Science.gov

Sample records for aerosol characterization experiments

  1. Lindenberg Aerosol Characterization Experiment 1998 (LACE 98): Overview

    NASA Astrophysics Data System (ADS)

    Ansmann, Albert; Wandinger, Ulla; Wiedensohler, Alfred; Leiterer, Ulrich

    2002-11-01

    Backscattering and absorption of solar radiation by aerosol particles are an important source of uncertainty in climate predictions. Integrated research on the radiative properties of aerosol may reduce this uncertainty. The Lindenberg Aerosol Characterization Experiment 1998 (LACE 98) contributes to this aim. LACE 98 took place between 13 July and 12 August 1998, near Berlin, Germany. The Lindenberg Meteorological Observatory (52.2°N, 14.1°E) was chosen as the central field site because of its long record with aerosol optical-depth data. Measurements were performed from three aircraft, with one airborne and four ground-based lidars, and at a ground station. The meteorological situations in which intensive observations were carried out included clean and polluted air masses as characterized by low and high aerosol optical depths. This introductory paper gives an overview of the LACE 98 goals, instrumentation, meteorological and aerosol properties, and reports on the key findings as a guide to the results presented in the more detailed papers that follow. A very remarkable finding should be mentioned beforehand because of its unique character: on 9-10 August 1998, a free-tropospheric aerosol layer was observed that originated from forest fires in western Canada.

  2. Generation and characterization of aerosols and vapors for inhalation experiments.

    PubMed Central

    Tillery, M I; Wood, G O; Ettinger, H J

    1976-01-01

    Control of aerosol and vapor characteristics that affect the toxicity of inhaled contaminants often determines the methods of generating exposure atmospheres. Generation methods for aerosols and vapors are presented. The characteristics of the resulting exposure atmosphere and the limitations of the various generation methods are discussed. Methods and instruments for measuring the airborne contaminant with respect to various charcteristics are also described. PMID:797565

  3. Chemical Characterization of the Aerosol During the CLAMS Experiment Using Aircraft and Ground Stations

    NASA Astrophysics Data System (ADS)

    Castanho, A. D.; Martins, J.; Artaxo, P.; Hobbs, P. V.; Remer, L.; Yamasoe, M.; Fattori, A.

    2002-05-01

    During the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) Experiment Nuclepore filters were collected in two ground stations and aboard the University of Wasghington's Convair 580 Reserarch Aircraft. The two ground stations were chosen in strategic positions to characterize the chemical composition, the mass concentration, black carbon (BC) content, and the absorption properties of the aerosol particles at the surface level. One of the stations was located at the Cheasapeake lighthouse (25 km from the coast) and the other one was located at the Wallops Island. Aerosol particles where collected in two stages, fine (d<2.5um) and coarse mode (2.5experiment. Airborne samples were also collected on the UW Convair 580 Aircraft. The aircraft samples where used to characterize the elemental composition, mass concentration, BC content, and absorption properties of the aerosol in the atmospheric column in the CLAMS Experiment area. Some of the filters were also submitted to Scanning Electron Microscopy analysis. The particulate matter mass for all the samples were obtained gravimetrically. The concentration of black carbon in the fine filters was optically determined by a broadband reflectance technique. The spectral (from UV to near IR) reflectance in the fine and coarse mode filter were also obtained with a FieldSpec ASD spectrometer. Aerosol elemental characterization (Na through Pb) was obtained by the PIXE (Particle induced X ray emission) analyses of the nuclepore filters. The sources of the aerosol measured at the ground stations were estimated by principal component analyses mainly in the Wallops Island, where a longer time series was collected. One of the main urban components identified in the aerosol during the experiment was sulfate. Black carbon

  4. Experiment to Characterize Aircraft Volatile Aerosol and Trace-Species Emissions (EXCAVATE)

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Branham, H.-S.; Hudgins, C. H.; Plant, J. V.; Ballenthin, J. O.; Miller, T. M.; Viggiano, A. A.; Blake, D. R.; Boudries, H.; Canagaratna, M.

    2005-01-01

    The Experiment to Characterize Aircraft Volatile and Trace Species Emissions (EXCAVATE) was conducted at Langley Research Center (LaRC) in January 2002 and focused upon assaying the production of aerosols and aerosol precursors by a modern commercial aircraft, the Langley B757, during ground-based operation. Remaining uncertainty in the postcombustion fate of jet fuel sulfur contaminants, the need for data to test new theories of particle formation and growth within engine exhaust plumes, and the need for observations to develop air quality models for predicting pollution levels in airport terminal areas were the primary factors motivating the experiment. NASA's Atmospheric Effects of Aviation Project (AEAP) and the Ultra Effect Engine Technology (UEET) Program sponsored the experiment which had the specific objectives of determining ion densities; the fraction of fuel S converted from S(IV) to S(VI); the concentration and speciation of volatile aerosols and black carbon; and gas-phase concentrations of long-chain hydrocarbon and PAH species, all as functions of engine power, fuel composition, and plume age.

  5. Ganges valley aerosol experiment.

    SciTech Connect

    Kotamarthi, V.R.; Satheesh, S.K.

    2011-08-01

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  6. Climatic context of the First Aerosol Characterization Experiment (ACE 1): A meteorological and chemical overview

    NASA Astrophysics Data System (ADS)

    Hainsworth, A. H. W.; Dick, A. L.; Gras, J. L.

    1998-01-01

    During the intensive field operations period (November 15 to December 14, 1995) of the First Aerosol Characterization Experiment (ACE 1) cold front activity was generally above average, resulting in below average temperatures, pressures, and rainfall. The principal cause was the presence for much of the experiment of a long wave trough. This trough was mobile, traversing the ACE area during the project, with some warm anomalies evident in the areas under the influence of the long wave ridges. There is evidence of greater convective activity than normal possibly leading to a slightly deeper than average mixing layer. A greater west to northwesterly component to the air flow than average during November appears to have led to higher than average concentrations of radon and particles in the clean, marine or "baseline" sector at Cape Grim (190° to 280°). This is likely to have resulted from inclusion of continental air from western parts of the Australian mainland in the baseline sector winds. Although aerosol-bound sulfur species were generally near their normal concentrations across the ACE 1 area, the overall pattern including atmospheric dimethylsulfide suggests slightly higher than usual sulfur species levels in the southern part of the region and lower concentrations in the northern part during November. This could be related to changes in marine biogenie productivity, air-sea exchange, or atmospheric removal. In December, the changing long wave pattern brought an increase in south and southwesterly flow over the entire region. The baseline sector became less affected by continental species, but it appears that the colder conditions brought by this pattern have led to lower than usual atmospheric concentrations of biogenie species, as the region went into one of the coldest summers on record.

  7. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA

  8. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    The MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris, using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), giving detailed information on the non-refractory submicron aerosol species. The mass concentration of black carbon (BC), measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), BC, and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy)). Plotting the equivalent ratios of different organic aerosol species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA) formation. Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in London, Mexico City, and in New England, USA. Using the measured SOA volatile organic compounds (VOCs) species together with organic aerosol formation

  9. A study on characterization of stratospheric aerosol and gas parameters with the spacecraft solar occultation experiment

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1977-01-01

    Spacecraft remote sensing of stratospheric aerosol and ozone vertical profiles using the solar occultation experiment has been analyzed. A computer algorithm has been developed in which a two step inversion of the simulated data can be performed. The radiometric data are first inverted into a vertical extinction profile using a linear inversion algorithm. Then the multiwavelength extinction profiles are solved with a nonlinear least square algorithm to produce aerosol and ozone vertical profiles. Examples of inversion results are shown illustrating the resolution and noise sensitivity of the inversion algorithms.

  10. Aerosol Composition, Chemistry, and Source Characterization during the 2008 VOCALS Experiment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Springston, S.; Jayne, J. T.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L. I.; Daum, P. H.

    2009-12-01

    Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined on board the US DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field experiment between October 16 and November 15, 2008. Chemical species determined included SO42-, NO3-, NH4+, and total organics (Org) using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only ~0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are believed to be externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on non-acidic sea-salt aerosols, responsible partly for the Cl- deficit. Dust particles appeared to play a minor role judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations in the study domain were substantial (~0.5 - ~3 μg/m3) with a strong gradient (highest near the shore decreasing with distance from land), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., ≤ 40 parts per trillion and <0.05 μg/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4

  11. Analysis of shipboard aerosol optical thickness measurements from multiple sunphotometers aboard the R/V Ronald H. Brown during the Aerosol Characterization Experiment - Asia

    SciTech Connect

    Miller, Mark A.; Knobelspiesse, Kirk; Frouin, Robert; Bartholomew, Mary Jane; Reynolds, R. Michael; Pietras, Christophe; Fargion, Giulietta; Quinn, Patricia; Thieuleux, Francois

    2005-06-20

    Marine sunphotometer measurements collected aboard the R/V Ronald H. Brown during the Aerosol Characterization Experiment - Asia (ACE-Asia) are used to evaluate the ability of complementary instrumentation to obtain the best possible estimates of aerosol optical thickness and Angstrom exponent from ships at sea. A wide range of aerosol conditions, including clean maritime conditions and highly polluted coastal environments, were encountered during the ACE-Asia cruise. The results of this study suggest that shipboard hand-held sunphotometers and fast-rotating shadow-band radiometers (FRSRs) yield similar measurements and uncertainties if proper measurement protocols are used and if the instruments are properly calibrated. The automated FRSR has significantly better temporal resolution (2 min) than the hand-held sunphotometers when standard measurement protocols are used, so it more faithfully represents the variability of the local aerosol structure in polluted regions. Conversely, results suggest that the hand-held sunphotometers may perform better in clean, maritime air masses for unknown reasons. Results also show that the statistical distribution of the Angstrom exponent measurements is different when the distributions from hand-held sunphotometers are compared with those from the FRSR and that the differences may arise from a combination of factors.

  12. Morphological characterization of soot aerosol particles during LACIS Experiment in November (LExNo)

    NASA Astrophysics Data System (ADS)

    Kiselev, A.; Wennrich, C.; Stratmann, F.; Wex, H.; Henning, S.; Mentel, T. F.; Kiendler-Scharr, A.; Schneider, J.; Walter, S.; Lieberwirth, I.

    2010-06-01

    Combined mobility and aerodynamic measurements were used to characterize the morphology of soot particles in an experimental campaign on the hygroscopic growth and activation of an artificial biomass burning aerosol. A custom-made, single-stage low-pressure impactor and two aerosol mass spectrometers (AMS) operating in the free molecular regime were used to measure the vacuum aerodynamic diameter of mobility-selected artificial soot particles that were produced in a spark discharge generator and then modified by condensation of ammonium hydrogen sulfate or levoglucosan as a coating to change their hydroscopic activity. Transmission electron microscope images revealed a relationship between the electrical mobility diameter and the diameter of the enveloping sphere, thus enabling evaluation of the effective density of soot agglomerates. A fractal description of the morphology of the soot aggregates allowed for evaluation of the average mass of the hygroscopic material per particle. The average mass of the hygroscopic material per particle was also measured directly with the two AMS instruments, and the agreement between the two methods was found satisfactory. This tandem approach allows detection of small changes in the particle effective density and morphology caused by condensation of organic material.

  13. Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment

    SciTech Connect

    Lee, Y.; Springston, S.; Jayne, J.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L.; Daum, P.

    2010-03-15

    Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and <0.05 {micro}g/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model

  14. Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)

    DOE Data Explorer

    The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

  15. Aerosol retrieval experiments in the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; de Leeuw, G.; Griesfeller, J.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-08-01

    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013), algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun photometer

  16. Characterization of PM2.5 aerosols dominated by local pollution and Asian dust observed at an urban site in Korea during aerosol characterization experiments (ACE)--Asia Project.

    PubMed

    Park, Seung Shik; Kim, Young J; Cho, Sung Yong; Kim, Seung Jai

    2007-04-01

    Daily fine particulate matter (PM2.5) samples were collected at Gwangju, Korea, during the Aerosol Characterization Experiments (ACE)-Asia Project to determine the chemical properties of PM2.5 originating from local pollution and Asian dust (AD) storms. During the study period, two significant events occurred on April 10-13 and 24-25, 2001, and a minor event occurred on April 19, 2001. Based on air mass transport pathways identified by back-trajectory calculation, the PM2.5 dataset was classified into three types of aerosol populations: local pollution and two AD aerosol types. The two AD types were transported along different pathways. One originated from Gobi desert area in Mongolia, passing through Hunshandake desert in Northern Inner Mongolia, urban and polluted regions of China (AD1), and the other originated in sandy deserts located in the Northeast Inner Mongolia Plateau and then flowed southward through the Korean peninsula (AD2). During the AD2 event, a smoke plume that originated in North Korea was transported to our study site. Mass balance closures show that crustal materials were the most significant species during both AD events, contributing -48% to the PM2.5 mass; sulfate aerosols (19.1%) and organic matter (OM; 24.6%) were the second greatest contributors during the AD1 and AD2 periods, respectively, indicating that aerosol properties were dependent on the transport pathway. The sulfate concentration constituted only 6.4% (4.5 microg/m3) of the AD2 PM2.5 mass. OM was the major chemical species in the local pollution-dominated PM2.5 aerosols, accounting for 28.7% of the measured PM2.5 mass, followed by sulfate (21.4%), nitrate (15%), ammonium (12.8%), elemental carbon (8.9%), and crustal material (6.5%). Together with substantial enhancement of the crustal elements (Mg, Al, K, Ca, Sc, Ti, Mn, Fe, Sr, Zr, Ba, and Ce), higher concentrations of pollution elements (S, V, Ni, Zn, As, Cd, and Pb) were observed during AD1 and AD2 than during the local

  17. Ground based characterization of biomass burning aerosols during the South American Biomass Burning Analysis (SAMBBA) field experiment in Brazil during Sept - Oct 2012

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Johnson, Ben; Haywood, Jim; Longo, Karla; Freitas, Saulo; Coe, Hugh

    2013-04-01

    Biomass burning is one of the major drivers for atmospheric composition in the Southern hemisphere. In Amazonia, deforestation rates have been steadily decreasing, from 27,000 Km² in 2004 to about 5,000 Km² in 2011. This large reduction (by factor 5) was not followed by similar reduction in aerosol loading in the atmosphere due to the increase in agricultural fires. AERONET measurements from 5 sites show a large year-to year variability due to climatic and socio-economic issues. Besides this strong reduction in deforestation rate, biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. To complement the long term biomass burning measurements in Amazonia, it was organized in 2012 the intensive campaign of the South American Biomass Burning Analysis (SAMBBA) experiment with an airborne and a ground based components. A sampling site was set up at Porto Velho, with measurements of aerosol size distribution, optical properties such as absorption and scattering at several wavelengths, organic aerosol characterization with an ACSM - Aerosol Chemical Speciation Monitor. CO, CO2 and O3 were also measured to characterize combustion efficiency and photochemical processes. Filters for trace elements measured by XRF and for OC/EC determined using a Sunset instrument were also collected. An AERONET CIMEL sunphotometer was operated in parallel with a multifilter radiometer (MFR). A large data set was collected from August to October 2012. PM2.5 aerosol concentrations up to 250 ug/m3 were measured, with up to 20 ug/m3 of black carbon. Ozone went up to 60 ppb at mid-day in August. At night time ozone was consumed completely most of the time. ACSM shows that more than 85% of the aerosol mass was organic with a clear diurnal pattern. The organic aerosol volatility was very variable depending on the air mass sampled over Porto Velho. Aerosol optical depth at

  18. Physico-chemical modeling of the First Aerosol Characterization Experiment (ACE 1) Lagrangian B: 1. A moving column approach

    NASA Astrophysics Data System (ADS)

    Suhre, Karsten; Mari, CéLine; Bates, Timothy S.; Johnson, James E.; Rosset, Robert; Wang, Qing; Bandy, Alan R.; Blake, Donald R.; Businger, Steven; Eisele, Fred L.; Huebert, Barry J.; Kok, Gregory L.; Lee Mauldin, R.; PréVôT, André S. H.; Schillawski, Richard D.; Tanner, David J.; Thornton, Donald C.

    1998-01-01

    During Lagrangian experiment B (LB in the following) of the First Aerosol Characterization Experiment (ACE 1), a clean maritime air mass was followed over a period of 28 hours. During that time span, the vertical distribution of aerosols and their gas phase precursors were characterized by a total of nine aircraft soundings which were performed during three research flights that followed the trajectory of a set of marked tetroons. The objective of this paper is to study the time evolution of gas phase photochemistry in this Lagrangian framework. A box model approach to the wind shear driven and vertically stratified boundary layer is questionable, since its basic assumption of instantaneous turbulent mixing of the entire air column is not satisfied here. To overcome this obstacle, a one-dimensional Lagrangian boundary layer meteorological model with coupled gas phase photochemistry is used. To our knowledge, this is the first time that such a model is applied to a Lagrangian experiment and that enough measurements are available to fully constrain the simulations. A major part of this paper is devoted to the question of to what degree our model is able to reproduce the time evolution and the vertical distribution of the observed species. Comparison with observations of O3, OH, H2O2, CH3OOH, DMS, and CH3I, made on the nine Lagrangian aircraft soundings shows that this is in general the case, although the dynamical simulation started to deviate from the observations on the last Lagrangian flight. In agreement with experimental findings reported by Q. Wang et al. (unpublished manuscript, 1998b), generation of turbulence in the model appears to be most sensitive to the imposed sea surface temperature. Concerning the different modeled and observed chemical species, a number of conclusions are drawn: (1) Ozone, having a relatively long photochemical lifetime in the clean marine boundary layer, is found to be controlled by vertical transport processes, in particular

  19. NASA's Aerosol Sampling Experiment Summary

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  20. Single-particle characterization of atmospheric aerosols collected at Gosan, Korea, during the Asian Pacific Regional Aerosol Characterization Experiment field campaign using low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Geng, Hong; Cheng, Fangqin; Ro, Chul-Un

    2011-11-01

    A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.

  1. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol

    NASA Astrophysics Data System (ADS)

    Riva, Matthieu; Budisulistiorini, Sri Hapsari; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.

    2016-04-01

    Isoprene is the most abundant non-methane hydrocarbon emitted into Earth's atmosphere and is predominantly derived from terrestrial vegetation. Prior studies have focused largely on the hydroxyl (OH) radical-initiated oxidation of isoprene and have demonstrated that highly oxidized compounds, such as isoprene-derived epoxides, enhance the formation of secondary organic aerosol (SOA) through heterogeneous (multiphase) reactions on acidified sulfate aerosol. However, studies on the impact of acidified sulfate aerosol on SOA formation from isoprene ozonolysis are lacking and the current work systematically examines this reaction. SOA was generated in an indoor smog chamber from isoprene ozonolysis under dark conditions in the presence of non-acidified or acidified sulfate seed aerosol. The effect of OH radicals on SOA chemical composition was investigated using diethyl ether as an OH radical scavenger. Aerosols were collected and chemically characterized by ultra performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) and gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS). Analysis revealed the formation of highly oxidized compounds, including organosulfates (OSs) and 2-methylterols, which were significantly enhanced in the presence of acidified sulfate seed aerosol. OSs identified in the chamber experiments were also observed and quantified in summertime fine aerosol collected from two rural locations in the southeastern United States during the 2013 Southern Oxidant and Aerosol Study (SOAS).

  2. Characterization of Cooking-Related Aerosols

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Blanc, L. E.

    2010-12-01

    The temperatures at which food is cooked are usually high enough to drive oils and other organic compounds out of materials which are being prepared for consumption. As these compounds move away from the hot cooking surface and into the atmosphere, they can participate in chemical reactions or condense to form particles. Given the high concentration of cooking in urban areas, cooking-related aerosols likely contribute to the overall amount of particulate matter on a local scale. Reported here are results for the mid-infrared optical characterization of aerosols formed during the cooking of several meat and vegetable samples in an inert atmosphere. The samples were heated in a novel aerosol generator that is designed to collect particles formed immediately above the cooking surface and inject them into a laminar aerosol flow cell. Preliminary results for the chemical processing of cooking-related aerosols in synthetic air will also be presented.

  3. Chemical Characterization of Aerosols on the East Coast of the United States Using Aircraft and Ground-Based Stations during the CLAMS Experiment.

    NASA Astrophysics Data System (ADS)

    de Almeida Castanho, Andréa D.; Vanderlei Martins, J.; Hobbs, Peter V.; Artaxo, Paulo; Remer, Lorraine; Yamasoe, Marcia; Colarco, Peter R.

    2005-04-01

    The Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) experiment was carried out off the central East Coast of the United States in July 2001. During CLAMS, aerosol particle mass was measured at two ground stations and on the University of Washington's Convair 580 research aircraft. Physical and chemical characteristics of the aerosols were identified and quantified. Three main aerosol regimes were identified in the region and are discussed in this work: local pollution/sea salt background, long-range transported dust, and long-range transported pollution. The major component measured in the fine mode of the aerosol on the ground at Wallops Island, Virginia, was sulfate, estimated as NH4HSO4, which accounted for 55% ± 9% on average of the fine particle mass (FPM) during the experiment period. Black carbon concentrations accounted for 3% ± 1% of FPM; soil dust was also present, representing on average 6% ± 8% of FPM. The difference between the sum of the masses of the measured compounds and the total fine particle mass was 36% ± 10% of FPM, which is attributed primarily to nitrates and organic carbon that were not measured. Aerosol chemical composition in the atmospheric column is also discussed and compared with ground-based measurements. Aerosol dust concentration reached 40% of FPM during an incursion of Saharan dust between 24 and 26 July. Sulfate aerosol reached 70% of FPM during the transport of regional pollution on 17 July. Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical thickness, coupled with air parcel back trajectories, supported the conclusion of episodes of long-range transport of dust from the Sahara Desert and pollutants from the continental United States.

  4. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, P.F.; Herceg, J.E.; Klocksieben, R.H.

    1984-04-11

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage t

  5. Multiwavelength multistatic optical scattering for aerosol characterization

    NASA Astrophysics Data System (ADS)

    Brown, Andrea M.

    The main focus of this research is the development of a technique to remotely characterize aerosol properties, such as particle size distribution, concentration, and refractive index as a function of wavelength, through the analysis of optical scattering measurements. The proposed technique is an extension of the multistatic polarization ratio technique that has been developed by prior students at the Penn State Lidar Lab to include multiple wavelengths. This approach uses the ratio of polarized components of the scattering phase functions at multiple wavelengths across the visible region of the electromagnetic spectrum to extract the microphysical and optical properties of aerosols. The scattering intensities at each wavelength are vertically separated across the face of the imager using a transmission diffraction grating, so that scattering intensities for multiple wavelengths at many angles are available for analysis in a single image. The ratio of the scattering phase function intensities collected using parallel and perpendicular polarized light are formed for each wavelength and analysis of the ratio is used to determine the microphysical properties of the aerosols. One contribution of the present work is the development of an inversion technique based on a genetic algorithm that retrieves lognormal size distributions from scattering measurements by minimizing the squared error between measured polarization ratios and polarization ratios calculated using the Mie solution to Maxwell's equations. The opportunities and limitations of using the polarization ratio are explored, and a genetic algorithm is developed to retrieve single mode and trimodal lognormal size distributions from multiwavelength, angular scattering data. The algorithm is designed to evaluate particles in the diameter size range of 2 nm to 60 im, and uses 1,000 linear spaced diameters within this range to compute the modeled polarization ratio. The algorithm returns geometric mean radii and

  6. Characterization of Aerosols Containing Microcystin

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Irvin, C. Mitch; Kirkpatrick, Barbara; Backer, Lorraine C.

    2007-01-01

    Toxic blooms of cyanobacteria are ubiquitous in both freshwater and brackish water sources throughout the world. One class of cyanobacterial toxins, called microcystins, is cyclic peptides. In addition to ingestion and dermal, inhalation is a likely route of human exposure. A significant increase in reporting of minor symptoms, particularly respiratory symptoms was associated with exposure to higher levels of cyanobacteria during recreational activities. Algae cells, bacteria, and waterborne toxins can be aerosolized by a bubble-bursting process with a wind-driven white-capped wave mechanism. The purposes of this study were to: evaluate sampling and analysis techniques for microcystin aerosol, produce aerosol droplets containing microcystin in the laboratory, and deploy the sampling instruments in field studies. A high-volume impactor and an IOM filter sampler were tried first in the laboratory to collect droplets containing microcystins. Samples were extracted and analyzed for microcystin using an ELISA method. The laboratory study showed that cyanotoxins in water could be transferred to air via a bubble-bursting process. The droplets containing microcystins showed a bimodal size distribution with the mass median aerodynamic diameter (MMAD) of 1.4 and 27.8 μm. The sampling and analysis methods were successfully used in a pilot field study to measure microcystin aerosol in situ. PMID:18463733

  7. Optical Characterization of Tropospheric Aerosols.

    DTIC Science & Technology

    1987-09-01

    Transmission of Light Through Fog," Phys. Rev. Vol. 38, p 159 (1931). 27. Kerker, M., Matijevic , E., Espenscheid, W. F., Farone, W. A., and Kitani, S...Espensheid, W. F., Matijevic , E., and Kerker, M., "Aerosol Studies by Light Scattering. III. Preparation and Particle Size Analysis of Sodium Chloride

  8. Columnar aerosol characterization over Scandinavia and Svalbard

    NASA Astrophysics Data System (ADS)

    Toledano, C.; Cachorro, V. E.; Ortiz de Galisteo, J. P.; Bennouna, Y.; Berjón, A.; Torres, B.; Fuertes, D.; González, R.; de Frutos, A. M.

    2013-05-01

    An overview of sun photometer measurements of aerosol properties in Scandinavia and Svalbard was provided by Toledano et al. (2012) thanks to the collaborative effort of various research groups from different countries that maintain a number of observation sites in the European Arctic and sub-Arctic regions. The spatial coverage of this kind of data has remarkably improved in the last years, thanks, among other things, to projects carried out within the framework of the International Polar Year 2007-08. The data from a set of operational sun photometer sites belonging either to national or international measurement networks (AERONET, GAW-PFR) were evaluated. The direct sun observations provided spectral aerosol optical depth (AOD) and Ångström exponent (AE), that are parameters with sufficient long-term records for a first characterization at all sites. At the AERONET sites, microphysical properties derived from inversion of sun-sky radiance data were also examined. AOD (500nm) ranged from 0.08 to 0.10 in Arctic and sub-Arctic sites whereas the aerosol load was higher in more populated areas in Southern Scandinavia (average AOD about 0.10-0.12 at 500 nm). On the Norwegian coast, aerosols showed larger mean size than in continental areas. Columnar particle size distributions and related parameters were used to evaluate aerosol volume efficiencies. The aerosol optical depth characterization revealed that the seasonal patterns in the high Arctic (with the typical hazy spring), in the sub-Arctic region and Southern Scandinavia are all different. The clean continental, polluted continental and maritime aerosols constitute the three main aerosol types, although persistent (Asian) dust was also detected in Svalbard.

  9. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  10. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, Patrick F.; Herceg, Joseph E.; Klocksieben, Robert H.

    1986-01-01

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

  11. The Finokalia Aerosol Measurement Experiment - 2008 (FAME-08): an overview

    NASA Astrophysics Data System (ADS)

    Pikridas, M.; Bougiatioti, A.; Hildebrandt, L.; Engelhart, G. J.; Kostenidou, E.; Mohr, C.; Prevot, A. S. H.; Kouvarakis, G.; Zarmpas, P.; Burkhart, J. F.; Lee, B.-H.; Psichoudaki, M.; Mihalopoulos, N.; Pilinis, C.; Stohl, A.; Baltensperger, U.; Kulmala, M.; Pandis, S. N.

    2010-03-01

    A month (4 May to 8 June 2008) of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08) was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and particle optical properties (light scattering and absorption). Statistical analysis of the aerosol mass concentration variations revealed the absence of diurnal patterns suggesting the lack of strong local sources. Sulfates accounted for approximately half of the particulate matter less than 1 micrometer in diameter (PM1) and organics for 26%. The PM1 organic aerosol fraction was highly oxidized with 80% water soluble. The supermicrometer particles were dominated by crustal components (50%), sea salt (24%) and nitrates (16%). The organic carbon to elemental carbon (OC/EC) ratio correlated with ozone measurements but with a one-day lag. The average OC/EC ratio for the study period was equal to 5.4. For three days air masses from North Africa resulted in a 6-fold increase of particulate matter less than 10 micrometers in diameter (PM10) and a decrease of the OC/EC ratio by a factor of 2. Back trajectory analysis, based on FLEXPART footprint plots, identified five source regions (Athens, Greece, Africa, other continental and marine), each of which influenced the PM1 aerosol composition and properties. Marine air masses had the lowest PM1 concentrations and air masses from the Balkans, Turkey and Eastern Europe the highest.

  12. The Finokalia Aerosol Measurement Experiment - 2008 (FAME-08): an overview

    NASA Astrophysics Data System (ADS)

    Pikridas, M.; Bougiatioti, A.; Hildebrandt, L.; Engelhart, G. J.; Kostenidou, E.; Mohr, C.; Prévôt, A. S. H.; Kouvarakis, G.; Zarmpas, P.; Burkhart, J. F.; Lee, B.-H.; Psichoudaki, M.; Mihalopoulos, N.; Pilinis, C.; Stohl, A.; Baltensperger, U.; Kulmala, M.; Pandis, S. N.

    2010-07-01

    A month (4 May to 8 June 2008) of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08) was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and particle optical properties (light scattering and absorption). Statistical analysis of the aerosol mass concentration variations revealed the absence of diurnal patterns suggesting the lack of strong local sources. Sulfates accounted for approximately half of the particulate matter less than 1 micrometer in diameter (PM1) and organics for 28%. The PM1 organic aerosol fraction was highly oxidized with 80% water soluble. The supermicrometer particles were dominated by crustal components (50%), sea salt (24%) and nitrates (16%). The organic carbon to elemental carbon (OC/EC) ratio correlated with ozone measurements but with a one-day lag. The average OC/EC ratio for the study period was equal to 5.4. For three days air masses from North Africa resulted in a 6-fold increase of particulate matter less than 10 micrometers in diameter (PM10) and a decrease of the OC/EC ratio by a factor of 2. Back trajectory analysis, based on FLEXPART footprint plots, identified five source regions (Athens, Greece, Africa, other continental and marine), each of which influenced the PM1 aerosol composition and properties. Marine air masses had the lowest PM1 concentrations and air masses from the Balkans, Turkey and Eastern Europe the highest.

  13. Characterization of Ambient Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Levy, M. E.; Zheng, J.; Molina, L. T.

    2013-12-01

    Because of the strong absorption over a broad range of the electromagnetic spectra, black carbon (BC) is a key short-lived climate forcer, which contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. The impact of BC on the radiative forcing of the Earth-Atmosphere system is highly dependent of the particle properties. In this presentation, emphasis will be placed on characterizing BC containing aerosols in at the California-Mexico border to obtain a greater understanding of the atmospheric aging and properties of ambient BC aerosols. A comprehensive set of directly measured aerosol properties, including the particle size distribution, effective density, hygroscopicity, volatility, and several optical properties, will be discussed to quantify the mixing state and composition of ambient particles. In Tijuana, Mexico, submicron aerosols are strongly influenced by vehicle emissions; subsequently, the BC concentration in Tijuana is considerably higher than most US cities with an average BC concentration of 2.71 × 2.65 g cm-3. BC accounts for 24.75 % × 9.44 of the total submicron concentration on average, but periodically accounts for over 50%. This high concentration of BC strongly influences many observed aerosol properties such as single scattering albedo, hygroscopicity, effective density, and volatility.

  14. Systematic aerosol characterization by combining GOME-2 UV Aerosol Indices with trace gas concentrations

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M.; Stammes, P.; Wagner, T.

    2012-04-01

    The task of determining aerosol type using passive remote sensing instruments is a daunting one. First, because the variety in aerosol (optical) properties is very large; and second, because the effect of aerosols on the detected top-of-atmosphere reflectance spectrum is smooth and mostly featureless. In addition, spectrometers like GOME-2 have a coarse spatial resolution, which makes aerosol characterization even more difficult due to interferences with clouds. On account of these problems, we do not attempt to derive aerosol properties from single measurements: instead, we combine time series of UV Aerosol Index and trace gas concentrations to derive the dominating aerosol type for each season. Aside from the Index values and trace gas concentrations themselves, the correlation between UV Aerosol Indices (which are indicative of aerosol absorption) with NO2, HCHO, and CHOCHO columns - or absence of it - provides clues to the (main) source of the aerosols in the investigated region and time range. For example: a high correlation of HCHO and Absorbing Aerosol Index points to aerosols from biomass burning, highly correlated CHOCHO, HCHO, and SCattering Index indicate biogenic secondary organic aerosols, and coinciding high NO2 concentrations with high SCattering Index values are associated with industrial and urban aerosols. We here present case studies for several regions to demonstrate the suitability of our approach. Then, we introduce a method to systematically derive the dominating aerosol type on a global scale on time scales varying from monthly to yearly.

  15. Ganges Valley Aerosol Experiment: Science and Operations Plan

    SciTech Connect

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile

  16. Aerosol size distribution and aerosol water content measurements during Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sievering, H.; Boatman, J.; Wellman, D.; Pszenny, A.

    1995-11-01

    Aerosol size distribution data measured during the June 1992 Marine Aerosol and Gas Exchange experiment are analyzed to investigate the characteristics of fine marine aerosol particles measured over the North Atlantic near the Azores Islands. Measured aerosol size distribution data were corrected using the corrected size calibration data based on the optical properties of particles being measured. The corrected size distribution data were then approximated with either one or two lognormal size distributions, depending on air mass conditions. Under clean air mass conditions <3 μm diameter aerosol size distributions typically exhibited two modes, consisting of an accumulation mode and the small end of the sea-salt particle mode. However, under the influence of continental polluted air masses, the aerosol size distribution was dominated by <1 μm diameter particles in a single mode with an increased aerosol concentration. Aerosol water content of accumulation mode marine aerosols was estimated from differences between several series of ambient and dried aerosol size distributions. The average aerosol water fraction was 0.31, which is in good agreement with an empirical aerosol growth model estimate. The average rate of SO4= production in the accumulation mode aerosol water by H2O2 oxidation was estimated to be <7×10-10 mol L-1 s-1, which is an insignificant contributor to the observed non-sea-salt SO4= in the accumulation mode.

  17. SAGE II inversion algorithm. [Stratospheric Aerosol and Gas Experiment

    NASA Technical Reports Server (NTRS)

    Chu, W. P.; Mccormick, M. P.; Lenoble, J.; Brogniez, C.; Pruvost, P.

    1989-01-01

    The operational Stratospheric Aerosol and Gas Experiment II multichannel data inversion algorithm is described. Aerosol and ozone retrievals obtained with the algorithm are discussed. The algorithm is compared to an independently developed algorithm (Lenoble, 1989), showing that the inverted aerosol and ozone profiles from the two algorithms are similar within their respective uncertainties.

  18. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H.; Henry, Mike; Baden, Daniel G.

    2009-01-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1 h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5–10 μg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m3. The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. PMID:19879288

  19. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G

    2010-05-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction.

  20. Cloud and Aerosol Characterization During CAEsAR 2014

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Tesche, M.; Krejci, R.; Baumgardner, D.; Walther, A.; Rosati, B.; Widequist, U.; Tunved, P.; O'Connor, E.; Ström, J.

    2015-12-01

    The Cloud and Aerosol Experiment at Åre (CAEsAR 2014) campaign took place from June to October 2014 at Mt. Åreskutan, Sweden, a remote mountain site in Northern Sweden. The campaign was designed to study the physical and chemical properties of clouds and aerosols under orographic forcing. A unique and comprehensive set-up allowed an in-situ characterization of both constituents at a mountain top station at 1200 m a.s.l. including instruments to measure cloud droplet size distribution, meteorological parameters, cloud residual properties (using a counterflow virtual impactor inlet), cloud water composition and various aerosol chemical and microphysical properties (e.g. size, optical and hygroscopic properties). At the same time, a remote sensing site was installed below the mountain site at 420 m a.s.l. in the immediate vicinity (< 3 km horizontally), with vertical profiling from an aerosol lidar, winds and turbulence from a scanning Doppler lidar, a Sun photometer measuring aerosol columnar optical properties, and a precipitation sampler taking rain water for chemical analysis. In addition, regular radiosoundings were performed from the valley. Here, we present the results of this intensive campaign which includes approx. 900 hours of in-cloud sampling. Various unique cloud features were frequently observed such as dynamically-driven droplet growth, bimodal droplet distributions, and the activation of particles down to approx. 20 nm in dry particle diameter. During the campaign, a forest fire smoke plume was transported over the site with measureable impacts on the cloud properties. This data will be used to constrain cloud and aerosol models, as well as to validate satellite retrievals. A first comparison to VIIRS and MODIS satellite retrievals will also be shown.

  1. Characterizing the formation of secondary organic aerosols

    SciTech Connect

    Lunden, Melissa; Black, Douglas; Brown, Nancy

    2004-02-01

    concentrations of important gas phase nitrogen compounds. Experiments have been ongoing at the Blodgett field site since the fall of 2000, and have included portions of the summer and fall of 2001, 2002, and 2003. Analysis of both the gas and particle phase data from the year 2000 show that the particle loading at the site correlates with both biogenic precursors emitted in the forest and anthropogenic precursors advected to the site from Sacramento and the Central Valley of California. Thus the particles at the site are affected by biogenic processing of anthropogenic emissions. Size distribution measurements show that the aerosol at the site has a geometric median diameter of approximately 100 nm. On many days, in the early afternoon, growth of nuclei mode particles (<20 nm) is also observed. These growth events tend to occur on days with lower average temperatures, but are observed throughout the summer. Analysis of the size resolved data for these growth events, combined with typical measured terpene emissions, show that the particle mass measured in these nuclei mode particles could come from oxidation products of biogenic emissions, and can serve as a significant route for SOA partitioning into the particle phase. During periods of each year, the effect of emissions for forest fires can be detected at the Blodgett field location. During the summer of 2002 emissions from the Biscuit fire, a large fire located in Southwest Oregon, was detected in the aerosol data. The results show that increases in particle scattering can be directly related to increased black carbon concentration and an appearance of a larger mode in the aerosol size distribution. These results show that emissions from fires can have significant impact on visibility over large distances. The results also reinforce the view that forest fires can be a significant source of black carbon in the atmosphere, which has important climate and visibility. Continuing work with the 2002 data set, particularly the

  2. Generation and characterization of biological aerosols for laser measurements

    SciTech Connect

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  3. Aerosol characterization of nebulized intranasal glucocorticoid formulations.

    PubMed

    Berlinski, A; Waldrep, J C

    2001-01-01

    Inhaled glucocorticoids (GCs) are the mainstay of long-term therapy for asthma. The lack of suitable preparations in the United States has induced clinicians to use intranasal (IN) GC formulations as "nebulizer suspensions" for off-label therapy. However, no data are available regarding aerosol production and characteristics. The aim of this study was to characterize drug outputs and aerodynamic profiles of four nebulized IN GC formulations with further analysis of flunisolide (Flu), and to test the influence of different delivery system/formulation combinations. The aerodynamic profiles and drug outputs were determined by impaction and chemical analysis. The solution output was determined by the gravimetric technique. Triamcinole acetonide (TAA), fluticasone propionate (Flut), beclomethasone dipropionate (Bec), and Flu (550, 500, 840, and 250 microg, respectively) diluted to 4 mL with saline solution were tested with the Sidestream (SID) and Aero-Tech II (AT2) nebulizers. Subsequently, Flu was tested with four additional nebulizers (Pari LC + [PARI] Acorn II, Hudson T Up-draft II, and Raindrop). All the aerosols were heterodisperse and had a particle size range optimal for peripheral airway deposition (1.85 to 3.67 microm). Flu had the highest drug output in the respirable range (22.8 and 20.3 microg/min with the AT and SID, respectively). Flu was 5-11 times more efficiently nebulized than the other formulations tested. No differences were detected in the solution outputs (0.25 to 0.3 mL/min). In subsequent testing of Flu, the PARI, AT, and SID showed the best performances. The LC+ achieved the highest drug and solution output (27.4 microg/min and 0.89 mL/min, respectively). In conclusion, Flu showed the best aerosol performance characteristics. These data do not endorse the off-label utilization of nebulized IN GC, but underscores the importance of in vitro testing before selecting any formulation/nebulizer combinations for clinical use.

  4. Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

    NASA Astrophysics Data System (ADS)

    Wahab, A. M.; Sarker, M. L. R.

    2014-02-01

    Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation.

  5. Optical and Chemical Characterization of Aerosols Produced from Cooked Meats

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Foreman, E.; Blanc, L. E.

    2011-12-01

    Cooking processes can release a variety compounds into the air immediately above a cooking surface. The distribution of compounds will largely depend on the type of food that is being processed and the temperatures at which the food is prepared. High temperatures release compounds from foods like meats and carry them away from the preparation surface into cooler regions where condensation into particles can occur. Aerosols formed in this manner can impact air quality, particularly in urban areas where the amount of food preparation is high. Reported here are the results of laboratory experiments designed to optically and chemically characterize aerosols derived from cooking several types of meats including ground beef, salmon, chicken, and pork both in an inert atmosphere and in synthetic air. The laboratory-generated aerosols are studied using a laminar flow cell that is configured to accommodate simultaneous optical characterization in the mid-infrared and collection of particles for subsequent chemical analysis by gas chromatography. Preliminary optical results in the visible and ultra-violet will also be presented.

  6. An overview of the Ice Nuclei Research Unit Jungfraujoch/Cloud and Aerosol Characterization Experiment 2013 (INUIT-JFJ/CLACE-2013)

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes

    2014-05-01

    Ice formation in mixed phase tropospheric clouds is an essential prerequisite for the formation of precipitation at mid-latitudes. Ice formation at temperatures warmer than -35°C is only possible via heterogeneous ice nucleation, but up to now the exact pathways of heterogeneous ice formation are not sufficiently well understood. The research unit INUIT (Ice NUcleation research unIT), funded by the Deutsche Forschungsgemeinschaft (DFG FOR 1525) has been established in 2012 with the objective to investigate heterogeneous ice nucleation by combination of laboratory studies, model calculation and field experiments. The main field campaign of the INUIT project (INUIT-JFJ) was conducted at the High Alpine Research Station Jungfraujoch (Swiss Alps, 3580 m asl) during January and February 2013, in collaboration with several international partners in the framework of CLACE2013. The instrumentation included a large set of aerosol chemical and physical analysis instruments (particle counters, particle sizers, particle mass spectrometers, cloud condensation nuclei counters, ice nucleus counters etc.), that were operated inside the Sphinx laboratory and sampled in mixed phase clouds through two ice selective inlets (Ice-CVI, ISI) as well as through a total aerosol inlet that was used for out-of-cloud aerosol measurements. Besides the on-line measurements, also samples for off-line analysis (ESEM, STXM) have been taken in and out of clouds. Furthermore, several cloud microphysics instruments were operated outside the Sphinx laboratory. First results indicate that a large fraction of ice residues sampled from mixed phase clouds contain organic material, but also mineral dust. Soot and lead were not found to be enriched in ice residues. The concentration of heterogeneous ice nuclei was found to be variable (ranging between < 1 and > 100 per liter) and to be strongly dependent on the operating conditions of the respective IN counter. The number size distribution of ice residues

  7. Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization

    SciTech Connect

    Friedman, Beth; Herich, Hanna; Kammermann, Lukas; Gross, Deborah S.; Ameth, Almut; Holst, Thomas; Lohmann, U.; Cziczo, Daniel J.

    2009-07-10

    Sub-Arctic aerosol was sampled during July 2007 at the Abisko Research Station Stordalen field site operated by the Royal Swedish Academy of Sciences. Located in northern Sweden at 68º latitude and 385 meters above sea level (msl), this site is classified as a semi-continuous permafrost mire. Number density, size distribution, cloud condensation nucleus properties, and chemical composition of the ambient aerosol were determined. Backtrajectories showed that three distinct airmasses were present over Stordalen during the sampling period. Aerosol properties changed and correlated with airmass origin to the south, northeast, or west. We observe that Arctic aerosol is not compositionally unlike that found in the free troposphere at mid-latitudes. Internal mixtures of sulfates and organics, many on insoluble biomass burning and/or elemental carbon cores, dominate the number density of particles from ~200 to 2000 nm aerodynamic diameter. Mineral dust which had taken up gas phase species was observed in all airmasses. Sea salt, and the extent to which it had lost volatile components, was the aerosol type that most varied with airmass.

  8. A thermoluminescent method for aerosol characterization

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.; Rogowski, R. S.

    1976-01-01

    A thermoluminescent method has been used to study the interactions of aerosols with ozone. The preliminary results show that ozone reacts with many compounds found in aerosols, and that the thermoluminescence curves obtained from ozonated aerosols are characteristic of the aerosol. The results suggest several important applications of the thermoluminescent method: development of a detector for identification of effluent sources; a sensitive experimental tool for study of heterogeneous chemistry; evaluation of importance of aerosols in atmospheric chemistry; and study of formation of toxic, electronically excited species in airborne particles.

  9. Anthropogenic Aerosol Effects on Sea Surface Temperatures: Mixed-Layer Ocean Experiments with Explicit Aerosol Representation

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Wild, Martin; Knutti, Reto

    2014-05-01

    Anthropogenic aerosols affect the Earth's radiative balance both through direct and indirect effects. These effects can lead to a reduction of the incoming solar radiation at the surface, i.e. dimming, which may lead to a change in sea surface temperatures (SST) or SST pattern. This, in turn, may affect precipitation patterns. The goal of the present work is to achieve an estimate of the equilibrium SST changes under anthropogenic aerosol forcing since industrialisation. We show preliminary results from mixed-layer ocean (MLO) experiments with explicit aerosol representation performed with ECHAM6-HAM. The (fixed) MLO heat flux into the deep ocean was derived from atmosphere only runs with fixed climatological SSTs (1961-1990 average) and present day (year 2000) aerosols and GHG burdens. Some experiments we repeated with an alternative MLO deep ocean heat flux (based on pre-industrial conditions) to test the robustness of our results with regard to this boundary condition. The maximum surface temperature responses towards anthropogenic aerosol and GHG forcing (separately and combined) were derived on a global and regional scale. The same set of experiments was performed with aerosol and GHG forcings representative of different decades over the past one and a half centuries. This allows to assess how SST patterns at equilibrium changed with changing aerosol (and GHG) forcing. Correlating SST responses with the change in downward clear-sky and all-sky shortwave radiation provides a first estimate of the response to anthropogenic aerosols. Our results show a clear contrast in hemispheric surface temperature response, as expected from the inter-hemispheric asymmetry of aerosol forcing The presented work is part of a project aiming at quantifying the effect of anthropogenic aerosol forcing on SSTs and the consequences for global precipitation patterns. Results from this study will serve as a starting point for further experiments involving a dynamic ocean model, which

  10. Characterization of aerosol events based on the column integrated optical aerosol properties and polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Mandija, Florian; Markowicz, Krzysztof; Zawadzka, Olga

    2016-12-01

    Aerosol optical properties are very useful tools for analyzing their radiative effects, which are directly or indirectly related to the global radiation budget. Investigation of column-integrated aerosol optical properties is a worldwide and well-accepted method. The introduction of new methodologies, like those of operation with polarimetric measurements, represent a new challenge to interpret the measurement data and give more detailed information about the aerosol events and their characteristics. Aerosol optical properties during the period June - August 2015 in AERONET Strzyzow station in Poland were analyzed. The aerosol properties like aerosol optical depth, Ångström exponent, fine mode fraction, fine mode contribution on AOD, asymmetry parameter, single scattering angle are analyzed synergistically with the polarimetric measurements of the degree of polarization in different solar zenith and zenith viewing angles at several wavelengths. The overall results show that aerosol events in Strzyzow were characterized mostly by fine mode aerosols. Backward-trajectories suggest that the majority of air masses come from the west. The principal component of the aerosol load was urban/industrial contamination, especially from the inner part of the continent. Additionally, the maximal values of the degree of linear polarization were found to be dependent on the solar zenith and zenith viewing angles and aerosol optical properties like aerosol optical depth and Ångström exponent. These dependencies were further analyzed in a specific case with very high mean values of AOD500 (0.59) and AE440-870 (1.91). The diurnal variations of aerosol optical properties investigated during this special case, suggest that biomass burning products are the main cause of that aerosol load over the stations.

  11. Characterization of aerosol particles at the forested site in Lithuania

    NASA Astrophysics Data System (ADS)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    . Furthermore, we measured TC ^13C/12C isotopic ratio on each cascade. This ratio contributed to identifying sources of carbonaceous species. References Garbaras, A., Andriejauskiene, J., Bariseviciute, R., Remeikis, V., 2008. Tracing of atmospheric aerosol sources using stable carbon isotopes. Lithuanian J. Phys. 48, 259-264. Jaenicke, R., 1998. Atmospheric aerosol size distribution. In: Harrison, R.M., van Grieken, R.E. (Eds.), Atmospheric Particles. John Wiley & Sons, Chichester, pp. 1-28. Middlebrook, A.M., Murphy, D.M., Thomson, D.S., 1998. Observations of organic material in individual marine particles at Cape Grim during the first aerosol characterization experiment (ACE 1). Journal of Geophysical Research 103, 16475-16483. Norman, A.L., Hopper, J.F., Blanchard, P., Ernst, D., Brice, K., Alexandrou, N., Klouda, G., 1999. The stable carbon isotope composition of atmospheric PAHs. Atmospheric Environment 33 (17), 2807-2814. Samara, C., Voutsa, D., 2005. Size distribution of airborne particulate matter and associated heavy metals in the roadside environment. Chemosphere 59, 1197-1206.

  12. Aerosol effects and corrections in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Hervig, Mark E.; Russell, James M., III; Gordley, Larry L.; Daniels, John; Drayson, S. Roland; Park, Jae H.

    1995-01-01

    The eruptions of Mt. Pinatubo in June 1991 increased stratospheric aerosol loading by a factor of 30, affecting chemistry, radiative transfer, and remote measurements of the stratosphere. The Halogen Occultation Experiment (HALOE) instrument on board Upper Atmosphere Research Satellite (UARS) makes measurements globally for inferring profiles of NO2, H2O, O3, HF, HCl, CH4, NO, and temperature in addition to aerosol extinction at five wavelengths. Understanding and removing the aerosol extinction is essential for obtaining accurate retrievals from the radiometer channels of NO2, H2O and O3 in the lower stratosphere since these measurements are severely affected by contaminant aerosol absorption. If ignored, aerosol absorption in the radiometer measurements is interpreted as additional absorption by the target gas, resulting in anomalously large mixing ratios. To correct the radiometer measurements for aerosol effects, a retrieved aerosol extinction profile is extrapolated to the radiometer wavelengths and then included as continuum attenuation. The sensitivity of the extrapolation to size distribution and composition is small for certain wavelength combinations, reducing the correction uncertainty. The aerosol corrections extend the usable range of profiles retrieved from the radiometer channels to the tropopause with results that agree well with correlative measurements. In situations of heavy aerosol loading, errors due to aerosol in the retrieved mixing ratios are reduced to values of about 15, 25, and 60% in H2O, O3, and NO2, respectively, levels that are much less than the correction magnitude.

  13. Detailed Aerosol Characterization using Polarimetric Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, Otto; di Noia, Antonio; Stap, Arjen; Rietjens, Jeroen; Smit, Martijn; van Harten, Gerard; Snik, Frans

    2016-04-01

    Anthropogenic aerosols are believed to cause the second most important anthropogenic forcing of climate change after greenhouse gases. In contrast to the climate effect of greenhouse gases, which is understood relatively well, the negative forcing (cooling effect) caused by aerosols represents the largest reported uncertainty in the most recent assessment of the International Panel on Climate Change (IPCC). To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. There is growing consensus in the aerosol remote sensing community that multi-angle measurements of intensity and polarization are essential to unambiguously determine all relevant aerosol properties. This presentations adresses the different aspects of polarimetric remote sensing of atmospheric aerosols, including retrieval algorithm development, validation, and data needs for climate and air quality applications. During past years, at SRON-Netherlands Instite for Space Research retrieval algorithms have been developed that make full use of the capabilities of polarimetric measurements. We will show results of detailed aerosol properties from ground-based- (groundSPEX), airborne- (NASA Research Scanning Polarimeter), and satellite (POLDER) measurements. Also we will discuss observational needs for future instrumentation in order to improve our understanding of the role of aerosols in climate change and air quality.

  14. Global Backscatter Experiment (GLOBE) Results: Aerosol Backscatter Global Distribution and Wavelength Dependence

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.

    1992-01-01

    The GLObal Backscatter Experiment (GLOBE) was initiated by NASA in 1986 as an interagency and international research effort to characterize tropospheric backscatter properties. The primary objective of the program is to develop realistic aerosol backscatter inputs for design and simulation studies for NASA's prospective Laser Atmospheric Wind Sounder (LAWS). To achieve this, GLOBE incorporates several different types of aerosol sensors, which operate from a variety of sensor platforms, covering a wide range of spatial and temporal scales, and measure a diverse set of aerosol physical, chemical, and optical properties. The results of this analysis have provided important new information on the life cycles and physicochemical properties of global scale tropospheric aerosol systems. In addition, GLOBE analytical methods will be useful for the Earth Observing System (EOS) and other studies that involve the assimilation of large, complex atmospheric aerosol databases.

  15. Characterization of aerosols produced by surgical procedures

    SciTech Connect

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K.; Turner, R.S.

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  16. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    SciTech Connect

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-15

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  17. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  18. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments.

    PubMed

    Gopalakrishnan, V; Subramanian, V; Baskaran, R; Venkatraman, B

    2015-07-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  19. Capstone Depleted Uranium Aerosols: Generation and Characterization

    SciTech Connect

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  20. Improving Protection against Viral Aerosols Through Development of Novel Decontamination Methods and Characterization of Viral Aerosol

    DTIC Science & Technology

    2012-04-01

    AFRL-RX-TY-TP-2012-0040 IMPROVING PROTECTION AGAINST VIRAL AEROSOLS THROUGH DEVELOPMENT OF NOVEL DECONTAMINATION METHODS AND CHARACTERIZATION...Include area code) 16-APR-2012 Technical Paper (Thesis) 15-SEP-2007 -- 30-APR-2012 Improving Protection against Viral Aerosols Through Development of...medium showed that artificial saliva (AS) and beef serum extract (BE) produce a protective effect against UV compared to deionized (DI) water, that RH was

  1. Using Retrieved Aerosol Spectral Properties to Characterize Aerosol Composition and Mixing

    NASA Astrophysics Data System (ADS)

    Li, J.

    2015-12-01

    The spectral dependence of aerosol properties, such as aerosol absorption optical depth (AAOD) and single scattering albedo (SSA), can be used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, spectral AAOD and SSA measured in reality may differ from these extreme cases, due to the complicated composition and mixing states. In this study, we use spectral SSA and AAOD retrieved from AERONET measurements, assisted by CALIPSO aerosol type product and Mie calculations, to characterize aerosol mixtures over representative regions. Moreover, in addition to the monotonically increasing or decreasing AAOD and SSA spectra, we find the spectral dependence of these two parameters are frequently peaked (at 675 nm or 870 nm) over several places including East Asia, India, West Africa and South America. We thus suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Further analysis indicates that moderate mixing of black carbon with dust or organic carbon is mainly responsible for producing the SSA curvature. An optimization scheme was developed to match the observed AAOD and SSA spectra with Mie calculations assuming different aerosol composition and mixing states. Results suggest that while external mixing can explain most of the observed AAOD and SSA spectral dependence, internal mixing or core-shell mode is also likely under many circumstances, such as East Asia during winter and post-monsoon and winter seasons over India. This method offers the potential to quantitatively infer aerosol composition from these spectral measurements of aerosol optical properties.

  2. The Stratospheric Aerosol and Gas Experiment III - International Space Station: Extending Long-Term Ozone and Aerosol Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Eckman, R.; Zawodny, J. M.; Cisewski, M.; Gasbarre, J.; Flittner, D. E.; Hill, C.; Roell, M.; Moore, J. R.; Hernandez, G.; McCormick, M. P.

    2013-12-01

    The Stratospheric Aerosol and Gas Experiment III - International Space Station (SAGE III on ISS) will extend the global measurements of vertical profiles of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gases begun with SAGE I in 1979, enabling the detection of long-term trends. SAGE III on ISS is the fourth in a series of instruments developed for monitoring these constituents in the stratosphere and troposphere. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm, using the heritage occultation technique, utilizing both the sun and the moon. Launch to ISS is planned for early 2015 aboard a Falcon 9 spacecraft. SAGE III will investigate the spatial and temporal variability of the measured species in order to determine their role in climatological processes, biogeochemical cycles, the hydrologic cycle, and atmospheric chemistry. It will characterize tropospheric, as well as stratospheric aerosols and upper tropospheric and stratospheric clouds, and investigate their effects on the Earth's environment including radiative, microphysical, and chemical interactions. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Amongst its key objectives will be to assess the state of the recovery in the distribution of ozone, to reestablish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The ISS is ideal for Earth observing experiments; its mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. In this presentation, we describe the SAGE III on ISS mission, its implementation, current status, and concentrate on its key science objectives.

  3. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  4. Chemical properties and outflow patterns of anthropogenic and dust particles on Rishiri Island during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia)

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kiyoshi; Uyama, Yukiko; Hayano, Teruaki; Tanimoto, Hiroshi; Uno, Itsushi; Uematsu, Mitsuo

    2003-12-01

    Investigations of chemical properties and transport mechanisms of continental aerosols are necessary for estimating their influences on global radiative budget and on the global material cycle. Intensive measurements of atmospheric aerosols and the associated species on Rishiri Island, near the northern tip of Japan, were conducted from March to May 2001, in order to understand the chemical properties, source regions, transport pathways, and transport patterns of anthropogenic and mineral aerosols over the east Asian Pacific Rim region during the spring. Mean concentrations of nss-SO42-, NO3-, NH4+, nss-Ca2+ in aerosols were 2.48, 0.64, 0.72, and 0.17 μg m-3, respectively. Elemental carbon and organic carbon in fine particles (d < 2.5 μm) yielded mean concentrations of 0.25 and 0.80 μg m-3, respectively. The concentrations of these species frequently increased to higher values because of outbreaks of continental polluted air masses, whereas under background conditions, they decreased to lower values similar to those observed over the remote ocean. Our results demonstrate that nss-SO42- and NH4+ coexist in fine particles, that NO3- and nss-Ca2+ coexist in coarse particles, and that each set is transported in an alternate manner. Continentally derived NO3- is transported as coarse particle to the east Asian Pacific Rim region. Anthropogenic pollutants and dust particles are not necessarily transported together. It was often found that anthropogenic fine particles containing abundant nss-SO42- appeared first and were then followed by large mineral particles that had absorbed NO3-. Short-term intrusion of the air masses containing abundant particulate carbonaceous compounds, probably due to the influence of biomass burning, also often occurred during the outflow events of continental air masses. Atmospheric behaviors of sulfate, nitrate, and carbonaceous species are different from one another, although they are all derived mainly from combustion processes.

  5. A Global Aerosol Model Forecast for the ACE-Asia Field Experiment

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Lucchesi, Robert; Huebert, Barry; Weber, Rodney; Anderson, Tad; Masonis, Sarah; Blomquist, Byron; Bandy, Alan; Thornton, Donald

    2003-01-01

    We present the results of aerosol forecast during the Aerosol Characterization Experiment (ACE-Asia) field experiment in spring 2001, using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model and the meteorological forecast fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The aerosol model forecast provides direct information on aerosol optical thickness and concentrations, enabling effective flight planning, while feedbacks from measurements constantly evaluate the model, making successful model improvements. We verify the model forecast skill by comparing model predicted total aerosol extinction, dust, sulfate, and SO2 concentrations with those quantities measured by the C-130 aircraft during the ACE-Asia intensive operation period. The GEOS DAS meteorological forecast system shows excellent skills in predicting winds, relative humidity, and temperature for the ACE-Asia experiment area as well as for each individual flight, with skill scores usually above 0.7. The model is also skillful in forecast of pollution aerosols, with most scores above 0.5. The model correctly predicted the dust outbreak events and their trans-Pacific transport, but it constantly missed the high dust concentrations observed in the boundary layer. We attribute this missing dust source to the desertification regions in the Inner Mongolia Province in China, which have developed in recent years but were not included in the model during forecasting. After incorporating the desertification sources, the model is able to reproduce the observed high dust concentrations at low altitudes over the Yellow Sea. Two key elements for a successful aerosol model forecast are correct source locations that determine where the emissions take place, and realistic forecast winds and convection that determine where the aerosols are transported. We demonstrate that our global model can not only account for the large

  6. Apparatus and method for the characterization of respirable aerosols

    DOEpatents

    Clark, Douglas K.; Hodges, Bradley W.; Bush, Jesse D.; Mishima, Jofu

    2016-05-31

    An apparatus for the characterization of respirable aerosols, including: a burn chamber configured to selectively contain a sample that is selectively heated to generate an aerosol; a heating assembly disposed within the burn chamber adjacent to the sample; and a sampling segment coupled to the burn chamber and configured to collect the aerosol such that it may be analyzed. The apparatus also includes an optional sight window disposed in a wall of the burn chamber such that the sample may be viewed during heating. Optionally, the sample includes one of a Lanthanide, an Actinide, and a Transition metal.

  7. Characterizing the Spatial and Temporal Distribution of Aerosol Optical Thickness Over the Atlantic Basin Utilizing GOES-8 Multispectral Data

    NASA Technical Reports Server (NTRS)

    Fox, Robert; Prins, Elaine Mae; Feltz, Joleen M.

    2001-01-01

    In recent years, modeling and analysis efforts have suggested that the direct and indirect radiative effects of both anthropogenic and natural aerosols play a major role in the radiative balance of the earth and are an important factor in climate change calculations. The direct effects of aerosols on radiation and indirect effects on cloud properties are not well understood at this time. In order to improve the characterization of aerosols within climate models it is important to accurately parameterize aerosol forcing mechanisms at the local, regional, and global scales. This includes gaining information on the spatial and temporal distribution of aerosols, transport regimes and mechanisms, aerosol optical thickness, and size distributions. Although there is an expanding global network of ground measurements of aerosol optical thickness and size distribution at specific locations, satellite data must be utilized to characterize the spatial and temporal extent of aerosols and transport regimes on regional and global scales. This study was part of a collaborative effort to characterize aerosol radiative forcing over the Atlantic basin associated with the following three major aerosol components in this region: urban/sulfate, Saharan dust, and biomass burning. In-situ ground measurements obtained by a network of sun photometers during the Smoke Clouds and Radiation Experiment in Brazil (SCAR-B) and the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) were utilized to develop, calibrate, and validate a Geostationary Operational Environmental Satellite (GOES)-8 aerosol optical thickness (AOT) product. Regional implementation of the GOES-8 AOT product was used to augment point source measurements to gain a better understanding of the spatial and temporal distributions of Atlantic basin aerosols during SCAR-B and TARFOX.

  8. Solar Spectral Radiative Forcing Due to Dust Aerosol During the Puerto Rico Dust Experiment

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Bergstrom, R.; Rabbette, M.; Livingston, J.; Russell, P.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    During the Puerto Rico Dust Experiment (PRIDE) upwelling and downwelling solar spectral irradiance was measured on board the SPAWAR Navajo and downwelling solar spectral flux was measured at a surface site using the NASA Ames Solar Spectral Flux Radiometer. These data will be used to determine the net solar radiative forcing of dust aerosol and to quantify the solar spectral radiative energy budget in the presence of elevated aerosol loading. We will assess the variability in spectral irradiance using formal principal component analysis procedures and relate the radiative variability to aerosol microphysical properties. Finally, we will characterize the sea surface reflectance to improve aerosol optical depth retrievals from the AVHRR satellite and to validate SeaWiFS ocean color products.

  9. Study to perform preliminary experiments to evaluate particle generation and characterization techniques for zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Katz, U.

    1982-01-01

    Methods of particle generation and characterization with regard to their applicability for experiments requiring cloud condensation nuclei (CCN) of specified properties were investigated. Since aerosol characterization is a prerequisite to assessing performance of particle generation equipment, techniques for characterizing aerosol were evaluated. Aerosol generation is discussed, and atomizer and photolytic generators including preparation of hydrosols (used with atomizers) and the evaluation of a flight version of an atomizer are studied.

  10. Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report

    SciTech Connect

    Kotamarthi, VR

    2013-12-01

    In general, the Indian Summer Monsoon (ISM) as well as the and the tropical monsoon climate is influenced by a wide range of factors. Under various climate change scenarios, temperatures over land and into the mid troposphere are expected to increase, intensifying the summer pressure gradient differential between land and ocean and thus strengthening the ISM. However, increasing aerosol concentration, air pollution, and deforestation result in changes to surface albedo and insolation, potentially leading to low monsoon rainfall. Clear evidence points to increasing aerosol concentrations over the Indian subcontinent with time, and several hypotheses regarding the effect on monsoons have been offered. The Ganges Valley Aerosol Experiment (GVAX) field study aimed to provide critical data to address these hypotheses and contribute to developing better parameterizations for tropical clouds, convection, and aerosol-cloud interactions. The primary science questions for the mission were as follows:

  11. MELCOR 1. 8. 1 assessment: LACE aerosol experiment LA4

    SciTech Connect

    Kmetyk, L.N.

    1991-09-01

    The MELCOR code has been used to simulate LACE aerosol experiment LA4. In this test, the behavior of single- and double-component, hygroscopic and nonhygroscopic, aerosols in a condensing environment was monitored. Results are compared to experimental data, and to CONTAIN calculations. Sensitivity studies have been done on time step effects and machine dependencies; thermal/hydraulic parameters such as condensation on heat structures and on pool surface, and radiation heat transfer; and aerosol parameters such as number of MAEROS components and sections assumed, the degree to which plated aerosols are washed off heat structures by condensate film draining, and the effect of non-default values for shape factors and diameter limits. 9 refs., 50 figs., 13 tabs.

  12. Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes

    NASA Astrophysics Data System (ADS)

    Riva, Matthieu; Da Silva Barbosa, Thais; Lin, Ying-Hsuan; Stone, Elizabeth A.; Gold, Avram; Surratt, Jason D.

    2016-09-01

    We report the formation of aliphatic organosulfates (OSs) in secondary organic aerosol (SOA) from the photooxidation of C10-C12 alkanes. The results complement those from our laboratories reporting the formation of OSs and sulfonates from gas-phase oxidation of polycyclic aromatic hydrocarbons (PAHs). Both studies strongly support the formation of OSs from the gas-phase oxidation of anthropogenic precursors, as hypothesized on the basis of recent field studies in which aromatic and aliphatic OSs were detected in fine aerosol collected from several major urban locations. In this study, dodecane, cyclodecane and decalin, considered to be important SOA precursors in urban areas, were photochemically oxidized in an outdoor smog chamber in the presence of either non-acidified or acidified ammonium sulfate seed aerosol. Effects of acidity and relative humidity on OS formation were examined. Aerosols collected from all experiments were characterized by ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS). Most of the OSs identified could be explained by formation of gaseous epoxide precursors with subsequent acid-catalyzed reactive uptake onto sulfate aerosol and/or heterogeneous reactions of hydroperoxides. The OSs identified here were also observed and quantified in fine urban aerosol samples collected in Lahore, Pakistan, and Pasadena, CA, USA. Several OSs identified from the photooxidation of decalin and cyclodecane are isobars of known monoterpene organosulfates, and thus care must be taken in the analysis of alkane-derived organosulfates in urban aerosol.

  13. Huygens Probe Aerosol Collector Pyrolyser Experiment

    NASA Astrophysics Data System (ADS)

    Israel, M.; Cabane, J.-F.; Brun, G.; Niemann, S.; Way, H.; Riedler, W.; Steller, M.; Raulin, F.; Coscia, D.

    2002-07-01

    ACP's main objective is the chemical analysis of the aerosols in Titan's atmosphere. For this purpose, it will sample the aerosols during descent and prepare the collected matter (by evaporation, pyrolysis and gas products transfer) for analysis by the Huygens Gas Chromatograph Mass Spectrometer (GCMS). A sampling system is required for sampling the aerosols in the 135-32 km and 22-17 km altitude regions of Titan's atmosphere. A pump unit is used to force the gas flow through a filter. In its sampling position, the filter front face extends a few mm beyond the inlet tube. The oven is a pyrolysis furnace where a heating element can heat the filter and hence the sampled aerosols to 250°C or 600°C. The oven contains the filter, which has a thimble-like shape (height 28 mm). For transferring effluent gas and pyrolysis products to GCMS, the carrier gas is a labeled nitrogen 15N2, to avoid unwanted secondary reactions with Titan's atmospheric nitrogen. Aeraulic tests under cold temperature conditions were conducted by using a cold gas test system developed by ONERA. The objective of the test was to demonstrate the functional ability of the instrument during the descent of the probe and to understand its thermal behavior, that is to test the performance of all its components, pump unit and mechanisms. In order to validate ACP's scientific performance, pyrolysis tests were conducted at LISA on solid phase material synthesized from experimental simulation. The chromatogram obtained by GCMS analysis shows many organic compounds. Some GC peaks appear clearly from the total mass spectra, with specific ions well identified thanks to the very high sensitivity of the mass spectrometer. The program selected for calibrating the flight model is directly linked to the GCMS calibration plan. In order not to pollute the two flight models with products of solid samples such as tholins, we excluded any direct pyrolysis tests through the ACP oven during the first phase of the

  14. Huygens Probe Aerosol Collector Pyrolyser Experiment

    NASA Astrophysics Data System (ADS)

    Israel, G.; Cabane, M.; Brun, J.-F.; Niemann, H.; Way, S.; Riedler, W.; Steller, M.; Raulin, F.; Coscia, D.

    2002-07-01

    ACP's main objective is the chemical analysis of the aerosols in Titan's atmosphere. For this purpose, it will sample the aerosols during descent and prepare the collected matter (by evaporation, pyrolysis and gas products transfer) for analysis by the Huygens Gas Chromatograph Mass Spectrometer (GCMS). A sampling system is required for sampling the aerosols in the 135'32 km and 22'17 km altitude regions of Titan's atmosphere. A pump unit is used to force the gas flow through a filter. In its sampling position, the filter front face extends a few mm beyond the inlet tube. The oven is a pyrolysis furnace where a heating element can heat the filter and hence the sampled aerosols to 250 °C or 600 °C. The oven contains the filter, which has a thimble-like shape (height 28 mm). For transferring effluent gas and pyrolysis products to GCMS, the carrier gas is a labeled nitrogen 15N2, to avoid unwanted secondary reactions with Titan's atmospheric nitrogen. Aeraulic tests under cold temperature conditions were conducted by using a cold gas test system developed by ONERA. The objective of the test was to demonstrate the functional ability of the instrument during the descent of the probe and to understand its thermal behavior, that is to test the performance of all its components, pump unit and mechanisms. In order to validate ACP's scientific performance, pyrolysis tests were conducted at LISA on solid phase material synthesized from experimental simulation. The chromatogram obtained by GCMS analysis shows many organic compounds. Some GC peaks appear clearly from the total mass spectra, with specific ions well identified thanks to the very high sensitivity of the mass spectrometer. The program selected for calibrating the flight model is directly linked to the GCMS calibration plan. In order not to pollute the two flight models with products of solid samples such as tholins, we excluded any direct pyrolysis tests through the ACP oven during the first phase of the

  15. Characterizing Aerosolized Particulate As Part Of A Nanoprocess Exposure Assessment

    SciTech Connect

    Jankovic, John Timothy; Ogle, Burton R; Zontek, Tracy L; Hollenbeck, Scott M

    2010-01-01

    The purpose of this effort was to propose important aerosol characterization parameters that should be gathered as part of a nanomaterial hazard assessment and to offer a methodology for applying that data to daily operations. This study documents different ways of characterizing nanoscale materials using an aerosol from a process simulation consisting of a vacuum cleaner motor operating inside an enclosure. The aerosol is composed of insoluble carbon particles plus environmental background constituents. The average air concentration is 2.76E+5 p/cm3. Size measurements of the aerosol indicate > 70% of the particulate is blade-like in shape, 50% of which have a height dimension 100 nm. In terms of an equivalent spherical diameter 0.8% of the particulate is 100 nm in size. The carbon blades are characterized as having a root-mean-square roughness of 75 nm, and average fractal dimension of 2.25. These measures: aerosol chemistry, solubility, shape and size, surface area, number concentration and size distribution are important parameters to collect for current exposure assessment and toxicology and epidemiology studies.

  16. The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles Basin aerosol

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; Craven, J. S.; Schilling, K. A.; Metcalf, A. R.; Sorooshian, A.; Chan, M. N.; Flagan, R. C.; Seinfeld, J. H.

    2011-02-01

    The Pasadena Aerosol Characterization Observatory (PACO) represents the first major aerosol characterization experiment centered in the Western/Central Los Angeles Basin. The sampling site, located on the campus of the California Institute of Technology in Pasadena, was positioned to sample a continuous afternoon influx of transported urban aerosol with a photochemical age of 1-2 h and generally free from major local contributions. Sampling spanned 5 months during the summer of 2009, which were broken into 3 regimes on the basis of distinct meteorological conditions. Regime I was characterized by a series of low pressure systems, resulting in high humidity and rainy periods with clean conditions. Regime II typified early summer meteorology, with significant morning marine layers and warm, sunny afternoons. Regime III was characterized by hot, dry conditions with little marine layer influence. Organic aerosol (OA) is the most significant constituent of Los Angeles aerosol (42, 43, and 55% of total submicron mass in regimes I, II, and III, respectively), and that the overall oxidation state remains relatively constant on timescales of days to weeks (O:C = 0.44 ± 0.08, 0.55 ± 0.05, and 0.48 ± 0.08 during regimes I, II, and III, respectively), with no difference in O:C between morning and afternoon periods. Periods characterized by significant morning marine layer influence followed by photochemically favorable afternoons displayed significantly higher aerosol mass and O:C ratio, suggesting that aqueous processes may be important in the generation of secondary aerosol and oxidized organic aerosol (OOA) in Los Angeles. Water soluble organic mass (WSOM) reaches maxima near 14:00-15:00 local time (LT), but the percentage of AMS organic mass contributed by WSOM remains relatively constant throughout the day. Sulfate and nitrate reside predominantly in accumulation mode aerosol, while afternoon SOA production coincides with the appearance of a distinct fine mode

  17. Generation and Characterization of Indoor Fungal Aerosols for Inhalation Studies.

    PubMed

    Madsen, Anne Mette; Larsen, Søren T; Koponen, Ismo K; Kling, Kirsten I; Barooni, Afnan; Karottki, Dorina Gabriela; Tendal, Kira; Wolkoff, Peder

    2016-04-01

    In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 10(7)CFU of fungi/m(3)air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans,Aspergillus niger, Aspergillus ustus, Aspergillus versicolor,Chaetomium globosum,Cladosporium herbarum,Penicillium brevicompactum,Penicillium camemberti,Penicillium chrysogenum,Penicillium commune,Penicillium glabrum,Penicillium olsonii,Penicillium rugulosum,Stachybotrys chartarum, and Wallemia sebi They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition.

  18. Generation and Characterization of Indoor Fungal Aerosols for Inhalation Studies

    PubMed Central

    Larsen, Søren T.; Koponen, Ismo K.; Kling, Kirsten I.; Barooni, Afnan; Karottki, Dorina Gabriela; Tendal, Kira; Wolkoff, Peder

    2016-01-01

    In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 107 CFU of fungi/m3 air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans, Aspergillus niger, Aspergillus ustus, Aspergillus versicolor, Chaetomium globosum, Cladosporium herbarum, Penicillium brevicompactum, Penicillium camemberti, Penicillium chrysogenum, Penicillium commune, Penicillium glabrum, Penicillium olsonii, Penicillium rugulosum, Stachybotrys chartarum, and Wallemia sebi. They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition. PMID:26921421

  19. Aerosol studies during the ESCOMPTE experiment: an overview

    NASA Astrophysics Data System (ADS)

    Cachier, Hélène; Aulagnier, Fabien; Sarda, Roland; Gautier, François; Masclet, Pierre; Besombes, Jean-Luc; Marchand, Nicolas; Despiau, Serge; Croci, Delphine; Mallet, Marc; Laj, Paolo; Marinoni, Angela; Deveau, Pierre-Alexandre; Roger, Jean-Claude; Putaud, Jean-Philippe; Van Dingenen, Rita; Dell'Acqua, Alessandro; Viidanoja, Jyrkki; Martins-Dos Santos, Sebastiao; Liousse, Cathy; Cousin, Frédéric; Rosset, Robert; Gardrat, Eric; Galy-Lacaux, Corinne

    2005-03-01

    The "Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions" (ESCOMPTE) experiment took place in the Southern part of France in the Marseilles/Fos-Berre region during 6 weeks in June and July 2001. One task was to document the regional sources of atmospheric particles and to gain some insight into the aerosol transformations in the atmosphere. For this purpose, seven sites were chosen and equipped with the same basic instrumentation to obtain the chemical closure of the bulk aerosol phase and size-segregated samples. Some specific additional experiments were conducted for the speciation of the organic matter and the aerosol size distribution in number. Finally, four multiwavelength sun-photometers were also deployed during the experiment. Interestingly, in this region, three intense aerosol sources (urban, industrial and biogenic) are very active, and data show consistent results, enlightening an important background of particles over the whole ESCOMPTE domain. Notable is the overwhelming importance of the carbonaceous fraction (comprising primary and secondary particles), which is always more abundant than sulphates. Particle size studies show that, on average, more than 90% of the mean regional aerosol number is found on a size range smaller than 300 nm in diameter. The most original result is the evidence of the rapid formation of secondary aerosols occurring in the whole ESCOMPTE domain. This formation is much more important than that usually observed at these latitudes since two thirds of the particulate mass collected off source zones is estimated to be generated during atmospheric transport. On the other hand, the marine source has poor influence in the region, especially during the overlapping pollution events of Intensive Observation Periods (IOP). Preliminary results from the 0D and 3D versions of the MesoNH-aerosol model show that, with optimised gas and particle sources, the model accounts

  20. Observations of Saharan Aerosols: Results of ECLATS Field Experiment. Part I: Optical Thicknesses and Aerosol Size Distributions.

    NASA Astrophysics Data System (ADS)

    Fouquart, Y.; Bonnel, B.; Chaoui Roquai, M.; Santer, R.; Cerf, A.

    1987-01-01

    A series of ground-based and airborne observations of desert aerosols, the ECLATS experiment was carried out in December 1980 in the vicinity of Niamey (Niger). This paper deals with aerosol optical thicknesses and size distributions derived from (i) in situ measurements using singe particle optical counters (a Kratel and a Knollenberg FSSP), (ii) a ground-based cascade impactor, and (iii) ground-based measurements of the spectral variation of the sober extinction.During the experiment, aerosol optical thicknesses (at 550 nm) varied from 0.20 on very clear days to 1.5 during a so-called `dry haze' episode.Comparisons between size distributions derived from in situ measurements from ground-based cascade impactor, and from inversion of the spectral optical thicknesses, showed that the optical counters drastically underestimated the concentration of small (r<0.5 m) particles It was shown that the occurrence of a `dry haze' episode was characterized by a large increase (an order of magnitude in this particular case) of the intermediate particles (r0.5 m), whereas the concentration in very (r<0.2 m) and large (r>1 m) particles remained roughly constant.

  1. Aerosol Properties over the Indo-Gangetic Plain: A Mesoscale Perspective from the TIGERZ Experiment

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Tripathi, Sachchida; Eck, Thomas F.; Newcomb, W. Wayne; Slutsker, Ilya; Dickerson, Russell R.; Thompson, Anne M.; Mattoo, Shana; Wang, Sheng-Hsiang; Singh, Remesh P.; Sinyuk, Aliaksandr; Schafer, Joel S.

    2011-01-01

    High aerosol loading over the northern Indian subcontinent can result in poor air quality leading to human health consequences and climate perturbations. The international 2008 TIGERZ experiment intensive operational period (IOP) was conducted in the Indo \\Gangetic Plain (IGP) around the industrial city of Kanpur (26.51degN, 80.23deg E), India, during the premonsoon (April-June). Aerosol Robotic Network (AERONET) Sun photometers performed frequent measurements of aerosol properties at temporary sites distributed within an area covering 50 sq km around Kanpur to characterize pollution and dust in a region where complex aerosol mixtures and semi \\bright surface effects complicate satellite retrieval algorithms. TIGERZ IOP Sun photometers quantified aerosol optical depth (AOD) increases up to 0.10 within and downwind of the city, with urban emissions accounting for 10 C20% of the IGP aerosol loading on deployment days. TIGERZ IOP area \\averaged volume size distribution and single scattering albedo retrievals indicated spatially homogeneous, uniformly sized, spectrally absorbing pollution and dust particles. Aerosol absorption and size relationships were used to categorize black carbon and dust as dominant absorbers and to identify a third category in which both black carbon and dust dominate absorption.Moderate Resolution Imaging Spectroradiometer (MODIS) AOD retrievals with the lowest quality assurance (QA > or = 0) flags were biased high with respect to TIGERZ IOP area \\averaged measurements. MODIS AOD retrievals with QA 0 had moderate correlation (R(sup 2) = 0.52-69) with the Kanpur AERONET site, whereas retrievals with QA > 0 were limited in number. Mesoscale \\distributed Sun photometers quantified temporal and spatial variability of aerosol properties, and these results were used to validate satellite retrievals.

  2. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    SciTech Connect

    Leung, L Ruby

    2016-03-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. The ultimate goal is to reduce uncertainties in weather predictions and climate projections of droughts and floods in California. With the DOE G-1 aircraft and ARM Mobile Facility 2 (AMF2) well equipped for making aerosol and cloud measurements, ACAPEX focuses specifically on understanding how aerosols from local pollution and long-range transport affect the amount and phase of precipitation associated with atmospheric rivers. ACAPEX took place between January 12, 2015 and March 8, 2015 as part of CalWater 2015, which included four aircraft (DOE G-1, National Oceanic and Atmospheric Administration [NOAA] G-IV and P-3, and National Aeronautics and Space Administration [NASA] ER-2), the NOAA research ship Ron Brown, carrying onboard the AMF2, National Science Foundation (NSF)-sponsored aerosol and precipitation measurements at Bodega Bay, and the California Department of Water Resources extreme precipitation network.

  3. VIIRS Aerosol Products During the SEAC4RS Field Experiment

    NASA Astrophysics Data System (ADS)

    Remer, L. A.; Munchak, L. A.; Huang, J.; Martins, J. V.; Espinosa, R.; Orozco, D.

    2014-12-01

    The Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field experiment that took place during August and September 2013 offered an in depth portrait of the aerosol system over much of the continental United States. Heavily instrumented aircraft, including the NASA DC-8 sampled a wide variety of aerosol types including transported Saharan dust, both fresh and aged smoke from western wildfires, urban pollution plumes and also biogenic aerosol produced by the "green volcano" in the vegetated Ozarks. Complementing these aircraft measurements was an enhanced array of AERONET stations sprinkled across the country and also concentrated in a mesoscale array near the home base of Houston Texas. This rich collection of suborbital aerosol information permits a more comprehensive evaluation of the VIIRS aerosol product that includes validation of the products across the mesoscale and choices of case studies in which we can delve deeper into the VIIRS retrieval to test algorithm assumptions. We will compare VIIRS retrievals during SEAC4RS with MODIS retrievals, with AERONET observations and retrievals, and with measurements and retrievals from the Polar Imaging Nephelometer (PI-Neph) that flew aboard the NASA DC-8.

  4. Characterization of aerosols from eruptions of Mount St. Helens

    SciTech Connect

    Chuan, R.L.; Woods, D.C.; McCormick, M.P.

    1981-01-01

    Measurements of mass concentration and size distribution of aerosols from eruptions of Mount St. Helens as well as morphological and elemental analyses were obtained between 7 April and 7 August 1980. In situ measurements were made in early phreatic and later, minor phreatomagmatic eruption clouds near the vent of the volcano and in plumes injected into the stratosphere from the major eruptions of 18 and 25 May. The phreatic aerosol was characterized by an essentially monomodal size distribution dominated by silicate particles larger than 10 micrometers in diameter. The phreatomagmatic eruption cloud was multimodal; the large size mode consisted of silicate particles and the small size modes were made up of mixtures of sulfuric acid and silicate particles. The stratospheric aerosol from the main eruption exhibited a characteristic narrow single mode with particles less than 1 micrometer in diameter and nearly all of the mass made up of sulfuric acid droplets.

  5. Characterization of aerosols from eruptions of mount st. Helens.

    PubMed

    Chuan, R L; Woods, D C; McCormick, M P

    1981-02-20

    Measurements of mass concentration and size distribution of aerosols from eruptions of Mount St. Helens as well as morphological and elemental analyses were obtained between 7 April and 7 August 1980. In situ measurements were made in early phreatic and later, minor phreatomagmatic eruption clouds near the vent of the volcano and in plumes injected into the stratosphere from the major eruptions of 18 and 25 May. The phreatic aerosol was characterized by an essentially monomodal size distribution dominated by silicate particles larger than 10 micrometers in diameter. The phreatomagmatic eruption cloud was multimodal; the large size mode consisted of silicate particles and the small size modes were made up of mixtures of sulfuric acid and silicate particles. The stratospheric aerosol from the main eruption exhibited a characteristic narrow single mode with particles less than 1 micrometer in diameter and nearly all of the mass made up of sulfuric acid droplets.

  6. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; Prévôt, A. S. H.; El Haddad, I.

    2015-08-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make impractical its deployment at sufficient sites to determine regional characteristics. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, PM10) collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g. AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 μg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon, oxygen containing and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g. filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially-resolved long-term datasets.

  7. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; El Haddad, I.; Prévôt, A. S. H.

    2016-01-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 µm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 µg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.

  8. Skylab experiment performance evaluation manual. Appendix P: Experiment T003 inflight aerosol analysis (DOT/MSFC)

    NASA Technical Reports Server (NTRS)

    Purushotham, K. S.

    1972-01-01

    A series of analyses is presented for experiment T003, inflight aerosol analysis, to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditions. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.

  9. Satellite Perspective of Aerosol Intercontinental Transport: From Qualitative Tracking to Quantitative Characterization

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Remer, Lorraine A.; Kahn, Ralph A.; Chin, Mian; Zhang, Yan

    2012-01-01

    Evidence of aerosol intercontinental transport (ICT) is both widespread and compelling. Model simulations suggest that ICT could significantly affect regional air quality and climate, but the broad inter-model spread of results underscores a need of constraining model simulations with measurements. Satellites have inherent advantages over in situ measurements to characterize aerosol ICT, because of their spatial and temporal coverage. Significant progress in satellite remote sensing of aerosol properties during the Earth Observing System (EOS) era offers opportunity to increase quantitative characterization and estimates of aerosol ICT, beyond the capability of pre-EOS era satellites that could only qualitatively track aerosol plumes. EOS satellites also observe emission strengths and injection heights of some aerosols, aerosol precursors, and aerosol-related gases, which can help characterize aerosol ICT. After an overview of these advances, we review how the current generation of satellite measurements have been used to (1) characterize the evolution of aerosol plumes (e.g., both horizontal and vertical transport, and properties) on an episodic basis, (2) understand the seasonal and inter-annual variations of aerosol ICT and their control factors, (3) estimate the export and import fluxes of aerosols, and (4) evaluate and constrain model simulations. Substantial effort is needed to further explore an integrated approach using measurements from on-orbit satellites (e.g., A-Train synergy) for observational characterization and model constraint of aerosol intercontinental transport and to develop advanced sensors for future missions.

  10. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization

    PubMed Central

    Chen, Bean T.; Schwegler-Berry, Diane; McKinney, Walter; Stone, Samuel; Cumpston, Jared L.; Friend, Sherri; Porter, Dale W.; Castranova, Vincent; Frazer, David G.

    2015-01-01

    This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT’s, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008–0.10 particles per µm2 filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT’s, resuspended at a concentration of 10 mg/m3, contained 2.7 × 104 particles/cm3. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm3. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm3, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol. PMID:23033994

  11. Aerosol characterization at the Saharan AERONET site Tamanrasset

    NASA Astrophysics Data System (ADS)

    Guirado, C.; Cuevas, E.; Cachorro, V. E.; Toledano, C.; Alonso-Pérez, S.; Bustos, J. J.; Basart, S.; Romero, P. M.; Camino, C.; Mimouni, M.; Zeudmi, L.; Goloub, P.; Baldasano, J. M.; de Frutos, A. M.

    2014-11-01

    More than 2 years of columnar atmospheric aerosol measurements (2006-2009) at the Tamanrasset site (22.79° N, 5.53° E, 1377 m a.s.l.), in the heart of the Sahara, are analysed. Aerosol Robotic Network (AERONET) level 2.0 data were used. The KCICLO (K is the name of a constant and ciclo means cycle in Spanish) method was applied to a part of the level 1.5 data series to improve the quality of the results. The annual variability of aerosol optical depth (AOD) and Ångström exponent (AE) has been found to be strongly linked to the convective boundary layer (CBL) thermodynamic features. The dry-cool season (autumn and winter) is characterized by a shallow CBL and very low mean turbidity (AOD ~ 0.09 at 440 nm, AE ~ 0.62). The wet-hot season (spring and summer) is dominated by high turbidity of coarse dust particles (AE ~ 0.28, AOD ~ 0.39 at 440 nm) and a deep CBL. The aerosol-type characterization shows desert mineral dust as the prevailing aerosol. Both pure Saharan dust and very clear sky conditions are observed depending on the season. However, several case studies indicate an anthropogenic fine mode contribution from the industrial areas in Libya and Algeria. The concentration weighted trajectory (CWT) source apportionment method was used to identify potential sources of air masses arriving at Tamanrasset at several heights for each season. Microphysical and optical properties and precipitable water vapour were also investigated.

  12. Characterization of aerosol composition and sources in the greater Atlanta area by aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Xu, L.; Suresh, S.; Weber, R. J. J.; Baumann, K.; Edgerton, E. S.

    2014-12-01

    An important and uncertain aspect of biogenic secondary organic aerosol (SOA) formation is that it is often associated with anthropogenic pollution tracers. Prior studies in Atlanta suggested that 70-80% of the carbon in water-soluble organic carbon (WSOC) is modern, yet it is well-correlated with the anthropogenic CO. In this study, we deployed a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) at multiple sites in different seasons (May 2012-February 2013) to characterize the sources and chemical composition of aerosols in the greater Atlanta area. This area in the SE US is ideal to investigate anthropogenic-biogenic interactions due to high natural and anthropogenic emissions. These extensive field studies are part of the Southeastern Center for Air Pollution and Epidemiology study (SCAPE). The HR-ToF-AMS is deployed at four sites (~ 3 weeks each) in rotation: Jefferson Street (urban), Yorkville (rural), roadside site (near Highway 75/85), and Georgia Tech site (campus), with the urban and rural sites being part of the SEARCH network. We obtained seven HR-ToF-AMS datasets in total. During the entire measurement period, the ACSM is stationary at the GIT site and samples continuously. We perform positive matrix factorization (PMF) analysis on the HR-ToF-AMS and ACSM data to deconvolve the OA into different components. While the diurnal cycle of the total OA is flat as what have been previously observed, the OA factors resolved by PMF analysis show distinctively different diurnal trends. We find that the "more-oxidized oxygenated OA" (MO-OOA) constitutes a major fraction of OA at all sites. In summer, OA is dominated by SOA, e.g., isoprene-OA and OOA with different degrees of oxidation. In contrary, biomass burning OA is more prominent in winter data. By comparing HR-ToF-AMS and ACSM data during the same sampling periods, we find that the aerosol time series are highly correlated, indicating the

  13. Campaign datasets for ARM Cloud Aerosol Precipitation Experiment (ACAPEX)

    SciTech Connect

    Leung, L. Ruby; Mei, Fan; Comstock, Jennifer; DeMott, Paul; Gero, Jonathan; Hubee, John; Matthews, Alyssa; Nalli, Nicholas; Pekour, Mikhail; Prather, Kimberly; Sedlackek, Arthur; Springston, Stephen; Tomlinson, Jason; Chand, Duli

    2015-08-12

    This campaign consisted of the deployment of the DOE ARM Mobile Facility 2 (AMF2) and the ARM Aerial Facility (AAF) G-1 in a field campaign called ARM Cloud Aerosol Precipitation Experiment (ACAPEX), which took place in conjunction with CalWater 2- a NOAA field campaign. The joint CalWater 2/ACAPEX field campaign aimed to improve understanding and modeling of large-scale dynamics and cloud and precipitation processes associated with ARs and aerosol-cloud interactions that influence precipitation variability and extremes in the western U.S. The observational strategy consisted of the use of land and offshore assets to monitor: 1. the evolution and structure of ARs from near their regions of development 2. the long-range transport of aerosols in the eastern North Pacific and potential interactions with ARs 3. how aerosols from long-range transport and local sources influence cloud and precipitation in the U.S. West Coast where ARs make landfall and post-frontal clouds are frequent.

  14. The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; Craven, J. S.; Schilling, K. A.; Metcalf, A. R.; Sorooshian, A.; Chan, M. N.; Flagan, R. C.; Seinfeld, J. H.

    2011-08-01

    The Pasadena Aerosol Characterization Observatory (PACO) represents the first major aerosol characterization experiment centered in the Western/Central Los Angeles Basin. The sampling site, located on the campus of the California Institute of Technology in Pasadena, was positioned to sample a continuous afternoon influx of transported urban aerosol with a photochemical age of 1-2 h and generally free from major local contributions. Sampling spanned 5 months during the summer of 2009, which were broken into 3 regimes on the basis of distinct meteorological conditions. Regime I was characterized by a series of low pressure systems, resulting in high humidity and rainy periods with clean conditions. Regime II typified early summer meteorology, with significant morning marine layers and warm, sunny afternoons. Regime III was characterized by hot, dry conditions with little marine layer influence. Regardless of regime, organic aerosol (OA) is the most significant constituent of nonrefractory submicron Los Angeles aerosol (42, 43, and 55 % of total submicron mass in regimes I, II, and III, respectively). The overall oxidation state remains relatively constant on timescales of days to weeks (O:C = 0.44 ± 0.08, 0.55 ± 0.05, and 0.48 ± 0.08 during regimes I, II, and III, respectively), with no difference in O:C between morning and afternoon periods. Periods characterized by significant morning marine layer influence followed by photochemically favorable afternoons displayed significantly higher aerosol mass and O:C ratio, suggesting that aqueous processes may be important in the generation of secondary aerosol and oxidized organic aerosol (OOA) in Los Angeles. Online analysis of water soluble organic carbon (WSOC) indicates that water soluble organic mass (WSOM) reaches maxima near 14:00-15:00 local time (LT), but the percentage of AMS organic mass contributed by WSOM remains relatively constant throughout the day. Sulfate and nitrate reside predominantly in accumulation

  15. Characterization of aerosols and fibers emitted from composite materials combustion.

    PubMed

    Chivas-Joly, C; Gaie-Levrel, F; Motzkus, C; Ducourtieux, S; Delvallée, A; De Lagos, F; Nevé, S Le; Gutierrez, J; Lopez-Cuesta, J-M

    2016-01-15

    This work investigates the aerosols emitted during combustion of aircraft and naval structural composite materials (epoxy resin/carbon fibers and vinyl ester/glass fibers and carbon nanotubes). Combustion tests were performed at lab-scale using a modified cone calorimeter. The aerosols emitted have been characterized using various metrological devices devoted to the analysis of aerosols. The influence of the nature of polymer matrices, the incorporation of fibers and carbon nanotubes as well as glass reinforcements on the number concentration and the size distribution of airborne particles produced, was studied in the 5 nm-10 μm range. Incorporation of carbon fibers into epoxy resin significantly reduced the total particle number concentration. In addition, the interlaced orientation of carbon fibers limited the particles production compared to the composites with unidirectional one. The carbon nanotubes loading in vinyl ester resin composites influenced the total particles production during the flaming combustion with changes during kinetics emission. Predominant populations of airborne particles generated during combustion of all tested composites were characterized by a PN50 following by PN(100-500).

  16. Characterization of aerosol emitted by the combustion of nanocomposites

    NASA Astrophysics Data System (ADS)

    Motzkus, C.; Chivas-Joly, C.; Guillaume, E.; Ducourtieux, S.; Saragoza, L.; Lesenechal, D.; Macé, T.

    2011-07-01

    Day after day, new applications using nanoparticles appear in industry, increasing the probability to find these particles in the workplace as well as in ambient air. As epidemiological studies have shown an association between increased particulate air pollution and adverse health effects in susceptible members of the population, it is particularly important to characterize aerosols emitted by different sources of emission, during the combustion of composites charged with nanoparticles for example. The present study is led in the framework of the NANOFEU project, supported by the French Research Agency (ANR), in order to characterize the fire behaviour of polymers charged with suitable nanoparticles and make an alternative to retardant systems usually employed. To determine the impact of these composites on the emission of airborne particles produced during their combustions, an experimental setup has been developed to measure the mass distribution in the range of 30 nm - 10 μm and the number concentration of submicrometric particles of the produced aerosol. A comparison is performed on the aerosol emitted during the combustion of several polymers alone (PMMA, PA-6), polymers containing nanofillers (silica, alumina, and carbon nanotubes) and polymers containing both nanofillers and a conventional flame retardant system (ammonium polyphosphate). The results on the morphology of particles were also investigated using AFM.

  17. Early-spring aerosol characterization across multiple Arctic stations

    NASA Astrophysics Data System (ADS)

    Baibakov, Konstantin; O'Neill, Norm; Ivanescu, Liviu; Perro, Chris; Ritter, Christoph; Herber, Andreas; Duck, Tom J.; Schulz, Karl-Heinz; Schrems, Otto

    2013-04-01

    The Arctic region is characterized by complex interactions between aerosols, clouds and precipitation. Ground-based observations of atmospheric optical properties are usually comprised of photometric aerosol optical depth (AOD) measurements and lidar extinction and backscatter profiles. The night-time AODs obtained with star- and moonphotometry have been extremely limited in the Arctic region. The first part of the paper is based on the synchronous starphotometry and lidar measurements obtained at Eureka (Canada, 80°N, 86°W) and Ny Alesund (Spitsbergen, 79°N, 12°E) in late winter-early spring periods of 2011 and 2012. We present several examples of process-level events as well as the winter to spring climatological dynamics of cloud-screened optical depths. The particular cases include aerosol, thin-cloud, ice crystals and polar stratospheric cloud events. An integral part of the process-level analysis, which ultimately informs the seasonal analysis, is the synergistic interpretation of the spectral, temporal and spatial information content of the passive and active data. In the second part of the paper we present the preliminary results obtained from the intercomparison field campaign at Barrow (Alaska, 71°N,156°W) that took place in spring 2013. The instrumentation suit included high-spectral resolution lidar, a starphotometer and a moonphotometer.

  18. Seawater mesocosm experiments in the Arctic uncover differential transfer of marine bacteria to aerosols.

    PubMed

    Fahlgren, Camilla; Gómez-Consarnau, Laura; Zábori, Julia; Lindh, Markus V; Krejci, Radovan; Mårtensson, E Monica; Nilsson, Douglas; Pinhassi, Jarone

    2015-06-01

    Biogenic aerosols critically control atmospheric processes. However, although bacteria constitute major portions of living matter in seawater, bacterial aerosolization from oceanic surface layers remains poorly understood. We analysed bacterial diversity in seawater and experimentally generated aerosols from three Kongsfjorden sites, Svalbard. Construction of 16S rRNA gene clone libraries from paired seawater and aerosol samples resulted in 1294 sequences clustering into 149 bacterial and 34 phytoplankton operational taxonomic units (OTUs). Bacterial communities in aerosols differed greatly from corresponding seawater communities in three out of four experiments. Dominant populations of both seawater and aerosols were Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria. Across the entire dataset, most OTUs from seawater could also be found in aerosols; in each experiment, however, several OTUs were either selectively enriched in aerosols or little aerosolized. Notably, a SAR11 clade OTU was consistently abundant in the seawater, but was recorded in significantly lower proportions in aerosols. A strikingly high proportion of colony-forming bacteria were pigmented in aerosols compared with seawater, suggesting that selection during aerosolization contributes to explaining elevated proportions of pigmented bacteria frequently observed in atmospheric samples. Our findings imply that atmospheric processes could be considerably influenced by spatiotemporal variations in the aerosolization efficiency of different marine bacteria.

  19. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  20. Comparative studies of aerosol extinction measurements made by the SAM II and SAGE II satellite experiments

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Mccormick, M. P.; Chu, W. P.; Wang, P.; Osborn, M. T.

    1989-01-01

    Results from the Stratospheric Aerosol Measurement (SAM) II and Stratospheric Aerosol and Gas Experiment (SAGE) II are compared for measurement locations which are coincident in time and space. At 1.0 micron, the SAM II and SAGE II aerosol extinction profiles are similar within their measurement errors. In addition, sunrise and sunset aerosol extinction data at four different wavelengths are compared for occasions when the SAGE II and SAM II measurements are nearly coincident in space and about 12 hours apart.

  1. Enhancement of aerosol characterization using synergy of lidar and sun - photometer coincident observations: the GARRLiC algorithm

    NASA Astrophysics Data System (ADS)

    Lopatin, A.; Dubovik, O.; Chaikovsky, A.; Goloub, Ph.; Lapyonok, T.; Tanré, D.; Litvinov, P.

    2013-03-01

    Currently most of experiments pursuing comprehensive characterization of atmosphere include coordinated observations by both lidar and radiometers in order to obtain important complimentary information about aerosol properties. The passive observations by radiometers from ground are mostly sensitive to the properties of aerosol in total atmospheric column and have very limited sensitivity to vertical structure of the atmosphere. Such observations are commonly used for measuring aerosol optical thickness and deriving the information about aerosol microphysics including aerosol particles shape, size distribution, and complex refractive index. In a contrast, lidar observations of atmospheric responses from different altitudes to laser pulses emitted from ground are designed to provide accurate profiling of the atmospheric properties. The interpretation of the lidar observation generally relies on some assumptions about aerosol type and loading. Here we present the GARRLiC algorithm (Generalized Aerosol Retrieval from Radiometer and Lidar Combined data) that simultaneously inverts co-incident lidar and radiometer observations and derives a united set of aerosol parameters. Such synergetic retrieval is expected to result in additional enhancements in derived aerosol properties because the backscattering observations by lidar add some sensitivity to the columnar properties of aerosol, while radiometric observations provide sufficient constraints on aerosol type and loading that generally are missing in lidar signals. GARRLiC is based on AERONET algorithm for inverting combined observations by radiometer and multi-wavelength elastic lidar observations. It is expected that spectral changes of backscattering signal obtained by multi-wavelength lidar at different altitudes provide some sensitivity to the vertical variability of aerosol particle sizes. In order to benefit from this sensitivity the algorithm is set to derive not only the vertical profile of total aerosol

  2. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.

    PubMed

    Parkhurst, Mary Ann; Cheng, Yung Sung; Kenoyer, Judson L; Traub, Richard J

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65

  3. Chemical composition of Titan's aerosols analogues characterized with a systematic pyrolysis-gas chromatography-mass spectrometry characterization

    NASA Astrophysics Data System (ADS)

    Szopa, Cyril; Raulin, Francois; Coll, Patrice; Cabane, Michel; GCMS Team

    2014-05-01

    The in situ chemical characterization of Titan's atmosphere was achieved in 2005 with two instruments present onboard the Huygens atmospheric probe : the Aerosol Collector and Pyrolyzer (ACP) devoted to collect and pyrolyse Titan's aerosols ; the Gas Chromatograph-Mass Spectrometer (GCMS) experiment devoted to analyze gases collected in the atmosphere or coming from the aerosols pyrolysis. The GCMS was developed by Hasso Niemann in the filiation of the quadrupole mass spectrometers he built for several former space missions. The main objectives were to : determine the concentration profile of the most abundant chemical species; seek for minor atmospheric organic species not detected with remote observations ; give a first view of the organic aerosols structure; characterize the condensed volatiles present at the surface (e.g. lakes) in case of survival of the probe to the landing impact. Taking into account for the potential complexity of the gaseous samples to be analyzed, it was decided to couple to the MS analyzer a gas chromatograph capable to separate volatile species from light inorganic molecules and noble gases, to organic compounds including aromatics. This was the first GCMS analyzer that worked in an extraterrestrial environment since the Viking missions on Mars. Even if the GCMS coupling mode did not provide any result of interest, it has been demonstrated to be functional during the Huygens descent. But, the direct MS analysis of the atmosphere, and the pyrolysis-MS analysis of aerosols allowed to make great discoveries which are still of primary importance to describe the Titan's lower atmosphere composition. This contribution aims at presenting this instrument that worked in the Titan's atmosphere, and summarizing the most important discoveries it allowed.

  4. Stratospheric Aerosol and Gas Experiment (SAGE) II and III Aerosol Extinction Measurements in the Arctic Middle and Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Treffeisen, R. E.; Thomason, L. W.; Strom, J.; Herber, A. B.; Burton, S. P.; Yamanouchi, T.

    2006-01-01

    In recent years, substantial effort has been expended toward understanding the impact of tropospheric aerosols on Arctic climate and chemistry. A significant part of this effort has been the collection and documentation of extensive aerosol physical and optical property data sets. However, the data sets present significant interpretive challenges because of the diverse nature of these measurements. Among the longest continuous records is that by the spaceborne Stratospheric Aerosol and Gas Experiment (SAGE) II. Although SAGE tropospheric measurements are restricted to the middle and upper troposphere, they may be able to provide significant insight into the nature and variability of tropospheric aerosol, particularly when combined with ground and airborne observations. This paper demonstrates the capacity of aerosol products from SAGE II and its follow-on experiment SAGE III to describe the temporal and vertical variations of Arctic aerosol characteristics. We find that the measurements from both instruments are consistent enough to be combined. Using this combined data set, we detect a clear annual cycle in the aerosol extinction for the middle and upper Arctic troposphere.

  5. Optical, physical, and chemical properties of tar balls observed during the Yosemite Aerosol Characterization Study

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; Malm, W. C.; Laskin, A.; Day, D.; Lee, T.; Wang, C.; Carrico, C.; Carrillo, J.; Cowin, J. P.; Collett, J.; Iedema, M. J.

    2005-11-01

    The Yosemite Aerosol Characterization Study of summer 2002 (YACS) occurred during an active fire season in the western United States and provided an opportunity to investigate many unresolved issues related to the radiative effects of biomass burning aerosols. Single particle analysis was performed on field-collected aerosol samples using an array of electron microscopy techniques. Amorphous carbon spheres, or "tar balls," were present in samples collected during episodes of high particle light scattering coefficients that occurred during the peak of a smoke/haze event. The highest concentrations of light-absorbing carbon from a dual-wavelength aethalometer (λ = 370 and 880 nm) occurred during periods when the particles were predominantly tar balls, indicating they do absorb light in the UV and near-IR range of the solar spectrum. Closure experiments of mass concentrations and light scattering coefficients during periods dominated by tar balls did not require any distinct assumptions of organic carbon molecular weight correction factors, density, or refractive index compared to periods dominated by other types of organic carbon aerosols. Measurements of the hygroscopic behavior of tar balls using an environmental SEM indicate that tar balls do not exhibit deliquescence but do uptake some water at high (˜83%) relative humidity. The ability of tar balls to efficiently scatter and absorb light and to absorb water has important implications for their role in regional haze and climate forcing.

  6. Numerical Model to Characterize the Size Increase of Combination Drug and Hygroscopic Excipient Nanoparticle Aerosols.

    PubMed

    Longest, P Worth; Hindle, Michael

    2011-01-01

    Enhanced excipient growth is a newly proposed respiratory delivery strategy in which submicrometer or nanometer particles composed of a drug and hygroscopic excipient are delivered to the airways in order to minimize extrathoracic depositional losses and maximize lung retention. The objective of this study was to develop a validated mathematical model of aerosol size increase for hygroscopic excipients and combination excipient-drug particles and to apply this model to characterize growth under typical respiratory conditions. Compared with in vitro experiments, the droplet growth model accurately predicted the size increase of single component and combination drug and excipient particles. For typical respiratory drug delivery conditions, the model showed that droplet size increase could be effectively correlated with the product of a newly defined hygroscopic parameter and initial volume fractions of the drug and excipient in the particle. A series of growth correlations was then developed that successively included the effects of initial drug and excipient mass loadings, initial aerosol size, and aerosol number concentration. Considering EEG delivery, large diameter growth ratios (2.1-4.6) were observed for a range of hygroscopic excipients combined with both hygroscopic and non-hygroscopic drugs. These diameter growth ratios were achieved at excipient mass loadings of 50% and below and at realistic aerosol number concentrations. The developed correlations were then used for specifying the appropriate initial mass loadings of engineered insulin nanoparticles in order to achieve a predetermined size increase while maximizing drug payload and minimizing the amount of hygroscopic excipient.

  7. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  8. Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry

    SciTech Connect

    Laskin, Alexander; Smith, Jeffrey S.; Laskin, Julia

    2009-05-13

    Although nitrogen-containing organic compounds (NOC) are important components of atmospheric aerosols, little is known about their chemical compositions. Here we present detailed characterization of the NOC constituents of biomass burning aerosol (BBA) samples using high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA can play a significant role in dry and wet deposition of fixed nitrogen in this region.

  9. Aerosol and nucleation research in support of NASA cloud physics experiments in space. [ice nuclei generator for the atmospheric cloud physics laboratory on Spacelab

    NASA Technical Reports Server (NTRS)

    Vali, G.; Rogers, D.; Gordon, G.; Saunders, C. P. R.; Reischel, M.; Black, R.

    1978-01-01

    Tasks performed in the development of an ice nucleus generator which, within the facility concept of the ACPL, would provide a test aerosol suitable for a large number and variety of potential experiments are described. The impact of Atmospheric Cloud Physics Laboratory scientific functional requirements on ice nuclei generation and characterization subsystems was established. Potential aerosol generating systems were evaluated with special emphasis on reliability, repeatability and general suitability for application in Spacelab. Possible contamination problems associated with aerosol generation techniques were examined. The ice nucleating abilities of candidate test aerosols were examined and the possible impact of impurities on the nucleating abilities of those aerosols were assessed as well as the relative merits of various methods of aerosol size and number density measurements.

  10. Identification and Characterization of Biogenic SOA Component in Ambient Aerosols Based on Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Jimenez, J.; Allan, J. D.; Kiendler-Scharr, A.; Tian, J.; Canagaratna, M. R.; Williams, B.; Worsnop, D. R.; Coe, H.; Goldstein, A.; Mentel, T. F.

    2008-12-01

    Recently studies have shown that multivariate factor analysis of the highly time-resolved mass spectral data obtained with an Aerodyne Aerosol Mass Spectrometer (AMS) may allow the classification and simplification of complex organic aerosol (OA) mixtures into components that are chemically meaningful and can be related to different sources and transformation processes. Two factor analysis techniques, including the Multiple Component Analysis (MCA) method (Zhang et al., 2007) and the Positive Matrix Factorization (PMF) method (Paatero and Tapper, 1994), were applied to a Quadrupole-AMS dataset acquired from Chebogue Pt., Nova Scotia in summer 2004. Multiple OA components were determined, including a hydrocarbon-like OA (HOA) component similar in mass spectra to the hydrocarbon substances observed at urban locations and two oxygenated OA (OA) components that show different fragmentation patterns and oxygen-to-carbon ratios in their mass spectra. The HOA component correlates with inert primary emission tracers (e.g., EC and CO) and likely represents diluted POA transported from urban locations. The highly oxygenated component (OOA-I) correlates well with sulfate and shows a mass spectrum resembling that of fulvic acid - a model compound representative for highly processed/oxidized organics in the environment. The less oxygenated OA component (OOA-II) reveals a mass spectral pattern that compares well with those of the biogenic SOA produced from the mixture of VOCs emitted by spruce, pine and birch trees during exposure to ozone and UV-photolysis in the Jülich plant chamber. In addition, the time series of OOA-II correlates with biogenic SOA tracer compounds determined by the thermal desorption aerosol GC/MS-FID (TAG) instrument. Furthermore, the time-resolved size distributions of OOA components, their correlations with parallel gas and aerosol measurements, and backtrajectory analysis of air masses all support the association of OOA-II to biogenic sources. Finally

  11. Elevated layers of BC aerosols over Indian region and its implications: Results from Regional Aerosol Warming Experiment (RAWEX)

    NASA Astrophysics Data System (ADS)

    Babu, S.; Krishnamoorthy, K.; Satheesh, S.; Gogoi, M. M.; Nair, V. S.; Kompalli, S. K.; Chaubey, J.

    2012-12-01

    In the context of atmospheric warming by elevated layers of absorbing aerosols and its consequence on regional climate such as Indian monsoon, the Regional Aerosol Warming Experiment (RAWEX) was formulated under Aerosol Radiative Forcing over India (ARFI) Project of Indian Space Research Organisation - Geosphere Biosphere Program (ISRO-GBP). As a part of RAWEX, an aerosol observatory was established at a high altitude Himalayan location (Hanle, 32.76°N, 78.95°E and 4520 m msl) to characterise the long term changes in columnar aerosol optical depth (AOD), black carbon aerosols as well as ultra fine particles at free troposphere heights . In addition, extensive measurements of the vertical distribution of BC along with concurrent measurements of atmospheric parameters were also undertaken using high altitude balloons from central part of India. Seasonal variation of aerosol BC as well as AOD showed enhanced loading during pre- monsoon season at the high altitudes associated with the advection from west Asian region as well as due to vertical transport from the plains. However, the seasonal and annual mean BC over Hanle is found to be significantly lower than the corresponding values over other Himalayan stations. The altitude distribution of BC over central Indian region also showed enhanced concentration at free troposphere altitudes during the pre-monsoon season. The elevated layers of BC cause change in the environmental lapse rate due to heating by BC aerosols at an altitude region of 4 to 5 km. The change in environmental lapse rate and increase in atmospheric stability leads to further trapping of BC aerosols at higher altitudes, thus raises an interesting question : "Do BC layers build 'their own homes' up in the atmosphere?"

  12. Extending the performances of stratospheric aerosol characterization in the 2002-2011 period through data merging of GOMOS and OSIRIS measurements

    NASA Astrophysics Data System (ADS)

    Bingen, Christine; Robert, Charles; Vanhellemont, Filip; Mateshvili, Nina; Dekemper, Emmanuel; Fussen, Didier; Bourassa, Adam

    2016-04-01

    Stratospheric extinction and size information are two important aerosol parameters used to model the role of stratospheric aerosols in the atmospheric system, and to assess the respective importance of volcanic and anthropogenic aerosols. Since the historical aerosol minimum in 1998-2000, several remote sensing experiments have provided radiative aerosol measurements, using various and often challenging measurement principles, and, for each of them, a specific set of spectral channels. This results in a rich patchwork of spectral information presenting gaps and discontinuities in space, time, and wavelength. Acquiring aerosol size information on a global scale is a very challenging task. Such information can be retrieved by radial inversion of the extinction spectrum, but this task is often a struggle due to the reduced number of spectral channels and mainly to a limitation of the spectral range. Combining aerosol radiative measurements from multiple remote experiments seems to be a promising way to provide modellers with an improved characterization of the aerosol extinction and size information they need. This work presents the current status of the development of merged aerosol datasets from the GOMOS and OSIRIS experiments. After presenting the methodology used for the data merging, we will present the latest results obtained in this study and show how the performances of the merged dataset can improve with respect to the ones of each of the individual retrievals.

  13. Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment

    NASA Astrophysics Data System (ADS)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera

    2017-02-01

    In this paper, for the first time, an effort has been made to seasonally characterize the absorbing aerosols into different types using ground and satellite based observations. For this purpose, optical properties of aerosol retrieved from AErosol RObotic NETwork (AERONET) and Ozone Monitoring Instrument (OMI) were utilized over Karachi for the period 2012 to 2014. Firstly, OMI AODabs was validated with AERONET AODabs and found to have a high degree of correlation. Then, based on this validation, characterization was conducted by analyzing aerosol Fine Mode Fraction (FMF), Angstrom Exponent (AE), Absorption Angstrom Exponent (AAE), Single Scattering Albedo (SSA) and Aerosol Index (AI) and their mutual correlation, to identify the absorbing aerosol types and also to examine the variability in seasonal distribution. The absorbing aerosols were characterized into Mostly Black Carbon (BC), Mostly Dust and Mixed BC & Dust. The results revealed that Mostly BC aerosols contributed dominantly during winter and postmonsoon whereas, Mostly Dust were dominant during summer and premonsoon. These types of absorbing aerosol were also confirmed with MODerate resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations.

  14. Molecular Characterization of Secondary Aerosol from Oxidation of Cyclic Methylsiloxanes.

    PubMed

    Wu, Yue; Johnston, Murray V

    2016-03-01

    Cyclic volatile methylsiloxanes (cVMS) have been identified as important gas-phase atmospheric contaminants, but knowledge of the molecular composition of secondary aerosol derived from cVMS oxidation is incomplete. Here, the chemical composition of secondary aerosol produced from the OH-initiated oxidation of decamethylcyclopentasiloxane (D5, C10H30O5Si5) is characterized by high performance mass spectrometry. ESI-MS reveals a large number of monomeric (300 < m/z < 470) and dimeric (700 < m/z < 870) oxidation products. With the aid of high resolution and MS/MS, it is shown that oxidation leads mainly to the substitution of a CH3 group by OH or CH2OH, and that a single molecule can undergo many CH3 group substitutions. Dimers also exhibit OH and CH2OH substitutions and can be linked by O, CH2, and CH2CH2 groups. GC-MS confirms the ESI-MS results. Oxidation of D4 (C8H24O4Si4) exhibits similar substitutions and oligomerizations to D5, though the degree of oxidation is greater under the same conditions and there is direct evidence for the formation of peroxy groups (CH2OOH) in addition to OH and CH2OH.

  15. Light water reactor aerosol containment experiment LA4 simulated by JERICHO and AEROSOLS-B2 codes

    SciTech Connect

    Passalacqua, R.; Tarabelli, D.; Renault, C.

    1996-12-01

    Large-scale experiments show that whenever a loss of coolant accident occurs water pools are generated. Stratification of steam-saturated gas develops above growing water pools causing a different thermal hydraulics in the subcompartment where the water pool is located. Hereafter, the LWR Aerosols Containment Experiment (LACE) LA4 experiment, performed at the Hanford Engineering Development Laboratory, will be studied; this experiment exhibited a strong stratification, at all times, above a growing wade pool. JERICHO and AEROSOLS-B2 are part of the Ensemble de Systemes de Codes d`Analyse d`Accident des Reacteurs a Eau (ESCADRE) code system, a tool for evaluating the response of a nuclear plant to severe accidents. These two codes are used here to simulate respectively the thermal hydraulics and the associated aerosol behavior. Code results have shown that modeling large containment thermal hydraulics without taking into account the stratification phenomenon leads to large overpredictions of containment pressure and temperature. If the stratification, above the water pool, is modeled as a zone with a higher steam condensation rate and a higher thermal resistance (that is acting as a barrier to heat exchanges with the upper and larger compartment), ESCADRE predictions match experimental data quite well. The stratification region is believed to be able to affect aerosol behavior; aerosol settling is improved by steam condensation on particles and by diffusiophoresis and thermophoresis. In addition, the lower aerosol concentration throughout the stratification might cause a nonnegligible aerosol concentration gradient and consequently a driving force for the motion of smaller particles toward the pool.

  16. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    SciTech Connect

    Davidovits, Paul

    2011-12-10

    -cost extension period) of our grant, we extended our studies to perform experiments on the controlled production and characterization of secondary organic aerosol.

  17. CURRENT AND EMERGING TECHNIQUES FOR CHARACTERIZING TROPOSPHERIC AEROSOLS

    EPA Science Inventory

    Particulate matter generally includes dust, smoke, soot, or aerosol particles. Environmental research addresses the origin, size, chemical composition, and the formation mechanics of aerosols. In the troposphere, fine aerosols (e.g. with diameters < 2.5 um) remain suspended until...

  18. Aerosol Characterization and New Instrumentation for Better Understanding Snow Radiative Properties

    NASA Astrophysics Data System (ADS)

    Beres, N. D.

    2015-12-01

    Snow albedo is determined by snowpack thickness and grain size, but also affected by contamination with light-absorbing, microscopic (e.g., mineral dust, combustion aerosols, bio-aerosols) and macroscopic (e.g., microalgae, plant debris, sand, organisms) compounds. Most currently available instruments for measuring snow albedo utilize the natural, downward flux of solar radiation and the reflected upward flux. This reliance on solar radiation (and, thus, large zenith angles and clear-sky conditions) leads to severe constraints, preventing characterization of detailed diurnal snow albedo cycles. Here, we describe instrumentation and methodologies to address these limitations with the development and deployment of new snow radiation sensors for measuring surface spectral and in-snow radiative properties. This novel instrumentation will be tested at the CRREL/UCSB Eastern Sierra (CUES) Snow Study Site at Mammoth Mountain, which is extensively instrumented for characterizing snow properties including snow albedo and surface morphology. However, it has been lacking instrumentation for the characterization of aerosols that can be deposited on the snow surface through dry and wet deposition. Currently, we are installing aerosol instrumentation at the CUES site, which are also described. This includes instruments for the multi-wavelength measurement of aerosol scattering and absorption coefficients and for the characterization of aerosol size distribution. Knowledge of aerosol concentration and physical and optical properties will allow for the study of aerosol deposition and modification of snow albedo and for establishing an aerosol climatology for the CUES site.

  19. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube.

    PubMed

    Nájera, Juan J; Fochesatto, Javier G; Last, Deborah J; Percival, Carl J; Horn, Andrew B

    2008-12-01

    A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0+/-0.3) ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1 mum for size diameter and (0.8-4.9)x10(6) particles/cm(3) for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as d(p)=0.9 mum and N=5x10(3) particles/cm(3) with sigma=1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the

  20. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube

    NASA Astrophysics Data System (ADS)

    Nájera, Juan J.; Fochesatto, Javier G.; Last, Deborah J.; Percival, Carl J.; Horn, Andrew B.

    2008-12-01

    A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0±0.3) ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1 μm for size diameter and (0.8-4.9)×106 particles/cm3 for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as dp=0.9 μm and N =5×103 particles/cm3 with σ =1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the flow tube

  1. An Overview of the Nighttime Aerosol/Oxidant Plume Experiment (NAOPEX)

    SciTech Connect

    Berkowitz, Carl M.; Zaveri, Rahul A.; Hubbe, John M.; Springston, Stephen R.; Coulter, Richard L.

    2003-12-01

    The Nighttime Aerosol/Oxidant Plume Experiment was designed to characterize aerosols (number density, geographic distribution, physical characteristics) and trace gases coming from the greater Boston area at night between July 29 and August 8, 2002. Aircraft flights below 1500m MSL measured upwind/downwind characteristics of the urban plume and included Lagrangian measurements made in conjunction with tetroon releases within the plume. We focus here on just the upwind/downwind characeristics of the plume, with the Lagrangian results to be presented elsewhere. Statistically insignificant variations in aerosol number density, O3, and CO downwind of Boston were found under conditions of westerly flow, although large (50%) increases in downwind NOy were measured. Much bigger upwind/downwind differences were found in O3 and CO when sampling under light and variable wind conditions although the downwind NOy levels were much less (increase of only 15%), and were not associated with any measurable increase in the NOx relative to observations made under westerly flow. There was, in general, little evidence of the Boston plume at aircraft sampling heights, which suggests a greatly reduced potential for long range transport of the urban plume within the free troposphere over the Atlantic.

  2. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  3. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles

    SciTech Connect

    Lin, Peng; Aiona, Paige K.; Li, Ying; Shiraiwa, Manabu; Laskin, Julia; Nizkorodov, Sergey A.; Laskin, Alexander

    2016-11-01

    Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly-emitted biomass burning organic aerosol (BBOA) samples collected during test burns of selected biomass fuels: sawgrass, peat, ponderosa pine, and black spruce. We characterize individual BrC chromophores present in these samples using high performance liquid chromatography coupled to a photodiode array detector and a high-resolution mass spectrometer. We demonstrate that both the overall BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels and burning conditions. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as potential markers of BrC originating from different biomass burning sources. On average, ~50% of the light absorption above 300 nm can be attributed to a limited number of strong BrC chromophores, which may serve as representative light-absorbing species for studying atmospheric processing of BrC aerosol. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of 16 hours. A “molecular corridors” analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low volatility (<1 g m-1) and will be retained in the particle phase under atmospherically relevant conditions.

  4. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  5. Characterizing the Vertical Distribution of Aerosols Over the ARM SGP Site

    SciTech Connect

    Richard Ferrare, Connor Flynn, David Turner

    2009-05-05

    . Analysis of the aerosol and water vapor data collected by the Raman lidar during the 2003 Aerosol IOP indicated that the sensitivity of the lidar was significantly lower than when the lidar was initially deployed. A detailed analysis after the IOP of the long-term dataset demonstrated that the lidar began degrading in early 2002, and that it lost approximately a factor of 4 in sensitivity between 2002 and 2004. We participated in the development of the remediation plan for the system to restore its initial performance. We conducted this refurbishment and upgrade from May- September 2004. This remediation lead to an increase in the signal-to-noise ratio of 10 and 30 for the Raman lidar's water vapor mixing ratio and aerosol backscatter coefficient data, respectively as compared to the signal strengths when the system was first deployed. The DOE ARM Aerosol Lidar Validation Experiment (ALIVE), which was conducted during September 2005, evaluated the impact of these modifications and upgrades on the SGP Raman lidar measurements of aerosol extinction and optical thickness. The CARL modifications significantly improved the accuracy and temporal resolution of the aerosol measurements. Aerosol extinction profiles measured by the Raman lidar were also used to evaluate aerosol extinction profiles and aerosol optical thickness (AOT) simulated by aerosol models as part of the Aerosol module inter-Comparison in global models (AEROCOM) (http://nansen.ipsl.jussieu.fr/AEROCOM/aerocomhome.html) project. There was a wide range in how the models represent the aerosol extinction profiles over the ARM SGP site, even though the average annual AOT represented by the various models and measured by CARL and the Sun photometer were in general agreement, at least within the standard deviations of the averages. There were considerable differences in the average vertical distributions among the models, even among models that had similar average aerosol optical thickness. Deviations between mean

  6. Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; Vanreken, T.; Fischer, M.; Matías, E.; Moya, M.; Farmer, D.; Cohen, R. C.

    2007-06-01

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM2.5 is insensitive to changes in ammonia but is to acidic semivolatile species. Semi-volatile partitioning equilibrates on a timescale between 6 and 20 min. When the aerosol sulfate-to-nitrate molar ratio is less than 1, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as "equivalent sodium" (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations are required to accurately predict the partitioning and phase state of aerosols.

  7. A comparative study of aerosol extinction measurements made by the SAM II and SAGE satellite experiments

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Mccormick, M. P.; Chu, W. P.

    1984-01-01

    SAM II and SAGE are two satellite experiments designed to measure stratospheric aerosol extinction using the technique of solar occultation or limb extinction. Although each sensor is mounted aboard a different satellite, there are occasions when their measurement locations are nearly coincident, thereby providing opportunities for a measurement comparison. In this paper, the aerosol extinction profiles and daily contour plots for some of these events in 1979 are reported. The comparisons shown in this paper demonstrate that SAM II and SAGE are producing similar aerosol extinction profiles within their measurement errors and that since SAM II has been previously validated, these results show the validity of the SAGE aerosol measurements.

  8. Precipitation changes due to anthropogenic aerosols and greenhouse gases in MLO experiments

    NASA Astrophysics Data System (ADS)

    Folini, Doris; Dallafior, Tanja; Wild, Martin; Knutti, Reto

    2016-04-01

    We analyze mixed layer ocean (MLO) equilibria from time slice experiments with the global climate model ECHAM6.1, combined with the Hamburg aerosol module HAM2.2. For each first year of each decade from 1870 to 2000, three MLO experiments were carried out: aerosols and greenhouse gases (GHGs) of that year, only aerosols of that year and GHGs of 1850, only GHGs of that year and aerosols of 1850. We quantify how total precipitation as well as its composites (convective and large scale) change through these experiments on global and regional scales. Special emphasis is given to differences in precipitation response to either aerosol or GHG forcing, despite similar (absolute value) global mean temperature response. Finally, we address the role of the prescribed deep ocean heat flux.

  9. Microanalysis of the aerosol collected over south-central New Mexico during the alive field experiment, May-December 1989

    NASA Astrophysics Data System (ADS)

    Sheridan, Patrick J.; Schnell, Russel C.; Kahl, Jonathan D.; Boatman, Joe F.; Garvey, Dennis M.

    Thirty-eight size-segregated aerosol samples were collected in the lower troposphere over the high desert of south-central New Mexico, using cascade impactors mounted onboard two research aircraft. Four of these samples were collected in early May, sixteen in mid-July, and the remaining ones in December 1989, during three segments of the ALIVE field initiative. Analytical electron microscope analyses of aerosol deposits and individual particles from these samples were performed to physically and chemically characterize the major particulate species present in the aerosol. Air-mass trajectories arriving at the sampling area in the May program were quite different from those calculated for the July period. In general, the May trajectories showed strong westerly winds, while the July winds were weaker and southerly, consistently passing over or very near the border cities of El Paso, Texas, and Ciudad Juarez, Mexico. Aerosol samples collected during the May period were predominantly fine (0.1-0.5 μm dia.), liquid H 2SO 4 droplets. Samples from the July experiment were comprised mostly of fine, solid (NH 4) 2SO 4 or mostly neutralized sulfate particles. In both sampling periods, numerous other particle classes were observed, including many types with probable terrestrial or anthropogenic sources. The numbers of these particles, however, were small when compared with the sulfates. Composite particle types, including sulfate/crustal and sulfate/carbonaceous, were also found to be present. The major differences in aerosol composition between the May and July samples (i.e. the extensive neutralization of sulfates in the July samples) can be explained by considering the different aerosol transport pathways and the proximity of the July aerosol to the El Paso/Juarez urban plume. Winds during the December experiment were quite variable, and may have contributed to the widely varying aerosol compositions observed in these samples. When the aircraft sampled the El Paso

  10. Organic Aerosol Formation in the Humid, Photochemically-Active Southeastern US: SOAS Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Lim, Y. B.; Carlton, A. G.; Turpin, B. J.

    2013-12-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized low volatility organic aerosol and, in some cases, light absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, health, and the environment. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols) leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify other precursors that are atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere at Brent, Alabama during the Southern Oxidant and Aerosol Study (SOAS). Four mist chambers in parallel collected ambient gases in a DI water medium at 20-25 LPM with a 4 hr collection time. Total organic carbon (TOC) values in daily composited samples were 64-180 μM. Aqueous OH radical oxidation experiments were conducted with these mixtures in a newly designed cuvette chamber to understand the formation of SOA through gas followed by aqueous chemistry. OH radicals (3.5E-2 μM [OH] s-1) were formed in-situ in the chamber, continuously by H2O2 photolysis. Precursors and products of these aqueous OH experiments were characterized using ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. ESI-MS results from a June 12th, 2013 sample showed precursors to be primarily odd, positive mode ions, indicative of the presence of non-nitrogen containing alcohols, aldehydes, organic peroxides, or epoxides. Products were seen in the negative mode and included organic acid ions like pyruvate

  11. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-01-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the Southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8±8.4 μg m-3 and 13.5±8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva)~200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  12. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-07-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8 ± 8.4 μg m-3 and 13.5 ± 8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva) ∼200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  13. Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; van Reken, T.; Fischer, M.; Matías, E.; Moya, M.; Farmer, D.; Cohen, R. C.

    2009-03-01

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM2.5 is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1μm diameter, semi-volatile partitioning requires 15-30 min to equilibrate; longer time is typically required during the night and early morning hours. Aerosol and gas-phase speciation always exhibits substantial temporal variability, so that aerosol composition measurements (bulk or size-resolved) obtained over large integration periods are not reflective of its true state. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as "equivalent sodium" (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  14. Aerosol Effects on Radiation and Climate: Column Closure Experiments with Towers, Aircraft, and Satellites

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.

    1994-01-01

    Many theoretical studies have shown that anthropogenic aerosol particles can change the radiation balance in an atmospheric column and might thereby exert a significant effect on the Earth's climate. In particular, recent calculations have shown that sulfate particles from anthropogenic combustion may already exert a cooling influence on the Earth that partially offsets the warming caused by the greenhouse gases from the same combustion. Despite the potential climatic importance of anthropogenic aerosols, simultaneous measurements of anthropogenic aerosol properties and their effect on atmospheric radiation have been very rare. Successful comparisons of measured radiation fields with those calculated from aerosol measurements - now referred to as column closure comparisons - are required to improve the accuracy and credibility of climate predictions. This paper reviews the column closure experiment performed at the Mt. Sutro Tower in San Francisco in 1975, in which elevated radiometers measured the change in Earth-plus-atmosphere albedo caused by an aerosol layer, while a lidar, sunphotometer, nephelometer, and other radiometers measured properties of the responsible aerosol. The time-dependent albedo calculated from the measured aerosol properties agreed with that measured by the tower radiometers. Also presented are designs for future column closure studies using radiometers and aerosol instruments on the ground, aircraft, and satellites. These designs draw upon algorithms and experience developed in the Sutro Tower study, as well as more recent experience with current measurement and analysis capabilities.

  15. Remote Sensing of Spectral Aerosol Properties: A Classroom Experience

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Pinker, Rachel T.

    2006-01-01

    Bridging the gap between current research and the classroom is a major challenge to today s instructor, especially in the sciences where progress happens quickly. NASA Goddard Space Flight Center and the University of Maryland teamed up in designing a graduate class project intended to provide a hands-on introduction to the physical basis for the retrieval of aerosol properties from state-of-the-art MODIS observations. Students learned to recognize spectral signatures of atmospheric aerosols and to perform spectral inversions. They became acquainted with the operational MODIS aerosol retrieval algorithm over oceans, and methods for its evaluation, including comparisons with groundbased AERONET sun-photometer data.

  16. Recent Improvements to CALIOP Level 3 Aerosol Profile Product for Global 3-D Aerosol Extinction Characterization

    NASA Astrophysics Data System (ADS)

    Tackett, J. L.; Getzewich, B. J.; Winker, D. M.; Vaughan, M. A.

    2015-12-01

    With nine years of retrievals, the CALIOP level 3 aerosol profile product provides an unprecedented synopsis of aerosol extinction in three dimensions and the potential to quantify changes in aerosol distributions over time. The CALIOP level 3 aerosol profile product, initially released as a beta product in 2011, reports monthly averages of quality-screened aerosol extinction profiles on a uniform latitude/longitude grid for different cloud-cover scenarios, called "sky conditions". This presentation demonstrates improvements to the second version of the product which will be released in September 2015. The largest improvements are the new sky condition definitions which parse the atmosphere into "cloud-free" views accessible to passive remote sensors, "all-sky" views accessible to active remote sensors and "cloudy-sky" views for opaque and transparent clouds which were previously inaccessible to passive remote sensors. Taken together, the new sky conditions comprehensively summarize CALIOP aerosol extinction profiles for a broad range of scientific queries. In addition to dust-only extinction profiles, the new version will include polluted-dust and smoke-only extinction averages. A new method is adopted for averaging dust-only extinction profiles to reduce high biases which exist in the beta version of the level 3 aerosol profile product. This presentation justifies the new averaging methodology and demonstrates vertical profiles of dust and smoke extinction over Africa during the biomass burning season. Another crucial advancement demonstrated in this presentation is a new approach for computing monthly mean aerosol optical depth which removes low biases reported in the beta version - a scenario unique to lidar datasets.

  17. Laser Propagation Experiments - Aerosol and Stagnation Zone Effects

    DTIC Science & Technology

    1977-08-01

    Phys. 46, 402 (1975). 5. D. E. Lencioni and H. Kleiman. Effects of Aerosol Particle Heating on Laser Beam Propagation, Project Report LTP -27 on...1977. 18. J. Herrmann and L. C. Bradley. Numerical Calculations of Light Propagat , MIT/Lincln Laboratory Laser Technology Program Report LTP -10...R77-922578-13 ,/ Laser Propagation Experimets Aerosol and Stagnation "Zone Effects Final Technical Report "June 19, 1977 M.C. Fowe; J.R. Dunphy 3.3 0

  18. Aromatic organosulfates in atmospheric aerosols: synthesis, characterization, and abundance.

    PubMed

    Staudt, Sean; Kundu, Shuvashish; Lehmler, Hans-Joachim; He, Xianran; Cui, Tianqu; Lin, Ying-Hsuan; Kristensen, Kasper; Glasius, Marianne; Zhang, Xiaolu; Weber, Rodney J; Surratt, Jason D; Stone1, Elizabeth A

    2014-09-01

    Aromatic organosulfates are identified and quantified in fine particulate matter (PM2.5) from Lahore, Pakistan, Godavari, Nepal, and Pasadena, California. To support detection and quantification, authentic standards of phenyl sulfate, benzyl sulfate, 3-and 4-methylphenyl sulfate and 2-, 3-, and 4-methylbenzyl sulfate were synthesized. Authentic standards and aerosol samples were analyzed by ultra-performance liquid chromatography (UPLC) coupled to negative electrospray ionization (ESI) quadrupole time-of-flight (ToF) mass spectrometry. Benzyl sulfate was present in all three locations at concentrations ranging from 4 - 90 pg m(-3). Phenyl sulfate, methylphenyl sulfates and methylbenzyl sulfates were observed intermittently with abundances of 4 pg m(-3), 2-31 pg m(-3), 109 pg m(-3), respectively. Characteristic fragment ions of aromatic organosulfates include the sulfite radical ((•)SO3(-), m/z 80) and the sulfate radical ((•)SO4(-),m/z 96). Instrumental response factors of phenyl and benzyl sulfates varied by a factor of 4.3, indicating that structurally-similar organosulfates may have significantly different instrumental responses and highlighting the need to develop authentic standards for absolute quantitation organosulfates. In an effort to better understand the sources of aromatic organosulfates to the atmosphere, chamber experiments with the precursor toluene were conducted under conditions that form biogenic organosulfates. Aromatic organosulfates were not detected in the chamber samples, suggesting that they form through different pathways, have different precursors (e.g. naphthalene or methylnaphthalene), or are emitted from primary sources.

  19. Aromatic organosulfates in atmospheric aerosols: Synthesis, characterization, and abundance

    NASA Astrophysics Data System (ADS)

    Staudt, Sean; Kundu, Shuvashish; Lehmler, Hans-Joachim; He, Xianran; Cui, Tianqu; Lin, Ying-Hsuan; Kristensen, Kasper; Glasius, Marianne; Zhang, Xiaolu; Weber, Rodney J.; Surratt, Jason D.; Stone, Elizabeth A.

    2014-09-01

    Aromatic organosulfates are identified and quantified in fine particulate matter (PM2.5) from Lahore, Pakistan, Godavari, Nepal, and Pasadena, California. To support detection and quantification, authentic standards of phenyl sulfate, benzyl sulfate, 3- and 4-methylphenyl sulfate and 2-, 3-, and 4-methylbenzyl sulfate were synthesized. Authentic standards and aerosol samples were analyzed by ultra-performance liquid chromatography (UPLC) coupled to negative electrospray ionization (ESI) quadrupole time-of-flight (ToF) mass spectrometry. Benzyl sulfate was present in all three locations at concentrations ranging from 4 to 90 pg m-3. Phenyl sulfate, methylphenyl sulfates and methylbenzyl sulfates were observed intermittently with abundances of 4 pg m-3, 2-31 pg m-3, 109 pg m-3, respectively. Characteristic fragment ions of aromatic organosulfates include the sulfite radical (rad SO3-, m/z 80) and the sulfate radical (rad SO4-, m/z 96). Instrumental response factors of phenyl and benzyl sulfates varied by a factor of 4.3, indicating that structurally-similar organosulfates have significantly different instrumental responses and highlighting the need to develop authentic standards for absolute quantitation organosulfates. In an effort to better understand the sources of aromatic organosulfates to the atmosphere, chamber experiments with the precursor toluene were conducted under conditions that form biogenic organosulfates. Aromatic organosulfates were not detected in the chamber samples, suggesting that they form through different pathways, have different precursors (e.g. naphthalene or methylnaphthalene), or are emitted from primary sources.

  20. An Overview of Regional Experiments on Biomass Burning Aerosols and Related Pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS

    NASA Technical Reports Server (NTRS)

    Lin, Neng-Huei; Tsay, Si-Chee; Maring, Hal B.; Yen, Ming-Cheng; Sheu, Guey-Rong; Wang, Sheng-Hsiang; Chi, Kai Hsien; Chuang, Ming-Tung; Ou-Yang, Chang-Feng; Fu, Joshua S.; Reid, Jeffrey S.; Lee, Chung-Te; Wang, Lin-Chi; Wang, Jia-Lin; Hsu, Christina N.; Sayer, Andrew M.; Holben, Brent N.; Chu, Yu-Chi; Nguyen, Xuan Anh; Sopajaree, Khajornsak; Chen, Shui-Jen; Cheng, Man-Ting; Tsuang, Ben-Jei; Tsai, Chuen-Jinn; Peng, Chi-Ming; Schnell, Russell C.; Conway, Tom; Chang, Chang-Tang; Lin, Kuen-Song; Tsai, Ying I.; Lee, Wen-Jhy; Chang, Shuenn-Chin; Liu, Jyh-Jian; Chang, Wei-Li; Huang, Shih-Jen; Lin, Tang-Huang; Liu, Gin-Rong

    2013-01-01

    By modulating the Earth-atmosphere energy, hydrological and biogeochemical cycles, and affecting regional-to-global weather and climate, biomass burning is recognized as one of the major factors affecting the global carbon cycle. However, few comprehensive and wide-ranging experiments have been conducted to characterize biomass-burning pollutants in Southeast Asia (SEA) or assess their regional impact on meteorology, the hydrological cycle, the radiative budget, or climate change. Recently, BASEASIA (Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment) and the 7-SEAS (7- South-East Asian Studies) Dongsha Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA, respectively, to characterize the chemical, physical, and radiative properties of biomass-burning emissions near the source regions, and assess their effects. This paper provides an overview of results from these two campaigns and related studies collected in this special issue, entitled Observation, modeling and impact studies of biomass burning and pollution in the SE Asian Environment. This volume includes 28 papers, which provide a synopsis of the experiments, regional weatherclimate, chemical characterization of biomass-burning aerosols and related pollutants in source and sink regions, the spatial distribution of air toxics (atmospheric mercury and dioxins) in source and remote areas, a characterization of aerosol physical, optical, and radiative properties, as well as modeling and impact studies. These studies, taken together, provide the first relatively complete dataset of aerosol chemistry and physical observations conducted in the sourcesink region in the northern SEA, with particular emphasis on the marine boundary layer and lower free troposphere (LFT). The data, analysis and modeling included in these papers advance our present knowledge of source characterization of biomass-burning pollutants near the source regions as well as the physical and

  1. Physical and Chemical Characterization of Particles in the Upper Troposphere and Lower Stratosphere: Microanalysis of Aerosol Impactor Samples

    NASA Technical Reports Server (NTRS)

    Sheridan, Patrick J.

    1999-01-01

    Herein is reported activities to support the characterization of the aerosol in the upper troposphere (UT) and lower stratosphere (LS) collected during the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) missions in 1994. Through a companion proposal, another group was to measure the size distribution of aerosols in the 0.008 to 2 micrometer diameter range and to collect for us impactor samples of particles larger than about 0.02 gm. In the first year, we conducted laboratory studies related to particulate deposition patterns on our collection substrates, and have performed the analysis of many ASHOE/MAESA aerosol samples from 1994 using analytical electron microscopy (AEM). We have been building an "aerosol climatology" with these data that documents the types and relative abundances of particles observed at different latitudes and altitudes. The second year (and non-funded extension periods) saw continued analyses of impactor aerosol samples, including more ASHOE/MAESA samples, some northern hemisphere samples from the NASA Stratospheric Photochemistry Aerosols and Dynamics Expedition (SPADE) program for comparison, and a few aerosol samples from the NASA Stratospheric TRacers of Atmospheric Transport (STRAT) program. A high-resolution field emission microscope was used for the analysis and re-analysis of a number of samples to determine if this instrument was superior in performance to our conventional electron microscope. In addition, some basic laboratory studies were conducted to determine the minimum detectable and analyzable particle size for different types of aerosols. In all, 61 aerosol samples were analyzed, with a total of over 30,000 individual particle analyses. In all analyzed samples, sulfate particles comprised the major aerosol number fraction. It must be stressed that particles composed of more than one species, for example sulfate and organic carbon, were classified

  2. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  3. Characterization of intense aerosol episodes in the Mediterranean basin from satellite observations

    NASA Astrophysics Data System (ADS)

    Gkikas, Antonis; Hatzianastassiou, Nikos; Mihalopoulos, Nikolaos

    2014-05-01

    The properties and distribution of aerosols over the broader Mediterranean region are complex since particles of different nature are either produced within its boundaries or transported from other regions. Thus, coarse dust aerosols are transported primarily from Sahara and secondarily from Middle East, while fine polluted aerosols are either produced locally from anthropogenic activities or they are transported from neighbouring or remote European areas. Also during summer biomass aerosols are transported towards the Mediterranean, originating from massive and extended fires occurring in northern Balkans and Eastern Europe and favoured by the prevailing synoptic conditions. In addition, sea-salt aerosols originate from the Mediterranean Sea or the Atlantic Ocean. Occasionally, aerosols are encountered at very high concentrations (aerosol episodes or events) significantly affecting atmospheric dynamics and climate as well as human health. Given the coexistence of different aerosols as internal and external mixtures characterizing and discriminating between the different types of aerosol episodes is a big challenge. A characterization and classification of intense aerosol episodes in the Mediterranean basin (March 2000 - February 2007) is attempted in the present study. This is achieved by implementing an objective and dynamic algorithm which uses daily aerosol optical properties derived from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMI-Aura. The aerosol episodes are first classified into strong and extreme ones, according to their intensity, by means of aerosol optical depth at 550nm (AOD550nm). Subsequently, they are discriminated into the following aerosol types: (i) biomass/urban-industrial (BU), (ii) desert dust (DD), (iii) sea-salt like (SS), (iv) mixed (MX) and (v) undetermined (UN). The classification is based on aerosol optical properties accounting for the particles' size (Ångström exponent, Effective radius), the

  4. Characterizing the Hygroscopicity of Nascent Sea Spray Aerosol from Synthetic Blooms

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Cappa, C. D.; Sultana, C. M.; Lee, C.; Wang, X.; Helgestad, T.; Moore, K.; Prather, K. A.; Cornwell, G.; Novak, G.; Bertram, T. H.

    2015-12-01

    Marine sea spray aerosol (SSA) particles make up a significant portion of natural aerosols and are therefore important in establishing the baseline for anthropogenic aerosol climate impacts. Scattering of solar radiation by aerosols affects Earth's radiative budget and the degree of scattering is size-dependent. Thus, aerosols scatter more light at elevated relative humidities when they grow larger via water uptake. This growth depends critically on chemical composition. SSA can become enriched in organics during phytoplankton blooms, becoming less salty and therefore less hygroscopic. Subsaturated hygroscopic growth factors at 85% relative humidity (GF(85%)) of SSA particles were quantified during two mesocosm experiments in enclosed marine aerosol reference tanks (MARTs). The two experiments were conducted with filtered seawater collected at separate times from the Scripps Institute of Oceanography Pier in La Jolla, CA. Phytoplankton blooms in each tank were induced via the addition of nutrients and photosynthetically active radiation. The "indoor" MART was illuminated with fluorescent light and the other "outdoor" MART was illuminated with sunlight. The peak chlorophyll-a concentrations were 59 micrograms/L and 341 micrograms /L for the indoor and outdoor MARTs, respectively. GF(85%) values for SSA particles were quantified using a humidified cavity ringdown spectrometer and particle size distributions. Particle composition was monitored with a single particle aerosol mass spectrometer (ATOFMS) and an Aerodyne aerosol mass spectrometer (AMS). Relationships between the observed particle GFs and the particle composition markers will be discussed.

  5. Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006

    SciTech Connect

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; VanReken, T.; Fischer, M.; Matias, E.; Moya, M.; Farmer, D.; Cohen, R.C.

    2008-12-05

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM{sub 2.5} is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1 {micro}m diameter, semi-volatile partitioning requires 30-60 min to equilibrate; longer time is typically required during the night and early morning hours. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as 'equivalent sodium' (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  6. Physical and Chemical Characterization of Carbonaceous Aerosols in Korea

    NASA Astrophysics Data System (ADS)

    Choung, S.; Jin, J. S.; Hwang, G. S.; Jang, K. S.; Han, W. S.; OH, J.; Kwon, Y.

    2014-12-01

    Atmospheric aerosols have been recently paid attention more in environmental research due to their negative effects on air quality, public health, and climate change. The aerosols contain approximately >20-50% carbonaceous components such as organic carbon (OC) and black carbon (BC) (or elemental carbon [EC]) derived from organic compounds, biomass burning, and incomplete combustion of fossil fuels. The physical, chemical, and biological properties of atmospheric aerosols are strongly dependent on the carbonaceous components. In particular, the BC could significantly affect the regional air quality in the northeastern Asia, because China is one of the foremost BC emission country in the world. Previous studies have mainly focused on the quantification and source identification for carbonaceous aerosols. However, understanding of physical and chemical properties for the carbonaceous aerosols related to environmental contamination and toxicity was still incomplete due to analytical difficulties. This study is addressed to evaluate the contribution of carbonaceous aerosols to air pollution through the surface, mass spectroscopic, and electron microscopic analyses, and determination of chemical composition and structure using the air particulate matter (PM2.5 and >PM2.5) samples.

  7. MODIS and AERONET Characterization of the Global Aerosol

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Reme, Lorraine; Tanre, Didier; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Recently produced daily MODIS aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere.

  8. Characterization of ambient aerosols at the San Francisco International Airport using BioAerosol Mass Spectrometry

    SciTech Connect

    Steele, P T; McJimpsey, E L; Coffee, K R; Fergenson, D P; Riot, V J; Tobias, H J; Woods, B W; Gard, E E; Frank, M

    2006-03-16

    The BioAerosol Mass Spectrometry (BAMS) system is a rapidly fieldable, fully autonomous instrument that can perform correlated measurements of multiple orthogonal properties of individual aerosol particles. The BAMS front end uses optical techniques to nondestructively measure a particle's aerodynamic diameter and fluorescence properties. Fluorescence can be excited at 266nm or 355nm and is detected in two broad wavelength bands. Individual particles with appropriate size and fluorescence properties can then be analyzed more thoroughly in a dual-polarity time-of-flight mass spectrometer. Over the course of two deployments to the San Francisco International Airport, more than 6.5 million individual aerosol particles were fully analyzed by the system. Analysis of the resulting data has provided a number of important insights relevant to rapid bioaerosol detection, which are described here.

  9. Characterization of aerosols from biomass burning--a case study from Mizoram (Northeast), India.

    PubMed

    Badarinath, K V S; Madhavi Latha, K; Kiran Chand, T R; Gupta, Prabhat K; Ghosh, A B; Jain, S L; Gera, B S; Singh, Risal; Sarkar, A K; Singh, Nahar; Parmar, R S; Koul, S; Kohli, R; Nath, Shambhu; Ojha, V K; Singh, Gurvir

    2004-01-01

    Physical and optical properties of biomass burning aerosols in Northeastern region, India analyzed based on measurements made during February 2002. Large spatial extent of Northeastern Region moist tropical to moist sub-tropical forests in India have high frequency of burning in annual dry seasons. Characterization of resultant trace gases and aerosols from biomass burning is important for the atmospheric radiative process. Aerosol optical depth (AOD) observed to be high during burning period compared to pre- and post-burning days. Peak period of biomass burning is highly correlated with measured AOD and total columnar water vapor. Size distribution of aerosols showed bimodal size distribution during burning day and unimodal size distribution during pre- and post-burning days. Size distribution retrievals from biomass burning aerosols show dominance of accumulation mode particles. Weighted mean radius is high (0.22 microm) during burning period. Columnar content of aerosols observed to be high during burning period in addition to the drastic reduction of visibility. During the burning day Anderson sampler measurements showed dominance of accumulation mode particles. The diurnal averaged values of surface shortwave aerosol radiative forcing af biomass burning aerosols varies from -59 to -87 Wm(-2) on different days. Measured and modeled solar irradiances are also discussed in the paper.

  10. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  11. Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols.

    PubMed

    Flora, Jason W; Meruva, Naren; Huang, Chorng B; Wilkinson, Celeste T; Ballentine, Regina; Smith, Donna C; Werley, Michael S; McKinney, Willie J

    2016-02-01

    E-cigarettes are gaining popularity in the U.S. as well as in other global markets. Currently, limited published analytical data characterizing e-cigarette formulations (e-liquids) and aerosols exist. While FDA has not published a harmful and potentially harmful constituent (HPHC) list for e-cigarettes, the HPHC list for currently regulated tobacco products may be useful to analytically characterize e-cigarette aerosols. For example, most e-cigarette formulations contain propylene glycol and glycerin, which may produce aldehydes when heated. In addition, nicotine-related chemicals have been previously reported as potential e-cigarette formulation impurities. This study determined e-liquid formulation impurities and potentially harmful chemicals in aerosols of select commercial MarkTen(®) e-cigarettes manufactured by NuMark LLC. The potential hazard of the identified formulation impurities and aerosol chemicals was also estimated. E-cigarettes were machine puffed (4-s duration, 55-mL volume, 30-s intervals) to battery exhaustion to maximize aerosol collection. Aerosols analyzed for carbonyls were collected in 20-puff increments to account for analyte instability. Tobacco specific nitrosamines were measured at levels observed in pharmaceutical grade nicotine. Nicotine-related impurities in the e-cigarette formulations were below the identification and qualification thresholds proposed in ICH Guideline Q3B(R2). Levels of potentially harmful chemicals detected in the aerosols were determined to be below published occupational exposure limits.

  12. Aerosol Optical Properties Characterization By Means Of The CNR-IMAA Multi-Wavelength Raman Lidar

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; D'Amico, G.; Pappalardo, G.

    2007-12-01

    A Raman/elastic lidar for tropospheric aerosol study is operational at CNR-IMAA (40°36'N, 15°44'E, 760 m above sea level) since May 2000 in the framework of EARLINET. Since August 2005, this system provides aerosol backscatter coefficient profiles at 1064 nm, and independent measurements of aerosol extinction and backscatter coefficient profiles at 355 and 532 nm. In this way, lidar ratio (i.e. extinction to backscatter ratio) profiles at 355 and 532 nm are also obtained. In addition, depolarization ratio measurements at 532 nm are obtained by means of detection of components of backscattered light polarized perpendicular and parallel to the direction of the linearly polarized transmitted laser beam. Depolarization ratio measurements provide information about shape and orientation of aerosolic particles, while lidar ratio measurements and wavelength dependences of both backscatter and extinction are important for aerosol characterization in terms of aerosol type and size. In addition, high quality multi-wavelength measurements (3 backscatter + 2 extinction) can allow the determination of microphysical aerosol properties (refractive index, single-scattering albedo and effective particles radii). Systematic measurements are performed three times per week according to the EARLINET schedule since May 2000, and further measurements are performed in order to investigate particular events, like dust intrusions, volcanic eruptions and forest fires. This extended dataset allows the optical characterization of aerosol located close to the surface, namely in the Planetary Boundary Layer, as well as in the free troposphere. In the free troposphere, an high occurrence of Saharan dust intrusions at CNR-IMAA (about 1 day of Saharan dust intrusion every 10 days) has been identified by means of back-trajectory analysis and in accordance with satellite images, because of the short distance from the Sahara region. In addition, CNR-IMAA is pretty close to Etna, the largest European

  13. Characterization of aerosols containing Legionella generated upon nebulization.

    PubMed

    Allegra, Séverine; Leclerc, Lara; Massard, Pierre André; Girardot, Françoise; Riffard, Serge; Pourchez, Jérémie

    2016-09-27

    Legionella pneumophila is, by far, the species most frequently associated with Legionnaires' disease (LD). Human infection occurs almost exclusively by aerosol inhalation which places the bacteria in juxtaposition with alveolar macrophages. LD risk management is based on controlling water quality by applying standardized procedures. However, to gain a better understanding of the real risk of exposure, there is a need (i) to investigate under which conditions Legionella may be aerosolized and (ii) to quantify bacterial deposition into the respiratory tract upon nebulization. In this study, we used an original experimental set-up that enables the generation of aerosol particles containing L. pneumophila under various conditions. Using flow cytometry in combination with qPCR and culture, we determined (i) the size of the aerosols and (ii) the concentration of viable Legionella forms that may reach the thoracic region. We determined that the 0.26-2.5 μm aerosol size range represents 7% of initial bacterial suspension. Among the viable forms, 0.7% of initial viable bacterial suspension may reach the pulmonary alveoli. In conclusion, these deposition profiles can be used to standardize the size of inoculum injected in any type of respiratory tract model to obtain new insights into the dose response for LD.

  14. Characterization of aerosols containing Legionella generated upon nebulization

    PubMed Central

    Allegra, Séverine; Leclerc, Lara; Massard, Pierre André; Girardot, Françoise; Riffard, Serge; Pourchez, Jérémie

    2016-01-01

    Legionella pneumophila is, by far, the species most frequently associated with Legionnaires’ disease (LD). Human infection occurs almost exclusively by aerosol inhalation which places the bacteria in juxtaposition with alveolar macrophages. LD risk management is based on controlling water quality by applying standardized procedures. However, to gain a better understanding of the real risk of exposure, there is a need (i) to investigate under which conditions Legionella may be aerosolized and (ii) to quantify bacterial deposition into the respiratory tract upon nebulization. In this study, we used an original experimental set-up that enables the generation of aerosol particles containing L. pneumophila under various conditions. Using flow cytometry in combination with qPCR and culture, we determined (i) the size of the aerosols and (ii) the concentration of viable Legionella forms that may reach the thoracic region. We determined that the 0.26–2.5 μm aerosol size range represents 7% of initial bacterial suspension. Among the viable forms, 0.7% of initial viable bacterial suspension may reach the pulmonary alveoli. In conclusion, these deposition profiles can be used to standardize the size of inoculum injected in any type of respiratory tract model to obtain new insights into the dose response for LD. PMID:27671446

  15. Characterization of aerosols containing Legionella generated upon nebulization

    NASA Astrophysics Data System (ADS)

    Allegra, Séverine; Leclerc, Lara; Massard, Pierre André; Girardot, Françoise; Riffard, Serge; Pourchez, Jérémie

    2016-09-01

    Legionella pneumophila is, by far, the species most frequently associated with Legionnaires’ disease (LD). Human infection occurs almost exclusively by aerosol inhalation which places the bacteria in juxtaposition with alveolar macrophages. LD risk management is based on controlling water quality by applying standardized procedures. However, to gain a better understanding of the real risk of exposure, there is a need (i) to investigate under which conditions Legionella may be aerosolized and (ii) to quantify bacterial deposition into the respiratory tract upon nebulization. In this study, we used an original experimental set-up that enables the generation of aerosol particles containing L. pneumophila under various conditions. Using flow cytometry in combination with qPCR and culture, we determined (i) the size of the aerosols and (ii) the concentration of viable Legionella forms that may reach the thoracic region. We determined that the 0.26–2.5 μm aerosol size range represents 7% of initial bacterial suspension. Among the viable forms, 0.7% of initial viable bacterial suspension may reach the pulmonary alveoli. In conclusion, these deposition profiles can be used to standardize the size of inoculum injected in any type of respiratory tract model to obtain new insights into the dose response for LD.

  16. Visible and near infrared observation on the Global Aerosol Backscatter Experiment (GLOBE)

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Cavanaugh, John F.; Chudamani, S.; Bufton, Jack L.; Sullivan, Robert J.

    1991-01-01

    The Global Aerosol Backscatter Experiment (GLOBE) was intended to provide data on prevailing values of atmospheric backscatter cross-section. The primary intent was predicting the performance of spaceborne lidar systems, most notably the Laser Atmospheric Wind Sounder (LAWS) for the Earth Observing System (EOS). The second and related goal was to understand the source and characteristics of atmospheric aerosol particles. From the GLOBE flights, extensive data was obtained on the structure of clouds and the marine planetary boundary layer. A notable result for all observations is the consistency of the large increases in the aerosol scattering ratio for the marine boundary layer. Other results are noted.

  17. Submicron Aerosol Characterization of Water by a Differential Mobility Particle Sizer.

    DTIC Science & Technology

    1987-02-01

    relevant to modern science and industry. N *% ~ ~ ~?1 *1?%~%~ 0.0 :~. % % his ’i tl’tt Security Classif ication KIEV WORDS Submricron aerosols Water ...7 :-711 no0 StIHICRON AEROSOL CHARACTERIZATION OF WATER DY A vi1 DIFFERENTIAL NOBILITY PA.. (U) DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON... WATER BY A DIFFERENTIAL MOBILITY PARTICLE SIZER (U) by B. Kournikakis, A. Gunning, J. Fildes and J. Ho Project No. 251SD EL .TE APR 099?07uD February

  18. Development of a model for characterizing pneumatically generated primary aerosols for inductively coupled plasma emission spectrometry

    SciTech Connect

    Msimanga, N.D.G.

    1992-01-01

    The study of aerosols plays a key role in the development of analytical atomic spectroscopy. While work has been carried out with Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) to improve transport efficiency, analyte signal, limits of detection, and to reduce matrix interferences, little study has focused on sample introduction processes. This study has focused on the characterization and optimization of pneumatic nebulizers used for liquid sample introduction to the ICP. Pneumatic nebulization is the most common means of sample introduction in atomic spectrometry. The pneumatic nebulizers most commonly used today for ICP spectrometry are the cross-flow type or all-glass concentric nebulizers. Aerosols undergo certain processes after the primary formation process before reaching the atomizer, the secondary and tertiary stages. In this work all three stages were looked at, focusing on the primary aerosols. The primary aerosol is the first stage in the formation of the aerosols and takes place at the tip of the nebulizer, as the liquid stream is shattered by the gas flow. The drop size diameters of primary aerosols were measured using a Fraunhofer Laser Diffraction instrument. The Sauter mean diameter (D3.2), which describes the volume of the aerosol with a given surface area, was determined for nebulizers at spray chambers operated under a variety of conditions. The characterization and optimization of sample introduction involved a study of aerosol technology, a study of different instruments for measuring the mean drop size, a description of the instrument, and the influence of some parameters on the D3.2. An empirical model summarizing the characteristics of the primary aerosols is proposed. Modeling is carried out using nonlinear software. The data for modelling were acquired using water, n-butanol, and methanol as the liquid solvents. The model was tested on data obtained from nebulizers with different cross-sectional areas.

  19. Characterization of the Aerosol Instrument Package for the In-service Aircraft Global Observing System IAGOS

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Berg, Marcel; Tettig, Frank; Franke, Harald; Petzold, Andreas

    2015-04-01

    The atmospheric aerosol influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the aerosol microphysical properties is needed to reduce the reported uncertainty of the aerosol climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The IAGOS Aerosol Package (IAGOS-P2C) consists of two modified Butanol based CPCs (Model Grimm 5.410) and one optical particle counter (Model Grimm Sky OPC 1.129). A thermodenuder at 250°C is placed upstream the second CPC, thus the number concentrations of the total aerosol and the non-volatile aerosol fraction is measured. The Sky OPC measures the size distribution in the rage theoretically up to 32 μ m. Because of the inlet cut off diameter of D50=3 μ m we are using the 16 channel mode in the range of 250 nm - 2.5 μ m at 1 Hz resolution. In this presentation the IAGOS Aerosol package is characterized for pressure levels relevant for the planned application, down to cruising level of 150 hPa including the inlet system. In our aerosol lab we have tested the system against standard instrumentation with different aerosol test substances in a long duration test. Particle losses are characterized for the inlet system. In addition first results for airborne measurements are shown from a first field campaign.

  20. Profile and Morphology of Fungal Aerosols Characterized by Field Emission Scanning Electron Microscopy (FESEM)

    PubMed Central

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Skaar, Ida; Hjeljord, Linda; Skare, Øivind; Green, Brett James; Tronsmo, Arne; Eduard, Wijnand

    2016-01-01

    Fungal aerosols consist of spores and fragments with diverse array of morphologies; however, the size, shape, and origin of the constituents require further characterization. In this study, we characterize the profile of aerosols generated from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum grown for 8 weeks on gypsum boards. Fungal particles were aerosolized at 12 and 20 L min−1 using the Fungal Spore Source Strength Tester (FSSST) and the Stami particle generator (SPG). Collected particles were analyzed with field emission scanning electron microscopy (FESEM). We observed spore particle fraction consisting of single spores and spore aggregates in four size categories, and a fragment fraction that contained submicronic fragments and three size categories of larger fragments. Single spores dominated the aerosols from A. fumigatus (median: 53%), while the submicronic fragment fraction was the highest in the aerosols collected from A. versicolor (median: 34%) and P. chrysogenum (median: 31%). Morphological characteristics showed near spherical particles that were only single spores, oblong particles that comprise some spore aggregates and fragments (<3.5 μm), and fiber-like particles that regroup chained spore aggregates and fragments (>3.5 μm). Further, the near spherical particles dominated the aerosols from A. fumigatus (median: 53%), while oblong particles were dominant in the aerosols from A. versicolor (68%) and P. chrysogenum (55%). Fiber-like particles represented 21% and 24% of the aerosols from A. versicolor and P. chrysogenum, respectively. This study shows that fungal particles of various size, shape, and origin are aerosolized, and supports the need to include a broader range of particle types in fungal exposure assessment. PMID:26855468

  1. Profile and Morphology of Fungal Aerosols Characterized by Field Emission Scanning Electron Microscopy (FESEM).

    PubMed

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Skaar, Ida; Hjeljord, Linda; Skare, Øivind; Green, Brett James; Tronsmo, Arne; Eduard, Wijnand

    Fungal aerosols consist of spores and fragments with diverse array of morphologies; however, the size, shape, and origin of the constituents require further characterization. In this study, we characterize the profile of aerosols generated from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum grown for 8 weeks on gypsum boards. Fungal particles were aerosolized at 12 and 20 L min(-1) using the Fungal Spore Source Strength Tester (FSSST) and the Stami particle generator (SPG). Collected particles were analyzed with field emission scanning electron microscopy (FESEM). We observed spore particle fraction consisting of single spores and spore aggregates in four size categories, and a fragment fraction that contained submicronic fragments and three size categories of larger fragments. Single spores dominated the aerosols from A. fumigatus (median: 53%), while the submicronic fragment fraction was the highest in the aerosols collected from A. versicolor (median: 34%) and P. chrysogenum (median: 31%). Morphological characteristics showed near spherical particles that were only single spores, oblong particles that comprise some spore aggregates and fragments (<3.5 μm), and fiber-like particles that regroup chained spore aggregates and fragments (>3.5 μm). Further, the near spherical particles dominated the aerosols from A. fumigatus (median: 53%), while oblong particles were dominant in the aerosols from A. versicolor (68%) and P. chrysogenum (55%). Fiber-like particles represented 21% and 24% of the aerosols from A. versicolor and P. chrysogenum, respectively. This study shows that fungal particles of various size, shape, and origin are aerosolized, and supports the need to include a broader range of particle types in fungal exposure assessment.

  2. Combined X-Ray and Raman Spectroscopic Techniques for the Characterization of Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.; Alpert, P. A.; Knopf, D. A.; Kilthau, W.; Bothe, D.; Charnawskas, J. C.; Gilles, M. K.; OBrien, R. E.; Moffet, R.; Radway, J.

    2014-12-01

    Sea spray aerosol along with mineral dust dominates the global mass flux of particles to the atmosphere. Marine aerosol particles are of particular interest because of their continual impact on cloud formation, precipitation, atmospheric chemical processes, and thus global climate. Here we report on the physical/chemical characteristics of sub-surface waters, aerosolized sea spray particles, and particles/organic species present in surface microlayer (SML) samples collected during oceanic field campaigns and generated during laboratory experiments, revealing a biogenic primary source of the organic fraction of airborne particles. We also report on ice nucleation experiments with aerosolized particles collected during the May 2014 WACS II North Atlantic cruise and with laboratory generated exudate material from diatom cultures with the potential to impact cirrus and mixed phase clouds. Physicochemical analyses using a multi-modal approach which includes Scanning Transmission X-ray Microscopy coupled with Near-Edge Absorption Fine Structure Spectroscopy (STXM/NEXAFS) and Raman spectroscopy confirm the presence and chemical similarity of polysaccharide-rich transparent exopolymer (TEP) material and proteins in both SML sea spray aerosol and ice forming aerosol particles, regardless of the extent of biological activity in surface waters. Our results demonstrate a direct relationship between the marine environment and composition of marine aerosol through primary particle emission.

  3. Overview of Asian Biomass Burning and Dust Aerosols Measured during the Dongsha Experiment in the Spring of 2010

    NASA Astrophysics Data System (ADS)

    Lin, N.; Tsay, S.; Wang, S.; Sheu, G.; Chi, K.; Lee, C.; Wang, J.

    2010-12-01

    The international campaign of Dongsha Experiment was conducted in the northern SE Asian region during March-May 2010. It is a pre-study of the Seven South East Asian Studies (7SEAS) which seeks to perform interdisciplinary research in the field of aerosol-meteorology and climate interaction in the Southeast Asian region, particularly for the impact of biomass burning on cloud, atmospheric radiation, hydrological cycle, and regional climate. Participating countries include Indonesia, Malaysia, Philippines, Singapore, Thailand, Taiwan, Vietnam, and USA (NASA, NRL, and NOAA). The main goals of Dongsha Experiment are (1) to develop the Dongsha Island (about 2 km2, 20°42'52" N, 116°43'51" E) in the South China Sea as an atmospheric observing platform of atmospheric chemistry, radiation and meteorological parameters, and (2) to characterize the chemical and physical properties of biomass burning aerosols in the northern SE Asian region. A monitoring network for ground-based measurements includes the Lulin Atmospheric Background Station (2,862 m MSL) in central Taiwan, Hen-Chun (coastal) in the very southern tip of Taiwan, Dongsha Island in South China Sea, Da Nang (near coastal region) in central Vietnam, and Chiang Mai (about 1,400 m, MSL) in northern Thailand. Besides, the Mobile Air Quality Station of Taiwan EPA and NASA/COMMIT were shipped to Dongsha Island for continuous measurements of CO, SO2, NOx, O3, and PM10, and aerosol optical and vertical profiles. Two Intensive Observation Periods (IOPs) for aerosol chemistry were conducted during 14-30 March and 10-20 April 2010, respectively. Ten aerosol samplers were deployed for each station for characterizing the compositions of PM2.5/PM10 (some for TSP) including water-soluble ions, metal elements, BC/OC, Hg and dioxins. Sampling tubes of VOCs were also deployed. Concurrent measurements with IOP-1, Taiwanese R/V also made a mission to South China Sea during 14-19 March. Enhanced sounding at Dongsha Island was

  4. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  5. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; Denjean, C.; Brogniez, G.; di Sarra, A.; Alados-Arboledas, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, T.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Waquet, F.; Wenger, J.; Zapf, P.

    2016-01-01

    levels of atmospheric pollutants or intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign, with the main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 and 0.6 (at 440 nm) over the western and central Mediterranean basins. One important point of this experiment concerns the direct observations of aerosol extinction onboard the ATR-42, using the CAPS system, showing local maxima reaching up to 150 M m-1 within the dust plume. Non-negligible aerosol extinction (about 50 M m-1) has also been observed within the marine boundary layer (MBL). By combining the ATR-42 extinction coefficient observations with absorption and scattering measurements, we performed a complete optical closure revealing excellent agreement with estimated optical properties. This additional information on extinction properties has allowed calculation of the dust single scattering albedo (SSA) with a high level of confidence over the western Mediterranean. Our results show a moderate variability from 0.90 to 1.00 (at 530 nm) for all flights studied compared to that reported in the literature on this optical parameter. Our results underline also a relatively low difference in SSA with values derived near dust sources. In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea spray and pollution located within the MBL, and mineral dust and/or aged North American smoke particles located above (up to 6-7 km in altitude). Aircraft and balloon-borne observations allow one to investigate the vertical structure of the aerosol size distribution showing particles characterized by a large size (> 10 µm in diameter) within dust plumes. In most of cases, a coarse mode characterized by an effective diameter ranging between 5 and 10 µm, has been detected above the

  6. Characterization of Organic Nitrogen in the Atmosphere Using High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ge, X.; Sun, Y.; Chen, M.; Zhang, Q.

    2015-12-01

    Despite extensive efforts on characterizing organic nitrogen (ON) compounds in atmospheric aerosols and aqueous droplets, knowledge of ON chemistry is still limited, mainly due to its chemical complexity and lack of highly time-resolved measurements. This work is aimed at optimizing the method of using Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) to characterize ON compounds in atmospheric aerosols. Seventy-five pure nitrogen-containing organic compounds covering a variety of functional groups were analyzed with the HR-AMS. Our results show that ON compounds commonly produce NHx+, NOx+, which are usually attributed to inorganic N species such as ammonium and nitrate, and CH2N+ at m/z = 28, which is rarely quantified in ambient aerosol due to large interference from N2+ in the air signal. As a result, using the nitrogen-to-carbon (N/C) calibration factor proposed by Aiken et al. (2008) on average leads to ~ 20% underestimation of N/C in ambient organic aerosol. A new calibration factor of 0.79 is proposed for determining the average N/C in organics. The relative ionization efficiencies (RIEs) of different ON species, on average, are found to be consistent with the default RIE value (1.4) for the total organics. The AMS mass spectral features of various types of ON species (amines, amides, amino acids, etc.) are examined and used for characterizing ON composition in ambient aerosols. Our results indicate that submicron organic aerosol measured during wintertime in Fresno, CA contains significant amounts of amino-compounds whereas more diversified ON species, including N-containing aromatic heterocycle (e.g., imidazoles), are observed in fog waters collected simultaneously. Our findings have important implications for understanding atmospheric ON behaviors via the widespread HR-AMS measurements of ambient aerosols and droplets.

  7. Characterizing the Retrieval of Cloud Optical Thickness and Droplet Effective Radius to Overlying Aerosols Using a General Inverse Theory Approach

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Pilewskie, P.; Schmidt, S.

    2013-12-01

    The upwelling shortwave irradiance measured by the airborne Solar Spectral Flux Radiometer (SSFR) flying above a cloud and aerosol layer is influenced by the properties of the cloud and aerosol particles below, just as would the radiance measured from satellite. Unlike satellite measurements, those from aircraft provide the unique capability to fly a lower-level leg above the cloud, yet below the aerosol layer, to characterize the extinction of the aerosol layer and account for its impact on the measured cloud albedo. Previous work [Coddington et al., 2010] capitalized on this opportunity to test the effects of aerosol particles (or more appropriately, the effects of neglecting aerosols in forward modeling calculations) on cloud retrievals using data obtained during the Intercontinental Chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution (INTEX-A/ITCT) study. This work showed aerosols can cause a systematic bias in the cloud retrieval and that such a bias would need to be distinguished from a true aerosol indirect effect (i.e. the brightening of a cloud due to aerosol effects on cloud microphysics) as theorized by Haywood et al., [2004]. The effects of aerosols on clouds are typically neglected in forward modeling calculations because their pervasiveness, variable microphysical properties, loading, and lifetimes makes forward modeling calculations under all possible combinations completely impractical. Using a general inverse theory technique, which propagates separate contributions from measurement and forward modeling errors into probability distributions of retrieved cloud optical thickness and droplet effective radius, we have demonstrated how the aerosol presence can be introduced as a spectral systematic error in the distributions of the forward modeling solutions. The resultant uncertainty and bias in cloud properties induced by the aerosols is identified by the shape and peak of the posteriori

  8. Comparison of cloud residual and background aerosol particle composition during the hill cap cloud experiment HCCT 2010 in Central Germany

    NASA Astrophysics Data System (ADS)

    Roth, A.; Mertes, S.; van Pinxteren, D.; Klimach, T.; Herrmann, H.; Schneider, J.; Borrmann, S.

    2013-12-01

    Physical and chemical characterization of cloud residual and background aerosol particles as well as aerosol-cloud interactions were investigated during the Hill Cap Cloud Thuringia (HCCT) experiment in September and October 2010 on the mountain site Schmücke (938m a.s.l.) in Germany. Background aerosol particles were sampled by an interstitial inlet whereas cloud droplets from orographic clouds were collected by a counter flow virtual impactor (CVI). Chemical composition analysis and sizing of the particles was done by single particle mass spectrometry using the bipolar Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA, particle diameter range 150 nm - 900 nm; Brands et al., 2011) and by two Aerodyne Aerosol Mass Spectrometers (C-ToF, HR-ToF). Supplementary, the particle size distribution was measured with an optical particle counter (OPC, size range 0.25 μm - 32 μm). During the field campaign about 21000 positive and negative single particle mass spectra could be obtained from cloud residual particles and about 239000 from background aerosol particles. The data were clustered by means of the fuzzy c-means algorithm. The resulting clusters consisting of mass spectra with similar fragmentation patterns were, dependent on presence and combination of peaks, assigned to certain particle types. For both sampled particle types a large portion is internally mixed with nitrate and/or sulfate. This might be an explanation, why a comparison of the composition shows a higher fraction of soot particles and amine-containing particles among cloud residuals. Furthermore cloud residuals show a decreased fraction of particles being internally mixed only with nitrate (10%) compared to background aerosol particles (19%) of the same air masses, whereas the fraction of particles containing both nitrate and sulfate increases from 39% to 63% indicating cloud processing by uptake and oxidation of SO2 (Harris et al, 2013). Brands, M., Kamphus, M., Böttger, T., Schneider

  9. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  10. Exploring Atmospheric Aqueous Chemistry (and Secondary Organic Aerosol Formation) through OH Radical Oxidation Experiments, Droplet Evaporation and Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Kirkland, J. R.; Lim, Y. B.; Ortiz-Montalvo, D. L.; Sullivan, A.; Häkkinen, S.; Schwier, A. N.; Tan, Y.; McNeill, V. F.; Collett, J. L.; Skog, K.; Keutsch, F. N.; Sareen, N.; Carlton, A. G.; Decesari, S.; Facchini, C.

    2013-12-01

    Gas phase photochemistry fragments and oxidizes organic emissions, making water-soluble organics ubiquitous in the atmosphere. My group and others have found that several water-soluble compounds react further in the aqueous phase forming low volatility products under atmospherically-relevant conditions (i.e., in clouds, fogs and wet aerosols). Thus, secondary organic aerosol can form as a result of gas followed by aqueous chemistry (aqSOA). We have used aqueous OH radical oxidation experiments coupled with product analysis and chemical modeling to validate and refine the aqueous chemistry of glyoxal, methylglyoxal, glycolaldehyde, and acetic acid. The resulting chemical model has provided insights into the differences between oxidation chemistry in clouds and in wet aerosols. Further, we conducted droplet evaporation experiments to characterize the volatility of the products. Most recently, we have conducted aqueous OH radical oxidation experiments with ambient mixtures of water-soluble gases to identify additional atmospherically-important precursors and products. Specifically, we scrubbed water-soluble gases from the ambient air in the Po Valley, Italy using four mist chambers in parallel, operating at 25-30 L min-1. Aqueous OH radical oxidation experiments and control experiments were conducted with these mixtures (total organic carbon ≈ 100 μM-C). OH radicals (3.5E-2 μM [OH] s-1) were generated by photolyzing H2O2. Precursors and products were characterized using electrospray ionization mass spectrometry (ESI-MS), ion chromatography (IC), IC-ESI-MS, and ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chemical modeling suggests that organic acids (e.g., oxalate, pyruvate, glycolate) are major products of OH radical oxidation at cloud-relevant concentrations, whereas organic radical - radical reactions result in the formation of oligomers in wet aerosols. Products of cloud chemistry and droplet evaporation have

  11. Characterization of fine mode atmospheric aerosols by Raman microscopy and diffuse reflectance FTIR.

    PubMed

    Gaffney, Jeffrey S; Marley, Nancy A; Smith, Kenneth J

    2015-05-14

    A combination of Raman microscopy and diffuse reflectance Fourier transform infrared spectroscopy (FTIR) has been used for the characterization of fine mode (<1 μm) tropospheric aerosols. Peak fitting was used to identify five overlapping bands in the Raman spectra. These bands have been identified as due to combustion generated carbon soot as well as large molecular organic carbon species. The fwhm of the D band at 1400 cm(-1) as well as the ratio of intensities of the D3 band at 1550 cm(-1) to the G band at 1580 cm(-1) can serve as a measure of the aerosol organic carbon content. Raman microscopy combined with spectral mapping capabilities was used to investigate the composition of the fine mode aerosols at the particle level, allowing for the direct determination of aerosol mixing state. Results showed that the fine aerosols were predominately internally mixed particles composed of carbon soot coated with molecular organic carbon species. Characterization of the aerosols by diffuse reflectance FTIR showed that the major organic carbon species were polycarboxylates and polysaccharide-like species typical of humic-like substances (HULIS).

  12. The Joint Aerosol-Monsoon Experiment: A New Challenge to Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2008-01-01

    Aerosol and monsoon related droughts and floods are two of the most serious environmental hazards confronting more than 60% of the population of the world living in the Asian monsoon countries. In recent years, thanks to improved satellite and in-situ observations, and better models, great strides have been made in aerosol, and monsoon research respectively. There is now a growing body of evidence suggesting that interaction of aerosol forcing with water cycle dynamics in monsoon regions may substantially alter the redistribution of energy at the earth surface and in the atmosphere, and therefore significantly impact monsoon rainfall variability and long term trends. In this talk, I will describe issues related to societal needs, scientific background, and challenges in studies of aerosol-water cycle interaction in Asian monsoon regions. As a first step towards addressing these issues, the authors call for an integrated observation and modeling research approach aimed at the interactions between aerosol chemistry and radiative effects and monsoon dynamics of the coupled ocean-atmosphere-land system. A Joint Aerosol-Monsoon Experiment (JAMEX) is proposed for 2007-2011, with an enhanced observation period during 2008-09, encompassing diverse arrays of observations from surface, aircraft, unmanned aerial vehicles, and satellites of physical and chemical properties of aerosols, long range aerosol transport as well as meteorological and oceanographic parameters in the Indo-Pacific Asian monsoon region. JAMEX will leverage on coordination among many ongoing and planned national programs on aerosols and monsoon research in China, India, Japan, Nepal, Italy, US, as well as international research programs of the World Climate Research Program (WCRP) and the World Meteorological Organization (WMO).

  13. Experiments with the assimilation of fine aerosols using an ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Pagowski, Mariusz; Grell, Georg A.

    2011-11-01

    In a series of experiments we issue forecasts of fine aerosol concentration over the coterminous USA and southern Canada using the Weather Research and Forecasting - Chemistry model initialized with 3D-VAR or ensemble Kalman filter (EnKF) assimilation methods. Assimilated observations include surface measurements of fine aerosols from the United States Environmental Protection Agency AIRNow Data Exchange program. Evaluation statistics calculated over a month-and-half-long summer period demonstrate the advantage of EnKF over 3D-VAR and point to the limitations of applying a simple aerosol parameterization for predicting air quality over the forecast area. Strategies for further improvement of forecasting aerosol concentrations are discussed.

  14. Experiments with the assimilation of fine aerosols using an ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Pagowski, Mariusz; Grell, Georg A.

    2012-11-01

    In a series of experiments we issue forecasts of fine aerosol concentration over the coterminous USA and southern Canada using the Weather Research and Forecasting - Chemistry model initialized with 3D-VAR or ensemble Kalman filter (EnKF) assimilation methods. Assimilated observations include surface measurements of fine aerosols from the United States Environmental Protection Agency AIRNow Data Exchange program. Evaluation statistics calculated over a month-and-half-long summer period demonstrate the advantage of EnKF over 3D-VAR and point to the limitations of applying a simple aerosol parameterization for predicting air quality over the forecast area. Strategies for further improvement of forecasting aerosol concentrations are discussed.

  15. Characterization of ice-nucleating bacteria using on-line electron impact ionization aerosol mass spectrometry.

    PubMed

    Wolf, R; Slowik, J G; Schaupp, C; Amato, P; Saathoff, H; Möhler, O; Prévôt, A S H; Baltensperger, U

    2015-04-01

    The mass spectral signatures of airborne bacteria were measured and analyzed in cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. Suspensions of cultured cells in pure water were sprayed into the aerosol and cloud chambers forming an aerosol which consisted of intact cells, cell fragments and residual particles from the agar medium in which the bacteria were cultured. The aerosol particles were analyzed with a high-resolution time-of-flight aerosol mass spectrometer equipped with a newly developed PM2.5 aerodynamic lens. Positive matrix factorization (PMF) using the multilinear engine (ME-2) source apportionment was applied to deconvolve the bacteria and agar mass spectral signatures. The bacteria mass fraction contributed between 75 and 95% depending on the aerosol generation, with the remaining mass attributed to agar. We present mass spectra of Pseudomonas syringae and Pseudomonas fluorescens bacteria typical for ice-nucleation active bacteria in the atmosphere to facilitate the distinction of airborne bacteria from other constituents in ambient aerosol, e.g. by PMF/ME-2 source apportionment analyses. Nitrogen-containing ions were the most salient feature of the bacteria mass spectra, and a combination of C4 H8 N(+) (m/z 70) and C5 H12 N(+) (m/z 86) may be used as marker ions.

  16. Characterization of aerosol properties from polarimetric satellite observations using GRASP algorithm

    NASA Astrophysics Data System (ADS)

    Dubovik, Oleg; Litvinov, Pavel; Lapyonok, Tatyana; Ducos, Fabrice; Huang, Xin; Lopatin, Anton; Fuertes, David; Derimian, Yevgeny

    2016-04-01

    GRASP (Generalized Retrieval of Aerosol and Surface Properties) is recently developed (Dubovik et al. 2011, 2014) sophisticated algorithm of new generation. The algorithm retrieves aerosol and surface properties simultaneously. It realizes statistically optimized fitting using multi-pixel concept when the retrieval is implemented simultaneously for a large group of satellite pixels. This allows for using additional a priori information about limited variability of aerosol of surface properties in time and/or space. GPASP searches in continuous space of solutions and doesn't utilize look-up-tables. GRASP doesn't use any location specific information about aerosol or surface type in the each observed pixel, and the results are essentially driven by observations. However GRASP retrieval takes longer computational time compare to most conventional algorithms. This main practical challenge of employing GRASP has been addressed during last two years and GRASP algorithm has been significantly optimized and adapted to operational needs. As a result of this optimization and GRASP has been accelerated to the level acceptable for processing large volumes of satellite observations. Recently GRASP has been applied to multi-years archives of PARASO/POLDER. The analysis of the results shows that GRASP retrievals provide rather robust and comprehensive aerosol characterization including such properties as absorption and aerosol type even for observations over bright surfaces and for monitoring very high aerosol loading events (with AOD up to 3 or 4). In addition, the attempts to estimate such aerosol characteristics as aerosol height, air quality, radiative forcing, etc. have been made. The results and illustrations will be presented.

  17. Detailed Characterization of aerosol properties from satellite Observations using GRASP algorithm

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Ducos, F.; Huang, X.; Lopatin, A.; Fuertes, D.; Torres, B.

    2015-12-01

    GRASP (Generalized Retrieval of Aerosol and Surface Properties) is rather sophisticated algorithm was developed recently by Dubovik et al. (2011, 2014) with objective of achieving more complete and accurate aerosols and surface retrieval. Specifically, GPASP searches in continuous space of solutions and doesn't utilize look-up-tables. It based on highly elaborated statistically optimized fitting. For example, it uses multi-pixel retrieval when statistically optimized inversion is implemented simultaneously for a group of satellite pixels. This allows using additional a priori information about limited variability of aerosol of surface properties in time and/or space. As a result, GRASP doesn't use any specific information about aerosol or surface type in the each observed pixel, and the results are essentially driven by observations. However GRASP retrieval takes longer computational time compare to most conventional algorithms that is the main practical challenge of employing GRASP for massive data processing. Nonetheless, in last two years, GRASP has been significantly optimized and adapted to operational needs. As a result of this optimization, GRASP has been accelerated to the level acceptable for processing large volumes of satellite observations. Recently GRASP has been applied to multi-years archives of PARASO/POLDER and ENVISAT/MERIS. Based, on the preliminary analysis GRASP results are very promising for comprehensive characterization of aerosol even for observations over bright surfaces and for monitoring very high aerosol loading events (with AOD 2 or 3). In addition, it was made the attempts to estimate such aerosol characteristics as aerosol height, air mass, radiative forcing, aerosol type, etc. The results and illustrations will be presented.

  18. Novel aerosol analysis approach for characterization of nanoparticulate matter in snow.

    PubMed

    Nazarenko, Yevgen; Rangel-Alvarado, Rodrigo B; Kos, Gregor; Kurien, Uday; Ariya, Parisa A

    2016-12-10

    Tropospheric aerosols are involved in several key atmospheric processes: from ice nucleation, cloud formation, and precipitation to weather and climate. The impact of aerosols on these atmospheric processes depends on the chemical and physical characteristics of aerosol particles, and these characteristics are still largely uncertain. In this study, we developed a system for processing and aerosolization of melted snow in particle-free air, coupled with a real-time measurement of aerosol size distributions. The newly developed technique involves bringing snow-borne particles into an airborne state, which enables application of high-resolution aerosol analysis and sampling techniques. This novel analytical approach was compared to a variety of complementary existing analytical methods as applied for characterization of snow samples from remote sites in Alert (Canada) and Barrow (USA), as well as urban Montreal (Canada). The dry aerosol measurements indicated a higher abundance of particles of all sizes, and the 30 nm size dominated in aerosol size distributions for the Montreal samples, closely followed by Barrow, with about 30% fewer 30 nm particles, and about four times lower 30 nm particle abundance in Alert samples, where 15 nm particles were most abundant instead. The aerosolization technique, used together with nanoparticle tracking analysis and electron microscopy, allowed measurement of a wide size range of snow-borne particles in various environmental snow samples. Here, we discuss the application of the new technique to achieve better physicochemical understanding of atmospheric and snow processes. The results showed high sensitivity and reduction of particle aggregation, as well as the ability to measure a high-resolution snow-borne particle size distribution, including nanoparticulate matter in the range of 10 to 100 nm.

  19. Two-wavelength lidar characterization of atmospheric aerosol fields at low altitudes over heterogeneous terrain

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Dreischuh, Tanja N.; Toncheva, Eleonora N.; Stoyanov, Dimitar V.

    2012-01-01

    The possibilities for applying multiwavelength elastic lidar probing of the atmosphere to help monitor air-quality over large industrial and densely populated areas, based predominantly on the use and analysis of commonly obtainable backscatter-related lidar quantities, are examined. Presented are two-wavelength (1064/532 nm) lidar observations on the spatial distribution, structure, composition, and temporal evolution of close-to-surface atmospheric aerosol fields over heterogeneous orographic areas (adjacent city, plain, and mountain) near Sofia, Bulgaria. Selected winter-time evening lidar measurements are described. Range profiles, histograms, and evolutional range-time diagrams of the aerosol backscatter coefficients, range-corrected lidar signals, normalized standard deviations, and backscatter-related Ångström exponents (BAE) are analyzed. Near-perfect correlation between the aerosol density distribution and orographic differentiation of the underlying terrain is established, finding expression in a sustained horizontal stratification of the probed atmospheric domains. Distinctive features in the spatial distribution and temporal evolution of both the fine- and coarse aerosol fractions are revealed in correlation with terrain's orography. Zonal aerosol particle size distributions are qualitatively characterized by using an approach based on BAE occurrence frequency distribution analysis. Assumptions are made about the aerosol particle type, origin, and dominating size as connected (by transport-modeling data) to local pollution sources. Specifics and patterns of temporal dynamics of the fine- and coarse aerosol fraction density distributions and movements, revealed by using statistical analysis of lidar data, are discussed. The obtained results prove the capability of the used two-wavelength lidar approach to perform fast-, reliable, and self-consistent characterization of important optical-, micro-physical-, and dynamical properties of atmospheric

  20. Overview of the Megacity Aerosol Experiment: Mexico City (MAX-Mex)

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.

    2007-05-01

    Tropospheric aerosols can play an important role the radiative balance of the globe. This is due to their ability to scatter and absorb solar radiation. The sign of this forcing will depend on their chemical composition and size, their lifetimes, and position in the atmosphere. Major sources of aerosols are now coming from megacities: Cities with more than 10 million population. As part of the MILAGRO campaign, the Megacity Aerosol Experiment: Mexico City was conducted by the Atmospheric Science Program of the Climate Change Research Division of the Department of Energy in collaboration with the scientists supported by NSF, NASA, and Mexican agencies. The preliminary results of the study will be overviewed and highlights of the efforts from both ground based and airborne measurements presented. Data from the study confirm that the megacity plumes are significant sources of both primary and secondary aerosols into the regional scale, and black carbon and secondary aerosols are contributing to single scattering albedos in the Valley of Mexico and downwind that are substantially reduced when compared to other areas (such as the eastern United States). The potential of biomass burning as well as megacity plumes contributing to a decrease in the aerosol single scattering albedos (aerosol direct effects) on regional scales will be discussed. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64328.

  1. Experience and Challenges in Implementing Stratospheric Aerosol Gas Experiment on Meteor-3M Platform

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Newsom, Jerry; Rawls, Richard

    2001-01-01

    Implementation of Stratospheric Aerosol Gas Experiment (SAGE) is a joint science mission between the Rosavioskosmos, also called Russian Aviation and Space Agency (RASA) and the National Aeronautics and Space Administration (NASA). Under the global collaboration agreement established by President Clinton and Yeltsin in 1995 between the United States and Russia, space was one of the major areas identified for joint scientific collaboration. There were several collaborative projects identified under space, earth, human exploration of space and aeronautics. SAGE was one of the key Earth Science instruments selected common to both countries' interests in ozone research. SAGE has a long space heritage, and four earlier versions of this instrument have flown in space for the last 15-year period. It has provided a vital ozone and aerosol data in the mid latitudes and has contributed in the overall ozone depletion research. SAGE II, the fourth instrument has been flying in space on NASA's Earth Radiation Budget Satellite (ERBS) for the last 14 years. Ball Aerospace built the instrument under Langley Research Center's (LaRC) management. SAGE III for Russian Meteor-3M mission is a third generation design with more spectral bands, elaborate data gathering and storage and intelligent terrestrial software. The Russian collaboration required a complete integration of SAGE III on the Russian Meteor-3M satellite and a launch on a Zenit-2 launch vehicle manufactured in Ukraine. The whole complex is scheduled to be launched from Baikonur cosmodrome in early 2001. This cooperative mission has presented a number of management, technical and logistical challenges on both sides. This paper makes an attempt to review and document such experiences.

  2. Multi- year Arctic and Antarctic aerosol chemical characterization

    NASA Astrophysics Data System (ADS)

    Udisti, Roberto; Becagli, Silvia; Caiazzo, Laura; Calzolai, Giulia; Cappelletti, David; Giardi, Fabio; Grotti, Marco; Malandrino, Mery; Nava, Silvia; Severi, Mirko; Traversi, Rita

    2016-04-01

    Long term measurements of aerosol chemical composition in polar region are particularly relevant to investigate potential climatic effects of atmospheric components arising from both natural and anthropogenic emissions. In order to improve our knowledge on the atmospheric load and chemical composition of polar aerosol, several measurements and sampling campaigns were carried out both in Antarctica and in the Arctic since 2005.The main results are here reported. As regard as Antarctica, a continuous all-year-round sampling of size-segregated aerosol was carried from 2005 to 2013 at Dome C (East Antarctica; 75° 60' S, 123° 200' E, 3220 m a.s.l. and 1100 km away from the nearest coast). Aerosol was collected by PM10 and PM2.5 samplers and by multi-stage impactors (Dekati 4-stage impactor). Chemical analysis was carried out by Ion Chromatography (ions composition) and ICP-MS (trace metals). Sea spray showed a sharp seasonal pattern, with winter (Apr-Nov) concentrations about ten times larger than summer (Dec-Mar). Besides, in winter, sea spray particles are mainly sub micrometric, while the summer size-mode is around 1-2 um. Meteorological analysis and air mass back trajectory reconstructions allowed the identification of two major air mass pathways: micrometric fractions for transport from the closer Indian-Pacific sector, and sub-micrometric particles for longer trajectories over the Antarctic Plateau. The markers of oceanic biogenic emission (methanesulfonic acid - MSA, and non-sea-salt sulphate) exhibit a seasonal cycle with summer maxima (Nov-Mar). Their size distributions show two modes (0.4- 0.7 um and 1.1-2.1 um) in early summer and just one sub-micrometric mode in full summer. The two modes are related to different transport pathways. In early summer, air masses came primarily from the Indian Ocean and spent a long time over the continent. The transport of sulphur compounds is related to sea spray aerosols and the resulting condensation of H2SO4 and MSA over

  3. First Experiments in Assimilation of MODIS Reflectances in an Aerosol Model

    NASA Astrophysics Data System (ADS)

    Cosme, E.; Menard, R.; O'Neill, N.

    2004-05-01

    Concerns about air quality are rapidly growing. Forecast systems of the principal anthropogenic and natural compounds that affect climate and human health are expected to be operational by the end of this decade. Acknowledging the current uncertainties and the unpredictability of the emission sources, this forecasting exercise will undoubtly require robust assimilation systems for chemical and aerosol tracers as well as large volumes of assimilation data. In the framework of the Canadian Multiscale Air Quality Modelling Network (MAQNet) project, a system is currently under development for the assimilation of satellite reflectance data in an aerosol forecasting model. The current status of this effort will be presented. The 6S radiative transfer model (Second Simulation of the Satellite Signal in the Solar Spectrum) is used as observation operator, i.e. to calculate TOA reflectances from aerosol characteristics and other known boundary conditions. The input interface to 6S was re-designed to accept outputs from the Canadian Aerosol Module (CAM). An Ensemble Kalman Filter was developed to assimilate satellite data into CAM. The Kalman Filter propagates the aerosol covariance error statistics, thus enabling optimal use of the data, and to characterize the information content of the measurements. Preliminary results and an information content assessment of MODIS reflectances are made for a simplified aerosol model using the ensemble Kalman filter approach.

  4. Molecular Characterization of Free Tropospheric Aerosol Collected at the Pico Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Dzepina, K.; Mazzoleni, C.; Fialho, P. J.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Jacques, H.; Kumar, S.; Perlinger, J. A.; Kramer, L. J.; Dziobak, M.; Ampadu, M.; Olsen, S. C.; Wuebbles, D. J.; Mazzoleni, L. R.

    2014-12-01

    the two samples was corroborated by the changes in ozone, ethane, propane, morphology of particles, as well as by the FLEXPART retroplumes. In this presentation we will report the first detailed molecular characterization of free tropospheric aged aerosol intercepted at the Pico Mountain Observatory.

  5. Characterization of the sunset semi-continuous carbon aerosol analyzer.

    PubMed

    Bauer, Jace J; Yu, Xiao-Ying; Cary, Robert; Laulainen, Nels; Berkowitz, Carl

    2009-07-01

    The field-deployable Sunset Semi-Continuous Organic Carbon/Elemental Carbon (Sunset OCEC) aerosol analyzer utilizes the modified National Institute for Occupational Safety and Health thermal-optical method to determine total carbon (TC), organic carbon (OC), and elemental carbon (EC) at near real-time. Two sets of OC and EC are available: thermal OC and EC, and optical OC and EC. The former is obtained by the thermal-optical approach, and the latter is obtained by directly determining EC optically and deriving optical OC from TC. However, the performance of the Sunset OCEC is not yet fully characterized. Two collocated Sunset OCEC analyzers, Unit A and Unit B, were used to determine the pooled relative standard deviation (RSD) and limit of detection (LOD) between September 18 and November 6, 2007 in Richland, WA. The LOD of Unit A was approximately 0.2 microgC/m3 (0.1 microgC/cm2) for TC, optical OC, and thermal OC, and 0.01 microgC/m3 (0.01 microgC/cm2) for optical EC. Similarly, Unit B had an LOD of approximately 0.3 microgC/m3 (0.2 microgC/cm2) for TC, optical OC, and thermal OC, and 0.02 microgC/m3 (0.01 microgC/cm2) for optical EC. The LOD for thermal EC is estimated to be 0.2 microgC/m3 (0.1 microgC/cm2) for both units. The pooled RSDs were 4.9% for TC (carbon mass loadings 0.6-6.0 microgC/cm2), 5.6% for optical OC (carbon mass loadings 0.6-5.4 microgC/cm2), 5.3% for thermal OC (carbon mass loadings 0.6-5.3 microgC/ cm2), and 9.6% for optical EC (carbon mass loadings 0-1.4 microgC/cm2), which indicates good precision between the instruments. The RSD for thermal EC is higher at 24.3% (carbon mass loadings 0-1.2 microgC/cm2). Low EC mass loadings in Richland contributed to the poor RSD of EC. The authors found that excessive noise from the nondispersive infrared (NDIR) laser in the Sunset OCEC analyzer could result in a worsened determination of OC and EC. It is recommended that a "quieter" NDIR laser and detector be used in the Sunset OCEC analyzer to improve

  6. Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Saarikoski, S.; Carbone, S.; Decesari, S.; Giulianelli, L.; Angelini, F.; Teinilä, K.; Canagaratna, M.; Ng, N. L.; Trimborn, A.; Facchini, M. C.; Fuzzi, S.; Hillamo, R.; Worsnop, D.

    2012-03-01

    The chemistry of submicron particles was investigated at San Pietro Capofiume (SPC) measurement station in the Po Valley, Italy, in spring 2008. The measurements were performed by using both off-line and on-line instruments. Organic carbon (OC) and elemental carbon, organic acids and biomass burning tracers were measured off-line by using a 24-h PM1 filter sampling. More detailed particle chemistry was achieved by using an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and analyzing the data by positive matrix factorization (PMF). Oxalic acid had the highest concentrations of organic acids (campaign-average 97.4 ng m-3) followed by methane sulfonic, formic, malonic, and malic acids. Samples were also analyzed for glyoxylic, succinic, azelaic and maleic acids. In total, the nine acids composed 1.9 and 3.8% of OC and water-soluble OC, respectively (average), in terms of carbon atoms. Levoglucosan concentration varied from 17.7 to 495 ng m-3 with the concentration decreasing in the course of the campaign most likely due to the reduced use of domestic heating with wood. Six factors were found for organic aerosol (OA) at SPC by PMF: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), nitrogen-containing OA (N-OA) and three different oxygenated OAs (OOA-a, OOA-b and OOA-c). Most of the OA mass was composed of OOA-a, HOA and OOA-c (26, 24 and 22%, respectively) followed by OOA-b (13%), BBOA (8%) and N-OA (7%). As expected, OOAs were the most oxygenated factors with organic matter:organic carbon (OM:OC) ratios ranging from 1.9 to 2.2. The diurnal variability of the aerosol chemical composition was greatly affected by the boundary layer meteorology. Specifically, the effect of the nocturnal layer break-up in morning hours was most evident for nitrate and N-OA indicating that these compounds originated mainly from the local sources in the Po Valley. For sulfate and OOA-a the concentration did not change during the break-up suggesting their

  7. Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Saarikoski, S.; Carbone, S.; Decesari, S.; Giulianelli, L.; Angelini, F.; Canagaratna, M.; Ng, N. L.; Trimborn, A.; Facchini, M. C.; Fuzzi, S.; Hillamo, R.; Worsnop, D.

    2012-09-01

    The chemistry of submicron particles was investigated at San Pietro Capofiume (SPC) measurement station in the Po Valley, Italy, in spring 2008. The measurements were performed by using both off-line and on-line instruments. Organic carbon (OC) and elemental carbon, organic acids and biomass burning tracers were measured off-line by using a 24-h PM1 filter sampling. More detailed particle chemistry was achieved by using a Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and analyzing the data by positive matrix factorization (PMF). Oxalic acid had the highest concentrations of organic acids (campaign-average 97.4 ng m-3) followed by methane sulfonic, formic, malonic, and malic acids. Samples were also analyzed for glyoxylic, succinic, azelaic and maleic acids. In total, the nine acids composed 1.9 and 3.8% of OC and water-soluble OC, respectively (average), in terms of carbon atoms. Levoglucosan concentration varied from 17.7 to 495 ng m-3 with the concentration decreasing in the course of the campaign most likely due to the reduced use of domestic heating with wood. Six factors were found for organic aerosol (OA) at SPC by PMF: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), nitrogen-containing OA (N-OA) and three different oxygenated OAs (OOA-a, OOA-b and OOA-c). Most of the OA mass was composed of OOA-a, HOA and OOA-c (26, 24 and 22%, respectively) followed by OOA-b (13%), BBOA (8%) and N-OA (7%). As expected, OOAs were the most oxygenated factors with organic matter:organic carbon (OM : OC) ratios ranging from 1.9 to 2.2. The diurnal variability of the aerosol chemical composition was greatly affected by the boundary layer meteorology. Specifically, the effect of the nocturnal layer break-up in morning hours was most evident for nitrate and N-OA indicating that these compounds originated mainly from the local sources in the Po Valley. For sulfate and OOA-a the concentration did not change during the break-up suggesting their

  8. Characterization of aerosol episodes in the greater Mediterranean Sea area from satellite observations (2000-2007)

    NASA Astrophysics Data System (ADS)

    Gkikas, A.; Hatzianastassiou, N.; Mihalopoulos, N.; Torres, O.

    2016-03-01

    An algorithm able to identify and characterize episodes of different aerosol types above sea surfaces of the greater Mediterranean basin (GMB), including the Black Sea and the Atlantic Ocean off the coasts of Iberia and northwest Africa, is presented in this study. Based on this algorithm, five types of intense (strong and extreme) aerosol episodes in the GMB are identified and characterized using daily aerosol optical properties from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMI-Aura. These aerosol episodes are: (i) biomass-burning/urban-industrial (BU), (ii) desert dust (DD), (iii) dust/sea-salt (DSS), (iv) mixed (MX) and (v) undetermined (UN). The identification and characterization is made with our algorithm using a variety of aerosol properties, namely aerosol optical depth (AOD), Ångström exponent (α), fine fraction (FF), effective radius (reff) and Aerosol Index (AI). During the study period (2000-2007), the most frequent aerosol episodes are DD, observed primarily in the western and central Mediterranean Sea, and off the northern African coasts, 7 times/year for strong episodes and 4 times/year for extreme ones, on average. The DD episodes yield 40% of all types of strong aerosol episodes in the study region, while they account for 71.5% of all extreme episodes. The frequency of occurrence of strong episodes exhibits specific geographical patterns, for example the BU are mostly observed along the coasts of southern Europe and off the Atlantic coasts of Portugal, the MX episodes off the Spanish Mediterranean coast and over the Adriatic and northern Aegean Sea, while the DSS ones over the western and central Mediterranean Sea. On the other hand, the extreme episodes for all but DD aerosol display more patchy spatial patterns. The strong episodes exhibit AOD at 550 nm as high as 1.6 in the southernmost parts of central and eastern Mediterranean Sea, which rise up to 5 for the extreme, mainly DD and DSS, episodes. Although more

  9. Lidar-radar synergy for characterizing properties of ultragiant volcanic aerosol

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amodeo, A.; D'Amico, G.; Giunta, A.; Mona, L.; Pappalardo, G.

    2011-12-01

    The atmospheric aerosol has a relevant effect on our life influencing climate, aviation safety, air quality and natural hazards. The identification of aerosol layers through inspection of continuous measurements is strongly recommended for quantifying their contribution to natural hazards and air quality and to establish suitable alerting systems. In particular, the study of ultragiant aerosols may improve the knowledge of physical-chemical processes underlying the aerosol-cloud interactions and the effect of giant nuclei as a potential element to expedite the warm-rain process. Moreover, the identification and the characterization of ultragiant aerosols may strongly contribute to quantify their impact on human health and their role in airplane engine damages or in visibility problems, especially in case of extreme events as explosive volcanic eruptions. During spring 2010, volcanic aerosol layers coming from Eyjafjallajökull volcano were observed over most of the European countries, using lidar technique. From 19 April to 19 May 2010, they were also observed at CNR-IMAA Atmospheric Observatory (CIAO) with the multi-wavelength Raman lidar systems of the Potenza EARLINET station (40.60N, 15.72E, 760 m a.s.l), Southern Italy. During this period, ultragiant aerosol were also observed at CIAO using a co-located Ka-band MIRA-36 Doppler microwave radar operating at 8.45 mm (35.5 GHz). The Ka-band radar observed in four separate days (19 April, 7, 10, 13 May) signatures consistent with the observations of non-spherical ultragiant aerosol characterized by anomalous values of linear depolarization ratio higher than -4 dB, probably related to the occurrence of multiple effects as particle alignment and presence of an ice coating. 7-days backward trajectory analysis shows that the air masses corresponding to the ultragiant aerosol observed by the radar were coming from the Eyjafjallajökull volcano area. Only in one case the trajectories do not come directly from Iceland

  10. Ultrahigh resolution mass spectrometric characterization of organic aerosol from European and Chinese cities

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Huang, Ru-Jin; Hoffmann, Thorsten

    2016-04-01

    Organic aerosol constitutes a substantial fraction (20-90%) of submicrometer aerosol mass, playing an important role in air quality and human health. Over the past few years, ultra-high resolution mass spectrometry (UHRMS) has been applied to elucidate the chemical composition of ambient aerosols. However, most of the UHRMS studies used direct infusion without prior separation by liquid chromatography, which may cause the loss of individual compound information and interference problems. In the present study, urban ambient aerosol with particle diameter < 2.5 μm was collected in Mainz, Germany and Beijing, China, respectively. Two pretreatment procedures were applied to extract the organic compounds from the filter samples: One method uses a mixture of acetonitrile and water, the other uses pure water and prepared for the extraction of humic-like substances. The extracts were analyzed by ultra-high-performance liquid chromatography coupled with an Orbitrap mass spectrometer in both negative and the positive modes. The effects of pretreatment procedures on the characterization of organic aerosol and the city-wise difference in chemical composition of organic aerosol will be discussed in detail.

  11. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan

    SciTech Connect

    Leung, L. R.; Prather, K.; Ralph, R.; Rosenfeld, D.; Spackman, R.; DeMott, P.; Fairall, C.; Fan, J.; Hagos, S.; Hughes, M.; Long, C.; Rutledge, S.; Waliser, D.; Wang, H.

    2014-09-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.

  12. Characterization of aerosols above the Northern Adriatic Sea: Case studies of offshore and onshore wind conditions

    NASA Astrophysics Data System (ADS)

    Piazzola, J.; Mihalopoulos, N.; Canepa, E.; Tedeschi, G.; Prati, P.; Zarmpas, P.; Bastianini, M.; Missamou, T.; Cavaleri, L.

    2016-05-01

    Aerosol particles in coastal areas result from a complex mixing between sea spray aerosols locally generated at the sea surface by the wind-waves interaction processes and a continental component resulting from natural and/or anthropogenic sources. This paper presents a physical and chemical analysis of the aerosol data acquired from May to September 2014 in the Adriatic Sea. Aerosol distributions were measured on the Acqua Alta platform located 15 km off the coast of Venice using two Particle Measuring System probes and a chemical characterization was made using an Ion Chromatography analysis (IC). Our aim is to study both the sea-spray contribution and the anthropogenic influence in the coastal aerosol of this Mediterranean region. To this end, we focus on a comparison between the present data and the aerosol size distributions measured south of the French Mediterranean coast. For air masses of marine origin transported by southern winds on the French coast and by the Sirocco in the Adriatic, we note a good agreement between the concentrations of super-micrometer aerosols measured in the two locations. This indicates a similar sea surface production of sea-spray aerosols formed by bubble bursting processes in the two locations. In contrast, the results show larger concentrations of submicron particles in the North-Western Mediterranean compared to the Adriatic, which result probably from a larger anthropogenic background for marine conditions. In contrast, for a coastal influence, the chemical analysis presented in the present paper seems to indicate a larger importance of the anthropogenic impact in the Northern Adriatic compared to the North-Western Mediterranean.

  13. A global climatology of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984-1994

    NASA Astrophysics Data System (ADS)

    Thomason, L. W.; Poole, L. R.; Deshler, T.

    1997-04-01

    A global climatology of stratospheric aerosol surface area density has been developed using the multiwavelength aerosol extinction measurements of the Stratospheric Aerosol and Gas Experiment (SAGE) II for 1984-1994. The spatial and temporal variability of aerosol surface area density at 15.5, 20.5, and 25.5 km are presented as well as cumulative statistical distributions as a function of altitude and latitude. During this period, which encompassed the injection and dissipation of the aerosol associated with the June 1991 Mount Pinatubo eruption as well as the low loading period of 1989-1991, aerosol surface area density varied by more than a factor 30 at some altitudes. Aerosol surface area density derived from SAGE II and from the University of Wyoming optical particle counters are compared for 1991-1994 and are shown to be in generally good agreement though some differences are noted. An extension of the climatology using single-wavelength measurements by the Stratospheric Aerosol Measurement II (1978-1994) and SAGE (1979-1981) instruments is also presented.

  14. The Stratospheric Aerosol and Gas Experiment III/International Space Station Mission: Science Objectives and Mission Status

    NASA Astrophysics Data System (ADS)

    Eckman, R.; Zawodny, J. M.; Cisewski, M. S.; Flittner, D. E.; McCormick, M. P.; Gasbarre, J. F.; Damadeo, R. P.; Hill, C. A.

    2015-12-01

    The Stratospheric Aerosol and Gas Experiment III/International Space Station (SAGE III/ISS) is a strategic climate continuity mission which was included in NASA's 2010 plan, "Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space." SAGE III/ISS continues the long-term, global measurements of trace gases and aerosols begun in 1979 by SAGE I and continued by SAGE II and SAGE III on Meteor 3M. Using a well characterized occultation technique, the SAGE III instrument's spectrometer will measure vertical profiles of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gases relevant to ozone chemistry. The mission will launch in 2016 aboard a Falcon 9 spacecraft.The primary objective of SAGE III/ISS is to monitor the vertical distribution of aerosols, ozone, and other trace gases in the Earth's stratosphere and troposphere to enhance our understanding of ozone recovery and climate change processes in the stratosphere and upper troposphere. SAGE III/ISS will provide data necessary to assess the state of the recovery in the distribution of ozone, extend the SAGE III aerosol measurement record that is needed by both climate models and ozone models, and gain further insight into key processes contributing to ozone and aerosol variability. The multi-decadal SAGE ozone and aerosol data sets have undergone intense community scrutiny for accuracy and stability. SAGE ozone data have been used to monitor the effectiveness of the Montreal Protocol.The ISS inclined orbit of 51.6 degrees is ideal for SAGE III measurements because the orbit permits solar occultation measurement coverage to approximately +/- 70 degrees of latitude. SAGE III/ISS will make measurements using the solar occultation measurement technique, lunar occultation measurement technique, and the limb scattering measurement technique. In this presentation, we describe the SAGE III/ISS mission, its

  15. Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Junke; Wang, Yuesi; Huang, Xiaojuan; Liu, Zirui; Ji, Dongsheng; Sun, Yang

    2015-06-01

    Fine particle of organic aerosol (OA), mostly arising from pollution, are abundant in Beijing. To achieve a better understanding of the difference in OA in summer and autumn, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research Inc., USA) was deployed in urban Beijing in August and October 2012. The mean OA mass concentration in autumn was 30±30 μg m-3, which was higher than in summer (13±6.9 μg m-3). The elemental analysis found that OA was more aged in summer (oxygen-to-carbon (O/C) ratios were 0.41 and 0.32 for summer and autumn, respectively). Positive matrix factorization (PMF) analysis identified three and five components in summer and autumn, respectively. In summer, an oxygenated OA (OOA), a cooking-emission-related OA (COA), and a hydrocarbon-like OA (HOA) were indentified. Meanwhile, the OOA was separated into LV-OOA (low-volatility OOA) and SV-OOA (semi-volatile OOA); and in autumn, a nitrogen-containing OA (NOA) was also found. The SOA (secondary OA) was always the most important OA component, accounting for 55% of the OA in the two seasons. Back trajectory clustering analysis found that the origin of the air masses was more complex in summer. Southerly air masses in both seasons were associated with the highest OA loading, while northerly air masses were associated with the lowest OA loading. A preliminary study of OA components, especially the POA (primary OA), in different periods found that the HOA and COA all decreased during the National Day holiday period, and HOA decreased at weekends compared with weekdays.

  16. Characterizations of atmospheric fungal aerosol in Beijing, China

    NASA Astrophysics Data System (ADS)

    Liang, Linlin; Engling, Guenter; He, Kebin; Du, Zhenyu

    2013-04-01

    Fungal aerosols constitute the most abundant fraction of biological aerosols in the atmosphere, influencing human health, the biosphere, atmospheric chemistry and climate. However, the total abundance of fungal spores in the atmosphere is still poorly understood and quantified. PM10 and PM2.5 samples were collected by high volume samplers simultaneously at a rural site (MY) and an urban site (THU) in Beijing, China. Various carbohydrates were quantified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), including the sugar alcohols mannitol and arabitol, proposed as molecular tracers for fungal aerosol. The annual average concentrations of arabitol in PM2.5 and PM10 at the THU site were 7.4±9.4 ng/m3 and 10.3±9.5 ng/m3, and the respective mannitol concentrations were 21.0±20.4 ng/m3 and 31.9±26.9 ng/m3. Compared to PM10, the monthly average concentrations of arabitol and mannitol in PM2.5 did not vary significantly and were present at nearly consistent levels in the different seasons. Moreover, during summer and autumn higher arabitol and mannitol levels than during spring and winter were observed in coarse particles, probably due to different dominant sources of fungal spores in different seasons. In the dry period (i.e., winter and spring) in Beijing, probably only the suspension from exposed surfaces, (e.g., soil resuspension, transported dust, etc.) can be regarded as the main sources for fungal aerosols. On the other hand, in summer and autumn, fungal spores in the atmosphere can be derived from more complex sources, including plants, vegetation decomposition and agricultural activity, such as ploughing; these fungal spore sources may contribute more to coarse PM. Mannitol and arabitol correlated well with each other, both in PM10 (R2 = 0.71) and PM2.5 (R2 = 0.81). Although fungal spore levels at rural sites were consistently higher than those at urban sites in other studies, the findings in our study were

  17. Characterization of Vapor and Aerosol Flows by Photothermal Methods.

    DTIC Science & Technology

    2014-09-26

    transient Mie-scattering. The main parts of our experimental set-up have been shown previously5 . A Q-switched CO2 laser beam (pulse duration I ps...indicated beam separations in a nitrogen/ethanol vapor flow.The CO2 laser is fired at t-0. Signal decrease and broadening is in agreement with eq. (I...20. AUSTRACT (Confliu W tover@ aede It nemsaem iaind Identif by bleck numier) Pulsed laser heating is used to label aerosols or absorbing vapors

  18. Electron Microscopy Characterization of Aerosols Collected at Mauna Loa Observatory During Asian Dust Storm Event

    EPA Science Inventory

    Atmospheric aerosol particles have a significant influence on global climate due to their ability to absorb and scatter incoming solar radiation. Size, composition, and morphology affect a particle’s radiative properties and these can be characterized by electron microscopy. Lo...

  19. Characterization of indoor cooking aerosol using neutron activation analysis

    SciTech Connect

    Wu, D.; Landsberger, S.; Larson, S. )

    1993-01-01

    Suspended particles in air are potentially harmful to human health, depending on their sizes and chemical composition. Residential indoor particles mainly come from (a) outdoor sources that are transported indoors, (b) indoor dust that is resuspended, and (c) indoor combustion sources, which include cigarette smoking, cooking, and heating. Jedrychowski stated that chronic phlegm in elderly women was strongly related to the cooking exposure. Kamens et al. indicated that cooking could generate small particles (<0.1 [mu]m), and cooking one meal could contribute [approximately]5 to 18% of total daytime particle volume exposure. Although cooking is a basic human activity, there are not many data available on the properties of particles generated by this activity. Some cooking methods, such as stir-frying and frying, which are the most favored for Chinese and other Far East people, generate a large quantity of aerosols. This research included the following efforts: 1. investigating particle number concentrations, distributions, and their variations with four different cooking methods and ventilation conditions; 2. measuring the chemical composition of cooking aerosol samples by instrumental neutron activation analysis.

  20. Chemical and optical characterization of aerosols measured in spring 2002 at the ACE-Asia supersite, Zhenbeitai, China

    NASA Astrophysics Data System (ADS)

    Alfaro, S. C.; Gomes, L.; Rajot, J. L.; Lafon, S.; Gaudichet, A.; Chatenet, B.; Maille, M.; Cautenet, G.; Lasserre, F.; Cachier, H.; Zhang, X. Y.

    2003-12-01

    In April 2002, aerosol characteristics have been recorded at Zhenbeitai (ZBT) near the city of Yulin (38°17'N, 109°43'E, Shaanxi province, China). One year earlier, ZBT had been one of the continental supersites of the ACE-Asia international experiment. In spring, this site, located on the southwestern fringe of the Mu Us desert, is at the crossing of the pathways followed by dust originating from the main Chinese dust sources. During the experiment a customized aerosol sampler has been used. It had been specially designed to ensure the best possible sampling isokineticity for all instruments and to minimize coarse particle losses. Its cutoff size (D50) has been computed to be 9 μm. For particles smaller than this size (PM9), mass concentrations, number concentrations, size distributions, elemental composition, and scattering properties were measured at ground level. Vertically integrated characteristics such as aerosol optical thickness (AOT), or single scattering albedo (ϖ0), were also determined by the means of a Sun-tracking photometer. During the measurement period, several dust events, one of them a major dust storm when PM9 mass concentrations became as high as 4650 μg/m3, were observed. At this time the aerosol scattering coefficient reached 2800 Mm-1. These dust events were separated by periods when optical properties were altered, or even dominated, by anthropogenic aerosol of local origin. For these periods, PM9 was significantly less (always below 100 μg/m3) than during dust events, mass concentration in black carbon (BC) was between 0.9 and 6.7 μg/m3, and the aerosol scattering coefficient between 7 and 800 Mm-1. No difference in elemental composition could be detected between the various dust episodes. Measured Fe/Al (0.63 ± 0.04) and Mg/Al (0.32 ± 0.03) ratios are consistent with an aerosol source located in the "northwestern high desert sources." This result is also supported by the air mass back-trajectories coming from a west or northwest

  1. Effects of Data Quality on the Characterization of Aerosol Properties from Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Ichoku, Charles; Leptoukh, Gregory

    2011-01-01

    Cross-comparison of aerosol properties between ground-based and spaceborne measurements is an important validation technique that helps to investigate the uncertainties of aerosol products acquired using spaceborne sensors. However, it has been shown that even minor differences in the cross-characterization procedure may significantly impact the results of such validation. Of particular consideration is the quality assurance I quality control (QA/QC) information - an auxiliary data indicating a "confidence" level (e.g., Bad, Fair, Good, Excellent, etc.) conferred by the retrieval algorithms on the produced data. Depending on the treatment of available QA/QC information, a cross-characterization procedure has the potential of filtering out invalid data points, such as uncertain or erroneous retrievals, which tend to reduce the credibility of such comparisons. However, under certain circumstances, even high QA/QC values may not fully guarantee the quality of the data. For example, retrievals in proximity of a cloud might be particularly perplexing for an aerosol retrieval algorithm, resulting in an invalid data that, nonetheless, could be assigned a high QA/QC confidence. In this presentation, we will study the effects of several QA/QC parameters on cross-characterization of aerosol properties between the data acquired by multiple spaceborne sensors. We will utilize the Multi-sensor Aerosol Products Sampling System (MAPSS) that provides a consistent platform for multi-sensor comparison, including collocation with measurements acquired by the ground-based Aerosol Robotic Network (AERONET), The multi-sensor spaceborne data analyzed include those acquired by the Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and CalipsoCALIOP satellite instruments.

  2. Effects of Data Quality on the Characterization of Aerosol Properties from Multiple Sensors

    NASA Astrophysics Data System (ADS)

    Petrenko, M.; Ichoku, C. M.; Leptoukh, G. G.

    2011-12-01

    Cross-comparison of aerosol properties between ground-based and spaceborne measurements is an important validation technique that helps to investigate the uncertainties of aerosol products acquired using spaceborne sensors. However, it has been shown that even minor differences in the cross-characterization procedure may significantly impact the results of such validation. Of particular consideration is the quality assurance / quality control (QA/QC) information - an auxiliary data indicating a "confidence" level (e.g., Bad, Fair, Good, Excellent, etc.) conferred by the retrieval algorithms on the produced data. Depending on the treatment of available QA/QC information, a cross-characterization procedure has the potential of filtering out invalid data points, such as uncertain or erroneous retrievals, which tend to reduce the credibility of such comparisons. However, under certain circumstances, even high QA/QC values may not fully guarantee the quality of the data. For example, retrievals in proximity of a cloud might be particularly perplexing for an aerosol retrieval algorithm, resulting in an invalid data that, nonetheless, could be assigned a high QA/QC confidence. In this presentation, we will study the effects of several QA/QC parameters on cross-characterization of aerosol properties between the data acquired by multiple spaceborne sensors. We will utilize the Multi-sensor Aerosol Products Sampling System (MAPSS) that provides a consistent platform for multi-sensor comparison, including collocation with measurements acquired by the ground-based Aerosol Robotic Network (AERONET), The multi-sensor spaceborne data analyzed include those acquired by the Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP satellite instruments.

  3. Sampling and characterization of aerosols produced under simulated nuclear reactor accident conditions

    SciTech Connect

    Schlenger, B.J.; Horton, E.L.; Herceg, J.E.; Dunn, P.F.

    1986-12-01

    An aerosol sampling system was designed and used in a series of nuclear reactor safety experiments. The system was designed to sample radioactive and chemically reactive aerosols of unknown size distributions and concentrations in high temperature, high pressure steam/hydrogen environments. The aerosol samples are being analyzed posttest to determine their composition and morphology by microanalytical techniques. Main steam particle size distributions and loadings are being computed from particle data generated from SEM micrograph images and collection efficiencies calculated with measured thermal-hydraulic data. The system would be applicable to other types of experiments in which the sampling environment is severe and/or a priori knowledge of the general particle size range and loading are limited.

  4. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles <100 nm generated by means of jets

  5. Assessment of Clear Sky Radiative Forcing in the Caribbean Region Using an Aerosol Dispersion Model and Ground Radiometry During Puerto Rico Dust Experiment

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Qi, Qiang; Westpthal, Douglas; Reid, Jeffery; Tsay, Si-Chee

    2004-01-01

    This study investigates the surface and top of the atmosphere solar radiative forcing by long-range transport of Saharan dust. The calculations of radiative forcing are based on measurements collected in the Puerto Rico Dust Experiment (PRIDE) carried out during July, 2000. The purpose of the experiment was the characterization of the Saharan dust plume, which frequently reaches the Caribbean region during the summer. The experiment involved the use of three approaches to study the plume: space and ground based remote sensing, airborne and ground based in-situ measurements and aerosol dispersion modeling. The diversity of measuring platforms provides an excellent opportunity for determination of the direct effect of dust on the clear sky radiative forcing. Specifically, comparisons of heating rates, surface and TOA fluxes derived from the Navy global aerosol dispersion model NAAPS (NRL Aerosol Analysis and Prediction System) and actual measurements of fluxes from ground and space based platforms are shown. In addition, the direct effect of dust on the clear sky radiative forcing is modeled. The extent and time of evolution of the radiative properties of the plume are computed with the aerosol concentrations modeled by NAAPS. Standard aerosol parameterizations, as well as in-situ composition and size distributions measured during PRIDE, are utilized to compute the aerosol optical depth, single scattering albedo and asymmetry factor. Radiative transfer computations are done with an in-house modified spectral radiative transfer code (Fu-Liou). The code includes gas absorption and cloud particles (ice and liquid phase) and it allows the input of meteorological data. The code was modified to include modules for the aerosols contribution to the calculated fluxes. This comparison study helps to narrow the current uncertainty in the dust direct radiative forcing, as recently reported in the 2001 IPCC assessment.

  6. Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Guazzotti, S. A.; Suess, D. T.; Coffee, K. R.; Quinn, P. K.; Bates, T. S.; Wisthaler, A.; Hansel, A.; Ball, W. P.; Dickerson, R. R.; Neusüß, C.; Crutzen, P. J.; Prather, K. A.

    2003-08-01

    A major objective of the Indian Ocean Experiment (INDOEX) involves the characterization of the extent and chemical composition of pollution outflow from the Indian Subcontinent during the winter monsoon. During this season, low-level flow from the continent transports pollutants over the Indian Ocean toward the Intertropical Convergence Zone (ITCZ). Traditional standardized aerosol particle chemical analysis, together with real-time single particle and fast-response gas-phase measurements provided characterization of the sampled aerosol chemical properties. The gas- and particle-phase chemical compositions of encountered air parcels changed according to their geographic origin, which was traced by back trajectory analysis. The temporal evolutions of acetonitrile, a long-lived specific tracer for biomass/biofuel burning, number concentration of submicrometer carbon-containing particles with potassium (indicative of combustion sources), and mass concentration of submicrometer non-sea-salt (nss) potassium are compared. High correlation coefficients (0.84 < r2 < 0.92) are determined for these comparisons indicating that most likely the majority of the species evolve from the same, related, or proximate sources. Aerosol and trace gas measurements provide evidence that emissions from fossil fuel and biomass/biofuel burning are subject to long-range transport, thereby contributing to anthropogenic pollution even in areas downwind of South Asia. Specifically, high concentrations of submicrometer nss potassium, carbon-containing particles with potassium, and acetonitrile are observed in air masses advected from the Indian subcontinent, indicating a strong impact of biomass/biofuel burning in India during the sampling periods (74 (±9)% biomass/biofuel contribution to submicrometer carbonaceous aerosol). In contrast, lower values for these same species were measured in air masses from the Arabian Peninsula, where dominance of fossil fuel combustion is suggested by results

  7. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment SALTRACE 2013 - Overview and Early Results (Invited)

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Ansmann, A.; Reitebuch, O.; Freudenthaler, V.; Müller, T.; Kandler, K.; Althausen, D.; Busen, R.; Dollner, M.; Dörnbrack, A.; Farrell, D. A.; Gross, S.; Heimerl, K.; Klepel, A.; Kristensen, T. B.; Mayol-Bracero, O. L.; Minikin, A.; Prescod, D.; Prospero, J. M.; Rahm, S.; Rapp, M.; Sauer, D. N.; Schaefler, A.; Toledano, C.; Vaughan, M.; Wiegner, M.

    2013-12-01

    Mineral dust is an important player in the global climate system. In spite of substantial progress in the past decade, many questions in our understanding of the atmospheric and climate effects of mineral dust remain open such as the change of the dust size distribution during transport across the Atlantic Ocean and the associated impact on the radiation budget, the role of wet and dry dust removal mechanisms during transport, and the complex interaction between mineral dust and clouds. To close gaps in our understanding of mineral dust in the climate system, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE is a German initiative combining ground-based and airborne in-situ and lidar measurements with meteorological data, long-term measurements, satellite remote sensing and modeling. During SALTRACE, the DLR research aircraft Falcon was based on Sal, Cape Verde, between 11 and 17 June, and on Barbados between 18 June and 11 July 2013. The Falcon was equipped with a suite of in-situ instruments for the measurement of microphysical and optical aerosol properties and with a nadir-looking 2-μm wind lidar. Ground-based lidar and in-situ instruments were deployed in Barbados and Puerto Rico. Mineral dust from several dust outbreaks was measured by the Falcon between Senegal and Florida. On the eastern side of the Atlantic, dust plumes extended up to 6 km altitude, while the dust layers in the Caribbean were mainly below 4.5 km. The aerosol optical thickness of the dust outbreaks studied ranged from 0.2 to 0.6 at 500 nm in Barbados. Highlights during SALTRACE included the sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June near Barbados. The event was also captured by the ground-based lidar and in-situ instrumentation. Another highlight was the formation of tropical storm

  8. Comparison of calculations with the BUSCA code against the LACE-Espana aerosol decontamination experiments

    SciTech Connect

    Bellemare, L.; Kissane, M.P.; Cadarache, C.E.

    1995-12-31

    The decontamination of a flow containing aerosols and soluble vapours when it passes through a water pool is often very efficient. This is an important consideration in nuclear reactor safety analysis: in the event of a severe loss-of-coolant accident, quantities of water could remain in the coolant system between the core, releasing radioactive vapours and aerosols, and the breach to the containment or auxiliary building (e.g. in the pressurizer or steam generator secondary side). Mechanistic computer codes such as BUSCA, Ramsdale et al (1993), have been developed to predict decontamination in water pools by modelling the formation of bubbles, bubble behaviour and the thermal hydraulics and aerosol physics inside bubbles. The experimental programme LACE-Espana, Marcos et al (1994), generated data on aerosol decontamination in a water pool. A steam-nitrogen mixture loaded with caesium iodide particles was injected into a part-filled tank 2.5m below the water surface. The gas injection rate and the aerosol distribution were varied over eleven tests. The work presented here concerns the interpretation of the LACE-Espana tests using the BUSCA code. It is seen that despite taking into account aerosol losses in the apparatus before the pool, the calculations generally underpredict, often significantly, the experimentally observed decontamination. This result is in qualitative agreement with an earlier study, Calvo and Alonso (1994), though significantly different input data were used in those calculations and higher decontamination was predicted. The calculation-experiment difference is explained in part by the approximation of treating the aerosol entering the pool as lognormal, a limitation of the code. Looking for other explanations, the modelling of jet impaction deposition is examined since this is by far the dominant decontamination mechanism in the calculations.

  9. MELCOR 1.8.2 assessment: Aerosol experiments ABCOVE AB5, AB6, AB7, and LACE LA2

    SciTech Connect

    Souto, F.J.; Haskin, F.E.; Kmetyk, L.N.

    1994-10-01

    The MELCOR computer code has been used to model four of the large-scale aerosol behavior experiments conducted in the Containment System Test Facility (CSTF) vessel. Tests AB5, AB6 and AB7 of the ABCOVE program simulate the dry aerosol conditions during a hypothetical severe accident in an LMFBR. Test LA2 of the LACE program simulates aerosol behavior in a condensing steam environment during a postulated severe accident in an LWR with failure to isolate the containment. The comparison of code results to experimental data show that MELCOR is able to correctly predict most of the thermal-hydraulic results in the four tests. MELCOR predicts reasonably well the dry aerosol behavior of the ABCOVE tests, but significant disagreements are found in the aerosol behavior modelling for the LA2 experiment. These results tend to support some of the concerns about the MELCOR modelling of steam condensation onto aerosols expressed in previous works. During these analyses, a limitation in the MELCOR input was detected for the specification of the aerosol parameters for more than one component. A Latin Hypercube Sampling (LHS) sensitivity study of the aerosol dynamic constants is presented for test AB6. The study shows the importance of the aerosol shape factors in the aerosol deposition behavior, and reveals that MELCOR input/output processing is highly labor intensive for uncertainty and sensitivity analyses based on LHS.

  10. CO, O3, and aerosol measurements from NASA Global Tropospheric Experiment - Test flights 1981

    NASA Astrophysics Data System (ADS)

    Hinton, R. R.; Browell, E. V.; Gregory, G. L.; Harriss, R. C.

    1982-05-01

    A series of four instrument test flights was conducted during July 1981 in preparation for the NASA Global Tropospheric Experiment. The purpose of the flights was to demonstrate the feasibility and value of simultaneously measuring several specific atmospheric pollutants over a 25 deg latitudinal range. Carbon monoxide and methane grab samples were obtained simultaneously with nearly continuous in situ ozone and remote ozone and aerosol optical radar measurements. The sampling platform was a NASA Electra, a four engine turboprop aircraft. Attention is given to CO and CH4 sample collection and analysis, ozone measurement methods, the aerosol measurement method, an interpretation of the optical radar display, and a synergistic consideration of results.

  11. Elemental composition of aerosols in fourteen experiments of the Cloud Condensation Nuclei Workshop

    NASA Technical Reports Server (NTRS)

    Mach, W. H.; Hucek, R. R.

    1981-01-01

    Aeosols were collected with two Ci impactors and analyzed with proton induced X-ray emission (PIXE) for chemical composition and to detect if contamination was present. One of the impactors sampled the generated aerosols; the other impactor sampled droplets from a diffusion cloud chamber. The purpose of the experiments was to test the feasibility of a study of the transfer of chemical elements from the fine particle sizes to the coarse particle sizes, after CCN are activated and cloud droplets are formed. The data indicated that sulfur-containing aerosols did exhibit the expected transfer.

  12. Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface.

    PubMed

    Polk, William W; Sharma, Monita; Sayes, Christie M; Hotchkiss, Jon A; Clippinger, Amy J

    2016-04-23

    Aerosol generation and characterization are critical components in the assessment of the inhalation hazards of engineered nanomaterials (NMs). An extensive review was conducted on aerosol generation and exposure apparatus as part of an international expert workshop convened to discuss the design of an in vitro testing strategy to assess pulmonary toxicity following exposure to aerosolized particles. More specifically, this workshop focused on the design of an in vitro method to predict the development of pulmonary fibrosis in humans following exposure to multi-walled carbon nanotubes (MWCNTs). Aerosol generators, for dry or liquid particle suspension aerosolization, and exposure chambers, including both commercially available systems and those developed by independent researchers, were evaluated. Additionally, characterization methods that can be used and the time points at which characterization can be conducted in order to interpret in vitro exposure results were assessed. Summarized below is the information presented and discussed regarding the relevance of various aerosol generation and characterization techniques specific to aerosolized MWCNTs exposed to cells cultured at the air-liquid interface (ALI). The generation of MWCNT aerosols relevant to human exposures and their characterization throughout exposure in an ALI system is critical for extrapolation of in vitro results to toxicological outcomes in humans.

  13. Characterization of nitrocatechols and related tracers in atmospheric biomass burning organic aerosol

    NASA Astrophysics Data System (ADS)

    Grgic, I.; Kitanovski, Z.; Yasmeen, F.; Claeys, M.

    2011-12-01

    One of the largest primary sources of organic aerosols in the atmosphere is biomass burning (Laskin et al., 2009). The chemistry of compounds present in biomass burning aerosol (BBA) is diverse and directly dependent on the chemical composition of the burning material and the combustion conditions (Simoneit et al., 2002). A well-established tracer for primary BBA is levoglucosan (1,6-anhydro-β-anhydroglucose), which originates from the pyrolysis of cellulose or hemicellulose (Fine et al., 2002). Secondary BBA, which is formed after physical and chemical changes (aging) of the primary BBA in the atmosphere, contains more oxidized and polar compounds. An important class of compounds of secondary organic aerosols (SOA) is nitrocatechols, which are strong absorbers of UV and Vis light, and therefore, can affect the earth's radiative balance and climate. Recently, methyl nitrocatechols were proposed as suitable tracers for highly oxidized secondary BBA (Iinuma et al., 2010). These compounds are primarily formed from the photooxidation of m-cresol, that is emitted from biomass burning, in the presence of NOx. The objective of the present study was to characterize nitrocatechols in ambient aerosols using mass spectrometric and chromatographic techniques. Ambient aerosol samples were collected during a cold winter episode from an urban site in Maribor, Slovenia, where substantial residential wood burning for domestic purposes takes place. Emphasis was put on the development of a suitable LC-ESI-MS technique. In an initial step the chromatographic conditions were optimized for methyl nitrocatechols and related nitro-aromatic compounds using diode array UV/Vis detection. The optimized LC conditions were used for the development and validation of an LC-ESI-MS/MS method for identification and quantification of nitrocatechols in aerosol samples. LC/ESI-MS/MS data will be presented and interpreted for the nitro-aromatic compounds that are present in the collected ambient

  14. Satellite Characterization of Fire Emissions of Aerosols and Gases Relevant to Air-Quality Modeling

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Ellison, L.; Yue, Y.; Wang, J.

    2015-12-01

    Because of the transient and widespread nature of wildfires and other types of open biomass burning, satellite remote sensing has become an indispensable technique for characterizing their smoke emissions for modeling applications, especially at regional to global scales. Fire radiative energy (FRE), whose instantaneous rate of release or fire radiative power (FRP) is measurable from space, has been found to be proportional to both the biomass consumption and emission of aerosol particulate matter. We have leveraged this relationship to generate a global, gridded smoke-aerosol emission coefficients (Ce) dataset based on FRP and aerosol optical thickness (AOT) measurements from the MODIS sensors aboard the Terra and Aqua satellites. Ce is a simple coefficient to convert FRE to smoke aerosol emissions, in the same manner as traditional emission factors are used to convert burned biomass to emissions. The first version of this Fire Energetics and Emissions Research (FEER.v1) global gridded Ce product at 1°x1° resolution is available at http://feer.gsfc.nasa.gov/. Based on published emission ratios, the FEER.v1 Ce product for total smoke aerosol has also been used to generate similar products for specific fire-emitted aerosols and gases, including those that are regulated as 'criteria pollutants' under the US Environmental Protection Agency's National Ambient Air Quality Standards (NAAQS), such as particulate matter (PM) and carbon monoxide (CO). These gridded Ce products were used in conjunction with satellite measurements of FRP to derive emissions of several smoke constituents, which were applied to WRF-Chem fully coupled meteorology-chemistry-aerosol model simulations, with promising results. In this presentation, we analyze WRF-Chem simulations of surface-level concentrations of various pollutants based on FEER.v1 emission products to illustrate their value for air-quality modeling, particularly in parts of Africa and southeast Asia where ground-based air

  15. Cross-Characterization of Aerosol Properties from Multiple Spaceborne Sensors Facilitated by Regional Ground-Based Observations

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Ichoku, Charles; Leptoukh, Gregory

    2010-01-01

    Aerosol observations from space have become a standard source for retrieval of aerosol properties on both regional and global scales. Indeed, the large number of currently operational spaceborne sensors provides for unprecedented access to the most complete set of complimentary aerosol measurements ever to be available. Nonetheless, this resource remains under-utilized, largely due to the discrepancies and differences existing between the sensors and their aerosol products. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have designed and implemented an online Multi-sensor Aerosol Products Sampling System (MAPSS) that facilitates the joint sampling of aerosol data from multiple sensors. MAPSS consistently samples aerosol products from multiple spaceborne sensors using a unified spatial and temporal resolution, where each dataset is sampled over Aerosol Robotic Network (AERONET) locations together with coincident AERONET data samples. In this way, MAPSS enables a direct cross-characterization and data integration between aerosol products from multiple sensors. Moreover, the well-characterized co-located ground-based AERONET data provides the basis for the integrated validation of these products.

  16. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; di Sarra, A.; Alados, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Brogniez, G.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Denjean, C.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, J.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Wenger, J.; Zapf, P.

    2015-07-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental set-up also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modelling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to produce high level of atmospheric pollutants nor

  17. Sampling, characterization, and remote sensing of aerosols formed in the atmospheric hydrolysis of uranium hexafluoride

    SciTech Connect

    Bostick, W.D.; McCulla, W.H.; Pickrell, P.W.

    1984-05-01

    When gaseous uranium hexafluoride (UF/sub 6/) is released into the atmosphere, it rapidly reacts with ambient moisture to form an aerosol of uranyl fluoride (UO/sub 2/F/sub 2/) and hydrogen fluoride (HF). As part of our Safety Analysis program, we have performed several experimental releases of HF/sub 6/ in contained volumes in order to investigate techniques for sampling and characterizing the aerosol materials. The aggregate particle morphology and size distribution have been found to be dependent upon several conditions, including the temperature of the UF/sub 6/ at the time of its release, the relative humidity of the air into which it is released, and the elapsed time after the release. Aerosol composition and settling rate have been investigated using stationary samplers for the separate collection of UO/sub 2/F/sub 2/ and HF and via laser spectroscopic remote sensing (Mie scatter and infrared spectroscopy). 25 refs., 16 figs., 5 tabs.

  18. Developments and plans for new drifting balloon experiments in the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) project

    NASA Astrophysics Data System (ADS)

    Dulac, François; Durand, Pierre; Verdier, Nicolas; Renard, Jean-Baptiste; Mallet, Marc; Thouret, Valérie; Attié, Jean-Luc

    ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr) is a new integrated project which aims at an assessment of the present state of the atmospheric environment in the Mediterranean basin, of its impacts on air quality, regional climate and marine biogeochemistry, and of their evolution in a regional context of intense climate change and increasing anthropogenic pressure. The Mediterranean is indeed characterized by a long dry and sunny season with high concentrations of aerosols and gaseous pollutants such as ozone. ChArMEx plans large international coordinated field campaigns with surface stations and airborne platforms including drifting balloons for studying the ageing of continental air masses transported over the basin. We are willing to deploy two types of balloons: (i) The Aeroclipper is a low altitude streamlined balloon drifting at 50 m over the sea surface and equipped with a cable and a guide-rope in contact with the surface ocean. It moves on a quasi-Lagrangian trajectory depending on the surface wind and marine current. Its instru-mentation is distributed on one atmospheric gondola and one oceanic gondola with the aim to measure surface physical parameters (air and sea surface temperatures, wind, pressure and humidity) in order to derive turbulent fluxes of moisture, heat and momentum. (ii) The BPCL is a long duration super-pressure balloon designed to drift in the atmospheric boundary layer. It moves on a quasi-Lagrangian trajectory at an adjustable constant atmo-spheric density level which altitude ranges between a few hundreds of m and about 3 km. Its instrumentation includes air pressure, temperature and humidity. Both balloon types are equipped with a positioning system and a data transmission system. In addition we are developing new small instruments to be integrated in the payload of these two balloon types. This includes radiation sensors to measure visible and infrared fluxes, an optical particle counter

  19. Analytical pyrolysis experiments of Titan aerosol analogues in preparation for the Cassini Huygens mission

    NASA Technical Reports Server (NTRS)

    Ehrenfreund, P.; Boon, J. J.; Commandeur, J.; Sagan, C.; Thompson, W. R.; Khare, B.

    1995-01-01

    Comparative pyrolysis mass spectrometric data of Titan aerosol analogs, called 'tholins', are presented. The Titan tholins were produced in the laboratory at Cornell by irradiation of simulated Titan atmospheres with high energy electrons in plasma discharge. Mass-spectrometry measurements were performed at FOM of the solid phase of various tholins by Curie-point pyrolysis Gas-Chromatography/Mass-Spectrometry (GCMS) and by temperature resolved in-source Pyrolysis Mass-Spectrometry to reveal the composition and evolution temperature of the dissociation products. The results presented here are used to further define the ACP (Aerosol Collector Pyrolyser)-GCMS experiment and provide a basis for modelling of aerosol composition on Titan and for the iterpretation of Titan atmosphere data from the Huygens probe in the future.

  20. Analytical pyrolysis experiments of Titan aerosol analogues in preparation for the Cassini Huygens mission.

    PubMed

    Ehrenfreund, P; Boon, J J; Commandeur, J; Sagan, C; Thompson, W R; Khare, B

    1995-03-01

    Comparative pyrolysis mass spectrometric data of Titan aerosol analogues, called "tholins", are presented. The Titan tholins were produced in the laboratory at Cornell by irradiation of simulated Titan atmospheres with high energy electrons in plasma discharge. Mass-spectrometry measurements were performed at FOM of the solid phase of various tholins by Curie-point pyrolysis Gas-Chromatography/Mass-Spectrometry (GCMS) and by temperature resolved in source Pyrolysis Mass-Spectrometry to reveal the composition and evolution temperature of the dissociation products. The results presented here are used to further define the ACP (Aerosol Collector Pyrolyser)-GCMS experiment and provide a basis for modelling of aerosol composition on Titan and for the interpretation of Titan atmosphere data from the Huygens probe in the future.

  1. Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument

    NASA Astrophysics Data System (ADS)

    van Harten, G.; de Boer, J.; Rietjens, J. H. H.; Di Noia, A.; Snik, F.; Volten, H.; Smit, J. M.; Hasekamp, O. P.; Henzing, J. S.; Keller, C. U.

    2014-06-01

    Characterization of atmospheric aerosols is important for understanding their impact on health and climate. A wealth of aerosol parameters can be retrieved from multi-angle, multi-wavelength radiance and polarization measurements of the clear sky. We developed a ground-based SPEX instrument (groundSPEX) for accurate spectropolarimetry, based on the passive, robust, athermal and snapshot spectral polarization modulation technique, and hence ideal for field deployment. It samples the scattering phase function in the principal plane in an automated fashion, using a motorized pan/tilt unit and automatic exposure time detection. Extensive radiometric and polarimetric calibrations were performed, yielding values for both random noise and systematic uncertainties. The absolute polarimetric accuracy at low degrees of polarization is established to be ~ 5 × 10-3. About 70 measurement sequences have been performed throughout four clear-sky days at Cabauw, the Netherlands. Several aerosol parameters were retrieved: aerosol optical thickness, effective radius, and complex refractive index for fine and coarse mode. The results are in good agreement with the co-located AERONET products, with a correlation coefficient of ρ = 0.932 for the total aerosol optical thickness at 550 nm.

  2. Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument

    NASA Astrophysics Data System (ADS)

    van Harten, G.; de Boer, J.; Rietjens, J. H. H.; Di Noia, A.; Snik, F.; Volten, H.; Smit, J. M.; Hasekamp, O. P.; Henzing, J. S.; Keller, C. U.

    2014-12-01

    Characterization of atmospheric aerosols is important for understanding their impact on health and climate. A wealth of aerosol parameters can be retrieved from multi-angle, multi-wavelength radiance and polarization measurements of the clear sky. We developed a ground-based SPEX instrument (groundSPEX) for accurate spectropolarimetry, based on the passive, robust, athermal, and snapshot spectral polarization modulation technique, and is hence ideal for field deployment. It samples the scattering phase function in the principal plane in an automated fashion, using a motorized pan/tilt unit and automatic exposure time detection. Extensive radiometric and polarimetric calibrations were performed, yielding values for both random noise and systematic uncertainties. The absolute polarimetric accuracy at low degrees of polarization is established to be ~5 × 10-3. About 70 measurement sequences have been performed throughout four clear-sky days at Cabauw, the Netherlands. Several aerosol parameters were retrieved: aerosol optical thickness, effective radius, and complex refractive index for fine and coarse mode. The results are in good agreement with the colocated AERONET products, with a correlation coefficient of ρ = 0.932 for the total aerosol optical thickness at 550 nm.

  3. Characterization of Electronic Cigarette Aerosol and Its Induction of Oxidative Stress Response in Oral Keratinocytes

    PubMed Central

    Zhao, Tongke; Shu, Shi; Chang, Chong Hyun; Messadi, Diana; Xia, Tian; Zhu, Yifang; Hu, Shen

    2016-01-01

    In this study, we have generated and characterized Electronic Cigarette (EC) aerosols using a combination of advanced technologies. In the gas phase, the particle number concentration (PNC) of EC aerosols was found to be positively correlated with puff duration whereas the PNC and size distribution may vary with different flavors and nicotine strength. In the liquid phase (water or cell culture media), the size of EC nanoparticles appeared to be significantly larger than those in the gas phase, which might be due to aggregation of nanoparticles in the liquid phase. By using in vitro high-throughput cytotoxicity assays, we have demonstrated that EC aerosols significantly decrease intracellular levels of glutathione in NHOKs in a dose-dependent fashion resulting in cytotoxicity. These findings suggest that EC aerosols cause cytotoxicity to oral epithelial cells in vitro, and the underlying molecular mechanisms may be or at least partially due to oxidative stress induced by toxic substances (e.g., nanoparticles and chemicals) present in EC aerosols. PMID:27223106

  4. Real-time aerosol data assimilation experiments during the 2014 FRAPPE/DISCOVER-AQ field mission

    NASA Astrophysics Data System (ADS)

    Pierce, R. B.

    2014-12-01

    The Front Range Air Pollution and Photochemistry Experiment (FRAPPE) and Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field missions were conducted over the Front Range of Colorado during July and August, 2014. Prior to, and during this period, much of the continental US were impacted by smoke from Canadian and Pacific Northwest wildfires, including the Front Range. This study assesses the impact of real-time assimilation of Aerosol Optical Depth (AOD) retrievals from the MODIS instrument on NASA's Terra and Aqua satellites within the Real-time Air Quality Modeling System (RAQMS) through comparisons of aerosol predictions with observations for two parallel forecasts that were conducted during FRAPPE/DISCOVER-AQ, one with and one without MODIS AOD assimilation. Results of these real-time assimilation experiments demonstrate that assimilation of MODIS AOD improves the prediction of large-scale smoke events such as those that occurred during July and August, 2014. These assimilation experiments help to guide the development of future operational aerosol forecasting systems within the NOAA Environmental Modeling System (NEMS) Global Forecasting System (GFS) Aerosol Component (NGAC) under development at the National Centers for Environmental Prediction (NCEP).

  5. Light Absorption Properties of Brown Carbon from Fresh and Aged Biomass Burning Aerosols Characterized in a Smog Chamber

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Chuang, W.; Hennigan, C.; McMeeking, G. R.; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2011-12-01

    Black carbon is an important particulate phase light absorber in the atmosphere. Recent studies have shown that some organic matter also absorb visible light, especially at short wavelengths. These organic compounds are referred to as "brown carbon". Biomass burning is a major contributor to brown carbon in atmospheric particulate matter; however, its optical properties are poorly characterized. We have conducted smog chamber experiments to investigate light absorption properties of brown carbon in primary and aged biomass burning emissions, namely the imaginary refractive index. The aging was performed in a smog chamber, where dilute emissions were exposed to UV lights to initiate photo-oxidation, which often produced substantial secondary organic aerosol. The experiments took place at Carnegie Mellon University (CMU) and at the US Fire Science Laboratory in Missoula, MT as part of the Fire Lab at Missoula field campaign (FLAME 2009). The CMU experiments simulated household wood burning (oak), and the FLAME experiments simulated wildland fires with fuels including gallberry, lodgepole pine, black spruce and ponderosa pine. Absorption coefficients were measured using an Aethalometer (Magee Scientific) at 7 different wavelengths ranging between 370 nm and 950 nm. The black carbon size distributions were measured using a Single Particle Soot Photometer (SP2, DMT), and total aerosol size distributions were measured using a Scanning Mobility Particle Sizer (SMPS, TSI). The absorption coefficients of both the fresh and aged aerosol were significantly larger, and had stronger wavelength dependence than what would be expected for black carbon alone, and for a black carbon core with a non-absorbing shell. This indicates that biomass burning organic aerosol should be classified as brown carbon. A (black carbon) core - (brown carbon) shell absorption model based on Mie theory was optimized to determine the shell imaginary refractive index which produces model outputs that

  6. The influence of fog parameters on aerosol depletion measured in the KAEVER experiments

    SciTech Connect

    Poss, G.; Weber, D.; Fritsche, B.

    1995-12-31

    The release of radioactive aerosols in the environment is one of the most serious hazards in case of an accident in nuclear power plant. Many efforts have been made in the past in numerous experimental programs like NSPP, DEMONA, VANAM, LACE, MARVIKEN, others are still underway to improve the knowledge of the aerosol behavior and depletion in a reactor containment in order to estimate the possible source term and to validate computer codes. In the German single compartment KAEVER facility the influence of size distribution, morphology, composition and solubility on the aerosol behavior is investigated. One of the more specific items is to learn about {open_quotes}wet depletion{close_quotes} means, the aerosol depletion behavior in condensing atmospheres. There are no experiments known where the fog parameters like droplet size distribution, volume concentration, respectively airborne liquid water content have been measured in- and on-line explicitly. To the authors knowledge the use of the Battelle FASP photometer, which was developed especially for this reason, for the first time gives insight in condensation behavior under accident typical thermal hydraulic conditions. It delivers a basis for code validation in terms of a real comparison of measurements and calculations. The paper presents results from {open_quotes}wet depletion{close_quotes} aerosol experiments demonstrating how depletion velocity depends on the fog parameters and where obviously critical fog parameter seem to change the regime from a {open_quotes}pseudo dry depletion{close_quotes} at a relative humidity of 100% but quasi no or very low airborne liquid water content to a real {open_quotes}wet depletion{close_quotes} under the presence of fogs with varying densities. Characteristics are outlined how soluble and insoluble particles as well as aerosol mixtures behave under condensing conditions.

  7. The hydrological assessment of aerosol effects by the idealized airborne cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Lee, K.; Lee, B.; Chae, S.; Lee, C.; Choi, Y.

    2012-12-01

    The main source of aerosols over East Asia including the Korean Peninsula is the anthropogenic emission of atmospheric pollutants transported from Chinese industrial areas. For this reason, the researches of aerosol effects are very active in East Asian countries. In case of South Korea, aircraft measurement campaigns and airborne cloud seeding experiments for the meteorological and environmental research have been conducted over the local area of Korean Peninsula since the year of 2010. This project is related with the weather modification research to build up strategies for the regulation or enhancement of precipitation and snowpack for a severe drought in South Korea during a winter season. For this study, the aerosol effect on precipitation by the airborne cloud seeding was simulated using WRF-CHEM model with RADM2/MADE,SORGAM modules. Emission data of 10000μg/(m2s) of unspeciated primary PM2.5 were input at 0.5km altitude for aerosol scenario cases which is the height of airborne cloud seeding experiment. For the control run, the original WRF model with no chemistry/aerosol modules was used. Also, the hydrological model, SWAT (Soil and Water Assessment Tool, USDA/ARS) is incorporated to evaluate this aerosol effects hydrologically for the enhancement of precipitation or snowfall from the results of WRF-CHEM model. The target area is the Andong dam basin (1,584 km2) which is known as one of the important water resources in southern part of South Korea. The date was chosen based on the conditions of airborne cloud seeding experiment (RH>50%, Low Temp.<-3°C, Wind Speeds<5m/s, etc). During the 24 forecasting hour, the aerosol scenario case showed more amounts of accumulated precipitation (about 12%) than those of control run. According to the analysis of SWAT, the enhancement of precipitation in aerosol scenario cases of WRF-CHEM model could influence the increase of about 1.0×106m3 water resources when we assumed the 10% of effective area over the Andong dam

  8. Stratospheric ozone variations in the equatorial region as seen in Stratiospheric Aerosol and Gas Experiment data

    NASA Technical Reports Server (NTRS)

    Shiotani, Masato; Hasebe, Fumio

    1994-01-01

    An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric mode and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time.

  9. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery.

    PubMed

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug - cyclosporine A - for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters.

  10. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

    PubMed Central

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375

  11. The Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment (SALTRACE 2013) - An overview

    NASA Astrophysics Data System (ADS)

    Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Althausen, Dietrich; Chouza, Fernando; Dollner, Maximilian; Farrell, David; Groß, Silke; Heinold, Bernd; Kristensen, Thomas B.; Mayol-Bracero, Olga L.; Omar, Ali; Prospero, Joseph; Sauer, Daniel; Schäfler, Andreas; Toledano, Carlos; Tegen, Ina

    2015-04-01

    Saharan mineral dust is regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the Sahara. During transport, the properties of mineral dust may be modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. To investigate the aging and modification of Saharan mineral dust during long-range transport across the Atlantic Ocean, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE was designed as a closure experiment combining ground-based lidar, in-situ and sun photometer instruments deployed on Cape Verde, Barbados and Puerto Rico, with airborne measurements of the DLR research aircraft Falcon, satellite observations and model simulations. During SALTRACE, mineral dust from five dust outbreaks was studied under different atmospheric conditions and a unique data set on the chemical, microphysical and optical properties of aged mineral dust was gathered. For the first time, Lagrangian sampling of a dust plume in the Cape Verde area on 17 June 2013 which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados was realized. Further highlights of SALTRACE include the formation and evolution of tropical storm Chantal in a dusty environment and the interaction of dust with mixed-phase clouds. In our presentation, we give an overview of the SALTRACE study, discuss the meteorological situation and the dust transport during SALTRACE and highlight selected results from SALTRACE.

  12. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions.

    PubMed

    Che, H C; Zhang, X Y; Wang, Y Q; Zhang, L; Shen, X J; Zhang, Y M; Ma, Q L; Sun, J Y; Zhang, Y W; Wang, T T

    2016-04-14

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate.

  13. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    NASA Astrophysics Data System (ADS)

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-04-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate.

  14. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    PubMed Central

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-01-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate. PMID:27075947

  15. Aerosol and Trace Gas Sources in Northern China: Changes in Concentrations Before and After the Official "Heating Season" Help Characterize Emissions From Coal-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Li, C.; Marufu, L. T.; Dickerson, R. R.; Li, Z.; Stehr, J. W.; Chen, H.; Wang, P.

    2006-05-01

    In March 2005, as a part of the project EAST-AIRE (East Asian Study of Tropospheric Aerosols: An International Regional Experiment), in-situ measurements of trace gases and aerosol optical properties were made at Xianghe, a rural surface site about 70 km east-southeast, generally downwind, of Beijing metropolitan area. CO, SO2, NO/NOy, O3, aerosol absorption coefficient, and aerosol scattering coefficients were determined simultaneously using the University of Maryland light aircraft instrument package. Pollutant ratios have been calculated to characterize the emission sources around the site. A dramatic drop in the NOy/CO ratio found around March 13/14 suggesting a sudden shutoff of a large fraction of the high- temperature combustion sources in the region. This observed change in concentrations occurred simultaneously with the transition from "heating season" to "non-heating season" in Northern China. Over the course of just a few days (around March 15), all boilers used to provide heat for cities and towns in this region are shut down in accordance with a governmental guideline. Most of these boilers operate with coal, and by using ratios of NOy/CO, SO2/CO, aerosol scattering/CO, and aerosol absorption/CO during and after the "heating season", emissions from these small to medium sized coal-fired boilers can be characterized. Results indicate that these residential and small-scale industrial heaters are a major source of NOy and SO2. Besides elevating the regional atmospheric pollutant level, the trace gases and aerosols emitted also have potential effects in other aspects such as the biogeochemical cycle of N and the agricultural production in this region.

  16. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent

  17. A numerical testbed for the characterization and optimization of aerosol remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xu, X.; Ding, S.; Zeng, J.; Spurr, R. J.; Liu, X.; Chance, K.; Holben, B. N.; Dubovik, O.; Mishchenko, M. I.

    2013-12-01

    -Sparse kernels to compute the reflectance and the sensitivities to the kernel weighting factors; a linearized BPDF computes the angular polarized reflectance; (4) a linearized ocean surface model integrating the Cox-Munk glitter model with the chlorophyll-dependent water-leaving contribution; (5) a HITRAN-based gas absorption calculation of trace species cross sections (also linearized with respect to temperature and pressure); (6) the Levenberg-Marquardt inverse algorithm for cost-function minimization and optimal derivation of a posteriori solutions. In this presentation, we introduce our testbed and demonstrate applications to several sensor design and algorithm formulation concepts. This includes an evaluation of the use of polarization in the O2 A band for the retrieval of aerosol height information from space, and an assessment of the potential improvement in the characterization of aerosol scattering properties through the addition of more polarization channels to the AERONET sensors.

  18. Time-slice last millennium experiments with interactive gas-phase chemistry and aerosols

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Legrande, A. N.; Koch, D. M.

    2010-12-01

    Preliminary results from coupled atmosphere-ocean simulations with interactive gas-phase chemistry and aerosols are presented. These experiments are decadal scale time-slices within millennial-length simulations performed with the GISS GCM (ModelE), using two different ocean models. The boundary conditions for the transient simulations follow the last millennium coordinated PMIP3 experiment protocol. This experiment directly links in with other pre-Industrial experiments being completed as part of IPCC AR5, using the same model and resolution as in GISS IPCC AR5. Preliminary time-slice results from the early medieval and Maunder Minimum periods will be presented. The impact of the presence of short-lived gases and aerosols on the simulated climate is studied. An initial attempt to identify previously omitted additional forcing mechanisms will be performed during these contrasting climate periods, in short duration experiments driven by ocean conditions from the transient experiments. The results presented are the initial runs from a larger set of experiments that will assess the climate impact of changes to dust, sea-salt, and ocean-derived sulfate, biomass burning ozone-precursors and aerosols, organic carbon, wetland methane emissions, and a final set with all components. These species are standard components in the GISS model’s 20th century simulations, so that we may compare millennial variability characteristics with those better constrained from more recent climate periods. Dust and sea-salt are wind-driven aerosols from deserts and oceans, sulfate comes from oxidation of volcanic and oceanic precursors, while organic carbon comes from biomass burning, secondary plant sources and primary oceanic emissions. Comparison of model and proxy records will test model-simulated mechanisms while the model provides insight into factors contributing to proxy variability. The addition of potentially important forcing mechanisms will enable a more comprehensive

  19. Physicochemical Characterization of Lake Spray Aerosol Generated from Great Lakes Water Samples

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Axson, J. L.; May, N.; Pratt, K.

    2014-12-01

    Wave breaking across bodies of water releases particles into the air which can impact climate and human health. Similar to sea spray aerosols formed through marine wave breaking, freshwater lakes generate lake spray aerosol (LSA). LSA can impact climate directly through scattering/absorption and indirectly through cloud nucleation. In addition, these LSA are suggested to impact human health through inhalation of these particles during algal bloom periods characterized by toxic cyanobacteria. Few studies have been conducted to assess the physical and chemical properties of freshwater LSA. Herein, we discuss constructing a LSA generation system and preliminary physical and chemical characterization of aerosol generated from water samples collected at various sites across Lake Erie, Lake Huron, Lake Superior, and Lake Michigan. Information on aerosol size distributions, number concentrations, and chemical composition will be discussed as a function of lake water blue-green algae concentration, dissolved organic carbon concentration, temperature, conductivity, and dissolved oxygen concentration. These studies represent a first step towards evaluating the potential for LSA to impact climate and health in the Great Lakes region.

  20. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles.

    PubMed

    Lin, Peng; Aiona, Paige K; Li, Ying; Shiraiwa, Manabu; Laskin, Julia; Nizkorodov, Sergey A; Laskin, Alexander

    2016-11-01

    Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly emitted biomass burning organic aerosol (BBOA) samples collected during test burns of sawgrass, peat, ponderosa pine, and black spruce. We demonstrate that both the BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as source-specific markers of BrC. On average, ∼50% of the light absorption in the solvent-extractable fraction of BBOA can be attributed to a limited number of strong BrC chromophores. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of ∼16 h. A "molecular corridor" analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low saturation mass concentration (<1 μg m(-3)) and will be retained in the particle phase under atmospherically relevant conditions.

  1. Aerosol Characteristics during the CLAMS Experiment: in situ and Remote Sensing Measurements

    NASA Astrophysics Data System (ADS)

    Martins, J.; Remer, L.; Castanho, A.; Kaufman, Y.; Artaxo, P.; Mattoo, S.; Levy, R.; Kleidman, R.; Hobbs, P. V.; Plana-Fattori, A.; Yamasoe, M.; Redemann, J.

    2002-05-01

    Remote sensing measurements of aerosol properties were performed with MODIS on the Terra satellite, and with the MAS (MODIS Airborne Simulator) on the ER-2 aircraft during the CLAMS experiment. Remote sensing measurements were validated and complemented by in situ observations. MODIS measurements were operationally obtained over the dark ocean and were explored experimentally over the sun glint. During the experiment, MODIS results indicated episodes of long range transport of large aerosol particles over the CLAMS region. These particles were also identified in the in situ aerosol measurements and by aeronet size distributions. In situ aerosol measurements were performed aboard the University of Washington's Convair-580 Research Aircraft, on the Cheasapeake Lighthouse (about 25km from the coast), and on Wallops Island. Spectral absorption measurements performed on Nuclepore filters showed relatively low absorption efficiencies (about 0.21+/-0.08m2/g at 0.55um and 0.052+/-0.023m2/g at 2.1um at the Wallops Island station) and a spectral dependence close to 1/lambda or stronger. The spectral absorption shows characteristics of small black carbon (BC) particles (spectral dependence around 1/lambda) and soil dust-like particles (stronger absorption in the blue). Electron Microscopy pictures show cluster aggregates typically composed by black carbon particles and medium to large dust-like particles. The elemental composition of the particles measured on the Nuclepore filters also indicated the presence of dust-like particles on certain days of the experiment. The average absorption efficiency found in the area was significantly lower (by about one order of magnitude) than the absorption efficiency of biomass burning particles or urban pollution from developing countries. The complementarities of remote sensing and in situ measurements in the interpretation of the aerosol over the region will be discussed and explored.

  2. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    NASA Technical Reports Server (NTRS)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  3. Optical characterization of continental and biomass-burning aerosols over Bozeman, Montana: A case study of the aerosol direct effect

    NASA Astrophysics Data System (ADS)

    Nehrir, Amin R.; Repasky, Kevin S.; Reagan, John A.; Carlsten, John L.

    2011-11-01

    Atmospheric aerosol optical properties were observed from 21 to 27 September 2009 over Bozeman, Montana, during a transitional period in which background polluted rural continental aerosols and well-aged biomass-burning aerosols were the dominant aerosol types of extremely fresh biomass-burning aerosols resulting from forest fires burning in the northwestern United States and Canada. Aerosol optical properties and relative humidity profiles were retrieved using an eye-safe micropulse water vapor differential absorption lidar (DIAL) (MP-DIAL), a single-channel backscatter lidar, a CIMEL solar radiometer as part of the Aerosol Robotic Network (AERONET), a ground-based integrating nephelometer, and aerosol products from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua. Aerosol optical depths (AODs) measured during the case study ranged between 0.03 and 0.17 (0.015 and 0.075) at 532 nm (830 nm) as episodic combinations of fresh and aged biomass-burning aerosols dominated the optical depth of the pristinely clean background air. Here, a pristinely clean background refers to very low AOD conditions, not that the aerosol scattering and absorption properties are necessarily representative of a clean aerosol type. Diurnal variability in the aerosol extinction to backscatter ratio (Sa) of the background atmosphere derived from the two lidars, which ranged between 55 and 95 sr (50 and 90 sr) at 532 nm (830 nm), showed good agreement with retrievals from AERONET sun and sky measurements over the same time period but were consistently higher than some aerosol models had predicted. Sa measured during the episodic smoke events ranged on average from 60 to 80 sr (50 to 70 sr) at 532 nm (830 nm) while the very fresh biomass-burning aerosols were shown to exhibit significantly lower Sa ranging between 20 and 40 sr. The shortwave direct radiative forcing that was due to the intrusion of biomass-burning aerosols was calculated to be on average -10 W/m2 and was

  4. Physicochemical characterization of Capstone depleted uranium aerosols II: particle size distributions as a function of time.

    PubMed

    Cheng, Yung Sung; Kenoyer, Judson L; Guilmette, Raymond A; Parkhurst, Mary Ann

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing DU from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluate particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using proportional counting, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements were quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 microm and a large size mode between 2 and 15 microm. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 microm shortly after perforation to around 1 microm at the end of the 2-h sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.

  5. Characterization of Marine Aerosol for Assessment of Human Exposure to Brevetoxins

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Irvin, Clinton M.; Pierce, Richard H.; Naar, Jerome; Backer, Lorraine C.; Fleming, Lora E.; Kirkpatrick, Barbara; Baden, Dan G.

    2005-01-01

    Red tides in the Gulf of Mexico are commonly formed by the fish-killing dinoflagellate Karenia brevis, which produces nine potent polyether brevetoxins (PbTxs). Brevetoxins can be transferred from water to air in wind-powered white-capped waves. Inhalation exposure to marine aerosol containing brevetoxins causes respiratory symptoms. We describe detailed characterization of aerosols during an epidemiologic study of occupational exposure to Florida red tide aerosol in terms of its concentration, toxin profile, and particle size distribution. This information is essential in understanding its source, assessing exposure to people, and estimating dose of inhaled aerosols. Environmental sampling confirmed the presence of brevetoxins in water and air during a red tide exposure period (September 2001) and lack of significant toxin levels in the water and air during an unexposed period May 2002). Water samples collected during a red tide bloom in 2001 showed moderate-to-high concentrations of K. brevis cells and PbTxs. The daily mean PbTx concentration in water samples ranged from 8 to 28 μg/L from 7 to 11 September 2001; the daily mean PbTx concentration in air samples ranged from 1.3 to 27 ng/m3. The daily aerosol concentration on the beach can be related to PbTx concentration in water, wind speed, and wind direction. Personal samples confirmed human exposure to red tide aerosols. The particle size distribution showed a mean aerodynamic diameter in the size range of 6–12 μm, with deposits mainly in the upper airways. The deposition pattern correlated with the observed increase of upper airway symptoms in healthy lifeguards during the exposure periods. PMID:15866777

  6. Physicochemical Characterization of Capstone Depleted Uranium Aerosols II: Particle Size Distributions as a Function of Time

    SciTech Connect

    Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.; Parkhurst, MaryAnn

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.

  7. Physicochemical characterization of smoke aerosol during large-scale wildfires: Extreme event of August 2010 in Moscow

    NASA Astrophysics Data System (ADS)

    Popovicheva, O.; Kistler, M.; Kireeva, E.; Persiantseva, N.; Timofeev, M.; Kopeikin, V.; Kasper-Giebl, A.

    2014-10-01

    Enhancement of biomass burning-related research is essential for the assessment of large-scale wildfires impact on pollution at regional and global scale. Starting since 6 August 2010 Moscow was covered with thick smoke of unusually high PM10 and BC concentrations, considerably affected by huge forest and peat fires around megacity. This work presents the first comprehensive physico-chemical characterization of aerosols during extreme smoke event in Moscow in August 2010. Sampling was performed in the Moscow center and suburb as well as one year later, in August 2011 during a period when no biomass burning was observed. Small-scale experimental fires of regional biomass were conducted in the Moscow region. Carbon content, functionalities of organic/inorganic compounds, tracers of biomass burning (anhydrosaccharides), ionic composition, and structure of smoke were analyzed by thermal-optical analysis, FTIR spectroscopy, liquid and ion chromatography, and electron microscopy. Carbonaceous aerosol in August 2010 was dominated by organic species with elemental carbon (EC) as minor component. High average OC/EC near 27.4 is found, comparable to smoke of regional biomass smoldering fire, and exceeded 3 times the value observed in August 2011. Organic functionalities of Moscow smoke aerosols were hydroxyl, aliphatic, aromatic, acid and non-acid carbonyl, and nitro compound groups, almost all of them indicate wildfires around city as the source of smoke. The ratio of levoglucosan (LG) to mannosan near 5 confirms the origin of smoke from coniferous forest fires around megacity. Low ratio of LG/OC near 0.8% indicates the degradation of major molecular tracer of biomass burning in urban environment. Total concentration of inorganic ions dominated by sulfates SO2- and ammonium NH was found about 5 times higher during large-scale wildfires than in August 2011. Together with strong sulfate and ammonium absorbance in smoke aerosols, these observations prove the formation of

  8. Molecular characterization of polar organosulfates in secondary organic aerosol from the green leaf volatile 3-Z-hexenal

    NASA Astrophysics Data System (ADS)

    Safi Shalamzari, Mohammad; Kahnt, Ariane; Wang, Wu; Vermeylen, Reinhilde; Kleindienst, Tadeusz; Lewandovski, Michael; Maenhaut, Willy; Claeys, Magda

    2014-05-01

    Much information is available about secondary organic aerosol (SOA) formation from terpenes, including mono- and sesquiterpenes, and isoprene. However, information about SOA formation from green leaf volatiles (GLVs), an important class of biogenic volatile organic compounds, which are emitted when plants are wounded or attacked by insects, is very scarce. In the present study, we provide evidence that 3-Z-hexenal is a potential precursor for SOA through formation of organosulfates. Organosulfate formation from 3-Z-hexenal was studied by conducting smog chamber photooxidation experiments in the presence of NO and acidic ammonium seed aerosol, where OH radicals were generated from the NOx mediated photochemical chain reactions. The focus of the study was on the structural characterization of products, i.e., organosulfates (OSs) with a molecular weight (MW) of 226, which are also present in ambient fine aerosol from a forested site (K puszta, Hungary) at a substantial relative abundance that is comparable to that of the MW 216 isoprene-related OSs. Polar OSs are of climatic relevance because of their capacity to increase the hydrophilic properties of aerosols and as such their cloud-condensation nuclei effects. Two different liquid chromatography (LC) techniques were employed to separate the polar OSs: the first technique uses a reversed-phase trifunctionally bonded C18 stationary phase, whereas the second one is based on ion-pairing C18 LC using dibutylammonium acetate as ion-pairing reagent. With regard to mass spectrometry (MS) techniques, use was made of high-resolution MS to determine the accurate mass (measured mass, 225.00809; elemental composition, C6H9O7S) as well as linear ion trap MS to obtain detailed structural information. The MW 226 OSs were structurally characterized as sulfated derivatives of 3,4-dihydroxyhex-2-enoic acid with the sulfate group positioned at C-3 or C-4. The formation of these OSs is explained through photooxidation in the gas phase

  9. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery

    PubMed Central

    Duan, Jinghua; Vogt, Frederick G; Li, Xiaojian; Hayes, Don; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design and develop respirable antibiotics moxifloxacin (MOXI) hydrochloride and ofloxacin (OFLX) microparticles and nanoparticles, and multifunctional antibiotics particles with or without lung surfactant 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced by advanced spray-drying particle engineering from an organic solution in closed mode (no water) from dilute solution. Scanning electron microscopy indicated that these particles had both optimal particle morphology and surface morphology, and the particle size distributions were suitable for pulmonary delivery. Comprehensive and systematic physicochemical characterization and in vitro aerosol dispersion performance revealed significant differences between these two fluoroquinolone antibiotics following spray drying as drug aerosols and as cospray-dried antibiotic drug: DPPC aerosols. Fourier transform infrared spectroscopy and confocal Raman microspectroscopy were employed to probe composition and interactions in the solid state. Spray-dried MOXI was rendered noncrystalline (amorphous) following organic solution advanced spray drying. This was in contrast to spray-dried OFLX, which retained partial crystallinity, as did OFLX:DPPC powders at certain compositions. Aerosol dispersion performance was conducted using inertial impaction with a dry powder inhaler device approved for human use. The present study demonstrates that the use of DPPC offers improved aerosol delivery of MOXI as cospray-dried microparticulate/nanoparticulate powders, whereas residual partial crystallinity influenced aerosol dispersion of OFLX and most of the compositions of OFLX:DPPC inhalation powders. PMID:24092972

  10. The Microphysical and Chemical properties of aerosol particles from the United Arab Emirates Unified Aerosol Experiment (UAE2) and from the Bodele-BODEX Experiment

    NASA Astrophysics Data System (ADS)

    Martins, J.; Chaudhry, Z.; Todd, M.; Kaufman, Y.; Artaxo, P.

    2005-12-01

    Aerosol filters collected during the UAE2 experiment (August 2004), and during the BODEX experiment (in the Bodele region, February 2005) were analyzed for spectral absorption properties (from 350-2500nm), mass concentration (fine and coarse modes), electron microscopy, and chemical composition. The UAE2 samples show evidence of absorption by dust and urban pollution particles. In the fine mode, the urban pollution particles show spectral dependence inversely proportional to the wavelength, which is compatible with small black carbon aerosols. The coarse mode shows evidences of the internal mixture between dust and pollution, producing the typical strong absorption in UV-Visible wavelengths produced by dust, as well as significant absorption in the NIR (near infrared) coming from the dust-pollution combination. On the other hand, the Bodele samples show at least two types of dust absorption behavior: 1 - very strong absorption efficiency in the UV and visible wavelengths with nearly no absorption in the NIR; 2 - very strong absorption efficiency in the UV-VIS region with significant absorption in the NIR. Additional samples collected in the Amazon region, in Brazil, show evidence of long-range transport of dust from the Sahara. The chemical composition and microphysical properties of the Amazon Samples are compared with those measured in the UAE and Bodele regions. The chemical composition of these samples provides additional insight on previous theories of the fertilization of the Amazon by long-range transport of dust from the Sahara region.

  11. Chemical Characterization of Secondary Organic Aerosol Formed Through Cloud Processing of Methylglyoxal

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Seitzinger, S. P.; Carlton, A. G.; Turpin, B. J.; Klein, G. C.; Marshall, A. G.

    2007-12-01

    There is increasing evidence suggesting that secondary organic aerosol (SOA) forms as a result of low volatility product formation in atmospheric aqueous phase reactions. In this work aqueous phase photooxidation experiments between methylglyoxal (an isoprene oxidation product) and hydroxyl radical were conducted to simulate the cloud processing of methylglyoxal. The results verify that, as predicted, oxalic acid forms through cloud processing of methylglyoxal. This work adds to the growing body of literature (Altieri et al., 2006; Carlton et al., 2006; Carlton et al., 2007; Crahan et al., 2004; Warneck, 2003; 2005; Yu et al., 2005) supporting the hypothesis that cloud processing is a substantial source of oxalic acid to the atmosphere. Oxalic acid is the most abundant dicarboxylic acid in the atmosphere and a contributor to SOA. The formation of additional monomer products (e.g., malic acid, succinic acid, glycolic acid) and the development of an oligomer system were also identified through use of a combination of electrospray ionization mass spectrometry (ESI-MS) techniques: a quadrupole ESI-MS, an ion trap ESI-MS-MS, and an ultra-high resolution ESI FT-ICR MS. We propose a mechanism of oligomer formation through esterification of monomers with a hydroxy acid formed from hydroxyl radical initiated reactions. Oligomers were only recently identified as cloud processing products (Altieri et al., 2006), and this work is the first chemical characterization of oligomers formed through cloud processing reactions. The chemical characterization includes the distribution of molecular weights, elemental compositions, structure, and organic mass to organic carbon (OM:OC) ratio. Methylglyoxal is a water- soluble product of both biogenic and anthropogenic hydrocarbon oxidation. The varied and multiple sources of methylglyoxal suggest there is strong potential for these low volatility products (e.g., oxalic acid and oligomers) to significantly contribute to SOA.

  12. The CalWater 2 - ARM Cloud Aerosol Precipitation Experiment (ACAPEX)

    NASA Astrophysics Data System (ADS)

    Leung, L. Y.; Prather, K. A.; Ralph, F. M.; Rosenfeld, D.; Spackman, J. R.; Fairall, C. W.; DeMott, P. J.; Fan, J.; Zhao, C.

    2014-12-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. While ARs are responsible for a large fraction of heavy precipitation in the western U.S. during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes. In January - March 2015, the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign will take place in northern California. Joined with CalWater 2, the field campaign aims to improve understanding and modeling of large-scale dynamics and cloud and precipitation processes associated with ARs and aerosol-cloud interactions that influence precipitation variability and extremes in the western U.S. We will implement an observational strategy consisting of the use of land and offshore assets to monitor (1) the evolution and structure of ARs from near their regions of development, (2) long range transport of aerosols in eastern North Pacific and potential interactions with ARs, and (3) how aerosols from long-range transport and local sources influence cloud and precipitation in the U.S. West Coast where ARs make landfall and post-frontal clouds are frequent. This presentation will provide an overview of the science questions and hypotheses to be addressed by CalWater 2/ACAPEX, review key results from prior studies, and discuss recent findings from

  13. The United Arab Emirates Unified Aerosol Experiment (UAE2)

    DTIC Science & Technology

    2006-01-01

    the Arabian Gulf is one of the most difficult environments in the world to characterize, model, and monitor. Frequent dust storms , high pollution...ANSI Std Z39-18 2006 NRL REVIEW OCEAN AND ATMOSPHERIC SCIENCE AND TECHNOLOGY FIGURE 10 NRL Dust enhancement product with COAMPS  surface winds...August 2005. 2 S.D. Miller, “A Consolidated Technique for Enhancing Desert Dust Storms with MODIS,” Geophys. Res. Lett. 30(20), 2071- 2074 (2003). 3 S.D

  14. Raman lidar and sun photometer measurements of aerosols and water vapor during the ARM RCS experiment

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Evans, K. D.; Holben, B. N.

    1995-01-01

    The first Atmospheric Radiation Measurement (ARM) Remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program. These activities are part of an overall plan to assess general circulation model (GCM) parameterization research. Since radiation processes are one of the key areas included in this parameterization research, measurements of water vapor and aerosols are required because of the important roles these atmospheric constituents play in radiative transfer. Two instruments were deployed during this IOP to measure water vapor and aerosols and study their relationship. The NASA/Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) acquired water vapor and aerosol profile data during 15 nights of operations. The lidar acquired vertical profiles as well as nearly horizontal profiles directed near an instrumented 60 meter tower. Aerosol optical thickness, phase function, size distribution, and integrated water vapor were derived from measurements with a multiband automatic sun and sky scanning radiometer deployed at this site.

  15. Characterization and Cytotoxic Assessment of Ballistic Aerosol Particulates for Tungsten Alloy Penetrators into Steel Target Plates

    PubMed Central

    Machado, Brenda I.; Murr, Lawrence E.; Suro, Raquel M.; Gaytan, Sara M.; Ramirez, Diana A.; Garza, Kristine M.; Schuster, Brian E.

    2010-01-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified. PMID:20948926

  16. Characterization and cytotoxic assessment of ballistic aerosol particulates for tungsten alloy penetrators into steel target plates.

    PubMed

    Machado, Brenda I; Murr, Lawrence E; Suro, Raquel M; Gaytan, Sara M; Ramirez, Diana A; Garza, Kristine M; Schuster, Brian E

    2010-09-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified.

  17. Size-resolved trace metal characterization of aerosols emitted by four important source types in Switzerland

    NASA Astrophysics Data System (ADS)

    Buerki, Peter R.; Gaelli, Brigitte C.; Nyffeler, Urs P.

    In central Switzerland five types of emission sources are mainly responsible for airborne trace metals: traffic, industrial plants burning heavy oil, resuspension of soil particles, residential heatings and refuse incineration plants. The particulate emissions of each of these source types except refuse incineration were sampled using Berner impactors and the mass and elemental size distributions of Cd, Cu, Mn, Pb, Zn, As and Na determined. Cd, Na and Zn are not characteristic for any of these source types. As and Cu, occurring in the fine particle fractions are characteristic for heavy oil combustion, Mn for soil dust and sometimes for heavy and fuel oil combustion and Pb for traffic aerosols. The mass size distributions of aerosols originating from erosion and abrasion processes show a maximum mass fraction in the coarse particle range larger than about 1 μm aerodynamic equivalent diameters (A.E.D.). Aerosols originating from combustion processes show a second maximum mass fraction in the fine particle range below about 0.5μm A.E.D. Scanning electron microscopy combined with an EDS analyzer was used for the morphological characterization of emission and ambient aerosols.

  18. Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Mei; Huang, Zhengxu; Gao, Wei; Nian, Huiqing; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2014-09-01

    To investigate the composition and possible sources of aerosol particles in Beijing urban area, a single particle aerosol mass spectrometer (SPAMS) was deployed from April 22 to May 4, 2011. 510,341 particles out of 2,953,200 sized particles were characterized by SPAMS in combination with the ART-2a neural network algorithm. The particles were classified as rich-K (39.79%), carbonaceous species (32.7%), industry metal (19.2%), dust (5.7%), and rich-Na (1.76%). Industrial emissions related particles, rich-Fe, rich-Pb, and K-nitrate, were the major components of aerosol particles during haze periods, which were mainly from the steel plants and metal smelting processes around Beijing. Under stagnant meterological conditions, these regional emissions have a vital effect on haze formation. Organic carbon (OC) particles were attributed to biomass burning. NaK-EC was likely to come from local traffic emissions. Internally mixed organic and elemental carbon (OCEC) was found to be from possible sources of local traffic emission and biomass burning. It was found that coarse dust particles were mainly composed of four different types of dust particles, dust-Si, dust-Ca, dust-Al, and dust-Ti. It is the first time that SPAMS was used to study a dust storm in Beijing. Our results showed that SPAMS could be a powerful tool in the identification and apportionment of aerosol sources in Beijing, providing useful reference information for environmental control and management.

  19. Overview of the Capstone depleted uranium study of aerosols from impact with armored vehicles: test setup and aerosol generation, characterization, and application in assessing dose and risk.

    PubMed

    Parkhurst, Mary Ann; Guilmette, Raymond A

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study was conducted to generate data about DU aerosols generated during the perforation of armored combat vehicles with large-caliber DU penetrators, and to apply the data in assessments of human health risks to personnel exposed to these aerosols, primarily through inhalation, during the 1991 Gulf War or in future military operations. The Capstone study consisted of two components: 1) generating, sampling, and characterizing DU aerosols by firing at and perforating combat vehicles, and 2) applying the source-term quantities and characteristics of the aerosols to the evaluation of doses and risks. This paper reviews the background of the study including the bases for the study, previous reviews of DU particles and health assessments from DU used by the U.S. military, the objectives of the study components, the participants and oversight teams, and the types of exposures it was intended to evaluate. It then discusses exposure scenarios used in the dose and risk assessment and provides an overview of how the field tests and dose and risk assessments were conducted.

  20. Overview of the Capstone Depleted Uranium Study of Aerosols from Impact with Armored Vehicles: Test Setup and Aerosol Generation, Characterization, and Application in Assessing Dose and Risk

    SciTech Connect

    Parkhurst, MaryAnn; Guilmette, Raymond A.

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study was conducted to generate data about DU aerosols generated during the perforation of armored combat vehicles with large-caliber DU penetrators, and to apply the data in assessments of human health risks to personnel exposed to these aerosols, primarily through inhalation, during the 1991 Gulf War or in future military operations. The Capstone study consisted of two components: 1) generating, sampling and characterizing DU aerosols by firing at and perforating combat vehicles and 2) applying the source-term quantities and characteristics of the aerosols to the evaluation of doses and risks. This paper reviews the background of the study including the bases for the study, previous reviews of DU particles and health assessments from DU used by the U.S. military, the objectives of the study components, the participants and oversight teams, and the types of exposures it was intended to evaluate. It then discusses exposure scenarios used in the dose and risk assessment and provides an overview of how the field tests and dose and risk assessments were conducted.

  1. Physical and chemical characterization of marine atmospheric aerosols over the North and South Pacific Oceans using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Furutani, H.; Jung, J.; Miura, K.; Uematsu, M.

    2010-12-01

    Physical and chemical properties of marine atmospheric aerosols were characterized and compared over the North and South Pacific Ocean during two trans-Pacific cruises (from Japan to Chile and Australia to Japan) during the period of January-June 2009, which cover broad region of Pacific Ocean from 40°N to 55°S and 140°E to 70°W. The measured parameters of aerosol properties were single particle size-resolved chemical composition (D = 100 ~ 1500 nm), cloud condensation nuclei (CCN) and condensation nuclei (CN) concentrations, size distribution from 10 nm to 5 μm, total aerosol nitrate and sulfate concentrations, and filter-based chemical composition. Trace gas concentrations of O3 and CO were also measured to aid air parcel categorization during the cruises. Reflecting larger anthropogenic emission in the Northern Hemisphere, pronounced concentration gradient between the North and South Pacific Ocean was observed for aerosol nitrate, CO, and O3. Aerosol sulfate also showed a similar concentration drop in the equatorial region, relatively higher sulfate concentration was observed in 30°S-40°S and 55°S regions, which was associated with increased aerosol methanesulfonic acid (MSA) concentration but little increase in local marine chlorophyll concentration, suggesting contribution of long-range transported marine biogenic sulfur from the high primary production area over the South Pacific high latitude region. Aerosol chemical classification by single particle chemical analysis revealed that certain aerosol types, such as biomass burning, elemental carbon, and elemental/organic carbon mixed type, were mainly observed in the North Pacific region, while several specific organic aerosol types with abundant aged organic and disulfur composition were identified in the South Pacific region. Further comparison of aerosol properties, aerosol sources, and atmospheric aerosol processing in the North and South Pacific Oceans will be discussed.

  2. Experiments on liquid-metal fast breeder reactor aerosol source terms after severe accidents

    SciTech Connect

    Berthoud, G.; Longest, A.W.; Wright, A.L.; Schutz, W.P.

    1988-05-01

    In the extremely unlikely event of a liquid-metal fast breeder reactor core disruptive accident, expanding core material or sodium vapor inside the sodium pool may cause leaks in the vessel head and transport of radioactive material, mostly aerosols, in one large bubble or several smaller bubbles under energetic conditions to the cover gas and through leaks to the inner containment (''instantaneous source term''). Out-of-pile experiments on bubble expansion from a pressurized source inside a liquid (water or sodium) and related phenomena like heat transfer, condensation, entrainment, rise, and aerosol transport were carried out in France and the United States and are continuing in the Federal Republic of Germany. Parameters and results of these experiments are described and discussed, mainly concerning the aerosol problem. It appears that several mechanisms exist for a very efficient removal of particles from the bubble. Retention factors larger than 10,000 were found in most cases. In addition, a short survey is given of French and German experiments on fuel and fission product release from evaporating or burning sodium pools (delayed source term).

  3. [Characterization of photochemical smog chamber and initial experiments].

    PubMed

    Jia, Long; Xu, Yong-Fu; Shi, Yu-Zhen

    2011-02-01

    A self-made new indoor environmental chamber facility for the study of atmospheric processes leading to the formation of ozone and secondary organic aerosols has been introduced and characterized. The characterization experiments include the measurements of wall effects for reactive species and the determination of chamber dependent * OH radical sources by CO-NO(x) irradiation experiments. Preliminary ethene-NO(x) and benzene-NO(x) experiments were conducted as well. The results of characterization experiments show that the wall effects for O3 and NO2 in a new reactor are not obvious. Relative humidity has a great effect on the wall losses in the old reactor, especially for O3. In the old reactor, the rate constant for O3 wall losses is obtained to be 1.0 x 10(-5) s(-1) (RH = 5%) and 4.0 x10(-5) s(-1) (RH = 91%), whereas for NO2, it is 1.0 x 10(-6) s(-1) (RH = 5%) and 0.6 x 10(-6) s(-1) (RH = 75%). The value for k(NO2 --> HONO) determined by CO-NO(x) irradiation experiments is (4.2-5.2) x 10(-5) s(-1) and (2.3-2.5) x 10(-5) s(-1) at RH = 5% and RH 75% -77%, respectively. The average *OH concentration is estimated to be (2.1 +/- 0.4) x 10(6) molecules/cm3 by using a reaction rate coefficient of CO and * OH. The sensitivity of chamber dependent auxiliary reactions to the O3 formation is discussed. Results show that NO2 --> HONO has the greatest impact on the O3 formation during the initial stage, N2O5 + H2O --> 2HNO3 has a minus effect to maximum O3 concentration, and that the wall losses of both O3 and NO2 have little impact on the O3 formation. The results from the ethene-NO(x) and benzene-NO(x) experiments are in good agreement with those from the MCM simulation, which reflects that the facility for the study of the formation of secondary pollution of ozone and secondary organic aerosols is reliable. This demonstrates that our facility can be further used in the deep-going study of chemical processes in the atmosphere.

  4. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer.

    PubMed

    Pratt, Kerri A; Mayer, Joseph E; Holecek, John C; Moffet, Ryan C; Sanchez, Rene O; Rebotier, Thomas P; Furutani, Hiroshi; Gonin, Marc; Fuhrer, Katrin; Su, Yongxuan; Guazzotti, Sergio; Prather, Kimberly A

    2009-03-01

    Vertical and horizontal profiles of atmospheric aerosols are necessary for understanding the impact of air pollution on regional and global climate. To gain further insight into the size-resolved chemistry of individual atmospheric particles, a smaller aerosol time-of-flight mass spectrometer (ATOFMS) with increased data acquisition capabilities was developed for aircraft-based studies. Compared to previous ATOFMS systems, the new instrument has a faster data acquisition rate with improved ion transmission and mass resolution, as well as reduced physical size and power consumption, all required advances for use in aircraft studies. In addition, real-time source apportionment software allows the immediate identification and classification of individual particles to guide sampling decisions while in the field. The aircraft (A)-ATOFMS was field-tested on the ground during the Study of Organic Aerosols in Riverside, CA (SOAR) and aboard an aircraft during the Ice in Clouds Experiment-Layer Clouds (ICE-L). Initial results from ICE-L represent the first reported aircraft-based single-particle dual-polarity mass spectrometry measurements and provide an increased understanding of particle mixing state as a function of altitude. Improved ion transmission allows for the first single-particle detection of species out to approximately m/z 2000, an important mass range for the detection of biological aerosols and oligomeric species. In addition, high time resolution measurements of single-particle mixing state are demonstrated and shown to be important for airborne studies where particle concentrations and chemistry vary rapidly.

  5. Chemical Analysis of Aerosols for Characterization of Long-Range Transport at Mt. Lassen, CA

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Waddell, J. A.; Cliff, S. S.; Perry, K. D.; Kelly, P. B.

    2004-12-01

    Effective regional air pollution regulation requires an understanding of long-range aerosol transport and natural aerosol chemistry. Sample collection was performed at the Interagency Monitoring of Protected Visual Environments (IMPROVE) sampling site on Mt. Lassen in the Sierra Nevada range at 1755 m elevation. The site is in Northern California at Longitude 121° 34' 40", Latitude 40° 32' 25". Size segregated and time resolved aerosol samples were collected with an 8 DRUM sampler from April 15th to May 24th 2002 as part of the NOAA Intercontinental Transport and Chemical Transformation Experiment (ITCT). The samples were analyzed with Synchrotron X-Ray Fluorescence (S-XRF) and Time of Flight mass spectroscopy (TOFMS). The total aerosol concentration exhibits a clear daily cycling of total mass, due to a nighttime down-slope air circulation from the free troposphere. The sulfate peaked in concentration during the night. Elemental data is suggestive of dust transport from continental Asia. The micron size ranges were dominated by nitrate, while the sub-micron size ranges had high levels of sulfate. Chemical analysis shows oceanic influence through strong correlations between methyl sulfonic acid (MSA), iodine, and oxalate. The appearance of the oceanic biogenic tracers in the sub-micron fraction is most likely a result of vertical mixing over the Pacific Ocean. MSA follows a diurnal pattern similar to sulfate, however the differences suggest both an oceanic and continental source for sulfate. The carbon particulate signal did not show any diurnal pattern during the measurement period.

  6. Spent fuel sabotage test program, characterization of aerosol dispersal : technical review and analysis supplement.

    SciTech Connect

    Durbin, Samuel G.; Lindgren, Eric Richard

    2009-07-01

    This project seeks to provide vital data required to assess the consequences of a terrorist attack on a spent fuel transportation cask. One such attack scenario involves the use of conical shaped charges (CSC), which are capable of damaging a spent fuel transportation cask. In the event of such an attack, the amount of radioactivity that may be released as respirable aerosols is not known with great certainty. Research to date has focused on measuring the aerosol release from single short surrogate fuel rodlets subjected to attack by a small CSC device in various aerosol chamber designs. The last series of three experiments tested surrogate fuel rodlets made with depleted uranium oxide ceramic pellets in a specially designed double chamber aerosol containment apparatus. This robust testing apparatus was designed to prevent any radioactive release and allow high level radioactive waste disposal of the entire apparatus following testing of actual spent fuel rodlets as proposed. DOE and Sandia reviews of the project to date identified a number of issues. The purpose of this supplemental report is to address and document the DOE review comments and to resolve the issues identified in the Sandia technical review.

  7. A global aerosol model forecast for the ACE-Asia field experiment

    NASA Astrophysics Data System (ADS)

    Chin, Mian; Ginoux, Paul; Lucchesi, Robert; Huebert, Barry; Weber, Rodney; Anderson, Tad; Masonis, Sarah; Blomquist, Byron; Bandy, Alan; Thornton, Donald

    2003-12-01

    We present the results of aerosol forecast during the ACE-Asia field experiment in spring 2001, using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model and the meteorological forecast fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The model provides direct information on aerosol optical thickness and concentrations for effective flight planning, while feedbacks from measurements constantly evaluate the model for successful model improvements. We verify the model forecast skill by comparing model-predicted aerosol quantities and meteorological variables with those measured by the C-130 aircraft. The GEOS DAS meteorological forecast system shows excellent skills in predicting winds, relative humidity, and temperature, with skill scores usually in the range of 0.7-0.99. The model is also skillful in forecasting pollution aerosols, with most scores above 0.5. The model correctly predicted the dust outbreak events and their trans-Pacific transport, but it constantly missed the high dust concentrations observed in the boundary layer. We attribute this "missing" dust source to desertification regions in the Inner Mongolia Province in China, which have developed in recent years but were not included in the model during forecasting. After incorporating the desertification sources, the model is able to reproduce the observed boundary layer high dust concentrations over the Yellow Sea. We demonstrate that our global model can not only account for the large-scale intercontinental transport but also produce the small-scale spatial and temporal variations that are adequate for aircraft measurements planning.

  8. Toward Developing a New Occupational Exposure Metric Approach for Characterization of Diesel Aerosols

    PubMed Central

    Cauda, Emanuele G.; Ku, Bon Ki; Miller, Arthur L.; Barone, Teresa L.

    2015-01-01

    The extensive use of diesel-powered equipment in mines makes the exposure to diesel aerosols a serious occupational issue. The exposure metric currently used in U.S. underground noncoal mines is based on the measurement of total carbon (TC) and elemental carbon (EC) mass concentration in the air. Recent toxicological evidence suggests that the measurement of mass concentration is not sufficient to correlate ultrafine aerosol exposure with health effects. This urges the evaluation of alternative measurements. In this study, the current exposure metric and two additional metrics, the surface area and the total number concentration, were evaluated by conducting simultaneous measurements of diesel ultrafine aerosols in a laboratory setting. The results showed that the surface area and total number concentration of the particles per unit of mass varied substantially with the engine operating condition. The specific surface area (SSA) and specific number concentration (SNC) normalized with TC varied two and five times, respectively. This implies that miners, whose exposure is measured only as TC, might be exposed to an unknown variable number concentration of diesel particles and commensurate particle surface area. Taken separately, mass, surface area, and number concentration did not completely characterize the aerosols. A comprehensive assessment of diesel aerosol exposure should include all of these elements, but the use of laboratory instruments in underground mines is generally impracticable. The article proposes a new approach to solve this problem. Using SSA and SNC calculated from field-type measurements, the evaluation of additional physical properties can be obtained by using the proposed approach. PMID:26361400

  9. Single-particle characterization of summertime arctic aerosols collected at Ny-Alesund, Svalbard.

    PubMed

    Geng, Hong; Ryu, Jiyeon; Jung, Hae-Jin; Chung, Hyeok; Ahn, Kang-Ho; Ro, Chul-Un

    2010-04-01

    Single-particle characterization of summertime Arctic aerosols is useful to understand the impact of air pollutants on the polar atmosphere. In the present study, a quantitative single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was used to characterize 8100 individual particles overall in 16 sets of aerosol samples collected at Ny-Alesund, Svalbard, Norway on 25-31 July, 2007. Based on their X-ray spectral and secondary electron image data of individual particles, 13 particle types were identified, in which particles of marine origin were the most abundant, followed by carbonaceous and mineral dust particles. A number of aged (reacted) sea salt (and mixture) particles produced by the atmospheric reaction of genuine sea-salts, especially with NO(x) or HNO(3), were significantly encountered in almost all the aerosol samples. They greatly outnumbered genuine sea salt particles, implying that the summertime Arctic atmosphere, generally regarded as a clean background environment, is disturbed by anthropogenic air pollutants. The main sources of airborne NO(x) (or HNO(3)) are probably ship emissions around the Arctic Ocean, industry emission from northern Europe and northwestern Siberia, and renoxification of NO(3)(-) within or on the melting snow/ice surface.

  10. Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment - Part 1: Distributions and variability

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil; Albrecht, Bruce A.; Feingold, Graham; Jonsson, Haflidi H.; Chuang, Patrick; Donaher, Shaunna L.

    2016-07-01

    Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March-April 2010), which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter (TO) research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter), particles that are large enough to be effective giant cloud condensation nuclei (CCN). The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer), Africa (Saharan air layer), and mid-latitudes (continental pollution plumes). Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ˜ 3 km, while most clouds were less than 1 km

  11. Aerosol sampling and characterization in the developing US oil-shale industry

    SciTech Connect

    Hargis, K.M.; Tillery, M.I.; Gonzales, M.; Garcia, L.L.

    1981-01-01

    Aerosol sampling and characterization studies of workplace air were conducted at four demonstration-scale oil shale facilities located in northwestern Colorado and northeastern Utah. These facilities consisted of an underground mining/aboveground retorting facility, two modified in situ retorting facilities with associated underground mining, and a true in situ retorting facility. Emphasis was placed on study of the retorting phase of operation at these facilities. Aerosol samples were collected on filter media by high volume air samplers, low volume portable sampling pumps with or without cyclone pre-separators, and cascade impactors. Samples were analyzed to determine total and respirable dust concentrations, particle size distributions, free silica content, total benzene or cyclohexane extractables, and selected polynuclear aromatic hydrocarbons. Total and respirable dust were observed to range from very low to very high concentrations, with significant free silica content. Measurable levels of polynuclear aromatic hydrocarbons were also observed at each of the facilities.

  12. On the Stratospheric Aerosol and Gas Experiment III on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hernandez, Gloria; Zawodny, Joseph M.; Cisewski, Michael S.; Thornton, Brooke M.; Panetta, Andrew D,; Roell, Marilee M.; Vernier, Jean-Paul

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on International Space Station (SAGE3/ISS) is anticipated to be delivered to Cape Canaveral in the spring of 2015. This is the fourth generation, fifth instrument, of visible/near-IR solar occultation instruments operated by the National Aeronautics and Space Agency (NASA) to investigate the Earth's upper atmosphere. The instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. The SAGE3/ISS validation program will be based upon internal consistency of the measurements, detailed analysis of the retrieval algorithm, and comparisons with independent correlative measurements. The Instrument Payload (IP), mission architecture, and major challenges are also discussed.

  13. Aerosol Radiative Effects: Expected Variations in Optical Depth Spectra and Climate Forcing, with Implications for Closure Experiment Strategies

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Stowe, L. L.; Hobbs, P. V.; Podolske, James R. (Technical Monitor)

    1995-01-01

    We examine measurement strategies for reducing uncertainties in aerosol direct radiative forcing by focused experiments that combine surface, air, and space measurements. Particularly emphasized are closure experiments, which test the degree of agreement among different measurements and calculations of aerosol properties and radiative effects. By combining results from previous measurements of large-scale smokes, volcanic aerosols, and anthropogenic aerosols with models of aerosol evolution, we estimate the spatial and temporal variability in optical depth spectra to be expected in the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, planned for summer 1996 off the Eastern U.S. seaboard). In particular, we examine the expected changes in the wavelength dependence of optical depth as particles evolve through nucleation, growth by condensation and coagulation, and removal via sedimentation. We then calculate the expected radiative climate forcing (i.e. change in net radiative flux) for typical expected aerosols and measurement conditions (e.g. solar elevations, surface albedos, radiometer altitudes). These calculations use new expressions for flux and albedo changes, which account not only for aerosol absorption, but also for instantaneous solar elevation angles and the dependence of surface albedo on solar elevation. These factors, which are usually ignored or averaged in calculations of global aerosol effects, can have a strong influence on fluxes measured in closure experiments, and hence must be accounted for in calculations if closure is to be convincingly tested. We compare the expected measurement signal to measurement uncertainties expected for various techniques in various conditions. Thereby we derive recommendations for measurement strategies that combine surface, airborne, and spaceborne measurements.

  14. Aerosol Physical and Chemical Properties Before and After the Manaus Plume in the GoAmazon2014 Experiment

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Barbosa, H. M.; Ferreira De Brito, J.; Wurm, F.; Holanda, B. A.; Carbone, S.; Arana, A.; Cirino, G. G.; Souza, R. A. F. D.; Rizzo, L. V.; Martin, S. T.; Andreae, M. O.; Holben, B. N.; Schafer, J.

    2014-12-01

    As part of the GoAmazon2014 experiment, several aerosol and trace gas monitoring stations are being operated for at least one year before and after the Manaus plume. Three sites are being operated in pristine conditions, with atmospheric properties under natural biogenic conditions. These three sites called T0 are: ATTO (Amazon Tall Tower Observatory), ZF2 ecological research site and a third site called EMBRAPA. After the air masses are exposed to the Manaus plume, one site (called T2) is being operated right on the opposite side of the Negro River under the direct influence of the Manaus plume at 5 Km downwind of Manaus. Finally, at about 150 Km downwind of Manaus is the T3 Manacapuru site. Aerosol chemical composition is being analyzed using filters for fine (PM2.5) and coarse mode aerosol as well as three Aerodyne ACSM (Aerosol Chemical Speciation Monitors) instruments. Aerosol absorption is being studied with several aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using nephelometers. Aerosol size distribution is determined using scanning mobility particle sizers. The aerosol column is measures using AERONET sunphotometers before and after the Manaus plume, as well as several Lidar systems. The three sites before the Manaus plume show remarkable similar variability in aerosol concentrations and optical properties. This pattern is very different at the T2 site, with large aerosol concentrations enhancing aerosol absorption and scattering significantly. The aerosol is very oxidized before being exposed to the Manaus plume, and this pattern changes significantly for T2 and T3 sites, with a much higher presence of less oxidized aerosol. Typical ozone concentrations at mid-day before Manaus plume is a low 10-12 ppb, value that changes to 50-70 ppb for air masses suffering the influence of Manaus plume. A detailed comparison of aerosol characteristics and composition for the several

  15. Aerosol characterization over Sundarban mangrove forest at the north-east coast of Bay of Bengal, India

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Das, Sanat Kumar; Sarkar, Chirantan; Ghosh, Sanjay; Raha, Sibaji; Singh, Soumendra; Roy, Arindam

    2016-07-01

    A comprehensive study was conducted on chemical characterization of size segregated and cumulative aerosols during winter, 2015 and summer 2016 over a remote mangrove forest at Sundarban at the north-east coast of Bay of Bengal. Aerosols originated from the surf zone at the land-ocean boundary of Sundarban mangrove forest and aerosols advected from Kolkata and other metropolitan and urban cities at Indo-Gangetic Plain were characterized in terms of major water soluble inorganic species. Attempt was made to investigate the combined effect of locally generated sea-salt and advected anthropogenic aerosols could change the pristine marine character at this region during the above mentioned periods. Significant chloride depletion from sea-salt aerosols was observed in coarse and ultrafine mode compared to fine mode in winter whereas reverse trend was observed during summer. On an average the chloride to sodium ratio in PM10 aerosol was found to be around 0.6 which was much lower than that in sea-water. It was observed that non-sea-sulphate and nitrate aerosols were the major species depleting chloride from sea-salt aerosols. This supported the interaction between fresh marine and polluted anthropogenic aerosols. The average concentration of PM10 aerosols was 64 μg m-3 in winter and 89 μg m-3 in summer. Major water soluble ionic species were used for the source apportionment of aerosol during the two seasons. On an average it was observed that 60-70 % of total PM10 aerosols were constituted by the major water soluble ionic species. Emission flux and deposition flux of aerosols were also studied over this remote forest region. It was also observed that anthropogenic ionic species were mostly accumulated in the ultrafine and fine mode region both during winter and summer. On the other hand sea-salt species were mostly accumulated in the coarse mode region. Sulphate aerosol showed bimodal distribution with prominent peaks both at ultrafine/fine and coarse mode region

  16. Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols.

    PubMed

    Park, Chun-Woong; Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Zwischenberger, Joseph B; Park, Eun-Seok; Mansour, Heidi M

    2013-10-15

    Respirable microparticles/nanoparticles of the antibiotics vancomycin (VCM) and clarithromycin (CLM) were successfully designed and developed by novel organic solution advanced spray drying from methanol solution. Formulation optimization was achieved through statistical experimental design of pump feeding rates of 25% (Low P), 50% (Medium P) and 75% (High P). Systematic and comprehensive physicochemical characterization and imaging were carried out using scanning electron microscopy (SEM), hot-stage microscopy (HSM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Karl Fischer titration (KFT), laser size diffraction (LSD), gravimetric vapor sorption (GVS), confocal Raman microscopy (CRM) and spectroscopy for chemical imaging mapping. These novel spray-dried (SD) microparticulate/nanoparticulate dry powders displayed excellent aerosol dispersion performance as dry powder inhalers (DPIs) with high values in emitted dose (ED), respirable fraction (RF), and fine particle fraction (FPF). VCM DPIs displayed better aerosol dispersion performance compared to CLM DPIs which was related to differences in the physicochemical and particle properties of VCM and CLM. In addition, organic solution advanced co-spray drying particle engineering design was employed to successfully produce co-spray-dried (co-SD) multifunctional microparticulate/nanoparticulate aerosol powder formulations of VCM and CLM with the essential lung surfactant phospholipid, dipalmitoylphosphatidylcholine (DPPC), for controlled release pulmonary nanomedicine delivery as inhalable dry powder aerosols. Formulation optimization was achieved through statistical experimental design of molar ratios of co-SD VCM:DPPC and co-SD CLM:DPPC. XRPD and DSC confirmed that the phospholipid bilayer structure in the solid-state was preserved following spray drying. Co-SD VCM:DPPC and co-SD CLM:DPPC dry powder aerosols demonstrated controlled release of antibiotic drug that was fitted to various

  17. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  18. Trace Gases and Aerosol in the Boundary Layer of the Northern Asia: TROICA Experiments

    NASA Astrophysics Data System (ADS)

    Elanksy, N. F.; Aloyan, A. E.; Berezina, E. V.; Elokhov, A. S.; Brenninkmeijer, C. A.; Kopeikin, V. M.; Moeseenko, K. B.; Lavrova, O. V.; Pankratova, N. V.; Safronov, A. N.; Shumsky, R. A.; Skorokhod, A. I.; Tarasova, O. A.; Vivchar, A. V.; Grisenko, A. M.

    2007-12-01

    The TROICA experiment (Transcontinental Observations Into the Chemistry of the Atmosphere) started in 1995. A mobile railroad laboratory is being used for measurements of atmospheric gases, aerosol, solar radiation and meteorological parameters. The laboratory wagon is directly coupled to the locomotive of a passenger train traveling along electrified railroads of Russia. Eleven expeditions have been conducted to the moment of which nine were performed along the Trans-Siberian railroad from Moscow to Vladivostok (around 9300 km). One expedition was North-South between Murmansk and Kislovodsk, and one was around the mega-city of Moscow. The huge coverage of the continental regions and the repetition of the expeditions provide unique information on processes controlling variability of the key trace gases (O3, NOx, CO, CO2, CH4, some VOCs) and aerosols with high temporal and spatial resolution over different scales from continental to local (hundreds meters). Multiple crossings of settlements allowed determining typical variations of surface gases and aerosol concentrations within cities and their plumes. 222Rn concentration data were used for estimates of CO, CH4 and CO2 nocturnal fluxes from the soil and vegetation. Impacts of different factors, like Western Siberian gas and oil industry, forest fires, transboundary air pollution transport and some other can be evaluated based on the measurement data by comparing them with results of model output and hence can be used for model validation. Emissions of the atmospheric CO and CH4 were studied in several expeditions using isotopes analysis.

  19. Aerosol and cloud sensing with the Lidar In-space Technology Experiment (LITE)

    NASA Technical Reports Server (NTRS)

    Winker, D. M.; McCormick, M. P.

    1994-01-01

    The Lidar In-space Technology Experiment (LITE) is a multi-wavelength backscatter lidar developed by NASA Langley Research Center to fly on the Space Shuttle. The LITE instrument is built around a three-wavelength ND:YAG laser and a 1-meter diameter telescope. The laser operates at 10 Hz and produces about 500 mJ per pulse at 1064 nm and 532 nm, and 150 mJ per pulse at 355 nm. The objective of the LITE program is to develop the engineering processes required for space lidar and to demonstrate applications of space-based lidar to remote sensing of the atmosphere. The LITE instrument was designed to study a wide range of cloud and aerosol phenomena. To this end, a comprehensive program of scientific investigations has been planned for the upcoming mission. Simulations of on-orbit performance show the instrument has sufficient sensitivity to detect even thin cirrus on a single-shot basis. Signal averaging provides the capability of measuring the height and structure of the planetary boundary layer, aerosols in the free troposphere, the stratospheric aerosol layer, and density profiles to an altitude of 40 km. The instrument has successfully completed a ground-test phase and is scheduled to fly on the Space Shuttle Discovery for a 9-day mission in September 1994.

  20. Stratospheric aerosol and gas experiments I and II comparisons with ozonesondes

    SciTech Connect

    Veiga, R.E.; Cunnold, D.M.; Chu, W.P.

    1995-05-20

    Ozone profiles measured by the Stratospheric Aerosol and Gas Experiments (SAGE) I and II are compared with ozonesonde profiles at 24 stations over the period extending from 1979 through 1991. Ozonesonde/satellite differences at 21 stations with SAGE II overpasses were computed down to 11.5 km in the midlatitudes, to 15.5 km in the lower latitudes, and for nine stations with SAGE I overpasses down to 15.5 km. The set of individual satellite and ozonesonde profile comparisons most closely colocated in time and space shows mean absolute differences relative to the satellite measurement of 6 {plus_minus} 2% for SAGE II and 8 {plus_minus}3% for SAGE I. The ensemble of ozonesonde/satellite differences, when averaged over all altitudes, shows that for SAGE II, 70% were less than 5%, whereas for SAGE I, 50% were less than 5%. The best agreement occurred in the altitude region near the ozone density maximum where almost all the relative differences were less than 5%. Most of the statistically significant differences occurred below the ozone maximum down to the tropopause in the region of steepest ozone gradients and typically ranged between 0 and {minus}20%. Correlations between ozone and aerosol extinction in the northern midlatitudes indicate that aerosols had no discernible impact on the ozonesonde/satellite differences and on the stratosphere during 1984 to mid-1991. 42 refs., 8 figs., 1 tab.

  1. Stratospheric Aerosol and Gas Experiments 1 and 2: Comparisons with ozonesondes

    NASA Technical Reports Server (NTRS)

    Veiga, Robert E.; Cunnold, Derek M.; Chu, William P.; McCormick, M. Patrick

    1995-01-01

    Ozone profiles measured by the Stratospheric Aerosol and Gas Experiments (SAGE) 1 and 2 are compared with ozonesonde profiles at 24 stations over the period extending from 1979 through 1991. Ozonesonde/satellite differences at 21 stations with SAGE 2 overpasses were computed down to 11.5 km in midlatitudes, to 15.5 km in the lower latitudes, and for nine stations with SAGE 1 overpasses down to 15.5 km. The set of individual satellite and ozonesonde profile comparisons most closely colocated in time and space shows mean absolute differences relative to the satellite measurement of 6 +/- 2% for SAGE 2 and 8 +/- 3% for SAGE 1. The ensemble of ozonesonde/satellite differences, when averaged over all altitudes, shows that for SAGE 2, 70% were less than 5%, whereas for SAGE 1, 50% were less than 5%. The best agreement occurred in the altitude region near the ozone density maximum where almost all the relative differences were less than 5%. Most of the statistically significant differences occurred below the ozone maximum down to the tropopause in the region of steepest ozone gradients and typically ranged between 0 and -20%. Correlations between ozone and aerosol extinction in the northern midlatitudes indicate that aerosols had no discernible impact on the ozonesonde/satellite differences and on the SAGE 2 ozone retrieval for the levels of extinction encountered in the lower stratosphere during 1984 to mid-1991.

  2. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a

  3. Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Nicolae, Doina; Böckmann, Christine; Vasilescu, Jeni; Binietoglou, Ioannis; Labzovskii, Lev; Toanca, Florica; Papayannis, Alexandros

    2015-10-01

    In this work we extract the microphysical properties of aerosols for a collection of measurement cases with low volume depolarization ratio originating from fire sources captured by the Raman lidar located at the National Institute of Optoelectronics (INOE) in Bucharest. Our algorithm was tested not only for pure smoke but also for mixed smoke and urban aerosols of variable age and growth. Applying a sensitivity analysis on initial parameter settings of our retrieval code was proved vital for producing semi-automatized retrievals with a hybrid regularization method developed at the Institute of Mathematics of Potsdam University. A direct quantitative comparison of the retrieved microphysical properties with measurements from a Compact Time of Flight Aerosol Mass Spectrometer (CToF-AMS) is used to validate our algorithm. Microphysical retrievals performed with sun photometer data are also used to explore our results. Focusing on the fine mode we observed remarkable similarities between the retrieved size distribution and the one measured by the AMS. More complicated atmospheric structures and the factor of absorption appear to depend more on particle radius being subject to variation. A good correlation was found between the aerosol effective radius and particle age, using the ratio of lidar ratios (LR: aerosol extinction to backscatter ratios) as an indicator for the latter. Finally, the dependence on relative humidity of aerosol effective radii measured on the ground and within the layers aloft show similar patterns.

  4. Collection and characterization of aerosols from metal cutting techniques typically used in decommissioning nuclear facilities.

    PubMed

    Newton, G J; Hoover, M D; Barr, E B; Wong, B A; Ritter, P D

    1987-11-01

    This study was designed to collect and characterize aerosols released during metal cutting activities typically used in decommissioning radioactively contaminated facilities. Such information can guide in the selection of appropriate control technologies for these airborne materials. Mechanical cutting tools evaluated included a multi-wheel pipe cutter, reciprocating saw, band saw, chop saw, and large and small grinding wheels. Melting-vaporization cutting techniques included an oxy-acetylene torch, electric arc cut rod and plasma torch. With the exception of the multi-wheel pipe cutter, all devices created aerosols in the respirable size range (less than 10 micron aerodynamic diameter). Time required to cut 2-in. (5-cm) Schedule 40, Type 304L, stainless steel ranged from about 0.6 min for the plasma torch to about 3.0 min for the reciprocating saw. Aerosol production rate ranged from less than 10 mg/min for the reciprocating saw to more than 3000 mg/min for the electric arc cut rod. Particles from mechanical tools were irregular in shape, whereas particles from vaporization tools were spheres and ultrafine branched-chain aggregates.

  5. Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)

    DOE Data Explorer

    In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

  6. MELCOR 1.8.1 assessment: PNL Ice Condenser Aerosol Experiments

    SciTech Connect

    Gross, R.J.

    1993-06-01

    The MELCOR code was used to simulate PNL`s Ice Condenser Experiments 11-6 and 16-11. In these experiments, ZnS was injected into a mixing chamber, and the combined steam/air/aerosol mixture flowed into an ice condenser which was l4.7m tall. Experiment 11-6 was a low flow test; Experiment l6-1l was a high flow test. Temperatures in the ice condenser region and particle retention were measured in these tests. MELCOR predictions compared very well to the experimental data. The MELCOR calculations were also compared to CONTAIN code calculations for the same tests. A number of sensitivity studies were performed. It as found that simulation time step, aerosol parameters such as the number of MAEROS components and sections used and the particle density, and ice condenser parameters such as the energy capacity of the ice, ice heat transfer coefficient multiplier, and ice heat structure characteristic length all could affect the results. Thermal/hydraulic parameters such as control volume equilibrium assumptions, flow loss coefficients, and the bubble rise model were found to affect the results less significantly. MELCOR results were not machine dependent for this problem.

  7. CalWater 2 - Precipitation, Aerosols, and Pacific Atmospheric Rivers Experiment

    NASA Astrophysics Data System (ADS)

    Spackman, J. R.; Ralph, F. M.; Prather, K. A.; Cayan, D. R.; DeMott, P. J.; Dettinger, M. D.; Fairall, C. W.; Leung, L. R.; Rosenfeld, D.; Rutledge, S. A.; Waliser, D. E.; White, A. B.

    2014-12-01

    Emerging research has identified two phenomena that play key roles in the variability of the water supply and the incidence of extreme precipitation events along the West Coast of the United States. These phenomena include the role of (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major storms along the U.S. West Coast, and (2) aerosols—from local sources as well as those transported from remote continents—and their modulating effects on western U.S. precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of extreme precipitation and its effects, including the provision of beneficial water supply. This presentation summarizes the science objectives and strategies to address gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic precipitation along the U.S. West Coast. Observations are proposed for multiple winter seasons as part of a 5-year broad interagency vision referred to as CalWater 2 to address these science gaps (http://esrl.noaa.gov/psd/calwater). In January-February 2015, a field campaign has been planned consisting of a targeted set of aircraft and ship-based measurements and associated evaluation of data in near-shore regions of California and in the eastern Pacific. In close coordination with NOAA, DOE's Atmospheric Radiation Measurement (ARM) program is also contributing air and shipborne facilities for ACAPEX (ARM Cloud Aerosol and Precipitation Experiment), a DOE-sponsored study complementing CalWater 2. Ground-based measurements from NOAA's HydroMeteorological Testbed (HMT) network in California and aerosol chemical instrumentation at Bodega Bay, California have been designed to add important near surface-level context for the

  8. Lidar observations and characterization of biomass burning aerosols over Sofia: Long-range transport of forest wildfire smoke

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Dreischuh, Tanja N.; Toncheva, Eleonora N.; Stoyanov, Dimitar V.

    2013-03-01

    Results of remote measurements and characterization of biomass burning aerosols observed in the low troposphere over Sofia, Bulgaria, are presented and discussed. Measurements are accomplished by using two-wavelength elastic-scatter lidar, operating at 1064 nm and 532 nm. The aerosols are identified as to be consisted mainly of aged smoke of wildfires raging in the USA in the last third of July 2012. The long-range transport of the smoke aerosols, taking place from 24 July to 6 August 2012, is determined to be driven by the Northern hemisphere Polar jet stream. Spatial distribution of the observed aerosols is displayed by retrieving averaged vertical profiles of the aerosol backscatter coefficients. The temporal evolution of the aerosol layers during the period of measurement is shown by height-time coordinate colormaps of range-corrected lidar data. In order to characterize qualitatively the size range of the aerosol particles, the vertical profile of the backscatter-related Ångström exponent (BAE) is also retrieved. As an accent of the work, distributions of BAE corresponding to distinguished aerosol layers, as well as the overall one, are obtained and analyzed, representing qualitative counterparts of the real particle size distributions. In the case of the fire smoke layer, BAE values vary in the range 1.0-1.3, indicating processes of considerable aggregation of the finest particle size mods during the aging period. The reliability of the results and conclusions concerning the fire smoke BAE distributions and their evolution are indirectly validated by the obtained typical distribution ranges of the observed urban- and water aerosols.

  9. Characterization of amphotericin B aerosols for inhalation treatment of pulmonary aspergillosis.

    PubMed

    Roth, C; Gebhart, J; Just-Nübling, G; von Eisenhart-Rothe, B; Beinhauer-Reeb, I

    1996-01-01

    In recent years, the incidence of invasive pulmonary aspergillosis has increased in patients receiving immunosuppressive therapy and/or organ transplantation. For prophylaxis against Aspergillus infections, amphotericin B may be a useful drug when inhaled as aerosol. In this study, the aerosolization of amphotericin B was investigated using eight different medical nebulizers under various operating conditions and with different amphotericin B concentrations in the solution. The output of each nebulizer was characterized by the mass flow of spray (drug) leaving the mouthpiece and by the size distribution of the droplets. An effective prevention of pulmonary aspergillosis via amphotericin B inhalation requires a high pulmonary deposition of the drug within an acceptable time of administration associated with a low deposition in the oropharyngeal region. To evaluate the dosages of drug delivered by various types of nebulizers to different regions of the respiratory tract, a semi-empirical deposition model was applied which is based on experimental aerosol deposition data from over 20 normal adults. The main results of the study are: Solutions with amphotericin B concentrations up to 10 mg/ml can be converted into sprays by means of medical nebulizers without any problems. For most nebulizers, the slight foaming of the amphotericin B solution has no effect on the production of the aerosol. To optimize amphotericin B treatment of the lungs via inhalation, sprays with mass flows above 100 mg/min and with mass median aerodynamic diameters (MMAD) below 3 microns should be slowly inhaled by the subject. Applying these criteria to the nebulizers investigated, three out of eight devices have proved suitable for amphotericin B treatment via inhalation.

  10. Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol

    NASA Astrophysics Data System (ADS)

    Aller, Josephine Y.; Radway, JoAnn C.; Kilthau, Wendy P.; Bothe, Dylan W.; Wilson, Theodore W.; Vaillancourt, Robert D.; Quinn, Patricia K.; Coffman, Derek J.; Murray, Benjamin J.; Knopf, Daniel A.

    2017-04-01

    Dissolved organic polymers released by phytoplankton and bacteria abiologically self-assemble in surface ocean waters into nano-to micro-sized gels containing polysaccharides, proteins, lipids and other components. These gels concentrate in the sea surface microlayer (SML), where they can potentially contribute to sea spray aerosol (SSA). Sea spray is a major source of atmospheric aerosol mass over much of the earth's surface, and knowledge of its properties (including the amount and nature of the organic content), size distributions and fluxes are fundamental for determining its role in atmospheric chemistry and climate. Using a cascade impactor, we collected size-fractionated aerosol particles from ambient air and from freshly generated Sea Sweep SSA in the western North Atlantic Ocean together with biological and chemical characterization of subsurface and SML waters. Spectrophotometric methods were applied to quantify the polysaccharide-containing transparent exopolymer (TEP) and protein-containing Coomassie stainable material (CSM) in these particles and waters. This study demonstrates that both TEP and CSM in surface ocean waters are aerosolized with sea spray with the greatest total TEP associated with particles <180 nm in diameter and >5 000 nm. The higher concentrations of TEP and CSM in particles >5 000 nm most likely reflects collection of microorganism cells and/or fragments. The greater concentration of CSM in larger size particles may also reflect greater stability of proteinaceous gels compared to polysaccharide-rich gels in surface waters and the SML. Both TEP and CSM were measured in the ambient marine air sample with concentrations of 2.1 ± 0.16 μg xanthan gum equivalents (XG eq.) m-3 and 14 ± 1.0 μg bovine serum albumin equivalents (BSA eq.) m-3. TEP in Sea Sweep SSA averaged 4.7 ± 3.1 μg XG eq. m-3 and CSM 8.6 ± 7.3 μg BSA eq. m-3. This work shows the transport of marine biogenic material across the air-sea interface through primary

  11. Three Compact, Robust Chemical Characterization Systems Suited To Sensitive, High Time Resolution Measurements Of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Barrie, L. A.; Cowin, J. P.; Worsnop, D. R.

    2001-12-01

    In the past decade, the advancement of compact, robust and sensitive instrumentation to measure the chemical characteristics of atmospheric aerosols has lagged behind their physical characterization. There is a need for chemical instrumentation with these three qualities for use on airborne platforms and at infrequently attended ground level surveillance sites. Now chemical techniques are appearing that promise to fill this need. We discuss three chemical characterization systems that are emerging in atmospheric chemistry and climate research applications. These are: (i) the Aerodyne mass spectrometer for real time measurement of particle composition and two post-collection analysis techniques (ii) non-destructive, multi-elemental chemical analysis of size-resolved samples by high spatial resolution synchrotron x-ray and proton beams (S-XRF/PIXE/PESA/STIM) (iii) single particle characterization by automated scanning electron microscopy with energy-dispersed detection of X-rays (SEM/EDX). The key to post-collection analysis is automated aerosol sizing and collection systems and automated chemical analysis systems. Together these techniques provide unique, comprehensive information on the organic and inorganic composition and morphology of particles and yet are easy to deploy in the field. The sensitivity of each technique is high enough to permit the rapid sampling needed to resolve spatial gradients in composition from a moving platform like the Battelle Gulfstream-159 aircraft, traveling at 100m/s.

  12. Aerosol and cloud observations from the Lidar In-space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Winker, D. M.

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) is a backscatter lidar built by NASA Langley Research Center to fly on the Space Shuttle. The purpose of the program was to develop the engineering processes required for space lidar and to demonstrate applications of space lidar to remote sensing of the atmosphere. The instrument was flown on Discovery in September 1994. Global observations of clouds and aerosols were made between the latitudes of 57 deg N and 57 deg S during 10 days of the mission.

  13. Aerosol light absorption measurements during the Reno Aerosol Optics Experiment: Photoacoustic measurements and a multiple-scattering model for the aethalometer response.

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Moosmueller, H.; Sheridan, P. J.; Ogren, J. A.

    2002-12-01

    The filter used on the aethalometer is a multiple scattering substrate, yet the current parameterization of the instrument simply uses Beer's law for its analysis when obtaining black carbon concentration. Specific characterizations of the instrument response, where filter attenuation was obtained as a function of wavelength, gave the following impressions. 1. Filter attenuation generally increases inversely with wavelength for all aerosol types. 2. When subjected to a constant flow of low single scattering albedo aerosol, the instrument shows a non-constant response. The response is highest when the filter single scattering albdeo is highest, and it decreases as the filter blackens. 3. When subjected to a constant flow of essentially unity single scattering albedo aerosol, the instrument shows a non-zero response, even though it should do so. A few percent of scattering is converted to absorption, because the addition of purely scattering aerosol is analogous to a simple thickening of the filter. The effect is more pronounced at shorter wavelengths, and is related to item 1. The multiple scattering model reproduces these behaviors. The photoacoustic instrument light absorption calibration with nitrogen dioxide gas will be presented along with closure data from extinction minus scattering as evaluations of its measurement accuracy.

  14. Aerosol and cloud chemistry of amines from CCS - reactivity experiments and numerical modeling

    NASA Astrophysics Data System (ADS)

    Weller, Christian; Tilgner, Andreas; Herrmann, Hartmut

    2013-04-01

    Capturing CO2 from the exhaust of power plants using amine scrubbing is a common technology. Therefore, amines can be released during the carbon capture process. To investigate the tropospheric chemical fate of amines from CO2 capturing processes and their oxidation products, the impact of aqueous aerosol particles and cloud droplets on the amine chemistry has been considered. Aqueous phase reactivity experiments of NO3 radicals and ozone with relevant amines and their corresponding nitrosamines were performed. Furthermore, nitrosamine formation and nitrosamine photolysis was investigated during laboratory experiments. These experiments implicated that aqueous phase photolysis can be an effective sink for nitrosamines and that ozone is unreactive towards amines and nitrosamines. Multiphase phase oxidation schemes of amines, nitrosamines and amides were developed, coupled to the existing multiphase chemistry mechanism CAPRAM and built into the Lagrangian parcel model SPACCIM using published and newly measured data. As a result, both deliquescent particles and cloud droplets are important compartments for the multiphase processing of amines and their products. Amines can be readily oxidised by OH radicals in the gas and cloud phase during daytime summer conditions. However, amine oxidation is restricted during winter conditions with low photochemical activity leading to long lifetimes of amines. The importance of the gas and aqueous phase depends strongly on the partitioning of the different amines. Furthermore, the simulations revealed that the aqueous formation of nitrosamines in aerosol particles and could droplets is not a relevant process under tropospheric conditions.

  15. A Multi-Year Aerosol Characterization for the Greater Tehran Area Using Satellite, Surface, and Modeling Data

    PubMed Central

    Crosbie, Ewan; Sorooshian, Armin; Monfared, Negar Abolhassani; Shingler, Taylor; Esmaili, Omid

    2014-01-01

    This study reports a multi-year (2000–2009) aerosol characterization for metropolitan Tehran and surrounding areas using multiple datasets (Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), Total Ozone Mapping Spectrometer (TOMS), Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART), and surface and upper air data from local stations). Monthly trends in aerosol characteristics are examined in the context of the local meteorology, regional and local emission sources, and air mass back-trajectory data. Dust strongly affects the region during the late spring and summer months (May–August) when aerosol optical depth (AOD) is at its peak and precipitation accumulation is at a minimum. In addition, the peak AOD that occurs in July is further enhanced by a substantial number of seasonal wildfires in upwind regions. Conversely, AOD is at a minimum during winter; however, reduced mixing heights and a stagnant lower atmosphere trap local aerosol emissions near the surface and lead to significant reductions in visibility within Tehran. The unique meteorology and topographic setting makes wintertime visibility and surface aerosol concentrations particularly sensitive to local anthropogenic sources and is evident in the noteworthy improvement in visibility observed on weekends. Scavenging of aerosol due to precipitation is evident during the winter when aconsistent increase in surface visibility and concurrent decrease in AOD is observed in the days after rain compared with the days immediately before rain. PMID:25083295

  16. The THS Experiment: Ex Situ Analyses of Titan's Aerosol Analogs Produced at Low Temperature (200K)

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, E. M.; Upton, K. T.; Beauchamp, J. L.; Salama, F.

    2014-12-01

    In the study presented here, we used the COSmIC/Titan Haze Simulation (THS) experiment, an experimental platform developed to study Titan's atmospheric chemistry at low temperature, to produce aerosols representative of the early stages of Titan's aerosol formation. In the THS, the chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas is jet-cooled to Titan-like temperature (~150K) before inducing the chemistry by plasma, and remains at low temperature in the plasma discharge (~200K). Because of the pulsed nature of the plasma, the residence time of the gas in the discharge is only a few microseconds, which leads to a truncated chemistry and allows for the study of the first and intermediate steps of the chemistry. Different N2-CH4-based gas mixtures can be injected in the plasma, with or without the addition of heavier precursors present as trace elements on Titan, in order to monitor the evolution of the chemical growth. Both the gas phase and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed using a combination of complementary in situ and ex situ diagnostics. In a recently published study, a mass spectrometry analysis of the gas phase has demonstrated that the THS is a unique tool to probe the first and intermediate steps of Titan's atmospheric chemistry at Titan-like temperature. In particular, the mass spectra obtained in a N2-CH4-C2H2-C6H6 mixture are relevant for comparison to Cassini's CAPS-IBS instrument. Here we present the results of a complementary study of the solid phase. Scanning Electron Microscopy images have shown that aggregates produced in N2-CH4-C2H2-C6H6 mixtures are much larger (up to 5 μm in diameter) than those produced in N2-CH4 mixtures (0.1-0.5 μm). Direct Analysis in Real Time mass spectrometry (DART-MS) combined with Collision Induced Dissociation (CID) have detected the presence of aminoacetonitrile, a precursor of glycine, in the THS

  17. Third Soviet-American Gases and Aerosols (SAGA 3) experiment: Overview and meteorological and oceanographic conditions

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Koropalov, V. M.; Pickering, K. E.; Thompson, A. M.; Bond, N.; Elkins, J. W.

    1993-01-01

    The primary goal of the third joint Soviet-American Gases and Aerosols (SAGA 3) experiment was to study trace gases and aerosols in the remote marine boundary layer. SAGA 3/leg 1 took place from February 13 to March 13, 1990, aboard the former Soviet R/V Akademik Korolev and consisted of five equatorial transects (designated transects 1 through 5) between 15°N and 10°S on a cruise track from Hilo, Hawaii, to Pago-Pago, American Samoa. Specific objectives were to study (1) the oceanic distribution and air-sea exchange of biogenic trace gases; (2) photochemical cycles of C-, S-, and N-containing gases in the marine boundary layer; (3) the distribution of aerosol particles in the marine boundary layer and their physical and chemical properties; (4) interhemispheric gradients and latitudinal mixing of trace gases and aerosols; and (5) stratospheric aerosol layers. SAGA 3/leg 2 continued from March 17 to April 7, 1990, with one more equatorial transect between American Samoa and the northern coast of the Philippines (transect 6) followed by a final transect to Singapore (transect 7). During leg 2, most former Soviet measurements continued, but with the exception of measurements of nitrous oxide (N2O) and selected halocarbons in the air and surface waters all American measurements ceased. This paper briefly summarizes the chemical measurements made by SAGA 3 investigators and presents in some detail the meteorological and hydrological characteristics encountered during SAGA 3. The meteorological analysis is based on atmospheric soundings of temperature, humidity, winds, sea surface temperature, postcruise back trajectories of winds, and satellite imagery. In general, the meteorology during SAGA 3 was typical of the location and time of year. Exceptions to this include an incipient El Niño that never developed fully, a poorly defined ITCZ on 4 of 6 equator crossings, wind speeds that were 20% greater than the decadal mean, a convective event that brought

  18. Long-term Chemical Characterization of Submicron Aerosol Particles in the Amazon Forest - ATTO Station

    NASA Astrophysics Data System (ADS)

    Carbone, S.; Brito, J.; Rizzo, L. V.; Holanda, B. A.; Cirino, G. G.; Saturno, J.; Krüger, M. L.; Pöhlker, C.; Ng, N. L.; Xu, L.; Andreae, M. O.; Artaxo, P.

    2015-12-01

    The study of the chemical composition of aerosol particles in the Amazon forest represents a step forward to understand the strong coupling between the atmosphere and the forest. For this reason submicron aerosol particles were investigated in the Amazon forest, where biogenic and anthropogenic aerosol particles coexist at the different seasons (wet/dry). The measurements were performed at the ATTO station, which is located about 150 km northeast of Manaus. At ATTO station the Aerosol chemical speciation monitor (ACSM, Aerodyne) and the Multiangle absorption photometer (MAAP, Thermo 5012) have been operated continuously from March 2014 to July 2015. In this study, long-term measurements (near-real-time, ~30 minutes) of PM1 chemical composition were investigated for the first time in this environment.The wet season presented lower concentrations than the dry season (~5 times). In terms of chemical composition, both seasons were dominated by organics (75 and 63%) followed by sulfate (11 and 13%). Nitrate presented different ratio values between the mass-to-charges 30 to 46 (main nitrate fragments) suggesting the presence of nitrate as inorganic and organic nitrate during both seasons. The results indicated that about 75% of the nitrate signal was from organic nitrate during the dry season. In addition, several episodes with elevated amount of chloride, likely in the form of sea-salt from the Atlantic Ocean, were observed during the wet season. During those episodes, chloride comprised up to 7% of the PM1. During the dry season, chloride was also observed; however, with different volatility, which suggested that Chloride was present in different form and source. Moreover, the constant presence of sulfate and BC during the wet season might be related to biomass burning emissions from Africa. BC concentration was 2.5 times higher during the dry season. Further characterization of the organic fraction was accomplished with the positive matrix factorization (PMF), which

  19. Molecular Characterization of Organosulfur Compounds in Biodiesel and Diesel Fuel Secondary Organic Aerosol.

    PubMed

    Blair, Sandra L; MacMillan, Amanda C; Drozd, Greg T; Goldstein, Allen H; Chu, Rosalie K; Paša-Tolić, Ljiljana; Shaw, Jared B; Tolić, Nikola; Lin, Peng; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey A

    2017-01-03

    Secondary organic aerosol (SOA), formed in the photooxidation of diesel fuel, biodiesel fuel, and 20% biodiesel fuel/80% diesel fuel mixture, are prepared under high-NOx conditions in the presence and absence of sulfur dioxide (SO2), ammonia (NH3), and relative humidity (RH). The composition of condensed-phase organic compounds in SOA is measured using several complementary techniques including aerosol mass spectrometry (AMS), high-resolution nanospray desorption electrospray ionization mass spectrometry (nano-DESI/HRMS), and ultrahigh resolution and mass accuracy 21T Fourier transform ion cyclotron resonance mass spectrometry (21T FT-ICR MS). Results demonstrate that sulfuric acid and condensed organosulfur species formed in photooxidation experiments with SO2 are present in the SOA particles. Fewer organosulfur species are formed in the high humidity experiments, performed at RH 90%, in comparison with experiments done under dry conditions. There is a strong overlap of organosulfur species observed in this study with previous field and chamber studies of SOA. Many MS peaks of organosulfates (R-OS(O)2OH) previously designated as biogenic or of unknown origin in field studies might have originated from anthropogenic sources, such as photooxidation of hydrocarbons present in diesel and biodiesel fuel.

  20. Physicochemical Characterization of Coarse Lake Spray Aerosol Particle from Lake Michigan

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Axson, J. L.; May, N.; Pratt, K.; Colon-Bernal, I. D.

    2015-12-01

    Wave breaking across bodies of water releases coarse particles into the air which can impact climate and human health. Freshwater lakes, such as the Great Lakes, can generate lake spray aerosols (LSA), similarly to how sea spray is generated, during periods of high winds and wave action. This LSA has the potential to impact climate through direct and indirect effects (ie. scattering/absorption and cloud nucleation) and are suggested to impact human health via inhalation of these particles during algal bloom periods characterized by toxic cyanobacteria. Very few studies have been conducted to assess the physicochemical properties of freshwater LSA. Prior work in our lab included the construction and characterization of a laboratory based LSA generator. In this work, we examine laboratory generated aerosol particles from laboratory based freshwater standards, freshwater samples collected from Lake Michigan, and ambient particles collected during a wave event on the shores of Lake Michigan in the summer of 2015. Particle size distributions, number concentrations, and chemical composition are presented and discussed as a function of laboratory generated and ambient collected LSA. Results indicate that there are characteristic particles that represent LSA. This study represents the next step towards evaluating and understanding the potential for coarse LSA to impact climate and health in the Great Lakes region.

  1. X-ray methods for the chemical characterization of atmospheric aerosols

    SciTech Connect

    Jaklevic, J.M.; Thompson, A.C.

    1981-05-01

    The development and use of several x-ray methods for the chemical characterization of atmospherical aerosol particulate samples are described. These methods are based on the emission, absorption, and scattering of x-ray photons with emphasis on the optimization for the non-destructive analysis of dilute specimens. Techniques discussed include photon induced energy dispersive x-ray fluorescence, extended x-ray absorption fine structure spectroscopy using synchrotron radiation and high-rate x-ray powder diffractometry using a position-sensitive gas proportional counter. These x-ray analysis methods were applied to the measurement of the chemical compositions of size-segregated aerosol particulate samples obtained with dichotomous samplers. The advantages of the various methods for use in such measurements are described and results are presented. In many cases, the complementary nature of the analytical information obtained from the various measurements is an important factor in the characterization of the sample. For example, the multiple elemental analyses obtained from x-ray fluorescence can be used as a cross check on the major compounds observed by powder diffraction.

  2. Changes in Antarctic stratospheric aerosol characteristics due to volcanic eruptions as monitored by the Stratospheric Aerosol and Gas Experiment II satellite

    NASA Astrophysics Data System (ADS)

    Saxena, V. K.; Anderson, John; Lin, N.-H.

    1995-08-01

    An estimated 20-30 megatons of SO2 and crustal material was injected into the stratosphere during June 12-16, 1991, by the eruption of Mount Pinatubo (15.1°N, 120.4°E). The impact on Antarctic aerosol characteristics is of utmost concern owing to the seasonality in the observed ozone depletion and climate implications. This study focuses on Antarctic stratospheric aerosol characteristics during three temporal periods: September 23-30, September 30 to October 13, and November 13-27, 1991, at latitudes poleward of 60°S for vertically averaged characteristics, and at latitudes poleward of 50°S for temporal and spatial characteristics. Stratospheric aerosol characteristics are inferred from the Stratospheric Aerosol and Gas Experiment (SAGE) II measurements using a modified randomized minimization search technique (RMST). Aerosol characteristics such as size distribution, number concentration, mass loading, surface area concentration, and radial characteristics are derived between 15 and 30 km for particles having radii between 0.1 and 0.8 μm. Results indicate that aerosol size distributions between 15 and 30 km are bimodal in several instances for all three time periods and can be fitted with the sum of two lognormal distributions. Larger concentrations are observed for particles of all sizes between 18 and 30 km during November 1991, signaling the arrival of the Mount Pinatubo plume. An order of magnitude increase in concentration is observed for particles with radii between 0.1 and 0.2 μm and between 0.7 and 0.8 μm. Vertical aerosol profiles show that the peak in aerosol concentration shifted to a higher altitude between 21 and 26 km as compared to the preplume peak between 15 and 18 km. Using the displacement as a function of time for a mass loading of 1.7 μg m-3 isopleth, we estimated meridional velocity ≈0.9 m s-1, zonal velocity ≈16 m s-1, and downward vertical velocity of 0.5 cm s-1 during September to mid-October, 1991, and 0.3 cm s-1 during mid to

  3. Design And Performance Of The Stratospheric Aerosol And Gas Experiment II (SAGE II) Instrument

    NASA Astrophysics Data System (ADS)

    Zaun, N. H.; Mauldin, L. E.; McCormick, M. P.

    1984-01-01

    Design and performance data are presented for the Stratospheric Aerosol and Gas Experi-ment II (SAGE II) instrument, which has been developed for the Earth Radiation Budget Satellite (ERBS). SAGE II is designed to monitor globally the vertical distribution of strato-spheric aerosols, ozone, water vapor and nitrogen dioxide by measuring the extinction of solar radiation through the earth's atmosphere during the ERBS observatory solar occultations. Solar radiation is reflected from a flat scanning mirror into a Cassegrain type telescope, which forms a solar image on the entrance slit of a grating spectrometer. The SAGE II instantaneous-field-of-view (IFOV) is scanned along the vertical solar diameter by the elevation scan mirror. The entire optical system is contained within an azimuth gimbal which tracks the solar radiometric centroid during the data event. This spectrometer, with help from three interference filters, isolates seven spectral wavelengths ranging from 0.385 micrometers to 1.02 micrometers. All seven channels use silicon photodiode detectors oper-ated in the photovoltaic mode. Detector outputs are multiplexed into a serial data stream for readout by the ERBS telemetry system. Each output is sampled 64 times per second and digitized to 12 bit resolution. SAGE II is a third generation instrument following the highly successful SAM II and SAGE programs.

  4. In-situ, quantitative speciation of aerosols over Pasadena, CA during the CalNex 2010 experiment

    NASA Astrophysics Data System (ADS)

    Isaacman, G. A.; Worton, D. R.; Kreisberg, N. M.; Zhao, Y.; Hering, S. V.; Goldstein, A.

    2010-12-01

    Concentrations of over 200 compounds were quantified and several hundred more were observed in organic aerosols over Pasadena, CA using the GCxGC Thermal Desorption Aerosol Gas Chromatograph/Mass Spectrometer (2D-TAG) during the California at the Nexus between Air Quality and Climate Change (CalNex) Experiment in the summer of 2010. In order to improve quantitation, we incorporated recent improvements to the 2D-TAG instrument (detailed in Worton, et al., in prep), including valveless injection and an automated system for addition of deuterated internal standards. Measured compounds span a wide range of volatility and functionality, including alkanes and cycloalkanes, alkenes, furanones, ketones, nitriles, phthalic acids and anhydrides, polycyclic aromatic hydrocarbons (PAHs), branched PAHs, and oxygenated PAHs, as well as known tracers for a variety of sources, such as secondary organic aerosol (SOA), diesel fuel, and biomass burning. These compounds represent not only fresh emissions, but also aged and slightly oxidized pollutants. Though most of these compounds have been quantified in the atmosphere in previous experiments, this represents the first multi-day, in-situ measurement of ambient urban aerosols using two-dimensional chromatography. The high time-resolution of these measurements allows for statistically significant analysis of the diurnal variability and covariance of these compounds, which will be used to better understand source profiles and attribute sources. Furthermore, because many of the observed compounds have been shown to be correlated with accepted Aerodyne Aerosol Mass Spectrometer (AMS) factors (hydrocarbon-like organic aerosol, oxygenated organic aerosol, etc.), the data presented here will provide a better understanding of the composition of these factors in an urban environment. Putting this work into the context of the extensive suite of data from the Pasadena site will greatly contribute to our understanding of urban aerosol sources

  5. Production, Organic Characterization, and Phase Transformations of Marine Particles Aerosolized from a Laboratory Mesocosm Phytoplankton Bioreactor

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Knopf, D. A.; Aller, J. Y.; Radway, J.; Kilthau, W.

    2012-12-01

    Previous studies have shown that particles emitted from bubble bursting and wave breaking of ocean waters with high biological activity can contain sea salts associated with organic material, with smaller particles containing a larger mass fraction of organics than larger particles. This likely indicates a link between phytoplankton productivity in oceans and particulate organic material in marine air. Once aerosolized, particles with significant amount of organic material can affect cloud activation and formation of ice crystals, among other atmospheric processes, thus influencing climate. This is significant for clouds and climate particularly over nutrient rich polar seas, in which concentrations of biological organisms can reach up to 109 cells per ml during spring phytoplankton blooms. Here we present results of bubble bursting aerosol production from a seawater mesocosm containing artificial seawater, natural seawater and unialgal cultures of three representative phytoplankton species. These phytoplankton (Thalassiosira pseudonana, Emilianaia huxleyi, and Nannochloris atomus), possessed siliceous frustules, calcareous frustules and no frustules, respectively. Bubbles were generated employing recirculating impinging water jets or glass frits. Dry and humidified aerosol size distributions and bulk aerosol organic composition were measured as a function of phytoplankton growth, and chlorophyll composition and particulate and dissolved organic carbon in the water were determined. Finally, particles were collected on substrates for ice nucleation and water uptake experiments, their elemental compositions were determined using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEMEDAX), and their carbon speciation was determined using scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Particle size distributions exposed to dry and humidified air employing

  6. Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong

    NASA Astrophysics Data System (ADS)

    Li, Yunchun

    Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they can be emitted from a variety of sources as well as formed from photochemical reactions of numerous precursors. This thesis work aims to improve the characterization of polar organic compounds and source apportionment analysis of fine organic carbon (OC) in Hong Kong, which consists of two parts: (1) An improved analytical method to determine monocarboxylic acids, dicarboxylic acids, ketocarboxylic acids, and dicarbonyls collected on filter substrates has been established. These oxygenated compounds were determined as their butyl ester or butyl acetal derivatives using gas chromatography-mass spectrometry. The new method made improvements over the original Kawamura method by eliminating the water extraction and evaporation steps. Aerosol materials were directly mixed with the BF 3/BuOH derivatization agent and the extracting solvent hexane. This modification improves recoveries for both the more volatile and the less water-soluble compounds. This improved method was applied to study the abundances and sources of these oxygenated compounds in PM2.5 aerosol samples collected in Hong Kong under different synoptic conditions during 2003-2005. These compounds account for on average 5.2% of OC (range: 1.4%-13.6%) on a carbon basis. Oxalic acid was the most abundant species. Six C2 and C3 oxygenated compounds, namely oxalic, malonic, glyoxylic, pyruvic acids, glyoxal, and methylglyoxal, dominated this suite of oxygenated compounds. More efforts are therefore suggested to focus on these small compounds in understanding the role of oxygenated

  7. Characterization of particulate products for aging of ethylbenzene secondary organic aerosol in the presence of ammonium sulfate seed aerosol.

    PubMed

    Huang, Mingqiang; Zhang, Jiahui; Cai, Shunyou; Liao, Yingmin; Zhao, Weixiong; Hu, Changjin; Gu, Xuejun; Fang, Li; Zhang, Weijun

    2016-09-01

    Aging of secondary organic aerosol (SOA) particles formed from OH- initiated oxidation of ethylbenzene in the presence of high mass (100-300μg/m(3)) concentrations of (NH4)2SO4 seed aerosol was investigated in a home-made smog chamber in this study. The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with a Fuzzy C-Means (FCM) clustering algorithm. Experimental results showed that nitrophenol, ethyl-nitrophenol, 2,4-dinitrophenol, methyl glyoxylic acid, 5-ethyl-6-oxo-2,4-hexadienoic acid, 2-ethyl-2,4-hexadiendioic acid, 2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid, 1H-imidazole, hydrated N-glyoxal substituted 1H-imidazole, hydrated glyoxal dimer substituted imidazole, 1H-imidazole-2-carbaldehyde, N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight (HMW) components were the predominant products in the aged particles. Compared to the previous aromatic SOA aging studies, imidazole compounds, which can absorb solar radiation effectively, were newly detected in aged ethylbenzene SOA in the presence of high concentrations of (NH4)2SO4 seed aerosol. These findings provide new information for discussing aromatic SOA aging mechanisms.

  8. Scanning Backscatter Lidar Observations for Characterizing 4-D Cloud and Aerosol Fields to Improve Radiative Transfer Parameterizations

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.

    2005-01-01

    Clouds have a powerful influence on atmospheric radiative transfer and hence are crucial to understanding and interpreting the exchange of radiation between the Earth's surface, the atmosphere, and space. Because clouds are highly variable in space, time and physical makeup, it is important to be able to observe them in three dimensions (3-D) with sufficient resolution that the data can be used to generate and validate parameterizations of cloud fields at the resolution scale of global climate models (GCMs). Simulation of photon transport in three dimensionally inhomogeneous cloud fields show that spatial inhomogeneities tend to decrease cloud reflection and absorption and increase direct and diffuse transmission, Therefore it is an important task to characterize cloud spatial structures in three dimensions on the scale of GCM grid elements. In order to validate cloud parameterizations that represent the ensemble, or mean and variance of cloud properties within a GCM grid element, measurements of the parameters must be obtained on a much finer scale so that the statistics on those measurements are truly representative. High spatial sampling resolution is required, on the order of 1 km or less. Since the radiation fields respond almost instantaneously to changes in the cloud field, and clouds changes occur on scales of seconds and less when viewed on scales of approximately 100m, the temporal resolution of cloud properties should be measured and characterized on second time scales. GCM time steps are typically on the order of an hour, but in order to obtain sufficient statistical representations of cloud properties in the parameterizations that are used as model inputs, averaged values of cloud properties should be calculated on time scales on the order of 10-100 s. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) provides exceptional temporal (100 ms) and spatial (30 m) resolution measurements of aerosol and cloud backscatter in three

  9. Comparison of Stratospheric Aerosol and Gas Experiment II and balloon-borne stratospheric water vapor measurements

    NASA Technical Reports Server (NTRS)

    Pruvost, P.; Ovarlez, J.; Lenoble, J.; Chu, W. P.

    1993-01-01

    The Stratospheric Aerosol and Gas Experiment II has one channel at 940 nm related to water vapor. Two inversion procedures were developed independently in order to obtain the water vapor profile: the Chahine method by the Langley Research Center, and the Mill method by the Laboratoire d'Optique Atmospherique. Comparisons were made between these two algorithms and some results are presented at midlatitudes (about 45 deg N) and tropical latitudes (12-25 deg S). They are compared with in situ frost point hygrometer data provided by balloon experiments from the Laboratoire de Meteorologie Dynamique. At +/- 0.5 ppmv, agreement between the inversion results and the experimental results was obtained in the altitude range from 18-19 to 26-27 km. Below 18-19 km and above 26-27 km the error is larger (sometimes 1 ppmv and more).

  10. Initial Operation and Checkout of Stratospheric Aerosol Gas Experiment and Meteor-3M Satellite

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Makridenko, L.; Chu, W.; Salikhov, R.; Moore, A.; Trepte, C.; Cisewski, M.

    2002-01-01

    Under a joint agreement between the National Aeronautics and Space Agency (NASA) and the Russian Aviation and Space Agency (RASA), the Stratospheric Aerosol Gas Experiment III (SAGE III) instrument was launched in low earth orbit on December 10,2001 aboard the Russian Meteor-3M satellite from the Baikonur Cosmodrome. SAGE III is a spectrometer that measures attenuated radiation in the 282 nm to 1550 nm wavelength range to obtain the vertical profiles of ozone, aerosols, and other chemical species that are critical in studying the trends for the global climate change phenomena. This instrument version is more advanced than any of the previous versions and has more spectral bands, elaborate data gathering and storage, and intelligent terrestrial software. There are a number of Russian scientific instruments aboard the Meteor satellite in addition to the SAGE III instrument. These instruments deal with land imaging and biomass changes, hydro-meteorological monitoring, and helio-geophysical research. This mission was under development for over a period of six years and offered a number of unique technical and program management challenges for both Agencies. SAGE III has a long space heritage, and four earlier versions of this instrument have flown in space for nearly two decades now. In fact, SAGE II, the fourth instrument, is still flying in space on NASA s Earth Radiation Budget Satellite (ERBS), and has been providing important atmospheric data over the last 18 years. It has provided vital ozone and aerosol data in the mid latitudes and has contributed vastly in ozone depletion research. Ball Aerospace built the instrument under Langley Research Center s (LaRC) management. This paper presents innovative approaches deployed by the SAGE III and the Meteor teams in performing the initial on-orbit checkout. It further documents a number of early science results obtained by deploying low risk, carefully coordinated procedures in resolving the serious operational issues

  11. Initial operation and checkout of stratospheric aerosol gas experiment and Meteor-3M satellite

    NASA Astrophysics Data System (ADS)

    Habib, Shahid; Makridenko, Leonid; Chu, William P.; Salikhov, Rashid; Moore, Alvah S., Jr.; Trepte, Charles R.; Cisewski, Michael S.

    2003-04-01

    Under a joint agreement between the National Aeronautics and Space Agency (NASA) and the Russian Aviation and Space Agency (RASA), the Stratospheric Aerosol Gas Experiment III (SAGE III) instrument was launched in low earth orbit on December 10, 2001 aboard the Russian Meteor-3M(1) satellite from the Baikonur Cosmodrome. SAGE III is a spectrometer that measures attenuated radiation in the 282 nm to 1550 nm wavelength range to obtain the vertical profiles of ozone, aerosols, and other chemical species that are critical in studying the trends for the global climate change phenomena. This instrument version is more advanced than any of the previous versions and has more spectral bands, elaborate data gathering and storage, and intelligent terrestrial software. There are a number of Russian scientific instruments aboard the Meteor satellite in addition to the SAGE III instrument. These instruments deal with land imaging and biomass changes, hydro-meteorological monitoring, and helio-geophysical research. This mission was under development for over a period of six years and offered a number of unique technical and program management challenges for both Agencies. SAGE III has a long space heritage, and four earlier versions of this instrument have flown in space for nearly two decades now. In fact, SAGE II, the fourth instrument, is still flying in space on NASA's Earth Radiation Budget Satellite (ERBS), and has been providing important atmospheric data over the last 18 years. It has provided vital ozone and aerosol data in the mid latitudes and has contributed vastly in ozone depletion research. Ball Aerospace built the instrument under Langley Research Center's (LaRC) management. This paper presents the process and approach deployed by the SAGE III and the Meteor teams in performing the initial on-orbit checkout. It further documents a number of early science results obtained by deploying low risk, carefully coordinated procedures in resolving the serious operational

  12. Chemical Characterization of Secondary Organic Aerosol Formed from Atmospheric Aqueous-phase Reactions of Phenolic Compounds

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Anastasio, C.; Zhang, Q.

    2012-12-01

    Phenolic compounds, which are released in significant amounts from biomass burning, may undergo fast aqueous-phase reactions to form secondary organic aerosol (SOA) in the atmosphere. Understanding the aqueous-phase reaction mechanisms of these compounds and the composition of their reaction products is thus important for constraining SOA sources and predicting organic aerosol properties in models. In this study, we investigate the aqueous-phase reactions of three phenols (phenol, guaiacol and syringol) with two oxidants - excited triplet states (3C*) of non-phenolic aromatic carbonyls and hydroxyl radical (OH). By employing four analytical methods including high-resolution aerosol mass spectrometry, total organic carbon analysis, ion chromatography, and liquid chromatography-mass spectrometry, we thoroughly characterize the chemical compositions of the low volatility reaction products of phenols and propose formation mechanisms based on this information. Our results indicate that phenolic SOA is highly oxygenated, with O/C ratios in the range of 0.83-1.03, and that the SOA of phenol is usually more oxidized than those of guaiacol and syringol. Among the three precursors, syringol generates the largest fraction of higher molecular weight (MW) products. For the same precursor, the SOA formed via reaction with 3C* is less oxidized than that formed via reaction with OH. In addition, oxidation by 3C* enhances the formation of higher MW species, including phenolic dimers, higher oligomers and hydroxylated products, compared to reactions initiated by OH, which appear to favor the formation of organic acids. However, our results indicate that the yields of small organic acids (e.g., formate, acetate, oxalate, and malate) are low for both reaction pathways, together accounting for less than 5% of total SOA mass.

  13. Inversion of solar extinction data from the Apollo-Soyuz Test Project Stratospheric Aerosol Measurement (ASTP/SAM) experiment

    NASA Technical Reports Server (NTRS)

    Pepin, T. J.

    1977-01-01

    The inversion methods are reported that have been used to determine the vertical profile of the extinction coefficient due to the stratospheric aerosols from data measured during the ASTP/SAM solar occultation experiment. Inversion methods include the onion skin peel technique and methods of solving the Fredholm equation for the problem subject to smoothing constraints. The latter of these approaches involves a double inversion scheme. Comparisons are made between the inverted results from the SAM experiment and near simultaneous measurements made by lidar and balloon born dustsonde. The results are used to demonstrate the assumptions required to perform the inversions for aerosols.

  14. Enabling the identification, quantification, and characterization of organics in complex mixtures to understand atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Isaacman, Gabriel Avram

    Particles in the atmosphere are known to have negative health effects and important but highly uncertain impacts on global and regional climate. A majority of this particulate matter is formed through atmospheric oxidation of naturally and anthropogenically emitted gases to yield highly oxygenated secondary organic aerosol (SOA), an amalgamation of thousands of individual chemical compounds. However, comprehensive analysis of SOA composition has been stymied by its complexity and lack of available measurement techniques. In this work, novel instrumentation, analysis methods, and conceptual frameworks are introduced for chemically characterizing atmospherically relevant mixtures and ambient aerosols, providing a fundamentally new level of detailed knowledge on their structures, chemical properties, and identification of their components. This chemical information is used to gain insights into the formation, transformation and oxidation of organic aerosols. Biogenic and anthropogenic mixtures are observed in this work to yield incredible complexity upon oxidation, producing over 100 separable compounds from a single precursor. As a first step toward unraveling this complexity, a method was developed for measuring the polarity and volatility of individual compounds in a complex mixture using two-dimensional gas chromatography, which is demonstrated in Chapter 2 for describing the oxidation of SOA formed from a biogenic compound (longifolene: C15H24). Several major products and tens of substantial minor products were produced, but none could be identified by traditional methods or have ever been isolated and studied in the laboratory. A major realization of this work was that soft ionization mass spectrometry could be used to identify the molecular mass and formula of these unidentified compounds, a major step toward a comprehensive description of complex mixtures. This was achieved by coupling gas chromatography to high resolution time-of-flight mass spectrometry with

  15. Lidar Observations of Tropospheric Aerosols Over Northeastern South Africa During the ARREX and SAFARI-2000 Dry Season Experiments

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Welton, Ellsworth J.; Spinhirne, James D.; Ji, Qiang; Tsay, Si-Chee; Piketh, Stuart J.; Barenbrug, Marguerite; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    During the ARREX-1999 and SAFARI-2000 Dry Season experiments a micropulse lidar (523 nm) instrument was operated at the Skukuza Airport in northeastern South Africa. The Mar was collocated with a diverse array of passive radiometric equipment. For SAFARI-2000 the processed Mar data yields a daytime time-series of layer mean/derived aerosol optical properties, including extinction-to-backscatter ratios and vertical extinction cross-section profile. Combined with 523 run aerosol optical depth and spectral Angstrom exponent calculations from available CIMEL sun-photometer data and normalized broadband flux measurements the temporal evolution of the near surface aerosol layer optical properties is analyzed for climatological trends. For the densest smoke/haze events the extinction-to-backscatter ratio is found to be between 60-80/sr, and corresponding Angstrom exponent calculations near and above 1.75. The optical characteristics of an evolving smoke event from SAFARI-2000 are extensively detailed. The advecting smoke was embedded within two distinct stratified thermodynamic layers, causing the particulate mass to advect over the instrument array in an incoherent manner on the afternoon of its occurrence. Surface broadband flux forcing due to the smoke is calculated, as is the evolution in the vertical aerosol extinction profile as measured by the Han Finally, observations of persistent elevated aerosol during ARREX-1999 are presented and discussed. The lack of corroborating observations the following year makes these observation; both unique and noteworthy in the scope of regional aerosol transport over southern Africa.

  16. Method for characterization of low molecular weight organic acids in atmospheric aerosols using ion chromatography mass spectrometry.

    PubMed

    Brent, Lacey C; Reiner, Jessica L; Dickerson, Russell R; Sander, Lane C

    2014-08-05

    The structural composition of PM2.5 monitored in the atmosphere is usually divided by the analysis of organic carbon, black (also called elemental) carbon, and inorganic salts. The characterization of the chemical composition of aerosols represents a significant challenge to analysts, and studies are frequently limited to determination of aerosol bulk properties. To better understand the potential health effects and combined interactions of components in aerosols, a variety of measurement techniques for individual analytes in PM2.5 need to be implemented. The method developed here for the measurement of organic acids achieves class separation of aliphatic monoacids, aliphatic diacids, aromatic acids, and polyacids. The selective ion monitoring capability of a triple quadropole mass analyzer was frequently capable of overcoming instances of incomplete separations. Standard Reference Material (SRM) 1649b Urban Dust was characterized; 34 organic acids were qualitatively identified, and 6 organic acids were quantified.

  17. CalWater 2 - Precipitation, Aerosols, and Pacific Atmospheric Rivers Experiment

    NASA Astrophysics Data System (ADS)

    Spackman, Ryan; Ralph, Marty; Prather, Kim; Cayan, Dan; DeMott, Paul; Dettinger, Mike; Fairall, Chris; Leung, Ruby; Rosenfeld, Daniel; Rutledge, Steven; Waliser, Duane; White, Allen

    2014-05-01

    Emerging research has identified two phenomena that play key roles in the variability of the water supply and the incidence of extreme precipitation events along the West Coast of the United States. These phenomena include the role of (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major storms along the U.S. West Coast, and (2) aerosols—from local sources as well as those transported from remote continents—and their modulating effects on western U.S. precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of extreme precipitation and its effects, including the provision of beneficial water supply. This presentation summarizes science gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic precipitation along the U.S. West Coast. Observations are proposed for multiple winter seasons as part of a 5-year broad interagency vision referred to as CalWater 2 to address these science gaps (http://esrl.noaa.gov/psd/calwater). In the near term, a science investigation is being planned including a targeted set of aircraft and ship-based measurements and associated evaluation of data in near-shore regions of California and in the eastern Pacific for an intensive observing period between January 2015 and March 2015. DOE's Atmospheric Radiation Measurement (ARM) program and NOAA are coordinating on deployment of airborne and ship-borne facilities for this period in a DOE-sponsored study called ACAPEX (ARM Cloud Aerosol and Precipitation Experiment) to complement CalWater 2. The motivation for this major study is based on findings that have emerged in the last few years from airborne and ground-based studies including CalWater and NOAA's HydroMeterology Testbed

  18. Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments

    NASA Astrophysics Data System (ADS)

    Forestieri, Sara D.; Cornwell, Gavin C.; Helgestad, Taylor M.; Moore, Kathryn A.; Lee, Christopher; Novak, Gordon A.; Sultana, Camille M.; Wang, Xiaofei; Bertram, Timothy H.; Prather, Kimberly A.; Cappa, Christopher D.

    2016-07-01

    The extent to which water uptake influences the light scattering ability of marine sea spray aerosol (SSA) particles depends critically on SSA chemical composition. The organic fraction of SSA can increase during phytoplankton blooms, decreasing the salt content and therefore the hygroscopicity of the particles. In this study, subsaturated hygroscopic growth factors at 85 % relative humidity (GF(85 %)) of predominately submicron SSA particles were quantified during two induced phytoplankton blooms in marine aerosol reference tanks (MARTs). One MART was illuminated with fluorescent lights and the other was illuminated with sunlight, referred to as the "indoor" and "outdoor" MARTs, respectively. Optically weighted GF(85 %) values for SSA particles were derived from measurements of light scattering and particle size distributions. The mean optically weighted SSA diameters were 530 and 570 nm for the indoor and outdoor MARTs, respectively. The GF(85 %) measurements were made concurrently with online particle composition measurements, including bulk composition (using an Aerodyne high-resolution aerosol mass spectrometer) and single particle (using an aerosol time-of-flight mass spectrometer) measurement, and a variety of water-composition measurements. During both microcosm experiments, the observed optically weighted GF(85 %) values were depressed substantially relative to pure inorganic sea salt by 5 to 15 %. There was also a time lag between GF(85 %) depression and the peak chlorophyll a (Chl a) concentrations by either 1 (indoor MART) or 3-to-6 (outdoor MART) days. The fraction of organic matter in the SSA particles generally increased after the Chl a peaked, also with a time lag, and ranged from about 0.25 to 0.5 by volume. The observed depression in the GF(85 %) values (relative to pure sea salt) is consistent with the large observed volume fractions of non-refractory organic matter (NR-OM) comprising the SSA. The GF(85 %) values exhibited a reasonable negative

  19. The VOCALS Regional Experiment: Aerosol-Cloud-Precipitation Interactions in Marine Boundary Layer Cloud

    NASA Astrophysics Data System (ADS)

    Wood, R.

    2012-12-01

    Robert Wood, C.S. Bretherton, C. R. Mechoso, R. A. Weller, B. J. Huebert, H. Coe, B. A. Albrecht, P. H. Daum, D. Leon, A. Clarke, P. Zuidema, C. W. Fairall, G. Allen, S. deSzoeke, G. Feingold, J. Kazil, S. Yuter, R. George, A. Berner, C. Terai, G. Painter, H. Wang, M. Wyant, D. Mechem The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) is an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific (SEP), a region dominated by strong coastal upwelling, extensive cold SSTs, and home to the largest subtropical stratocumulus deck on Earth. VOCALS-REx took place during October and November 2008 and involved five research aircraft, two ships and two surface sites in northen Chile. A central theme of VOCALS-REx is the improved understanding of links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties. In this presentation, we will present a synthesis of results from VOCALS-REx focusing on the following questions: (a) how are aerosols, clouds and precipitation inter-related in the SEP region? (b) what microphysical-macrophysical interactions are necessary for the formation and maintenance of open cells? (c) how do cloud and MBL properties change across the strong microphysical gradients from the South American coast to the remote ocean?

  20. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: chemical characterization of the products

    NASA Astrophysics Data System (ADS)

    Grgić, Irena; Kitanovski, Zoran; Kroflič, Ana; Čusak, Alen

    2014-05-01

    One of the largest primary sources of organic aerosol in the atmosphere is biomass burning (BB) (Laskin et al. 2009); in Europe its contribution to annual mean of PM10 is between 3 and 14 % (Maenhaut et al. 2012). During the process of wood burning many different products are formed via thermal degradation of wood lignin. Hardwood burning produces mainly syringol (2,6-dimetoxyphenol) derivatives, while softwood burning exclusively guaiacol (2-methoxyphenol) and its derivatives. Taking into account physical properties of methoxyphenols only, their concentrations in atmospheric waters might be underestimated. So, their aqueous phase reactions can be an additional source of SOA, especially in regions under significant influence of wood combustion. An important class of compounds formed during physical and chemical aging of the primary BBA in the atmosphere is nitrocatechols, known as strong absorbers of UV and Vis light (Claeys et al. 2012). Very recently, methyl-nitrocatechols were proposed as suitable markers for highly oxidized secondary BBA (Iinuma et al. 2010, Kitanovski et al. 2012). In the present work, the formation of SOA through aqueous phase photooxidation and nitration of guaiacol was examined. The key objective was to chemically characterize the main low-volatility products and further to check their possible presence in the urban atmospheric aerosols. The aqueous phase reactions were performed in a thermostated reactor under simulated sunlight in the presence of H2O2 and nitrite. Guaiacol reaction products were first concentrated by solid-phase extraction (SPE) and then subjected to semi-preparative liquid chromatography.The main product compounds were fractionated and isolated as pure solids and their structure was further elucidated by using nuclear magnetic resonance spectroscopy (1H, 13C and 2D NMR) and direct infusion negative ion electro-spray ionization tandem mass spectrometry (( )ESI-MS/MS). The main photonitration products of guaiacol (4

  1. Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments

    NASA Astrophysics Data System (ADS)

    Chirico, R.; Decarlo, P. F.; Heringa, M. F.; Tritscher, T.; Richter, R.; Prevot, A. S. H.; Dommen, J.; Weingartner, E.; Wehrle, G.; Gysel, M.; Laborde, M.; Baltensperger, U.

    2010-06-01

    Diesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the final vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC<0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23-0.56 g/kg fuel burned. In presence of both a DOC and a DPF, primary particles with a mobility diameter above 5 nm were 300±19 cm-3, and only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.097 to 0

  2. Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments

    NASA Astrophysics Data System (ADS)

    Chirico, R.; Decarlo, P. F.; Heringa, M. F.; Tritscher, T.; Richter, R.; Prévôt, A. S. H.; Dommen, J.; Weingartner, E.; Wehrle, G.; Gysel, M.; Laborde, M.; Baltensperger, U.

    2010-12-01

    Diesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the third vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC < 0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23-0.56 g/kg fuel burned. In presence of both a DOC and a DPF, only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.10 to 0.19. Five hours of oxidation led to a more oxidized OA with an O/C range of 0

  3. Development and application of new instrumental techniques for real-time characterization of aerosol volatility and morphology

    NASA Astrophysics Data System (ADS)

    Huffman, John Alexander

    Aerosols represent the area of largest uncertainty in the radiative forcing of climate and contribute significantly to negative effects on human health and visibility. To better understand the balance between natural and anthropogenic aerosol emissions, and thus the systemic perturbations caused by human activity, advanced instrumentation is needed to measure ambient aerosol properties. This thesis presents the development of novel aerosol measurement instrumentation and resulting observations of aerosol morphology and volatility. A particle beam width probe (BWP) for use within the Aerosol Mass Spectrometer (AMS) and an associated computational model were developed to aid the direct determination of ambient particle morphology and investigate AMS quantification. BWP observations and model results helped determine that particles were not lost in the instrument by morphology-related effects, but were instead collected less efficiently due to particle bounce from the vaporizer surface. This study introduces psi, the lift-shape factor, which allows for the direct determination of particle non-sphericity through use of the BWP. The development and characterization of an instrument modified to directly measure chemically-resolved aerosol volatility is described. A thermodenuder operated between 50-230°C was coupled to a High-Resolution Time-of-Flight AMS (HR-ToF-AMS) with a fast-switching valve system, thus allowing direct and chemically-resolved aerosol volatility measurements to be made for the first time. The instrument was applied in two polluted, urban field studies (Riverside, CA and Mexico City, Mexico) and to sample several biomass-burning, meat-cooking and chamber-generated secondary organic aerosol (SOA) sources. Reduced hydrocarbon-like OA (HOA), biomass-burning OA (BBOA) and oxygenated OA (OOA) were all determined to be semi-volatile, with the most aged OOA-1 consistently showing the lowest volatility. This represents a significant departure from most

  4. A Characterization of Arctic Aerosols as Derived from Airborne Observations and their Influence on the Surface Radiation Budget

    NASA Astrophysics Data System (ADS)

    Herber, A.; Stone, R.; Liu, P. S.; Li, S.; Sharma, S.; Neuber, R.; Birnbaumn, G.; Vitale, V.

    2011-12-01

    Arctic climate is influenced by aerosols that affect the radiation balance at the surface and within the atmosphere. Impacts depend on the composition and concentration of aerosols that determine opacity, which is quantified by the measure of aerosol optical depth (AOD). During winter and spring, aerosols are transported into the Arctic from lower latitude industrial regions. Trans-Arctic flight missions PAMARCMiP (Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project) of the German POLAR 5 during spring 2009 and spring 2011 provided opportunities to collect a comprehensive data set from which properties of the aerosol were derived, including AOD. Measurements were made from near the surface to over 4 km in altitude during flights between Svalbard, Norway and Pt. Barrow, Alaska. These, along with measurements of particle size and concentration, and black carbon content (BC) provide a three-dimensional characterization of the aerosols encountered along track. The horizontal and vertical distribution of Arctic haze, in particular, was evaluated. During April 2009, the Arctic atmosphere was variably turbid with total column AOD (at 500 nm) ranging from ~ 0.12 to > 0.35, where clean background values are typically < 0.06 (Stone et al., 2010). The haze was concentrated within and just above the surface-based temperature inversion layer. Few, distinct elevated aerosol layers were observed, also with an aerosol airborne Lidar. The presence of these haze layers in the Arctic atmosphere during spring reduced the diurnally averaged net shortwave irradiance, which can cause cooling of the surface, depending on its Albedo (reflectivity). An overview of both campaigns will be given with results presented in the context of historical observations and current thinking about the impact aerosols have on the Arctic climate. Stone, R.S., A. Herber, V. Vitale, M. Mazzola, A. Lupi, R. Schnell, E.G. Dutton, P. Liu, S.M. Li, K. Dethloff, A. Lampert, C. Ritter

  5. Chemical characterization of submicron aerosol particles during wintertime in a northwest city of China using an Aerodyne aerosol mass spectrometry.

    PubMed

    Zhang, Xinghua; Zhang, Yangmei; Sun, Junying; Yu, Yangchun; Canonaco, Francesco; Prévôt, Andre S H; Li, Gang

    2017-03-01

    An Aerodyne quadrupole aerosol mass spectrometry (Q-AMS) was utilized to measure the size-resolved chemical composition of non-refractory submicron particles (NR-PM1) from October 27 to December 3, 2014 at an urban site in Lanzhou, northwest China. The average NR-PM1 mass concentration was 37.3 μg m(-3) (ranging from 2.9 to 128.2 μg m(-3)) under an AMS collection efficiency of unity and was composed of organics (48.4%), sulfate (17.8%), nitrate (14.6%), ammonium (13.7%), and chloride (5.7%). Positive matrix factorization (PMF) with the multi-linear engine (ME-2) solver identified six organic aerosol (OA) factors, including hydrocarbon-like OA (HOA), coal combustion OA (CCOA), cooking-related OA (COA), biomass burning OA (BBOA) and two oxygenated OA (OOA1 and OOA2), which accounted for 8.5%, 20.2%, 18.6%, 12.4%, 17.8% and 22.5% of the total organics mass on average, respectively. Primary emissions were the major sources of fine particulate matter (PM) and played an important role in causing high chemically resolved PM pollution during wintertime in Lanzhou. Back trajectory analysis indicated that the long-range regional transport air mass from the westerly was the key factor that led to severe submicron aerosol pollution during wintertime in Lanzhou.

  6. Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia,and Look Rock, Tennessee

    NASA Astrophysics Data System (ADS)

    Hapsari Budisulistiorini, Sri; Baumann, Karsten; Edgerton, Eric S.; Bairai, Solomon T.; Mueller, Stephen; Shaw, Stephanie L.; Knipping, Eladio M.; Gold, Avram; Surratt, Jason D.

    2016-04-01

    A year-long near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia, in 2012) and rural (Look Rock, Tennessee, in 2013) site in the southeastern US using the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA) and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region. The highest concentrations of NR-PM1 were observed during winter and fall seasons at the urban site and during spring and summer at the rural site. Across all seasons and at both sites, NR-PM1 was composed largely of OA (up to 76 %) and sulfate (up to 31 %). Six distinct OA sources were resolved by positive matrix factorization applied to the ACSM organic mass spectral data collected from the two sites over the 1 year of near-continuous measurements at each site: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), semi-volatile oxygenated OA (SV-OOA), low-volatility oxygenated OA (LV-OOA), isoprene-derived epoxydiols (IEPOX) OA (IEPOX-OA) and 91Fac (a factor dominated by a distinct ion at m/z 91 fragment ion previously observed in biogenic influenced areas). LV-OOA was observed throughout the year at both sites and contributed up to 66 % of total OA mass. HOA was observed during the entire year only at the urban site (on average 21 % of OA mass). BBOA (15-33 % of OA mass) was observed during winter and fall, likely dominated by local residential wood burning emission. Although SV-OOA contributes quite significantly ( ˜ 27 %), it was observed only at the urban site during colder seasons. IEPOX-OA was a major component (27-41 %) of OA at both sites, particularly in spring and summer. An ion fragment at m/z 75 is well correlated with the m/z 82 ion associated with the aerosol mass spectrum of IEPOX-derived secondary organic aerosol (SOA). The

  7. The solvent-extractable organic compounds in the Indonesia biomass burning aerosols - characterization studies

    NASA Astrophysics Data System (ADS)

    Fang, M.; Zheng, M.; Wang, F.; To, K. L.; Jaafar, A. B.; Tong, S. L.

    for n-alkanols, and the presence of abundant moretane (17 β(H), 21 α(H)-hopanes). The biomarkers dehydroabietic acid and retene were not found in the samples suggesting there is a difference in the long-distance transport samples of an Asian forest fire and the controlled experiments reported in the literature. Similar to the biomass burning in Amazonia (Abas et al., 1995), the present study also showed an absence of conifer tracers in the smoke aerosols indicating tropical wood sources. Abundant friedelin, a specific biomarker for smoke from oak wood fires (Standley and Simoneit, 1990), was present in the late September samples when the fire was more intense. The results were compared to literature values from an earlier study of the haze episode on 29 September 1991 in Kuala Lumpur, Malaysia (Abas and Simoneit, 1996).

  8. Clear Sky Column Closure Studies of Urban-Marine and Mineral-Dust Aerosols Using Aircraft, Ship, Satellite and Ground-Based Measurements in ACE-2

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Russell, Philip B.; Livingston, John M.; Gasso, Santiago; Hegg, Dean A.; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Oestroem, Elisabeth; Noone, Kevin J.; Durkee, Philip A.; Jonsson, Haflidi H.; Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.; Formenti, Paola; Andreae, Meinrat O.; Kapustin, Vladimir N.; Bates, Timothy S.; Quinn, Patricia K.

    2000-01-01

    As part of the second Aerosol Characterization Experiment (ACE-2), European urban-marine and African mineral-dust aerosols were measured aboard the Pelican aircraft, the Research Vessel Vodyanitskiy from the ground and from satellites.

  9. Inference of the aerosol Angstrom coefficient from SAGE short-wavelength data. [Stratospheric Aerosol and Gas Experiment

    NASA Technical Reports Server (NTRS)

    Lenoble, J.; Pruvost, P.

    1983-01-01

    SAGE four-channel transmission profiles are inverted to retrieve the extinction profiles from which the aerosol Angstrom coefficient alpha is obtained. The procedure allows one to check the influence of the NO2 absorption profile, which is small below 25 km. The results compare well with those obtained by a completely different procedure at NASA Langley Research Center, and the main features of the alpha profiles seem to be significant, even considering the rather large error bars. The relation between the retrieved Angstrom coefficient, the particle effective radius and the asymmetry factor is considered.

  10. Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies

    NASA Astrophysics Data System (ADS)

    Kreyling, Wolfgang G.; Biswas, Pratim; Messing, Maria E.; Gibson, Neil; Geiser, Marianne; Wenk, Alexander; Sahu, Manoranjan; Deppert, Knut; Cydzik, Izabela; Wigge, Christoph; Schmid, Otmar; Semmler-Behnke, Manuela

    2011-02-01

    The intensive use of nano-sized titanium dioxide (TiO2) particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of TiO2 nanoparticles (NP) with biological systems ideally needs to be investigated using physico-chemically uniform and well-characterized NP. In this article, we describe the reproducible production of TiO2 NP aerosols using spark ignition technology. Because currently no data are available on inhaled NP in the 10-50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation studies in rodents. For anticipated in vivo dosimetry analyses, TiO2 NP were radiolabeled with 48V by proton irradiation of the titanium electrodes of the spark generator. The dissolution rate of the 48V label was about 1% within the first day. The highly concentrated, polydisperse TiO2 NP aerosol (3-6 × 106 cm-3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation, and number concentration. Extensive characterization of NP chemical composition, physical structure, morphology, and specific surface area was performed. The originally generated amorphous TiO2 NP were converted into crystalline anatase TiO2 NP by thermal annealing at 950 °C. Both crystalline and amorphous 20-nm TiO2 NP were chain agglomerated/aggregated, consisting of primary particles in the range of 5 nm. Disintegration of the deposited TiO2 NP in lung tissue was not detectable within 24 h.

  11. Characterization Of Industrial And Background Aerosols In The RhÔne-alpes Region Using Laser Remote Sensing Device.

    NASA Astrophysics Data System (ADS)

    Geffroy, S.; Rairoux, P.; Mondelain, D.; Boutou, V.; Wolf, J.-P.; Frejafon, E.

    Lack of reliable database on aerosol emission and dispersion is one of the main rea- sons for the incertitude of the impact of aerosol on the climate change. International statements and policies requested improvement on the global and on the regional scale. This new project is related to the characterisation of the spatial and time distribution of the aerosols in the Rhône-Alpes region. Actually, aerosols monitoring is mainly performed at ground level in this region and only few studies have been performed on the 3D distribution of urban aerosols (soot) using remote sensing laser device. The Rhône-Alpes region is representative for the regional impact of industry and traffic emission and also for the long-range transport of pollution over the East part of the Alps. The environmental situation of the region in term of sources and localization is especially dominated by: heavy traffic with several motorways (A6 from Paris, A7 to Marseille - both downtown - and A43 to the Alps and Italy) and industrial pollu- tion in particular for Lyon (refinery and several chemistry plants) and Saint Etienne agglomerations, which have a direct impact on the local air quality and also on the regional and national scale. Characterization of the aerosol load and dispersion in this region will be achieved applying two schemes. The first one will be related to the 3D quantitative characterization of diffuse aerosol emission in the industrial areas. Mon- itoring will be performed using a UV-infrared lidar remote sensing device. Emission cadastre elaboration and microphysical characterisation of the emission will be estab- lished. Direct access to several aerosol distribution modes will be used to describe the aerosol population dynamic: sedimentation, transport and aggregation. Studies on the direct impact of the emission on the region will be achieved coupling the 3D and ground level monitoring with dispersion model. The second scheme will be related to the long term remote sensing of

  12. Characterization of the Chemical Composition of TITAN'S Aerosols Analogues with a Systematic Pyrolysis-GCMS Analysis Approach

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Morisson, M.; Carrasco, N.; Buch, A.; Gautier, T.

    2014-12-01

    Pyrolysis coupled to gas chromatography-mass spectrometry is used for long to characterize the chemical composition and structure of analogues of Titan's aerosols (tholins). However, a review of the characterizations of tholins done for 30 years with this technique show that the nature of the tholins were quite different in the different studies, and the analytical conditions used for Pyr-GCMS analysis were generally very limited. The differences observed in the results obtained in these different studies are therefore difficult to attribute either to the process used to produce the tholins, or to the analytical conditions used. These are the reasons we performed a systematic study on tholins produced uniquely with the PAMPRE laboratory experiment based on a RF cold plasma, to determine the composition and structure of these analogues of Titan's aerosols, and to estimate the difference of properties induced by a variation of the content of CH4 in the initial gaseous mixture. To take the whole benefit of the pyr-GCMS technique, we performed analyses of tholins by studying the influence of all the analytical parameters. Among the main parameters, we studied : the influence of the temperature of pyrolysis on the nature of the gaseous compounds released by the solid tholins; the program of temperature used to heat the GC column in order to find a tradeoff for the analysis of both the lightest and heaviest compounds released by the sample; the separation of the same pyrolysates with two different columns. Moreover, the identification of numerous isomers was confirmed using analytical standards. WIth this study, we managed to strictly characterize a wide range of pyrolyzates for the three tholins sample studied. Most of these species are nitrogen bearing organics of various natures. More than the detection of pyrolyzates which have never been reported in previous studies, we showed that even if numerous pyrolysates were common between the three types of tholins studied

  13. Aircraft measurements over Europe of an air pollution plume from Southeast Asia - aerosol and chemical characterization

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Huntrieser, H.; Mannstein, H.; McMillan, W. W.; Petzold, A.; Schlager, H.; Weinzierl, B.

    2007-02-01

    An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24-25 March 2006. According to the model, the plume was exported from Southeast Asia six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO) from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy) and ozone (O3) measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17-34 ppbv on average (maximum 60 ppbv) and O3 by 2-9 ppbv (maximum 22 ppbv). Positive correlations existed between these species, and a ΔO3/ΔCO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface of the transported larger particles. Super-micron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters 0.25-0.70 Mm-1), as was the

  14. Aircraft measurements over Europe of an air pollution plume from Southeast Asia - aerosol and chemical characterization

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Huntrieser, H.; Mannstein, H.; McMillan, W. W.; Petzold, A.; Schlager, H.; Weinzierl, B.

    2006-12-01

    An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24-25 March 2006. According to the model, the plume was exported from Southeast Asia only six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO) from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was indeed found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy) and ozone (O3) measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17-34 ppbv on average (maximum 60 ppbv) and O3 by 2-9 ppbv (maximum 22 ppbv). Positive correlations existed between these species, and a ΔO3/ΔCO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface due to the transported larger particles. Super-micron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters 0.25-0.70 Mm-1

  15. Experiments In Characterizing Vibrations Of A Structure

    NASA Technical Reports Server (NTRS)

    Yam, Yeung; Hadaegh, Fred Y.; Bayard, David S.

    1993-01-01

    Report discusses experiments conducted to test methods of identification of vibrational and coupled rotational/vibrational modes of flexible structure. Report one in series that chronicle development of integrated system of methods, sensors, actuators, analog and digital signal-processing equipment, and algorithms to suppress vibrations in large, flexible structure even when dynamics of structure partly unknown and/or changing. Two prior articles describing aspects of research, "Autonomous Frequency-Domain Indentification" (NPO-18099), and "Automated Characterization Of Vibrations Of A Structure" (NPO-18141).

  16. Electron Microscopy and Raman Microspectroscopy as Characterization Tools and Probes of the Chemistry and Properties of Individual Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Grassian, V. H.

    2012-12-01

    Microscopic probes provide useful insights into the physicochemical properties of aerosol particles and their environmental and health effects. The focus of this talk is on the use of microscopic probes in a wide-range of laboratory studies to better understand the physicochemical properties (chemical heterogeneity, morphology, water uptake, infrared extinction and heterogeneous reactivity) of individual atmospheric aerosol particles. Microscopy coupled to energy dispersive X-ray analysis is used in these studies to characterize particles in terms of size and shape as individual particles or as aggregates particles as well as to follow chemical and physical transformations of particles as they undergo reactions under different environmental conditions. Raman microspectroscopy provides additional chemical specific information and the internal mixing of chemical constituents within individual particles. Several examples will be discussed for flyash, mineral dust and sea spray aerosol particles.

  17. Aerosol Models for the CALIPSO Lidar Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Won, Jae-Gwang

    2003-01-01

    We use measurements and models to develop aerosol models for use in the inversion algorithms for the Cloud Aerosol Lidar and Imager Pathfinder Spaceborne Observations (CALIPSO). Radiance measurements and inversions of the AErosol RObotic NETwork (AERONET1, 2) are used to group global atmospheric aerosols using optical and microphysical parameters. This study uses more than 105 records of radiance measurements, aerosol size distributions, and complex refractive indices to generate the optical properties of the aerosol at more 200 sites worldwide. These properties together with the radiance measurements are then classified using classical clustering methods to group the sites according to the type of aerosol with the greatest frequency of occurrence at each site. Six significant clusters are identified: desert dust, biomass burning, urban industrial pollution, rural background, marine, and dirty pollution. Three of these are used in the CALIPSO aerosol models to characterize desert dust, biomass burning, and polluted continental aerosols. The CALIPSO aerosol model also uses the coarse mode of desert dust and the fine mode of biomass burning to build a polluted dust model. For marine aerosol, the CALIPSO aerosol model uses measurements from the SEAS experiment 3. In addition to categorizing the aerosol types, the cluster analysis provides all the column optical and microphysical properties for each cluster.

  18. SAGE ground truth plan: Correlative measurements for the Stratospheric Aerosol and Gas Experiment (SAGE) on the AEM-B satellite

    NASA Technical Reports Server (NTRS)

    Russell, P. B. (Editor); Cunnold, D. M.; Grams, G. W.; Laver, J.; Mccormick, M. P.; Mcmaster, L. R.; Murcray, D. G.; Pepin, T. J.; Perry, T. W.; Planet, W. G.

    1979-01-01

    The ground truth plan is outlined for correlative measurements to validate the Stratospheric Aerosol and Gas Experiment (SAGE) sensor data. SAGE will fly aboard the Applications Explorer Mission-B satellite scheduled for launch in early 1979 and measure stratospheric vertical profiles of aerosol, ozone, nitrogen dioxide, and molecular extinction between 79 N and 79 S. latitude. The plan gives details of the location and times for the simultaneous satellite/correlative measurements for the nominal launch time, the rationale and choice of the correlative sensors, their characteristics and expected accuracies, and the conversion of their data to extinction profiles. In addition, an overview of the SAGE expected instrument performance and data inversion results are presented. Various atmospheric models representative of stratospheric aerosols and ozone are used in the SAGE and correlative sensor analyses.

  19. Characterization of the aerosol type using simultaneous measurements of the lidar ratio and estimations of the single scattering albedo

    NASA Astrophysics Data System (ADS)

    Amiridis, Vassilis; Balis, Dimitrios; Giannakaki, Eleni; Kazadzis, Stylianos; Arola, Antti; Gerasopoulos, Evangelos

    2011-07-01

    Lidar measurements of the vertical distribution of the aerosol extinction and backscatter coefficient and the corresponding extinction to backscatter ratio (so-called lidar ratio) at 355 nm have been performed at Thessaloniki, Greece using a Raman lidar system in the frame of the EARLINET for the period 2001-2005. Coincident spectral UV irradiance measurements, total ozone observations and aerosol optical depth estimates were available from a double Brewer spectroradiometer. The retrieval of single scattering albedo employed the Brewer global irradiance measurements and radiative transfer modeling. Vertically averaged values of the lidar ratio ranged from a minimum of 16 sr to a maximum value of 90 sr, while the effective single scattering albedo ranged from 0.78 to 1.00. The mean value of the lidar ratio for the dataset under study was 45.5 ± 21.0 sr while the average value of the single scattering albedo was 0.94 ± 0.05. For the majority of our measurements (80%) the single scattering albedo found to be greater than 0.90. Using additional information from backward trajectory calculations and lidar-derived free tropospheric contribution of aerosols in the columnar aerosol optical depth, it is shown that the combined use of the directly measured lidar ratio, and the indirectly estimated single scattering albedo, leads to a better characterization of the aerosol type probed.

  20. Ozone and aerosol distributions measured by airborne lidar during the 1988 Arctic Boundary Layer Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Consideration is given to O3 and aerosol distributions measured from an aircraft using a DIAL system in order to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during summer 1988. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere.

  1. A System to Create Stable Nanoparticle Aerosols from Nanopowders

    PubMed Central

    Ding, Yaobo; Riediker, Michael

    2016-01-01

    Nanoparticle aerosols released from nanopowders in workplaces are associated with human exposure and health risks. We developed a novel system, requiring minimal amounts of test materials (min. 200 mg), for studying powder aerosolization behavior and aerosol properties. The aerosolization procedure follows the concept of the fluidized-bed process, but occurs in the modified volume of a V-shaped aerosol generator. The airborne particle number concentration is adjustable by controlling the air flow rate. The system supplied stable aerosol generation rates and particle size distributions over long periods (0.5-2 hr and possibly longer), which are important, for example, to study aerosol behavior, but also for toxicological studies. Strict adherence to the operating procedures during the aerosolization experiments ensures the generation of reproducible test results. The critical steps in the standard protocol are the preparation of the material and setup, and the aerosolization operations themselves. The system can be used for experiments requiring stable aerosol concentrations and may also be an alternative method for testing dustiness. The controlled aerosolization made possible with this setup occurs using energy inputs (may be characterized by aerosolization air velocity) that are within the ranges commonly found in occupational environments where nanomaterial powders are handled. This setup and its operating protocol are thus helpful for human exposure and risk assessment. PMID:27501179

  2. Retrieval of composition and size distribution of stratospheric aerosols with the SAGE II satellite experiment

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Mccormick, M. P.; Chu, W. P.

    1986-01-01

    The SAGE II satellite system was launched on October 5, 1984. It has seven radiometric channels and is beginning to provide water vapor, NO2, and O3 concentration profiles and aerosol extinction profiles at a minimum of three wavelengths. A simple, fast and operational method of retrieving characteristics of stratospheric aerosols from the water vapor and three-wavelength aerosol extinction profiles is proposed. Some examples are given to show the practicality of the scheme. Possible sources of error for the retrieved values and the limitation of the proposed method are discussed. This method may also prove applicable to the study of aerosol characteristics in other multispectral extinction measurements.

  3. A Case-Study of Dust Aerosol Uplift Mechanisms in North Africa during the Saharan Mineral Dust Experiment

    NASA Astrophysics Data System (ADS)

    Stenchikov, Georgiy; Weinzierl, Bernadett; Khan, Basit Ali; Kalenderski, Stoitchko

    2013-04-01

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface, suggesting that they could have strong cumulative radiative impact on the earth's radiative balance. One example is the elevated Saharan dust layer over equatorial North Atlantic, which cools the sea surface and likely suppresses hurricane activity. However, the uplift mechanisms of dust are complex and not well understood. In this study, we combined model simulations and dust observations collected during the Saharan Mineral Dust Experiment (SAMUM) to study the formation mechanisms of the Saharan elevated dust layer. SAMUM aimed to investigate the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. Here, we focus on data from SAMUM-1, the first field experiment. During SAMUM-1, three large-scale dust events that extended from Morocco to Portugal occurred. Whereas the dust layers close to the source region of the dust were found to extend across the entire boundary layer from the surface to altitudes of about 4-6 km above sea level, in Casablanca situated on the Atlantic coast of Morocco, only elevated dust layers were observed. We employed the Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem) to interpret the observations. We configured WRF-Chem with the RADM2 (Regional Acid Deposition Model 2) photochemical mechanism, the Fast-J photolysis scheme, and the MADE/SORGAM (Modal Aerosol Dynamics Model for Europe (MADE) and Secondary Organic Aerosol Model (SORGAM) aerosol model. The GOCART dust emission scheme was coupled with the MADE/SORGAM aerosol model to account for the dust emission processes. The experimental domain covered northwest Africa including the southern Sahara, Morocco and part of the Atlantic Ocean, an area from 15°N to 36.5°N and 16°W to 11°E, with 550x484 grid points, 5 km horizontal grid spacing, and 51 vertical layers. To study convective processes in the region

  4. Dual carbon isotope characterization of total organic carbon in wintertime carbonaceous aerosols from northern India

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Andersson, August; Sarin, M. M.; Sheesley, R. J.; Kirillova, E.; Rengarajan, R.; Sudheer, A. K.; Ram, K.; Gustafsson, Örjan

    2016-05-01

    Large-scale emissions of carbonaceous aerosols (CA) from South Asia impact both regional climate and air quality, yet their sources are not well constrained. Here we use source-diagnostic stable and radiocarbon isotopes (δ13C and Δ14C) to characterize CA sources at a semiurban site (Hisar: 29.2°N, 75.2°E) in the NW Indo-Gangetic Plain (IGP) and a remote high-altitude location in the Himalayan foothills (Manora Peak: 29.4°N, 79.5°E, 1950 m above sea level) in northern India during winter. The Δ14C of total aerosol organic carbon (TOC) varied from -178‰ to -63‰ at Hisar and from -198‰ to -1‰ at Manora Peak. The absence of significant differences in the 14C-based fraction biomass of TOC between Hisar (0.81 ± 0.03) and Manora Peak (0.82 ± 0.07) reveals that biomass burning/biogenic emissions (BBEs) are the dominant sources of CA at both sites. Combining this information with δ13C, other chemical tracers (K+/OC and SO42-/EC) and air mass back trajectory analyses indicate similar source regions in the IGP (e.g., Punjab and Haryana). These results highlight that CA from BBEs in the IGP are not only confined to the atmospheric boundary layer but also extend to higher elevations of the troposphere, where the synoptic-scale circulations could substantially influence their abundances both to the Himalayas and over the downwind oceanic regions such as the Indian Ocean. Given the vast emissions of CA from postharvest crop residue combustion practices in the IGP during early Northeast Monsoon, this information is important for both improved process and model understanding of climate and health effects, as well as in guiding policy decision aiming at reducing emissions.

  5. Characterization of submicron aerosols during a serious pollution month in Beijing (2013) using an aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, J. K.; Sun, Y.; Liu, Z. R.; Ji, D. S.; Hu, B.; Liu, Q.; Wang, Y. S.

    2013-07-01

    In January 2013, Beijing experienced several serious haze events. To achieve a better understanding of the characteristics, sources and processes of aerosols during this month, an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at an urban site between 1 January and 1 February 2013 to obtain the size-resolved chemical composition of non-refractory submicron particles (NR-PM1). During this period, the mean measured NR-PM1 mass concentration was 87.4 μg m-3 and was composed of organics (49.8%), sulfate (21.4%), nitrate (14.6%), ammonium (10.4%), and chloride (3.8%). Moreover, inorganic matter, such as sulfate and nitrate comprised an increasing fraction of the NR-PM1 load as NR-PM1 loading increased, denoting their key roles in particulate pollution during this month. The average size distributions of the species were all dominated by an accumulation mode peaking at approximately 600 nm in vacuum aerodynamic diameter and organics characterized by an additional smaller size (∼200 nm). Elemental analyses showed that the average O/C, H/C, and N/C (molar ratio) of organic matter were 0.34, 1.44 and 0.015, respectively, corresponding to an OM/OC ratio (mass ratio of organic matter to organic carbon) of 1.60. Positive matrix factorization (PMF) analyses of the high-resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., oxygenated organic aerosols (OOA), cooking-related (COA), nitrogen-containing (NOA) and hydrocarbon-like (HOA), which on average accounted for 40.0, 23.4, 18.1 and 18.5% of the total organic mass, respectively. Back trajectory clustering analyses indicated that the WNW air masses were associated with the highest NR-PM1 pollution during the campaign. Aerosol particles in southern air masses were especially rich in inorganic and oxidized organic species, whereas northern air masses contained a large fraction of primary species.

  6. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M. J. M.; Beirle, S.; Hörmann, C.; Kaiser, J. W.; Stammes, P.; Tilstra, L. G.; Tuinder, O. N. E.; Wagner, T.

    2015-09-01

    Detecting the optical properties of aerosols using passive satellite-borne measurements alone is a difficult task due to the broadband effect of aerosols on the measured spectra and the influences of surface and cloud reflection. We present another approach to determine aerosol type, namely by studying the relationship of aerosol optical depth (AOD) with trace gas abundance, aerosol absorption, and mean aerosol size. Our new Global Aerosol Classification Algorithm, GACA, examines relationships between aerosol properties (AOD and extinction Ångström exponent from the Moderate Resolution Imaging Spectroradiometer (MODIS), UV Aerosol Index from the second Global Ozone Monitoring Experiment, GOME-2) and trace gas column densities (NO2, HCHO, SO2 from GOME-2, and CO from MOPITT, the Measurements of Pollution in the Troposphere instrument) on a monthly mean basis. First, aerosol types are separated based on size (Ångström exponent) and absorption (UV Aerosol Index), then the dominating sources are identified based on mean trace gas columns and their correlation with AOD. In this way, global maps of dominant aerosol type and main source type are constructed for each season and compared with maps of aerosol composition from the global MACC (Monitoring Atmospheric Composition and Climate) model. Although GACA cannot correctly characterize transported or mixed aerosols, GACA and MACC show good agreement regarding the global seasonal cycle, particularly for urban/industrial aerosols. The seasonal cycles of both aerosol type and source are also studied in more detail for selected 5° × 5° regions. Again, good agreement between GACA and MACC is found for all regions, but some systematic differences become apparent: the variability of aerosol composition (yearly and/or seasonal) is often not well captured by MACC, the amount of mineral dust outside of the dust belt appears to be overestimated, and the abundance of secondary organic aerosols is underestimated in comparison

  7. The FLAME Deluge: organic aerosol emission ratios from combustion chamber experiments

    NASA Astrophysics Data System (ADS)

    Jolleys, Matthew; Coe, Hugh; McFiggans, Gordon; McMeeking, Gavin; Lee, Taehyoung; Sullivan, Amy; Kreidenweis, Sonia; Collett, Jeff

    2014-05-01

    A high level of variability has been identified amongst organic aerosol (OA) emission ratios (ER) from biomass burning (BB) under ambient conditions. However, it is difficult to assess the influences of potential drivers for this variability, given the wide range of conditions associated with wildfire measurements. Chamber experiments performed under controlled conditions provide a means of examining the effects of different fuel types and combustion conditions on OA emissions from biomass fuels. ERs have been characterised for 67 burns during the second Fire Laboratory at Missoula Experiment (FLAME II), involving 19 different species from 6 fuel types widely consumed in BB events in the US each year. Average normalised dOA/dCO ratios show a high degree of variability, both between and within different fuel types and species, typically exceeding variability between separate plumes in ambient measurements. Relationships with source conditions were found to be complex, with little consistent influence from fuel properties and combustion conditions for the entire range of experiments. No strong correlation across all fires was observed between dOA/dCO and modified combustion efficiency (MCE), which is used as an indicator of the proportional contributions of flaming and smouldering combustion phases throughout each burn. However, a negative correlation exists between dOA/dCO and MCE for some coniferous species, most notably Douglas fir, for which there is also an apparent influence from fuel moisture content. Significant contrasts were also identified between combustion emissions from different fuel components of additional coniferous species. Changes in fire efficiency were also shown to dramatically alter emissions for fires with very similar initial conditions. Although the relationship with MCE is variable between species, there is greater consistency with the level of oxygenation in OA. The ratio of the m/z 44 fragment to total OA mass concentration (f44) as

  8. Premonsoon Aerosol Characterization and Radiative Effects Over the Indo-Gangetic Plains: Implications for Regional Climate Warming

    NASA Technical Reports Server (NTRS)

    Gautam, Ritesh; Hsu, N. Christina; Lau, K.-M.

    2010-01-01

    The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 W/sq m per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89+/- 0.01 (at approx.550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 W/sq m and +1.4 to +12 W/sq m, respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of approx.5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 C/decade+/-0.08 C

  9. Aerosol characterization and transport pathway using ground-based measurement and space borne remote sensing

    NASA Astrophysics Data System (ADS)

    Boyouk, Neda; Léon, Jean-François; Delbarre, Hervé

    2008-10-01

    Using two years measurements of aerosol extinction coefficient retrieval from CALIPSO as a joint NASA-CNES satellite mission along with ground-based measurements of particle mass concentration (PM2.5), we assess particulate matter air quality over different urban and periurban areas in France. In order to understanding the influence of the long range transport onto the local aerosol load we have focused on analysing of pollution event in Lille - urban area and Dunkerque - industrial area. We compared ground- based measurements with CALIPSO measurements. The CALIPSO level 2 aerosol records are more useful because the extinction coefficient is available. We use the extinction coefficient profiles which are provided by CALIPSO to depict the vertical structure of the aerosol properties. The combination of ground- based measurements of PM2.5, aerosol optical thickness (AOT's) obtained by Aeronet network data and CALIOP data enhances the possibilities of studying transport pathway of aerosol in the atmosphere and aerosol optical properties (aerosol extinction coefficient, aerosol optical depth, atmosphere transparency). The linear relationship between AOT _CALIPSO and AOT _ Aeronet network shows a slop of 0.4 in north of France. Moreover, we observed the good relationship between PM2.5 and AOT by CALIPSO profiles with a slope of 57.59 and correlation coefficient of 0.75 over France.

  10. Aerosol and gas phase organic acids during aging of secondary organic aerosol from α-pinene in smog chamber experiments

    NASA Astrophysics Data System (ADS)

    Praplan, Arnaud P.; Tritscher, Torsten; Barmet, Peter; Mertes, Peter; Decarlo, Peter F.; Dommen, Josef; Prevot, Andre S. H.; Donahue, Neil M.; Baltensperger, Urs

    2010-05-01

    Organic acids represent an important class of organic compounds in the atmosphere for both the gas and aerosol phase. They are either emitted directly from both biogenic and anthropogenic sources or formed as oxidation products from volatile organic compounds (VOCs) and precursors in the aqueous, gaseous and particle phase (Chebbi & Carlier, 1996) Monoterpenes are a prominent class of VOCs with annual emissions of 127 Tg per year (Guenther et al., 1995). Because of their high formation potential of secondary organic aerosols, several compounds of this class, particularly a-pinene, have been investigated extensively in many laboratory studies. Among other acids, cis-pinic and cis-pinonic acid have been found as products of a-pinene ozonolysis. Ma et al. (2007) published evidence that these organic acids are formed in the gas phase via Criegee Intermediates (CIs). Recently, 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) was identified by Szmigielski et al. (2007) as a product from a-pinene photooxidation, as well as diaterpenylic acid acetate (Iinuma et al., 2009) and terpenylic acid (Claeys et al., 2009). These compounds could serve as tracers for a-pinene in ambient samples. The present work sets its focus on the fate of a-pinene SOA organic acids under different aging conditions. (1) low NOx concentration (2) high NOx concentration (3) exposure to OH radicals in both dark and lighted environments. a-pinene SOA is produced by ozonolysis without OH scavenger in the PSI smog chamber. It consists of a 27m3 Teflon® bag that can be irradiated by four Xe arc lamps to simulate sunlight (Paulsen et al., 2004). The organic acids are sampled with a wet effluent diffusion denuder (WEDD) and an aerosol collector (AC) for the gas phase and the aerosol particles, respectively. WEDD and AC samples are alternatively concentrated for 30 minutes on a trace anion concentrator (TAC) column (Dionex, Switzerland) and subsequently analyzed by ion chromatography coupled to mass

  11. Measurement of Organic and Inorganic Chemical Tracers for Source Apportionment of Tropospheric Aerosols Collected During the ACE-Asia Experiment

    NASA Astrophysics Data System (ADS)

    Schauer, J. J.; Park, J.; Duvall, R.; Bae, M.; Shafer, M. M.; Chuang, P.; Chuang, P.; Kim, Y. J.

    2001-12-01

    Naturally occurring dust and anthropogenic air pollutants are important contributors to tropospheric aerosols and impact air quality and the radiative balance of the Earth's atmosphere. In order to better understand the relationship between the origin, chemical composition and ultimate impact of Asian aerosols on climate forcing, aerosol samples were collected as part of the ACE-Asia experiment for detailed chemical analysis. Atmospheric particulate matter samples were collected from March 27, 2001 through May 6, 2001 at the ACE-Asia ground station located on Cheju Island, Korea. During this period, this region is impacted by anthropogenic air pollution emissions from highly urbanized region of Asia and by desert dust originating from northeastern Asia. As part of the experiment, atmospheric particulate matter samplers were also collected in urban and desert locations in Asia that represent regional sources of particulate matter in Asia. Size resolved aerosol samples were analyzed for trace metals by using microwave assisted-acid digestion and ICP-MS analysis, speciated organic compounds using solvent extraction and GC-MS analysis, as well as soluble ions and elemental and organic carbon (ECOC). These measurements provide fingerprints for source apportionment of the atmospheric particulate matter samples collected at the Cheju Island sampling site. The use of these chemical tracers for apportionment of wind-driven long range transported desert dust, local crustal derived dust, biogenically and anthropogenically derived sulfate, specific urban combustion source, and fossil fuel combustion will be presented.

  12. Atmospheric aerosol monitoring and characterization: An emission control strategy to protect tropical forests

    NASA Astrophysics Data System (ADS)

    Mateus, V. L.; do Valles, T. V.; de Oliveira, T. B.; de Almeida, A. C.; Maia, L. F. P. G.; Saint'Pierre, T. D.; Gioda, A.

    2013-12-01

    .87) than at Flonamax (r = 0.46), suggesting a marked anthropogenic influence in the former. WSOC and nss-SO42- showed a moderate correlation ( r = 0.3-0.5) at both sites suggesting secondary aerosol formation. The dissimilarity between the areas regarding to water-soluble species are probably due to the particle size. However, both sites are influenced by highways, which, at first glance, is the highest anthropogenic input. In the conference, we will provide more data related to chemical characterization as well as the enrichment factor (EF) and principal component analysis (PCA), to better understand the source apportionment.

  13. ATR-FTIR characterization of organic functional groups and inorganic ions in ambient aerosols at a rural site

    NASA Astrophysics Data System (ADS)

    Coury, Charity; Dillner, Ann M.

    An Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopic method was used to measure organic functional groups and inorganic ions at Tonto National Monument (TNM), an Interagency Monitoring of Protected Visual Environments (IMPROVE) sampling site in a rural area near Phoenix, Arizona. Functional groups and ions from common aerosol compound classes such as aliphatic and aromatic CH, methylene, methyl, aldehydes/ketones, carboxylic acids, ammonium sulfate and nitrate as well as functional groups from difficult to measure compound classes such as esters/lactones, acid anhydrides, carbohydrate hydroxyl and ethers, amino acids, and amines were quantified. On average, ˜33% of the PM 1.0 mass was composed of organic aerosol. The average (standard deviation) composition of the organic aerosol at TNM was 34% (6%) biogenic functional groups, 21% (5%) oxygenated functional groups, 28% (7%) aliphatic hydrocarbon functional groups (aliphatic CH, methylene and methyl) and 17% (1%) aromatic hydrocarbon functional groups. Compositional analysis, functional group correlations, and back trajectories were used to identify three types of events with source signatures: primary biogenic-influenced, urban-influenced, and regional background. The biogenic-influenced event had high concentrations of amino acids and carbohydrate hydroxyl and ether, as well as aliphatic CH and aromatic CH functional groups and qualitatively high levels of silicate. The urban-influenced events had back trajectories traveling directly from the Phoenix area and high concentrations of hydrocarbons, oxygenated functional groups, and inorganic ions. This aerosol characterization suggests that both primary emissions in Phoenix and secondary formation of aerosols from Phoenix emissions had a major impact on the aerosol composition and concentration at TNM. The regional background source had low concentrations of all functional groups, but had higher concentrations of biogenic functional

  14. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    NASA Astrophysics Data System (ADS)

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  15. Halogen Occultation Experiment (HALOE) optical filter characterization

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1989-01-01

    The Halogen Occultation Experiment (HALOE) is a solar occultation experiment that will fly on the Upper Atmosphere Research Satellite to measure mixing ratio profiles of O3, H2O, NO2, NO, CH4, HCl, and HF. The inversion of the HALOE data will be critically dependent on a detailed knowledge of eight optical filters. A filter characterization program was undertaken to measure in-band transmissions, out-of-band transmissions, in-band transmission shifts with temperature, reflectivities, and age stability. Fourier Transform Infrared Spectrometers were used to perform measurements over the spectral interval 400/cm to 6300/cm (25 micrometers to 1.6 micrometers). Very high precision (0.1 percent T) in-band measurements and very high resolution (0.0001 percent T) out-of-band measurements have been made. The measurements revealed several conventional leaks at 0.01 percent transmission and greatly enhanced (1,000) leaks to the 2-element filters when placed in a Fabry-Perot cavity. Filter throughput changes by 5 percent for a 25 C change in filter temperature.

  16. Using Single-Scattering Albedo Spectral Curvature to Characterize East Asian Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2015-01-01

    Spectral dependence of aerosol single-scattering albedo (SSA) has been used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, by analyzing SSA measured at four wavelengths, 440, 675, 870, and 1020 nm from the Aerosol Robotic Network data set, we find that the SSA spectra over East Asia are frequently peaked at 675 nm. In these cases, we suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Aerosol SSA spectral curvatures for East Asia during fall and winter are considerably larger than those found in places primarily dominated by biomass burning or dust aerosols. SSA curvature is found to increase as the SSA magnitude decreases. The curvature increases with coarse mode fraction (CMF) to a CMF value of about 0.4, then slightly decreases or remains constant at larger CMF. Mie calculations further verify that the strongest SSA curvature occurs at approx. 40% dust fraction, with 10% scattering aerosol fraction. The nonmonotonic SSA spectral dependence is likely associated with enhanced absorption in the shortwave by dust, absorption by black carbon at longer wavelengths, and also the flattened absorption optical depth spectral dependence due to the increased particle size.

  17. MODIS Satellite Data and GOCART Model Characterization of the Global Aerosol

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Chin, Mian; Remer, Lorraine; Tanre, Didier; Lau, William K.-M. (Technical Monitor)

    2003-01-01

    Recently produced daily MODIS aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The aerosol is observed above ocean and land. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere. The MODIS data are compared with the GOCART model and used to estimate the first observation based direct anthropogenic radiative forcing of climate by aerosol.

  18. A three-dimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAM-ARCMIP, April 2009

    NASA Astrophysics Data System (ADS)

    Stone, R. S.; Herber, A.; Vitale, V.; Mazzola, M.; Lupi, A.; Schnell, R. C.; Dutton, E. G.; Liu, P. S. K.; Li, S.-M.; Dethloff, K.; Lampert, A.; Ritter, C.; Stock, M.; Neuber, R.; Maturilli, M.

    2010-07-01

    The Arctic climate is modulated, in part, by atmospheric aerosols that affect the distribution of radiant energy passing through the atmosphere. Aerosols affect the surface-atmosphere radiation balance directly through interactions with solar and terrestrial radiation and indirectly through interactions with cloud particles. Better quantification of the radiative forcing by different types of aerosol is needed to improve predictions of future climate. During April 2009, the airborne campaign Pan-Arctic Measurements and Arctic Regional Climate Model Inter-comparison Project (PAM-ARCMIP) was conducted. The mission was organized by Alfred Wegener Institute for Polar and Marine Research of Germany and utilized their research aircraft, Polar-5. The goal was to obtain a snapshot of surface and atmospheric conditions over the central Arctic prior to the onset of the melt season. Characterizing aerosols was one objective of the campaign. Standard Sun photometric procedures were adopted to quantify aerosol optical depth AOD, providing a three-dimensional view of the aerosol, which was primarily haze from anthropogenic sources. Independent, in situ measurements of particle size distribution and light extinction, derived from airborne lidar, are used to corroborate inferences made using the AOD results. During April 2009, from the European to the Alaskan Arctic, from sub-Arctic latitudes to near the pole, the atmosphere was variably hazy with total column AOD at 500 nm ranging from ˜0.12 to >0.35, values that are anomalously high compared with previous years. The haze, transported primarily from Eurasian industrial regions, was concentrated within and just above the surface-based temperature inversion layer. Extinction, as measured using an onboard lidar system, was also greatest at low levels, where particles tended to be slightly larger than at upper levels. Black carbon (BC) (soot) was observed at all levels sampled, but at moderate to low concentrations compared with

  19. Los Angeles Basin airborne organic aerosol characterization during CalNex

    NASA Astrophysics Data System (ADS)

    Craven, J. S.; Metcalf, A. R.; Bahreini, R.; Middlebrook, A.; Hayes, P. L.; Duong, H. T.; Sorooshian, A.; Jimenez, J. L.; Flagan, R. C.; Seinfeld, J. H.

    2013-10-01

    We report airborne organic aerosol (OA) measurements over Los Angeles carried out in May 2010 as part of the CalNex field campaign. The principal platform for the airborne data reported here was the CIRPAS Twin Otter (TO); airborne data from NOAA WP-3D aircraft and Pasadena CalNex ground-site data acquired during simultaneous TO flybys are also presented. Aerodyne aerosol mass spectrometer measurements constitute the main source of data analyzed. The increase in organic aerosol oxidation from west to east in the basin was sensitive to OA mass loading, with a greater spatial trend in O:C associated with lower mass concentration. Three positive matrix factorization (PMF) components (hydrocarbon-like organic aerosol (HOA), semi-volatile oxidized organic aerosol (SVOOA), and low volatility oxidized organic aerosol (LVOOA)) were resolved for the one flight that exhibited the largest variability in estimated O:C ratio. Comparison of the PMF factors with two optical modes of refractory black carbon (rBC)-containing aerosol revealed that the coating of thinly coated rBC-containing aerosol, dominant in the downtown region, is likely composed of HOA, whereas more thickly coated rBC-containing aerosol, dominant in the Banning pass outflow, is composed of SVOOA and LVOOA. The correlation of water-soluble organic mass to oxidized organic aerosol (OOA) is higher in the outflows than in the basin due to the higher mass fraction of OOA/OA in the outflows. By comparison, the average OA concentration over Mexico City MILAGRO (Megacity Initiative: Local and Global Research Observations) campaign was ˜7 times higher than the airborne average during CalNex.

  20. Dimers and organosulfates derived from biogenic oxidation products in aerosols during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) in California 2007 and 2009 (Invited)

    NASA Astrophysics Data System (ADS)

    Glasius, M.; Worton, D. R.; Kristensen, K.; Nguyen, Q.; Surratt, J.; Enggrob, K. L.; Bouvier-Brown, N. C.; Farmer, D.; Docherty, K. S.; Platt, S.; Bilde, M.; Nøjgaard, J. K.; Seinfeld, J.; Jimenez, J. L.; Goldstein, A.

    2010-12-01

    Oxidation products of biogenic volatile organic compounds, such as monoterpenes and isoprene, contribute to biogenic secondary organic aerosol (BSOA). The organosulfate derivatives of these compounds are formed through heterogeneous reactions involving sulphur compounds, with a considerable contribution from anthropogenic sources. Organosulfate derivatives of biogenic oxidation products thus belong to a new group of anthropogenic enhanced biogenic SOA (ABSOA). The Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) during summers of 2007 and 2009 provided an excellent platform at Blodgett Forest, California (a ponderosa pine plantation) for studying ABSOA. Typically, polluted air masses were transported upslope from the California Central Valley during day, while night conditions were influenced by downslope transport of air masses, low local atmospheric mixing and formation of a shallow boundary layer. We collected particle samples (PM2.5) as one nighttime and two daytime samples per day. After extraction of filters in polar organic solvents (i.e. acetonitrile or methanol), organic aerosol constituents were analyzed by HPLC coupled through an electrospray inlet to a quadrupole time-of-flight mass spectrometer (qTOF-MS). Organosulfates and nitrooxy organosulfates derived from oxidation products of α-pinene, β-pinene, limonene and isoprene were identified based on their molecular mass and MS fragmentation patterns. Measurements by High Resolution Time of Flight Aerosol Mass Spectrometry (HR-ToF-AMS) show high mass loadings of nitrate in the night and morning samples with highest levels of the nitrooxy organosulfates with MW 295 and MW 297. This may indicate that elevated levels of nitrate and nitrooxy organosulfates are formed in the same polluted air mass, probably through nitrate radical reactions. Terpenylic acid, diterpenylic acid acetate, and methylbutane tricarboxylic acid were found at concentrations comparable to pinic acid. A dimer of

  1. Comparison of stratospheric aerosol and gas experiment I (SAGE I) and Umkehr ozone profiles including a search for Umkehr aerosol effects

    SciTech Connect

    Newchurch, M.J.

    1986-01-01

    After briefly reviewing ozone depletion predictions from atmospheric models and results from trend analysis of Umkehr data, this paper outlines the Umkehr method for deducing the vertical profile of ozone and reviews the theoretical and empirical studies of the aerosol effect on Umkehr measurements. A brief description of the Stratospheric Aerosol and Gas Experiment I (SAGE I) is followed by a method for approximating the best representation of the conditions over the Umkehr ground site as seen by the SAGE I satellite. Using a spatially weighted average of SAGE I events derived from an autocorrelation analysis, the authors find 337 co-located SAGE I and Umkehr events. The approximate total column ozone measured by SAGE I is 5% higher than that measured by Umkehr on average. Most of this difference resides in Umkehr layer two, three, and four, while layers seven, eight, and nine contain small differences in average ozone content. Intercomparison with four other ozone studies indicates agreement between SAGE I and SBUV in most layers and at most Umkehr stations north of 30/sup 0/. However, significant differences in Umkehr layer eight between SAGE I and SBUV remain. Ozone differences between SAGE I and Umkehr are strong functions of both total column ozone and season in the lower layers but not in the upper layers.

  2. Characterization of biological aerosol exposure risks from automobile air conditioning system.

    PubMed

    Li, Jing; Li, Mingzhen; Shen, Fangxia; Zou, Zhuanglei; Yao, Maosheng; Wu, Chang-yu

    2013-09-17

    Although use of automobile air conditioning (AC) was shown to reduce in-vehicle particle levels, the characterization of its microbial aerosol exposure risks is lacking. Here, both AC and engine filter dust samples were collected from 30 automobiles in four different geographical locations in China. Biological contents (bacteria, fungi, and endotoxin) were studied using culturing, high-throughput gene sequence, and Limulus amebocyte lysate (LAL) methods. In-vehicle viable bioaerosol concentrations were directly monitored using an ultraviolet aerodynamic particle sizer (UVAPS) before and after use of AC for 5, 10, and 15 min. Regardless of locations, the vehicle AC filter dusts were found to be laden with high levels of bacteria (up to 26,150 CFU/mg), fungi (up to 1287 CFU/mg), and endotoxin (up to 5527 EU/mg). More than 400 unique bacterial species, including human opportunistic pathogens, were detected in the filter dusts. In addition, allergenic fungal species were also found abundant. Surprisingly, unexpected fluorescent peaks around 2.5 μm were observed during the first 5 min use of AC, which was attributed to the reaerosolization of those filter-borne microbial agents. The information obtained here can assist in minimizing or preventing the respiratory allergy or infection risk from the use of automobile AC system.

  3. Characterization of indoor aerosol temporal variations for the real-time management of indoor air quality

    NASA Astrophysics Data System (ADS)

    Ciuzas, Darius; Prasauskas, Tadas; Krugly, Edvinas; Sidaraviciute, Ruta; Jurelionis, Andrius; Seduikyte, Lina; Kauneliene, Violeta; Wierzbicka, Aneta; Martuzevicius, Dainius

    2015-10-01

    The study presents the characterization of dynamic patterns of indoor particulate matter (PM) during various pollution episodes for real-time IAQ management. The variation of PM concentrations was assessed for 20 indoor activities, including cooking related sources, other thermal sources, personal care and household products. The pollution episodes were modelled in full-scale test chamber representing a standard usual living room with the forced ventilation of 0.5 h-1. In most of the pollution episodes, the maximum concentration of particles in exhaust air was reached within a few minutes. The most rapid increase in particle concentration was during thermal source episodes such as candle, cigarette, incense stick burning and cooking related sources, while the slowest decay of concentrations was associated with sources, emitting ultrafine particle precursors, such as furniture polisher spraying, floor wet mopping with detergent etc. Placement of the particle sensors in the ventilation exhaust vs. in the centre of the ceiling yielded comparable results for both measured maximum concentrations and temporal variations, indicating that both locations were suitable for the placement of sensors for the management of IAQ. The obtained data provides information that may be utilized considering measurements of aerosol particles as indicators for the real-time management of IAQ.

  4. Airborne Fungi in Sahara Dust Aerosols Reaching the Eastern Caribbean: I. Taxonomic Characterization by Morphological Features

    NASA Astrophysics Data System (ADS)

    Rivera-Denizard, O.; Betancourt, C.; Armstrong, R. A.; Detres, Y.

    2003-12-01

    A wide variety of microorganisms are dispersed into the Caribbean region due to the input of Saharan dust aerosols during the summer months. These microorganisms can cause diseases in plants and animals, and might be responsible for an increase incidence of asthma and respiratory diseases in this region. A PM 2.5 air sampling station was installed in Castle Bruce, Dominica from March through July of 2002. Fourteen filters were obtained by running the air sampler continuously for 24 hour periods. The samples were collected in sterile Teflon filters (47 mm in diameter, 0.2 um pore size), inoculated in Malt Extract Agar (MEA) with lactic acid and incubated at 29° C. Colonies were counted, isolated and cultured on separate Petri dishes. Fungal classification to the genus level used macroscopic features and microscopic evaluation. The Nomarski light microscopy technique was used for identification of reproductive structures. A total of 105 colonies were isolated. Six genera including Aspergillus, Penicillium, Cladosporium, Fusarium, Curvularia,and Nigrospora were identified. The protocol for the molecular characterization to species level is presented as the second part of this work.

  5. Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-06-01

    Particulate pollutant exchanges between the streets and the Planetary Boundary Layer (PBL), and their daily evolution linked to human activity were studied in the framework of the LIdar pour la Surveillance de l'AIR (LISAIR) experiment. This program lasted from 10 to 30 May 2005. A synergetic approach combining dedicated active (lidar) and passive (sunphotometer) remote sensors as well as ground based in situ instrumentation (nephelometer, aethalometer and particle sizers) was used to investigate urban aerosol optical properties within Paris. Aerosol complex refractive indices were assessed to be 1.56-0.034 i at 355 nm and 1.59-0.040 i at 532 nm, thus leading to single-scattering albedo values between 0.80 and 0.88. These retrievals are consistent with soot components in the aerosol arising from traffic exhausts indicating that these pollutants have a radiative impact on climate. We also discussed the influence of relative humidity on aerosol properties. A good agreement was found between vertical extinction profile derived from lidar backscattering signal and retrieved from the coupling between radiosounding and ground in situ measurements.

  6. Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-01-01

    Particulate pollutant exchanges between the streets and the Planetary Boundary Layer (PBL), and their daily evolution linked to human activity were studied in the framework of the LIdar pour la Surveillance de l'AIR (LISAIR) experiment. This program lasted from 10 to 30 May 2005. A synergetic approach combining dedicated active (lidar) and passive (sunphotometer) remote sensors as well as ground based in situ instrumentation (nephelometer, aethalometer and particle sizers) was used to investigate urban aerosol optical properties within Paris. Aerosol complex refractive indices were assessed to be 1.56-0.034i at 355 nm and 1.59-0.040i at 532 nm, thus leading to single-scattering albedo values between 0.80 and 0.88. These retrievals are consistent with soot components in the aerosol arising from traffic exhausts indicating that these pollutants have a radiative impact on climate. We also discussed the influence of relative humidity on aerosol properties. A good agreement was found between vertical extinction profile derived from lidar backscattering signal and retrieved from the coupling between radiosounding and ground in situ measurements.

  7. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; McKinney, K.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Brito, J.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Alexander, M. L.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-10-01

    large variations in its detailed molecular composition. The low fC5H6O (< 3 ‰) reported in non-IEPOX-derived isoprene-SOA from chamber studies indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a triangle plot of fCO2 vs. fC5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2, if the fC5H6O of the local IEPOX-SOA is not available. When only unit mass-resolution data are available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.

  8. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGES

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; ...

    2015-10-23

    to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3 ‰) reported in non-IEPOX-derived isoprene-SOA from chamber studies indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a triangle plot of fCO2 vs. fC5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2, if the fC5H6O of the local IEPOX-SOA is not available. When only unit mass-resolution data are available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.« less

  9. Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia and Look Rock, Tennessee

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Baumann, K.; Edgerton, E. S.; Bairai, S. T.; Mueller, S.; Shaw, S. L.; Knipping, E. M.; Gold, A.; Surratt, J. D.

    2015-08-01

    A yearlong near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia) and rural (Look Rock, Tennessee) site in the southeastern US using the Aerodyne aerosol chemical speciation monitor (ACSM) collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA) and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region. The highest concentrations of NR-PM1 were observed during winter and fall seasons at the urban site and during spring and summer at the rural site. Across all seasons and at both sites, NR-PM1 was composed largely of OA (50-76 %) and inorganic sulfate (12-31 %). Six distinct OA sources were resolved by positive matrix factorization applied to the ACSM organic mass spectral data collected from the two sites over the one year of near-continuous measurements at each site: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), semi-volatile oxygenated OA (SV-OOA), low-volatility oxygenated OA (OOA), isoprene-derived epoxydiol (IEPOX) OA (IEPOX-OA), and 91Fac OA (a factor dominated by a distinct ion at m/z 91 fragment ion previously observed in biogenic influenced areas). LV-OOA was observed throughout the year at both sites and contributed 30-66 % of total OA mass. HOA was also observed during the entire year only at the urban site (15-24 % of OA mass). BBOA (15-33 % of OA mass) was observed during winter and fall, likely dominated by local residential wood burning emission. Although SV-OOA contributes quite significantly (∼ 27 %), it was observed only at the urban site during colder seasons. IEPOX-OA was a major component (27-41 %) of OA at both sites, particularly in spring and summer. An ion fragment at m/z 75 is proposed as an additional marker for IEPOX-OA, as it is shown to correlate well with the m/z 82 ion shown to be associated with the aerosol mass spectrum of

  10. Airborne in situ characterization of dry urban aerosol optical properties around complex topography

    NASA Astrophysics Data System (ADS)

    Targino, Admir Créso; Noone, Kevin J.

    2006-02-01

    In situ data from the 1997 Southern California Ozone Study—NARSTO were used to describe the aerosol optical properties in an urban area whose aerosol distribution is modified as the aerosols are advected over the surrounding topography. The data consist of measurements made with a nephelometer and absorption photometer onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Pelican aircraft. The cases investigated in this study include vertical profiles flown over coastal sites as well as sites located along some important mountain ranges in southern California. The vertical distribution of the aerosol in the Los Angeles Basin showed a complex configuration, directly related with the local meteorological circulations and the surrounding topography. High spatial and temporal variability in air pollutant concentrations within a relatively small area was found, as indicated by the aerosol scattering and absorption coefficient data. The results suggest that in areas with such complex terrain, a high spatial resolution is required in order to adequately describe the aerosol optical quantities. Principal components analysis (PCA) has been applied to aerosol chemical samples in order to identify the major aerosol types in the Los Angeles Basin. The technique yielded four components that accounted for 78% of the variance in the data set. These were indicative of marine aerosols, urban aerosols, trace elements and secondary aerosol components of traffic emissions and agricultural activities. A Monte Carlo radiation transfer model has been employed to simulate the effects that different aerosol vertical profiles have on the attenuation of solar energy. The cases examined were selected using the results of the PCA and in situ data were used to describe the atmospheric optical properties in the model. These investigations comprise a number of sensitivity tests to evaluate the effects on the results of the location of the aerosol layers as well as

  11. Characterization of the Source Physics Experiment Site

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Schultz-Fellenz, E. S.; Broome, S. T.; Townsend, M.; Abbott, R. E.; Snelson, C. M.; Cogbill, A. H.; Conklin, G.; Mitra, G.; Sabbeth, L.

    2012-12-01

    Designed to improve long-range treaty monitoring capabilities, the Source Physics Experiments, conducted at the Nevada National Security Site, also provide an opportunity to advance near-field monitoring and field-based investigations of suspected underground test locations. In particular, features associated with underground testing can be evaluated using Source Physics Experiment activities as analogs, linking on-site inspections with remote sensing technologies. Following a calibration shot (SPE 1), SPE 2 (10/2011) and SPE 3 (07/2012) were performed in the same emplacement hole with 1.0 ton of explosives at 150 ft depth. Because one of the goals of the Source Physics Experiments is to determine damage effects on seismic wave propagation and improve modeling capabilities, a key component in the predictive component and ultimate validation of the models is a full understanding of the intervening geology between the source and instrumented bore holes. Ground-based LIDAR and fracture mapping, mechanical properties determined via laboratory testing of rock core, discontinuity analysis and optical microscopy of the core rocks were performed prior to and following each experiment. In addition, gravity and magnetic data were collected between SPE 2 and 3. The source region of the explosions was also characterized using cross-borehole seismic tomography and vertical seismic profiling utilizing two sets of two boreholes within 40 meters of ground zero. The two sets of boreholes are co-linear with the explosives hole in two directions. Results of the LIDAR collects from both SPE 2 and 3 indicate a permanent ground displacement of up to several centimeters aligning along the projected surface traces of two faults observed in the core and fractures mapped at the surface. Laboratory testing and optical work show a difference in the characteristics of the rocks below and above 40 feet and within the fault zones.The estimated near-surface densities from the gravity survey show

  12. Airborne High Spectral Resolution Lidar Measurements of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Ferrare, R.; Hostetler, C.; Hair, J.; Cook, A.; Harper, D.; Kleinman, L.; Clarke, A.; Russell, P.; Redemann, J.; Livingston, J.; Szykman, J.; Al-Saadi, J.

    2007-05-01

    NASA Langley Research Center (LaRC) recently developed an airborne High Spectral Resolution Lidar (HSRL) to measure aerosol distributions and optical properties. The HSRL technique takes advantage of the spectral distribution of the lidar return signal to discriminate aerosol and molecular signals and thereby measure aerosol extinction and backscatter independently. The LaRC instrument employs the HSRL technique to measure aerosol backscatter and extinction profiles at 532 nm and the standard backscatter lidar technique to measure aerosol backscatter profiles at 1064 nm. Depolarization profiles are measured at both wavelengths. Since March 2006, the airborne HSRL has acquired over 215 flight hours of data deployed on the NASA King Air B200 aircraft during several field experiments. Most of the flights were conducted during two major field experiments. The first major experiment was the joint Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX B) experiment that was conducted during March 2006 to investigate the evolution and transport of pollution from Mexico City. The second major experiment was the Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) that was conducted during August and September 2006 to investigate climate and air quality in the Houston/Gulf of Mexico region. Several flights were also conducted to help validate the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) lidar on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) satellite. In February 2007, several flights were carried out as part of an Environmental Protection Agency (EPA) experiment to assess air quality in central California. Airborne HSRL data acquired during these missions were used to quantify aerosol extinction and optical thickness contributed by various aerosol types

  13. Chemical Aerosol Characterization Sampling in Santa Ana during the MCMA-2003 Field Campaign

    NASA Astrophysics Data System (ADS)

    Bernabe, R.; Castro, T.; Marquez, C.; Cardenas, B.; Salcedo, D.

    2004-12-01

    Aerosol samples were collected during the intensive MCMA-2003 campaign in Santa Ana (19.1772° N, 98.99° W), Mexico City. This small rural town lies near the southeastern border of Mexico City and on the western rim of a mountain pass that channels the southern outflow of air from the city. Particles smaller than 10 μ m in aerodynamic diameter were collected on aluminum foils using three 8-stage micro orifice uniform deposit impactor (MOUDI), while fine particles (PM2.5) were collected in quartz fiber filters using manual samplers (MiniVol air samplers, Airmetrics). Samples were taken every 3 days starting at 2am in 6 hr intervals (total time 18 hrs for MOUDI and 24 hrs for MiniVol) from April 10-22, 2003. The MOUDI was operated at a flow rate of 30 l/min with calibrated impaction cut-points in the range of 10 - 0.18 μ m; while the MiniVol operation flow rate was 5 l/min. Prior to sampling, the aluminum foils were pre-conditioned (at 450° C) in a furnace for 8 hrs to eliminate impurities. Both types of filters were weighted using an Ultra Microbalance (Cahn, with a sensitivity of 0.1 μ g) for particulate matter under controlled conditions (20° C and 50% relative humidity). The aluminum foils were cut in halves, one half for Total Carbon (TC) determination with a thermal method, Evolved Gas Analysis (EGA), and the other half for analysis of inorganic ions (Cl-, NO3, SO42-, NA+, NH4+, K+, Ca2+ and Mg+) by liquid chromatography and mass spectrometer analytic method. Organic and elemental carbon was done according to the IMPROVE Thermal Protocol. Aerosol measurements made with MOUDI showed that the particle size distribution was bimodal in the three sampling periods. During daylight periods, 75% of the collected samples consisted of particles with aerodynamic diameter < 1 μ m whereas the major mass concentration was dominated by particles > 1 μ m during night. PM2.5 results reveal that the highest and lowest levels were obtained during the afternoon (60.6 μ g

  14. Study of the spread of aerosol pollutants spreading with lidar and computer experiments

    NASA Astrophysics Data System (ADS)

    Pershin, Serguei M.; Butusov, Oleg B.

    1996-03-01

    The possibility of combined utilization of computer modeling and a compact aerosol backscatter lidar in an ecomonitoring system has been studied. The special statistical trajectory model that accounts for the effects of interactions between air flows and city buildings was created. The model is handy for its parameterization by lidar sounding data. For simulation of interactions between aerosol currents and buildings or other obstacles special forms of averaged wind velocity approximations were used. The model had been tuned by means of both literature and lidar data on aerosol plume dispersion over buildings and other obstacles. The method may be applied to the city ecomonitoring systems or to the regional ecomonitoring of complex terrains. The model is useful for calculations of year averaged aerosol pollution zone configurations. The development was utilized for ecological investigations in the Perovskii district of Moscow and around Karabash copper smelter in South Ural, Russia).

  15. Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system.

    PubMed

    Afshari, Aliakbar; Zeidler-Erdely, Patti C; McKinney, Walter; Chen, Bean T; Jackson, Mark; Schwegler-Berry, Diane; Friend, Sherri; Cumpston, Amy; Cumpston, Jared L; Leonard, H Donny; Meighan, Terence G; Frazer, David G; Antonini, James M

    2014-10-01

    Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes.

  16. Particle Morphology and Size Results from the Smoke Aerosol Measurement Experiment-2

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Greenberg, Paul S.; Fischer, David; Meyer, Marit; Mulholland, George; Yuan, Zeng-Guang; Bryg, Victoria; Cleary, Thomas; Yang, Jiann

    2012-01-01

    Results are presented from the Reflight of the Smoke Aerosol Measurement Experiment (SAME-2) which was conducted during Expedition 24 (July-September 2010). The reflight experiment built upon the results of the original flight during Expedition 15 by adding diagnostic measurements and expanding the test matrix. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. The air flow past the sample during the heating period ranged from quiescent to 8 cm/s. The smoke was initially collected in an aging chamber to simulate the transport time from the smoke source to the detector. This effective transport time was varied by holding the smoke in the aging chamber for times ranging from 11 to 1800 s. Smoke particle samples were collected on Transmission Electron Microscope (TEM) grids for post-flight analysis. The TEM grids were analyzed to observe the particle morphology and size parameters. The diagnostics included a prototype two-moment smoke detector and three different measures of moments of the particle size distribution. These moment diagnostics were used to determine the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment). These statistics were combined to determine the diameter of average mass and the count mean diameter and, by assuming a log-normal distribution, the geometric mean diameter and the geometric standard deviations can also be calculated. Overall the majority of the average smoke particle sizes were found to be in the 200 nm to 400 nm range with the quiescent cases producing some cases with substantially larger particles.

  17. Experience of direct impactor measurements of the structure and composition of stratospheric aerosols in polar latitudes

    NASA Astrophysics Data System (ADS)

    Kondratyev, K. Y.; Ivlev, Leo S.; Ivanov, V. A.; Zhukov, V. M.

    1993-11-01

    The data obtained in 1989 during the launchings to the stratosphere of a two-cascade impactor from the test ground in Apatity have been discussed. The aerosol samples have been analyzed using an electronic microscope to have information on the structure and size distribution of aerosol particles. The chemical and elemental analyses have been made using the methods of mass-spectrometry, IR spectroscopy, neutron activation, and x-ray fluorescence.

  18. LASE measurements of water vapor and aerosol profiles during the Plains Elevated Convection at Night (PECAN) field experiment

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Ferrare, R. A.; Kooi, S. A.; Butler, C. F.; Notari, A.; Hair, J. W.; Collins, J. E., Jr.; Ismail, S.

    2015-12-01

    The Lidar Atmospheric Sensing Experiment (LASE) system was deployed on the NASA DC-8 aircraft during the Plains Elevated Convection At Night (PECAN) field experiment, which was conducted during June-July 2015 over the central and southern plains. LASE is an active remote sensor that employs the differential absorption lidar (DIAL) technique to measure range resolved profiles of water vapor and aerosols above and below the aircraft. The DC-8 conducted nine local science flights from June 30- July 14 where LASE sampled water vapor and aerosol fields in support of the PECAN primary science objectives relating to better understanding nocturnal Mesoscale Convective Systems (MCSs), Convective Initiation (CI), the Low Level Jet (LLJ), bores, and to compare different airborne and ground based measurements. LASE observed large spatial and temporal variability in water vapor and aerosol distributions in advance of nocturnal MCSs, across bores resulting from MCS outflow boundaries, and across the LLJ associated with the development of MCSs and CI. An overview of the LASE data collected during the PECAN field experiment will be presented where emphasis will be placed on variability of water vapor profiles in the vicinity of severe storms and intense convection in the central and southern plains. Preliminary comparisons show good agreement between coincident LASE and radiosonde water vapor profiles. In addition, an advanced water vapor DIAL system being developed at NASA Langley will be discussed.

  19. The Joint Aerosol-Monsoon Experiment (JAMEX): A Core Element for the Asian Monsoon Year (2008-2009)

    NASA Technical Reports Server (NTRS)

    Lau, William K.M.

    2007-01-01

    The objective of the Joint Aerosol-Monsoon Experiment (JAMEX) is to unravel the physical mechanisms and multi-scale interactions associated with aerosol-monsoon water cycle in the Asian Indo-Pacific region towards improved prediction of rainfall in land regions of the Asian monsoon. JAMEX will be planned as a five-year (2007-201 1) multi-national aerosol-monsoon research project, aimed at promoting collaboration, partnership and alignment of ongoing and planned national and international programs. Two coordinated special observing periods (SOP), covering the pre-monsoon (April-May) and the monsoon (June-August) periods is tentatively targeted for 2008 and 2009. The major work on validation and reference site coordination will take place in 2007 through the spring of 2008. A major science workshop is planned after SOP-I1 in 2010. Modeling and satellite data utilization studies will continue throughout the entire period to help in design of the observation arrays and measurement platforms for SOPS. The tentative time schedule, including milestones and research activities is shown in Fig. 1. One of the unique aspects of JAMEX is that it stems from grass-root scientific and societal imperatives, and it bridges a gap in existing national and international research programs. Currently we have identified 10 major national and international projects/programs separately for aerosols and monsoon research planned in the next five years in China, India, Japan, Italy, and the US, that could be potential contributors or partners with JAMEX. These include the Asian-Indo- Pacific Ocean (AIPO) Project and Aerosol Research Project from China, Monsoon Asian Hydro- Atmospheric Science Research and predication Initiative (MAHASRI) from Japan, Continental Tropical Convergence Zone (CTCZ) and Severe Thunderstorm: Observations and Regional Modeling (STORM) from India, Share-Asia from Italy, Atmospheric Brown Cloud (ABC), Pacific Aerosol-Cloud-Dust Experiment (PACDEX), East Asia Study of

  20. The Joint Aerosol-Monsoon Experiment (JAMEX): A Core Element for the Asian Monsoon Year (2008-2009)

    NASA Technical Reports Server (NTRS)

    Lau, WIlliam K. M.

    2007-01-01

    The objective of the Joint Aerosol-Monsoon Experiment (JAMEX) is to unravel the physical mechanisms and multi-scale interactions associated with aerosol-monsoon water cycle in the Asian Indo-Paczj?c region towards improved prediction of rainfall in land regions of the Asian monsoon. JAMEX will be planned as a five-year (2007-201 1) multi-national aerosol-monsoon research project, aimed at promoting collaboration, partnership and alignment of ongoing and planned national and international programs. Two coordinated special observing periods (SOP), covering the pre-monsoon (April-May) and the monsoon (June-August) periods is tentatively targeted for 2008 and 2009. The major work on validation and reference site coordination will take place in 2007 through the spring of 2008. A major science workshop is planned after SOP-I1 in 2010. Modeling and satellite data utilization studies will continue throughout the entire period to help in design of the observation arrays and measurement platforms for SOPS. The tentative time schedule, including milestones and research activities is shown in Fig. 1. One of the unique aspects of JAMEX is that it stems from grass-root scientific and societal imperatives, and it bridges a gap in existing national and international research programs. Currently we have identified 10 major national and international projects/programs separately for aerosols and monsoon research planned in the next five years in China, India, Japan, Italy, and the US, that could be potential contributors or partners with JAMEX. These include the Asian-Indo- Pacific Ocean (AIPO) Project and Aerosol Research Project from China, Monsoon Asian Hydro- Atmospheric Science Research and predication Initiative (MAHASRI) from Japan, Continental Tropical Convergence Zone (CTCZ) and Severe Thunderstorm: Observations and Regional Modeling (STORM) from India, Share-Asia from Italy, Atmospheric Brown Cloud (ABC), Pacific Aerosol-Cloud-Dust Experiment (PACDEX), East Asia Study of

  1. Urban aerosol in Oporto, Portugal: Chemical characterization of PM10 and PM2.5

    NASA Astrophysics Data System (ADS)

    Custódio, Danilo; Ferreira, Catarina; Alves, Célia; Duarte, Mácio; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Frosini, Daniele; Colombi, Cristina; Gianelle, Vorne; Karanasiou, Angeliki; Querol, Xavier

    2014-05-01

    Several urban and industrial areas in Southern Europe are not capable of meeting the implemented EU standards for particulate matter. Efficient air quality management is required in order to ensure that the legal limits are not exceeded and that the consequences of poor air quality are controlled and minimized. Many aspects of the direct and indirect effects of suspended particulate matter on climate and public health are not well understood. The temporal variation of the chemical composition is still demanded, since it enables to adopt off-set strategies and to better estimate the magnitude of anthropogenic forcing on climate. This study aims to provide detailed information on concentrations and chemical composition of aerosol from Oporto city, an urban center in Southern Europe. This city is located near the coast line in the North of Portugal, being the country's second largest urban area. Moreover, Oporto city economic prospects depend heavily on a diversified industrial park, which contribute to air quality degradation. Another strong source of air pollution is traffic. The main objectives of this study are: 1) to characterize the chemical composition of PM10 and PM2.5 by setting up an orchestra of aerosol sampling devices in a strategic place in Oporto; 2) to identify the sources of particles exploring parameters such as organic and inorganic markers (e.g. sugars as tracers for biomass burning; metals and elemental carbon for industrial and vehicular emissions); 3) to evaluate long range transport of pollutants using back trajectory analysis. Here we present data obtained between January 2013 and January 2014 in a heavy traffic roadside sampling site located in the city center. Different PM10 and PM2.5 samplers were operated simultaneously in order to collect enough mass on different filter matrixes and to fulfill the requirements of analytical methodologies. More than 100 aerosol samples were collected and then analysed for their mass concentration and

  2. Characterization of secondary organic aerosol generated from ozonolysis of α-pinene mixtures

    NASA Astrophysics Data System (ADS)

    Amin, Hardik S.; Hatfield, Meagan L.; Huff Hartz, Kara E.

    2013-03-01

    In the atmosphere, multiple volatile organic compounds (VOCs) co-exist, and they can be oxidized concurrently and generate secondary organic aerosol (SOA). In this work, SOA is formed by the oxidation (in presence of excess ozone) of mixtures containing α-pinene and other VOCs. The VOC mixtures were made so their composition approached a commercially-available α-pinene-based essential oil, Siberian fir needle oil. The SOA products were sampled using filters, solvent extracted and analyzed by gas chromatography/mass spectrometry with trimethylsilyl derivatization. The individual product yields for SOA generated from α-pinene changed upon the addition of other VOCs. An increase in concentration of non-reactive VOCs (bornyl acetate, camphene, and borneol) lead to a decrease in individual product yields of characteristic α-pinene SOA products. Although these experiments were carried out under higher VOC and ozone concentrations in comparison to the atmosphere, this work suggests that the role of non-reactive VOCs should be explored in SOA products formation.

  3. Laboratory Experiments and Modeling for Interpreting Field Studies of Secondary Organic Aerosol Formation Using an Oxidation Flow Reactor

    SciTech Connect

    Jimenez, Jose-Luis

    2016-02-01

    This grant was originally funded for deployment of a suite of aerosol instrumentation by our group in collaboration with other research groups and DOE/ARM to the Ganges Valley in India (GVAX) to study aerosols sources and processing. Much of the first year of this grant was focused on preparations for GVAX. That campaign was cancelled due to political reasons and with the consultation with our program manager, the research of this grant was refocused to study the applications of oxidation flow reactors (OFRs) for investigating secondary organic aerosol (SOA) formation and organic aerosol (OA) processing in the field and laboratory through a series of laboratory and modeling studies. We developed a gas-phase photochemical model of an OFR which was used to 1) explore the sensitivities of key output variables (e.g., OH exposure, O3, HO2/OH) to controlling factors (e.g., water vapor, external reactivity, UV irradiation), 2) develop simplified OH exposure estimation equations, 3) investigate under what conditions non-OH chemistry may be important, and 4) help guide design of future experiments to avoid conditions with undesired chemistry for a wide range of conditions applicable to the ambient, laboratory, and source studies. Uncertainties in the model were quantified and modeled OH exposure was compared to tracer decay measurements of OH exposure in the lab and field. Laboratory studies using OFRs were conducted to explore aerosol yields and composition from anthropogenic and biogenic VOC as well as crude oil evaporates. Various aspects of the modeling and laboratory results and tools were applied to interpretation of ambient and source measurements using OFR. Additionally, novel measurement methods were used to study gas/particle partitioning. The research conducted was highly successful and details of the key results are summarized in this report through narrative text, figures, and a complete list of publications acknowledging this grant.

  4. Characterization and sources assignation of PM2.5 organic aerosol in a rural area of Spain

    NASA Astrophysics Data System (ADS)

    Pindado, Oscar; Pérez, Rosa M. a.; García, Susana; Sánchez, Miguel; Galán, Pilar; Fernández, Marta

    The results from a year-long study of the organic composition of PM2.5 aerosol collected in a rural area influenced by a highway of Spain are reported. The lack of prior information related to the organic composition of PM2.5 aerosol in Spain, concretely in rural areas, led definition of the goals of this study. As a result, this work has been able to characterize the main organic components of atmospheric aerosols, including several compounds of SOA, and has conducted a multivariate analysis in order to assign sources of particulate matter. A total of 89 samples were taken between April 2004 and April 2005 using a high-volume sampler. Features and abundance of n-alkanes, polycyclic aromatic hydrocarbons (PAHs), alcohols and acids were separately determined using gas chromatography/mass spectrometry and high performance liquid chromatography analysis. The Σ n-alkane and ΣPAHs ranged from 3 to 81 ng m -3 and 0.1 to 6 ng m -3 respectively, with higher concentrations during colder months. Ambient concentrations of Σalcohols and Σacids ranged from 21 to 184 ng m -3 and 39 to 733 ng m -3, respectively. Also, several components of secondary organic aerosol have been quantified, confirming the biogenic contribution to ambient aerosol. In addition, factor analysis was used to reveal origin of organic compounds associated to particulate matter. Eight factors were extracted accounting more than 83% of the variability in the original data. These factors were assigned to a typical high pollution episode by anthropogenic particles, crustal material, plant waxes, fossil fuel combustion, temperature, microbiological emissions, SOA and dispersion of pollutants by wind action. Finally, a cluster analysis was used to compare the organic composition between the four seasons.

  5. Characterization of submicron aerosols influenced by biomass burning at a site in the Sichuan Basin, southwestern China

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Hu, Min; Hu, Wei-Wei; Niu, Hongya; Zheng, Jing; Wu, Yusheng; Chen, Wentai; Chen, Chen; Li, Lingyu; Shao, Min; Xie, Shaodong; Zhang, Yuanhang

    2016-10-01

    Severe air pollution in Asia is often the consequence of a combination of large anthropogenic emissions and adverse synoptic conditions. However, limited studies on aerosols have been conducted under high emission intensity and under unique geographical and meteorological conditions. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) and other state-of-the-art instruments were utilized at a suburban site, Ziyang, in the Sichuan Basin during December 2012 to January 2013. The chemical compositions of atmospheric submicron aerosols (PM1) were determined, the sources of organic aerosols (OA) were apportioned, and the aerosol secondary formation and aging process were explored as well. Due to high humidity and static air, PM1 maintained a relatively stable level during the whole campaign, with the mean concentration of 59.7 ± 24.1 µg m-3. OA was the most abundant component (36 %) in PM1, characterized by a relatively high oxidation state. Positive matrix factorization analysis was applied to the high-resolution organic mass spectral matrix, which deconvolved OA mass spectra into four factors: low-volatility (LV-OOA) and semivolatile oxygenated OA (SV-OOA), biomass burning (BBOA) and hydrocarbon-like OA (HOA). OOA (sum of LV-OOA and SV-OOA) dominated OA as high as 71 %. In total, secondary inorganic and organic formation contributed 76 % of PM1. Secondary inorganic species correlated well (Pearson r = 0.415-0.555, p < 0.01) with relative humidity (RH), suggesting the humid air can favor the formation of secondary inorganic aerosols. As the photochemical age of OA increased with higher oxidation state, secondary organic aerosol formation contributed more to OA. The slope of OOA against Ox( = O3+NO2) steepened with the increase of RH, implying that, besides the photochemical transformation, the aqueous-phase oxidation was also an important pathway of the OOA formation. Primary emissions, especially biomass burning, resulted

  6. Characterization of the Aerosol-based Synthesis of Uranium Particles as a Potential Reference Material for Micro Analytical Methods.

    PubMed

    Middendorp, Ronald; Dürr, Martin; Knott, Alexander; Pointurier, Fabien; Ferreira Sanchez, Dario; Samson, Valerie Ann; Grolimund, Daniel

    2017-03-27

    A process for production of micrometer-sized particles composed of uranium oxide using aerosol spray pyrolysis is characterized with respect to the various production parameters. The aerosol is generated using a vibrating orifice aerosol generator providing monodisperse droplets, which are oxidized in a subsequent heat treatment. The final particles are characterized with micro analytical methods to determine size, shape, internal morphology, chemical and structural properties in order to assess the suitability of the produced particles as a reference material for micro analytical methods, in particular for mass-spectrometry. It is demonstrated that physico-chemical processes during particle formation and the heat treatment to chemically transform particles into an oxide strongly influence the particle shape and the internal morphology. Synchrotron μ-X-ray based techniques combined with μ-Raman spectroscopy have been applied to demonstrate that the obtained micro particles consist of a triuranium octoxide phase. Our studies demonstrate that the process is capable of delivering spherical particles with determined uniform size and ele-mental as well as chemical composition. The particles therefore represent a suitable base material to fulfill the homogeneity and stability requirements of a reference material for micro analytical methods applied in, for example, international safeguards or nuclear forensics.

  7. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  8. Characterizing Aerosols over Southeast Asia using the AERONET Data Synergy Tool

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Slutsker, Ilya; Slutsker, Ilya; Welton, Ellsworth, J.; Chin, Mian; Kucsera, Thomas; Schmaltz, Jeffery E.; Diehl, Thomas; Singh, Ramesh P.; Boonjawat, Jariya; Snidvongs, Arond; Le, Huy V.

    2007-01-01

    Biomass burning, urban pollution and dust aerosols have significant impacts on the radiative forcing of the atmosphere over Asia. In order to better quanti@ these aerosol characteristics, the Aerosol Robotic Network (AERONET) has established over 200 sites worldwide with an emphasis in recent years on the Asian continent - specifically Southeast Asia. A total of approximately 15 AERONET sun photometer instruments have been deployed to China, India, Pakistan, Thailand, and Vietnam. Sun photometer spectral aerosol optical depth measurements as well as microphysical and optical aerosol retrievals over Southeast Asia will be analyzed and discussed with supporting ground-based instrument, satellite, and model data sets, which are freely available via the AERONET Data Synergy tool at the AERONET web site (http://aeronet.gsfc.nasa.gov). This web-based data tool provides access to groundbased (AERONET and MPLNET), satellite (MODIS, SeaWiFS, TOMS, and OMI) and model (GOCART and back trajectory analyses) databases via one web portal. Future development of the AERONET Data Synergy Tool will include the expansion of current data sets as well as the implementation of other Earth Science data sets pertinent to advancing aerosol research.

  9. Organic Composition of Size-Segregated Aerosols Sampled During the 2002 Bay Regional Atmospheric Chemistry Experiment (BRACE), Florida, USA

    NASA Astrophysics Data System (ADS)

    Tremblay, R. T.; Zika, R. G.

    2003-04-01

    Aerosol samples were collected for the analysis of organic source markers using non-rotating Micro Orifice Uniform Deposit Impactors (MOUDI) as part of the Bay Regional Atmospheric Chemistry Experiment (BRACE) in Tampa, FL, USA. Daily samples were collected 12 m above ground at a flow rate of 30 lpm throughout the month of May 2002. Aluminum foil discs were used to sample aerosol size fractions with aerodynamic cut diameter of 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.17 and 0.093 um. Samples were solvent extracted using a mixture of dichloromethane/acetone/hexane, concentrated and then analyzed using gas chromatography-mass spectrometry (GC/MS). Low detection limits were achieved using a HP Programmable Temperature Vaporizing inlet (PTV) and large volume injections (80ul). Excellent chromatographic resolution was obtained using a 60 m long RTX-5MS, 0.25 mm I.D. column. A quantification method was built for over 90 organic compounds chosen as source markers including straight/iso/anteiso alkanes and polycyclic aromatic hydrocarbons (PAH). The investigation of potential aerosol sources for different particle sizes using known organic markers and source profiles will be presented. Size distributions of carbon preference indices (CPI), percent wax n-alkanes (%WNA) and concentration of selected compounds will be discussed. Also, results will be compared with samples acquired in different environments including the 1999 Atlanta SuperSite Experiment, GA, USA.

  10. A comparison of the Stratospheric Aerosol and Gas Experiment II tropospheric water vapor to radiosonde measurements

    SciTech Connect

    Larsen, J.C.; Chiou, E.W. ); Chu, W.P.; McCormick, M.P.; McMaster, L.R. ); Oltmans, S. ); Rind, D. )

    1993-03-20

    Upper tropospheric Stratospheric Aerosol and Gas Experiment II (SAGE II) water vapor observations are compared to correlative radiosonde observations and radiosonde based climatologies. The SAGE II 1987 monthly zonal mean water vapor climatology is compared to both the Global Atmospheric Circulation Statistics (1963-1973) climatology and to the 1987 radiosonde climatology. The clear sky SAGE II climatology is found to be approximately half the level of both the clear/cloudy sky radiosonde climatologies. To determine whether this is realistic for these two different climatologies or includes additional observational and instrumental biases, the authors took the 1987 radiosonde data set and identified approximately 800 correlative profile pairs. The observational biases inherent to SAGE II and the radiosondes produce a set of profile pairs characteristic of clear sky, land conditions. A critical review of the radiosonde measurement capability was carried out to establish the operating range and accuracy in the upper troposphere. The authors show that even with tight coincidence criterion, the quality of the profile pair comparisons varies considerably because of strong water vapor variability occurring on small time and space scales. Annual zonal means calculated from the set of profile pairs again finds SAGE II significantly drier in many latitude bands. Resolving the radiosonde data base by hygrometer type shows this to be true for all hygrometers except for the thin film capacitive type (Vaisala Humicap). For this hygrometer, between 4.5 and 6.5 km SAGE II is drier by approximately 25.%, and from 8.5 to 11.5 km they are nearly equivalent when global annual means are compared. The good agreement with the Vaisala Humicap, currently the most accurate and responsive hygrometer in operational use, suggests existing radiosonde climatologies contain a significant moist bias in the upper troposphere. 31 refs., 16 figs., 6 tabs.

  11. Release of Reactive Halogen Species from Sea-Salt Aerosols under Tropospheric Conditions with/without the Influence of Organic Matter in Smog-Chamber Experiments

    NASA Astrophysics Data System (ADS)

    Balzer, N.; Behnke, W.; Bleicher, S.; Krueger, H.; Ofner, J.; Siekmann, F.; Zetzsch, C.

    2008-12-01

    Experiments to investigate the release of reactive halogen species from sea-salt aerosol and the influence of organic matter were performed in an aerosol smog-chamber (3500 l), made of Teflon film (FEP 200A, Dupont). Smog chamber facilities at lowered temperature (coolable down to -25°C) enable us to simulate these reactions under polar, tropospheric conditions. First experiments were performed to investigate the production of atomic Br and Cl without the impact of organic aerosol. Br and Cl play an important role in atmospheric ozone depletion, particularly regarding ozone depletion events (bromine explosion) during polar spring. In these studies, the aerosol was generated by atomizing salt solutions containing the typical Br/Cl ratio of 1/660 in seawater by an ultrasonic nebulizer and increasing the Br content up to sixfold. To ensure the aqueous surface of the aerosol, the experiments were performed at relative humidities above 76%. We determined the atomic Cl and OH-radical concentrations from the simultaneous consumption of four reference hydrocarbons. The Br-radical concentration was calculated on the basis of ozone depletion. Organic aerosol may take part in these reaction cycles by halogenation and production of volatile organic halogens. Further experiments are planned to add organic aerosol for mechanistic and kinetic studies on the influence of secondary organic aerosols (SOA) and humic-like substances (HULIS) on bromine explosion. The formation of the secondary organic aerosol and the determination of possible halogenated gaseous and solid organic products will be studied using longpath-FTIR, DRIFTS, ATR-FTIR, GC-FID, GC-ECD, GC-MS, TPD-MS and DMA-CNC.

  12. Optical properties of aerosols during APEX and ACE-Asia experiments

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Okada, Yasuhiko; Holben, Brent N.; Ohta, Sachio; Takamura, Tamio

    2003-12-01

    Sun/sky photometry and polarimetry of atmospheric light have been undertaken by multispectral photometers (CE-318-1 and -2, Cimel Electronique, France) and a polarimeter (PSR-1000, Opto Research, Japan) over Amami, Noto, and Shirahama, Japan, during APEX-E1, -E2, and ACE-Asia field campaigns. Radiometers provide us with the optical thickness of aerosols and Ångström exponent. Other aerosol characteristics, e.g., size distribution, refractive index, etc., are retrieved based on each inversion method corresponding each equipment. The former takes a standard AERONET processing, and the latter is according to our own procedure to analyze the polarimetry with PSR-1000. After several aerosol parameters are derived, the HYSPLIT4 backward trajectory analysis is adopted to search the origin of aerosols. It is shown from these ground measurements that aerosol optical thickness, Ångström exponent, and refractive index are classified into two typical categories as a background type detected in winter, and a soil dust type appeared in Asian dust events in spring. Further, it is found that the obtained size distribution of Asian dust indicates the dominance of large particles.

  13. Clinical experience with technetium-99m DTPA aerosol with perfusion scintigraphy in suspected pulmonary embolism

    SciTech Connect

    Selby, J.B.; Gardner, J.J.

    1987-01-01

    To evaluate the clinical value of radioaerosol imaging, 156 patients with suspected pulmonary embolism (PE) were studied. In 25 patients, a preperfusion xenon-133 (Xe-133) study was compared with a postperfusion study using Tc-99m DTPA aerosol. It was found that they were of equal value most of the time (56%), but that the aerosol study was more often helpful. Because of this, and the technical ease of using six standard views with radioaerosol, the series was completed using perfusion scintigraphy followed by radioaerosol images. In 19 patients the perfusion scintigraphy with Tc-99 macroaggregated albumin (Tc-99m MAA) was normal or nearly normal and no aerosol study was required. Tc-99m DTPA aerosol images were satisfactory when the count rate was at least twice and preferably three times that of the previous perfusion study. There were 17 studies (11%) classified as intermediate. There were 26 patients classified as high probability for PE, and angiographic or autopsy correlation was available in 14. All of the 14 proved to have PE. In the 113 patients classified as low probability, there were ten with angiographic or autopsy correlation. In the ten, there was one patient with a small pulmonary embolus found at autopsy. Clinical follow-up for over two months confirmed the absence of PE in the remainder of this group. Aerosol studies have proven technically easier to perform and a satisfactory substitute for xenon imaging in suspected PE.

  14. Discrimination of water, ice and aerosols by light polarisation in the CLOUD experiment

    NASA Astrophysics Data System (ADS)

    Nichman, L.; Fuchs, C.; Järvinen, E.; Ignatius, K.; Höppel, N. F.; Dias, A.; Heinritzi, M.; Simon, M.; Tröstl, J.; Wagner, A. C.; Wagner, R.; Williamson, C.; Yan, C.; Bianchi, F.; Connolly, P. J.; Dorsey, J. R.; Duplissy, J.; Ehrhart, S.; Frege, C.; Gordon, H.; Hoyle, C. R.; Kristensen, T. B.; Steiner, G.; Donahue, N. M.; Flagan, R.; Gallagher, M. W.; Kirkby, J.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Stratmann, F.; Tomé, A.

    2015-11-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather and General Circulation Models (GCMs). The simultaneous detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud-particle size range below 50 μm, remains challenging in mixed phase, often unstable ice-water phase environments. The Cloud Aerosol Spectrometer with Polarisation (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure their effects on the backscatter polarisation state. Here we operate the versatile Cosmics-Leaving-OUtdoor-Droplets (CLOUD) chamber facility at the European Organisation for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water and ice particles. In this paper, optical property measurements of mixed phase clouds and viscous Secondary Organic Aerosol (SOA) are presented. We report observations of significant liquid - viscous SOA particle polarisation transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarisation ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulphate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentration and mixtures with respect to the CLOUD 8-9 campaigns and its potential contribution to Tropical Troposphere Layer (TTL) analysis.

  15. Characterization of Atmospheric Aerosol Particles from a Mining City in Southwest China Using Electron Probe microanalysis

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Huang, Y.; Lu, H., III; Liu, Z., IV; Wang, N. V.

    2015-12-01

    Xin Cheng1, Yi Huang1*, Huilin Lu2, Zaidong Liu2, Ningming Wang21 Key Laboratory of Geological Nuclear Technology of Sichuan Province, College of Earth Science, Chengdu University of Technology, Chengdu 610059, China. ; E-mail:chengxin_cdut@163.com 2 College of Earth Science, Chengdu University of Technology, Chengdu 610059, China. ; *Corresponding author: E-mail: huangyi@cdut.cn Panzhihua is a mining city located at Pan-Xi Rift valley, southwest China. It has a long industrial history of vanadium-titanium magnetite mining, iron and steel smelting, and coal-fired power plants. Atomospheric environment has been seriously contaminated with airborne paticles, which is threatening human health.The harmful effects of aerosols are dependent on certain characteristics such as microphysical properties. However, few studsies have been carried out on morphological information contained on single atmospheric particles in this area. In this study, we provide a detailed morphologically and chemically characterization of airborne particles collected at Panzhihua city in October, 2014, using a quantitative single particle analysis based on EPXMA. The results indicate that based on their chemical composition, five major types of particles were identified. Among these, aluminosilicate particles have typical spherical shapes and are produced during the high-temperature combustion; Fe-containing particles contains high level of Mn, and more likely originated from mineralogical and steel industry; Si-containing particles can originate from mineralogical source; V-Ti-Mn-containing particles are also produced by steel industry; Ca-containing particles,these particles are CaCO3, mainly from the mining of limestone mine. The results help us on tracing and partitioning different sources of atomospheric particles in the industrial area. Fig.1 Fe-rich shperical particles

  16. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  17. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  18. Thermally sensitive block copolymer particles prepared via aerosol flow reactor method: Morphological characterization and behavior in water.

    PubMed

    Nykänen, Antti; Rahikkala, Antti; Hirvonen, Sami-Pekka; Aseyev, Vladimir; Tenhu, Heikki; Mezzenga, Raffaele; Raula, Janne; Kauppinen, Esko; Ruokolainen, Janne

    2012-10-23

    This work describes properties of thermo-sensitive submicron sized particles having the same chemical composition but different morphologies. These particles have been prepared with an aerosol technique using dimethylformamide solutions of linear polystyrene-block-poly(N-isopropylacrylamide-block-polystyrene, PS-b-PNIPAM-b-PS. The particles were characterized by cryo-electron microscopy, microcalorimetry, and light scattering. Block-copolymers self-assembled within the particles forming onion-like, gyroid-like, and spherical morphologies having poly(N-isopropylacrylamide) matrix and physically cross-linking polystyrene domains. The particles were dispersed in aqueous media and their behavior in water was studied both below and above the lower critical solution temperature of poly(N-isopropylacrylamide). We found out that the particles with spherical and gyroid-like morphologies swell considerably in water at 20 °C, whereas at 40 °C the particles resemble more of those studied without water treatment. Light scattering experiments showed that the particles gradually aggregate and precipitate with time at 40 °C. Microcalorimetric studies revealed for all three studied morphologies that PNIPAM undergoes a two-step transition due to the different hydration levels of PNIPAM inside and outside the particles. Thicknesses of the PS and PNIPAM layers within the onion-like particles were analyzed using the TEM micrographs by fitting a model of electron density to the integrated electron intensity data. The surface layer of the particles was found out to be PNIPAM, which was supported by light scattering and microcalorimetry. It was also found out from the TEM micrograph analysis that the width of the outmost PS layer is considerably thinner than the one in the dry state prior to immersion in water, and a degradation scheme is proposed to explain these results.

  19. Long- and/or short-range transportation of local Asian aerosols in DRAGON-Osaka Experiment

    NASA Astrophysics Data System (ADS)

    Nakata, M.; Sano, I.; Mukai, S.; Holben, B. N.

    2013-12-01

    This work intends to demonstrate the spatial and temporal variation of atmospheric particles in East Asia, especially around AERONET (Aerosol Robotics Network) -Osaka site during Dragon Asia period in the spring of 2012, named Dragon-Osaka. It is known that the air pollution in East Asia becomes to be severe due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the complicated behavior of natural aerosols. Thus the precise observations of atmospheric particles in East Asia are desired. Osaka is the second big city in Japan and a typical Asian urban area. The population of the region is around 20 millions including neighbor prefectures. Therefore, air quality in the region is slightly bad compared to remote area due to industries and auto mobiles. In recent years, Asian dusts and anthropogenic small particles transported from China and cover those cities throughout year. AERONET Osaka site was established in 2002 on the campus of Kinki University. Nowadays, LIDAR (Light Detection and Ranging), an SPM sampler (SPM-613D, Kimoto Electric, Japan) and others are available on the roof of a building. The site data are useful for algorithm development of aerosol retrieval over busy city. On the other hand, human activities in this region also emit the huge amount of pollutions, thus it is needed to investigate the local distribution of aerosols in this region. In order to investigate change of aerosol properties, PM-individual analysis is made with scanning electron microscope (SEM) coupled with energy dispersive X-ray analyzer (EDX). SEM/EDX is an effective instrument to observe the surface microstructure and analyze the chemical composition of such materials as metals, powders, biological specimens, etc. We used sampling data from the SPM sampler at AERONET Osaka site. During a period of DRAGON-Asia, high concentrations of air pollutant were observed on the morning of March 11 in Fukue Island in the East China Sea. On the

  20. Smog chamber experiments to investigate Henry's law constants of glyoxal using different seed aerosols

    NASA Astrophysics Data System (ADS)

    Jakob, Ronit

    2014-05-01

    Aerosols play an important role in the chemistry and physics of the atmosphere. Hence, they have a direct as well as an indirect impact on the earth's climate. Depending on their formation, one distinguishes between primary and secondary aerosols[1]. Important groups within the secondary aerosols are the secondary organic aerosols (SOAs). In order to improve predictions about these impacts on the earth's climate the existing models need to be optimized, because they still underestimate SOA formation[2]. Glyoxal, the smallest α-dicarbonyl, not only acts as a tracer for SOA formation but also as a direct contributor to SOA. Because glyoxal has such a high vapour pressure, it was common knowledge that it does not take part in gas-particle partitioning and therefore has no impact on direct SOA formation. However, the Henry's law constant for glyoxal is surprisingly high. This has been explained by the hydration of the aldehyde groups, which means that a species with a lower vapour pressure is produced. Therefore the distribution of glyoxal between gas- and particle phase is atmospherically relevant and the direct contribution of glyoxal to SOA can no longer be neglected. A high salt concentration present in chamber seed aerosols leads to an enhanced glyoxal uptake into the particle. This effect is called "salting-in". The salting effect depends on the composition of the seed aerosol as well as the soluble compound. For very polar compounds, like glyoxal, a "salting-in" is observed[3]. Glyoxal particle formation during a smog chamber campaign at Paul-Scherrer-Institut (PSI) in Switzerland was examined using different seed aerosols such as ammonium sulfate, sodium chloride and sodium nitrate. The aim of this campaign was to investigate Henry's law constants for different seed aerosols. During the campaign filter samples were taken to investigate the amount of glyoxal in the particle phase. After filter extraction, the analyte was derivatized and measured using UHPLC

  1. Southern Great Plains Ice Nuclei Characterization Experiment Final Campaign Summary

    SciTech Connect

    DeMott, PJ; Suski, KJ; Hill, TCJ; Levin, EJT

    2015-03-01

    The first ever ice nucleating particle (INP) measurements to be collected at the Southern Great Plains site were made during a period from late April to June 2014, as a trial for possible longer-term measurements at the site. These measurements will also be used to lay the foundation for understanding and parameterizing (for cloud resolving modeling) the sources of these climatically important aerosols as well as to augment the existing database containing this knowledge. Siting the measurements during the spring was intended to capture INP sources in or to this region from plant, soil, dust transported over long distances, biomass burning, and pollution aerosols at a time when they may influence warm-season convective clouds and precipitation. Data have been archived of real-time measurements of INP number concentrations as a function of processing conditions (temperature and relative humidity) during 18 days of sampling that spanned two distinctly different weather situations: a warm, dry and windy period with regional dust and biomass burning influences in early May, and a cooler period of frequent precipitation during early June. Precipitation delayed winter wheat harvesting, preventing intended sampling during that perturbation on atmospheric aerosols. INP concentrations were highest and most variable at all temperatures in the dry period, where we attribute the INP activity primarily to soil dust emissions. Additional offline INP analyses are underway to extend the characterization of INP to cover the entire mixed phase cloud regime from -5°C to -35°C during the full study. Initial comparisons between methods on four days show good agreement and excellent future promise. The additional offline immersion freezing data will be archived as soon as completed under separate funding. Analyses of additional specialized studies for specific attribution of INP to biological and smoke sources are continuing via the National Science Foundation and National Aeronautics

  2. Mass spectrometric characterization of isomeric terpenoic acids from the oxidation of α-pinene, β-pinene, d-limonene, and Δ3-carene in fine forest aerosol.

    PubMed

    Yasmeen, Farhat; Szmigielski, Rafal; Vermeylen, Reinhilde; Gómez-González, Yadian; Surratt, Jason D; Chan, Arthur W H; Seinfeld, John H; Maenhaut, Willy; Claeys, Magda

    2011-04-01

    In this study, we present liquid chromatographic and mass spectral data for predominant terpenoic acids formed through oxidation of α-pinene, β-pinene, d-limonene, and Δ(3)-carene that occur in fine forest aerosol from K-puszta, Hungary, a rural site with coniferous vegetation. Characterization of these secondary organic aerosol tracers in fine ambient aerosol is important because it allows one to gain information on monoterpene precursors and source processes such as oxidation and aging processes. The mass spectral data were obtained using electrospray ionization in the negative ion mode, accurate mass measurements, and linear ion trap tandem mass spectrometric experiments. Emphasis is given to the mass spectrometric differentiation of isobaric terpenoic acids, such as, e.g. the molecular weight (MW) 186 terpenoic acids, cis-pinic, cis-caric, homoterpenylic, ketolimononic, and limonic acids. Other targeted isobaric terpenoic acids are the MW 184 terpenoic acids, cis-pinonic and cis-caronic acids, and the MW 204 tricarboxylic acids, 3-methyl-1,2,3-butanetricarboxylic and 3-carboxyheptanedioic acids. Fragmentation pathways are proposed to provide a rational explanation for the observed isomeric differences and/or to support the suggested tentative structures. For the completeness of the data set, data obtained for recently reported lactone-containing terpenoic acids (i.e. terpenylic and terebic acids), related or isobaric compounds (i.e. norpinic acid, diaterpenylic acid acetate, and unknown MW 188 compounds) are also included, the rationale being that other groups working on this topic could use this data compilation as a reference.

  3. Earth Science With the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station

    NASA Technical Reports Server (NTRS)

    Zawodny, Joe; Vernier, Jean-Paul; Thomason, Larry; Roell, Marilee; Pitts, Mike; Moore, Randy; Hill, Charles; Flittner, David; Damadeo, Rob; Cisewski, Mike

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III is the fourth generation of solar occultation instruments operated by NASA, the first coming under a different acronym, to investigate the Earth's upper atmosphere. Three flight-ready SAGE III instruments were built by Ball Aerospace in the late 1990s, with one launched aboard the former Russian Aviation and Space Agency (now known as Roskosmos) Meteor-3M platform on 10 December 2001 (continuing until the platform lost power in 2006). Another of the original instruments was manifested for the ISS in the 2004 time frame, but was delayed because of budgetary considerations. Fortunately, that SAGE III/ISS mission was restarted in 2009 with a major focus upon filling an anticipated gap in ozone and aerosol observation in the second half of this decade. Here we discuss the mission architecture, its implementation, and data that will be produced by SAGE III/ISS, including their expected accuracy and coverage. The 52-degree inclined orbit of the ISS is well-suited for solar occultation and provides near-global observations on a monthly basis with excellent coverage of low and mid-latitudes. This is similar to that of the SAGE II mission (1985-2005), whose data set has served the international atmospheric science community as a standard for stratospheric ozone and aerosol measurements. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. Though in the visible portion of the spectrum the brightness of the Sun is one million times that of the full Moon, the SAGE