium and water-soluble organic carbon (WSOC), were measured in aerosol samples collected in a rural area on the outskirts of the municipality of Ourinhos (São Paulo State, Brazil). This region is representative of the rural interior of the State, where the economy is based on agro-industrial production, and the most important crop is sugar cane. The manual harvesting process requires that the cane be first burned to remove excess foliage, leading to large emissions of particulate materials to the atmosphere. Most of the levoglucosan (68-89%) was present in small particles (<1.5 μm), and its concentration in total aerosol ranged from 25 to 1186 ng m-3. The highest values were found at night, when most of the biomass burning occurs. In contrast, WSOC showed no diurnal pattern, with an average concentration of 5.38 ± 2.97 μg m-3 (n = 27). A significant linear correlation between levoglucosan and WSOC (r = 0.54; n = 26; p < 0.0001) confirmed that biomass burning was in fact an important source of WSOC in the study region. A moderate (but significant) linear correlation between levoglucosan and potassium concentrations (r = 0.62; n = 40; p < 0.0001) was indicative of the influence of other sources of potassium in the study region, such as soil resuspension and fertilizers. When only the fine particles (<1.5 μm; typical of biomass burning) were considered, the linear coefficient increased to 0.91 (n = 9). In this case, the average levoglucosan/K+ ratio was 0.24, which may be typical of biomass burning in the study region. This ratio is about 5 times lower than that previously found for Amazon aerosol collected during the day, when flaming combustion prevails. This suggests that the levoglucosan/K+ ratio may be especially helpful for characterization of the type of vegetation burned (such as crops or forest), when biomass-burning is the dominant source of potassium. The relatively high

  2. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with long range transported biomass burning plumes

    NASA Astrophysics Data System (ADS)

    Dzepina, K.; Mazzoleni, C.; Fialho, P.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Hueber, J.; Kumar, S.; Perlinger, J. A.; Kramer, L.; Dziobak, M. P.; Ampadu, M. T.; Olsen, S.; Wuebbles, D. J.; Mazzoleni, L. R.

    2014-09-01

    Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m a.m.s.l. on Pico Island of the Azores archipelago in the North Atlantic. The observatory (38°28'15'' N; 28°24'14'' W) is located ∼3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances, mainly from North America. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon and inorganic ion species. The average ambient concentration of aerosol was 0.9 μg m-3; on average organic aerosol contributes the majority of mass (57%), followed by sulfate (21%) and nitrate (17%). Filter-collected aerosol measurements were positively correlated (with an r2 ≥ 0.80) with continuous aerosol measurements of black carbon, aerosol light scattering and number concentration. Water-soluble organic carbon (WSOC) species extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. FLEXPART retroplume analysis shows the sampled air masses were very aged (average plume age > 12 days). Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100-1000. The majority of the assigned molecular formulas have unsaturated structures with CHO and CHNO elemental compositions. These aged WSOC compounds have an average O / C ratio of ∼0.45, which is relatively low compared to O / C ratios of other aged aerosol and might be the result of evaporation and increased fragmentation during long-range transport. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in

  3. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with a long-range transported biomass burning plume

    NASA Astrophysics Data System (ADS)

    Dzepina, K.; Mazzoleni, C.; Fialho, P.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Hueber, J.; Kumar, S.; Perlinger, J. A.; Kramer, L. J.; Dziobak, M. P.; Ampadu, M. T.; Olsen, S.; Wuebbles, D. J.; Mazzoleni, L. R.

    2015-05-01

    Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m above mean sea level on Pico Island of the Azores archipelago in the North Atlantic. The observatory is located ~ 3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon, and inorganic ions. The average ambient concentration of aerosol was 0.9 ± 0.7 μg m-3. On average, organic aerosol components represent the largest mass fraction of the total measured aerosol (60 ± 51%), followed by sulfate (23 ± 28%), nitrate (13 ± 10%), chloride (2 ± 3%), and elemental carbon (2 ± 2%). Water-soluble organic matter (WSOM) extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100-1000. The majority of the assigned molecular formulas had unsaturated structures with CHO and CHNO elemental compositions. FLEXPART retroplume analyses showed the sampled air masses were very aged (average plume age > 12 days). These aged aerosol WSOM compounds had an average O/C ratio of ~ 0.45, which is relatively low compared to O/C ratios of other aged aerosol. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in the WSOM and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of phenolic species suggests

  4. Aerosol algorithm evaluation within aerosol-CCI

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Schulz, Michael; Griesfeller, Jan

    Properties of aerosol retrievals from space are difficult. Even data from dedicated satellite sensors face contaminations which limit the accuracy of aerosol retrieval products. Issues are the identification of complete cloud-free scenes, the need to assume aerosol compositional features in an underdetermined solution space and the requirement to characterize the background at high accuracy. Usually the development of aerosol is a slow process, requiring continuous feedback from evaluations. To demonstrate maturity, these evaluations need to cover different regions and seasons and many different aerosol properties, because aerosol composition is quite diverse and highly variable in space and time, as atmospheric aerosol lifetimes are only a few days. Three years ago the ESA Climate Change Initiative started to support aerosol retrieval efforts in order to develop aerosol retrieval products for the climate community from underutilized ESA satellite sensors. The initial focus was on retrievals of AOD (a measure for the atmospheric column amount) and of Angstrom (a proxy for aerosol size) from the ATSR and MERIS sensors on ENVISAT. The goal was to offer retrieval products that are comparable or better in accuracy than commonly used NASA products of MODIS or MISR. Fortunately, accurate reference data of ground based sun-/sky-photometry networks exist. Thus, retrieval assessments could and were conducted independently by different evaluation groups. Here, results of these evaluations for the year 2008 are summarized. The capability of these newly developed retrievals is analyzed and quantified in scores. These scores allowed a ranking of competing efforts and also allow skill comparisons of these new retrievals against existing and commonly used retrievals.

  5. Characterization of the Chemical Composition of TITAN'S Aerosols Analogues with a Systematic Pyrolysis-GCMS Analysis Approach

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Morisson, M.; Carrasco, N.; Buch, A.; Gautier, T.

    2014-12-01

    Pyrolysis coupled to gas chromatography-mass spectrometry is used for long to characterize the chemical composition and structure of analogues of Titan's aerosols (tholins). However, a review of the characterizations of tholins done for 30 years with this technique show that the nature of the tholins were quite different in the different studies, and the analytical conditions used for Pyr-GCMS analysis were generally very limited. The differences observed in the results obtained in these different studies are therefore difficult to attribute either to the process used to produce the tholins, or to the analytical conditions used. These are the reasons we performed a systematic study on tholins produced uniquely with the PAMPRE laboratory experiment based on a RF cold plasma, to determine the composition and structure of these analogues of Titan's aerosols, and to estimate the difference of properties induced by a variation of the content of CH4 in the initial gaseous mixture. To take the whole benefit of the pyr-GCMS technique, we performed analyses of tholins by studying the influence of all the analytical parameters. Among the main parameters, we studied : the influence of the temperature of pyrolysis on the nature of the gaseous compounds released by the solid tholins; the program of temperature used to heat the GC column in order to find a tradeoff for the analysis of both the lightest and heaviest compounds released by the sample; the separation of the same pyrolysates with two different columns. Moreover, the identification of numerous isomers was confirmed using analytical standards. WIth this study, we managed to strictly characterize a wide range of pyrolyzates for the three tholins sample studied. Most of these species are nitrogen bearing organics of various natures. More than the detection of pyrolyzates which have never been reported in previous studies, we showed that even if numerous pyrolysates were common between the three types of tholins studied

  6. Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization

    NASA Astrophysics Data System (ADS)

    Offroy, Marc; Moreau, Myriam; Sobanska, Sophie; Milanfar, Peyman; Duponchel, Ludovic

    2015-07-01

    The increasing interest in nanoscience in many research fields like physics, chemistry, and biology, including the environmental fate of the produced nano-objects, requires instrumental improvements to address the sub-micrometric analysis challenges. The originality of our approach is to use both the super-resolution concept and multivariate curve resolution (MCR-ALS) algorithm in confocal Raman imaging to surmount its instrumental limits and to characterize chemical components of atmospheric aerosols at the level of the individual particles. We demonstrate the possibility to go beyond the diffraction limit with this algorithmic approach. Indeed, the spatial resolution is improved by 65% to achieve 200 nm for the considered far-field spectrophotometer. A multivariate curve resolution method is then coupled with super-resolution in order to explore the heterogeneous structure of submicron particles for describing physical and chemical processes that may occur in the atmosphere. The proposed methodology provides new tools for sub-micron characterization of heterogeneous samples using far-field (i.e. conventional) Raman imaging spectrometer.

  7. Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization

    PubMed Central

    Offroy, Marc; Moreau, Myriam; Sobanska, Sophie; Milanfar, Peyman; Duponchel, Ludovic

    2015-01-01

    The increasing interest in nanoscience in many research fields like physics, chemistry, and biology, including the environmental fate of the produced nano-objects, requires instrumental improvements to address the sub-micrometric analysis challenges. The originality of our approach is to use both the super-resolution concept and multivariate curve resolution (MCR-ALS) algorithm in confocal Raman imaging to surmount its instrumental limits and to characterize chemical components of atmospheric aerosols at the level of the individual particles. We demonstrate the possibility to go beyond the diffraction limit with this algorithmic approach. Indeed, the spatial resolution is improved by 65% to achieve 200 nm for the considered far-field spectrophotometer. A multivariate curve resolution method is then coupled with super-resolution in order to explore the heterogeneous structure of submicron particles for describing physical and chemical processes that may occur in the atmosphere. The proposed methodology provides new tools for sub-micron characterization of heterogeneous samples using far-field (i.e. conventional) Raman imaging spectrometer. PMID:26201867

  8. Characterization of secondary organic aerosol generated from ozonolysis of α-pinene mixtures

    NASA Astrophysics Data System (ADS)

    Amin, Hardik S.; Hatfield, Meagan L.; Huff Hartz, Kara E.

    2013-03-01

    In the atmosphere, multiple volatile organic compounds (VOCs) co-exist, and they can be oxidized concurrently and generate secondary organic aerosol (SOA). In this work, SOA is formed by the oxidation (in presence of excess ozone) of mixtures containing α-pinene and other VOCs. The VOC mixtures were made so their composition approached a commercially-available α-pinene-based essential oil, Siberian fir needle oil. The SOA products were sampled using filters, solvent extracted and analyzed by gas chromatography/mass spectrometry with trimethylsilyl derivatization. The individual product yields for SOA generated from α-pinene changed upon the addition of other VOCs. An increase in concentration of non-reactive VOCs (bornyl acetate, camphene, and borneol) lead to a decrease in individual product yields of characteristic α-pinene SOA products. Although these experiments were carried out under higher VOC and ozone concentrations in comparison to the atmosphere, this work suggests that the role of non-reactive VOCs should be explored in SOA products formation.

  9. Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures

    NASA Astrophysics Data System (ADS)

    Zhao, Da; Liu, Tao; Zhang, Mei; Liang, Richard; Wang, Ben

    2012-11-01

    Traditional multifunctional composite structures are produced by embedding parasitic parts, such as foil sensors, optical fibers and bulky connectors. As a result, the mechanical properties of the composites, especially the interlaminar shear strength (ILSS), could be largely undermined. In the present study, we demonstrated an innovative aerosol-jet printing technology for printing electronics inside composite structures without degrading the mechanical properties. Using the maskless fine feature deposition (below 10 μm) characteristics of this printing technology and a pre-cure protocol, strain sensors were successfully printed onto carbon fiber prepregs to enable fabricating composites with intrinsic sensing capabilities. The degree of pre-cure of the carbon fiber prepreg on which strain sensors were printed was demonstrated to be critical. Without pre-curing, the printed strain sensors were unable to remain intact due to the resin flow during curing. The resin flow-induced sensor deformation can be overcome by introducing 10% degree of cure of the prepreg. In this condition, the fabricated composites with printed strain sensors showed almost no mechanical degradation (short beam shearing ILSS) as compared to the control samples. Also, the failure modes examined by optical microscopy showed no difference. The resistance change of the printed strain sensors in the composite structures were measured under a cyclic loading and proved to be a reliable mean strain gauge factor of 2.2 ± 0.06, which is comparable to commercial foil metal strain gauge.

  10. Characterization of Ambient Aerosols in Mexico City during the MCMA-2003 Campaign with Aerosol Mass Spectrometry. Results from the CENICA Supersite

    SciTech Connect

    Salcedo, D; Onasch, Timothy B; Dzepina, K; Canagaratna, M R; Zhang, Q; Huffman, A J; DeCarlo, Peter; Jayne, J T; Mortimer, P; Worsnop, Douglas R; Kolb, C E; Johnson, Kirsten S; Zuberi, Bilal M; Marr, L; Volkamer, Rainer M; Molina, Luisa; Molina, Mario J; Cardenas, B; Bernabe, R; Marquez, C; Gaffney, Jeffrey S; Marley, Nancy A; Laskin, Alexander; Shutthanandan, V; Xie, YuLong; Brune, W H; Lesher, R; Shirley, T; Jiminez, J L

    2006-03-24

    An Aerodyne Aerosol Mass Spectrometer (AMS) was deployed at the CENICA Supersite, while another was deployed in the Aerodyne Mobile Laboratory (AML) during the Mexico City Metropolitan Area field study (MCMA-2003) from March 29-May 4, 2003 to investigate particle concentrations, sources, and processes. This is the first of a series of papers reporting the AMS results from this campaign. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 μm (NR PM1) with high time and size resolution. For the first time, we report field results from a beam width probe, which was used to study the shape and mixing state of the particles and to quantify potential losses of irregular particles due to beam broadening inside the AMS. Data from this probe show that no significant amount of irregular particles was lost due to excessive beam broadening. A comparison of the CENICA and AML AMSs measurements is presented, being the first published intercomparison between two quadrupole AMSs. The speciation, and mass concentrations reported by the two AMSs compared well. In order to account for the refractory material in the aerosol, we also present measurements of Black Carbon (BC) using an aethalometer and an estimate of the aerosol soil component obtained from PIXE analysis of filters. Comparisons of (AMS + BC + soil) mass concentration with other collocated particle instruments (a LASAIR Optical Particle Counter, a Tapered Element Oscillating Microbalance (TEOM) and a DustTrack Aerosol Monitor) are also presented. The comparisons show that the (AMS + BC + soil) mass concentration during MCMC-2003 is a good approximation to the total PM₂.₅ mass concentration.

  11. Chemical characterization of fine particulate matter in Changzhou, China, and source apportionment with offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ye, Zhaolian; Liu, Jiashu; Gu, Aijun; Feng, Feifei; Liu, Yuhai; Bi, Chenglu; Xu, Jianzhong; Li, Ling; Chen, Hui; Chen, Yanfang; Dai, Liang; Zhou, Quanfa; Ge, Xinlei

    2017-02-01

    Knowledge of aerosol chemistry in densely populated regions is critical for effective reduction of air pollution, while such studies have not been conducted in Changzhou, an important manufacturing base and populated city in the Yangtze River Delta (YRD), China. This work, for the first time, performed a thorough chemical characterization on the fine particulate matter (PM2.5) samples, collected during July 2015 to April 2016 across four seasons in this city. A suite of analytical techniques was employed to measure the organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSIIs), trace elements, and polycyclic aromatic hydrocarbons (PAHs) in PM2.5; in particular, an Aerodyne soot particle aerosol mass spectrometer (SP-AMS) was deployed to probe the chemical properties of water-soluble organic aerosol (WSOA). The average PM2.5 concentration was found to be 108.3 µg m-3, and all identified species were able to reconstruct ˜ 80 % of the PM2.5 mass. The WSIIs occupied about half of the PM2.5 mass (˜ 52.1 %), with SO42-, NO3-, and NH4+ as the major ions. On average, nitrate concentrations dominated over sulfate (mass ratio of 1.21), indicating that traffic emissions were more important than stationary sources. OC and EC correlated well with each other and the highest OC / EC ratio (5.16) occurred in winter, suggesting complex OC sources likely including both secondary and primary ones. Concentrations of eight trace elements (Mn, Zn, Al, B, Cr, Cu, Fe, Pb) can contribute up to ˜ 5.0 % of PM2.5 during winter. PAH concentrations were also high in winter (140.25 ng m-3), which were predominated by median/high molecular weight PAHs with five and six rings. The organic matter including both water-soluble and water-insoluble species occupied ˜ 21.5 % of the PM2.5 mass. SP-AMS determined that the WSOA had average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), nitrogen-to-carbon (N / C), and organic

  12. Analysis of water soluble organic aerosols over the mid-Atlantic region of the United States: A method for chemical characterization using IC/MS/MS

    NASA Astrophysics Data System (ADS)

    Brent, L. C.; Reiner, J.; Sander, L.; Beyersdorf, A. J.; Dickerson, R. R.; Stehr, J. W.

    2013-12-01

    Because of its links to respiratory morbidity and mortality, particulate matter (PM) is a federally designated criteria pollutant. Composition of airborne particulate matter is not homogeneous and varies widely with respect to source, climate and local meteorology. The complexities of aerosol composition represent a significant challenge to analysts and studies are commonly limited to determination of aerosol bulk properties. Routine, in situ, monitoring stations typically measure organic carbon, elemental carbon and inorganic salts. This study provides the first reported application of IC/MS/MS to the characterization of organic acids in atmospheric PM. Using NIST SRM 1649b, Urban Dust, as a test material for method development, organic acids were resolved chromatographically into classes of aliphatic monoacids, aliphatic diacids, aromatic acids and polyacids. The selective ion monitoring capability of a triple quadropole mass analyzer frequently overcame instances of incomplete chromatographic separation. This combination of ion chromatography and mass spectrometry significantly increases the number of ions for which a single IC procedure can be optimized due to the increased selectivity of the approach. The method was applied to water soluble quartz fiber extract of samples collected on a Cessna 402B aircraft during the NASA July 2011 DISCOVER AQ air campaign resulting in the qualitative identification of 21 organic acids 15 of which were also evaluated quantitatively and the quantitative evaluation of 4 inorganic species. The molecular speciation of aerosol composition is important for understanding mechanistic pathways and ultimately for apportioning aerosol sources. Improved methods for determining the molecular composition will provide information on the vertical distribution of particulate organic carbon in the atmosphere, its optical properties, information on aerosol transport in the lower free troposphere. Lastly, greater structural elucidation of

  13. Chemical characterization and physico-chemical properties of aerosols at Villum Research Station, Greenland during spring 2015

    NASA Astrophysics Data System (ADS)

    Glasius, M.; Iversen, L. S.; Svendsen, S. B.; Hansen, A. M. K.; Nielsen, I. E.; Nøjgaard, J. K.; Zhang, H.; Goldstein, A. H.; Skov, H.; Massling, A.; Bilde, M.

    2015-12-01

    The effects of aerosols on the radiation balance and climate are of special concern in Arctic areas, which have experienced warming at twice the rate of the global average. As future scenarios include increased emissions of air pollution, including sulfate aerosols, from ship traffic and oil exploration in the Arctic, there is an urgent need to obtain the fundamental scientific knowledge to accurately assess the consequences of pollutants to environment and climate. In this work, we studied the chemistry of aerosols at the new Villum Research Station (81°36' N, 16°40' W) in north-east Greenland during the "inauguration campaign" in spring 2015. The chemical composition of sub-micrometer Arctic aerosols was investigated using a Soot Particle Time-of-Flight Aerosol Mass Spectrometer (SP-ToF-AMS). Aerosol samples were also collected on filters using both a high-volume sampler and a low-volume sampler equipped with a denuder for organic gases. Chemical analyses of filter samples include determination of inorganic anions and cations using ion-chromatography, and analysis of carboxylic acids and organosulfates of anthropogenic and biogenic origin using ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Previous studies found that organosulfates constitute a surprisingly high fraction of organic aerosols during the Arctic Haze period in winter and spring. Investigation of organic molecular tracers provides useful information on aerosol sources and atmospheric processes. The physico-chemical properties of Arctic aerosols are also under investigation. These measurements include particle number size distribution, water activity and surface tension of aerosol samples in order to deduct information on their hygroscopicity and cloud-forming potential. The results of this study are relevant to understanding aerosol sources and processes as well as climate effects in the Arctic, especially during the Arctic haze

  14. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE PAGES

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; ...

    2014-07-31

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), organic mass-to-organic carbon (OM : OC), and carbon oxidation state (OSC) for a vastly expanded laboratory dataset of multifunctional oxidized OA standards. For the expanded standard dataset, the "Aiken-Explicit" method (Aiken et al., 2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios, reproduces known molecular O :more » C and H : C ratio values within 20% (average absolute value of relative errors) and 12% respectively. The more commonly used "Aiken-Ambient" method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions, reproduces O : C and H : C of multifunctional oxidized species within 28% and 14% of known values. These values are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and H2O+ produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method reduces the systematic biases and reproduces O : C (H : C) ratios of individual oxidized standards within 28% (13

  15. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    NASA Astrophysics Data System (ADS)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; Surratt, J. D.; Donahue, N. M.; Jayne, J. T.; Worsnop, D. R.

    2015-01-01

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air

  16. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE PAGES

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; ...

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determinemore » elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion

  17. Differences in the OC/EC Ratios that Characterize Ambient and Source Aerosols due to Thermal-Optical Analysis

    EPA Science Inventory

    Thermal-optical analysis (TOA) is typically used to measure the OC/EC (organic carbon/elemental carbon) and EC/TC (elemental carbon/total carbon) ratios in source and atmospheric aerosols. The present study utilizes a dual-optical carbon aerosol analyzer to examine the effects of...

  18. Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography

    SciTech Connect

    Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P.; Cofer, W.R. III; Levine, J.S.; Winstead, E.L.

    1995-06-01

    In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

  19. Characterization of trace metals on soot aerosol particles with the SP-AMS: detection and quantification

    NASA Astrophysics Data System (ADS)

    Carbone, S.; Onasch, T.; Saarikoski, S.; Timonen, H.; Saarnio, K.; Sueper, D.; Rönkkö, T.; Pirjola, L.; Häyrinen, A.; Worsnop, D.; Hillamo, R.

    2015-11-01

    A method to detect and quantify mass concentrations of trace metals on soot particles by the Aerodyne soot-particle aerosol mass spectrometer (SP-AMS) was developed and evaluated in this study. The generation of monodisperse Regal black (RB) test particles with trace amounts of 13 different metals (Na, Al, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr and Ba) allowed for the determination of the relative ionization efficiency of each metal relative to black carbon (RIEmeas). The observed RIEmeas / RIEtheory values were larger than unity for Na, Rb, Ca, Sr and Ba due to thermal surface ionization (TSI) on the surface of the laser-heated RB particles. Values closer to unity were obtained for the transition metals Zn, Cu, V and Cr. Mn, Fe, and Ni presented the lowest RIEmeas / RIEtheory ratios and highest deviation from unity. The latter discrepancy is unexplained; however it may be related to problems with our calibration method and/or the formation of metal complexes that were not successfully quantified. The response of the metals to the laser power was investigated and the results indicated that a minimum pump laser current of 0.6 A was needed in order to vaporize the metals and the refractory black carbon (rBC). Isotopic patterns of metals were resolved from high-resolution mass spectra, and the mass-weighted size distributions for each individual metal ion were obtained using the high-resolution particle time-of-flight (HR-PToF) method. The RIEmeas values obtained in this study were applied to the data of emission measurements in a heavy-fuel-oil-fired heating station. Emission measurements revealed a large number of trace metals, including evidence for metal oxides and metallic salts, such as vanadium sulfate, calcium sulfate, iron sulfate and barium sulfate, which were identified in the SP-AMS high-resolution mass spectra. SP-AMS measurements of Ba, Fe, and V agreed with ICP-MS analyzed filter samples within a factor of 2 when emitted rBC mass loadings were elevated.

  20. Temporal variability of MODIS aerosol optical depth and chemical characterization of airborne particulates in Varanasi, India.

    PubMed

    Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, T

    2015-01-01

    Temporal variation of airborne particulate mass concentration was measured in terms of toxic organics, metals and water-soluble ionic components to identify compositional variation of particulates in Varanasi. Information-related fine particulate mass loading and its compositional variation in middle Indo-Gangetic plain were unique and pioneering as no such scientific literature was available. One-year ground monitoring data was further compared to Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 retrieved aerosol optical depth (AOD) to identify trends in seasonal variation. Observed AOD exhibits spatiotemporal heterogeneity during the entire monitoring period reflecting monsoonal low and summer and winter high. Ground-level particulate mass loading was measured, and annual mean concentration of PM2.5 (100.0 ± 29.6 μg/m(3)) and PM10 (176.1 ± 85.0 μg/m(3)) was found to exceed the annual permissible limit (PM10: 80 %; PM2.5: 84 %) and pose a risk of developing cardiovascular and respiratory diseases. Average PM2.5/PM10 ratio of 0.59 ± 0.18 also indicates contribution of finer particulates to major variability of PM10. Particulate sample was further processed for trace metals, viz. Ca, Fe, Zn, Cu, Pb, Co, Mn, Ni, Cr, Na, K and Cd. Metals originated mostly from soil/earth crust, road dust and re-suspended dust, viz. Ca, Fe, Na and Mg were found to constitute major fractions of particulates (PM2.5: 4.6 %; PM10: 9.7 %). Water-soluble ionic constituents accounted for approximately 27 % (PM10: 26.9 %; PM2.5: 27.5 %) of the particulate mass loading, while sulphate (8.0-9.5 %) was found as most dominant species followed by ammonium (6.0-8.2 %) and nitrate (5.5-7.0 %). The concentration of toxic organics representing both aliphatic and aromatic organics was determined by organic solvent extraction process. Annual mean toxic organic concentration was found to be 27.5 ± 12.3 μg/m(3) (n = 104) which constitutes significant proportion of

  1. Lead isotopic fingerprinting of aerosols to characterize the sources of atmospheric lead in an industrial city of India

    NASA Astrophysics Data System (ADS)

    Sen, Indra S.; Bizimis, Michael; Tripathi, Sachchida Nand; Paul, Debajyoti

    2016-03-01

    Anthropogenic Pb in the environment is primarily sourced from combustion of fossil fuel and high-temperature industries such as smelters. Identifying the sources and pathways of anthropogenic Pb in the environment is important because Pb toxicity is known to have adverse effects on human health. Pb pollution sources for America, Europe, and China are well documented. However, sources of atmospheric Pb are unknown in India, particularly after leaded gasoline was phased out in 2000. India has a developing economy with a rapidly emerging automobile and high temperature industry, and anthropogenic Pb emission is expected to rise in the next decade. In this study, we report on the Pb-isotope compositions and trace metal ratios of airborne particulates collected in Kanpur, a large city in northern part of India. The study shows that the PM10 aerosols had elevated concentration of Cd, Pb, Zn, As, and Cu in the Kanpur area, however their concentrations are well below the United States Environmental Protection Agency chronic exposure limit. Lead isotopic and trace metal data reveal industrial emission as the plausible source of anthropogenic Pb in the atmosphere in Kanpur. However, Pb isotopic compositions of potential source end-members are required to fully evaluate Pb contamination in India over time. This is the first study that characterizes the isotopic composition of atmospheric Pb in an Indian city after leaded gasoline was phased out by 2000.

  2. Physicochemical characterization of winter PM10 aerosol impacted by sugarcane burning from São Paulo city, Brazil

    NASA Astrophysics Data System (ADS)

    Caumo, Sofia E. S.; Claeys, Magda; Maenhaut, Willy; Vermeylen, Reinhilde; Behrouzi, Shabnam; Safi Shalamzari, Mohammad; Vasconcellos, Pérola C.

    2016-11-01

    Atmospheric particulate matter samples (PM10) were collected at an urban site in São Paulo (SPA) city in winter episodes of 2012 and 2013. Several organic compounds were determined in the samples to characterize the composition of the particulate matter with emphasis on marker compounds for biomass burning. Organic carbon (OC), elemental carbon (EC), monosaccharide anhydrides, monosaccharides, nitroaromatic compounds, isoprene secondary organic aerosol markers, and polyols were measured. The PM10, OC and EC median concentrations were higher for samples collected in 2013 than in 2012, with the contribution of OC to the PM10 mass being 17% and 11% in 2012 and 2013. The three anhydrosugars, levoglucosan, mannosan and galactosan together, accounted, on average, for 2.0 and 2.2% of the OC mass in 2012 and 2013, whereas the nitro-aromatic compounds, including 4-nitrophenol, 4-nitrocatechol, isomeric methyl nitrocatechols and dimethyl catechols, showed the same trend, contributing, on average, for 0.28% and 0.35% to the OC mass in 2012 and 2013, and thus indicating a higher contribution from biomass burning in 2013 compared to 2012. The methyl nitrocatechols were substantially correlated with levoglucosan, consistent with their proposed origin from biomass burning. The results demonstrate that biomass burning compounds are important contributors to the OC mass, especially in winter. Furthermore, it is suggested that a levoglucosan/galactosan ratio smaller than about 30 may be indicative for regional sugarcane burning and not for advected air from sites that are impacted by tropical forest fires.

  3. Chemical and isotopic characterization of fatty acids and polycyclic aromatic hydrocarbons in aerosols - implications for biomass burning

    SciTech Connect

    Ballentine, D.C.

    1995-12-31

    Emissions of organic materials during biomass burning have been suggested to influence the biogeochemical distribution of nutrients in a range of ecosystems. Additionally, some organic components survive pyrolytic processes and are of regional and global biogeochemical significance because they may serve as tracers for transport of biomass burning products. Two classes of compounds that are of interest in determining the transport of these products are polycyclic aromatic hydrocarbons (PAH) and fatty acids. Polycyclic aromatic hydrocarbons are stable to biodegradation and are typically produced during natural and anthropogenic combustion processes. Fatty acids are also stable to atmospheric degradation and have been implicated as useful biomarkers for atmospheric transport. In this study, PAH and fatty acids emitted during controlled low and high temperature burns of sugar cane have been chemically and isotopically characterized using GC/MS and GC/IRMS, respectively. In order to determine if these species are suitable biomarkers for the transport of biomass burning materials, aerosols collected during sugar cane burning in South Africa have been similarly analyzed.

  4. Characterization of Dust Properties at the Source Region During ACE-Asia

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Lau, William (Technical Monitor)

    2001-01-01

    ACE (Aerosol Characterization Experiment)-Asia is designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally-occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. The phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, east coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of dust aerosol radiative flux in addition to measurements of loading and optical thickness. At the time of the Terra/MODIS overpass, these ground-based observations can provide valuable data to compare with MODIS retrievals over land. Preliminary results will be presented and discussed their implications in regional climatic effects.

  5. Real-time characterization of the size and chemical composition of individual particles in ambient aerosol systems in Riverside, California

    SciTech Connect

    Noble, C.A.; Prather, K.A.

    1995-12-31

    Atmospheric aerosols, although ubiquitous, are highly diverse and continually fluctuating systems. A typical aerosol system may consist of particles with diameters between {approximately}0.002 {mu}m and {approximately}200 {mu}m. Even in rural or pristine areas, atmospheric particle concentration is significant, with concentrations up to 10{sup 8} particles/cm{sup 3} not being uncommon. Chemical composition of atmospheric particles vary from simple water droplets or acidic ices to soot particles and cigarette smoke. Due to changes in atmospheric conditions, processes such as nucleation, coagulation or heterogeneous chemistry may effect both physical and chemical properties of individual particles over relatively short time intervals. Recently, aerosol measurement techniques are focusing on determining the size and/or chemical composition of individual aerosol particles. This research group has recently developed aerosol time-of-flight mass spectrometry (ATOFMS), a technique which allows for real-time determination of the size and chemical composition of individual aerosol particles. Single particle measurements are performed in one instrument using dual laser aerodynamic particle sizing and time-of-flight mass spectrometry. Aerosol-time-of-flight mass spectrometry is briefly described in several other abstracts in this publication.

  6. Characterization of the Changes in Hygroscopicity of Ambient Organic Aerosol due to Oxidation by Gas Phase OH

    NASA Astrophysics Data System (ADS)

    Wong, J. P.; McWhinney, R. D.; Slowik, J. G.; Abbatt, J.

    2011-12-01

    Despite the ubiquitous nature of organic aerosols and their importance in climate forcing, the influence of chemical processes on their ability to act as cloud condensation nuclei (CCN) in the atmosphere remains uncertain. Changes to the hygroscopicity of ambient organic aerosol due to OH oxidation were explored at a remote forested (Whistler, British Columbia) and an urban (Toronto, Ontario) site. Organic aerosol was exposed to controlled levels of OH radicals in a portable flow tube reactor, the Toronto Photo-Oxidation Tube (TPOT). An Aerodyne Aerosol Mass Spectrometer (AMS) monitored the changes in the chemical composition due to OH-initiated oxidation. The CCN activity of size-selected particles was measured with a DMT Cloud Condensation Nuclei Counter (CCNc) to determine the hygroscopicity parameter, κ. Preliminary results suggest that gas phase OH oxidation increases the degree of oxygenation of organic aerosol, leading to increases in hygroscopicity. These results yield insights into the mechanism by which oxidation affects the hygroscopicity of ambient aerosol of various sources, and to constrain the main aging process that leads to the observation of increasing hygroscopicity with increasing oxidation of organic aerosol.

  7. Assessment of the Performance of Iodine-Treated Biocidal Filters and Characterization of Virus Aerosols

    DTIC Science & Technology

    2009-07-01

    presumably due to the increased area of air/water interface. Aggregation results in a shielding effect and inert constituents yield an encasement effect ...protective effect of RH was observed. 1 ASSESSMENT OF THE PERFORMANCE OF IODINE-TREATED BIOCIDAL FILTERS AND CHARACTERIZATION OF VIRUS...electrets filter minimizes reaeroslization but also makes it difficult to discriminate the antimicrobial effect at the surface. The distribution of

  8. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia

    NASA Astrophysics Data System (ADS)

    Sheesley, Rebecca J.; Schauer, James J.; Chowdhury, Zohir; Cass, Glen R.; Simoneit, Bernd R. T.

    2003-05-01

    Throughout South Asia biomass is commonly used as a fuel source for cooking and heating homes. The smoke from domestic use of these fuels is expected to be a major source of atmospheric particulate matter in the region and needs to be characterized for input in regional source apportionment models and global climate models. Biomass fuel samples including coconut leaves, rice straw, jackfruit branches, dried cowdung patties, and biomass briquettes manufactured from compressed biomass material were obtained from Bangladesh. The fuel samples were burned in a wood stove to collect and characterize the particulate matter emissions. The bulk chemical composition including total organic and elemental carbon, sulfate, nitrate, ammonium and chloride ions, and bulk elements such as potassium and sodium did not show conclusive differences among the biomass samples tested. Unique features, however, exist in the detailed organic characterization of the combustion smoke from the different sources. The organic compound fingerprints of the particulate matter are shown to be distinct from one another and distinct from North American wood fuels. Fecal stanols including 5β-stigmastanol, coprostanol, and cholestanol are found to be good molecular markers for the combustion of cowdung. Additionally, the patterns of methoxyphenols and plant sterols provide a unique signature for each biomass sample and are conducive as source apportionment tracers.

  9. Characterization of radicals and high-molecular weight species from alpha-pinene/ozone reaction and ambient aerosol samples

    NASA Astrophysics Data System (ADS)

    Pavlovic, Jelica

    Secondary organic aerosol formed during oxidation of different volatile organic compounds is composed from a number of final and intermediate reaction products. The final products include compounds in both low and high molecular weight range called also oligomer species. These compounds can be highly volatile, as well as being semi- or low-volatility compounds. This study characterized intermediate reactive radical products formed from previously often studied alpha-pinene/ozone reaction. In order to passivate those radical species nitrone spin traps were used. 5,5-dimethyl-4,5-dihydro-3H-pyrrole-N-oxide (DMPO), and 5-dietoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) traps were able to successfully trap oxygen- and carbon-centered radicals produced from alpha-pinene/ozone reaction. Electrospray ionization (ESI) in negative ion mode with mass spectrometry (MS) detection was used to scan spectra of formed spin trap adducts and the tandem mass spectrometry (MSn) to elucidate its structures as well as structures of captured radicals. The same method was applied to analyze radical species present in ambient PM2.5 samples. Few carbon- (alkyl) and oxygen- (alkoxyl) centered radicals were captured with DMPO and DEPMPO traps. The second part of this study was focused on high molecular weight (high-MW) species formed from the same reaction (alpha-pinene/ozone), but found also in fine particulate matter fractions of ambient samples. LC/MS/MS analysis of dimer species from chamber study revealed fragments that can originate from peroxide structures. Proposed reaction for these peroxide dimer formation is self reaction of two peroxyl radicals, followed by the loss of oxygen molecule. These findings emphasize the role of peroxyl (ROO) radicals in formation of high-MW products and are in line with the high O:C ratio results reported in other studies. Water soluble organic carbon (WSOC) extracts of three size fractions of the ambient aerosol, PM1--2.5, PM0.1--1, and PM<0

  10. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS)

    NASA Astrophysics Data System (ADS)

    Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho

    2016-05-01

    Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.

    We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.

  11. In-situ physical and chemical characterization of the Eyjafjallajökull aerosol plume in the free troposphere over Italy

    NASA Astrophysics Data System (ADS)

    Sandrini, S.; Giulianelli, L.; Decesari, S.; Facchini, M. C.; Fuzzi, S.; Cristofanelli, P.; Marinoni, A.; Bonasoni, P.; Chiari, M.; Calzolai, G.; Canepari, S.; Perrino, C.

    2013-08-01

    Continuous measurements of physical and chemical properties at the Mt. Cimone GAW-WMO Global Station (2165 m a.s.l.) allowed the detection of the volcanic aerosol plume resulting from the Eyjafjallajökull eruption of spring 2010. The event affected the site after a transport over a distance of more than 3000 km. Two main transport episodes were detected during the eruption period, showing a volcanic fingerprint discernible against the free tropospheric background conditions typical of the site, the first from 19 to 21 April and the second from 18 to 20 May 2010. The paper reports the modification of aerosol characteristics observed during the two episodes, both characterized by an abrupt increase in fine and, especially, coarse mode particle number. Analysis of major, minor and trace elements by different analytical techniques (Ionic Chromatography, PIXE-PIGE and ICP-MS) were performed on aerosols collected by ground level discrete sampling. The resulting database allows the characterization of aerosol chemical composition during the volcanic plume transport and in background conditions. During the passage of the volcanic plume, the fine fraction was dominated by sulphates, denoting the secondary origin of this mode, mainly resulting from in-plume oxidation of volcanic SO2. By contrast, the coarse fraction was characterized by increased concentration of numerous elements of crustal origin, such as Fe, Ti, Mn, Ca, Na, and Mg, which enter the composition of silicate minerals. Data analysis of selected elements (Ti, Al, Fe, Mn) allowed the estimation of the volcanic plume's contribution to total PM10, resulting in a local enhancement of up to 9.5 μg m-3, i.e. 40% of total PM10, on 18 May, which was the most intense of the two episodes. These results appear significant, especially in the light of the huge distance of Mt. Cimone from the source, confirming the widespread diffusion of the Eyjafjallajokull ashes over Europe.

  12. Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa

    USGS Publications Warehouse

    Kellogg, C.A.; Griffin, Dale W.; Garrison, V.H.; Peak, K.K.; Royall, N.; Smith, R.R.; Shinn, E.A.

    2004-01-01

    Millions of metric tons of African desert dust blow across the Atlantic Ocean each year, blanketing the Caribbean and southeastern United States. Previous work in the Caribbean has shown that atmospheric samples collected during dust events contain living microbes, including plant and opportunistic human pathogens. To better understand the potential downwind public health and ecosystem effects of the dust microbes, it is important to characterize the source population. We describe 19 genera of bacteria and 3 genera of fungi isolated from air samples collected in Mali, a known source region for dust storms, and over which large dust storms travel.

  13. Genotypic and phenotypic characterization of aerosolized bacteria collected from African dust events

    SciTech Connect

    Wilson, Christina A.; Brigmon, Robin L.; Yeager, Chris; Smith, Garriet W.; Polson, Shawn W.

    2013-07-31

    Twenty-one bacteria were isolated and characterized from air samples collected in Africa and the Caribbean by the United States Geological Survey (USGS). Isolates were selected based on preliminary characterization as possible pathogens. Identification of the bacterial isolates was 25 achieved using 16S rRNA gene sequence analysis, fatty acid methyl esters (FAMEs) profiling, the BIOLOG Microlog® System (carbon substrate assay), and repetitive extragenic palindromic (REP)-PCR analysis. The majority of isolates (18/21) were identified as species of the genus Bacillus. Three isolates were classified within the Bacillus cereus senso lato group, which includes Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus strains. One isolate was identified as a Staphylococcus sp., 30 most closely related to species (i.e Staphylococcus kloosii, Staphylococcus warneri) that are commonly associated with human or animal skin, but can also act as opportunistic pathogen. Another isolate was tentatively identified as Tsukamurella inchonensis, a known respiratory pathogen, and was resistant to the ten antibiotics tested including vancomycin.

  14. Genotypic and phenotypic characterization of aerosolized bacteria collected from African dust events

    DOE PAGES

    Wilson, Christina A.; Brigmon, Robin L.; Yeager, Chris; ...

    2013-07-31

    Twenty-one bacteria were isolated and characterized from air samples collected in Africa and the Caribbean by the United States Geological Survey (USGS). Isolates were selected based on preliminary characterization as possible pathogens. Identification of the bacterial isolates was 25 achieved using 16S rRNA gene sequence analysis, fatty acid methyl esters (FAMEs) profiling, the BIOLOG Microlog® System (carbon substrate assay), and repetitive extragenic palindromic (REP)-PCR analysis. The majority of isolates (18/21) were identified as species of the genus Bacillus. Three isolates were classified within the Bacillus cereus senso lato group, which includes Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus strains. Onemore » isolate was identified as a Staphylococcus sp., 30 most closely related to species (i.e Staphylococcus kloosii, Staphylococcus warneri) that are commonly associated with human or animal skin, but can also act as opportunistic pathogen. Another isolate was tentatively identified as Tsukamurella inchonensis, a known respiratory pathogen, and was resistant to the ten antibiotics tested including vancomycin.« less

  15. Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

    SciTech Connect

    Cross, E.; Onasch, Timothy B.; Canagaratna, Manjula; Jayne, J. T.; Kimmel, Joel; Yu, Xiao-Ying; Alexander, M. L.; Worsnop, Douglas R.; Davidovits, Paul

    2009-10-01

    To accurately model the radiative forcing of aerosol particles, one must measure in real-time the size, shape, density, chemical composition, and mixing state of ambient particles. This is a formidable challenge because the chemical and physical properties of the aerosol particles are highly complex, dependent on the emission sources, the geography and meteorology of the surroundings, and the gas phase composition of the regional atmosphere.

  16. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; Jayaraman, A.; Pandit, A.; Raj, A.; Kumar, H.; Kumar, S.; Singh, A.; Stenchikov, G.; Wienhold, F.; Bian, J.

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  17. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  18. Physico-chemical modeling of the First Aerosol Characterization Experiment (ACE 1) Lagrangian B: 1. A moving column approach

    NASA Astrophysics Data System (ADS)

    Suhre, Karsten; Mari, CéLine; Bates, Timothy S.; Johnson, James E.; Rosset, Robert; Wang, Qing; Bandy, Alan R.; Blake, Donald R.; Businger, Steven; Eisele, Fred L.; Huebert, Barry J.; Kok, Gregory L.; Lee Mauldin, R.; PréVôT, André S. H.; Schillawski, Richard D.; Tanner, David J.; Thornton, Donald C.

    1998-01-01

    During Lagrangian experiment B (LB in the following) of the First Aerosol Characterization Experiment (ACE 1), a clean maritime air mass was followed over a period of 28 hours. During that time span, the vertical distribution of aerosols and their gas phase precursors were characterized by a total of nine aircraft soundings which were performed during three research flights that followed the trajectory of a set of marked tetroons. The objective of this paper is to study the time evolution of gas phase photochemistry in this Lagrangian framework. A box model approach to the wind shear driven and vertically stratified boundary layer is questionable, since its basic assumption of instantaneous turbulent mixing of the entire air column is not satisfied here. To overcome this obstacle, a one-dimensional Lagrangian boundary layer meteorological model with coupled gas phase photochemistry is used. To our knowledge, this is the first time that such a model is applied to a Lagrangian experiment and that enough measurements are available to fully constrain the simulations. A major part of this paper is devoted to the question of to what degree our model is able to reproduce the time evolution and the vertical distribution of the observed species. Comparison with observations of O3, OH, H2O2, CH3OOH, DMS, and CH3I, made on the nine Lagrangian aircraft soundings shows that this is in general the case, although the dynamical simulation started to deviate from the observations on the last Lagrangian flight. In agreement with experimental findings reported by Q. Wang et al. (unpublished manuscript, 1998b), generation of turbulence in the model appears to be most sensitive to the imposed sea surface temperature. Concerning the different modeled and observed chemical species, a number of conclusions are drawn: (1) Ozone, having a relatively long photochemical lifetime in the clean marine boundary layer, is found to be controlled by vertical transport processes, in particular

  19. The Southeastern Aerosol Research and Characterization Study, Part 3: Continuous measurements of fine particulate matter mass and composition

    SciTech Connect

    Edgerton, E.S.; Hartsell, B.E.; Saylor, R.D.; Jansen, J.J.; Hansen, D.A.; Hidy, G.M.

    2006-09-15

    Deployment of continuous analyzers in the Southeastern Aerosol Research and Characterization Study (SEARCH) network began in 1998 and continues today as new technologies are developed. Measurement of fine particulate matter (PM2.5) mass is performed using a dried, 30 {sup o}C tapered element oscillating microbalance (TEOM). TEOM measurements are complemented by observations of light scattering by nephelometry. Measurements of major constituents include: (1) SO{sub 4}{sup 2-} via reduction to SO{sub 2}; (2) NH{sub 4}{sup +} and NO{sub 3}{sup -} via respective catalytic oxidation and reduction to NO, (3) black carbon (BC) by optical absorption,(4) total carbon by combustion to CO{sup 2}, and (5) organic carbon by difference between the latter two measurements. Several illustrative examples of continuous data from the SEARCH network are presented. A distinctive composite annual average diurnal pattern is observed for PM2.5 mass, nitrate, and BC, likely indicating the influence of traffic-related emissions, growth, and break up of the boundary layer and formation of ammonium nitrate. Examination of PM2.5 components indicates the need to better understand the continuous composition of the unmeasured 'other' category, because it contributes a significant fraction to total mass during periods of high PM2.5 loading. Selected episodes are presented to illustrate applications of SEARCH data. An SO{sub 2} conversion rate of 0.2%/hr is derived from an observation of a plume from a coal-fired power plant during early spring, and the importance of local, rural sources of NH{sub 3} to the formation of ammonium nitrate in particulate matter (PM) is demonstrated. 41 refs., 15 figs., 3 tabs.

  20. Thermally sensitive block copolymer particles prepared via aerosol flow reactor method: Morphological characterization and behavior in water.

    PubMed

    Nykänen, Antti; Rahikkala, Antti; Hirvonen, Sami-Pekka; Aseyev, Vladimir; Tenhu, Heikki; Mezzenga, Raffaele; Raula, Janne; Kauppinen, Esko; Ruokolainen, Janne

    2012-10-23

    This work describes properties of thermo-sensitive submicron sized particles having the same chemical composition but different morphologies. These particles have been prepared with an aerosol technique using dimethylformamide solutions of linear polystyrene-block-poly(N-isopropylacrylamide-block-polystyrene, PS-b-PNIPAM-b-PS. The particles were characterized by cryo-electron microscopy, microcalorimetry, and light scattering. Block-copolymers self-assembled within the particles forming onion-like, gyroid-like, and spherical morphologies having poly(N-isopropylacrylamide) matrix and physically cross-linking polystyrene domains. The particles were dispersed in aqueous media and their behavior in water was studied both below and above the lower critical solution temperature of poly(N-isopropylacrylamide). We found out that the particles with spherical and gyroid-like morphologies swell considerably in water at 20 °C, whereas at 40 °C the particles resemble more of those studied without water treatment. Light scattering experiments showed that the particles gradually aggregate and precipitate with time at 40 °C. Microcalorimetric studies revealed for all three studied morphologies that PNIPAM undergoes a two-step transition due to the different hydration levels of PNIPAM inside and outside the particles. Thicknesses of the PS and PNIPAM layers within the onion-like particles were analyzed using the TEM micrographs by fitting a model of electron density to the integrated electron intensity data. The surface layer of the particles was found out to be PNIPAM, which was supported by light scattering and microcalorimetry. It was also found out from the TEM micrograph analysis that the width of the outmost PS layer is considerably thinner than the one in the dry state prior to immersion in water, and a degradation scheme is proposed to explain these results.

  1. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development

    SciTech Connect

    Sassen, K.

    1992-04-30

    This research project designed to investigate how atmospheric remote sensing technology can best be applied to the characterization of the cloudy atmosphere. Our research program addresses basic atmospheric remote sensing questions, but at the same time is clearly directed toward providing information crucial to the ARM (Atmospheric Remote Sensing) program and for application to the Clouds and Radiation Testbed (CART). The instrumentation that is being brought into play includes a variety of art-of-the-art sensors. Available at NOAA WPL are polarization Doppler K{sub a}-band (0.86 mm) and X-band (3.2 cm) radars, a C0{sub 2}(10.6 {mu}m) Doppler lidar with sequential ' polarization measurement capabilities, a three-channel (20.6, 31.65 and 90 GHz) microwave radiometer, and variety of visible and infrared radiometers. Instrumentation at the University of Utah Facility for Atmospheric Remote Sensing (FARS) includes a polarization ruby (0.643 {mu}m) lidar, a narrow-beam (0.14{degree}) mid-infrared (9.5--11.5 {mu}m) radiometer coaligned with the lidar, several other radiometers in the visible and infrared spectral regions, and an advanced two-color (1.06 and 0.532 {mu}m), four-channel Polarization Diversity Lidar (PDL) and all-sky video imaging system that have only recently been developed under the ARM IDP.

  2. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  3. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    NASA Astrophysics Data System (ADS)

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  4. Using Thermal-Optical Analysis to Examine the OC-EC Split that Characterizes Ambient and Source Emissions Aerosols

    NASA Astrophysics Data System (ADS)

    Khan, B.; Hays, M. D.; Geron, C.; Jetter, J.

    2010-12-01

    Thermal-optical analysis (TOA) is typically used to measure OC-EC (organic carbon-elemental carbon) ratio in atmospheric aerosols. The present study utilizes a single dual-optics carbon aerosol analyzer to examine the effects of temperature-programming and optics on the OC-EC ratios. The OC-EC ratios for a variety of atmospheric and source emissions aerosols were measured using a National Institute of Occupational Safety and Health method (NIOSH 5040), the Interagency Monitoring of Protected Visual Environments method (IMPROVE), and a modified NIOSH 5040 method (referred in this paper as NIST-EPA). Use of the dual-optics instrument allowed simultaneous monitoring of the reflectance (TOR) and transmission (TOT) during each thermal protocol. Results showed no statistical difference between NIST-EPA and NIOSH OC-EC ratios for residential cookstove emissions and for an urban aerosol collected in Nairobi, Kenya. However, the OC-EC ratios for diesel exhaust (NIST [TOT and TOR]) and for a denuded rural North Carolina forest aerosol (NIST [TOT]) were significantly greater than the corresponding NIOSH values. Significantly lower IMPROVE (TOT and TOR) OC-EC ratios, compared to NIST-EPA and NIOSH, may be ascribed to the lower temperature protocol of this method. The ratio of TOT-to-TOR for the OC-EC ratio ranged between 1.37 - 1.71 (residential cookstoves), 1.05 - 1.24 (diesel exhaust), 1.63 - 2.23 (rural), and 0.80 - 1.12 (urban) for the three methods. Aerosols containing components susceptible to charring (such as water soluble organic compounds typical of rural and cookstove aerosols) tend to show the higher OC-EC variability among the methods when compared to diesel-impacted aerosols, which showed little to no detectable pyrolyzed carbon (PyC). Different sample types, due to their various chemical compositions, behave differently under dissimilar thermal and optical conditions, such that the search for a “universal” thermal-optical method for all sample types remain

  5. Gas Dynamics, Characterization, and Calibration of Fast Flow Flight Cascade Impactor Quartz Crystal Microbalances (QCM) for Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Grant, J.R.; Thorpe, A. N.; James, C.; Michael, A.; Ware, M.; Senftle, F.; Smith, S.

    1997-01-01

    During recent high altitude flights, we have tested the aerosol section of the fast flow flight cascade impactor quartz crystal microbalance (QCM) on loan to Howard University from NASA. The aerosol mass collected during these flights was disappointingly small. Increasing the flow through the QCM did not correct the problem. It was clear that the instrument was not being operated under proper conditions for aerosol collect ion primarily because the gas dynamics is not well understood. A laboratory study was therefore undertaken using two different fast flow QCM's in an attempt to establish the gas flow characteristics of the aerosol sections and its effect on particle collection, Some tests were made at low temperatures but most of the work reported here was carried out at room temperature. The QCM is a cascade type impactor originally designed by May (1945) and later modified by Anderson (1966) and Mercer et al (1970) for chemical gas analysis. The QCM has been used extensively for collecting and sizing stratospheric aerosol particles. In this paper all flow rates are given or corrected and referred to in terms of air at STP. All of the flow meters were kept at STP. Although there have been several calibration and evaluation studies of moderate flow cascade impactors of less than or equal to 1 L/rein., there is little experimental information on the gas flow characteristics for fast flow rates greater than 1 L/rein.

  6. Ultrahigh mass resolution and accurate mass measurements as a tool to characterize oligomers in secondary organic aerosols.

    PubMed

    Reinhardt, Alain; Emmenegger, Christian; Gerrits, Bertran; Panse, Christian; Dommen, Josef; Baltensperger, Urs; Zenobi, Renato; Kalberer, Markus

    2007-06-01

    Organic aerosols are a major fraction, often more than 50%, of the total atmospheric aerosol mass. The chemical composition of the total organic aerosol mass is poorly understood, although hundreds of compounds have been identified in the literature. High molecular weight compounds have recently gained much attention because this class of compounds potentially represents a major fraction of the unexplained organic aerosol mass. Here we analyze secondary organic aerosols, generated in a smog chamber from alpha-pinene ozonolysis with ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). About 450 compounds are detected in the mass range of m/z 200-700. The mass spectrum is clearly divided into a low molecular weight range (monomer) and a high molecular weight range, where dimers and trimers are distinguishable. Using the Kendrick mass analysis, the elemental composition of about 60% of all peaks could be determined throughout the whole mass range. Most compounds have high O:C ratios between 0.4 and 0.6. Small compounds (i.e., monomers) have a higher maximum O:C ratio than dimers and trimers, suggesting that condensation reactions with, for example, the loss of water are important in the oligomer formation process. A program developed in-house was used to determine exact mass differences between peaks in the monomer, dimer, and trimer mass range to identify potential monomer building blocks, which form the co-oligomers observed in the mass spectrum. A majority of the peaks measured in the low mass region of the spectrum (m/z < 300) is also found in the calculated results. For the first time the elemental composition of the majority of peaks over a wide mass range was determined using advanced data analysis methods for the analysis of ultra-high-resolution MS data. Possible oligomer formation mechanisms in secondary organic aerosols were investigated.

  7. Single-particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium

    NASA Astrophysics Data System (ADS)

    Lee, Alex K. Y.; Willis, Megan D.; Healy, Robert M.; Wang, Jon M.; Jeong, Cheol-Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.

    2016-05-01

    Biomass burning organic aerosol (BBOA) can be emitted from natural forest fires and human activities such as agricultural burning and domestic energy generation. BBOA is strongly associated with atmospheric brown carbon (BrC) that absorbs near-ultraviolet and visible light, resulting in significant impacts on regional visibility degradation and radiative forcing. The mixing state of BBOA can play a critical role in the prediction of aerosol optical properties. In this work, single-particle measurements from a Soot-Particle Aerosol Mass Spectrometer coupled with a light scattering module (LS-SP-AMS) were performed to examine the mixing state of BBOA, refractory black carbon (rBC), and potassium (K, a tracer for biomass burning aerosol) in an air mass influenced by wildfire emissions transported from northern Québec to Toronto, representing aged biomass burning plumes. Cluster analysis of single-particle measurements identified five BBOA-related particle types. rBC accounted for 3-14 wt % of these particle types on average. Only one particle type exhibited a strong ion signal for K+, with mass spectra characterized by low molecular weight organic species. The remaining four particle types were classified based on the apparent molecular weight of the BBOA constituents. Two particle types were associated with low potassium content and significant amounts of high molecular weight (HMW) organic compounds. Our observations indicate non-uniform mixing of particles within a biomass burning plume in terms of molecular weight and illustrate that HMW BBOA can be a key contributor to low-volatility BrC observed in BBOA particles. The average mass absorption efficiency of low-volatility BBOA is about 0.8-1.1 m2 g-1 based on a theoretical closure calculation. Our estimates indicate that low-volatility BBOA contributes ˜ 33-44 % of thermo-processed particle absorption at 405 nm; and almost all of the BBOA absorption was associated with low-volatility organics.

  8. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols.

    PubMed

    Lee, Hyo-Jung; Kang, Ji-Hyun; Lee, Hong-Goo; Kim, Dong-Wook; Rhee, Yun-Seok; Kim, Ju-Young; Park, Eun-Seok; Park, Chun-Woong

    2016-01-01

    The objectives of this study were to prepare bosentan hydrate (BST) microparticles as dry powder inhalations (DPIs) via spray drying and jet milling under various parameters, to comprehensively characterize the physicochemical properties of the BST hydrate microparticles, and to evaluate the aerosol dispersion performance and dissolution behavior as DPIs. The BST microparticles were successfully prepared for DPIs by spray drying from feeding solution concentrations of 1%, 3%, and 5% (w/v) and by jet milling at grinding pressures of 2, 3, and 4 MPa. The physicochemical properties of the spray-dried (SD) and jet-milled (JM) microparticles were determined via scanning electron microscopy, atomic force microscopy, dynamic light scattering particle size analysis, Karl Fischer titration, surface analysis, pycnometry, differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The in vitro aerosol dispersion performance and drug dissolution behavior were evaluated using an Anderson cascade impactor and a Franz diffusion cell, respectively. The JM microparticles exhibited an irregular corrugated surface and a crystalline solid state, while the SD microparticles were spherical with a smooth surface and an amorphous solid state. Thus, the in vitro aerosol dispersion performance and dissolution behavior as DPIs were considerably different due to the differences in the physicochemical properties of the SD and JM microparticles. In particular, the highest grinding pressures under jet milling exhibited excellent aerosol dispersion performance with statistically higher values of 56.8%±2.0% of respirable fraction and 33.8%±2.3% of fine particle fraction and lower mass median aerodynamic diameter of 5.0±0.3 μm than the others (P<0.05, analysis of variance/Tukey). The drug dissolution mechanism was also affected by the physicochemical properties that determine the dissolution kinetics of the SD and JM microparticles, which were well

  9. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols

    PubMed Central

    Lee, Hyo-Jung; Kang, Ji-Hyun; Lee, Hong-Goo; Kim, Dong-Wook; Rhee, Yun-Seok; Kim, Ju-Young; Park, Eun-Seok; Park, Chun-Woong

    2016-01-01

    The objectives of this study were to prepare bosentan hydrate (BST) microparticles as dry powder inhalations (DPIs) via spray drying and jet milling under various parameters, to comprehensively characterize the physicochemical properties of the BST hydrate microparticles, and to evaluate the aerosol dispersion performance and dissolution behavior as DPIs. The BST microparticles were successfully prepared for DPIs by spray drying from feeding solution concentrations of 1%, 3%, and 5% (w/v) and by jet milling at grinding pressures of 2, 3, and 4 MPa. The physicochemical properties of the spray-dried (SD) and jet-milled (JM) microparticles were determined via scanning electron microscopy, atomic force microscopy, dynamic light scattering particle size analysis, Karl Fischer titration, surface analysis, pycnometry, differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The in vitro aerosol dispersion performance and drug dissolution behavior were evaluated using an Anderson cascade impactor and a Franz diffusion cell, respectively. The JM microparticles exhibited an irregular corrugated surface and a crystalline solid state, while the SD microparticles were spherical with a smooth surface and an amorphous solid state. Thus, the in vitro aerosol dispersion performance and dissolution behavior as DPIs were considerably different due to the differences in the physicochemical properties of the SD and JM microparticles. In particular, the highest grinding pressures under jet milling exhibited excellent aerosol dispersion performance with statistically higher values of 56.8%±2.0% of respirable fraction and 33.8%±2.3% of fine particle fraction and lower mass median aerodynamic diameter of 5.0±0.3 μm than the others (P<0.05, analysis of variance/Tukey). The drug dissolution mechanism was also affected by the physicochemical properties that determine the dissolution kinetics of the SD and JM microparticles, which were well

  10. Physicochemical characterization of aged biomass burning aerosol after long-range transport to Greece from large scale wildfires in Russia and surrounding regions, Summer 2010

    NASA Astrophysics Data System (ADS)

    Diapouli, E.; Popovicheva, O.; Kistler, M.; Vratolis, S.; Persiantseva, N.; Timofeev, M.; Kasper-Giebl, A.; Eleftheriadis, K.

    2014-10-01

    Smoke aerosol emitted by large scale wildfires in the European part of Russia and Ukraine, was transported to Athens, Greece during August 2010 and detected at an urban background site. Measurements were conducted for physico-chemical characterization of the aged aerosol and included on-line monitoring of PM10 and carbonaceous particles mass concentrations, as well as number size distributions and aerosol optical properties. In addition TSP filter samples were analyzed for major inorganic ions, while morphology and composition of particles was studied by individual particle analysis. Results supported the long-range transport of smoke plumes from Ukraine and Russia burning areas indicated by back trajectory analysis. An increase of 50% and 40% on average in organic (OC) and elemental carbon (EC) concentrations respectively, and more than 95% in carbonate carbon (CC) levels was observed for the biomass burning (BB) transport period of August with respect to the previous month of July. Mean 24-h OC/EC ratio was found in the range 3.2-8.5. Single scattering albedo (SSA) was also increased, indicating abundance of light scattering constituents and/or shift of size distributions towards larger particles. Increase in particle size was further supported by a decreasing trend in absorption Angström exponent (AAE). Ion analysis showed major contribution of secondary species (ammonium sulfate and nitrate) and soil components (Ca2+, Mg2+). Non-sea salt K+ exhibited very good correlation with secondary species, indicating the long-range transport of BB smoke as a possible common source. Individual particle analysis of the samples collected during BB-transport event in Athens revealed elevated number of soot externally mixed with fly ash Ca-rich particles. This result is in agreement with the increased OC and CC levels measured, thus pointing towards the main components comprising the aged BB aerosol microstructure.

  11. CALIPSO Observations of Aerosol Properties Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas; Yang, Weidong

    2010-01-01

    Clouds are surrounded by a transition zone of rapidly changing aerosol properties. Characterizing this zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects as well as for improving satellite measurements of aerosol properties. We present a statistical analysis of a global dataset of CALIPSO (Cloud-Aerosol Lidar and infrared Pathfinder Satellite Observation) Lidar observations over oceans. The results show that the transition zone extends as far as 15 km away from clouds and it is ubiquitous over all oceans. The use of only high confidence level cloud-aerosol discrimination (CAD) data confirms the findings. However, the results underline the need for caution to avoid biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  12. Characterization of Atmospheric Aerosol Behavior and Climatic Effects by Analysis of SAGE 2 and Other Space, Air, and Ground Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.

    1999-01-01

    This report documents the research performed under NASA Ames Cooperative Agreement NCC 2-991, which covered the period 1 April 1997 through 31 March 1999. Previously, an interim technical report (Technical Report No. 1, 20 March 1998) summarized the work completed during the period 1 April 1997 through 31 March 1998. The objective of the proposed research was to advance our understanding of atmospheric aerosol behavior, aerosol-induced climatic effects, and the remote measurement and retrieval capabilities of spaceborne sensors such as SAGE II by combining and comparing data from these instruments and from airborne and ground-based instruments.

  13. Characterization of Asian dust storm and non-Asian dust storm PM 2.5 aerosol in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Chen, Chien-Lung

    High winds that blow sand from the desert regions of central Asia to points east are commonly known as Asian dust storms (ADS). In this paper we study the impact of an ADS on the PM 2.5 aerosol extant in Tainan, a city in southern Taiwan. PM 2.5 aerosol was collected at an urban and a coastal site in Tainan before the ADS (4-12 January 2001), during the ADS (13-16 January 2001), and the following summer (3-12 June 2001). Total PM 2.5 mass was highest at both sites during the ADS despite already moderately high levels of PM 2.5 beforehand, demonstrating that the ADS brought with it a significant amount of PM 2.5 mass. The mass percentage of Ca 2+ in PM 2.5 increased noticeably during the ADS and there was a higher non-sea-salt SO 42-/elemental carbon ratio. This latter change was due to a heightened level of non-sea-salt SO 42-, which has a serious impact on air quality in southern Taiwan, and was likely sourced from sulfur integrated into the ADS aerosol as it passed major cities and industrial districts in China. The percentage water content in PM 2.5 was at its lowest during the ADS. This was despite high levels of hygroscopic sulfate in the ADS aerosol and indicates that sulfate in the ADS may combine with Ca 2+ to form CaSO 4, a major component of ADS dust and one that does not have strong hygroscopic characteristics. Water content was at its highest in summer when winds arrive in Taiwan with elevated sea salt concentrations, having spent several days traversing the South China Sea. Non-ADS urban site aerosols were weakly acidic while coastal site aerosols were weakly alkaline. Urban site acidity was always higher than equivalent to coastal site acidity, due to locally produced acidic aerosols. Acidity peaked during the ADS, however, as a result of additional acidic aerosols transported by the ADS from urban and industrial regions in China.

  14. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  15. Characterization of lead-containing aerosol particles in Xiamen during and after Spring Festival by single-particle aerosol mass spectrometry.

    PubMed

    Zhao, Shuhui; Chen, Liqi; Yan, Jinpei; Chen, Hangyu

    2017-02-15

    To comparatively analyze lead (Pb)-containing particles during and after the Chinese Spring Festival (SF), real-time single-particle aerosol mass spectrometry (SPAMS) was conducted in Xiamen during February 9-19 and March 4-14, 2013. Pb-containing particles were found in 2.4% and 5.3% of the total particle numbers during and after SF, respectively. Based on the SPAMS mass spectral results, the Pb-containing particles were classified into three major types and 11 subtypes: Pb-rich particles comprising Pb-nitrate, Pb-sulfate and Pb-chloride; K-rich particles comprising K-nitrate, K-sulfate, K-metal, K-carbonaceous, K-phosphate, and K-chloride; and metal particles including Fe-rich and Mn-nitrate particles. During SF, lower contributions of Pb-containing particles were due to the effect of the SF holiday. Firework emissions contributed little to the Pb-containing particles. K-rich particles were a major contribution to Pb-containing particles during SF, accounting for approximately 70% of the total number of Pb-containing particles. After SF, significantly increased Pb-containing particles were observed, coincided with NO2 and SO2, due to increased industrial activities and other anthropogenic activities, and Pb-rich particles increased to approximately 50.3% of the total number of Pb-containing particles. Local industrial emissions and the stagnant meteorological conditions resulted in the higher concentrations of Pb-containing particles in the early morning after SF, especially Pb-nitrate particles. This study provides data on the in-situ monitoring of Pb emissions during and after SF and could be helpful for the mitigation of Pb pollution.

  16. Encapsulation of Alpha-1 antitrypsin in PLGA nanoparticles: In Vitro characterization as an effective aerosol formulation in pulmonary diseases

    PubMed Central

    2012-01-01

    Background Alpha 1- antitrypsin (α1AT) belongs to the superfamily of serpins and inhibits different proteases. α1AT protects the lung from cellular inflammatory enzymes. In the absence of α1AT, the degradation of lung tissue results to pulmonary complications. The pulmonary route is a potent noninvasive route for systemic and local delivery. The aerosolized α1AT not only affects locally its main site of action but also avoids remaining in circulation for a long period of time in peripheral blood. Poly (D, L lactide-co glycolide) (PLGA) is a biodegradable and biocompatible polymer approved for sustained controlled release of peptides and proteins. The aim of this work was to prepare a wide range of particle size as a carrier of protein-loaded nanoparticles to deposit in different parts of the respiratory system especially in the deep lung. Various lactide to glycolide ratio of the copolymer was used to obtain different release profile of the drug which covers extended and rapid drug release in one formulation. Results Nonaqueous and double emulsion techniques were applied for the synthesis of nanoparticles. Nanoparticles were characterized in terms of surface morphology, size distribution, powder X-ray diffraction (XRD), encapsulation efficiency, in vitro drug release, FTIR spectroscopy and differential scanning calorimetry (DSC). To evaluate the nanoparticles cytotoxicity, cell cytotoxicity test was carried out on the Cor L105 human epithelial lung cancer cell line. Nanoparticles were spherical with an average size in the range of 100 nm to 1μ. The encapsulation efficiency was found to be higher when the double emulsion technique was applied. XRD and DSC results indicated that α1AT encapsulated in the nanoparticles existed in an amorphous or disordered-crystalline status in the polymer matrix. The lactic acid to glycolic acid ratio affects the release profile of α1AT. Hence, PLGA with a 50:50 ratios exhibited the ability to release %60 of the drug within 8

  17. Characterization of polar organosulfates in secondary organic aerosol from the green leaf volatile 3-Z-hexenal

    EPA Science Inventory

    Evidence is provided that the green leaf volatile 3-Z-hexenal serves as a precursor for biogenic secondary organic aerosol through formation of polar organosulfates (OSs) with molecular weights (MW) 226 and 214. The MW 226 C6-OSs and MW 214 C5M-OSs were che...

  18. CHARACTERIZATION OF AMBIENT PM2.5 AEROSOL AT A SOUTHEASTERN US SITE: FOURIER TRANSFORM INFRARED ANALYSIS OR PARTICLE PHASE

    EPA Science Inventory

    During a field study in the summer of 2000 in the Research Triangle Park (RTP), aerosol samples were collected using a five stage cascade impactor and subsequently analyzed using Fourier Transform Infrared Spectroscopy (FTIR). The impaction surfaces were stainless steel disks....

  19. A reduced-form approach to characterizing sulfate aerosol effects on climate in integrated assessment models. Final report

    SciTech Connect

    Wigley, T.M.L.

    1996-04-01

    The objective of this study was to devise a methodology for estimating the spatial patterns of future climate change accounting for the effects of both greenhouse gases and sulfate aerosols under a wide range of emissions scenarios, using the results of General Circulation Models.

  20. LOAC (Light Optical Particle Counter): a new small aerosol counter with particle characterization capabilities for surface and airborne measurements

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Jégou, Fabrice; Jeannot, Matthieu; Jourdain, Line; Dulac, François; Mallet, Marc; Dupont, Jean-Charles; Thaury, Claire; Tonnelier, Thierry; Verdier, Nicolas; Charpentier, Patrick

    2013-04-01

    The determination of the size distribution of tropospheric and stratospheric aerosols with conventional optical counters is difficult when different natures of particles are present (droplets, soot, mineral dust, secondary organic or mineral particles...). Also, a light and cheap aerosol counter that can be used at ground, onboard drones or launched under all kinds of atmospheric balloons can be very useful during specific events as volcanic plumes, desert dust transport or local pollution episodes. These goals can be achieved thanks to a new generation of aerosol counter, called LOAC (Light Optical Aerosol Counter). The instrument was developed in the frame of a cooperation between French scientific laboratories (CNRS), the Environnement-SA and MeteoModem companies and the French Space Agency (CNES). LOAC is a small optical particle counter/sizer of ~250 grams, having a low electrical power consumption. The measurements are conducted at two scattering angles. The first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.3-100 micrometerers. At such an angle close to forward scattering, the signal is much more intense and the measurements are the least sensitive to the particle nature. The second angle is at 60°, where the scattered light is strongly dependent on the particle refractive index and thus on the nature of the aerosols. The ratio of the measurements at the two angles is used to discriminate between the different types of particles dominating the nature of the aerosol particles in the different size classes. The sensor particularly discriminates wet or liquid particles, soil dust and soot. Since 2011, we have operated LOAC in various environments (Arctic, Mediterranean, urban and peri-urban…) under different kinds of balloons including zero pressure stratospheric, tethered, drifting tropospheric, and meteorological sounding balloons. For the last case, the total weight of the gondola

  1. Chemical Characterization and Single Scattering Albedo of Atmospheric Aerosols Measured at Amami-Oshima, Southwest Japan, During Spring Seasons

    NASA Astrophysics Data System (ADS)

    Tsuruta, H.; Yabuki, M.; Takamura, T.; Sudo, S.; Yonemura, S.; Shirasuna, Y.; Hirano, K.; Sera, K.; Maeda, T.; Hayasaka, T.; Nakajima, T.

    2008-12-01

    An intensive field program was performed to measure atmospheric aerosols at Amami-Oshima, a small island located at southwest Japan, in the spring season of 2001, 2003, and 2005 under the ACE-Asia, APEX and ABC-EAREX2005 projects. Chemical analysis of the fine and coarse aerosols was made for elemental carbon (EC) and organic carbon, water soluble ions, and trace elements. Single scattering albedo (SSA) of aerosols was independently estimated by two methods. The one (SSAc) is by chemical compositions assuming a half internal mixture between EC and non sea-salt sulfate, and the other (SSAo) is by optical measurements of scattering coefficient and absorption coefficient. The backward trajectory analysis showed that the aerosol concentrations in the air masses arrived at Amami, were much higher from the Asian Continent than from other regions, and two types of aerosol enhancement were observed. The one was caused by polluted air masses from the urban-industrial area of east-coast China, the other was by high mineral dusts due to large- scale dust storms in the desert regions of northwest China. The SSAc was in a range of 0.87-0.98, and in good agreement with the SSAo after some corrections for original scattering and absorption coefficients. The SSAc showed no significant difference between the air masses from the polluted area and the desert regions. The negative correlation between the SSAc and EC was divided into two groups depending on the concentration of non sea-salt sulfate, while the increase in mineral dusts did not show any correlation with the SSAc.

  2. Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes

    SciTech Connect

    Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.

    1989-09-01

    The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

  3. New approaches for the chemical and physical characterization of aerosols using a single particle mass spectrometry based technique

    NASA Astrophysics Data System (ADS)

    Spencer, Matthew Todd

    Aerosols affect the lives of people every day. They can decrease visibility, alter cloud formation and cloud lifetimes, change the energy balance of the earth and are implicated in causing numerous health problems. Measuring the physical and chemical properties of aerosols is essential to understand and mitigate any negative impacts that aerosols might have on climate and human health. Aerosol time-of-flight mass spectrometry (ATOFMS) is a technique that measures the size and chemical composition of individual particles in real time. The goal of this dissertation is to develop new and useful approaches for measuring the physical and/or chemical properties of particles using ATOFMS. This has been accomplished using laboratory experiments, ambient field measurements and sometimes comparisons between them. A comparison of mass spectra generated from petrochemical particles was made to light duty vehicle (LDV) and heavy duty diesel vehicle (HDDV) particle mass spectra. This comparison has given us new insight into how to differentiate between particles from these two sources. A method for coating elemental carbon (EC) particles with organic carbon (OC) was used to generate a calibration curve for quantifying the fraction of organic carbon and elemental carbon on particles using ATOFMS. This work demonstrates that it is possible to obtain quantitative chemical information with regards to EC and OC using ATOFMS. The relationship between electrical mobility diameter and aerodynamic diameter is used to develop a tandem differential mobility analyzer-ATOFMS technique to measure the effective density, size and chemical composition of particles. The method is applied in the field and gives new insight into the physical/chemical properties of particles. The size resolved chemical composition of aerosols was measured in the Indian Ocean during the monsoonal transition period. This field work shows that a significant fraction of aerosol transported from India was from biomass

  4. Long term characterization of aerosol optical properties: Implications for radiative forcing over the desert region of Jodhpur, India

    NASA Astrophysics Data System (ADS)

    Bhaskar, V. Vizaya; Safai, P. D.; Raju, M. P.

    2015-08-01

    AOT data for eight years period (2004-2012) using the MICROTOPS II Sun photometer has been used to study the wavelength dependent optical characteristics of aerosols over Jodhpur, situated in the desert region in NW India. The daily mean AOT at 500 nm for the present study period was 0.66 ± 0.14 with an average Angstrom exponent as 0.71 ± 0.20. Linear regression analysis of monthly AOT and Angstrom Exponent indicated an increasing trend of both. Seasonal variations of daily AOT and α as well as spectral dependence of seasonal mean AOT are presented. Diurnal variation of AOT and α in different season is studied. Impact of dust storm events on the aerosol characteristics over Jodhpur during the study period is studied. AOT values derived from MICROTOPS II were cross checked with Sun Sky Radiometer (Model POM-01, Prede Inc.) data for the period from May 2011 to April 2012 and were found to be in good agreement. Short wave aerosol radiative forcing (ARF) was computed for one year period of May 2011 to April 2012. Spectral variation of AOT, SSA and ASP showed more AOT and ASP during pre monsoon period when SSA was comparatively low; indicating towards more prevalence of coarse size absorbing dust in this period. The ARF at SUF and TOA was negative during all the seasons indicating dominance of scattering type aerosols mainly dust particles whereas that at ATM was positive in all the seasons indicating heating of the atmosphere, especially more during pre monsoon (+40.5 W/m2) than during rest of the year (+19.5 W/m2). A high degree of correlation between ARF at the SUF with AOT (R2 = 0.94) indicated that ARF is a strong function of AOT. The radiative forcing efficiency inferred to scattering nature of aerosols at SUF (-4.2 W/m2/AOD) and TOA (-63.2 W/m2/AOD) indicating cooling at surface and top of the atmosphere whereas, there was warming of the atmosphere in between (+59 W/m2/AOD). The atmospheric heating rates varied from 0.49 K/day in post monsoon to 1.13 K/day in

  5. Remote Marine Aerosol: A Characterization of Physical, Chemical and Optical Properties and their Relation to Radiative Transfer in the Troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Porter, John N.

    1997-01-01

    Our research effort is focused on improving our understanding of aerosol properties needed for optical models for remote marine regions. This includes in-situ and vertical column optical closure and involves a redundancy of approaches to measure and model optical properties that must be self consistent. The model is based upon measured in-situ aerosol properties and will be tested and constrained by the vertically measured spectral differential optical depth of the marine boundary layer, MBL. Both measured and modeled column optical properties for the boundary layer, when added to the free-troposphere and stratospheric optical depth, will be used to establish spectral optical depth over the entire atmospheric column for comparison to and validation of satellite derived radiances (AVHRR).

  6. Characterization of atmospheric aerosol in the US Southeast from ground- and space-based measurements over the past decade

    NASA Astrophysics Data System (ADS)

    Alston, E. J.; Sokolik, I. N.; Kalashnikova, O. V.

    2012-07-01

    This study examines how aerosols measured from the ground and space over the US Southeast change temporally over a regional scale during the past decade. PM2.5 (particulate matter with aerodynamic diameter >2.5 micrometers) data consist of two datasets that represent the measurements that are used for regulatory purposes by the US EPA (Environmental Protection Agency) and continuous measurements used for quickly disseminating air quality information. AOD (aerosol optical depth) data come from three NASA sensors: the MODIS sensors onboard Terra and Aqua satellites and the MISR sensor onboard the Terra satellite. We analyze all available data over the state of Georgia from 2000-2009 of both types of aerosol data. The analysis reveals that during the summer the large metropolitan area of Atlanta has average PM2.5 concentrations that are 50% more than the remainder of the state. Strong seasonality is detected in both the AOD and PM2.5 datasets, as evidenced by a threefold increase of AOD from mean winter values to mean summer values, and the increase in PM2.5 concentrations is almost twofold over the same period. Additionally, there is agreement between MODIS and MISR onboard the Terra satellite during the spring and summer, having correlation coefficients of 0.64 and 0.71, respectively. Monthly anomalies were used to determine the presence of a trend in all considered aerosol datasets. We found negative linear trends for both the monthly AOD anomalies from MODIS onboard Terra and the PM2.5 datasets, which are statistically significant. Decreasing trends were also found for MISR onboard Terra and MODIS onboard Aqua, but those trends were not statistically significant. The observed decrease in AOD and PM2.5 concentrations may be indicative of the brightening over the study region during the past decade.

  7. Characterization and radiative impact of dust aerosols over northwestern part of India: a case study during a severe dust storm

    NASA Astrophysics Data System (ADS)

    Singh, Atinderpal; Tiwari, Shani; Sharma, Deepti; Singh, Darshan; Tiwari, Suresh; Srivastava, Atul Kumar; Rastogi, Neeraj; Singh, A. K.

    2016-12-01

    The present study focused on examining the impact of a severe dust storm (DS) on aerosol properties over Patiala (30.33°N, 76.4°E), a site located in the northwestern part of India during 20th-23rd March, 2012. On 20th March, average PM10 mass concentration increased abruptly from 182 to 817 µg m-3 along with significant increase in the number density of coarser particles (diameter >0.45 µm). During DS, spectral aerosol optical depth (AOD) increases significantly with more increase at longer wavelengths resulting in weak wavelength dependence (AOD at 380 nm increases by 210 % and at 870 nm by 270 % on 20th March). Significant decrease in Ångström exponent (AE; α 380-870) from 0.56 to 0.11 and fine-mode fraction (FMF; PM2.5/PM10) from 0.49 to 0.25 indicates dominance of coarser particles over the station. Net short wave (SW) radiation flux has been decreased by 20 % and single scattering albedo (SSA675) has been increased from 0.86 (19th March) to 0.90 (20th March). This observation is attributed to additional loading of scattering type aerosols on arrival of DS. Wavelength dependence of SSA reverses during DS and it increases with wavelength due to dominance of coarse-mode particles. Atmospheric aerosol radiative forcing (ATM ARF) during DS ranged from +45 to +77 W m-2, consequently heating the lower atmosphere up to 2.2 K day-1. Significant atmospheric heating rate due to severe dust storm may affect the regional atmospheric dynamics and hence the climate system.

  8. New approach using lidar measurements to characterize spatiotemporal aerosol mass distribution in an underground railway station in Paris

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.; Fortain, A.

    For the first time eye safe lidar measurements were performed at 355 nm simultaneously to in situ measurements in an underground station so as to test the potential interest of active remote sensing measurements to follow the spatiotemporal evolution of aerosol content inside such a confined microenvironment. The purpose of this paper is to describe different methods enabling the conversion of lidar-derived aerosol extinction coefficient into aerosol mass concentrations (PM 2.5 and PM 10). A theoretical method based on a well marked linear regression between mass concentrations simulated from the size distribution and extinction coefficients retrieved from Mie calculations provides averaged mass to optics' relations over the campaign for traffic (6.47 × 10 5 μg m -2) or no traffic conditions (3.73 × 10 5 μg m -2). Two empirical methods enable to significantly reduce CPU time. The first one is based upon the knowledge of size distribution measurements and scattering coefficients from nephelometer and allows retrieving mass to optics' relations for well determined periods or particular traffic conditions, like week-ends, with a good accuracy. The second method, that is more direct, is simply based on the ratio between TEOM concentrations and extinction coefficients obtained from nephelometer. This method is easy to set up but is not suitable for nocturnal measurements where PM stabilization time is short. Lidar signals thus converted into PM concentrations from those approaches with a fine accuracy (30%) provide a spatiotemporal distribution of concentrations in the station. This highlights aerosol accumulation in one side of the station, which can be explained by air displacement from the tunnel entrance. Those results allow expecting a more general use of lidar measurement to survey indoor air quality.

  9. Mass spectrometric characterization of isomeric terpenoic acids from the oxidation of α-pinene, β-pinene, d-limonene, and Δ3-carene in fine forest aerosol.

    PubMed

    Yasmeen, Farhat; Szmigielski, Rafal; Vermeylen, Reinhilde; Gómez-González, Yadian; Surratt, Jason D; Chan, Arthur W H; Seinfeld, John H; Maenhaut, Willy; Claeys, Magda

    2011-04-01

    In this study, we present liquid chromatographic and mass spectral data for predominant terpenoic acids formed through oxidation of α-pinene, β-pinene, d-limonene, and Δ(3)-carene that occur in fine forest aerosol from K-puszta, Hungary, a rural site with coniferous vegetation. Characterization of these secondary organic aerosol tracers in fine ambient aerosol is important because it allows one to gain information on monoterpene precursors and source processes such as oxidation and aging processes. The mass spectral data were obtained using electrospray ionization in the negative ion mode, accurate mass measurements, and linear ion trap tandem mass spectrometric experiments. Emphasis is given to the mass spectrometric differentiation of isobaric terpenoic acids, such as, e.g. the molecular weight (MW) 186 terpenoic acids, cis-pinic, cis-caric, homoterpenylic, ketolimononic, and limonic acids. Other targeted isobaric terpenoic acids are the MW 184 terpenoic acids, cis-pinonic and cis-caronic acids, and the MW 204 tricarboxylic acids, 3-methyl-1,2,3-butanetricarboxylic and 3-carboxyheptanedioic acids. Fragmentation pathways are proposed to provide a rational explanation for the observed isomeric differences and/or to support the suggested tentative structures. For the completeness of the data set, data obtained for recently reported lactone-containing terpenoic acids (i.e. terpenylic and terebic acids), related or isobaric compounds (i.e. norpinic acid, diaterpenylic acid acetate, and unknown MW 188 compounds) are also included, the rationale being that other groups working on this topic could use this data compilation as a reference.

  10. Deriving simple empirical relationships between aerodynamic and optical aerosol measurements and their application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different measurement techniques for aerosol characterization and quantification either directly or indirectly measure different aerosol properties (i.e. count, mass, speciation, etc.). Comparisons and combinations of multiple measurement techniques sampling the same aerosol can provide insight into...

  11. Study of primary biological aerosols to characterize their diversity in particulate matter over the Indian tropical region: assessment for climatic and health impact

    NASA Astrophysics Data System (ADS)

    Priyamvada R, H.; Muthalagu, A.; R, R.; Verma, R. S.; Philip, L.; Desprès, V.; Poeschl, U.; Gunthe, S. S.

    2015-12-01

    Primary Biological Aerosol Particles (PBAPs) are ubiquitous in the Earth's atmosphere and can influence the biosphere, climate, and public health (Després et al., 2012).To study the importance of the PBAPs, it is important to have an understanding about their origin, seasonal abundance and diversity. The study of PBAPs over the Indian tropical region becomes important as it hosts ~ 18% of the world population and has a distinct climate with a systematic and cyclic monsoon season which is different from the continental climates in Europe and America. In this study, the PBAPs were characterized by the application of molecular genetic techniques involving DNA extraction, PCR amplifications, cloning and DNA sequencing. In addition, characterization of the fungal source emissions was performed to better understand the diversity, abundance, and relative contribution of the fungal aerosols. For the present study, DNA analysis was performed on a one-year air filter set of PM10 (particulate matter ≤10 mm) covering three distinct meteorological seasons, i.e. summer, monsoon, and winter. The results from DNA analysis revealed the presence of bacteria and fungi in the filter samples. The fungal source characterization performed by the DNA analysis revealed the ratio of Basidiomycota to Ascomycota to be 96:4, which is consistent with previously reported studies from airborne fungal communities in the European continental boundary layer air (Fröhlich-Nowoisky et al., 2009). In the study region, the highest species richness was found to be present in the family Agaricaceae (25.3%) followed by Polyporaceae (15.3%) and Marasmiaceae (10.81%). Agaricaceae, Polyporaceae and Psathyrellaceae were dominant families in the study region and the families like Clavariaceae, Nectriaceae, Phanerochaetachae, Pleurotaceae and Strophariaceae were found to be rare. The results will next be compared with the diversity and types of the fungi found in ambient PM10. More details will be presented.

  12. Chemical aerosol Raman detector

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Amin, M.; Perkins, B. G.; Clark, M. L.; Jeys, T. H.; Sickenberger, D. W.; D'Amico, F. M.; Emmons, E. D.; Christesen, S. D.; Kreis, R. J.; Kilper, G. K.

    2017-03-01

    A sensitive chemical aerosol Raman detector (CARD) has been developed for the trace detection and identification of chemical particles in the ambient atmosphere. CARD includes an improved aerosol concentrator with a concentration factor of about 40 and a CCD camera for improved detection sensitivity. Aerosolized isovanillin, which is relatively safe, has been used to characterize the performance of the CARD. The limit of detection (SNR = 10) for isovanillin in 15 s has been determined to be 1.6 pg/cm3, which corresponds to 6.3 × 109 molecules/cm3 or 0.26 ppb. While less sensitive, CARD can also detect gases. This paper provides a more detailed description of the CARD hardware and detection algorithm than has previously been published.

  13. Inhalational anthrax (Ames aerosol) in naïve and vaccinated New Zealand rabbits: characterizing the spread of bacteria from lung deposition to bacteremia.

    PubMed

    Gutting, Bradford W; Nichols, Tonya L; Channel, Stephen R; Gearhart, Jeffery M; Andrews, George A; Berger, Alan E; Mackie, Ryan S; Watson, Brent J; Taft, Sarah C; Overheim, Katie A; Sherwood, Robert L

    2012-01-01

    There is a need to better understand inhalational anthrax in relevant animal models. This understanding could aid risk assessment, help define therapeutic windows, and provide a better understanding of disease. The aim here was to characterize and quantify bacterial deposition and dissemination in rabbits following exposure to single high aerosol dose (> 100 LD(50)) of Bacillus anthracis (Ames) spores immediately following exposure through 36 h. The primary goal of collecting the data was to support investigators in developing computational models of inhalational anthrax disease. Rabbits were vaccinated prior to exposure with the human vaccine (Anthrax Vaccine Adsorbed, AVA) or were sham-vaccinated, and were then exposed in pairs (one sham and one AVA) so disease kinetics could be characterized in equally-dosed hosts where one group is fully protected and is able to clear the infection (AVA-vaccinated), while the other is susceptible to disease, in which case the bacteria are able to escape containment and replicate uncontrolled (sham-vaccinated rabbits). Between 4-5% of the presented aerosol dose was retained in the lung of sham- and AVA-vaccinated rabbits as measured by dilution plate analysis of homogenized lung tissue or bronchoalveolar lavage (BAL) fluid. After 6 and 36 h, >80% and >96%, respectively, of the deposited spores were no longer detected in BAL, with no detectable difference between sham- or AVA-vaccinated rabbits. Thereafter, differences between the two groups became noticeable. In sham-vaccinated rabbits the bacteria were detected in the tracheobronchial lymph nodes (TBLN) 12 h post-exposure and in the circulation at 24 h, a time point which was also associated with dramatic increases in vegetative CFU in the lung tissue of some animals. In all sham-vaccinated rabbits, bacteria increased in both TBLN and blood through 36 h at which point in time some rabbits succumbed to disease. In contrast, AVA-vaccinated rabbits showed small numbers of CFU in

  14. Chemical characterization of size-resolved aerosols in four seasons and hazy days in the megacity Beijing of China.

    PubMed

    Sun, Kang; Liu, Xingang; Gu, Jianwei; Li, Yunpeng; Qu, Yu; An, Junling; Wang, Jingli; Zhang, Yuanhang; Hu, Min; Zhang, Fang

    2015-06-01

    Size-resolved aerosol samples were collected by MOUDI in four seasons in 2007 in Beijing. The PM10 and PM1.8 mass concentrations were 166.0±120.5 and 91.6±69.7 μg/m3, respectively, throughout the measurement, with seasonal variation: nearly two times higher in autumn than in summer and spring. Serious fine particle pollution occurred in winter with the PM1.8/PM10 ratio of 0.63, which was higher than other seasons. The size distribution of PM showed obvious seasonal and diurnal variation, with a smaller fine mode peak in spring and in the daytime. OM (organic matter=1.6×OC (organic carbon)) and SIA (secondary inorganic aerosol) were major components of fine particles, while OM, SIA and Ca2+ were major components in coarse particles. Moreover, secondary components, mainly SOA (secondary organic aerosol) and SIA, accounted for 46%-96% of each size bin in fine particles, which meant that secondary pollution existed all year. Sulfates and nitrates, primarily in the form of (NH4)2SO4, NH4NO3, CaSO4, Na2SO4 and K2SO4, calculated by the model ISORROPIA II, were major components of the solid phase in fine particles. The PM concentration and size distribution were similar in the four seasons on non-haze days, while large differences occurred on haze days, which indicated seasonal variation of PM concentration and size distribution were dominated by haze days. The SIA concentrations and fractions of nearly all size bins were higher on haze days than on non-haze days, which was attributed to heterogeneous aqueous reactions on haze days in the four seasons.

  15. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-02-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as directly in the exhaust plumes of individual heavy-duty (HD) diesel trucks. BC emission factor distributions for HD trucks were more skewed than OA distributions, with the highest 10% of trucks accounting for 56 and 42% of total measured BC and OA emissions, respectively. A comparison of measured OA and BC mass spectra across various sampling periods revealed a high degree of similarity in BC and OA emitted by gasoline and diesel engines. Cycloalkanes predominate in exhaust OA emissions relative to saturated alkanes (i.e., normal and iso-paraffins), suggesting that lubricating oil rather than fuel is the dominant source of primary organic aerosol (POA) emissions in diesel vehicle exhaust. This finding is supported by the detection of trace elements such as zinc and phosphorus in the exhaust plumes of individual trucks. Trace elements were emitted relative to total OA at levels that are consistent with typical weight fractions of commonly used additives present in lubricating oil. The presence of trace elements in vehicle exhaust raises the concern that ash deposits may accumulate over time in diesel particle filter systems, and may eventually lead to performance problems that require servicing.

  16. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-07-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as directly in the exhaust plumes of individual heavy-duty (HD) diesel trucks. BC emission factor distributions for HD trucks were more skewed than OA distributions (N = 293), with the highest 10% of trucks accounting for 56 and 42% of total measured BC and OA emissions, respectively. OA mass spectra measured for HD truck exhaust plumes show cycloalkanes are predominate in exhaust OA emissions relative to saturated alkanes (i.e., normal and iso-paraffins), suggesting that lubricating oil rather than fuel is the dominant source of primary organic aerosol (POA) emissions in diesel vehicle exhaust. This finding is supported by the detection of trace elements such as zinc and phosphorus in the exhaust plumes of individual trucks. Trace elements were emitted relative to total OA at levels that are consistent with typical weight fractions of commonly used additives present in lubricating oil. A comparison of measured OA and BC mass spectra across various sampling periods revealed a high degree of similarity in OA and BC emitted by gasoline and diesel engines. This finding indicates a large fraction of OA in gasoline exhaust is lubricant-derived as well. The similarity in OA and BC mass spectra for gasoline and diesel engine exhaust is likely to confound ambient source apportionment efforts to determine contributions to air pollution from these two important sources.

  17. Characterization of aromaticity in analogues of titan's atmospheric aerosols with two-step laser desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Mahjoub, Ahmed; Schwell, Martin; Carrasco, Nathalie; Benilan, Yves; Cernogora, Guy; Szopa, Cyril; Gazeau, Marie-Claire

    2016-10-01

    The role of polycyclic aromatic hydrocarbons (PAH) and Nitrogen containing PAH (PANH) as intermediates of aerosol production in the atmosphere of Titan has been a subject of controversy for a long time. An analysis of the atmospheric emission band observed by the Visible and Infrared Mapping Spectrometer (VIMS) at 3.28 μm suggests the presence of neutral polycyclic aromatic species in the upper atmosphere of Titan. These molecules are seen as the counter part of negative and positive aromatics ions suspected by the Plasma Spectrometer onboard the Cassini spacecraft, but the low resolution of the instrument hinders any molecular speciation. In this work we investigate the specific aromatic content of Titan's atmospheric aerosols through laboratory simulations. We report here the selective detection of aromatic compounds in tholins, Titan's aerosol analogs, produced with a capacitively coupled plasma in a N2:CH4 95:5 gas mixture. For this purpose, Two-Step Laser Desorption Ionization Time-of-Flight Mass Spectrometry (L2DI-TOF-MS) technique is used to analyze the so produced analogs. This analytical technique is based on the ionization of molecules by Resonance Enhanced Multi-Photon Ionization (REMPI) using a λ=248 nm wavelength laser which is selective for aromatic species. This allows for the selective identification of compounds having at least one aromatic ring. Our experiments show that tholins contain a trace amount of small PAHs with one to three aromatic rings. Nitrogen containing PAHs (PANHs) are also detected as constituents of tholins. Molecules relevant to astrobiology are detected as is the case of the substituted DNA base adenine.

  18. Characterization of atmospheric aerosol in the US Southeast from ground- and space-based measurements over the past decade

    NASA Astrophysics Data System (ADS)

    Alston, E. J.; Sokolik, I. N.; Kalashnikova, O. V.

    2011-12-01

    This study examines how aerosols measured from the ground and space over the US Southeast change temporally over a regional scale during the past decade. PM2.5 data consist of two datasets that represent the measurements that are used for regulatory purposes by the US EPA and continuous measurements used for quickly disseminating air quality information. AOD data comes from three NASA sensors: the MODIS sensors onboard Terra and Aqua satellites and the MISR sensor onboard the Terra satellite. We analyze all available data over the state of Georgia from 2000-2009 of both types of aerosol data. The analysis reveals that during the summer the large metropolitan area of Atlanta has average PM2.5 concentrations that are 50% more than the remainder of the state. Strong seasonality is detected in both the AOD and PM2.5 datasets; as evidenced by a threefold increase of AOD from mean winter values to mean summer values, and the increase in PM2.5 concentrations is almost twofold from over the same period. Additionally, there is good agreement between MODIS and MISR onboard the Terra satellite during the spring and summer having correlation coefficients of 0.64 and 0.71, respectively. Monthly anomalies were used to determine the presence of a trend in all considered aerosol datasets. We found negative linear trends in both the monthly AOD anomalies from MODIS onboard Terra and the PM2.5 datasets, which are statistically significant for α = 0.05. Decreasing trends were also found for MISR onboard Terra and MODIS onboard Aqua, but those trends were not statistically significant.

  19. Chemical Characterization and Toxicologic Evaluation of Airborne Mixtures: The Chemical and Physical Characterization of XM819 Red Phosphorus Formulation and the Aerosol Produced by Its Combustion

    DTIC Science & Technology

    1986-02-01

    Composite Infrared Spectre of XR-819 Wedge Plus . Unhardened Epon 828 ........ . ..... . . . 17 S Static 5urn Chamber . ................ 20 6 Aerosol... reflectance fourier transform Infrared spectra were recorded on a Digileb FTS-20C spectromete;. A sample of Epon 828 was received from Shell Chemical...are metal, glass and teflon to minimize artifactual contami- nation of the smoke products. The container has openings whereby air flow is regulated

  20. Characterization of atmospheric aerosols in the Adirondack Mountains using PIXE, SEM/EDX, and Micro-Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Vineyard, M. F.; LaBrake, S. M.; Ali, S. F.; Nadareski, B. J.; Safiq, A. D.; Smith, J. W.; Yoskowitz, J. T.

    2015-05-01

    We are making detailed measurements of the composition of atmospheric aerosols collected in the Adirondack Mountains as a function of particle size using proton-induced X-ray emission, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and Micro-Raman spectroscopy. These measurements provide valuable data to help identify the sources and understand the transport, transformation, and effects of airborne pollutants in upstate New York. Preliminary results indicate significant concentrations of sulfur in small particles that can travel great distances, and that this sulfur may be in the form of oxides that can contribute to acid rain.

  1. Evaluate and Characterize Mechanisms Controlling Transport, Fate, and Effects of Army Smokes in the Aerosol Wind Tunnel

    DTIC Science & Technology

    1990-02-01

    Increased Al solubility was noted, and although not related to acidity or phosphate contained In deposited aerosols, was believed to be based on the...grade p- nitrophenol . Ail soil dehydrogenase and phosphatase activities were measLrod in triplicate and the mGan values compared with that of the controi...Length(b) pH (pg P/cm2 ) (Average ML ± s.d., n -3) (DR Scale) Polyphosphoric Acid P205 (35%) 1.48 0.57±0.19 1.0 1.85±0.54 2.0 Na Phosphate Glass P5±2

  2. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    NASA Astrophysics Data System (ADS)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    acid was found to be the main particle formation contributor. The AMS analysis showed inorganic sulfate species being substantially higher during the growth stages of urban compared to continentally influenced events that are characterized by lower PM1 mass concentrations mainly composed of oxidized organics. The lowest average PM1 mass and number concentrations (2 μg m-3, 1000 cm-3) were found in marine air mass types characterized by the highest sulfate PM1-fraction (54%, 0.91 μg m-3) and volume size distributions probably dominated by sodium chloride particles from sea spray. Two to five times higher submicron aerosol mass concentrations were observed in continental (2.5 μg m-3) and urban (4.2 μg m-3) air mass types mainly consisting of organic species that were further evaluated using Positive Matrix Factorization (PMF). Zhang, Q. et al. (2004), Environ. Sci. Technol., 38, 4797-4809.

  3. Preliminary results from two intensive campaigns characterizing urban aerosols at two high altitude cities in the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Andrade, M. F.; Wiedensohler, A.; Velarde, F.; Moreno, I.; Weinhold, K.; Avila, F.

    2013-05-01

    Preliminary results from a short campaign carried out between September and December of 2012 at the cities of El Alto (16°30'36.09"S; 68°11'55.31"W; 4040 masl) and La Paz (16°30'13.83"S; 68° 7'45.56"W; 3580 masl), Bolivia are presented on this work. Particle size distribution was measured using a Mobility Particle Size Spectrometer (Reference of the World Calibration Center for Aerosol Physics) whereas concentration of black carbon was measured using a Multi Angle Absorption Photometer (MAAP). In addition meteorological parameters as well as CO concentration were collected on both locations. In the case of El Alto, the instruments were located within the International Airport of the city at approximately 300 m from the main and only landing strip and at least 1.5 km away from the main roads. On the other hand, in the case of La Paz, the instruments were set up at the Planetarium of University Mayor de San Andres. The building is located besides a road with heavy traffic. Because the two cities are part of the same metropolitan area (the sites were located 7.5 km apart), the cars and trucks produce a similar signature and therefore both background and non-background urban aerosols were sampled during the campaign. In addition, an interesting case was registered at La Paz where a day with practically no vehicular traffic was studied.

  4. Optical and chemical characterization of aerosols emitted from coal, heavy and light fuel oil, and small-scale wood combustion.

    PubMed

    Frey, Anna K; Saarnio, Karri; Lamberg, Heikki; Mylläri, Fanni; Karjalainen, Panu; Teinilä, Kimmo; Carbone, Samara; Tissari, Jarkko; Niemelä, Ville; Häyrinen, Anna; Rautiainen, Jani; Kytömäki, Jorma; Artaxo, Paulo; Virkkula, Aki; Pirjola, Liisa; Rönkkö, Topi; Keskinen, Jorma; Jokiniemi, Jorma; Hillamo, Risto

    2014-01-01

    Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study.

  5. SIRTA, a multi-sensor platform for clouds and aerosols characterization in the atmosphere: infrastructure, objective and prospective

    NASA Astrophysics Data System (ADS)

    Pietras, Christophe; Boitel, Christophe; Dupont, Jean-Charles; Haeffelin, Martial; Lapouge, Florian; Morille, Yohann; Noel, Vincent; Romand, Bernard

    2007-10-01

    The SIRTA (Site instrumental de Recherche par Télédétection Atmosphérique) is a ground-based platform located 25km south of Paris in France. The SIRTA observatory was created in 1999 by the French research institute IPSL (Institut Pierre Simon Laplace) to conduct research programs in order to improve the knowledge of radiative and dynamic processes in the atmosphere as well as complex interactions between clouds and aerosols. The objective is to better comprehend climate changes and evolution of environment using a suite a state-of-art active and passive remote sensing instruments. Two ground platforms, a wooden tower, a roof platform and a building (where the lidar operates) are the main facilities of SIRTA. The project team is composed of six persons to ensure the station operations from instrument deployment, maintenance, data transfer and preliminary data analysis. The SIRTA infrastructure enables to conduct many research activities that involve the cloud and aerosol lidar. Some of them will be discussed: the development of the STRAT (Structure of the Atmosphere) algorithm dedicated to automatically discriminate atmospheric layers and retrieve geophysical parameters from lidar profiles, and the CALIPSO validation using the dual-channel backscatter lidar deployed at SIRTA.

  6. Characterization of aerosols in the Norwegian subarctic region (ALOMAR station): Optical properties, size distributions and nucleation events

    NASA Astrophysics Data System (ADS)

    Mogo, S.; Cachorro, V. E.; de Frutos, A. M.; Lopez, J. F.; Torres, B.; Bennouna, Y.

    2013-05-01

    During the 2008 summer, a field campaign was carried out at the Arctic Lidar Observatory for Middle Atmosphere Research, ALOMAR, on Ando/ya island close to the town of Andenes (69° 16'N, 16° 00'E, 380 m a.s.l.), approximately 300 km north of the Arctic Circle. The campaign was part of the contribution of the Atmospheric Optics Group of the Valladolid University (GOA-UVa) to the International Polar Year, in the framework of the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models of Climate, Chemistry, Aerosols, and Transport) project. This GOA-UVa's field campaign has been developed to obtain experimental data for local aerosols, its optical characteristics (absorption / scattering coefficients and single scattering albedo), its size distributions and derived parameters. For this purpose, different instruments were simultaneously installed in the station facilities. These are the first measurements with this variety of information reported in the station and can be extrapolated over a wide area around.

  7. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    acetate, polymerized rapidly and produced some polymer film encapsulation of the aerosol droplets. A two-stage microcapsule generator was designed...encapsulating material, the generator also produced microcapsules of dibutyl phosphite in polyethylene, nitrocellulose, and natural rubber.

  8. Chemical characterization of PM1.0 aerosol in Delhi and source apportionment using positive matrix factorization.

    PubMed

    Jaiprakash; Singhai, Amrita; Habib, Gazala; Raman, Ramya Sunder; Gupta, Tarun

    2017-01-01

    Fine aerosol fraction (particulate matter with aerodynamic diameter <= 1.0 μm (PM)1.0) over the Indian Institute of Technology Delhi campus was monitored day and night (10 h each) at 30 m height from November 2009 to March 2010. The samples were analyzed for 5 ions (NH4(+), NO3(-), SO4(2-), F(-), and Cl(-)) and 12 trace elements (Na, K, Mg, Ca, Pb, Zn, Fe, Mn, Cu, Cd, Cr, and Ni). Importantly, secondary aerosol (sulfate and nitrate) formation was observed during dense foggy events, supporting the fog-smog-fog cycle. A total of 76 samples were used for source apportionment of PM mass. Six factors were resolved by PMF analyses and were identified as secondary aerosol, secondary chloride, biomass burning, soil dust, iron-rich source, and vehicular emission. The geographical location of the sources and/or preferred transport pathways was identified by conditional probability function (for local sources) and potential source contribution function (for regional sources) analyses. Medium- and small-scale metal processing (e.g. steel sheet rolling) industries in Haryana and National Capital Region (NCR) Delhi, coke and petroleum refining in Punjab, and thermal power plants in Pakistan, Punjab, and NCR Delhi were likely contributors to secondary sulfate, nitrate, and secondary chloride at the receptor site. The agricultural residue burning after harvesting season (Sept-Dec and Feb-Apr) in Punjab, and Haryana contributed to potassium at receptor site during November-December and March 2010. The soil dust from North and East Pakistan, and Rajasthan, North-East Punjab, and Haryana along with the local dust contributed to soil dust at the receptor site, during February and March 2010. A combination of temporal behavior and air parcel trajectory ensemble analyses indicated that the iron-rich source was most likely a local source attributed to emissions from metal processing facilities. Further, as expected, the vehicular emissions source did not show any seasonality and was

  9. Time-Resolved Molecular Characterization of Limonene/Ozone Aerosol using High-Resolution Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2009-09-09

    Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/Δm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.

  10. Characterization and source apportionment of aerosol light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Zhang, Yu-fen; Feng, Yin-chang; Zheng, Xian-jue; Jiao, Li; Hong, Sheng-mao; Shen, Jian-dong; Zhu, Tan; Ding, Jing; Zhang, Qi

    2016-09-01

    To investigate the characteristics and sources of aerosol light extinction in the Yangtze River Delta of China, a campaign was carried out in Hangzhou from December 2013 to November 2014. Hourly data for air pollutants including PM2.5, SO2, NO2, O3 and CO, and aerosol optical properties including aerosol scattering coefficient and aerosol absorbing coefficient was obtained in the environmental air quality automatic monitoring station. Meteorological parameters were measured synchronously in the automated meteorology monitoring station. Additionally, around seven sets of ambient PM2.5 samples per month were collected and analyzed during the campaign. The annual mean aerosol scattering coefficient, aerosol absorbing coefficient and aerosol single scattering albedo measured in this study was 514 ± 284 Mm- 1, 35 ± 20 Mm- 1 and 94% respectively. The aerosol extinction coefficient reconstructed using the modified IMPROVE (Interagency Monitoring of Protected Visual Environment) formula was compared to the measured extinction coefficient. Better correlations could be found between the measured and reconstructed extinction coefficient when RH was under 90%. A coupled model of CMB (chemical mass balance) and modified IMPROVE was used to apportion the sources of aerosol light extinction in Hangzhou. Vehicle exhaust, secondary nitrate and secondary sulfate were identified as the most significant sources for aerosol light extinction, accounted for 30.2%, 24.1% and 15.8% respectively.

  11. The 3-hydroxy fatty acids as biomarkers for quantification and characterization of endotoxins and Gram-negative bacteria in atmospheric aerosols in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lee, Alex K. Y.; Chan, Chak K.; Fang, Ming; Lau, Arthur P. S.

    Endotoxins from Gram-negative bacteria have received much attention because they could elicit strong pro-inflammatory responses in the human respiratory tract. In this study, 3-hydroxy fatty acids (3-OH FAs) with carbon chain lengths from 10 to 18 (C10-C18) were employed as biomarkers to quantify and characterize the endotoxins and Gram-negative bacterial community in atmospheric aerosols. Gas chromatography-mass spectrometry (GC-MS) was utilized for quantification of this biomarker in fine (PM 2.5) and coarse (PM 2.5-10) particulates collected by high volume samplers simultaneously at a rural and an urban site in Hong Kong. The geometric mean concentrations of the endotoxins were 5.5 and 1.35 ng m -3 in fine and coarse particulates at the rural site, respectively. At the urban site, the corresponding concentrations were 9.4 and 2.80 ng m -3 in fine and coarse particulates, respectively. It is found that 70-80% of the total endotoxins are associated with the fine particulates. Significant higher endotoxin levels at the urban site were observed throughout the 8-month study period. This could possibly relate to the heavier human activities in the urban areas. The distribution patterns of the 3-OH FAs with respect to carbon number are similar between the rural and urban sites regardless of particle sizes. The C10 and C16 were predominant and accounted for about 40-50% of the total 3-OH FAs. Furthermore, the odd carbon chain length 3-OH FAs constituted a non-negligible fraction (15-25%) of the total 3-OH FAs. The biologically active endotoxins estimated as the sum of C12 and C14 portions in this study ranged from 0.6-3.7 and 1.9-4.8 ng m -3 at the rural and urban sites, respectively. Applying the biomarker-to-microbial mass conversion factors, the dry mass loading of the Gram-negative bacteria are in the order of 10-10 2 ng m -3 in atmospheric aerosol. This study also demonstrates that the biomarker (3-OH FAs) approach yields much more quantitative information such as

  12. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  13. Application of Remotely-sensed Aerosol Optical Depth in Characterization and Forecasting of Urban Fine Particulate Matter

    NASA Astrophysics Data System (ADS)

    Grant, Shanique L.

    Emissions from local industries, particularly coal-fired power plants, have been shown to enhance the ambient pollutant budget in the Ohio River Valley (ORV) region. One pollutant that is of interest is PM2.5 due to its established link to respiratory illnesses, cardiopulmonary diseases and mortality. State and local agencies monitor the impact of the local point sources on the ambient concentrations at specific sites; however, the monitors do not provide satisfactory spatial coverage. An important metric for describing ambient particulate pollution is aerosol optical depth (AOD). It is a dimensionless geo-physical product measured remotely using satellites or ground-based light detection ranging instruments. This study focused on assessing the effectiveness of using satellite aerosol optical depth (AOD) as an indicator for PM2.5 in the ORV and two cities in Ohio. Three models, multi-linear regression (MLR), principal component analysis (PCA) -- MLR and neural network, were trained using 40% of the total dataset. The outcome was later tested to minimize error and further validated with another 40% of the dataset not included in the model development phase. Furthermore, to limit the effect of seasonality, four models representing each season were created for each city using meteorological variables known to influence PM2.5 and AOD concentration. GIS spatial analysis tool was employed to visualize and make spatial and temporal comparisons for the ORV region. Comparable spatial distributions were observed. Regression analysis showed that the highest and lowest correlations were in the summer and winter, respectively. Seasonal decomposition methods were used to evaluate trends at local Ohio monitoring stations to identify areas most suitable for improved air quality management. Over the six years of study, Cuyahoga County maintained PM2.5 concentrations above the national standard and in Hamilton County (Cincinnati) PM2.5 levels ranked above the national level for more

  14. Characterization of primary and secondary organic aerosols in Melbourne airshed: The influence of biogenic emissions, wood smoke and bushfires

    NASA Astrophysics Data System (ADS)

    Iinuma, Yoshiteru; Keywood, Melita; Herrmann, Hartmut

    2016-04-01

    Detailed chemical characterisation was performed for wintertime and summertime PM10 samples collected in Melbourne, Australia. The samples were analysed for marker compounds of biomass burning and biogenic secondary organic aerosol (SOA). The chemical analysis showed that the site was significantly influenced by the emissions from wintertime domestic wood combustion and summertime bushfires. Monosaccharide anhydrides were major primary biomass burning marker compounds found in the samples with the average concentrations of 439, 191, 57 and 3630 ngm-3 for winter 2004, winter 2005, summer 2005 and summer 2006, respectively. The highest concentration was determined during the summer 2006 bushfire season with the concentration of 15,400 ngm-3. Biomass burning originating SOA compounds detected in the samples include substituted nitrophenols, mainly 4-nitrocatechol (Mr 155), methyl-nitrocatechols (Mr 169) and dimethyl-nitrocatechols (Mr 183) with the sum concentrations as high as 115 ngm-3 for the wintertime samples and 770 ngm-3 for the bushfire influenced samples. In addition to this, elevated levels of biogenic SOA marker compounds were determined in the summertime samples influence by bushfire smoke. These marker compounds can be categorised into carboxylic acid marker compounds and heteroatomic organic acids containing nitrogen and sulfur. Carboxylic acid marker compounds can be largely attributed to oxidation products originating from 1,8-cineole, α-pinene and β-pinene that are main constituents of eucalyptus VOC emissions. Among those, diaterpenylic acid, terpenylic acid and daterebic acid were found at elevated levels in the bushfire influenced samples. Heteroatomic monoterpene SOA marker compounds (Mr 295, C10H17NO7S) were detected during both winter and summer periods. Especially high levels of these compounds were determined in the severe bushfire samples from summer 2006. Based on the results obtained from the chemical analysis and a macro tracer method

  15. Molecular Characterization of Brown Carbon (BrC) Chromophores in Secondary Organic Aerosol Generated From Photo-Oxidation of Toluene

    SciTech Connect

    Lin, Peng; Liu, Jiumeng; Shilling, John E.; Kathmann, Shawn M.; Laskin, Julia; Laskin, Alexander

    2015-09-28

    Atmospheric Brown carbon (BrC) is a significant contributor to light absorption and climate forcing. However, little is known about a fundamental relationship between the chemical composition of BrC and its optical properties. In this work, light-absorbing secondary organic aerosol (SOA) was generated in the PNNL chamber from toluene photo-oxidation in the presence of NOx (Tol-SOA). Molecular structures of BrC components were examined using nanospray desorption electrospray ionization (nano-DESI) and liquid chromatography (LC) combined with UV/Vis spectroscopy and electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). The chemical composition of BrC chromophores and the light absorption properties of toluene SOA (Tol-SOA) depend strongly on the initial NOx concentration. Specifically, Tol-SOA generated under high-NOx conditions (defined here as initial NOx/toluene of 5/1) appears yellow and mass absorption coefficient of the bulk sample (MACbulk@365nm = 0.78 m2 g-1) is nearly 80 fold higher than that measured for the Tol-SOA sample generated under low-NOx conditions (NOx/toluene < 1/300). Fifteen compounds, most of which are nitrophenols, are identified as major BrC chromophores responsible for the enhanced light absorption of Tol-SOA material produced in the presence of NOx. The integrated absorbance of these fifteen chromophores accounts for 40-60% of the total light absorbance by Tol-SOA at wavelengths between 300 nm and 500 nm. The combination of tandem LC-UV/Vis-ESI/HRMS measurements provides an analytical platform for predictive understanding of light absorption properties by BrC and their relationship to the structure of individual chromophores. General trends in the UV/vis absorption by plausible isomers of the BrC chromophores were evaluated using theoretical chemistry calculations. The molecular-level understanding of BrC chemistry is helpful for better understanding the evolution and behavior of light absorbing aerosols in the atmosphere.

  16. High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols

    SciTech Connect

    Romonosky, Dian E.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2015-03-19

    A significant fraction of atmospheric organic compounds is predominantly found in condensed phases, such as aerosol particles and cloud droplets. Many of these compounds are photolabile and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of aqueous droplets (hours) and particles (days). This paper presents a systematic investigation of the molecular level composition and the extent of aqueous photochemical processing in different types of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors including α-pinene, β-pinene, β-myrcene, d- limonene, α-humulene, 1,3,5-trimethylbenzene, and guaiacol, oxidized by ozone (to simulate a remote atmosphere) or by OH in the presence of NOx (to simulate an urban atmosphere). Chamber- and flow tube-generated SOA samples were collected, extracted in a methanol/water solution, and photolyzed for 1 h under identical irradiation conditions. In these experiments, the irradiation was equivalent to about 3-8 h of exposure to the sun in its zenith. The molecular level composition of the dissolved SOA was probed before and after photolysis with direct-infusion electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). The mass spectra of unphotolyzed SOA generated by ozone oxidation of monoterpenes showed qualitatively similar features, and contained largely overlapping subsets of identified compounds. The mass spectra of OH/NOx generated SOA had more unique visual appearance, and indicated a lower extent of products overlap. Furthermore, the fraction of nitrogen containing species (organonitrates and nitroaromatics) was highly sensitive to the SOA precursor. These observations suggest that attribution of high-resolution mass spectra in field SOA samples to specific SOA precursors should be more straightforward under OH/NOx oxidation conditions compared to the ozone driven oxidation. Comparison of the SOA constituents

  17. AERONET: The Aerosol Robotic Network

    DOE Data Explorer

    The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and is greatly expanded by collaborators from national agencies, institutes, universities, individual scientists, and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, mircrophysical and radiative properties for aerosol research and characterization, validation of satellite retrievals, and synergism with other databases. The network imposes standardization of instruments, calibration, processing and distribution. AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  18. Aerosol/Cloud Measurements Using Coherent Wind Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Boquet, Matthieu; Cariou, Jean-Pierre; Sauvage, Laurent; Parmentier, Rémy

    2016-06-01

    The accurate localization and characterization of aerosol and cloud layers is crucial for climate studies (aerosol indirect effect), meteorology (Planetary Boundary Layer PBL height), site monitoring (industrial emissions, mining,…) and natural hazards (thunderstorms, volcanic eruptions). LEOSPHERE has recently developed aerosol/cloud detection and characterization on WINDCUBE long range Coherent Wind Doppler Lidars (CWDL). These new features combine wind and backscatter intensity informations (Carrier-to-Noise Ratio CNR) in order to detect (aerosol/cloud base and top, PBL height) and to characterize atmospheric structures (attenuated backscatter, depolarization ratio). For each aerosol/cloud functionality the method is described, limitations are discussed and examples are given to illustrate the performances.

  19. Molecular Characterization of Organic Aerosol Using Nanospray Desorption/Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Liu, Shang; Weber, Robin; Russell, Lynn; Goldstein, Allen H.

    2013-04-01

    Aerosol samples from the CalNex 2010 field study were analyzed using high resolution mass spectrometry (HR-MS) coupled to a nanospray-desorption/electrospray ionization (nano-DESI) source. The samples were collected in Bakersfield, CA on June 22-23, 2010. The chemical formulas of over 1300 unique molecular species were detected in the mass range of 50-800 m/z. Our analysis focused on identification of two main groups: compounds containing only carbon, hydrogen, and oxygen (CHO only), and nitrogen-containing organic compounds (NOC). The NOC accounted for 35% (by number) of the compounds observed in the afternoon, and for 59% in the early morning samples. By comparing plausible reactant-product pairs, we propose that over 50% of the NOC in each sample could have been formed through reactions transforming carbonyls into imines. The CHO only compounds were dominant in the afternoon suggesting a photochemical source. The average O:C ratios of all observed compounds were fairly consistent throughout the day, ranging from 0.34 in the early morning to 0.37 at night. We conclude that both photooxidation and ammonia chemistry play important roles in forming the compounds observed in this mixed urban-rural environment.

  20. Preparation and Characterization of Multilayer Capacitor with SrTiO3 Thin Films by Aerosol Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Wang, Shuqiang; Kawase, Akihiro; Ogawa, Hirotaka

    2006-09-01

    The deposition of crystalline and amorphous STO (SrTiO3) thin films by aerosol chemical vapor deposition (ASCVD) was investigated. The crystalline STO thin film exhibited a higher dielectric constant of approximately 160 and a dielectric loss (\\tanδ) of 3.5% (at 1 kHz). In contrast, the amorphous STO thin films with dielectric constants of 20-65 showed a smaller dielectric loss below 1% and much lower leakage currents of 10-8-10-6 A/cm2 at up to ± 30 VDC. On the basis of these results, a thin-film multilayer ceramic capacitor (MLCC) with ten amorphous STO dielectric layers and Pt electrodes of 160 and 120 nm thicknesses, respectively, was prepared at a processing temperature of 600 °C, showing a capacitance density of higher than 900 nF/cm2 (effective electrode area: 2× 2 mm2), a dielectric loss of 0.1% at 1 kHz and a leakage current of 10-7 A/cm2 at ± 5 VDC.

  1. Mass-mobility characterization of flame-made ZrO2 aerosols: primary particle diameter and extent of aggregation.

    PubMed

    Eggersdorfer, M L; Gröhn, A J; Sorensen, C M; McMurry, P H; Pratsinis, S E

    2012-12-01

    Gas-borne nanoparticles undergoing coagulation and sintering form irregular or fractal-like structures affecting their transport, light scattering, effective surface area, and density. Here, zirconia (ZrO(2)) nanoparticles are generated by scalable spray combustion, and their mobility diameter and mass are obtained nearly in situ by differential mobility analyzer (DMA) and aerosol particle mass (APM) measurements. Using these data, the density of ZrO(2) and a power law between mobility and primary particle diameters, the structure of fractal-like particles is determined (mass-mobility exponent, prefactor and average number, and surface area mean diameter of primary particles, d(va)). The d(va) determined by DMA-APM measurements and this power law is in good agreement with the d(va) obtained by ex situ nitrogen adsorption and microscopic analysis. Using this combination of measurements and above power law, the effect of flame spray process parameters (e.g., precursor solution and oxygen flow rate as well as zirconium concentration) on fractal-like particle structure characteristics is investigated in detail. This reveals that predominantly agglomerates (physically-bonded particles) and aggregates (chemically- or sinter-bonded particles) of nanoparticles are formed at low and high particle concentrations, respectively.

  2. Multi-Sensor Aerosol Products Sampling System

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  3. Anthropogenic sources of aerosol particles in a football stadium: Real-time characterization of emissions from cigarette smoking, cooking, hand flares, and color smoke bombs by high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Faber, Peter; Drewnick, Frank; Veres, Patrick R.; Williams, Jonathan; Borrmann, Stephan

    2013-10-01

    Aerosol particles from several anthropogenic sources associated with football stadia including cooking, cigarette smoking, burning of color smoke bombs and hand flares were analyzed by high-resolution aerosol mass spectrometry. The physical and chemical characteristics of these different aerosols, in particular the organic fraction, were explored in laboratory studies to obtain robust references. These data were compared with field campaign results from a Bundesliga (German football league) match in the Coface Arena (Mainz, Germany) on 20th April 2012. The field measurement revealed a strongly elevated mass concentration of organic aerosols (OA) compared to background levels showing a temporal structure clearly related to the match. PMF analysis established that during the football match event cigarette smoke was the predominant component of submicron organic aerosol (67% of total OA). Cooking emissions from food outlets within the stadium correlated well with the sales figures of the catering stations and were also found to be of relevance (24% of total OA) especially in the period before kickoff. Pyrotechnics were not observed during this football match and no signatures of these sources were found in the mass spectra from the stadium measurements. All species that were elevated during the football match returned to their initial background levels within one hour after the match had finished. This demonstrates a good ventilation capacity of the open-topped Coface Arena.

  4. Chronic inhalation studies of man-made vitreous fibres: characterization of fibres in the exposure aerosol and lungs.

    PubMed

    Hesterberg, T W; Miiller, W C; Thevenaz, P; Anderson, R

    1995-10-01

    Inhalation studies were conducted to determine the chronic biological effects in rodents of respirable fractions of different man-made vitreous fibres (MMVFs), including refractory ceramic fibre (RCF), fibrous glass, rock (stone) wool and slag wool. Animals were exposed nose-only, 6 h per day, 5 days per week, for 18 months (hamsters) or 24 months (rats). Exposure to 10 mg m-3 of crocidolite or chrysotile asbestos induced pulmonary fibrosis, lung tumours and mesothelioma in rats, thus validating the inhalation model with known human carcinogenic fibres. Exposure of rats to 30 mg m-3 of refractory ceramic fibres (RCF) also resulted in pulmonary fibrosis as well as significant increases in lung tumours and mesothelioma. In hamsters, 30 mg m-3 of RCF induced a 41% incidence of mesotheliomas. Exposure of rats to 30 mg m-3 of fibre glasses (MMVF 10 or 11) or of slag wool (MMVF 22) was associated with an inflammatory response, but no mesotheliomas or significant increase in the lung tumours were observed. Rock wool (stone wool: MMVF 21) at the same exposure level resulted in minimal lung fibrosis, but no mesotheliomas or significant increase in the lung tumours were observed. Fibre numbers (WHO fibres) and dimensions in the aerosols and lungs of exposed animals were comparable in this series of inhalation studies. Differences in lung fibre burdens and lung clearance rates could not explain the differences observed in the toxicologic effects of the MMVFs. These findings indicate that dose, dimension and durability may not be the only determinants of fibre toxicity. Chemical composition and the surface physico-chemical properties of the fibres may also play an important role.

  5. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis.

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Govindaraju, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). In this presentation we show comparisons of model produced AI with the corresponding OMI measurements during several months of 2007 characterized by a good sampling of dust and biomass burning events. In parallel, model produced Absorption Aerosol Optical Depth (AAOD) were compared to OMI AAOD for the same period, identifying regions where the model representation of absorbing aerosols were deficient. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain misplacement of plume height by the model.

  6. How We Can Constrain Aerosol Type Globally

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    2016-01-01

    In addition to aerosol number concentration, aerosol size and composition are essential attributes needed to adequately represent aerosol-cloud interactions (ACI) in models. As the nature of ACI varies enormously with environmental conditions, global-scale constraints on particle properties are indicated. And although advanced satellite remote-sensing instruments can provide categorical aerosol-type classification globally, detailed particle microphysical properties are unobtainable from space with currently available or planned technologies. For the foreseeable future, only in situ measurements can constrain particle properties at the level-of-detail required for ACI, as well as to reduce uncertainties in regional-to-global-scale direct aerosol radiative forcing (DARF). The limitation of in situ measurements for this application is sampling. However, there is a simplifying factor: for a given aerosol source, in a given season, particle microphysical properties tend to be repeatable, even if the amount varies from day-to-day and year-to-year, because the physical nature of the particles is determined primarily by the regional environment. So, if the PDFs of particle properties from major aerosol sources can be adequately characterized, they can be used to add the missing microphysical detail the better sampled satellite aerosol-type maps. This calls for Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM). We are defining a relatively modest and readily deployable, operational aircraft payload capable of measuring key aerosol absorption, scattering, and chemical properties in situ, and a program for characterizing statistically these properties for the major aerosol air mass types, at a level-of-detail unobtainable from space. It is aimed at: (1) enhancing satellite aerosol-type retrieval products with better aerosol climatology assumptions, and (2) improving the translation between satellite-retrieved aerosol optical properties and

  7. Characterization of Chromophoric Water-Soluble Organic Matter in Urban, Forest, and Marine Aerosols by HR-ToF-AMS Analysis and Excitation-Emission Matrix Spectroscopy.

    PubMed

    Chen, Qingcai; Miyazaki, Yuzo; Kawamura, Kimitaka; Matsumoto, Kiyoshi; Coburn, Sean; Volkamer, Rainer; Iwamoto, Yoko; Kagami, Sara; Deng, Yange; Ogawa, Shuhei; Ramasamy, Sathiyamurthi; Kato, Shungo; Ida, Akira; Kajii, Yoshizumi; Mochida, Michihiro

    2016-10-04

    Chromophoric water-soluble organic matter in atmospheric aerosols potentially plays an important role in aqueous reactions and light absorption by organics. The fluorescence and chemical-structural characteristics of the chromophoric water-soluble organic matter in submicron aerosols collected in urban, forest, and marine environments (Nagoya, Kii Peninsula, and the tropical Eastern Pacific) were investigated using excitation-emission matrices (EEMs) and a high-resolution aerosol mass spectrometer. A total of three types of water-soluble chromophores, two with fluorescence characteristics similar to those of humiclike substances (HULIS-1 and HULIS-2) and one with fluorescence characteristics similar to those of protein compounds (PLOM), were identified in atmospheric aerosols by parallel factor analysis (PARAFAC) for EEMs. We found that the chromophore components of HULIS-1 and -2 were associated with highly and less-oxygenated structures, respectively, which may provide a clue to understanding the chemical formation or loss of organic chromophores in atmospheric aerosols. Whereas HULIS-1 was ubiquitous in water-soluble chromophores over different environments, HULIS-2 was abundant only in terrestrial aerosols, and PLOM was abundant in marine aerosols. These findings are useful for further studies regarding the classification and source identification of chromophores in atmospheric aerosols.

  8. Separating Cloud Forming Nuclei from Interstitial Aerosol

    SciTech Connect

    Kulkarni, Gourihar R.

    2012-09-12

    It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

  9. Chemical characterization and source apportionment of PM2.5 aerosols in a megacity of Southeast China

    NASA Astrophysics Data System (ADS)

    Li, Huiming; Wang, Qin'geng; Yang, Meng; Li, Fengying; Wang, Jinhua; Sun, Yixuan; Wang, Cheng; Wu, Hongfei; Qian, Xin

    2016-11-01

    PM2.5 aerosol samples were collected during a haze-fog event in winter, as well as in spring, summer, and fall in 2013 within an urban area (Xianlin) and city center area (Gulou) of Nanjing, a megacity of SE China. The PM2.5 showed typical seasonality of waxing in winter and waning in summer or fall with annual average concentrations of 145 and 139 μg/m3 in Xianlin and Gulou, respectively. Concentrations of SO42 -, NO3-, NH4+, Cl-, and K+, EC, OC, secondary organic carbon, and most elements were elevated in winter. The sulfur oxidation ratio and concentrations of SO42 - and Cl- were significantly higher in Xianlin than Gulou (p < 0.05), whereas the nitrogen oxidation ratio and NO3- concentrations were significantly higher in Gulou than Xianlin (p < 0.05). A chemical mass closure construction was used to apportion PM2.5 fractions. Using the positive matrix factorization model, six source factors were identified as having contributed to PM2.5. These were secondary nitrate, road dust, sea salt and ship emissions, coal combustion, secondary sulfate, and the iron and steel industry, which contributed annual averages of 17.8 ± 15.1, 10.6 ± 9.53, 4.50 ± 3.28, 12.4 ± 9.82, 46.3 ± 14.4, and 8.42 ± 5.15%, respectively, to the PM2.5 mass in Xianlin, and 34.5 ± 16.2, 7.82 ± 7.21, 7.27 ± 5.61, 10.5 ± 9.35, 33.0 ± 16.6, and 7.00 ± 6.1%, respectively, in Gulou. Distinct seasonal patterns of the source factors in the two areas associated with the main chemical components were identified, which could be explained by various sources and meteorological conditions. Fig. S2 Temporal trends of sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) in all four seasons in Xianlin (a) and Gulou (b). Fig. S3 The OC/EC ratios found in four seasons in Xianlin (a) and Gulou (b). Fig. S4 The enrichment factors (EF) obtained in four seasons in Xianlin (a) and Gulou (b). Fig. S5 Estimated versus observed PM2.5 mass concentrations during sampling period in the two areas (95