Science.gov

Sample records for aerosol chemical characterization

  1. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol

    NASA Astrophysics Data System (ADS)

    Riva, Matthieu; Budisulistiorini, Sri Hapsari; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.

    2016-04-01

    Isoprene is the most abundant non-methane hydrocarbon emitted into Earth's atmosphere and is predominantly derived from terrestrial vegetation. Prior studies have focused largely on the hydroxyl (OH) radical-initiated oxidation of isoprene and have demonstrated that highly oxidized compounds, such as isoprene-derived epoxides, enhance the formation of secondary organic aerosol (SOA) through heterogeneous (multiphase) reactions on acidified sulfate aerosol. However, studies on the impact of acidified sulfate aerosol on SOA formation from isoprene ozonolysis are lacking and the current work systematically examines this reaction. SOA was generated in an indoor smog chamber from isoprene ozonolysis under dark conditions in the presence of non-acidified or acidified sulfate seed aerosol. The effect of OH radicals on SOA chemical composition was investigated using diethyl ether as an OH radical scavenger. Aerosols were collected and chemically characterized by ultra performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) and gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS). Analysis revealed the formation of highly oxidized compounds, including organosulfates (OSs) and 2-methylterols, which were significantly enhanced in the presence of acidified sulfate seed aerosol. OSs identified in the chamber experiments were also observed and quantified in summertime fine aerosol collected from two rural locations in the southeastern United States during the 2013 Southern Oxidant and Aerosol Study (SOAS).

  2. Optical and Chemical Characterization of Aerosols Produced from Cooked Meats

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Foreman, E.; Blanc, L. E.

    2011-12-01

    Cooking processes can release a variety compounds into the air immediately above a cooking surface. The distribution of compounds will largely depend on the type of food that is being processed and the temperatures at which the food is prepared. High temperatures release compounds from foods like meats and carry them away from the preparation surface into cooler regions where condensation into particles can occur. Aerosols formed in this manner can impact air quality, particularly in urban areas where the amount of food preparation is high. Reported here are the results of laboratory experiments designed to optically and chemically characterize aerosols derived from cooking several types of meats including ground beef, salmon, chicken, and pork both in an inert atmosphere and in synthetic air. The laboratory-generated aerosols are studied using a laminar flow cell that is configured to accommodate simultaneous optical characterization in the mid-infrared and collection of particles for subsequent chemical analysis by gas chromatography. Preliminary optical results in the visible and ultra-violet will also be presented.

  3. Chemical characterization of aerosol particles by laser Raman spectroscopy. Revision

    SciTech Connect

    Fung, K.H.

    1999-12-01

    The importance of aerosol particles in many branches of science, such as atmospheric chemistry, combustion, interfacial science, and material processing, has been steadily growing during the past decades. One of the unique properties of these particles is the very high surface-to-volume ratios, thus making them readily serve as centers for gas-phase condensation and heterogeneous reactions. These particles must be characterized by size, shape, physical state, and chemical composition. Traditionally, optical elastic scattering has been applied to obtain the physical properties of these particle (e.g., particle size, size distribution, and particle density). These physical properties are particularly important in atmospheric science as they govern the distribution and transport of atmospheric aerosols.

  4. Chemical characterization of Brown Carbon from biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Mayol-Bracero, O. L.; Andreae, M. O.; Andreae, T. W.; Artaxo, P.; Gelencser, A.; Graham, B.; Guyon, P.; Maenhaut, W.

    2003-04-01

    The term "elemental carbon" (EC) is used to describe the most polymerized and refractory fraction of combustion-produced atmospheric carbonaceous aerosols, having chemical properties similar to graphitic carbon (disordered graphite lattice, mostly with carbon, but also with some oxygen and hydrogen atoms, and highly resistant to thermal degradation and oxidation). This species is insoluble either in water or organic solvents. In evolved gas analysis (EGA), it is usually represented by the peak evolving above ca. 400 ^oC in the thermograms. EGA analyses before and after water extraction have shown that in samples from biomass burning aerosols ca. 50% of the material evolving above 400 ^oC was removed by extraction with water and therefore was not true EC. These results suggest that this apparent EC (EC_a) is high-molecular weight organic material with thermal and oxidative properties similar to EC. This EC_a material also absorbs light, therefore, we have adopted the term of "brown carbon" (Cbrown) to refer to it. Here we will present a detailed chemical characterization of EC_a and Cbrown using EGA, optical transmission, thermo-optical analysis and pyrolysis GC/MS. This last technique will provide, for the first time, molecular characterization of Cbrown. The results of these analytical techniques will improve our understanding of the chemical, thermal and oxidative properties of true EC, EC_a and Cbrown from biomass burning aerosols. Brown carbon can be formed both during thermal decomposition of organic matter (charring) and through low-temperature microbial and abiotic reactions (humic/fulvic acids).

  5. Physical and Chemical Characterization of Carbonaceous Aerosols in Korea

    NASA Astrophysics Data System (ADS)

    Choung, S.; Jin, J. S.; Hwang, G. S.; Jang, K. S.; Han, W. S.; OH, J.; Kwon, Y.

    2014-12-01

    Atmospheric aerosols have been recently paid attention more in environmental research due to their negative effects on air quality, public health, and climate change. The aerosols contain approximately >20-50% carbonaceous components such as organic carbon (OC) and black carbon (BC) (or elemental carbon [EC]) derived from organic compounds, biomass burning, and incomplete combustion of fossil fuels. The physical, chemical, and biological properties of atmospheric aerosols are strongly dependent on the carbonaceous components. In particular, the BC could significantly affect the regional air quality in the northeastern Asia, because China is one of the foremost BC emission country in the world. Previous studies have mainly focused on the quantification and source identification for carbonaceous aerosols. However, understanding of physical and chemical properties for the carbonaceous aerosols related to environmental contamination and toxicity was still incomplete due to analytical difficulties. This study is addressed to evaluate the contribution of carbonaceous aerosols to air pollution through the surface, mass spectroscopic, and electron microscopic analyses, and determination of chemical composition and structure using the air particulate matter (PM2.5 and >PM2.5) samples.

  6. In Situ Chemical Characterization of Organic Aerosol Surfaces using Direct Analysis in Real Time

    NASA Astrophysics Data System (ADS)

    Chan, M.; Nah, T.; Wilson, K. R.

    2012-12-01

    Obtaining in situ information on the molecular composition of atmospheric aerosol is important for understanding the sources, formation mechanisms, aging and physiochemical properties of atmospheric aerosol. Most recently, we have used Direct Analysis in Real Time (DART), which is a "soft" atmospheric pressure ionization technique, for in situ chemical characterization of a variety of laboratory generated organic aerosol and heterogeneous processing oleic acid aerosol. A stream of aerosol particles is crossed with a thermal flow of metastable He atoms (produced by the DART source) in front of an inlet of a mass spectrometer. The thermally desorbed analytes are subsequently ionized with minimal fragmentation by reactive species in the DART ionization source (e.g., metastable He atoms). The ion signal scales with the aerosol surface area rather than aerosol volume, suggesting that aerosol particles are not completely vaporized in the ionization region. The DART can thus measure the chemical composition as a function of aerosol depth. Probing aerosol depth is determined by the thermal desorption rates of aerosol particles. Here, we investigate how the experimental parameters (e.g., DART gas temperature and residence time) and the physiochemical properties of aerosol particles (e.g., enthalpy of vaporization) affect the probing aerosol depth and the desorption-ionization mechanism of aerosol particles in the DART using a series of model organic compounds. We also demonstrate the potential application of DART for in situ chemically analyzing wet aerosol particles undergoing oxidation reactions.

  7. Multi- year Arctic and Antarctic aerosol chemical characterization

    NASA Astrophysics Data System (ADS)

    Udisti, Roberto; Becagli, Silvia; Caiazzo, Laura; Calzolai, Giulia; Cappelletti, David; Giardi, Fabio; Grotti, Marco; Malandrino, Mery; Nava, Silvia; Severi, Mirko; Traversi, Rita

    2016-04-01

    Long term measurements of aerosol chemical composition in polar region are particularly relevant to investigate potential climatic effects of atmospheric components arising from both natural and anthropogenic emissions. In order to improve our knowledge on the atmospheric load and chemical composition of polar aerosol, several measurements and sampling campaigns were carried out both in Antarctica and in the Arctic since 2005.The main results are here reported. As regard as Antarctica, a continuous all-year-round sampling of size-segregated aerosol was carried from 2005 to 2013 at Dome C (East Antarctica; 75° 60' S, 123° 200' E, 3220 m a.s.l. and 1100 km away from the nearest coast). Aerosol was collected by PM10 and PM2.5 samplers and by multi-stage impactors (Dekati 4-stage impactor). Chemical analysis was carried out by Ion Chromatography (ions composition) and ICP-MS (trace metals). Sea spray showed a sharp seasonal pattern, with winter (Apr-Nov) concentrations about ten times larger than summer (Dec-Mar). Besides, in winter, sea spray particles are mainly sub micrometric, while the summer size-mode is around 1-2 um. Meteorological analysis and air mass back trajectory reconstructions allowed the identification of two major air mass pathways: micrometric fractions for transport from the closer Indian-Pacific sector, and sub-micrometric particles for longer trajectories over the Antarctic Plateau. The markers of oceanic biogenic emission (methanesulfonic acid - MSA, and non-sea-salt sulphate) exhibit a seasonal cycle with summer maxima (Nov-Mar). Their size distributions show two modes (0.4- 0.7 um and 1.1-2.1 um) in early summer and just one sub-micrometric mode in full summer. The two modes are related to different transport pathways. In early summer, air masses came primarily from the Indian Ocean and spent a long time over the continent. The transport of sulphur compounds is related to sea spray aerosols and the resulting condensation of H2SO4 and MSA over

  8. Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Saarikoski, S.; Carbone, S.; Decesari, S.; Giulianelli, L.; Angelini, F.; Canagaratna, M.; Ng, N. L.; Trimborn, A.; Facchini, M. C.; Fuzzi, S.; Hillamo, R.; Worsnop, D.

    2012-09-01

    The chemistry of submicron particles was investigated at San Pietro Capofiume (SPC) measurement station in the Po Valley, Italy, in spring 2008. The measurements were performed by using both off-line and on-line instruments. Organic carbon (OC) and elemental carbon, organic acids and biomass burning tracers were measured off-line by using a 24-h PM1 filter sampling. More detailed particle chemistry was achieved by using a Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and analyzing the data by positive matrix factorization (PMF). Oxalic acid had the highest concentrations of organic acids (campaign-average 97.4 ng m-3) followed by methane sulfonic, formic, malonic, and malic acids. Samples were also analyzed for glyoxylic, succinic, azelaic and maleic acids. In total, the nine acids composed 1.9 and 3.8% of OC and water-soluble OC, respectively (average), in terms of carbon atoms. Levoglucosan concentration varied from 17.7 to 495 ng m-3 with the concentration decreasing in the course of the campaign most likely due to the reduced use of domestic heating with wood. Six factors were found for organic aerosol (OA) at SPC by PMF: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), nitrogen-containing OA (N-OA) and three different oxygenated OAs (OOA-a, OOA-b and OOA-c). Most of the OA mass was composed of OOA-a, HOA and OOA-c (26, 24 and 22%, respectively) followed by OOA-b (13%), BBOA (8%) and N-OA (7%). As expected, OOAs were the most oxygenated factors with organic matter:organic carbon (OM : OC) ratios ranging from 1.9 to 2.2. The diurnal variability of the aerosol chemical composition was greatly affected by the boundary layer meteorology. Specifically, the effect of the nocturnal layer break-up in morning hours was most evident for nitrate and N-OA indicating that these compounds originated mainly from the local sources in the Po Valley. For sulfate and OOA-a the concentration did not change during the break-up suggesting their

  9. Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Saarikoski, S.; Carbone, S.; Decesari, S.; Giulianelli, L.; Angelini, F.; Teinilä, K.; Canagaratna, M.; Ng, N. L.; Trimborn, A.; Facchini, M. C.; Fuzzi, S.; Hillamo, R.; Worsnop, D.

    2012-03-01

    The chemistry of submicron particles was investigated at San Pietro Capofiume (SPC) measurement station in the Po Valley, Italy, in spring 2008. The measurements were performed by using both off-line and on-line instruments. Organic carbon (OC) and elemental carbon, organic acids and biomass burning tracers were measured off-line by using a 24-h PM1 filter sampling. More detailed particle chemistry was achieved by using an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and analyzing the data by positive matrix factorization (PMF). Oxalic acid had the highest concentrations of organic acids (campaign-average 97.4 ng m-3) followed by methane sulfonic, formic, malonic, and malic acids. Samples were also analyzed for glyoxylic, succinic, azelaic and maleic acids. In total, the nine acids composed 1.9 and 3.8% of OC and water-soluble OC, respectively (average), in terms of carbon atoms. Levoglucosan concentration varied from 17.7 to 495 ng m-3 with the concentration decreasing in the course of the campaign most likely due to the reduced use of domestic heating with wood. Six factors were found for organic aerosol (OA) at SPC by PMF: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), nitrogen-containing OA (N-OA) and three different oxygenated OAs (OOA-a, OOA-b and OOA-c). Most of the OA mass was composed of OOA-a, HOA and OOA-c (26, 24 and 22%, respectively) followed by OOA-b (13%), BBOA (8%) and N-OA (7%). As expected, OOAs were the most oxygenated factors with organic matter:organic carbon (OM:OC) ratios ranging from 1.9 to 2.2. The diurnal variability of the aerosol chemical composition was greatly affected by the boundary layer meteorology. Specifically, the effect of the nocturnal layer break-up in morning hours was most evident for nitrate and N-OA indicating that these compounds originated mainly from the local sources in the Po Valley. For sulfate and OOA-a the concentration did not change during the break-up suggesting their

  10. High-Resolution Desorption Electrospray Ionization Mass Spectrometry for Chemical Characterization of Organic Aerosols

    SciTech Connect

    Laskin, Julia; Laskin, Alexander; Roach, Patrick J.; Slysz, Gordon W.; Anderson, Gordon A.; Nizkorodov, Serguei; Bones, David L.; Nguyen, Lucas

    2010-03-01

    Characterization of the chemical composition and chemical transformations of secondary organic aerosol (SOA) is both a major challenge and the area of greatest uncertainty in current aerosol research. This study presents the first application of desorption electrospray ionization combined with high-resolution mass spectrometry (DESI-MS) for detailed chemical characterization and studies of chemical aging of OA collected on Teflon substrates. DESI-MS offers unique advantages both for detailed characterization of chemically labile components in OA that cannot be detected using more traditional electrospray ionization mass spectrometry (ESI-MS) and for studying chemical aging of OA. DESI-MS enables rapid characterization of OA samples collected on substrates by eliminating the sample preparation stage. In addition, it enables detection and structural characterization of chemically labile molecules in OA samples by minimizing the residence time of analyte in the solvent. SOA produced by the ozonolysis of limonene (LSOA) was allowed to react with gaseous ammonia. Chemical aging resulted in measurable changes in the optical properties of LSOA observed using UV- visible spectroscopy. DESI-MS combined with tandem mass spectrometry experiments (MS/MS) enabled identification of species in aged LSOA responsible for absorption of the visible light. Detailed analysis of the experimental data allowed us to identify chemical changes induced by reactions of LSOA constituents with ammonia and distinguish between different mechanisms of chemical aging.

  11. Aerosol Chemical and Physical Characterization in Central Amazonia during the 2013 Dry Season

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Stern, R.; Brito, J.; Carbone, S.

    2015-12-01

    During the dry season, the central Amazon forest is highly influenced by forest fires transported through large distances, changing drastically the atmospheric composition even in remote places. This work focuses on a physical-chemical characterization of the aerosol population over a pristine site in Central Amazonia during the dry season. The submicrometer organic aerosols were measured with the Aerodyne ACSM (Aerosol Chemical Speciation Monitor, Aerodyne Inc). Optical properties, size distribution and other micro-physical characteristics were also analyzed. Other instruments were simultaneously used. The measurements were taken during the dry season of 2013 in the Cuieiras ecological reserve (ZF2), northwest of Manaus. The statistical analysis of the data was done with the PMF (Positive Matrix Factorization) technique, in which the organic aerosol was separated into different factors, and then its sources and forming processes were attributed. Results show that the mean aerosol loading was 5,91 μg m-3, from which 78% are of organic composition, 8.5% are sulfate, 6.5% are equivalent black carbon, 4% are ammonium and 3% are nitrate. The mass spectra variability can be explained by 3 factors only, determined with the PMF technique. They were identified as BBOA (Biomass Burning Organic Aerosol), representing 12% of the total organic mass, OOA (Oxygenated Organic Aerosol), representing 66% of the total organic mass and IEPOX-SOA (Isoprene derived Epoxydiol-Secondary Organic Aerosol), representing 21% of the total organic mass. Even in remote and pristine regions, Central Amazonia is highly impacted by biomass burning. Biogenic secondary organic aerosols are also present during the dry season, and the suppression of its wet deposition processes increases their concentration. The oxidation level and other physical-chemical characteristics indicate that the long range transport is responsible for the regional range of this impact.

  12. Chemical characterization of challenge aerosols for HEPA filter penetration testing

    SciTech Connect

    Strandberg, S.W.

    1985-04-01

    Quality assurance penetration testing of high efficiency particulate air (HEPA) filters use oil mists as challenge aerosols. Concern over the carcinogenic risk associated with the use of di-(2-ethylhexyl)phthalate (DEHP) has led to the investigation of alternative materials and generation methods for these aerosols. Since several commonly used generation methods for quality assurance testing of HEPA filters utilize heating of the starting material, it was determined essential to evaluate the starting material and the resultant aerosol which might contain thermal degradation by-products. A penetrometer utilizing flash vaporization has been developed by A.D. Little, Inc., for the US Government as a possible alternative generation method to the Q-127 thermally generated DEHP penetrometer. Tetraethylene glycol, oleic acid, and DEHP aerosols were generated in this unit, and particulate and vapor samples were collected and identified using gas chromatography/mass spectrometry techniques. Thermally generated DEHP by-products were also sampled and identified using a Q-107 penetrometer used in the testing of large HEPA filters. Determination of the toxicological hazards of starting materials and all of the identified compounds was made by reviewing available literature obtained on the Toxline system of the National Library of Medicine. No major degradation products were found in the flash vaporization penetrometer although a number of thermally generated by-products were found in the Q-107 penetrometer. Toxicologically, no hazards were found to preclude the use of either tetraethylene glycol or oleic acid as tested in the A.D. Little penetrometer. 133 refs., 5 figs., 9 tabs.

  13. PHYSICAL AND CHEMICAL CHARACTERIZATION OF INDOOR AEROSOLS RESULTING FROM THE USE OF TAP WATER IN PORTABLE HOME HUMIDIFIERS

    EPA Science Inventory

    An indoor air quality study was conducted in Boise, ID, residences to evaluate the range of aerosol concentrations that result from using tap water in portable home humidifiers and to characterize the physical and chemical properties of the humidifier aerosol. M10 concentrations ...

  14. Chemical Characterization of Biomass Burning Aerosols and an Examination of Their Impact on Clouds

    NASA Astrophysics Data System (ADS)

    Pratt, K. A.; Murphy, S. M.; Twohy, C. H.; Subramanian, R.; Seinfeld, J.; Prather, K. A.

    2009-12-01

    Biomass burning is a considerable global source of carbon dioxide, methane, and carbonaceous aerosols. In addition to exerting a significant, but uncertain, direct radiative forcing, biomass burning aerosols impact cloud formation and properties by serving as cloud condensation nuclei and impacting cloud droplet and ice crystal size. During the 2007 Ice in Clouds Experiment - Layer Clouds (ICE-L), detailed size-resolved chemical composition measurements of biomass burning particles were completed using an aircraft aerosol time-of-flight mass spectrometer (A-ATOFMS), compact time-of-flight aerosol mass spectrometer (C-TOF-AMS), single-particle soot photometer (SP2), and electron microscopy. Aboard the NCAR/NSF C-130, real-time sampling of the smoke plumes of two prescribed fires allowed characterization of fresh biomass burning particles having aged less than one hour. Knowledge of fuel characteristics and burn conditions on the ground allowed a detailed comparison with emphasis on smoldering versus flaming combustion. In addition, using a counterflow virtual impactor (CVI) in series with the above techniques, aged biomass burning particles were found as residues of homogeneously-nucleated cloud ice crystals within orographic wave clouds. A comparison between A-ATOFMS, C-TOF-AMS, SP2, and electron microscopy results will be presented, as well as a discussion of the impacts of fresh and aged biomass burning particles on clouds.

  15. Long-term Chemical Characterization of Submicron Aerosol Particles in the Amazon Forest - ATTO Station

    NASA Astrophysics Data System (ADS)

    Carbone, S.; Brito, J.; Rizzo, L. V.; Holanda, B. A.; Cirino, G. G.; Saturno, J.; Krüger, M. L.; Pöhlker, C.; Ng, N. L.; Xu, L.; Andreae, M. O.; Artaxo, P.

    2015-12-01

    The study of the chemical composition of aerosol particles in the Amazon forest represents a step forward to understand the strong coupling between the atmosphere and the forest. For this reason submicron aerosol particles were investigated in the Amazon forest, where biogenic and anthropogenic aerosol particles coexist at the different seasons (wet/dry). The measurements were performed at the ATTO station, which is located about 150 km northeast of Manaus. At ATTO station the Aerosol chemical speciation monitor (ACSM, Aerodyne) and the Multiangle absorption photometer (MAAP, Thermo 5012) have been operated continuously from March 2014 to July 2015. In this study, long-term measurements (near-real-time, ~30 minutes) of PM1 chemical composition were investigated for the first time in this environment.The wet season presented lower concentrations than the dry season (~5 times). In terms of chemical composition, both seasons were dominated by organics (75 and 63%) followed by sulfate (11 and 13%). Nitrate presented different ratio values between the mass-to-charges 30 to 46 (main nitrate fragments) suggesting the presence of nitrate as inorganic and organic nitrate during both seasons. The results indicated that about 75% of the nitrate signal was from organic nitrate during the dry season. In addition, several episodes with elevated amount of chloride, likely in the form of sea-salt from the Atlantic Ocean, were observed during the wet season. During those episodes, chloride comprised up to 7% of the PM1. During the dry season, chloride was also observed; however, with different volatility, which suggested that Chloride was present in different form and source. Moreover, the constant presence of sulfate and BC during the wet season might be related to biomass burning emissions from Africa. BC concentration was 2.5 times higher during the dry season. Further characterization of the organic fraction was accomplished with the positive matrix factorization (PMF), which

  16. Biological availability of lead in a paint aerosol. 1. Physical and chemical characterization of a lead paint aerosol.

    PubMed

    Kalman, D; Schumacher, R; Covert, D; Eaton, D L

    1984-09-01

    This study was conducted to determine the physical and chemical characteristics of an aerosol of lead-based paint, generated in an industrial spray operation, that might influence the biological availability of lead present in inhaled aerosols. Paint aerosols were collected, and mass-size distribution was determined using a portable cascade impactor under actual occupational conditions. Approx. 2% of the particulate mass collected was in the respirable range (less than 10 micron mean aerodynamic diameter), although the maximum airborne concentration of lead was found to be 2-3 mg/m3. The lead concentration in a dried aerosol was very resistant to chemical digestion. Analysis by X-ray diffraction, atomic absorption spectroscopy and inductively coupled plasma emission spectroscopy showed approx. 11% lead by dry weight, although the wet weight concentration of lead reported by the manufacturer was 12.8%. PMID:6485003

  17. Chemical composition of Titan's aerosols analogues characterized with a systematic pyrolysis-gas chromatography-mass spectrometry characterization

    NASA Astrophysics Data System (ADS)

    Szopa, Cyril; Raulin, Francois; Coll, Patrice; Cabane, Michel; GCMS Team

    2014-05-01

    The in situ chemical characterization of Titan's atmosphere was achieved in 2005 with two instruments present onboard the Huygens atmospheric probe : the Aerosol Collector and Pyrolyzer (ACP) devoted to collect and pyrolyse Titan's aerosols ; the Gas Chromatograph-Mass Spectrometer (GCMS) experiment devoted to analyze gases collected in the atmosphere or coming from the aerosols pyrolysis. The GCMS was developed by Hasso Niemann in the filiation of the quadrupole mass spectrometers he built for several former space missions. The main objectives were to : determine the concentration profile of the most abundant chemical species; seek for minor atmospheric organic species not detected with remote observations ; give a first view of the organic aerosols structure; characterize the condensed volatiles present at the surface (e.g. lakes) in case of survival of the probe to the landing impact. Taking into account for the potential complexity of the gaseous samples to be analyzed, it was decided to couple to the MS analyzer a gas chromatograph capable to separate volatile species from light inorganic molecules and noble gases, to organic compounds including aromatics. This was the first GCMS analyzer that worked in an extraterrestrial environment since the Viking missions on Mars. Even if the GCMS coupling mode did not provide any result of interest, it has been demonstrated to be functional during the Huygens descent. But, the direct MS analysis of the atmosphere, and the pyrolysis-MS analysis of aerosols allowed to make great discoveries which are still of primary importance to describe the Titan's lower atmosphere composition. This contribution aims at presenting this instrument that worked in the Titan's atmosphere, and summarizing the most important discoveries it allowed.

  18. Halogen-induced organic aerosol (XOA): a study on ultra-fine particle formation and time-resolved chemical characterization.

    PubMed

    Ofner, Johannes; Kamilli, Katharina A; Held, Andreas; Lendl, Bernhard; Zetzsch, Cornelius

    2013-01-01

    The concurrent presence of high values of organic SOA precursors and reactive halogen species (RHS) at very low ozone concentrations allows the formation of halogen-induced organic aerosol, so-called XOA, in maritime areas where high concentrations of RHS are present, especially at sunrise. The present study combines aerosol smog-chamber and aerosol flow-reactor experiments for the characterization of XOA. XOA formation yields from alpha-pinene at low and high concentrations of chlorine as reactive halogen species (RHS) were determined using a 700 L aerosol smog-chamber with a solar simulator. The chemical transformation of the organic precursor during the aerosol formation process and chemical aging was studied using an aerosol flow-reactor coupled to an FTIR spectrometer. The FTIR dataset was analysed using 2D correlation spectroscopy. Chlorine induced homogeneous XOA formation takes place at even 2.5 ppb of molecular chlorine, which was photolysed by the solar simulator. The chemical pathway of XOA formation is characterized by the addition of chlorine and abstraction of hydrogen atoms, causing simultaneous carbon-chlorine bond formation. During further steps of the formation process, carboxylic acids are formed, which cause a SOA-like appearance of XOA. During the ozone-free formation of secondary organic aerosol with RHS a special kind of particulate matter (XOA) is formed, which is afterwards transformed to SOA by atmospheric aging or degradation pathways. PMID:24601001

  19. Chemical Characterization of Submicron Aerosol Particles in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Ferreira De Brito, J.; Rizzo, L. V.; Godoy, J.; Godoy, M. L.; de Assunção, J. V.; Alves, N. D.; Artaxo, P.

    2013-12-01

    Megacities, large urban conglomerates with a population of 10 million or more inhabitants, are increasingly receiving attention as strong pollution hotspots with significant global impact. The emissions from such large centers in both the developed and developing parts of the world are strongly impacted by the transportation sector. The São Paulo Metropolitan Area (SPMA), located in the Southeast of Brazil, is a megacity with a population of 18 million people and 7 million vehicles, many of which fuelled by a considerably amount of anhydrous ethanol. Such fleet is considered a unique case of large scale biofuel usage worldwide. Despite the large impact on human health and atmospheric chemistry/dynamics, many uncertainties are found in terms of gas and particulate matter emissions from vehicles and their atmospheric reactivity, e.g. secondary organic aerosol formation. In order to better understand aerosol life cycle on such environment, a suite of instruments for gas and particulate matter characterization has been deployed in two sampling sites within the SPMA, including an Aerosol Chemical Speciation Monitor (ACSM). The instrumentation was deployed at the rooftop of a 45m high building in the University of São Paulo during winter/spring 2012. The site is located roughly 6km downwind of the city center with little influence from local sources. The second site is located in a downtown area, sampling at the top floor of the Public Health Faculty, approximately 10m above ground. The instrumentation was deployed at the Downtown site during summer/fall 2013. The average non-refractory submicron aerosol concentration at the University site was 6.7 μg m-3, being organics the most abundant specie (70%), followed by NO3 (12%), NH4 (8%), SO4 (8%) and Chl (2%). At the Downtown site, average aerosol concentration was 15.1 μg m-3, with Organics composing 65% of the mass, followed by NH4 (12%), NO3 (11%), SO4 (11%) and Chl (1%). The analysis of specific fragmentation

  20. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    NASA Astrophysics Data System (ADS)

    Pratt, K. A.; Murphy, S. M.; Subramanian, R.; Demott, P. J.; Kok, G. L.; Campos, T.; Rogers, D. C.; Prenni, A. J.; Heymsfield, A. J.; Seinfeld, J. H.; Prather, K. A.

    2011-06-01

    Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Cloud Experiment - Layer Clouds (ICE-L) in fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2-4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, 100 % of the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81-88 min and resulted in acidic particles, with both nitric acid and sulfuric acid present. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5 % water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at -32 °C suggested activation of ~0.03-0.07 % of the particles with diameters greater than 500 nm.

  1. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    NASA Astrophysics Data System (ADS)

    Pratt, K. A.; Murphy, S. M.; Subramanian, R.; Demott, P. J.; Kok, G. L.; Campos, T.; Rogers, D. C.; Prenni, A. J.; Heymsfield, A. J.; Seinfeld, J. H.; Prather, K. A.

    2011-12-01

    Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L) in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2-4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81-88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at -32 °C suggested activation of ~0.03-0.07% of the particles with diameters greater than 500 nm.

  2. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    NASA Astrophysics Data System (ADS)

    Georgakopoulos, D. G.; Després, V.; Fröhlich-Nowoisky, J.; Psenner, R.; Ariya, P. A.; Pósfai, M.; Ahern, H. E.; Moffett, B. F.; Hill, T. C. J.

    2008-04-01

    The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques) required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  3. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    NASA Astrophysics Data System (ADS)

    Georgakopoulos, D. G.; Després, V.; Fröhlich-Nowoisky, J.; Psenner, R.; Ariya, P. A.; Pósfai, M.; Ahern, H. E.; Moffett, B. F.; Hill, T. C. J.

    2009-04-01

    The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques) required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  4. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: chemical characterization of the products

    NASA Astrophysics Data System (ADS)

    Grgić, Irena; Kitanovski, Zoran; Kroflič, Ana; Čusak, Alen

    2014-05-01

    One of the largest primary sources of organic aerosol in the atmosphere is biomass burning (BB) (Laskin et al. 2009); in Europe its contribution to annual mean of PM10 is between 3 and 14 % (Maenhaut et al. 2012). During the process of wood burning many different products are formed via thermal degradation of wood lignin. Hardwood burning produces mainly syringol (2,6-dimetoxyphenol) derivatives, while softwood burning exclusively guaiacol (2-methoxyphenol) and its derivatives. Taking into account physical properties of methoxyphenols only, their concentrations in atmospheric waters might be underestimated. So, their aqueous phase reactions can be an additional source of SOA, especially in regions under significant influence of wood combustion. An important class of compounds formed during physical and chemical aging of the primary BBA in the atmosphere is nitrocatechols, known as strong absorbers of UV and Vis light (Claeys et al. 2012). Very recently, methyl-nitrocatechols were proposed as suitable markers for highly oxidized secondary BBA (Iinuma et al. 2010, Kitanovski et al. 2012). In the present work, the formation of SOA through aqueous phase photooxidation and nitration of guaiacol was examined. The key objective was to chemically characterize the main low-volatility products and further to check their possible presence in the urban atmospheric aerosols. The aqueous phase reactions were performed in a thermostated reactor under simulated sunlight in the presence of H2O2 and nitrite. Guaiacol reaction products were first concentrated by solid-phase extraction (SPE) and then subjected to semi-preparative liquid chromatography.The main product compounds were fractionated and isolated as pure solids and their structure was further elucidated by using nuclear magnetic resonance spectroscopy (1H, 13C and 2D NMR) and direct infusion negative ion electro-spray ionization tandem mass spectrometry (( )ESI-MS/MS). The main photonitration products of guaiacol (4

  5. Chemical Characterization of Secondary Organic Aerosol Formed from Atmospheric Aqueous-phase Reactions of Phenolic Compounds

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Anastasio, C.; Zhang, Q.

    2012-12-01

    Phenolic compounds, which are released in significant amounts from biomass burning, may undergo fast aqueous-phase reactions to form secondary organic aerosol (SOA) in the atmosphere. Understanding the aqueous-phase reaction mechanisms of these compounds and the composition of their reaction products is thus important for constraining SOA sources and predicting organic aerosol properties in models. In this study, we investigate the aqueous-phase reactions of three phenols (phenol, guaiacol and syringol) with two oxidants - excited triplet states (3C*) of non-phenolic aromatic carbonyls and hydroxyl radical (OH). By employing four analytical methods including high-resolution aerosol mass spectrometry, total organic carbon analysis, ion chromatography, and liquid chromatography-mass spectrometry, we thoroughly characterize the chemical compositions of the low volatility reaction products of phenols and propose formation mechanisms based on this information. Our results indicate that phenolic SOA is highly oxygenated, with O/C ratios in the range of 0.83-1.03, and that the SOA of phenol is usually more oxidized than those of guaiacol and syringol. Among the three precursors, syringol generates the largest fraction of higher molecular weight (MW) products. For the same precursor, the SOA formed via reaction with 3C* is less oxidized than that formed via reaction with OH. In addition, oxidation by 3C* enhances the formation of higher MW species, including phenolic dimers, higher oligomers and hydroxylated products, compared to reactions initiated by OH, which appear to favor the formation of organic acids. However, our results indicate that the yields of small organic acids (e.g., formate, acetate, oxalate, and malate) are low for both reaction pathways, together accounting for less than 5% of total SOA mass.

  6. Chemical characterization and physico-chemical properties of aerosols at Villum Research Station, Greenland during spring 2015

    NASA Astrophysics Data System (ADS)

    Glasius, M.; Iversen, L. S.; Svendsen, S. B.; Hansen, A. M. K.; Nielsen, I. E.; Nøjgaard, J. K.; Zhang, H.; Goldstein, A. H.; Skov, H.; Massling, A.; Bilde, M.

    2015-12-01

    The effects of aerosols on the radiation balance and climate are of special concern in Arctic areas, which have experienced warming at twice the rate of the global average. As future scenarios include increased emissions of air pollution, including sulfate aerosols, from ship traffic and oil exploration in the Arctic, there is an urgent need to obtain the fundamental scientific knowledge to accurately assess the consequences of pollutants to environment and climate. In this work, we studied the chemistry of aerosols at the new Villum Research Station (81°36' N, 16°40' W) in north-east Greenland during the "inauguration campaign" in spring 2015. The chemical composition of sub-micrometer Arctic aerosols was investigated using a Soot Particle Time-of-Flight Aerosol Mass Spectrometer (SP-ToF-AMS). Aerosol samples were also collected on filters using both a high-volume sampler and a low-volume sampler equipped with a denuder for organic gases. Chemical analyses of filter samples include determination of inorganic anions and cations using ion-chromatography, and analysis of carboxylic acids and organosulfates of anthropogenic and biogenic origin using ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Previous studies found that organosulfates constitute a surprisingly high fraction of organic aerosols during the Arctic Haze period in winter and spring. Investigation of organic molecular tracers provides useful information on aerosol sources and atmospheric processes. The physico-chemical properties of Arctic aerosols are also under investigation. These measurements include particle number size distribution, water activity and surface tension of aerosol samples in order to deduct information on their hygroscopicity and cloud-forming potential. The results of this study are relevant to understanding aerosol sources and processes as well as climate effects in the Arctic, especially during the Arctic haze

  7. Aerosol chemical characterization and role of carbonaceous aerosol on radiative effect over Varanasi in central Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Dumka, U. C.; Kaskaoutis, D. G.; Ram, Kirpa; Panicker, A. S.; Srivastava, M. K.; Tiwari, Shani; Attri, S. D.; Soni, V. K.; Pandey, A. K.

    2016-01-01

    This study investigates the chemical composition of PM10 aerosols at Varanasi, in the central Indo-Gangetic Plain (IGP) during April to July 2011, with emphasis on examining the contribution of elemental carbon (EC) to the estimates of direct aerosol radiative effect (DARE). PM10 samples are analysed for carbonaceous aerosols (Organic Carbon, OC and EC) and water-soluble ionic species (WSIS: Cl-, SO42-, NO3-, PO42- NH4+, Na+, K+, Mg2+ and Ca2+) and several diagnostic ratios (OC/EC, K+/EC, etc) have been also used for studying the aerosol sources at Varanasi. PM10 mass concentration varies between 53 and 310 μg m-3 (mean of 168 ± 73 μg m-3), which is much higher than the National and International air quality standards. The OC mass concentration varies from 6 μg m-3 to 24 μg m-3 (mean of 12 ± 5 μg m-3; 7% of PM10 mass), whereas EC ranges between 1.0 and 14.3 μg m-3 (4.4 ± 3.9 μg m-3; ˜3% of PM10 mass). The relative low OC/EC of 3.9 ± 2.0 and strong correlation (R2 = 0.82) between them suggest the dominance of primary carbonaceous aerosols. The contribution of WSIS to PM10 is found to be ˜12%, out of which ˜57% and 43% are anions and cations, respectively. The composite DARE estimates via SBDART model reveal significant radiative effect and atmospheric heating rates (0.9-2.3 K day-1). Although the EC contributes only ˜3% to the PM10 mass, its contribution to the surface and atmospheric forcing is significantly high (37-63% and 54-77%, respectively), thus playing a major role in climate implications over Varanasi.

  8. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles <100 nm generated by means of jets

  9. Urban aerosol in Oporto, Portugal: Chemical characterization of PM10 and PM2.5

    NASA Astrophysics Data System (ADS)

    Custódio, Danilo; Ferreira, Catarina; Alves, Célia; Duarte, Mácio; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Frosini, Daniele; Colombi, Cristina; Gianelle, Vorne; Karanasiou, Angeliki; Querol, Xavier

    2014-05-01

    Several urban and industrial areas in Southern Europe are not capable of meeting the implemented EU standards for particulate matter. Efficient air quality management is required in order to ensure that the legal limits are not exceeded and that the consequences of poor air quality are controlled and minimized. Many aspects of the direct and indirect effects of suspended particulate matter on climate and public health are not well understood. The temporal variation of the chemical composition is still demanded, since it enables to adopt off-set strategies and to better estimate the magnitude of anthropogenic forcing on climate. This study aims to provide detailed information on concentrations and chemical composition of aerosol from Oporto city, an urban center in Southern Europe. This city is located near the coast line in the North of Portugal, being the country's second largest urban area. Moreover, Oporto city economic prospects depend heavily on a diversified industrial park, which contribute to air quality degradation. Another strong source of air pollution is traffic. The main objectives of this study are: 1) to characterize the chemical composition of PM10 and PM2.5 by setting up an orchestra of aerosol sampling devices in a strategic place in Oporto; 2) to identify the sources of particles exploring parameters such as organic and inorganic markers (e.g. sugars as tracers for biomass burning; metals and elemental carbon for industrial and vehicular emissions); 3) to evaluate long range transport of pollutants using back trajectory analysis. Here we present data obtained between January 2013 and January 2014 in a heavy traffic roadside sampling site located in the city center. Different PM10 and PM2.5 samplers were operated simultaneously in order to collect enough mass on different filter matrixes and to fulfill the requirements of analytical methodologies. More than 100 aerosol samples were collected and then analysed for their mass concentration and

  10. Mass distributions and morphological and chemical characterization of urban aerosols in the continental Balkan area (Belgrade).

    PubMed

    Đorđević, D; Buha, J; Stortini, A M; Mihajlidi-Zelić, A; Relić, D; Barbante, C; Gambaro, A

    2016-01-01

    This work presents characteristics of atmospheric aerosols of urban central Balkans area, using a size-segregated aerosol sampling method, calculation of mass distributions, SEM/EDX characterization, and ICP/MS analysis. Three types of mass distributions were observed: distribution with a pronounced domination of coarse mode, bimodal distribution, and distribution with minimum at 1 μm describing the urban aerosol. SEM/EDX analyses have shown morphological difference and variation in the content of elements in samples. EDX spectra demonstrate that particles generally contain the following elements: Al, Ca, K, Fe, Mg, Ni, K, Si, S. Additionally, the presence of As, Br, Sn, and Zn found in air masses from southeast segment points out the anthropogenic activities most probably from mining activities in southeastern part of Serbia. The ratio Al/Si equivalent to the ratio of desert dust was associated with air masses coming from southeastern and southwestern segments, pointing to influences from North Africa and Middle East desert areas whereas the Al/Si ratio in other samples is significantly lower. In several samples, we found high values of aluminum in the nucleation mode. Samples with low share of crustal elements in the coarse mode are collected when Mediterranean air masses prevailed, while high share in the coarse mode was associated with continental air masses that could be one of the approaches for identification of the aerosol origin. Graphical abstract ᅟ. PMID:26347417

  11. Optical, Physical and Chemical Properties of Tar Balls Observed During the Yosemite Aerosol Characterization Study

    SciTech Connect

    Hand, Jenny L.; Malm, W. C.; Laskin, Alexander; Day, D. E.; Lee, Tae-bum; Wang, Chong M.; Carrico, C. E.; Carrillo, John R.; Cowin, James P.; Collett, J. G.; Iedema, Martin J.

    2005-11-09

    The Yosemite Aerosol Characterization Study of summer 2002 (YACS) occurred during an active fire season in the western U. S., and provided an opportunity to investigate many unresolved issues related to the radiative effects of biomass burning aerosols. Single particle analysis was performed on field collected aerosol samples using an array of electron microscopy techniques. Amorphous carbon spheres, or “tar balls”, were present in samples collected during episodes of high particle light scattering coefficients that occurred during the peak of a smoke/haze event. The highest concentrations of light-absorbing carbon from a dual-wavelength aethalometer (λ = 370 and 880 nm) occurred during periods when the particles were predominantly tar balls, indicating they do absorb light in the UV and near-IR range of the solar spectrum. Closure experiments of mass concentrations and light scattering coefficients during periods dominated by tar balls did not require any distinct assumptions of organic carbon molecular weight correction factors, density, or refractive index compared to periods dominated by other types of organic carbon aerosols. Measurements of the hygroscopic behavior of tar balls using an environmental SEM indicate that tar balls do not exhibit deliquescence, but do uptake some water at high (~83 %) relative humidity. The ability of tar balls to efficiently scatter and absorb light, and to absorb water has important implications for their role in regional haze and climate fence.

  12. Microstructural, chemical and textural characterization of ZnO nanorods synthesized by aerosol assisted chemical vapor deposition

    SciTech Connect

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Fuentes-Cobas, L.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C.; Pérez-García, S.A.; Miki-Yoshida, M.

    2014-12-15

    ZnO nanorods were synthesized by aerosol assisted chemical vapor deposition onto TiO{sub 2} covered borosilicate glass substrates. Deposition parameters were optimized and kept constant. Solely the effect of different nozzle velocities on the growth of ZnO nanorods was evaluated in order to develop a dense and uniform structure. The crystalline structure was characterized by conventional X-ray diffraction in grazing incidence and Bragg–Brentano configurations. In addition, two-dimensional grazing incidence synchrotron radiation diffraction was employed to determine the preferred growth direction of the nanorods. Morphology and growth characteristics analyzed by electron microscopy were correlated with diffraction outcomes. Chemical composition was established by X-ray photoelectron spectroscopy. X-ray diffraction results and X-ray photoelectron spectroscopy showed the presence of wurtzite ZnO and anatase TiO{sub 2} phases. Morphological changes noticed when the deposition velocity was lowered to the minimum, indicated the formation of relatively vertically oriented nanorods evenly distributed onto the TiO{sub 2} buffer film. By coupling two-dimensional X-ray diffraction and computational modeling with ANAELU it was proved that a successful texture determination was achieved and confirmed by scanning electron microscopy analysis. Texture analysis led to the conclusion of a preferred growth direction in [001] having a distribution width Ω = 20° ± 2°. - Highlights: • Uniform and pure single-crystal ZnO nanorods were obtained by AACVD technique. • Longitudinal and transversal axis parallel to the [001] and [110] directions, respectively. • Texture was determined by 2D synchrotron diffraction and electron microscopy analysis. • Nanorods have its [001] direction distributed close to the normal of the substrate. • Angular spread about the preferred orientation is 20° ± 2°.

  13. Physical and Chemical Characterization of Particles in the Upper Troposphere and Lower Stratosphere: Microanalysis of Aerosol Impactor Samples

    NASA Technical Reports Server (NTRS)

    Sheridan, Patrick J.

    1999-01-01

    Herein is reported activities to support the characterization of the aerosol in the upper troposphere (UT) and lower stratosphere (LS) collected during the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) missions in 1994. Through a companion proposal, another group was to measure the size distribution of aerosols in the 0.008 to 2 micrometer diameter range and to collect for us impactor samples of particles larger than about 0.02 gm. In the first year, we conducted laboratory studies related to particulate deposition patterns on our collection substrates, and have performed the analysis of many ASHOE/MAESA aerosol samples from 1994 using analytical electron microscopy (AEM). We have been building an "aerosol climatology" with these data that documents the types and relative abundances of particles observed at different latitudes and altitudes. The second year (and non-funded extension periods) saw continued analyses of impactor aerosol samples, including more ASHOE/MAESA samples, some northern hemisphere samples from the NASA Stratospheric Photochemistry Aerosols and Dynamics Expedition (SPADE) program for comparison, and a few aerosol samples from the NASA Stratospheric TRacers of Atmospheric Transport (STRAT) program. A high-resolution field emission microscope was used for the analysis and re-analysis of a number of samples to determine if this instrument was superior in performance to our conventional electron microscope. In addition, some basic laboratory studies were conducted to determine the minimum detectable and analyzable particle size for different types of aerosols. In all, 61 aerosol samples were analyzed, with a total of over 30,000 individual particle analyses. In all analyzed samples, sulfate particles comprised the major aerosol number fraction. It must be stressed that particles composed of more than one species, for example sulfate and organic carbon, were classified

  14. On-line characterization of organic aerosols formed from biogenic precursors using atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Kückelmann, U; Warscheid, B; Hoffmann, T

    2000-04-15

    A method to investigate the chemical composition of organic aerosols formed from biogenic hydrocarbon oxidation using atmospheric pressure chemical ionization mass spectrometry (APCI/MS) is described. The method involves the direct introduction of aerosol particles into the ion source of the mass spectrometer. Using this technique, reaction monitoring experiments of alpha-pinene ozonolysis show the formation of hetero- and homomolecular cluster anions (dimers) of the primary oxidation products (multifunctional carboxylic acids). Since the formation of dimers plays a profound role in new particle formation processes by homogeneous nucleation in the atmosphere and, at the same time, is an intrinsic feature of APCI, it is essential to differentiate between both processes when on-line APCI/MS is applied. In this paper, we compare the results from the investigations of organic aerosols and artificially generated dimer cluster ions of the same compounds using identical ionization conditions. The clusters and their formation processes are characterized by varying the analyte concentration, investigating the thermal stability of dimers, and studying collisional activation properties of both ion species. The investigations show a significant difference in ion stability: dimer anions measured on-line have an estimated stability that is 20 kJ mol(-1) higher than that of the corresponding artificially generated cluster ions. Hence, the technique provides the possibility to accurately characterize dimers as ionized reaction products from biogenic hydrocarbon oxidation and allows an insight into the process of new-particle formation by homogeneous nucleation. PMID:10784160

  15. Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kostenidou, E.; Florou, K.; Kaltsonoudis, C.; Tsiflikiotou, M.; Vratolis, S.; Eleftheriadis, K.; Pandis, S. N.

    2015-10-01

    The concentration and chemical composition of non-refractory fine particulate matter (NR-PM1) and black carbon (BC) levels were measured during the summer of 2012 in the suburbs of two Greek cities, Patras and Athens, in an effort to better understand the chemical processing of particles in the high photochemical activity environment of the eastern Mediterranean. The composition of PM1 was surprisingly similar in both areas, demonstrating the importance of regional sources for the corresponding pollution levels. The PM1 average mass concentration was 9-14 μg m-3. The contribution of sulfate was around 38 %, while organic aerosol (OA) contributed approximately 45 % in both cases. PM1 nitrate levels were low (2 %). The oxygen to carbon (O : C) atomic ratio was 0.50 ± 0.08 in Patras and 0.47 ± 0.11 in Athens. In both cases PM1 was acidic. Positive matrix factorization (PMF) was applied to the high-resolution organic aerosol mass spectra obtained by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). For Patras, five OA sources could be identified: 19 % very oxygenated OA (V-OOA), 38 % moderately oxygenated OA (M-OOA), 21 % biogenic oxygenated OA (b-OOA), 7 % hydrocarbon-like OA (HOA-1) associated with traffic sources and 15 % hydrocarbon-like OA (HOA-2) related to other primary emissions (including cooking OA). For Athens, the corresponding source contributions were: V-OOA (35 %), M-OOA (30 %), HOA-1 (18 %) and HOA-2 (17 %). In both cities the major component was OOA, suggesting that under high photochemical conditions most of the OA in the eastern Mediterranean is quite aged. The contribution of the primary sources (HOA-1 and HOA-2) was important (22 % in Patras and 35 % in Athens) but not dominant.

  16. Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kostenidou, E.; Florou, K.; Kaltsonoudis, C.; Tsiflikiotou, M.; Vratolis, S.; Eleftheriadis, K.; Pandis, S. N.

    2015-02-01

    The concentration and chemical composition of the non-refractory fine particulate matter (NR-PM1) and black carbon (BC) levels were measured during the summer of 2012 in the suburbs of two Greek cities, Patras and Athens, in an effort to better understand the chemical processing of particles in the high photochemical activity environment of the Eastern Mediterranean. The composition of PM1 was surprisingly similar in both areas demonstrating the importance of regional sources for the corresponding pollution levels. The PM1 average mass concentration was 9-14 μg m-3. The contribution of sulphate was around 38%, while organic aerosol (OA) contributed approximately 45% in both cases. PM1 nitrate levels were low (2%). The oxygen to carbon (O : C) atomic ratio was 0.50 ± 0.08 in Patras and 0.47 ± 0.11 in Athens. In both cases the PM1 was acidic. Positive matrix factorization (PMF) was applied to the high resolution organic aerosol mass spectra obtained by an Aerodyne High Resolution Aerosol Mass Spectrometer (HR-AMS). For Patras five OA sources could be identified: 19% very oxygenated OA (V-OOA), 38% moderately oxygenated OA (M-OOA), 21% biogenic oxygenated OA (b-OOA), 7% hydrocarbon-like OA (HOA-1) associated with traffic sources and 15% hydrocarbon-like OA (HOA-2) related to other primary emissions (including cooking OA). For Athens the corresponding source contributions were: V-OOA (35%), M-OOA (30%), HOA-1 (18%) and HOA-2 (17%). In both cities the major component was OOA, suggesting that under high photochemical conditions most of the OA in the Eastern Mediterranean is quite aged. The contribution of the primary sources (HOA-1 and HOA-2) was important (22% in Patras and 33% in Athens) but not dominant.

  17. Chemical characterization of fine organic aerosol for source apportionment at Monterrey, Mexico

    NASA Astrophysics Data System (ADS)

    Mancilla, Y.; Mendoza, A.; Fraser, M. P.; Herckes, P.

    2015-07-01

    , source attribution results obtained using the CMB model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5. The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5). To our knowledge, this is the second study to explore the broad chemical characterization of fine organic aerosol in Mexico and the first for the MMA.

  18. Characterization of aerosol-containing chemical simulant clouds using a sensitive, thermal infrared imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey L.; D'Amico, Francis M.; Kolodzey, Steven J.; Qian, Jun; Polak, Mark L.; Westerberg, Karl; Chang, Clement S.

    2011-05-01

    A sensitive, ground-based thermal imaging spectrometer was deployed at the Army's Dugway Proving Ground to remotely monitor explosively released chemical-warfare-agent-simulant clouds from stand-off ranges of a few kilometers. The sensor has 128 spectral bands covering the 7.6 to 13.5 micron region. The measured cloud spectra clearly showed scattering of high-elevation-angle sky radiance by liquid aerosols or dust in the clouds: we present arguments that show why the scattering is most likely due to dust. This observation has significant implications for early detection of dust-laden chemical clouds. On one hand, detection algorithms must properly account for the scattered radiation component, which would include out-of-scene radiation components as well as a dust signature; on the other hand, this scattering gives rise to an enhanced "delta-T" for detection by a ground-based sensor.

  19. Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia,and Look Rock, Tennessee

    NASA Astrophysics Data System (ADS)

    Hapsari Budisulistiorini, Sri; Baumann, Karsten; Edgerton, Eric S.; Bairai, Solomon T.; Mueller, Stephen; Shaw, Stephanie L.; Knipping, Eladio M.; Gold, Avram; Surratt, Jason D.

    2016-04-01

    A year-long near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia, in 2012) and rural (Look Rock, Tennessee, in 2013) site in the southeastern US using the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA) and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region. The highest concentrations of NR-PM1 were observed during winter and fall seasons at the urban site and during spring and summer at the rural site. Across all seasons and at both sites, NR-PM1 was composed largely of OA (up to 76 %) and sulfate (up to 31 %). Six distinct OA sources were resolved by positive matrix factorization applied to the ACSM organic mass spectral data collected from the two sites over the 1 year of near-continuous measurements at each site: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), semi-volatile oxygenated OA (SV-OOA), low-volatility oxygenated OA (LV-OOA), isoprene-derived epoxydiols (IEPOX) OA (IEPOX-OA) and 91Fac (a factor dominated by a distinct ion at m/z 91 fragment ion previously observed in biogenic influenced areas). LV-OOA was observed throughout the year at both sites and contributed up to 66 % of total OA mass. HOA was observed during the entire year only at the urban site (on average 21 % of OA mass). BBOA (15-33 % of OA mass) was observed during winter and fall, likely dominated by local residential wood burning emission. Although SV-OOA contributes quite significantly ( ˜ 27 %), it was observed only at the urban site during colder seasons. IEPOX-OA was a major component (27-41 %) of OA at both sites, particularly in spring and summer. An ion fragment at m/z 75 is well correlated with the m/z 82 ion associated with the aerosol mass spectrum of IEPOX-derived secondary organic aerosol (SOA). The

  20. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  1. Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, T.; Bernard, F.; Ding, X.; Wen, S.; Zhang, Y.; Zhang, Z.; He, Q.; Lü, S.; Chen, J.; Saunders, S.; Yu, J.

    2014-01-01

    We describe here characterization of a new state-of-the-art smog chamber facility for studying atmospheric gas-phase and aerosol chemistry. The chamber consists of a 30 m3 fluorinated ethylene propylene (FEP) Teflon film reactor housed in a temperature-controlled enclosure equipped with black lamps as the light source. Temperature can be set in the range from -10 to 40 °C at accuracy of ±1 °C as measured by eight temperature sensors inside the enclosure and one just inside the reactor. Matrix air can be purified with non-methane hydrocarbons (NMHCs) < 0.5 ppb, NOx/O3/carbonyls < 1 ppb and particles < 1 cm-3. The photolysis rate of NO2 is adjustable between 0 and 0.49 min-1. At 298 K under dry conditions, the average wall loss rates of NO, NO2 and O3 were measured to be 1.41 × 10-4 min-1, 1.39 × 10-4 min-1 and 1.31 × 10-4 min-1, respectively, and the particle number wall loss rate was measured to be 0.17 h-1. Auxiliary mechanisms of this chamber are determined and included in the Master Chemical Mechanism to evaluate and model propene-NOx-air irradiation experiments. The results indicate that this new smog chamber can provide high-quality data for mechanism evaluation. Results of α-pinene dark ozonolysis experiments revealed secondary organic aerosol (SOA) yields comparable to those from other chamber studies, and the two-product model gives a good fit for the yield data obtained in this work. Characterization experiments demonstrate that our Guangzhou Institute of Geochemistry, Chinese Academy Sciences (GIG-CAS), smog chamber facility can be used to provide valuable data for gas-phase chemistry and secondary aerosol formation.

  2. Real-time characterization of the size and chemical composition of individual particles in ambient aerosol systems in Riverside, California

    SciTech Connect

    Noble, C.A.; Prather, K.A.

    1995-12-31

    Atmospheric aerosols, although ubiquitous, are highly diverse and continually fluctuating systems. A typical aerosol system may consist of particles with diameters between {approximately}0.002 {mu}m and {approximately}200 {mu}m. Even in rural or pristine areas, atmospheric particle concentration is significant, with concentrations up to 10{sup 8} particles/cm{sup 3} not being uncommon. Chemical composition of atmospheric particles vary from simple water droplets or acidic ices to soot particles and cigarette smoke. Due to changes in atmospheric conditions, processes such as nucleation, coagulation or heterogeneous chemistry may effect both physical and chemical properties of individual particles over relatively short time intervals. Recently, aerosol measurement techniques are focusing on determining the size and/or chemical composition of individual aerosol particles. This research group has recently developed aerosol time-of-flight mass spectrometry (ATOFMS), a technique which allows for real-time determination of the size and chemical composition of individual aerosol particles. Single particle measurements are performed in one instrument using dual laser aerodynamic particle sizing and time-of-flight mass spectrometry. Aerosol-time-of-flight mass spectrometry is briefly described in several other abstracts in this publication.

  3. Chemical characterization of submicron aerosol particles collected over the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Gabriel, R.; Mayol-Bracero, O. L.; Andreae, M. O.

    2002-08-01

    Submicron aerosol particles (Dp < 1 μm) were sampled with stacked filter units on the National Center for Atmospheric Research (NCAR) Hercules C-130 aircraft during February-March 1999 as a contribution to the Indian Ocean Experiment (INDOEX). We determined the vertical and spatial distribution of the major aerosol components (NH4+, Na+, K+, Mg2+, Ca2+, methyl sulfonic acid, Cl-, NO3-, SO42-, oxalate, organic carbon, and black carbon) over the Indian Ocean to examine the role of pollution aerosols on indirect and direct radiative forcing. High pollution levels were observed over the entire northern Indian Ocean down to the Intertropical Convergence Zone (ITCZ) located between the equator and 10°S. In the northern part of the Indian Ocean (5°-15°N, 66°-73°E), high concentrations of carbonaceous aerosol and pollution-derived inorganic species were found in a layer extending from the sea surface to about 3.5 km asl. In this layer, the average mass concentration of all aerosol species detected by our technique ranged between 7 and 34 μg m-3, comparable to pollution levels observed in industrialized regions. In the Southern Hemisphere (1°-9°S, 66°-73°E), the aerosol concentrations rapidly declined to remote background levels of about 2 μg m-3. The concentrations of non-sea-salt sulfate (the main light scattering component) ranged from maximum values of 12.7 μg m-3 in the Northern Hemisphere to 0.2 μg m-3 in the Southern Hemisphere. Carbonaceous aerosol contributes between 40% and 60% to the fine aerosol mass of all determined components. An unusually high fraction of black carbon (up to 16% in the polluted areas) is responsible for its high light absorption coefficient.

  4. Chemical characterization of the main secondary organic aerosol (SOA) products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-04-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e. burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed in the atmospheric gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the low-volatility SOA products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of H2O2 and nitrite. The formed guaiacol reaction products were concentrated by using solid-phase extraction (SPE) and then purified by means of semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state 1H, 13C and 2D nuclear magnetic resonance (NMR) spectroscopy and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of UV and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  5. Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia and Look Rock, Tennessee

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Baumann, K.; Edgerton, E. S.; Bairai, S. T.; Mueller, S.; Shaw, S. L.; Knipping, E. M.; Gold, A.; Surratt, J. D.

    2015-08-01

    A yearlong near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia) and rural (Look Rock, Tennessee) site in the southeastern US using the Aerodyne aerosol chemical speciation monitor (ACSM) collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA) and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region. The highest concentrations of NR-PM1 were observed during winter and fall seasons at the urban site and during spring and summer at the rural site. Across all seasons and at both sites, NR-PM1 was composed largely of OA (50-76 %) and inorganic sulfate (12-31 %). Six distinct OA sources were resolved by positive matrix factorization applied to the ACSM organic mass spectral data collected from the two sites over the one year of near-continuous measurements at each site: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), semi-volatile oxygenated OA (SV-OOA), low-volatility oxygenated OA (OOA), isoprene-derived epoxydiol (IEPOX) OA (IEPOX-OA), and 91Fac OA (a factor dominated by a distinct ion at m/z 91 fragment ion previously observed in biogenic influenced areas). LV-OOA was observed throughout the year at both sites and contributed 30-66 % of total OA mass. HOA was also observed during the entire year only at the urban site (15-24 % of OA mass). BBOA (15-33 % of OA mass) was observed during winter and fall, likely dominated by local residential wood burning emission. Although SV-OOA contributes quite significantly (∼ 27 %), it was observed only at the urban site during colder seasons. IEPOX-OA was a major component (27-41 %) of OA at both sites, particularly in spring and summer. An ion fragment at m/z 75 is proposed as an additional marker for IEPOX-OA, as it is shown to correlate well with the m/z 82 ion shown to be associated with the aerosol mass spectrum of

  6. Special issue: Chemical characterization of secondary organic aerosol - Dedication to Professor Magda Claeys

    NASA Astrophysics Data System (ADS)

    Surratt, Jason D.; Szmigielski, Rafal; Faye McNeill, V.

    2016-04-01

    Atmospheric aerosols are suspensions of liquid and solid particles that have diameters ranging from a few nanometers to several micrometers (μm). Atmospheric fine particulate matter (PM2.5, aerosols with aerodynamic diameters of 2.5 μm or less) are especially important since they can adversely affect air quality and human health as well as play a critical role in Earth's climate system. In terms of aerosol climate effects, PM2.5 can directly affect climate by scattering or absorbing incoming solar radiation or indirectly by acting as nuclei on which cloud droplets and ice particles form. As a result, a better understanding of processes that determine the formation and sinks of PM2.5 is needed for developing effective policies that improve air quality and public health as well as to accurately predict the response of the climate system due to changes in anthropogenic emissions.

  7. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a

  8. Physicochemical Characterization of Capstone Depleted Uranium Aerosols III: Morphologic and Chemical Oxide Analyses

    SciTech Connect

    Krupka, Kenneth M.; Parkhurst, MaryAnn; Gold, Kenneth; Arey, Bruce W.; Jenson, Evan D.; Guilmette, Raymond A.

    2009-03-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using X-ray diffraction (XRD) and particle morphologies using scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles appear to have been fractured (perhaps as a result of abrasion and comminution); others were spherical, occasionally with dendritic or lobed surface structures. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small chunks of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of The Journal of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for

  9. Physicochemical characterization of Capstone depleted uranium aerosols III: morphologic and chemical oxide analyses.

    PubMed

    Krupka, Kenneth M; Parkhurst, Mary Ann; Gold, Kenneth; Arey, Bruce W; Jenson, Evan D; Guilmette, Raymond A

    2009-03-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using x-ray diffraction (XRD), and particle morphologies were examined using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles were spherical, occasionally with dendritic or lobed surface structures. Others appear to have fractures that perhaps resulted from abrasion and comminution, or shear bands that developed from plastic deformation of the DU material. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small bits of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of Health Physics to interpret the

  10. Characterization of aerosol optical properties, chemical composition and mixing states in the winter season in Shanghai, China.

    PubMed

    Tang, Yong; Huang, Yuanlong; Li, Ling; Chen, Hong; Chen, Jianmin; Yang, Xin; Gao, Song; Gross, Deborah S

    2014-12-01

    Physical and chemical properties of ambient aerosols at the single particle level were studied in Shanghai from December 22 to 28, 2009. A Cavity-Ring-Down Aerosol Extinction Spectrometer (CRD-AES) and a nephelometer were deployed to measure aerosol light extinction and scattering properties, respectively. An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to detect single particle sizes and chemical composition. Seven particle types were detected. Air parcels arrived at the sampling site from the vicinity of Shanghai until mid-day of December 25, when they started to originate from North China. The aerosol extinction, scattering, and absorption coefficients all dropped sharply when this cold, clean air arrived. Aerosol particles changed from a highly aged type before this meteorological shift to a relatively fresh type afterwards. The aerosol optical properties were dependent on the wind direction. Aerosols with high extinction coefficient and scattering Ångström exponent (SAE) were observed when the wind blew from the west and northwest, indicating that they were predominantly fine particles. Nitrate and ammonium correlated most strongly with the change in aerosol optical properties. In the elemental carbon/organic carbon (ECOC) particle type, the diurnal trends of single scattering albedo (SSA) and elemental carbon (EC) signal intensity had a negative correlation. We also found a negative correlation (r=-0.87) between high mass-OC particle number fraction and the SSA in a relatively clean period, suggesting that particulate aromatic components might play an important role in light absorption in urban areas. PMID:25499489

  11. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  12. Characterization of Cooking-Related Aerosols

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Blanc, L. E.

    2010-12-01

    The temperatures at which food is cooked are usually high enough to drive oils and other organic compounds out of materials which are being prepared for consumption. As these compounds move away from the hot cooking surface and into the atmosphere, they can participate in chemical reactions or condense to form particles. Given the high concentration of cooking in urban areas, cooking-related aerosols likely contribute to the overall amount of particulate matter on a local scale. Reported here are results for the mid-infrared optical characterization of aerosols formed during the cooking of several meat and vegetable samples in an inert atmosphere. The samples were heated in a novel aerosol generator that is designed to collect particles formed immediately above the cooking surface and inject them into a laminar aerosol flow cell. Preliminary results for the chemical processing of cooking-related aerosols in synthetic air will also be presented.

  13. Characterization of marine boundary layer aerosol from North Atlantic and European sources: Physical and chemical properties and climate forcing parameters

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike

    This thesis focuses on aerosol properties measured in Southwestern Portugal during the second Aerosol Characterization Experiment. Fundamental aerosol physical properties such as particle size distribution and hygroscopic properties are related to possible sources and aerosol transformation processes. From these fundamental properties we derive aerosol properties that are important for aerosol forcing of climate. First, a new method for calculating CCN spectra is proposed in this work and tested using sensitivity studies and comparisons to direct measurements. The measured and calculated CCN spectra differ on average by 30%, which at small supersaturations is similar to the measurement uncertainties. Second, aerosol number to volume ratios (R) are calculated and the fact that values of R are relatively constrained is explained based on observed correlations between size distribution parameters. Third, a simple parameterization of the humidity dependence of the submicron aerosol scattering coefficient has been derived, depending only on a volume weighted average diameter growth factor and the volume mean diameter of the dry size distribution. One set of empirical parameters can be used to parameterize all aerosol types characterized during the ACE-2 measurement period. Aerosol physical properties and climate forcing parameters in the North-East Atlantic Ocean were clearly affected by pollution outbreaks from Europe. The submicron particle volume increased by a factor of 5 in polluted conditions, the light scattering coefficient of dry particles increased on average by a factor of up to 10, CCN concentrations at supersaturations of 0.2% increased by a factor of 3--5. The aerosol fundamental properties vary often strongly with air mass history, but also show short-term variability that often has a characteristic diurnal scale. The number concentration of fine particles below 50nm and the particle hygroscopic growth factors are mostly dominated by diurnal processes

  14. Chemical characterization of polar organic markers in aerosols in a local area around Bologna, Italy

    NASA Astrophysics Data System (ADS)

    Pietrogrande, Maria Chiara; Bacco, Dimitri; Rossi, Mauro

    2013-08-01

    The composition and seasonal variations of water-soluble organic compounds, including 18 dicarboxylic acids and 7 sugars, were determined in the atmospheric aerosol in the surroundings of Bologna, Northern Italy, during intensive summer and winter campaigns. In both seasons the most abundant compound is levoglucosan, as the major by-product from biomass burning. The abundances of dicarboxylic acids exhibit a seasonal pattern with higher winter concentrations (mean total concentrations are 60 ng m-3 and 23 ng m-3, in winter and summer, respectively). The distribution profiles and the diagnostic ratios of these markers allowed to estimate the contribution of primary emission sources (power plants, vehicular circulation, biomass burning) associated with secondary constituents from both biogenic and anthropogenic precursors. The distinct seasonal pattern of abundances suggests, overall, the dominant role of secondary formation of particulate organics in summer, and the highest strength of primary emissions in winter.

  15. Chemical characterization of aerosols at the summit of Mountain Tai in Central East China

    NASA Astrophysics Data System (ADS)

    Deng, C.; Zhuang, G.; Huang, K.; Li, J.; Zhang, R.; Wang, Q.; Liu, T.; Sun, Y.; Guo, Z.; Fu, J. S.; Wang, Z.

    2011-07-01

    PM2.5 and TSP samples were collected at the summit of Mountain Tai (MT) (1534 m a.s.l.) in spring 2006/2007 and summer 2006 to investigate the characteristics of aerosols over central eastern China. For comparison, aerosol samples were also collected at Tazhong, Urumqi, and Tianchi in Xinjiang in northwestern China, Duolun and Yulin in northern China, and two urban sites in the megacities, Beijing and Shanghai, in 2007. Daily mass concentrations of TSP and PM2.5 ranged from 39.6-287.6 μg m-3 and 17.2-235.7 μg m-3 respectively at the summit of MT. Averaged concentrations of PM2.5 showed a pronounced seasonal variation with higher concentration in summer than spring. 17 water-soluble ions (SO42-, NO3-, Cl-, F-, PO43-, NO2-, CH3COO-, CH2C2O42-, C2H4C2O42-, HCOO-, MSA, C2O42-, NH4+, Ca2+, K+, Mg2+, Na+), and 19 elements of all samples were measured. SO42-, NO3-, and NH4+ were the major water-soluble species in PM2.5, accounting for 61.50 % and 72.65 % of the total measured ions in spring and summer, respectively. The average ratio of PM2.5/TSP was 0.37(2006) and 0.49(2007) in spring, while up to 0.91 in summer, suggesting that aerosol particles were primarily comprised of fine particles in summer and of considerable coarse particles in spring. Crustal elements (e.g., Ca, Mg, Al, Fe, etc.) showed higher concentration in spring than summer, while most of the pollution species (SO42-, NO3-, K+, NO2-, NH4+, Cl-, organic acids, Pb, Zn, Cd, and Cr) from local/regional anthropogenic emissions or secondary formation presented higher concentration in summer. The ratio of Ca/Al suggested the impact of Asian dust from the western deserts on the air quality in this region. The high concentration of K+ in PM2.5 (4.41 μg m-3) and its good correlation with black carbon (r = 0.90) and oxalic acid (r = 0.87) suggested the severe pollution from biomass burning, which was proved to be a main source of fine particles over central eastern China in summer. The contribution of biomass

  16. Chemical and isotopic characterization of fatty acids and polycyclic aromatic hydrocarbons in aerosols - implications for biomass burning

    SciTech Connect

    Ballentine, D.C.

    1995-12-31

    Emissions of organic materials during biomass burning have been suggested to influence the biogeochemical distribution of nutrients in a range of ecosystems. Additionally, some organic components survive pyrolytic processes and are of regional and global biogeochemical significance because they may serve as tracers for transport of biomass burning products. Two classes of compounds that are of interest in determining the transport of these products are polycyclic aromatic hydrocarbons (PAH) and fatty acids. Polycyclic aromatic hydrocarbons are stable to biodegradation and are typically produced during natural and anthropogenic combustion processes. Fatty acids are also stable to atmospheric degradation and have been implicated as useful biomarkers for atmospheric transport. In this study, PAH and fatty acids emitted during controlled low and high temperature burns of sugar cane have been chemically and isotopically characterized using GC/MS and GC/IRMS, respectively. In order to determine if these species are suitable biomarkers for the transport of biomass burning materials, aerosols collected during sugar cane burning in South Africa have been similarly analyzed.

  17. Chemical characterization of submicron aerosol and particle growth events at a national background site (3295 m a.s.l.) on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Du, W.; Sun, Y. L.; Xu, Y. S.; Jiang, Q.; Wang, Q. Q.; Yang, W.; Wang, F.; Bai, Z. P.; Zhao, X. D.; Yang, Y. C.

    2015-09-01

    Atmospheric aerosols exert highly uncertain impacts on radiative forcing and also have detrimental effects on human health. While aerosol particles are widely characterized in megacities in China, aerosol composition, sources and particle growth in rural areas in the Tibetan Plateau remain less understood. Here we present the results from an autumn study that was conducted from 5 September to 15 October 2013 at a national background monitoring station (3295 m a.s.l.) in the Tibetan Plateau. The submicron aerosol composition and particle number size distributions were measured in situ with an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) and a Scanning Mobility Particle Sizer (SMPS). The average mass concentration of submicron aerosol (PM1) is 11.4 μg m-3 (range: 1.0-78.4 μg m-3) for the entire study, which is much lower than observed at urban and rural sites in eastern China. Organics dominated PM1, accounting for 43 % on average, followed by sulfate (28 %) and ammonium (11 %). Positive Matrix Factorization analysis of ACSM organic aerosol (OA) mass spectra identified an oxygenated OA (OOA) and a biomass burning OA (BBOA). The OOA dominated OA composition, accounting for 85 % on average, 17 % of which was inferred from aged BBOA. The BBOA contributed a considerable fraction of OA (15 %) due to the burning of cow dung and straw in September. New particle formation and growth events were frequently observed (80 % of time) throughout the study. The average particle growth rate is 2.0 nm h-1 (range: 0.8-3.2 nm h-1). By linking the evolution of particle number size distribution to aerosol composition, we found an elevated contribution of organics during particle growth periods and also a positive relationship between the growth rate and the fraction of OOA in OA, which potentially indicates an important role of organics in particle growth in the Tibetan Plateau.

  18. Temporal variability of MODIS aerosol optical depth and chemical characterization of airborne particulates in Varanasi, India.

    PubMed

    Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, T

    2015-01-01

    Temporal variation of airborne particulate mass concentration was measured in terms of toxic organics, metals and water-soluble ionic components to identify compositional variation of particulates in Varanasi. Information-related fine particulate mass loading and its compositional variation in middle Indo-Gangetic plain were unique and pioneering as no such scientific literature was available. One-year ground monitoring data was further compared to Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 retrieved aerosol optical depth (AOD) to identify trends in seasonal variation. Observed AOD exhibits spatiotemporal heterogeneity during the entire monitoring period reflecting monsoonal low and summer and winter high. Ground-level particulate mass loading was measured, and annual mean concentration of PM2.5 (100.0 ± 29.6 μg/m(3)) and PM10 (176.1 ± 85.0 μg/m(3)) was found to exceed the annual permissible limit (PM10: 80 %; PM2.5: 84 %) and pose a risk of developing cardiovascular and respiratory diseases. Average PM2.5/PM10 ratio of 0.59 ± 0.18 also indicates contribution of finer particulates to major variability of PM10. Particulate sample was further processed for trace metals, viz. Ca, Fe, Zn, Cu, Pb, Co, Mn, Ni, Cr, Na, K and Cd. Metals originated mostly from soil/earth crust, road dust and re-suspended dust, viz. Ca, Fe, Na and Mg were found to constitute major fractions of particulates (PM2.5: 4.6 %; PM10: 9.7 %). Water-soluble ionic constituents accounted for approximately 27 % (PM10: 26.9 %; PM2.5: 27.5 %) of the particulate mass loading, while sulphate (8.0-9.5 %) was found as most dominant species followed by ammonium (6.0-8.2 %) and nitrate (5.5-7.0 %). The concentration of toxic organics representing both aliphatic and aromatic organics was determined by organic solvent extraction process. Annual mean toxic organic concentration was found to be 27.5 ± 12.3 μg/m(3) (n = 104) which constitutes significant proportion of

  19. Chemical Characterization and Single Scattering Albedo of Atmospheric Aerosols Measured at Amami-Oshima, Southwest Japan, During Spring Seasons

    NASA Astrophysics Data System (ADS)

    Tsuruta, H.; Yabuki, M.; Takamura, T.; Sudo, S.; Yonemura, S.; Shirasuna, Y.; Hirano, K.; Sera, K.; Maeda, T.; Hayasaka, T.; Nakajima, T.

    2008-12-01

    An intensive field program was performed to measure atmospheric aerosols at Amami-Oshima, a small island located at southwest Japan, in the spring season of 2001, 2003, and 2005 under the ACE-Asia, APEX and ABC-EAREX2005 projects. Chemical analysis of the fine and coarse aerosols was made for elemental carbon (EC) and organic carbon, water soluble ions, and trace elements. Single scattering albedo (SSA) of aerosols was independently estimated by two methods. The one (SSAc) is by chemical compositions assuming a half internal mixture between EC and non sea-salt sulfate, and the other (SSAo) is by optical measurements of scattering coefficient and absorption coefficient. The backward trajectory analysis showed that the aerosol concentrations in the air masses arrived at Amami, were much higher from the Asian Continent than from other regions, and two types of aerosol enhancement were observed. The one was caused by polluted air masses from the urban-industrial area of east-coast China, the other was by high mineral dusts due to large- scale dust storms in the desert regions of northwest China. The SSAc was in a range of 0.87-0.98, and in good agreement with the SSAo after some corrections for original scattering and absorption coefficients. The SSAc showed no significant difference between the air masses from the polluted area and the desert regions. The negative correlation between the SSAc and EC was divided into two groups depending on the concentration of non sea-salt sulfate, while the increase in mineral dusts did not show any correlation with the SSAc.

  20. Chemical Properties of Combustion Aerosols: An Overview

    EPA Science Inventory

    A wide variety of pyrogenic and anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is remarkably complex. ...

  1. HOUSTON AEROSOL CHARACTERIZATION STUDY

    EPA Science Inventory

    An intensive field study of ambient aerosols was conducted in Houston between September 14 and October 14, 1978. Measurements at 12 sites were made using (1) two relocatable monitoring systems instrumented for aerosol and gaseous pollutants, (2) a network of high volume samplers ...

  2. Ground based chemical characterization of submicron aerosol during the South American Biomass Burning Analysis (SAMBBA) field experiment

    NASA Astrophysics Data System (ADS)

    Brito, Joel; Artaxo, Paulo; Varanda Rizzo, Luciana; Johnson, Ben; Haywood, Jim; Longo, Karla; Freitas, Saulo; Coe, Hugh

    2013-04-01

    This work presents the results of an Aerosol Chemical Speciation Monitor (ACSM) which was successfully operated at a ground station in Porto Velho, Brazil, during the South American Biomass Burning Analysis (SAMBBA). SAMBBA is an international research project based on experimental and modeling activities designed to investigate the impacts of biomass burning emissions on climate, air quality and numerical weather prediction over South America. The measurement program was headed by the deployment of UK's Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft over Brazil during the dry season of 2012. The aircraft operation was coordinated with ground-based measurements at Porto Velho, operated by the University of Sao Paulo. Besides the aerosol chemical speciation, continuous measurements of aerosol size distribution and optical properties were carried out at the ground station, together with CO, CO2 and O3. Filters for trace elements measured by XRF and for OC/EC determined using a Sunset instrument were also collected at the ground based component of SAMBBA. The ACSM collected data for three weeks during September 2012. This period included a strong biomass burning event which showed a marked peak in f60, linked with Levoglucosan, a well-known biomass burning marker. During the biomass burning event, organics concentrations rose up to 80 μg/m3, black carbon close to 6 μg/m3 and CO mixing ratio above 2 ppmv. Fast biomass burning aerosol processing in the atmosphere could be observed through the relative contributions of C2H3O+ vs. CO2+ relative to total organic mass (f44 vs. f43). A clear diurnal variation throughout the sampling period has been observed for organic aerosols with a median peak of 9 μg/m3 at 04:00 LT and a minima of 5 μg/m3 at 18:00 LT. Preliminary results indicate that organics are responsible for 85% of PM1 non-refractory aerosols. The data set will allow the study of interactions between biomass burning and biogenic

  3. Optical and chemical characterization of aerosols emitted from coal, heavy and light fuel oil, and small-scale wood combustion.

    PubMed

    Frey, Anna K; Saarnio, Karri; Lamberg, Heikki; Mylläri, Fanni; Karjalainen, Panu; Teinilä, Kimmo; Carbone, Samara; Tissari, Jarkko; Niemelä, Ville; Häyrinen, Anna; Rautiainen, Jani; Kytömäki, Jorma; Artaxo, Paulo; Virkkula, Aki; Pirjola, Liisa; Rönkkö, Topi; Keskinen, Jorma; Jokiniemi, Jorma; Hillamo, Risto

    2014-01-01

    Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study. PMID:24328080

  4. Analysis for chemical characterization of atmospheric aerosols application of X-ray microprobe system and double thin film method.

    PubMed

    Tohno, Susumu; Ma, Chang-Jin; Hayakawa, Shinjiro; Yamasaki, Satoshi; Kasahara, Mikio

    2006-09-01

    The X-ray microprobe system was applied to ultra trace characterization of single Kosa aerosols and non-Kosa aerosols simultaneously collected at Yasaka, Japan and TaeAnn, Korea. We demonstrated remarkable mass increase of heavy metals as well as soil components in individual particles during the Kosa event compared with the non-Kosa period at Yasaka. Backward trajectory analysis suggested that the Kosa samples were in the mixing state of mineral components and anthropogenic heavy elements. Double thin film method was applied to investigate the seasonal change of the mixing states of single sea-salt aerosols associated with chlorine loss due to the heterogeneous reactions between sea-salt particles and acidic gases. It was revealed that the percentages of both chloride-nitrate mixed particles and sulfate-nitrate ones were larger in wintertime than those in summertime and fraction of chloride-nitrate mixed particles increased with an increase of particle size. Comparison between the size-segregated bulk analysis and the single particle analysis demonstrated that remarkable chloride depletion occurred in coarse particles sampled on May in the former analysis, while chloride depletion in coarse particles was not marked in the latter analysis. The discrepancy attributes to the difference of the sampling time between both analyses because significant change of air mass route occurred during the bulk sampling after completion of the single particle sampling. PMID:16741794

  5. Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)

    DOE Data Explorer

    The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

  6. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  7. Optical Characterization of Metallic Aerosols

    NASA Technical Reports Server (NTRS)

    Sun, Wenbo; Lin, Bing

    2005-01-01

    Airborne metallic particulates from industry and urban sources are highly conducting aerosols. The characterization of these pollutant particles is important for environment monitoring and protection. Because these metallic particulates are highly reflective, their effect on local weather or regional radiation budget may also need to be studied. In this work, light scattering characteristics of these metallic aerosols are studied using exact solutions on perfectly conducting spherical and cylindrical particles. It is found that for perfectly conducting spheres and cylinders, when scattering angle is larger than approx. 90 deg. the linear polarization degree of the scattered light is very close to zero. This light scattering characteristics of perfectly conducting particles is significantly different from that of other aerosols. When these perfectly conducting particles are immersed in an absorbing medium, this light scattering characteristics does not show significant change. Therefore, measuring the linear polarization of scattered lights at backward scattering angles can detect and distinguish metallic particulates from other aerosols. This result provides a great potential of metallic aerosol detection and monitoring for environmental protection.

  8. Long-term real-time chemical characterization of submicron aerosols at Montsec (Southern Pyrenees, 1570 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Ripoll, A.; Minguillón, M. C.; Pey, J.; Jimenez, J. L.; Day, D. A.; Querol, X.; Alastuey, A.

    2014-11-01

    Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols from a continental background site (Montsec, MSC, 1570 m a.s.l.) in the Western Mediterranean Basin (WMB) were conducted for 10 months (July 2011-April 2012). An Aerosol Chemical Speciation Monitor (ACSM) was co-located with other on-line and off-line PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here, for the first time for this region. Seasonal trends in PM1 components are attributed to variations in: evolution of the planetary boundary layer (PBL) height, air mass origin, and meteorological conditions. In summer, the higher temperature and solar radiation increases convection, enhancing the growth of the PBL and the transport of anthropogenic pollutants towards high altitude sites. Furthermore, the regional recirculation of air masses over the WMB creates a continuous increase in the background concentrations of PM1 components and causes the formation of reserve strata at relatively high altitudes. Sporadically, MSC is affected by air masses from North Africa. The combination of all these atmospheric processes at local, regional and continental scales results in a high variability of PM1 components, with poorly defined daily patterns, except for the organic aerosols (OA). OA was mostly oxygenated organic aerosol (OOA), with two different types: semi-volatile (SV-OOA) and low-volatile (LV-OOA), and both showed marked diurnal cycles regardless of the air mass origin, especially SV-OOA. This different diurnal variation compared to inorganic aerosols suggested that OA components at MSC are not only associated with anthropogenic and long-range-transported secondary OA (SOA), but also with recently-produced biogenic SOA. Very different conditions drive the aerosol phenomenology in winter at MSC. The thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere

  9. Synthesis and characterization of LiNbO3 nanocrystals prepared by the aerosol assisted chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Ocón, J. A.; Murillo, J. G.; Miki-Yoshida, M.; Cardoza, M. N.; Contreras-López, O. E.

    2014-12-01

    This work reports the synthesis of LiNbO3 nanocrystals by an aerosol assisted chemical vapor deposition method, onto silicon (0 0 1) substrates. Some of the nanocrystals showed a hexagonal morphology and characteristic sizes ranging from a few tens to a few hundreds of nanometers. The nanocrystals with hexagonal structure were obtained at 773 K using a carrier gas flow of 6 L/min and a deposition time of 90 min. Structural, morphological, photoluminescence and cathodoluminescence properties were studied by grazing incidence X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, fluorospectrometry, and cathodoluminescence, respectively. An extraordinary violet luminescence at 396 nm with excitation in UV region (280 nm) was observed in one of the samples. Cathodoluminescence (CL) imaging and spectroscopy studies of the nanocrystals exhibit stimulated emission of light in the near ultraviolet-violet-green spectral region. The emission peaks in CL spectra varied according to the nature of nanoparticles. A red-shift in the CL spectra with a decrease in the particle size was observed. Apparently the size of LiNbO3 typical nanocrystals investigated in this work has tuned the photoluminescence emission. This result encourages the use and integration of LiNbO3 nanocrystals into nanophotonics applications.

  10. Detailed Chemical Characterization of Unresolved Complex Mixtures (UCM) inAtmospheric Organics: Insights into Emission Sources, Atmospheric Processing andSecondary Organic Aerosol Formation

    EPA Science Inventory

    Recent studies suggest that semivolatile organic compounds (SVOCs) are important precursors to secondary organic aerosol (SOA) in urban atmospheres. However, knowledge of the chemical composition of SVOCs is limited by current analytical techniques, which are typically unable to...

  11. CHEMICAL ANALYSIS METHODS FOR ATMOSPHERIC AEROSOL COMPONENTS

    EPA Science Inventory

    This chapter surveys the analytical techniques used to determine the concentrations of aerosol mass and its chemical components. The techniques surveyed include mass, major ions (sulfate, nitrate, ammonium), organic carbon, elemental carbon, and trace elements. As reported in...

  12. Long-term real-time chemical characterization of submicron aerosols at Montsec (southern Pyrenees, 1570 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Ripoll, A.; Minguillón, M. C.; Pey, J.; Jimenez, J. L.; Day, D. A.; Sosedova, Y.; Canonaco, F.; Prévôt, A. S. H.; Querol, X.; Alastuey, A.

    2015-03-01

    Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols (particles with an aerodynamic diameter of less than 1 μm) from a continental background site (Montsec, MSC, 1570 m a.s.l.) in the western Mediterranean Basin (WMB) were conducted for 10 months (July 2011-April 2012). An aerosol chemical speciation monitor (ACSM) was co-located with other online and offline PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here, for the first time, for this region. Seasonal trends in PM1 components are attributed to variations in evolution of the planetary boundary layer (PBL) height, air mass origin, and meteorological conditions. In summer, the higher temperature and solar radiation increases convection, enhancing the growth of the PBL and the transport of anthropogenic pollutants towards high altitude sites. Furthermore, the regional recirculation of air masses over the WMB creates a continuous increase in the background concentrations of PM1 components and causes the formation of reservoir layers at relatively high altitudes. The combination of all these atmospheric processes results in a high variability of PM1 components, with poorly defined daily patterns, except for the organic aerosols (OA). OA was mostly composed (up to 90%) of oxygenated organic aerosol (OOA), split in two types: semivolatile (SV-OOA) and low-volatility (LV-OOA), the rest being hydrocarbon-like OA (HOA). The marked diurnal cycles of OA components regardless of the air mass origin indicates that they are not only associated with anthropogenic and long-range-transported secondary OA (SOA) but also with recently produced biogenic SOA. Very different conditions drive the aerosol phenomenology in winter at MSC. The thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere most of the day, being affected by PBL air masses only after midday, when the

  13. Measurements of aerosol chemical composition in boreal forest summer conditions

    NASA Astrophysics Data System (ADS)

    ńijälä, M.; Junninen, H.; Ehn, M.; Petäjä, T.; Vogel, A.; Hoffmann, T.; Corrigan, A.; Russell, L.; Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Kulmala, M.; Worsnop, D.

    2012-04-01

    -IT-MS, [6]) was measuring gas and particle phase aerosol composition, offering additional information on molecular compositions. Overall, the availability of a variety of aerosol chemical characterization instruments provided a good opportunity for a comparison of the results obtained by these four very different measurement approaches. Overall the results were found to agree. The inorganic particulate masses measured with the AMS and Marga were found to correlate especially well for sulphates (r2=0.92) and ammonia compounds (r2=0.82). The organic mass seen by the AMS was correlated with the FTIR filter analysis (r2=0.87) and the APCI-IT-MS (r2=0.88).

  14. Atmospheric aerosols as prebiotic chemical reactors

    PubMed Central

    Dobson, Christopher M.; Ellison, G. Barney; Tuck, Adrian F.; Vaida, Veronica

    2000-01-01

    Aerosol particles in the atmosphere have recently been found to contain a large number of chemical elements and a high content of organic material. The latter property is explicable by an inverted micelle model. The aerosol sizes with significant atmospheric lifetimes are the same as those of single-celled organisms, and they are predicted by the interplay of aerodynamic drag, surface tension, and gravity. We propose that large populations of such aerosols could have afforded an environment, by means of their ability to concentrate molecules in a wide variety of physical conditions, for key chemical transformations in the prebiotic world. We also suggest that aerosols could have been precursors to life, since it is generally agreed that the common ancestor of terrestrial life was a single-celled organism. The early steps in some of these initial transformations should be accessible to experimental investigation. PMID:11035775

  15. Physical and Chemical Properties of Anthropogenic Aerosols: An Overview

    EPA Science Inventory

    Aerosol chemical composition is complex. Combustion aerosols can comprise tens of thousands of organic compounds, refractory brown and black carbon, heavy metals, cations, anions, salts, and other inorganic phases. Aerosol organic matter normally contains semivolatile material th...

  16. Study of Aerosol Chemical Composition Based on Aerosol Optical Properties

    NASA Astrophysics Data System (ADS)

    Berry, Austin; Aryal, Rudra

    2015-03-01

    We investigated the variation of aerosol absorption optical properties obtained from the CIMEL Sun-Photometer measurements over three years (2012-2014) at three AERONET sites GSFC; MD Science_Center and Tudor Hill, Bermuda. These sites were chosen based on the availability of data and locations that can receive different types of aerosols from land and ocean. These absorption properties, mainly the aerosol absorption angstrom exponent, were analyzed to examine the corresponding aerosol chemical composition. We observed that the retrieved absorption angstrom exponents over the two sites, GSFC and MD Science Center, are near 1 (the theoretical value for black carbon) and with low single scattering albedo values during summer seasons indicating presence of black carbon. Strong variability of aerosol absorption properties were observed over Tudor Hill and will be analyzed based on the air mass embedded from ocean side and land side. We will also present the seasonal variability of these properties based on long-range air mass sources at these three sites. Brent Holben, NASA GSFC, AERONET, Jon Rodriguez.

  17. Remote Marine Aerosol: A Characterization of Physical, Chemical and Optical Properties and their Relation to Radiative Transfer in the Troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Porter, John N.

    1997-01-01

    Our research effort is focused on improving our understanding of aerosol properties needed for optical models for remote marine regions. This includes in-situ and vertical column optical closure and involves a redundancy of approaches to measure and model optical properties that must be self consistent. The model is based upon measured in-situ aerosol properties and will be tested and constrained by the vertically measured spectral differential optical depth of the marine boundary layer, MBL. Both measured and modeled column optical properties for the boundary layer, when added to the free-troposphere and stratospheric optical depth, will be used to establish spectral optical depth over the entire atmospheric column for comparison to and validation of satellite derived radiances (AVHRR).

  18. Physical and Chemical Properties of Anthropogenic Aerosols: An overview

    EPA Science Inventory

    A wide variety of anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is complex. Combustion aerosols can c...

  19. Chemical characterization of size-resolved aerosols in four seasons and hazy days in the megacity Beijing of China.

    PubMed

    Sun, Kang; Liu, Xingang; Gu, Jianwei; Li, Yunpeng; Qu, Yu; An, Junling; Wang, Jingli; Zhang, Yuanhang; Hu, Min; Zhang, Fang

    2015-06-01

    Size-resolved aerosol samples were collected by MOUDI in four seasons in 2007 in Beijing. The PM10 and PM1.8 mass concentrations were 166.0±120.5 and 91.6±69.7 μg/m3, respectively, throughout the measurement, with seasonal variation: nearly two times higher in autumn than in summer and spring. Serious fine particle pollution occurred in winter with the PM1.8/PM10 ratio of 0.63, which was higher than other seasons. The size distribution of PM showed obvious seasonal and diurnal variation, with a smaller fine mode peak in spring and in the daytime. OM (organic matter=1.6×OC (organic carbon)) and SIA (secondary inorganic aerosol) were major components of fine particles, while OM, SIA and Ca2+ were major components in coarse particles. Moreover, secondary components, mainly SOA (secondary organic aerosol) and SIA, accounted for 46%-96% of each size bin in fine particles, which meant that secondary pollution existed all year. Sulfates and nitrates, primarily in the form of (NH4)2SO4, NH4NO3, CaSO4, Na2SO4 and K2SO4, calculated by the model ISORROPIA II, were major components of the solid phase in fine particles. The PM concentration and size distribution were similar in the four seasons on non-haze days, while large differences occurred on haze days, which indicated seasonal variation of PM concentration and size distribution were dominated by haze days. The SIA concentrations and fractions of nearly all size bins were higher on haze days than on non-haze days, which was attributed to heterogeneous aqueous reactions on haze days in the four seasons. PMID:26040742

  20. Characterization of Speciated Aerosol Direct Radiative Forcing Over California

    SciTech Connect

    Zhao, Chun; Leung, Lai-Yung R.; Easter, Richard C.; Hand, Jenny; Avise, J.

    2013-03-16

    A fully coupled meteorology-chemistry model (WRF-Chem) with added capability of diagnosing the spatial and seasonal distribution of radiative forcings for individual aerosol species over California is used to characterize the radiative forcing of speciated aerosols in California. Model simulations for the year of 2005 are evaluated with various observations including meteorological data from California Irrigation Management Information System (CIMIS), aerosol mass concentrations from US EPA Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE), and aerosol optical depth from AErosol RObotic NETwork (AERONET) and satellites. The model well captures the observed seasonal meteorological conditions over California. Overall, the simulation is able to reproduce the observed spatial and seasonal distribution of mass concentration of total PM2.5 and the relative contribution from individual aerosol species, except the model significantly underestimates the surface concentrations of organic matter (OM) and elemental carbon (EC), potentially due to uncertainty in the anthropogenic emissions of OM and EC and the outdated secondary organic aerosol mechanism used in the model. A sensitivity simulation with anthropogenic EC emission doubled significantly reduces the model low bias of EC. The simulation reveals high anthropogenic aerosol loading over the Central Valley and the Los Angeles metropolitan regions and high natural aerosol (dust) loading over southeastern California. The seasonality of aerosol surface concentration is mainly determined by vertical turbulent mixing, ventilation, and photochemical activity, with distinct characteristics for individual aerosol species and between urban and rural areas. The simulations show that anthropogenic aerosols dominate the aerosol optical depth (AOD). The ratio of AOD to AAOD (aerosol absorption optical depth) shows distinct seasonality with a winter maximum and a summer minimum

  1. Rapid High Spatial Resolution Chemical Characterization of Soil Structure to Illuminate Nutrient Distribution Mechanisms Related to Carbon Cycling Using Laser Ablation Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hicks, R. K.; Alexander, M. L. L.; Newburn, M. K.

    2015-12-01

    Soils contain approximately half of Earth's terrestrial carbon. As such, it is important to understand the factors that control the cycling of this soil organic carbon between the land and the atmosphere. Models that attribute the persistence of soil organic carbon to the intrinsic properties of the molecules themselves are inconsistent with recent observations— for example, materials that are more thermodynamically stable have been found to have a shorter lifetime in soils than ones that are less stable, and vice versa. A new explanation has therefore been posited that invokes ecosystem properties as a whole, and not just intrinsic molecular properties, as the kinetic factor controlling soil carbon dynamics. Because soil dynamics occur on a small scale, techniques with high spatial resolution are required for their study. Existing techniques such as TOF-SIMS require preparation of the sample and introduction into a high vacuum system, and do not address the need to examine large numbers of sample systems without perturbation of chemical and physical properties. To address this analytical challenge, we have coupled a laser ablation (LA) module to an Aerodyne aerosol mass spectrometer (AMS), thereby enabling sample introduction and subsequent measurement of small amounts of soil organic matter by the laser ablation aerosol mass spectrometer (LA-AMS). Due to the adjustable laser beam width, the LA-AMS can probe spot sizes ranging from 1-150 μm in diameter, liberating from 10-100 ng/pulse. With a detection limit of 1 pM, the AMS allows for chemical characterization of the ablated material in terms of elemental ratios, compound classes, and TOC/TOM ratios. Furthermore, the LA-AMS is capable of rapid, in-situ sampling under ambient conditions, thereby eliminating the need for sample processing or transport before analysis. Here, we will present the first results from systematic studies aimed at validating the LA-AMS method as well as results from initial measurements

  2. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  3. Aerosol Characterization in the Sonoran Desert of Arizona

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Conant, William; Barbaris, Brian; Betterton, Eric; Csavina, Janae; Saez, Eduardo

    2010-05-01

    Aerosol effects on atmospheric radiative transfer and on cloud microphysics still present one of the biggest uncertainties in understanding global climate. In this study, the first results of aerosol characterization at two different sites - urban and high altitude - in the Sonoran desert of Southern Arizona will be presented. Measurements from a third site dominated by an active mining and smelting operation will be shown as well. The urban site located within the city of Tucson serves to characterize anthropogenically influenced boundary layer aerosol. The high altitude site on Mt. Lemmon (2790 m a.s.l.) is exposed to two different regimes: in summer the planetary boundary layer is deep and convection transports urban air from Tucson up to Mt. Lemmon. In winter, the boundary layer is below the summit, making the site a free troposphere location. Data collected at times when the boundary layer is shallow therefore most often represent free tropospheric aerosol and provide insight into the vertical distribution of the atmospheric aerosol. The characterization includes continuous size distribution measurements (SMPS), size resolved chemical characterization (MOUDI) and measurement of aerosol precursor gases. For the urban site, comparison of calculated extinction coefficients with solar radiation measurements show the variation of normal and diffuse solar radiation due to varying aerosol loadings.

  4. Chemical aerosol flow synthesis of semiconductor nanoparticles.

    PubMed

    Didenko, Yuri T; Suslick, Kenneth S

    2005-09-01

    Nanometer-sized semiconductor particles (quantum dots) have been the subject of intense research during the past decade owing to their novel electronic, catalytic, and optical properties. Fundamental properties of these nanoparticles (1-20 nm diameter) can be systematically changed simply by controlling the size of the crystals while holding their chemical composition constant. We describe here a new methodology for the continuous production of fluorescent CdS, CdSe, and CdTe nanoparticles using ultrasonically generated aerosols of high boiling point solvents. Each submicron droplet serves as a separate nanoscale chemical reactor, with reactions proceeding as the liquid droplets (which hold both reactants and surface stabilizers) are heated in a gas stream. The method is inexpensive, scalable, and allows for the synthesis of high quality nanocrystals. This chemical aerosol flow synthesis (CAFS) can be extended to the synthesis of nanostructured metals, oxides, and other materials. PMID:16131177

  5. Overview of submicron aerosol characterization in China using an Aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Huang, X.; He, L.; Gong, Z.; Hu, M.; Zhang, Y.

    2011-12-01

    China is one of the most rapidly developing countries in the world, but in the meantime it is suffering from severe air pollution due to heavy industrial/metropolitan emissions. Most previous aerosol studies in China were based on filter sampling followed by laboratory analysis, which provided datasets at a coarse time resolution like a day. The coarse time resolution of the aerosol datasets cannot match the actual faster variation of aerosol properties in the real atmosphere, which strongly favors highly time-resolved on-line measurement techniques. In recent years, our group deployed an Aerodyne high-resolution aerosol mass spectrometer (AMS) in different ambient atmospheres in China, including Beijing (urban), Shanghai (urban), Shenzhen (urban), Jiaxing (suburban), and Kaiping (rural). In this presentation, we will overview these on-line AMS measurement results to characterize the properties of submicron particles in China atmosphere, such as chemical composition, size distribution, diurnal variation, elemental composition, primary and secondary organic aerosol constitution, etc. The newly-developed AMS-PMF modeling techniques were utilized to quantitatively differentiate the contributions from fossil fuel combustion, cooking emissions, biomass burning, as well as secondary organic aerosol to ambient organic aerosol loadings in China. These AMS results have provided new outlook of the formation mechanisms of high aerosol pollution in China.

  6. Aerosol simulation including chemical and nuclear reactions

    SciTech Connect

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs.

  7. Characterization of organosulfates in atmospheric aerosols at Four Asian locations

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth A.; Yang, Liming; Yu, Liya E.; Rupakheti, Maheswar

    2012-02-01

    Organosulfates have recently been observed in ambient atmospheres as a component of aerosol organic matter. This study presents the first characterization of organosulfates in Asia and demonstrates their ubiquity and chemical diversity, yet minor contribution to fine particulate mass. Organosulfates were characterized in ambient aerosol by ultra-performance liquid chromatography and high-resolution mass spectrometry, which allowed for experimental determination of molecular formulas and estimation of atmospheric abundance. Aerosols were analyzed from four sites spanning urban and remote locations, including Hanimaadhoo, Maldives, Gosan, Korea, Singapore, and Lahore, Pakistan. Semi-quantitative analysis yielded average estimates of OS accounting for less than 1% of PM 2.5 mass, 2.3% of organic carbon, and 3.8% of total sulfate. The majority of the observed compounds were attributed to biogenic secondary organic aerosol from isoprene or monoterpenes. New organosulfates are also reported.

  8. Electrostatic sampler for semivolatile aerosols: chemical artifacts.

    PubMed

    Volckens, John; Leith, David

    2002-11-01

    Electrostatic precipitators (ESPs) show promise as an alternative sampling method for semivolatile aerosols because they are less susceptible to adsorptive and evaporative artifacts than filter based methods. However, the corona discharge may after the chemical composition of a sampled aerosol. Chemical artifacts associated with electrostatic precipitation of semivolatile aerosols were investigated in the laboratory. ESPs and filters sampled both particles and vapors of alkanes, polycyclic aromatic hydrocarbons, and alkenes across varying concentrations. Gravimetric measurements between the two sampling methods were well correlated. Ozone generated by the ESP corona was the primary cause of alkene reactions in the gas phase. Particles collected within the corona region were vulnerable to irradiation by corona ions overtime. Particles collected outside the corona region did not react. Vapors passing through the corona reacted to a lesser extent. Vapors captured after passing through the ESP reacted with ozone that was not removed by the vapor trap. Chemical speciation of highly reactive compounds (i.e., alkenes or other compounds with relatively short half-lives outdoors) is not appropriate with ESPs. Electrostatic precipitation of these compounds is appropriate, however, when total organic carbon is of interest as the ESP does not alter the amount of mass measured gravimetrically. ESPs can make accurate measurements of more persistent semivolatile compounds, such as alkanes and PAHs. PMID:12433171

  9. Analysis of water soluble organic aerosols over the mid-Atlantic region of the United States: A method for chemical characterization using IC/MS/MS

    NASA Astrophysics Data System (ADS)

    Brent, L. C.; Reiner, J.; Sander, L.; Beyersdorf, A. J.; Dickerson, R. R.; Stehr, J. W.

    2013-12-01

    Because of its links to respiratory morbidity and mortality, particulate matter (PM) is a federally designated criteria pollutant. Composition of airborne particulate matter is not homogeneous and varies widely with respect to source, climate and local meteorology. The complexities of aerosol composition represent a significant challenge to analysts and studies are commonly limited to determination of aerosol bulk properties. Routine, in situ, monitoring stations typically measure organic carbon, elemental carbon and inorganic salts. This study provides the first reported application of IC/MS/MS to the characterization of organic acids in atmospheric PM. Using NIST SRM 1649b, Urban Dust, as a test material for method development, organic acids were resolved chromatographically into classes of aliphatic monoacids, aliphatic diacids, aromatic acids and polyacids. The selective ion monitoring capability of a triple quadropole mass analyzer frequently overcame instances of incomplete chromatographic separation. This combination of ion chromatography and mass spectrometry significantly increases the number of ions for which a single IC procedure can be optimized due to the increased selectivity of the approach. The method was applied to water soluble quartz fiber extract of samples collected on a Cessna 402B aircraft during the NASA July 2011 DISCOVER AQ air campaign resulting in the qualitative identification of 21 organic acids 15 of which were also evaluated quantitatively and the quantitative evaluation of 4 inorganic species. The molecular speciation of aerosol composition is important for understanding mechanistic pathways and ultimately for apportioning aerosol sources. Improved methods for determining the molecular composition will provide information on the vertical distribution of particulate organic carbon in the atmosphere, its optical properties, information on aerosol transport in the lower free troposphere. Lastly, greater structural elucidation of

  10. Chemical characterization of the inorganic fraction of aerosols and mechanisms of the neutralization of atmospheric acidity in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Karageorgos, E. T.; Rapsomanikis, S.

    2007-06-01

    The PM10 mass concentration levels and inorganic chemical composition were determined on 12-h resolution sampling during August 2003 and March 2004, in the centre of Athens, Greece. The August 2003 campaign mean PM10 mass concentration, obtained by Beta Attenuation at 5 m above ground in Athinas Street, was 56 μg m-3 while the corresponding value for March 2004 was 92 μg m-3. In both campaigns the E.U. imposed daily limit of 50 μg m-3 was exceeded on several days. During the March campaign, in Athinas Street, additionally obtained DSFU-PM10 (PM10-2.5+PM2.5) gravimetric mass concentrations (mean: 121 μg m-3) in the "breathing zone", at 1.5 m above ground were significantly higher compared to the respective mean PM10 mass concentrations obtained by the same method at 25 m above ground, in a second site (AEDA; mean: 86 μg m-3) also in the centre of the city. The above findings suggest that, for a realistic estimation of the exposure of citizens to particulate matter, PM10 sampling in the "breathing zone" (1.5-3 m above ground) is necessary. Such data are presented for the first time for the centre of Athens. In both campaigns, calcium was found to be the predominant component of the coarse fraction while crust-related aluminosilicates and iron were the other major components. The above elements constitute the most important components of the fine fraction, together with the predominant sulphur. All toxic metals were found in concentrations below the established air quality limits, and most of them in lower concentrations compared to older studies. Lead in particular, appeared mostly in the fine fraction and in very low concentrations compared to studies dating more than a decade back. The predominant ions of the coarse fraction have been found to be Ca2+, NO3-, Na+ and Cl-, while SO42-, Ca2+ and NH4+ were the major ionic components of the fine fraction. In the fine particles, a low molar ratio of NH4+/SO42- indicated an ammonium-poor ambient air, and together

  11. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    NASA Astrophysics Data System (ADS)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2010-10-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (Hi-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While extensive BB is not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m=1.53(±0.03)+0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m=1.54(±0.01)+0.04i(±0.01) compared to m=1.49(±0.01)+0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  12. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    NASA Astrophysics Data System (ADS)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2011-02-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03) + 0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01) + 0.04i(±0.01) compared to m = 1.49(±0.01) + 0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  13. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, P.F.; Herceg, J.E.; Klocksieben, R.H.

    1984-04-11

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage t

  14. Characterization of biomass burning aerosols from forest fire in Indonesia

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Iriana, W.; Okumura, M.; Lestari, P.; Tohno, S.; Akira, M.; Okuda, T.

    2012-12-01

    Biomass burning (forest fire, wild fire) is a major source of pollutants, generating an estimate of 104 Tg per year of aerosol particles worldwide. These particles have adverse human health effects and can affect the radiation budget and climate directly and indirectly. Eighty percent of biomass burning aerosols are generated in the tropics and about thirty percent of them originate in the tropical regions of Asia (Andreae, 1991). Several recent studies have reported on the organic compositions of biomass burning aerosols in the tropical regions of South America and Africa, however, there is little data about forest fire aerosols in the tropical regions of Asia. It is important to characterize biomass burning aerosols in the tropical regions of Asia because the aerosol properties vary between fires depending on type and moisture of wood, combustion phase, wind conditions, and several other variables (Reid et al., 2005). We have characterized PM2.5 fractions of biomass burning aerosols emitted from forest fire in Indonesia. During the dry season in 2012, PM2.5 aerosols from several forest fires occurring in Riau, Sumatra, Indonesia were collected on quartz and teflon filters with two mini-volume samplers. Background aerosols in forest were sampled during transition period of rainy season to dry season (baseline period). Samples were analyzed with several analytical instruments. The carbonaceous content (organic and elemental carbon, OC and EC) of the aerosols was analyzed by a thermal optical reflectance technique using IMPROVE protocol. The metal, inorganic ion and organic components of the aerosols were analyzed by X-ray Fluorescence (XRF), ion chromatography and gas chromatography-mass spectrometry, respectively. There was a great difference of chemical composition between forest fire and non-forest fire samples. Smoke aerosols for forest fires events were composed of ~ 45 % OC and ~ 2.5 % EC. On the other hand, background aerosols for baseline periods were

  15. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  16. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  17. Chemical, physical, and optical evolution of biomass burning aerosols: A case study

    NASA Astrophysics Data System (ADS)

    Adler, G.; Flores, M.; Borrmann, S.; Rudich, Y.

    2010-12-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols of a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (Hi-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While extensive BB is not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). EBRI during the smoldering phase of the fires was m=1.54(±0.01)+0.04i(±0.01) compared to m=1.49(±0.01)+0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  18. São Paulo aerosol characterization study.

    PubMed

    Alonso, C D; Martins, M H; Romano, J; Godinho, R

    1997-12-01

    The São Paulo Metropolitan area (SPMA) is characterized as having one of the worst air pollution problems in Brazil, with frequent violations of air quality standards for particulate matter. This paper presents the results of a receptor model source apportionment study carried out to develop a quantitative database on which a control strategy could be developed. The study was conducted in four sites with distinct land uses. Fine, coarse (CP), and total suspended particles (TSP) samples were collected on Teflon and glass filters and analyzed by x-ray fluorescence (XRF), ion chromatography, and thermal evolution. The sources were characterized by similar methodology. Chemical mass balance (CMB) receptor modeling indicated that carbonaceous material plays an important role in the aerosol composition; that the three major source categories contributing to the fine particles are vehicles, secondary carbon, and sulfates; and that the main contributors to CP and TSP are road dust and vehicles. All sampling sites presented the same general pattern in terms of source contribution, although this contribution varied from site to site. PMID:9448518

  19. Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation

    PubMed Central

    2013-01-01

    Background The involvement of particulate matter (PM) in cardiorespiratory diseases is now established in developed countries whereas in developing areas such as Africa with a high level of specific pollution, PM pollution and its effects are poorly studied. Our objective was to characterize the biological reactivity of urban African aerosols on human bronchial epithelial cells in relation to PM physico-chemical properties to identify toxic sources. Methods Size-speciated aerosol chemical composition was analyzed in Bamako (BK, Mali, 2 samples with one having desert dust event BK1) and Dakar (DK; Senegal) for Ultrafine UF, Fine F and Coarse C PM. PM reactivity was studied in human bronchial epithelial cells investigating six biomarkers (oxidative stress responsive genes and pro-inflammatory cytokines). Results PM mass concentrations were mainly distributed in coarse mode (60%) and were impressive in BK1 due to the desert dust event. BK2 and DK samples showed a high content of total carbon characteristic of urban areas. The DK sample had huge PAH quantities in bulk aerosol compared with BK that had more water soluble organic carbon and metals. Whatever the site, UF and F PM triggered the mRNA expression of the different biomarkers whereas coarse PM had little or no effect. The GM-CSF biomarker was the most discriminating and showed the strongest pro-inflammatory effect of BK2 PM. The analysis of gene expression signature and of their correlation with main PM compounds revealed that PM-induced responses are mainly related to organic compounds. The toxicity of African aerosols is carried by the finest PM as with Parisian aerosols, but when considering PM mass concentrations, the African population is more highly exposed to toxic particulate pollution than French population. Regarding the prevailing sources in each site, aerosol biological impacts are higher for incomplete combustion sources resulting from two-wheel vehicles and domestic fires than from diesel

  20. High time-resolution chemical characterization of the water-soluble fraction of ambient aerosols with PILS-TOC-IC and AMS

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Aurela, M.; Carbone, S.; Saarnio, K.; Saarikoski, S.; Mäkelä, T.; Kulmala, M.; Kerminen, V.-M.; Worsnop, D. R.; Hillamo, R.

    2010-08-01

    A particle-into-liquid sampler (PILS) was coupled with a total organic carbon analyzer (TOC) and two ion chromatographs (IC) to enable high time-resolution measurements of water-soluble ions and water-soluble organic carbon (WSOC) by a single sampling and analytical set-up. The new high time-resolution measurement system, the PILS-TOC-IC, was able to provide essential chemical and physical information about fast changes in composition, concentrations and likely sources of the water-soluble fraction of atmospheric aerosol. The concentrations of major water-soluble ions and WSOC were measured by the PILS-TOC-IC system from 25 April to 28 May 2009. The data of the PILS-TOC-IC setup was compared with the data from the High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) data measured from 25 April to 8 May 2009. The measured water-soluble particulate organic matter (WSPOM) concentration varied typically from 0.10 to 8.8 μg m-3 (on average 1.5 μg m-3). The WSPOM contributed on average 51% to particulate organic matter (POM) measured with the AMS. The correlation between the data of all the online measurement devices (AMS, PILS-TOC-IC, semicontinuous EC/OC carbon analyzer and TEOM) was excellent. For sulfate, nitrate and ammonium the correlations between the PILS-TOC-IC and AMS were 0.93, 0.96 and 0.96, respectively. The correlation between WSPOM and POM was also strong (r = 0.88). The identified sources of WSPOM were long-range transported biomass burning and secondary organic aerosol (SOA) formation. WSPOM and oxalate produced in biomass burning were clearly correlated with carbon monoxide.

  1. Chemical evolution of multicomponent aerosol particles during evaporation

    NASA Astrophysics Data System (ADS)

    Zardini, Alessandro; Riipinen, Ilona; Pagels, Joakim; Eriksson, Axel; Worsnop, Douglas; Switieckli, Erik; Kulmala, Markku; Bilde, Merete

    2010-05-01

    Atmospheric aerosol particles have an important but not well quantified effect on climate and human health. Despite the efforts made in the last decades, the formation and evolution of aerosol particles in the atmosphere is still not fully understood. The uncertainty is partly due to the complex chemical composition of the particles which comprise inorganic and organic compounds. Many organics (like dicarboxylic acids) can be present both in the gas and in the condensed phase due to their low vapor pressure. Clearly, an understanding of this partition is crucial to address any other issue in atmospheric physics and chemistry. Moreover, many organics are water soluble, and their influence on the properties of aqueous solution droplets is still poorly characterized. The solid and sub-cooled liquid state vapor pressures of some organic compounds have been previously determined by measuring the evaporation rate of single-compound crystals [1-3] or binary aqueous droplets [4-6]. In this work, we deploy the HTDMA technique (Hygroscopicity Tandem Differential Mobility Analyzer) coupled with a 3.5m laminar flow-tube and an Aerosol Mass Spectrometer (AMS) for determining the chemical evolution during evaporation of ternary droplets made of one dicarboxylic acid (succinic acid, commonly found in atmospheric samples) and one inorganic compound (sodium chloride or ammonium sulfate) in different mixing ratios, in equilibrium with water vapor at a fixed relative humidity. In addition, we investigate the evaporation of multicomponent droplets and crystals made of three organic species (dicarboxylic acids and sugars), of which one or two are semi-volatile. 1. Bilde M. and Pandis, S.N.: Evaporation Rates and Vapor Pressures of Individual Aerosol Species Formed in the Atmospheric Oxidation of alpha- and beta-Pinene. Environmental Science and Technology, 35, 2001. 2. Bilde M., et al.: Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols

  2. Copper oxide aerosol: generation and characterization.

    PubMed

    Peoples, S M; McCarthy, J F; Chen, L C; Eppelsheimer, D; Amdur, M O

    1988-06-01

    Effluent gases from high temperature systems such as fossil fuel combustion and pyrometallurgical processes contain inorganic material which has the potential to interact with sulfur dioxide (SO2) on the surface of particles to form an irritant aerosol. The submicron fraction of this inorganic material is especially important as the fine particles may penetrate deep into the lung and cause serious health effects. A laboratory furnace was designed to produce a submicrometer copper oxide aerosol to stimulate emissions from copper smelters and other pyrometallurgical operations. The ultimate aim of this research is to investigate the interaction of SO2 and the copper oxide aerosol at different temperatures and humidities in order to determine the reaction products and their potential health effects upon inhalation. The initial work, as presented in this paper, was to reproducibly generate a submicrometer copper oxide aerosol and to characterize it in terms of size, morphology and composition. Two experimental regimes were set up. One admitted filtered air, without water vapor, into the furnace, and the other admitted filtered air and water vapor. The size and morphology of the aerosols were determined using an electrical aerosol analyzer and transmission electron microscopy. The particles appear as chain aggregates with a count median diameter of 0.026 micron when no water vapor was added and 0.031 micron when water vapor was added into the furnace. Composition of the aerosol was determined using x-ray photoelectron spectroscopy. The aerosol, with or without water in the furnace, consists of a mixture of copper(I) oxide and copper(II) hydroxide. PMID:3400592

  3. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2015-04-01

    The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+), m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.

  4. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    DOE PAGESBeta

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2015-04-01

    The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- andmore » post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+), m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.« less

  5. Elucidating the Chemical Complexity of Organic Aerosol Constituents Measured During the Southeastern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Yee, L.; Isaacman, G. A.; Spielman, S. R.; Worton, D. R.; Zhang, H.; Kreisberg, N. M.; Wilson, K. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Thousands of volatile organic compounds are uniquely created in the atmosphere, many of which undergo chemical transformations that result in more highly-oxidized and often lower vapor pressure species. These species can contribute to secondary organic aerosol, a complex mixture of organic compounds that is still not chemically well-resolved. Organic aerosol collected on filters taken during the Southeastern Oxidant and Aerosol Study (SOAS) constitute hundreds of unique chemical compounds. Some of these include known anthropogenic and biogenic tracers characterized using standardized analytical techniques (e.g. GC-MS, UPLC, LC-MS), but the majority of the chemical diversity has yet to be explored. By employing analytical techniques involving sample derivatization and comprehensive two-dimensional gas chromatography (GC x GC) with high-resolution-time-of-flight mass spectrometry (HR-ToF-MS), we elucidate the chemical complexity of the organic aerosol matrix along the volatility and polarity grids. Further, by utilizing both electron impact (EI) and novel soft vacuum ultraviolet (VUV) ionization mass spectrometry, a greater fraction of the organic mass is fully speciated. The GC x GC-HR-ToF-MS with EI/VUV technique efficiently provides an unprecedented level of speciation for complex ambient samples. We present an extensive chemical characterization and quantification of organic species that goes beyond typical atmospheric tracers in the SOAS samples. We further demonstrate that complex organic mixtures can be chemically deconvoluted by elucidation of chemical formulae, volatility, functionality, and polarity. These parameters provide insight into the sources (anthropogenic vs. biogenic), chemical processes (oxidation pathways), and environmental factors (temperature, humidity), controlling organic aerosol growth in the Southeastern United States.

  6. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, Patrick F.; Herceg, Joseph E.; Klocksieben, Robert H.

    1986-01-01

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

  7. Hygroscopic, Morphological, and Chemical Properties of Agricultural Aerosols

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Cheek, L.; Thornton, D. C.; Auvermann, B. W.; Littleton, R.

    2007-12-01

    Agricultural fugitive dust is a significant source of localized air pollution in the semi-arid southern Great Plains. In the Texas Panhandle, daily episodes of ground-level fugitive dust emissions from the cattle feedlots are routinely observed in conjunction with increased cattle activity in the late afternoons and early evenings. We conducted a field study to characterize size-selected agricultural aerosols with respect to hygroscopic, morphological, and chemical properties and to attempt to identify any correlations between these properties. To explore the hygroscopic nature of agricultural particles, we have collected size-resolved aerosol samples using a cascade impactor system at a cattle feedlot in the Texas Panhandle and have used the Environmental Scanning Electron Microscope (ESEM) to determine the water uptake by individual particles in those samples as a function of relative humidity. To characterize the size distribution of agricultural aerosols as a function of time, A GRIMM aerosol spectrometer and Sequential Mobility Particle Sizer and Counter (SMPS) measurements were simultaneously performed in an overall size range of 11 nm to 20 µm diameters at a cattle feedlot. Complementary determination of the elemental composition of individual particles was performed using Energy Dispersive X-ray Spectroscopy (EDS). In addition to the EDS analysis, an ammonia scrubber was used to collect ammonia and ammonium in the gas and particulate phases, respectively. The concentration of these species was quantified offline via UV spectrophotometry at 640 nanometers. The results of this study will provide important particulate emission data from a feedyard, needed to improve our understanding of the role of agricultural particulates in local and regional air quality.

  8. Characterization of Ambient Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Levy, M. E.; Zheng, J.; Molina, L. T.

    2013-12-01

    Because of the strong absorption over a broad range of the electromagnetic spectra, black carbon (BC) is a key short-lived climate forcer, which contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. The impact of BC on the radiative forcing of the Earth-Atmosphere system is highly dependent of the particle properties. In this presentation, emphasis will be placed on characterizing BC containing aerosols in at the California-Mexico border to obtain a greater understanding of the atmospheric aging and properties of ambient BC aerosols. A comprehensive set of directly measured aerosol properties, including the particle size distribution, effective density, hygroscopicity, volatility, and several optical properties, will be discussed to quantify the mixing state and composition of ambient particles. In Tijuana, Mexico, submicron aerosols are strongly influenced by vehicle emissions; subsequently, the BC concentration in Tijuana is considerably higher than most US cities with an average BC concentration of 2.71 × 2.65 g cm-3. BC accounts for 24.75 % × 9.44 of the total submicron concentration on average, but periodically accounts for over 50%. This high concentration of BC strongly influences many observed aerosol properties such as single scattering albedo, hygroscopicity, effective density, and volatility.

  9. Improving Molecular Level Chemical Speciation of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Worton, D. R.; Decker, M.; Isaacman, G. A.; Chan, A.; Wilson, K. R.; Goldstein, A. H.

    2013-12-01

    A substantial fraction of fine mode aerosols are organic with the majority formed in the atmosphere through oxidation of gas phase compounds emitted from a variety of natural and man-made sources. As a result, organic aerosols are comprised of thousands of individual organic species whose complexity increases exponentially with carbon number and degree of atmospheric oxidation. Chemical characterization of individual compounds present in this complex mixture provides information on sources and transformation processes that are critical for apportioning organic carbon from an often convoluted mixture of sources and to constrain oxidation mechanisms needed for atmospheric models. These compounds also affect the physical and optical properties of the aerosol but the vast majority remain unidentified and missing from published mass spectral libraries because of difficulties in separating and identifying them. We have developed improved methodologies for chemical identification in order to better understand complex environmental mixtures. Our approach has been to combine two-dimensional gas chromatography with high resolution time of flight mass spectrometry (GC×GC-HRTOFMS) and both traditional electron ionization (EI) and vacuum ultraviolet (VUV) photoionization. GC×GC provides improved separation of individual compounds over traditional one dimensional GC and minimizes co-elution of peaks resulting in mass spectra that are virtually free of interferences. VUV ionization is a ';soft' ionization technique that reduces fragmentation and enhances the abundance of the parent or molecular ion, which when combined with high resolution mass spectrometry can provide molecular formulas for chromatographic peaks. We demonstrate our methodology by applying it to identify more than 500 individual compounds in aerosol filter samples collected at Blodgett Forest, a rural site in the Sierra Nevada Mountains. Using the EI NIST mass spectral library and molecular formulas determined

  10. High time-resolution chemical characterization of the water-soluble fraction of ambient aerosols with PILS-TOC-IC and AMS

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Aurela, M.; Carbone, S.; Saarnio, K.; Saarikoski, S.; Mäkelä, T.; Worsnop, D. R.; Kulmala, M.; Kerminen, V.-M.; Hillamo, R.

    2010-04-01

    A particle-into-liquid sampler (PILS) was coupled with a total organic carbon analyzer (TOC) and two ion chromatographs (IC) to enable high time-resolution measurements of water-soluble ions and water-soluble organic carbon (WSOC) by a single sampling and analytical set-up. The new high time-resolution measurement system, the PILS-TOC-IC, was able to provide essential chemical and physical information about fast changes in composition, concentrations and likely sources of the water-soluble fraction of atmospheric aerosol. The concentrations of major water-soluble ions and WSOC were measured by the PILS-TOC-IC system from 25 April to 28 May 2009. The data of the PILS-TOC-IC setup was completed with the data from the High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) data measured from 25 April to 8 May 2009. The measured water-soluble particulate organic matter (WSPOM) concentration varied typically from 0.10 to 8.8 µg m-3 (on average 1.5 µg m-3). The WSPOM contributed on average 51% to particulate organic matter (POM) measured with the AMS. The correlation between the data of all the online measurement devices (AMS, PILS-TOC-IC, semicontinous EC/OC carbon analyzer and TEOM) was excellent. For sulfate, nitrate and ammonium the correlations between the PILS-TOC-IC and AMS were 0.93, 0.96 and 0.96, respectively. The correlation between WSPOM and POM was also strong (r=0.88). The identified sources of WSPOM were long-range transported biomass burning and secondary organic aerosol (SOA) formation. The WSPOM/POM-ratio followed the trends of the ambient daytime temperature. The temperature dependency of the WSPOM/POM-ratio suggest that in the absence of emissions from biomass burning, the SOA formation was the prevailing source for WSPOM. WSPOM produced in biomass burning was clearly correlated with carbon monoxide, confirming that biomass burning was producing primary WSPOM. In addition, elevated oxalate and potassium concentrations were measured

  11. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  12. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; Prévôt, A. S. H.; El Haddad, I.

    2015-08-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make impractical its deployment at sufficient sites to determine regional characteristics. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, PM10) collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g. AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 μg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon, oxygen containing and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g. filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially-resolved long-term datasets.

  13. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; El Haddad, I.; Prévôt, A. S. H.

    2016-01-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 µm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 µg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.

  14. Preparation and characterization of magnetizable aerosols.

    PubMed

    Baumann, Romy; Glöckl, Gunnar; Nagel, Stefan; Weitschies, Werner

    2012-04-11

    Magnetizable aerosols can be used for inhalative magnetic drug targeting in order to enhance the drug concentration at a certain target site within the lung. The aim of the present study was to clarify how a typical ferrofluid can be atomized in a reproducible way. The influence of the atomization principle, the concentration of magnetic nanoparticles within the carrier liquid and the addition of commonly used pharmaceutical excipients on the aerosol droplet size were investigated. Iron oxide (magnetite) nanoparticles were synthesized by alkaline precipitation of mixtures of iron(II)- and iron(III)-chloride and coated with citric acid. The resulting ferrofluid was characterized by photon correlation spectroscopy and vibrating sample magnetometry. Two different nebulizers (Pari Boy and eFlow) with different atomization principles were used to generate ferrofluid aerosols. A range of substances that influence the surface tension, viscosity, density or vapor pressure of the ferrofluid were added to investigate their impact on the generated aerosol droplets. The particle size was determined by laser diffraction. A stable ferrofluid with a magnetic core diameter of 10.7 ± 0.45 nm and a hydrodynamic diameter of 124 nm was nebulized by Pari Boy and eFlow. The aerosol droplet size of Pari Boy was approximately 2.5 μm and remained unaffected by the addition of substances that changed the physical properties of the solvent. The droplet size of aerosols generated by eFlow was approximately 5 μm. It was significantly reduced by the addition of Cremophor RH 40, glycerol, polyvinyl pyrrolidone and ethanol. PMID:22306649

  15. AEROSOL CHARACTERIZATION WITH CENTRIFUCAL AEROSOL SPECTROMETERS: THEORY AND EXPERIMENT

    EPA Science Inventory

    A general mathematical model describing the motion of particles in aerosol centrifuges has been developed. t has been validated by comparisons of theoretically predicted calibration sites with experimental data from tests sizing aerosols in instruments of three different spiral d...

  16. Quantification of aerosol chemical composition using continuous single particle measurements

    NASA Astrophysics Data System (ADS)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-07-01

    Mass concentrations of sulphate, nitrate, ammonium, organic carbon (OC), elemental carbon (EC) were determined from real time single particle data in the size range 0.1-3.0 μm measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) at urban and rural sites in Canada. To quantify chemical species within individual particles measured by an ATOFMS, ion peak intensity of m/z -97 for sulphate, -62 for nitrate, +18 for ammonium, +43 for OC, and +36 for EC were scaled using the number and size distribution data by an Aerodynamic Particle Sizer (APS) and a Fast Mobility Particle Sizer (FMPS). Hourly quantified chemical species from ATOFMS single-particle analysis were compared with collocated fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5) chemical composition measurements by an Aerosol Mass Spectrometer (AMS) at a rural site, a Gas-Particle Ion Chromatograph (GPIC) at an urban site, and a Sunset Lab field OCEC analyzer at both sites. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 (ATOFMS vs. GPIC) and 0.85 (ATOFMS vs. AMS). ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM2.5 chemical components at the rural site near the US border in southern Ontario. Mass reconstruction using the ATOFMS mass calibration factors agreed very well with the PM2.5 mass concentrations measured by a Tapered Element Oscillating Microbalance (TEOM, r = 0.86) at the urban site and a light scattering monitor (DustTrak, r = 0.87) at the rural site. In the urban area nitrate was the largest contributor to PM2.5 mass in the winter, while organics and sulphate contributed ~64 % of the summer PM2.5 in the rural area, suggesting a strong influence of regional/trans-boundary pollution. The mass concentrations of five major species in ten size-resolved particle-types and aerosol acidity of each particle-type were determined for the rural site. On a mass basis

  17. Parameterization of Aerosol Sinks in Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2012-01-01

    The modelers point of view is that the aerosol problem is one of sources, evolution, and sinks. Relative to evolution and sink processes, enormous attention is given to the problem of aerosols sources, whether inventory based (e.g., fossil fuel emissions) or dynamic (e.g., dust, sea salt, biomass burning). On the other hand, aerosol losses in models are a major factor in controlling the aerosol distribution and lifetime. Here we shine some light on how aerosol sinks are treated in modern chemical transport models. We discuss the mechanisms of dry and wet loss processes and the parameterizations for those processes in a single model (GEOS-5). We survey the literature of other modeling studies. We additionally compare the budgets of aerosol losses in several of the ICAP models.

  18. CURRENT AND EMERGING TECHNIQUES FOR CHARACTERIZING TROPOSPHERIC AEROSOLS

    EPA Science Inventory

    Particulate matter generally includes dust, smoke, soot, or aerosol particles. Environmental research addresses the origin, size, chemical composition, and the formation mechanics of aerosols. In the troposphere, fine aerosols (e.g. with diameters < 2.5 um) remain suspended until...

  19. Characterization of aerosol composition and sources in the greater Atlanta area by aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Xu, L.; Suresh, S.; Weber, R. J. J.; Baumann, K.; Edgerton, E. S.

    2014-12-01

    An important and uncertain aspect of biogenic secondary organic aerosol (SOA) formation is that it is often associated with anthropogenic pollution tracers. Prior studies in Atlanta suggested that 70-80% of the carbon in water-soluble organic carbon (WSOC) is modern, yet it is well-correlated with the anthropogenic CO. In this study, we deployed a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) at multiple sites in different seasons (May 2012-February 2013) to characterize the sources and chemical composition of aerosols in the greater Atlanta area. This area in the SE US is ideal to investigate anthropogenic-biogenic interactions due to high natural and anthropogenic emissions. These extensive field studies are part of the Southeastern Center for Air Pollution and Epidemiology study (SCAPE). The HR-ToF-AMS is deployed at four sites (~ 3 weeks each) in rotation: Jefferson Street (urban), Yorkville (rural), roadside site (near Highway 75/85), and Georgia Tech site (campus), with the urban and rural sites being part of the SEARCH network. We obtained seven HR-ToF-AMS datasets in total. During the entire measurement period, the ACSM is stationary at the GIT site and samples continuously. We perform positive matrix factorization (PMF) analysis on the HR-ToF-AMS and ACSM data to deconvolve the OA into different components. While the diurnal cycle of the total OA is flat as what have been previously observed, the OA factors resolved by PMF analysis show distinctively different diurnal trends. We find that the "more-oxidized oxygenated OA" (MO-OOA) constitutes a major fraction of OA at all sites. In summer, OA is dominated by SOA, e.g., isoprene-OA and OOA with different degrees of oxidation. In contrary, biomass burning OA is more prominent in winter data. By comparing HR-ToF-AMS and ACSM data during the same sampling periods, we find that the aerosol time series are highly correlated, indicating the

  20. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H.; Henry, Mike; Baden, Daniel G.

    2009-01-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1 h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5–10 μg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m3. The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. PMID:19879288

  1. Characterization of aerosol particles at the forested site in Lithuania

    NASA Astrophysics Data System (ADS)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  2. Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols.

    PubMed

    Flora, Jason W; Meruva, Naren; Huang, Chorng B; Wilkinson, Celeste T; Ballentine, Regina; Smith, Donna C; Werley, Michael S; McKinney, Willie J

    2016-02-01

    E-cigarettes are gaining popularity in the U.S. as well as in other global markets. Currently, limited published analytical data characterizing e-cigarette formulations (e-liquids) and aerosols exist. While FDA has not published a harmful and potentially harmful constituent (HPHC) list for e-cigarettes, the HPHC list for currently regulated tobacco products may be useful to analytically characterize e-cigarette aerosols. For example, most e-cigarette formulations contain propylene glycol and glycerin, which may produce aldehydes when heated. In addition, nicotine-related chemicals have been previously reported as potential e-cigarette formulation impurities. This study determined e-liquid formulation impurities and potentially harmful chemicals in aerosols of select commercial MarkTen(®) e-cigarettes manufactured by NuMark LLC. The potential hazard of the identified formulation impurities and aerosol chemicals was also estimated. E-cigarettes were machine puffed (4-s duration, 55-mL volume, 30-s intervals) to battery exhaustion to maximize aerosol collection. Aerosols analyzed for carbonyls were collected in 20-puff increments to account for analyte instability. Tobacco specific nitrosamines were measured at levels observed in pharmaceutical grade nicotine. Nicotine-related impurities in the e-cigarette formulations were below the identification and qualification thresholds proposed in ICH Guideline Q3B(R2). Levels of potentially harmful chemicals detected in the aerosols were determined to be below published occupational exposure limits. PMID:26617410

  3. Atmospheric aerosols: A literature summary of their physical characteristics and chemical composition

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.

    1976-01-01

    This report contains a summary of 199 recent references on the characterization of atmospheric aerosols with respect to their composition, sources, size distribution, and time changes, and with particular reference to the chemical elements measured by modern techniques, especially activation analysis.

  4. Analysis of the chemical and physical properties of combustion aerosols: Properties overview

    EPA Science Inventory

    Aerosol chemical composition is remarkably complex. Combustion aerosols can comprise tens of thousands of organic compounds and fragments, refractory carbon, metals, cations, anions, salts, and other inorganic phases and substituents [Hays et al., 2004]. Aerosol organic matter no...

  5. Integrated chemical species analysis with source-receptor modeling results to characterize the effects of terrain and monsoon on ambient aerosols in a basin.

    PubMed

    Chen, Chi-Fan; Liang, Jeng-Jong

    2013-05-01

    This study integrated estimated oxidation ratio of sulfur (SOR) and oxidation ratio of nitrogen (NOR) with source-receptor modeling results to identify the effects of terrain and monsoons on ambient aerosols in an urban area (north basin) and a rural area (south basin) of the Taichung Basin. The estimated results indicate that the conversion of sulfur mainly occurs in fine particles (PM₂.₅), whereas the conversion of nitrogen occurs in approximately equal quantities of PM₂.₅ and coarse particles (PM₂.₅-₁₀). The results show a direct relationship for PM₂.₅ between the modeling results with SOR and NOR. The high PM₂.₅ SOR, NOR, and secondary aerosol values all occurred in the upwind area during both monsoons; this shows that the photochemical reaction and the terrain effect on the pollutant transmission were significant in the basin. Additionally, the urban heat island effect on the urban area and the valley effect on the rural area were significant. The results show that secondary aerosol in PM₂.₅-₁₀ contributed approximately 10 % during both monsoons, and the difference in the contribution from secondary aerosol between both areas was small. Vehicle exhaust emissions and wind-borne dust were two crucial PM2.5-10 contributors during both monsoons; their average contributions in both areas were higher than 34 and 32 %, respectively. PMID:22996820

  6. Generation and characterization of biological aerosols for laser measurements

    SciTech Connect

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  7. Laboratory and Field Characterizations of a Filter Inlet for Gases and AEROsols (FIGAERO) Collector Module for a Chemical Ionization Time-of-Flight Mass Spectrometer (CI-TOFMS) Instrument

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Vogel, A.; Massoli, P.; Lambe, A. T.; Stark, H.; Kimmel, J.; Isaacman-VanWertz, G. A.; Kroll, J. H.; Canagaratna, M. R.; Worsnop, D. R.; Jayne, J. T.

    2015-12-01

    The Aerodyne Research, Inc. (ARI) Filter Inlet for Gases and AEROsols (FIGAERO) collector module is an add-on for Chemical Ionization Time-of-Flight Mass Spectrometer (CI-TOFMS) instruments. The FIGAERO enables simultaneous real-time chemical analysis of trace gases and particles in ambient air. The collector module described here is modelled after the University of Washington (UW) design of Lopez-Hilfikeret al., 2014. The collector module mounts directly to the front of the CI-TOFMS ion molecule reactor, replacing the standard gas phase inlet. Automated operation follows a two-step sequence alternating between gas and particle sampling. Gas and particle flows are sampled through separate inlet lines. Software provides automated control of the ARI FIGAERO and determines which inlet line is sampled into ion molecule reaction region. While in the gas phase measuring position particles are separately collected on a filter. After sufficient particle collection, heated clean nitrogen is passed over the filter to desorb the particles on the filter. The thermally desorbed material is then measured with the CI-TOFMS. Though conceptually similar, the ARI FIGAERO is mechanically different enough from the UW design that it requires its own performance assessment. Presented here is the characterization of the ARI FIGAERO collector module. The FIGAERO performance is assessed by using laboratory, chamber, and field data collected using iodide as the reagent ion to examine detection sensitivity, quantification limits, and time response. Lopez-Hilfiker et al., "A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)", Atmos. Meas. Tech., 7, 983-1001 (2014)

  8. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2014-07-01

    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.

  9. CRITERIA POLLUTANT AND ACID AEROSOL CHARACTERIZATION STUDY - CATANO, PUERTO RICO

    EPA Science Inventory

    The objective of the Catano Criteria Pollutant and Acid Aerosol Characterization study was to characterize criteria pollutant and acid aerosol concentrations in the Ward of Catano and adjacent residential areas in the Commonwealth of Puerto Rico. on-Governmental organizations (NG...

  10. Holographic interferometry for aerosol particle characterization

    NASA Astrophysics Data System (ADS)

    Berg, Matthew J.; Subedi, Nava R.

    2015-01-01

    Using simulations based on Mie theory, this work shows how double-exposure digital holography can be used to measure the change in size of an expanding, or contracting, spherical particle. Here, a single particle is illuminated by a plane wave twice during its expansion: once when the particle is 27 λ in radius, and again when it is 47 λ. A hologram is formed from each illumination stage from the interference of the scattered and unscattered, i.e., incident, light. The two holograms are then superposed to form a double exposure. By applying the Fresnel-Kirchhoff diffraction theory to the double-exposed hologram, a silhouette-like image of the particle is computationally reconstructed that is superposed with interference fringes. These fringes are a direct result of the change in particle size occurring between the two illumination stages. The study finds that expansion on the scale of ~ 6 λ is readily discerned from the reconstructed particle image. This work could be important for improved characterization of single and multiple aerosol particles in situ. For example, by illuminating an aerosol particle with infrared light, it may be possible to measure photothermally induced particle expansion, thus providing insight into a particle's material properties simultaneous with an image of the particle.

  11. Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

    NASA Astrophysics Data System (ADS)

    Wahab, A. M.; Sarker, M. L. R.

    2014-02-01

    Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation.

  12. Physico-chemical properties of aerosols in Sao Paulo, Brazil and mechanisms of secondary organic aerosol formation.

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Luiza Godoy, Maria; Godoy, Jose Marcus

    2013-04-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an increasingly important role. Sao Paulo is a megacity with a population of about 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in Sao Paulo is bellow WMO standards for aerosol particles and ozone. Many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission characteristics, we are running a source apportionment study in Sao Paulo focused on the mechanisms of organic aerosol formation. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles). This study comprises four sampling sites with continuous measurements for one year, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, O3, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to measure in real time VOCs and aerosol composition, respectively. Trace elements were measured using XRF and OC/EC analysis was determined with a Sunset OC/EC instrument. A TSI Nephelometer with 3 wavelengths measure light scattering and a MAAP measure black carbon. Results show aerosol number concentrations ranging between 10,000 and 35,000 cm-3, mostly concentrated in the nucleation and Aitken modes, with a peak in size at 80

  13. Aerosol chemical mass closure during the EUROTRAC-2 AEROSOL Intercomparison 2000

    NASA Astrophysics Data System (ADS)

    Maenhaut, Willy; Schwarz, Jaroslav; Cafmeyer, Jan; Chi, Xuguang

    2002-04-01

    The field work for the AEROSOL Intercomparison 2000 took place from 4 to 14 April 2000 at Melpitz, Germany. One objective was to assess to which extent aerosol chemical mass closure could be obtained for the site. For this purpose, we operated four filter samplers in parallel (mostly using 12-h collections): two Gent PM10 stacked filter unit (SFU) samplers (one with coarse and fine Nuclepore polycarbonate filters, the other with a Gelman Teflo filter as fine filter) and two single filter holders (one with PM2.5 inlet, the other with PM10 inlet) with Whatman QM-A quartz fibre filters. All samples were analysed for the particulate mass (PM) by weighing; the samples from the first SFU were analysed for 42 elements by a combination of particle-induced X-ray emission spectroscopy and instrumental neutron activation analysis, those from the other SFU for major anions and cations by ion chromatography. All quartz filters were analysed for organic carbon and elemental carbon by a thermal-optical transmission technique. Aerosol chemical mass closure calculations were done for the separate fine (PM2) and coarse (2-10 μm) size fractions. As gravimetric PM data we used the averages from the parallel SFU collections. For reconstituting this PM, nine aerosol types (or components) were considered. Crustal matter, organic aerosol and nitrate were the major aerosol types in the coarse size fraction; the dominant aerosol types in the fine fraction were organic aerosol, nitrate and sulphate. The included components explained 116% and 86% of the gravimetric PM in the coarse and fine size fractions, respectively.

  14. Chemical characterization and toxicologic evaluation of airborne mixtures: inhalation toxicology of diesel fuel obscurant aerosol in Spargue-Dawley rats. Final report, phase 2, repeated exposures

    SciTech Connect

    Dalbey, W.; Lock, S., Schmoyer, R.

    1982-07-01

    A series of repeated exposures of rats to aerosolized diesel fuel was performed to help establish indices of potential toxicity resulting from aerosol exposure and the relative importance of duration of exposures, the frequence of exposures, and aerosol concentration in the induction of observed lesions. Body weight and food consumption were recorded on a weekly basis. Assays were performed on selected animals within 1-2 days after the last exposure or after 2 weeks without exposure. Endpoints included number and phagocytic activity of pulmonary free cells, pulmonary function tests, neurotoxicity assays, clinical chemistry, organ weights, and histopathology. Data were analyzed by analysis of variance. After exposure, the primary target organ was the lungs. Focal accumulations of pulmonary free cells were observed in the lung parenchyma, associated with thickening and hypercellularity of alveolar walls. The number of lavaged pulmonary free cells correlated well with histologic observations, remaining elevated after two weeks without exposure. Lung volumes were altered by exposure, including increased FRC, decreased TLC, and decreased VC. Carbon monoxide diffusing capacity was decreased in several exposed groups also. None of the more systemic changes observed were considered to be of biologic significance, even though the exposure conditions were considered to result in a maximum tolerated dose. Frequency of exposure was the dominant variable over the range of parameters used in this study, 3 exposures/wk being more deleterious than 1/week. Variation in duration of exposure appeared to have very little effect and a dose-response was often not apparent with differences in concentration. 12 references, 13 figures, 18 tables.

  15. Characterization and quantification of aerosol chemical species present below and within cloud over an eastern Himalayan high altitude hill station in India

    NASA Astrophysics Data System (ADS)

    Roy, Arindam; Chatterjee, Abhijit; Sarkar, Chirantan; Ghosh, Sanjay; Raha, Sibaji

    2016-07-01

    There are two main processes through which aerosols and gases get scavenged by rain called below-cloud scavenging or "washout" and in-cloud scavenging or "rainout". The first process refers to the washout of the aerosols and gases present below the cloud during precipitation events by raindrops along their fall. The second process corresponds to the condensation of water vapor on aerosol particles during the formation of cloud droplets and incorporation of gases surrounding the droplets by aqueous-phase reactions. However, the most efficient pathway to remove the atmospheric pollutants is below cloud scavenging which is a major pointer of ecosystem, biogeochemical cycle as well as the climate change. A study has been conducted in 2014 and 2015 monsoon (June-September) in Darjeeling (27.01 ° N, 88.15 ° E), a high altitude (2200 m asl) hill station over eastern Himalaya in India. The study was focused on the below-cloud and in-cloud scavenging of various aerosol ionic species. Attempt was also made to estimate the contribution of in-cloud scavenging and below-cloud scavenging by collecting rain samples sequentially for different rain events. Sea-salt (Na+, sea-Mg2+, Cl- and sea-SO4 2-) and soil dust (non-sea Ca2+, non-sea-Mg2+) species show sharp decrease in concentration for each of the rain sample. This indicates that these species were mostly accumulated below the cloud and washed out during rain. Their concentrations were thus decreased sharply as rains progressed. On the other hand, non-SO4-2 and NH4+ showed different behavior. Their concentrations decreased sharply at the initial stage of the rain and then remained almost constant with rainfall. This explains wash out of these two species at the initial stage of the rain and their contribution from "within the cloud". NH4 + and non-sea-SO4 2- could thus act as cloud condensation nuclei over this part of Himalaya. A strong correlation between these two species indicates their association as (NH4)2SO4. Acidity

  16. Real-time chemical analysis of aerosol particles

    SciTech Connect

    Yang, M.; Whitten, W.B.; Ramsey, J.M.

    1995-04-01

    An important aspect of environmental atmospheric monitoring requires the characterization of airborne microparticles and aerosols. Unfortunately, traditional sample collection and handling techniques are prone to contamination and interference effects that can render an analysis invalid. These problems can be avoided by using real-time atmospheric sampling techniques followed by immediate mass spectrometric analysis. The former is achieved in these experiments via a two state differential pumping scheme that is attached directly to a commercially available quadruple ion trap mass spectrometer. Particles produced by an external particle generator enter the apparatus and immediately pass through two cw laser/fiberoptic based detectors positioned two centimeters apart. Timing electronics measure the time between detection events, estimate the particles arrival in the center of the ion trap and control the firing of a YAG laser. Ions produced when the UV laser light ablates the particle`s surface are stored by the ion trap for mass analysis. Ion trap mass spectrometers have several advantages over conventional time-of-flight instruments. First, they are capable of MS/MS analysis by the collisional dissociation of a stored species, This permits complete chemical characterization of airborne samples. Second, ion traps are small and lend themselves to portable, field oriented applications.

  17. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M.; Surratt, J. D.; Chan, A. W.; Schlling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J.

    2011-12-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI- TOFMS). A number of first- , second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  18. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Surratt, J. D.; Chan, A. W. H.; Schilling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E. O.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J. H.

    2011-02-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  19. Influence of aerosol acidity on the chemical composition of Secondary Organic Aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Surratt, J. D.; Chan, A. W. H.; Schilling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E. O.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J. H.

    2010-11-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increase of acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are identified as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  20. Influence of aqueous chemistry on the chemical composition of fog water and interstitial aerosol in Fresno

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin; Ge, Xinlei; Collier, Sonya; Xu, Jianzhong; Sun, Yele; Wang, Youliang; Herckes, Pierre; Zhang, Qi

    2015-04-01

    A measurement study was conducted in the Central Valley (Fresno) of California in January 2010, during which radiation fog events were frequently observed. Fog plays important roles in atmospheric chemistry by scavenging aerosol particles and trace gases and serving as a medium for various aqueous-phase reactions. Understanding the effects of fog on the microphysical and chemical processing of aerosol particles requires detailed information on their chemical composition. In this study, we characterized the chemical composition of fog water and interstitial aerosol particles to study the effects of fog processing on aerosol properties. Fog water samples were collected during the 2010 Fresno campaigns with a Caltech Active Strand Cloud water Collector (CASCC) while interstitial submicron aerosols were characterized in real time with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a scanning Mobility Particle Sizer (SMPS). The fog water samples were later analyzed using the HR-ToF-AMS, ion chromatography, and a total carbon analyzer. The chemical composition and characteristics of interstitial particles during the fog events were compared to those of dissolved inorganic and organic matter in fog waters. Compared to interstitial aerosols, fog water is composed of a higher fraction of ammonium nitrate and oxygenated organics, due to aqueous formation of secondary aerosol species as well as enhanced gas-to-particle partitioning of water soluble species under water rich conditions. Sulfate is formed most efficiently in fog water although its contribution to total dissolved mass is relatively low. The HR-ToF-AMS mass spectra of organic matter in fog water (FOM) are very similar to that of oxygenated organic aerosols (OOA) derived from positive matrix factorization (PMF) of the HR-ToF-AMS spectra of ambient aerosol (r2 = 0.96), but FOM appears to contain a large fraction of acidic functional groups than OOA. FOM is also enriched of

  1. A thermoluminescent method for aerosol characterization

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.; Rogowski, R. S.

    1976-01-01

    A thermoluminescent method has been used to study the interactions of aerosols with ozone. The preliminary results show that ozone reacts with many compounds found in aerosols, and that the thermoluminescence curves obtained from ozonated aerosols are characteristic of the aerosol. The results suggest several important applications of the thermoluminescent method: development of a detector for identification of effluent sources; a sensitive experimental tool for study of heterogeneous chemistry; evaluation of importance of aerosols in atmospheric chemistry; and study of formation of toxic, electronically excited species in airborne particles.

  2. Characterization of aerosol particles at the forested site in Lithuania

    NASA Astrophysics Data System (ADS)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  3. AEROSOL SOURCE CHARACTERIZATION STUDY IN MIAMI, FLORIDA. TRACE ELEMENT ANALYSIS

    EPA Science Inventory

    Aerosol in Miami, Florida was sampled in June 1975 to better characterize the aerosol in an urban environment devoid of heavy industry. The three sampling sites selected were an area with light industrial activity, one with heavy commercial activity, and a sparsely populated resi...

  4. Effects of Chemical Aging on the Heterogeneous Freezing of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Collier, K.; Brooks, S. D.

    2014-12-01

    Organic aerosols are emitted into the atmosphere from a variety of sources and display a wide range of effectiveness in promoting the nucleation of ice in clouds. Soot and polycyclic aromatic hydrocarbons (PAHS) arise from incomplete combustion and other pollutant sources. Hydrocarbon compounds in diesel motor oil and other fuel blends include compounds such as octacosane (a straight saturated alkane), squalane (a branched saturated alkane) and squalene (an unsaturated branched alkene). At temperatures above -36°C, the formation of ice crystals in the atmosphere is facilitated by heterogeneous freezing processes in which atmospheric aerosols act as ice nuclei (IN). The variability in ability of organic particles to facilitate heterogeneous ice nucleation causes major uncertainties in predictions of aerosol effects on climate. Further, atmospheric aerosol composition and ice nucleation ability can be altered via chemical aging and reactions with atmospheric oxidants such as ozone. In this study, we take a closer look at the role of chemical oxidation on the efficiency of specific IN during contact freezing laboratory experiments. The freezing temperatures of droplets in contact with representative organic aerosols are determined through the use of an optical microscope apparatus equipped with a cooling stage and a digital camera. Chemical changes at the surface of aerosols due to ozone exposure are characterized using Raman Microspectroscopy and Fourier Transform Infrared Spectroscopy with Horizontal Attenuated Total Reflectance. Our results indicate that oxidation of certain atmospheric organics (soot and PAHS) enhances their ice nucleation ability. In this presentation, results of heterogeneous nucleation on various types of organic aerosols will be presented, and the role of structure in promoting freezing will be discussed.

  5. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions

    PubMed Central

    Gentner, Drew R.; Isaacman, Gabriel; Worton, David R.; Chan, Arthur W. H.; Dallmann, Timothy R.; Davis, Laura; Liu, Shang; Day, Douglas A.; Russell, Lynn M.; Wilson, Kevin R.; Weber, Robin; Guha, Abhinav; Harley, Robert A.; Goldstein, Allen H.

    2012-01-01

    Emissions from gasoline and diesel vehicles are predominant anthropogenic sources of reactive gas-phase organic carbon and key precursors to secondary organic aerosol (SOA) in urban areas. Their relative importance for aerosol formation is a controversial issue with implications for air quality control policy and public health. We characterize the chemical composition, mass distribution, and organic aerosol formation potential of emissions from gasoline and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline exhaust. However, both sources are important for air quality; depending on a region’s fuel use, diesel is responsible for 65% to 90% of vehicular-derived SOA, with substantial contributions from aromatic and aliphatic hydrocarbons. Including these insights on source characterization and SOA formation will improve regional pollution control policies, fuel regulations, and methodologies for future measurement, laboratory, and modeling studies. PMID:23091031

  6. Detailed Aerosol Characterization using Polarimetric Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, Otto; di Noia, Antonio; Stap, Arjen; Rietjens, Jeroen; Smit, Martijn; van Harten, Gerard; Snik, Frans

    2016-04-01

    Anthropogenic aerosols are believed to cause the second most important anthropogenic forcing of climate change after greenhouse gases. In contrast to the climate effect of greenhouse gases, which is understood relatively well, the negative forcing (cooling effect) caused by aerosols represents the largest reported uncertainty in the most recent assessment of the International Panel on Climate Change (IPCC). To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. There is growing consensus in the aerosol remote sensing community that multi-angle measurements of intensity and polarization are essential to unambiguously determine all relevant aerosol properties. This presentations adresses the different aspects of polarimetric remote sensing of atmospheric aerosols, including retrieval algorithm development, validation, and data needs for climate and air quality applications. During past years, at SRON-Netherlands Instite for Space Research retrieval algorithms have been developed that make full use of the capabilities of polarimetric measurements. We will show results of detailed aerosol properties from ground-based- (groundSPEX), airborne- (NASA Research Scanning Polarimeter), and satellite (POLDER) measurements. Also we will discuss observational needs for future instrumentation in order to improve our understanding of the role of aerosols in climate change and air quality.

  7. Characterization of a Vortex Shaking Method for Aerosolizing Fibers

    PubMed Central

    Ku, Bon Ki; Deye, Gregory; Turkevich, Leonid A.

    2015-01-01

    Generation of well-dispersed, well-characterized fibers is important in toxicology studies. A vortex-tube shaking method is investigated using glass fibers to characterize the generated aerosol. Controlling parameters that were studied included initial batch amounts of glass fibers, preparation of the powder (e.g., preshaking), humidity, and airflow rate. Total fiber number concentrations and aerodynamic size distributions were typically measured. The aerosol concentration is only stable for short times (t < 10 min) and then falls precipitously, with concomitant changes in the aerosol aerodynamic size distribution; the plateau concentration and its duration both increase with batch size. Preshaking enhances the initial aerosol concentration and enables the aerosolization of longer fibers. Higher humidity strongly affects the particle size distribution and the number concentration, resulting in a smaller modal diameter and a higher number concentration. Running the vortex shaker at higher flow rates (Q > 0.3 lpm), yields an aerosol with a particle size distribution representative of the batch powder; running the vortex shaker at a lower aerosol flow rate (Q ~ 0.1 lpm) only aerosolizes the shorter fibers. These results have implications for the use of the vortex shaker as a standard aerosol generator. PMID:26635428

  8. Characterization of aerosols produced by surgical procedures

    SciTech Connect

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K.; Turner, R.S.

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  9. Characterization of Mojave Desert aerosols: Their effect on radiometer performance

    SciTech Connect

    Mathews, L.A.; Salgado, D.P.; Walker, P.L.

    1994-12-31

    The Antelope Valley is part of the southwestern Mojave Desert lying fifty miles north of Los Angeles International Airport. The Antelope Valley is separated from the Los Angeles and San Fernando Valley air basins by the San Gabriel Mountains. The Tehachapi Mountains, to the west, separate the Antelope Valley from the San Joaquin Valley. Combustion aerosols are transported from the San Joaquin Valley through the Tehachapi Pass and through the Soledad and Cajun passes from the Los Angeles air basin. Thus the valley`s atmosphere contains a spatially and temporally complex mixture of aerosols of urban, industrial and desert origin. The Visibility Impact Summer Study held from July to September 1990 was an intense, comprehensive study intended to measure aerosol size and chemical composition and to ascertain their optical effects. Size distributions for particle diameters from 0.01 to 10 {micro} were measured at hourly intervals and particle samplers were used to obtain chemical compositions at daily intervals at Tehachapi Pass and Edwards AFB, California. The extracted aerosol characteristics are discussed and compared to the desert aerosol model in LOWTRAN and the size and estimated composition of aerosols at China Lake reported upon earlier. The authors obtain relationships between aerosol mass and wind speed, diurnal size changes, and meteorological effects. Secondarily, extinction was calculated and used with LOWTRAN and radiosonde data for examination of aerosol effects on narrow band 3--5 and 8--12 {micro} imaging radiometer performance.

  10. Characterizing an extractive electrospray ionization (EESI) source for the online mass spectrometry analysis of organic aerosols.

    PubMed

    Gallimore, Peter J; Kalberer, Markus

    2013-07-01

    Organic compounds comprise a major fraction of tropospheric aerosol and understanding their chemical complexity is a key factor for determining their climate and health effects. We present and characterize here a new online technique for measuring the detailed chemical composition of organic aerosols, namely extractive electrospray ionization mass spectrometry (EESI-MS). Aerosol particles composed of soluble organic compounds were extracted into and ionized by a solvent electrospray, producing molecular ions from the aerosol with minimal fragmentation. We demonstrate here that the technique has a time resolution of seconds and is capable of making stable measurements over several hours. The ion signal in the MS was linearly correlated with the mass of aerosol delivered to the EESI source over the range tested (3-600 μg/m(3)) and was independent of particle size and liquid water content, suggesting that the entire particle bulk is extracted for analysis. Tandem MS measurements enabled detection of known analytes in the sub-μg/m(3) range. Proof-of-principle measurements of the ozonolysis of oleic acid aerosol (20 μg/m(3)) revealed the formation of a variety of oxidation products in good agreement with previous offline studies. This demonstrates the technique's potential for studying the product-resolved kinetics of aerosol-phase chemistry at a molecular level with high sensitivity and time resolution. PMID:23710930

  11. Methods for the characterization of Jet Propellent-8: vapor and aerosol.

    PubMed

    Gregg, S D; Campbell, J L; Fisher, J W; Bartlett, M G

    2007-05-01

    Jet Propellant-8 (JP-8) has been responsible for the majority of reported chemical exposures by the US Department of Defense. Concerns related to human exposure to JP-8 are relatively new; therefore, there is a lack of literature data. Additionally, health effects related to the composition of the exposure have only recently been considered. Two major questions exist: (1) what is the compositional difference between the aerosol and vapor portions of JP-8 under controlled conditions and (2) what is the most representative method to sample JP-8 aerosol and vapor? Thirty-seven standards, representing more than 40% of the mass of JP-8, were used for characterization of the neat fuel, vapor and aerosol portions. JP-8 vapor samples at a concentration of 1600 mg/m(3) were prepared in Tedlar bags. A portion of the vapor samples was adsorbed on charcoal, Tenax and custom mixed phase sorbents. These samples were then extracted using organic solvent and analyzed using gas chromatography/mass spectrometry. The vapor samples extracted from the sorbent tubes were directly compared with a vapor bag. The samples collected using Tenax sorbent tubes were found to be most representative of the composition of the vapor bags. In another set of experiments, aerosolized JP-8 was generated using a collision nebulizer. Aerosol samples were collected and the chemical composition was characterized. The entire aerosol distribution was collected on a glass filter, extracted into solvent, and analyzed by GC-MS. Finally, the composition of the vapor and aerosol was compared. The vapor was found to represent the lower molecular weight components of JP-8, while the aerosol was composed of higher molecular weight components. Therefore, the vapor and aerosol should be treated as two discrete forms of exposure to JP-8. PMID:17345570

  12. Assessment of microphysical and chemical factors of aerosols over seas of the Russian Artic Eastern Section

    NASA Astrophysics Data System (ADS)

    Golobokova, Liudmila; Polkin, Victor

    2014-05-01

    The newly observed kickoff of the Northern Route development drew serious attention to state of the Arctic Resource environment. Occurring climatic and environmental changes are more sensitively seen in polar areas in particular. Air environment control allows for making prognostic assessments which are required for planning hazardous environmental impacts preventive actions. In August - September 2013, RV «Professor Khlustin» Northern Sea Route expeditionary voyage took place. En-route aerosol sampling was done over the surface of the Beringov, Chukotka and Eastern-Siberia seas (till the town of Pevek). The purpose of sampling was to assess spatio-temporal variability of optic, microphysical and chemical characteristics of aerosol particles of the surface layer within different areas adjacent to the Northern Sea Route. Aerosol test made use of automated mobile unit consisting of photoelectric particles counter AZ-10, aetalometr MDA-02, aspirator on NBM-1.2 pump chassis, and the impactor. This set of equipment allows for doing measurements of number concentration, dispersed composition of aerosols within sizes d=0.3-10 mkm, mass concentration of submicron sized aerosol, and filter-conveyed aerosols sampling. Filter-conveyed aerosols sampling was done using method accepted by EMEP and EANET monitoring networks. The impactor channel was upgraded to separate particles bigger than 1 mkm in size, and the fine grain fraction settled down on it. Reverse 5-day and 10-day trajectories of air mass transfer executed at heights of 10, 1500 and 3500 m were analyzed. The heights were selected by considerations that 3000 m is the height which characterizes air mass trend in the lower troposphere. 1500 m is the upper border of the atmospheric boundary layer, and the sampling was done in the Earth's surface layer at less than 10 m. Minimum values of the bespoken microphysical characteristics are better characteristic of higher latitudes where there are no man induced sources of

  13. Chemical and Aerosol Signatures of Biomass Burning via Long Range Transport observed at Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; Obrist, D.; McCubbin, I. B.; Fain, X.; Rahn, T.

    2008-12-01

    The Desert Research Institute operates a high elevation facility, Storm Peak Laboratory (SPL), located on the Steamboat Springs Ski Resort in Colorado at an elevation 3.2 km. During the spring of 2008, two field projects were conducted at SPL; Storm Peak Cloud and Aerosol Characterization (SPACC) and a State of Colorado Mercury Monitoring project. Measurements of gaseous elemental mercury (GEM), along with CO, ozone and aerosol concentrations and aerosol size distributions will be presented from April 28 to July 1st 2008. This work focuses on specific case studies pertaining to long range transport events. Specifically, high levels of GEM and CO will be presented from May 15, 2008. This data will be coupled with HYSPLIT backtrajectories, chemical modeling via MOZART, and satellite imagery (MODIS) to present evidence that Siberian wildfires impacted the air quality at Storm Peak Laboratory.

  14. Molecular Characterization of Secondary Aerosol from Oxidation of Cyclic Methylsiloxanes

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Johnston, Murray V.

    2016-03-01

    Cyclic volatile methylsiloxanes (cVMS) have been identified as important gas-phase atmospheric contaminants, but knowledge of the molecular composition of secondary aerosol derived from cVMS oxidation is incomplete. Here, the chemical composition of secondary aerosol produced from the OH-initiated oxidation of decamethylcyclopentasiloxane (D5, C10H30O5Si5) is characterized by high performance mass spectrometry. ESI-MS reveals a large number of monomeric (300 < m/z < 470) and dimeric (700 < m/z < 870) oxidation products. With the aid of high resolution and MS/MS, it is shown that oxidation leads mainly to the substitution of a CH3 group by OH or CH2OH, and that a single molecule can undergo many CH3 group substitutions. Dimers also exhibit OH and CH2OH substitutions and can be linked by O, CH2, and CH2CH2 groups. GC-MS confirms the ESI-MS results. Oxidation of D4 (C8H24O4Si4) exhibits similar substitutions and oligomerizations to D5, though the degree of oxidation is greater under the same conditions and there is direct evidence for the formation of peroxy groups (CH2OOH) in addition to OH and CH2OH.

  15. Molecular Characterization of Secondary Aerosol from Oxidation of Cyclic Methylsiloxanes.

    PubMed

    Wu, Yue; Johnston, Murray V

    2016-03-01

    Cyclic volatile methylsiloxanes (cVMS) have been identified as important gas-phase atmospheric contaminants, but knowledge of the molecular composition of secondary aerosol derived from cVMS oxidation is incomplete. Here, the chemical composition of secondary aerosol produced from the OH-initiated oxidation of decamethylcyclopentasiloxane (D5, C10H30O5Si5) is characterized by high performance mass spectrometry. ESI-MS reveals a large number of monomeric (300 < m/z < 470) and dimeric (700 < m/z < 870) oxidation products. With the aid of high resolution and MS/MS, it is shown that oxidation leads mainly to the substitution of a CH3 group by OH or CH2OH, and that a single molecule can undergo many CH3 group substitutions. Dimers also exhibit OH and CH2OH substitutions and can be linked by O, CH2, and CH2CH2 groups. GC-MS confirms the ESI-MS results. Oxidation of D4 (C8H24O4Si4) exhibits similar substitutions and oligomerizations to D5, though the degree of oxidation is greater under the same conditions and there is direct evidence for the formation of peroxy groups (CH2OOH) in addition to OH and CH2OH. PMID:26729452

  16. Capstone Depleted Uranium Aerosols: Generation and Characterization

    SciTech Connect

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  17. Chemical and physicochemial properties of submicron aerosol agglomerates

    SciTech Connect

    Scripsick, R.C.; Ehrman, S.; Friedlander, S.K.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory. The formation of nanometer-sized aerosol particles in a premixed methane flame from both solid-phase aerosol precursors and gas-phase precursors was investigated. Techniques were developed to determine the distribution of the individual chemical species as a function of agglomerate size by using inductively coupled plasma atomic emission spectroscopy (ICP-AES). To determine the distribution of chemical species both from particle to particle and within the particles on a nanometer scale, we used the analytical electron microscopy techniques of energy dispersive x-ray spectrometry (EDS) and electron energy loss spectrometry (EELS) coupled with transmission electron microscopy (TEM). The observed distribution of individual chemical species as a function of agglomerate size was linked to the material properties of the solid-phase precursors. For aerosol formed from gas-phase precursors by gas-to-particle conversion, the distribution of species on a manometer scale was found to correspond to the equilibrium phase distribution expected from equilibrium for the system at the flame temperatures.

  18. Aerosol-halogen interaction: Change of physico-chemical properties of SOA by naturally released halogen species

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Krüger, H.; Platt, U.; Schmitt-Kopplin, P.; Zetzsch, C.

    2011-12-01

    Reactive halogen species are released by various sources like photo-activated sea-salt aerosol or salt pans and salt lakes. These heterogeneous release mechanisms have been overlooked so far, although their potential of interaction with organic aerosols like Secondary Organic Aerosol (SOA), Biomass Burning Organic Aerosol (BBOA) or Atmospheric Humic LIke Substances (HULIS) is completely unknown. Such reactions can constitute sources of gaseous organo-halogen compounds or halogenated organic particles in the atmospheric boundary layer. To study the interaction of organic aerosols with reactive halogen species (RHS), SOA was produced from α-pinene, catechol and guaiacol using an aerosol smog-chamber. The model SOAs were characterized in detail using a variety of physico-chemical methods (Ofner et al., 2011). Those aerosols were exposed to molecular halogens in the presence of UV/VIS irradiation and to halogens, released from simulated natural halogen sources like salt pans, in order to study the complex aerosol-halogen interaction. The heterogeneous reaction of RHS with those model aerosols leads to different gaseous species like CO2, CO and small reactive/toxic molecules like phosgene (COCl2). Hydrogen containing groups on the aerosol particles are destroyed to form HCl or HBr, and a significant formation of C-Br bonds could be verified in the particle phase. Carbonyl containing functional groups of the aerosol are strongly affected by the halogenation process. While changes of functional groups and gaseous species were visible using FTIR spectroscopy, optical properties were studied using Diffuse Reflectance UV/VIS spectroscopy. Overall, the optical properties of the processed organic aerosols are significantly changed. While chlorine causes a "bleaching" of the aerosol particles, bromine shifts the maximum of UV/VIS absorption to the red end of the UV/VIS spectrum. Further physico-chemical changes were recognized according to the aerosol size-distributions or the

  19. Conclusions of the Capstone depleted uranium aerosol characterization and risk assessment study.

    PubMed

    Parkhurst, Mary Ann; Guilmette, Raymond A

    2009-03-01

    The rationale for the Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study and its results and applications have been examined in the previous 13 articles of this special issue. This paper summarizes the study's results and discusses its successes and lessons learned. The robust data from the Capstone DU Aerosol Study have provided a sound basis for assessing the inhalation exposure to DU aerosols and the dose and risk to personnel in combat vehicles at the time of perforation and to those entering immediately after perforation. The Human Health Risk Assessment provided a technically sound process for evaluating chemical and radiological doses and risks from DU aerosol exposure using well-accepted biokinetic and dosimetric models innovatively applied. An independent review of the study process and results is summarized, and recommendations for possible avenues of future study are provided by the authors and by other major reviews of DU health hazards. PMID:19204494

  20. Chemical Composition and Size Distributions of Coastal Aerosols Observed on the U.S. East Coast

    NASA Astrophysics Data System (ADS)

    Xia, L.; Song, F.; Jusino-Atresino, R.; Thuman, C.; Gao, Y.

    2008-12-01

    Aerosol input is an important source of certain limiting nutrients, such as iron, for phytoplankton growth in several large oceanic regions. As the efficiency of biological uptake of nutrients may depend on the aerosol properties, a better knowledge of aerosol properties is critically important. Characterizing aerosols over the coastal ocean needs special attention, because the properties of aerosols could be altered by many anthropogenic processes in this land-ocean transition zone before they are transported over the remote ocean. The goal of this experiment was to examine aerosol properties, in particular chemical composition, particle-size distributions and iron solubility, over the US Eastern Seaboard, an important boundary for the transport of continental substances from North America to the North Atlantic Ocean. Our field sampling site was located at Tuckerton (39°N, 74°W) on the southern New Jersey coast. Fourteen sets of High-Volume aerosol samples and three sets of size segregated aerosol samples by a 10-stage MOUDI impactor were collected during 2007 and 2008. The ICP-MS methodology was used to analyze aerosol samples for the concentrations of thirteen trace elements: Al, Fe, Mn, Sc, Cd, Pb, Sb, Ni, Co, Cr, Cu, Zn and V. The IC procedures were applied to determine five cations (sodium, ammonium, potassium, magnesium and calcium) and eleven anions (fluoride, acetate, propionate, formate, MSA, chloride, nitrate, succinate, malonate, sulfate and oxalate). The UV spectrometry was employed for the determination of iron solubility. Preliminary results suggest three major sources of aerosols: anthropogenic, crustal and marine. At this location, the concentrations of iron (II) ranged from 2.8 to 29ng m-3, accounting for ~20% of the total iron. The iron concentrations at this coastal site were substantially lower than those observed in Newark, an urban site in northern NJ. High concentrations of iron (II) were associated with both fine and coarse aerosol

  1. Secondary organic aerosol in the global aerosol - chemical transport model Oslo CTM2

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Berntsen, T.; Myhre, G.; Isaksen, I. S. A.

    2007-11-01

    The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA). Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics). A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr-1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA) values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA) is the dominant OA component) than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%-60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes. Reducing the yield

  2. Characterization of aerosols above the Northern Adriatic Sea: Case studies of offshore and onshore wind conditions

    NASA Astrophysics Data System (ADS)

    Piazzola, J.; Mihalopoulos, N.; Canepa, E.; Tedeschi, G.; Prati, P.; Zarmpas, P.; Bastianini, M.; Missamou, T.; Cavaleri, L.

    2016-05-01

    Aerosol particles in coastal areas result from a complex mixing between sea spray aerosols locally generated at the sea surface by the wind-waves interaction processes and a continental component resulting from natural and/or anthropogenic sources. This paper presents a physical and chemical analysis of the aerosol data acquired from May to September 2014 in the Adriatic Sea. Aerosol distributions were measured on the Acqua Alta platform located 15 km off the coast of Venice using two Particle Measuring System probes and a chemical characterization was made using an Ion Chromatography analysis (IC). Our aim is to study both the sea-spray contribution and the anthropogenic influence in the coastal aerosol of this Mediterranean region. To this end, we focus on a comparison between the present data and the aerosol size distributions measured south of the French Mediterranean coast. For air masses of marine origin transported by southern winds on the French coast and by the Sirocco in the Adriatic, we note a good agreement between the concentrations of super-micrometer aerosols measured in the two locations. This indicates a similar sea surface production of sea-spray aerosols formed by bubble bursting processes in the two locations. In contrast, the results show larger concentrations of submicron particles in the North-Western Mediterranean compared to the Adriatic, which result probably from a larger anthropogenic background for marine conditions. In contrast, for a coastal influence, the chemical analysis presented in the present paper seems to indicate a larger importance of the anthropogenic impact in the Northern Adriatic compared to the North-Western Mediterranean.

  3. Characterization of aerosols above the Northern Adriatic Sea: Case studies of offshore and onshore wind conditions

    NASA Astrophysics Data System (ADS)

    Piazzola, J.; Mihalopoulos, N.; Canepa, E.; Tedeschi, G.; Prati, P.; Zarmpas, P.; Bastianini, M.; Missamou, T.; Cavaleri, L.

    2016-05-01

    Aerosol particles in coastal areas result from a complex mixing between sea spray aerosols locally generated at the sea surface by the wind-waves interaction processes and a continental component resulting from natural and/or anthropogenic sources. This paper presents a physical and chemical analysis of the aerosol data acquired from May to September 2014 in the Adriatic Sea. Aerosol distributions were measured on the Acqua Alta platform located 15 km off the coast of Venice using two Particle Measuring System probes and a chemical characterization was made using an Ion Chromatography analysis (IC). Our aim is to study both the sea-spray contribution and the anthropogenic influence in the coastal aerosol of this Mediterranean region. To this end, we focus on a comparison between the present data and the aerosol size distributions measured south of the French Mediterranean coast. For air masses of marine origin transported by southern winds on the French coast and by the Sirocco in the Adriatic, we note a good agreement between the concentrations of super-micrometer aerosols measured in the two locations. This indicates a similar sea surface production of sea-spray aerosols formed by bubble bursting processes in the two locations. In contrast, the results show larger concentrations of submicron particles in the North-Western Mediterranean compared to the Adriatic, which result probably from a larger anthropogenic background for marine conditions. In contrast, for a coastal influence, the chemical analysis presented in the present paper seems to indicate a larger importance of the anthropogenic impact in the Northern Adriatic compared to the North-Western Mediterranean.

  4. Criteria pollutant and acid aerosol characterization study, Catano, Puerto Rico

    SciTech Connect

    Edgerton, E.S.; Harlos, D.P.; Sune, J.M.; Akland, G.G.; Vallero, D.A.

    1995-07-01

    The primary objective of the Catano Criteria Pollutant and Acid Aerosol Characterization Study (CPAACS) was to measure criteria pollutant concentrations and acid aerosol concentrations in and around the Ward of Catano, Puerto Rico, during the summer of 1994. Continuous air sampling for criteria pollutants was performed at three fixed stations and one moobile station that was deployed to four locations. Air samples for acid aerosol analyses and particulate matter measurements were collected at three sites. Semicontinuous sulfate analysis was performed at the primary site. Continuous measurements of wind speed, wind direction, temperature, and relative humidity were also made at each site. The study was conducted from June 1 through September 30, 1994.

  5. Apparatus and method for the characterization of respirable aerosols

    DOEpatents

    Clark, Douglas K.; Hodges, Bradley W.; Bush, Jesse D.; Mishima, Jofu

    2016-05-31

    An apparatus for the characterization of respirable aerosols, including: a burn chamber configured to selectively contain a sample that is selectively heated to generate an aerosol; a heating assembly disposed within the burn chamber adjacent to the sample; and a sampling segment coupled to the burn chamber and configured to collect the aerosol such that it may be analyzed. The apparatus also includes an optional sight window disposed in a wall of the burn chamber such that the sample may be viewed during heating. Optionally, the sample includes one of a Lanthanide, an Actinide, and a Transition metal.

  6. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilde, S.; Zhang, Y.; Dall'Osto, M.

    2014-04-01

    The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterized by a less dense urbanization. We present here the results obtained in San Pietro Capofiume, which is located in a sparsely inhabited sector of the Po Valley, Italy. The experiment was carried out in summer 2009 in the framework of the EUCAARI project ("European Integrated Project on Aerosol, Cloud Climate Aerosol Interaction"). For the first time in Europe, six state-of-the-art techniques were used in parallel: (1) on-line TSI aerosol time-of-flight mass spectrometer (ATOFMS), (2) on-line Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS), (3) soot particle aerosol mass spectrometer (SP-AMS), (4) on-line high resolution time-of-flight mass spectrometer-thermal desorption aerosol gas chromatograph (HR-ToFMS-TAG), (5) off-line twelve-hour resolution proton nuclear magnetic resonance (H-NMR) spectroscopy, and (6) chemical ionization mass spectrometry (CIMS) for the analysis of gas-phase precursors of secondary aerosol. Data from each aerosol spectroscopic method were analysed individually following ad-hoc tools (i.e. PMF for AMS, Art-2a for ATOFMS). The results obtained from each techniques are herein presented and compared. This allows us to clearly link the modifications in aerosol chemical composition to transitions in air mass origin and meteorological regimes. Under stagnant conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC

  7. Ultrahigh resolution mass spectrometric characterization of organic aerosol from European and Chinese cities

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Huang, Ru-Jin; Hoffmann, Thorsten

    2016-04-01

    Organic aerosol constitutes a substantial fraction (20-90%) of submicrometer aerosol mass, playing an important role in air quality and human health. Over the past few years, ultra-high resolution mass spectrometry (UHRMS) has been applied to elucidate the chemical composition of ambient aerosols. However, most of the UHRMS studies used direct infusion without prior separation by liquid chromatography, which may cause the loss of individual compound information and interference problems. In the present study, urban ambient aerosol with particle diameter < 2.5 μm was collected in Mainz, Germany and Beijing, China, respectively. Two pretreatment procedures were applied to extract the organic compounds from the filter samples: One method uses a mixture of acetonitrile and water, the other uses pure water and prepared for the extraction of humic-like substances. The extracts were analyzed by ultra-high-performance liquid chromatography coupled with an Orbitrap mass spectrometer in both negative and the positive modes. The effects of pretreatment procedures on the characterization of organic aerosol and the city-wise difference in chemical composition of organic aerosol will be discussed in detail.

  8. Characterization of Organic Nitrogen in the Atmosphere Using High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ge, X.; Sun, Y.; Chen, M.; Zhang, Q.

    2015-12-01

    Despite extensive efforts on characterizing organic nitrogen (ON) compounds in atmospheric aerosols and aqueous droplets, knowledge of ON chemistry is still limited, mainly due to its chemical complexity and lack of highly time-resolved measurements. This work is aimed at optimizing the method of using Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) to characterize ON compounds in atmospheric aerosols. Seventy-five pure nitrogen-containing organic compounds covering a variety of functional groups were analyzed with the HR-AMS. Our results show that ON compounds commonly produce NHx+, NOx+, which are usually attributed to inorganic N species such as ammonium and nitrate, and CH2N+ at m/z = 28, which is rarely quantified in ambient aerosol due to large interference from N2+ in the air signal. As a result, using the nitrogen-to-carbon (N/C) calibration factor proposed by Aiken et al. (2008) on average leads to ~ 20% underestimation of N/C in ambient organic aerosol. A new calibration factor of 0.79 is proposed for determining the average N/C in organics. The relative ionization efficiencies (RIEs) of different ON species, on average, are found to be consistent with the default RIE value (1.4) for the total organics. The AMS mass spectral features of various types of ON species (amines, amides, amino acids, etc.) are examined and used for characterizing ON composition in ambient aerosols. Our results indicate that submicron organic aerosol measured during wintertime in Fresno, CA contains significant amounts of amino-compounds whereas more diversified ON species, including N-containing aromatic heterocycle (e.g., imidazoles), are observed in fog waters collected simultaneously. Our findings have important implications for understanding atmospheric ON behaviors via the widespread HR-AMS measurements of ambient aerosols and droplets.

  9. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-01-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the Southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8±8.4 μg m-3 and 13.5±8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva)~200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  10. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-07-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8 ± 8.4 μg m-3 and 13.5 ± 8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva) ∼200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  11. Complete chemical analysis of aerosol particles in real-time

    SciTech Connect

    Yang, Mo; Reilly, P.T.A.; Gieray, R.A.; Whitten, W.B.; Ramsey, J.M.

    1996-12-31

    Real-time mass spectrometry of individual aerosol particles using an ion trap mass spectrometer is described. The microparticles are sampled directly from the air by a particle inlet system into the vacuum chamber. An incoming particle is detected as it passes through two CW laser beams and a pulsed laser is triggered to intercept the particle for laser ablation ionization at the center of the ion trap. The produced ions are analyzed by the ion trap mass spectrometer. Ions of interest are selected and dissociated through collision with buffer gas atoms for further fragmentation analysis. Real-time chemical analyses of inorganic, organic, and bacterial aerosol articles have been demonstrated. It has been confirmed that the velocity and the size of the incoming particles highly correlate to each other. The performance of the inlet system, particle detection, and preliminary results are discussed.

  12. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: an AQMEII-2 perspective

    EPA Science Inventory

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model in...

  13. Characterization of aerosols produced by surgical procedures: A summary

    SciTech Connect

    Yeh, Hsu-Chi; Muggenburg, B.A.; Lundgren, D.L.; Turner, R.S.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K.

    1994-11-01

    In many types of surgery, especially orthopedic procedures, power tools such as saws and drills are used. These tools can impart considerable energy in disrupting tissue and may produce aerosolized blood and material from bone and other tissues. Surgical lasers and electrocautery tools can also produce aerosols due to vaporization of blood and tissues. A number of studies have been reported concerning production of aerosols during surgery, and some of the aerosols produced may contain infectious materials. Health care workers have expressed concern and questions pertaining to the occupational transmission of blood-borne pathogens including the human immunodeficiency virus (HIV) and hepatitis B virus (HBV) via blood aerosols during surgery. Little or no data existed characterizing the aerosols produced performing surgical procedures. Because of this lack of data, the National Institute for Occupational Safety and Health funded a project at ITRI to assess the extent of aerosolization of blood and other tissues during surgical procedures in the laboratory and in a hospital surgical suite.

  14. Aerosol Physical, Optical and Chemical Properties during African Dust Events at Cape San Juan (CPR)

    NASA Astrophysics Data System (ADS)

    Reyes de Jongh, C.; Mayol Bracero, O. L.; Rivera Vazquez, H.; Sheridan, P.; Ogren, J. A.

    2008-12-01

    Large amounts of atmospheric dust are lifted from the North African deserts and are transported by the trade winds over the Caribbean region, especially during the summer months. How African dust particles influence the earth's radiative budget is not well understood because these particles are highly variable and their physical, optical, and chemical properties are poorly characterized, especially when they are atmospherically processed as are those that travel from Africa to the Caribbean region. Here we present results of aerosol measurements performed at Cape San Juan (CPR), a ground-based station located at the northeastern tip of the Caribbean island of Puerto Rico. We used a condensation particle counter to determine the particle number concentration, a sunphotometer (part of the AErosol RObotical NETwork, AERONET, aeronet.gsfc.nasa.gov) to determine volume size distributions and aerosol optical thickness, and a 3-wavelength nephelometer and particle/soot absorption photometer to determine the scattering and absorption coefficients. Filter samples for chemical analyses were collected with stacked-filter units. Preliminary results show that African dust air masses have higher average particle number concentrations (N=720 cm -3 ), aerosol optical depth (AOD = 0.27), and scattering and absorption coefficients (σ s = 30 Mm -1 , σ a = 0.46 Mm -1 ) than clean air masses (N = 460 cm -3 , AOD= 0.08, σ s = 11 Mm -1 , σ a = 0.37 Mm -1 . Results presented will also show how changes in aerosol optical properties in the presence and absence of African dust relate to the physical and chemical composition of the particles.

  15. Characterizing the formation of secondary organic aerosols

    SciTech Connect

    Lunden, Melissa; Black, Douglas; Brown, Nancy

    2004-02-01

    Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the

  16. Aerosol chemical components in Alaska air masses: 1. Aged pollution

    NASA Astrophysics Data System (ADS)

    Shaw, Glenn E.

    1991-12-01

    A 4-year Alaska chemical data set of aerosols or "dust" in the air clearly reveals a mixture of distinct aerosol components with different and interesting chemical composition, one or two being ascribed to pollution imported to Alaska by winds all the way from other continents. Of particular note is a strong chemical contrast between what we imagine to be highly scavenged, orographically lifted, northern Pacific air (Pacific marine air mass) and stagnant Arctic air (polar air mass), the latter containing seasonal average concentrations of between 2-4 times the concentration of the former, at least for pollution markers noncrustal vanadium, noncrustal manganese, arsenic, selenium, bromine, and antimony. The findings concur our old discovery that Arctic air is persistently polluted (Arctic haze), but Pacific air is relatively clean, in spite of the fact that Alaska is downwind of major pollution sources in the Orient. This is remarkable. In this the first of a two-part paper, we concentrate on the pollution component found primarily during incursion of Arctic polar air. Two major occurrences of visual haze with optical depths of approximately 0.2 and elevated aerosol concentration lasting about a month (spring 1985 and 1986) were affiliated with strong incoming transport of polar air, temperatures ranging from 10° to 20°C below normal (polar air) and air trajectory hindcasts leading back to industrial pollution sources in Eurasia. These long-range transport pollution events brought metal-rich aerosol of removal-resistant submicron particles. The size, chemistry, and meteorology all strongly suggest the presence of a well-aged (10-100 day) polluted air mass. An important implication is that in spring a large fraction of the Arctic polar air mass becomes charged with by-products of industrial pollution. In this multiyear chemical data set one finds a notable summer-winter contrast, changing by factors of 2 to 4 for pollution markers As, Se, Sb, and noncrustal

  17. Polycyclic Aromatic Aerosol Components: Chemical Analysis and Reactivity

    NASA Astrophysics Data System (ADS)

    Schauer, C.; Niessner, R.; Pöschl, U.

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants in the atmosphere and originate primarily from incomplete combustion of organic matter and fossil fuels. Their main sources are anthropogenic (e.g. vehicle emissions, domes- tic heating or tobacco smoke), and PAHs consisting of more than four fused aromatic rings reside mostly on combustion aerosol particles, where they can react with atmo- spheric trace gases like O3, NOx or OH radicals leading to a wide variety of partially oxidized and nitrated derivatives. Such chemical transformations can strongly affect the activity of the aerosol particles as condensation nuclei, their atmospheric residence times, and consequently their direct and indirect climatic effects. Moreover some poly- cyclic aromatic compounds (PACs = PAHs + derivatives) are known to have a high carcinogenic, mutagenic and allergenic potential, and are thus of major importance in air pollution control. Furthermore PACs can be used as well defined soot model sub- stances, since the basic structure of soot can be regarded as an agglomerate of highly polymerized PAC-layers. For the chemical analysis of polycyclic aromatic aerosol components a new analyti- cal method based on LC-APCI-MS has been developed, and a data base comprising PAHs, Oxy-PAHs and Nitro-PAHs has been established. Together with a GC-HRMS method it will be applied to identify and quantify PAHs and Nitro-PAHs in atmo- spheric aerosol samples, diesel exhaust particle samples and model soot samples from laboratory reaction kinetics and product studies. As reported before, the adsorption and surface reaction rate of ozone on soot and PAH-like particle surfaces is reduced by competitive adsorption of water vapor at low relative humidity (< 25 %). Recent results at higher relative humidities (ca. 50 %), however, indicate re-enhanced gas phase ozone loss, which may be due to absorbtion of ozone into an aqueous surface layer. The interaction of ozone and nitrogen

  18. Physicochemical Characterization of Lake Spray Aerosol Generated from Great Lakes Water Samples

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Axson, J. L.; May, N.; Pratt, K.

    2014-12-01

    Wave breaking across bodies of water releases particles into the air which can impact climate and human health. Similar to sea spray aerosols formed through marine wave breaking, freshwater lakes generate lake spray aerosol (LSA). LSA can impact climate directly through scattering/absorption and indirectly through cloud nucleation. In addition, these LSA are suggested to impact human health through inhalation of these particles during algal bloom periods characterized by toxic cyanobacteria. Few studies have been conducted to assess the physical and chemical properties of freshwater LSA. Herein, we discuss constructing a LSA generation system and preliminary physical and chemical characterization of aerosol generated from water samples collected at various sites across Lake Erie, Lake Huron, Lake Superior, and Lake Michigan. Information on aerosol size distributions, number concentrations, and chemical composition will be discussed as a function of lake water blue-green algae concentration, dissolved organic carbon concentration, temperature, conductivity, and dissolved oxygen concentration. These studies represent a first step towards evaluating the potential for LSA to impact climate and health in the Great Lakes region.

  19. Modeling regional secondary organic aerosol using the Master Chemical Mechanism

    NASA Astrophysics Data System (ADS)

    Li, Jingyi; Cleveland, Meredith; Ziemba, Luke D.; Griffin, Robert J.; Barsanti, Kelley C.; Pankow, James F.; Ying, Qi

    2015-02-01

    A modified near-explicit Master Chemical Mechanism (MCM, version 3.2) with 5727 species and 16,930 reactions and an equilibrium partitioning module was incorporated into the Community Air Quality Model (CMAQ) to predict the regional concentrations of secondary organic aerosol (SOA) from volatile organic compounds (VOCs) in the eastern United States (US). In addition to the semi-volatile SOA from equilibrium partitioning, reactive surface uptake processes were used to simulate SOA formation due to isoprene epoxydiol, glyoxal and methylglyoxal. The CMAQ-MCM-SOA model was applied to simulate SOA formation during a two-week episode from August 28 to September 7, 2006. The southeastern US has the highest SOA, with a maximum episode-averaged concentration of ∼12 μg m-3. Primary organic aerosol (POA) and SOA concentrations predicted by CMAQ-MCM-SOA agree well with AMS-derived hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA) urban concentrations at the Moody Tower at the University of Houston. Predicted molecular properties of SOA (O/C, H/C, N/C and OM/OC ratios) at the site are similar to those reported in other urban areas, and O/C values agree with measured O/C at the same site. Isoprene epoxydiol is predicted to be the largest contributor to total SOA concentration in the southeast US, followed by methylglyoxal and glyoxal. The semi-volatile SOA components are dominated by products from β-caryophyllene oxidation, but the major species and their concentrations are sensitive to errors in saturation vapor pressure estimation. A uniform decrease of saturation vapor pressure by a factor of 100 for all condensable compounds can lead to a 150% increase in total SOA. A sensitivity simulation with UNIFAC-calculated activity coefficients (ignoring phase separation and water molecule partitioning into the organic phase) led to a 10% change in the predicted semi-volatile SOA concentrations.

  20. Acidic sulfate aerosols: characterization and exposure.

    PubMed Central

    Lioy, P J; Waldman, J M

    1989-01-01

    Exposures to acidic aerosol in the atmosphere are calculated from data reported in the scientific literature. The majority of date was not derived from studies necessarily designed to examine human exposures. Most of the studies were designed to investigate the characteristics of the atmosphere. However, the measurements were useful in defining two potential exposure situations: regional stagnation and transport conditions and local plume impacts. Levels of acidic aerosol in excess of 20 to 40 micrograms/m3 (as H2SO4) have been observed for time durations ranging from 1 to 12 hr. These were associated with high, but not necessarily the highest, atmospheric SO4(2)- levels. Exposures of 100 to 900 micrograms/m3/hr were calculated for the acid events that were monitored. In contrast, earlier London studies indicated that apparent acidity in excess of 100 micrograms/m3 (as H2SO4) was present in the atmosphere, and exposures less than 2000 micrograms/m3/hr were possible. Our present knowledge about the frequency, magnitude, and duration of acidic sulfate aerosol events and episodes is insufficient. Efforts must be made to gather more data, but these should be done in such a way that evaluation of human exposure is the focus of the research. In addition, further data are required on the mechanisms of formation of H2SO4 and on what factors can be used to predict acidic sulfate episodes. PMID:2651103

  1. Characterizing Aerosolized Particulate As Part Of A Nanoprocess Exposure Assessment

    SciTech Connect

    Jankovic, John Timothy; Ogle, Burton R; Zontek, Tracy L; Hollenbeck, Scott M

    2010-01-01

    The purpose of this effort was to propose important aerosol characterization parameters that should be gathered as part of a nanomaterial hazard assessment and to offer a methodology for applying that data to daily operations. This study documents different ways of characterizing nanoscale materials using an aerosol from a process simulation consisting of a vacuum cleaner motor operating inside an enclosure. The aerosol is composed of insoluble carbon particles plus environmental background constituents. The average air concentration is 2.76E+5 p/cm3. Size measurements of the aerosol indicate > 70% of the particulate is blade-like in shape, 50% of which have a height dimension 100 nm. In terms of an equivalent spherical diameter 0.8% of the particulate is 100 nm in size. The carbon blades are characterized as having a root-mean-square roughness of 75 nm, and average fractal dimension of 2.25. These measures: aerosol chemistry, solubility, shape and size, surface area, number concentration and size distribution are important parameters to collect for current exposure assessment and toxicology and epidemiology studies.

  2. Chemical characterization of element 112.

    PubMed

    Eichler, R; Aksenov, N V; Belozerov, A V; Bozhikov, G A; Chepigin, V I; Dmitriev, S N; Dressler, R; Gäggeler, H W; Gorshkov, V A; Haenssler, F; Itkis, M G; Laube, A; Lebedev, V Ya; Malyshev, O N; Oganessian, Yu Ts; Petrushkin, O V; Piguet, D; Rasmussen, P; Shishkin, S V; Shutov, A V; Svirikhin, A I; Tereshatov, E E; Vostokin, G K; Wegrzecki, M; Yeremin, A V

    2007-05-01

    The heaviest elements to have been chemically characterized are seaborgium (element 106), bohrium (element 107) and hassium (element 108). All three behave according to their respective positions in groups 6, 7 and 8 of the periodic table, which arranges elements according to their outermost electrons and hence their chemical properties. However, the chemical characterization results are not trivial: relativistic effects on the electronic structure of the heaviest elements can strongly influence chemical properties. The next heavy element targeted for chemical characterization is element 112; its closed-shell electronic structure with a filled outer s orbital suggests that it may be particularly susceptible to strong deviations from the chemical property trends expected within group 12. Indeed, first experiments concluded that element 112 does not behave like its lighter homologue mercury. However, the production and identification methods used cast doubt on the validity of this result. Here we report a more reliable chemical characterization of element 112, involving the production of two atoms of (283)112 through the alpha decay of the short-lived (287)114 (which itself forms in the nuclear fusion reaction of 48Ca with 242Pu) and the adsorption of the two atoms on a gold surface. By directly comparing the adsorption characteristics of (283)112 to that of mercury and the noble gas radon, we find that element 112 is very volatile and, unlike radon, reveals a metallic interaction with the gold surface. These adsorption characteristics establish element 112 as a typical element of group 12, and its successful production unambiguously establishes the approach to the island of stability of superheavy elements through 48Ca-induced nuclear fusion reactions with actinides. PMID:17476264

  3. Chemical characterization of element 112

    NASA Astrophysics Data System (ADS)

    Eichler, R.; Aksenov, N. V.; Belozerov, A. V.; Bozhikov, G. A.; Chepigin, V. I.; Dmitriev, S. N.; Dressler, R.; Gäggeler, H. W.; Gorshkov, V. A.; Haenssler, F.; Itkis, M. G.; Laube, A.; Lebedev, V. Ya.; Malyshev, O. N.; Oganessian, Yu. Ts.; Petrushkin, O. V.; Piguet, D.; Rasmussen, P.; Shishkin, S. V.; Shutov, A. V.; Svirikhin, A. I.; Tereshatov, E. E.; Vostokin, G. K.; Wegrzecki, M.; Yeremin, A. V.

    2007-05-01

    The heaviest elements to have been chemically characterized are seaborgium (element 106), bohrium (element 107) and hassium (element 108). All three behave according to their respective positions in groups 6, 7 and 8 of the periodic table, which arranges elements according to their outermost electrons and hence their chemical properties. However, the chemical characterization results are not trivial: relativistic effects on the electronic structure of the heaviest elements can strongly influence chemical properties. The next heavy element targeted for chemical characterization is element 112; its closed-shell electronic structure with a filled outer s orbital suggests that it may be particularly susceptible to strong deviations from the chemical property trends expected within group 12. Indeed, first experiments concluded that element 112 does not behave like its lighter homologue mercury. However, the production and identification methods used cast doubt on the validity of this result. Here we report a more reliable chemical characterization of element 112, involving the production of two atoms of 283112 through the alpha decay of the short-lived 287114 (which itself forms in the nuclear fusion reaction of 48Ca with 242Pu) and the adsorption of the two atoms on a gold surface. By directly comparing the adsorption characteristics of 283112 to that of mercury and the noble gas radon, we find that element 112 is very volatile and, unlike radon, reveals a metallic interaction with the gold surface. These adsorption characteristics establish element 112 as a typical element of group 12, and its successful production unambiguously establishes the approach to the island of stability of superheavy elements through 48Ca-induced nuclear fusion reactions with actinides.

  4. Gas uptake and chemical aging of semisolid organic aerosol particles

    PubMed Central

    Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich

    2011-01-01

    Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate. PMID:21690350

  5. Generation and Characterization of Indoor Fungal Aerosols for Inhalation Studies.

    PubMed

    Madsen, Anne Mette; Larsen, Søren T; Koponen, Ismo K; Kling, Kirsten I; Barooni, Afnan; Karottki, Dorina Gabriela; Tendal, Kira; Wolkoff, Peder

    2016-04-01

    In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 10(7)CFU of fungi/m(3)air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans,Aspergillus niger, Aspergillus ustus, Aspergillus versicolor,Chaetomium globosum,Cladosporium herbarum,Penicillium brevicompactum,Penicillium camemberti,Penicillium chrysogenum,Penicillium commune,Penicillium glabrum,Penicillium olsonii,Penicillium rugulosum,Stachybotrys chartarum, and Wallemia sebi They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition. PMID:26921421

  6. Generation and Characterization of Indoor Fungal Aerosols for Inhalation Studies

    PubMed Central

    Larsen, Søren T.; Koponen, Ismo K.; Kling, Kirsten I.; Barooni, Afnan; Karottki, Dorina Gabriela; Tendal, Kira; Wolkoff, Peder

    2016-01-01

    In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 107 CFU of fungi/m3 air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans, Aspergillus niger, Aspergillus ustus, Aspergillus versicolor, Chaetomium globosum, Cladosporium herbarum, Penicillium brevicompactum, Penicillium camemberti, Penicillium chrysogenum, Penicillium commune, Penicillium glabrum, Penicillium olsonii, Penicillium rugulosum, Stachybotrys chartarum, and Wallemia sebi. They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition. PMID:26921421

  7. Size-Resolved Volatility and Chemical Composition of Aged European Aerosol Measured During FAME-2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Mohr, C.; Lee, B.; Engelhart, G. J.; Decarlo, P. F.; Prevot, A. S.; Baltensperger, U.; Donahue, N. M.; Pandis, S. N.

    2008-12-01

    We present first results on the volatility and chemical composition of aged organic aerosol measured during the Finokalia Aerosol Measurement Experiment - 2008 (FAME-2008). Finokalia is located in the Southeast of Crete, Greece, and this remote site allows for the measurement of aged European aerosol as it is transported from Central to Southeastern Europe. We measured the volatility of the aerosol at Finokalia as a function of its size by combining several instruments. We used an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) to measure the size-resolved chemical composition of the particles, a scanning mobility particle sizer (SMPS) to measure the volume distribution of particles, and a thermodenuder system to induce changes in size and composition via moderate heating of the particles. The largest fraction of the non-refractory material in the aerosol sampled was ammonium sulfate and ammonium bisulfate, followed by organic material and a small contribution from nitrate. Most of the organic aerosol was highly oxidized, even after only a few days of transport over continental Europe. These highly oxidized organics had lower volatility than fresh primary or secondary aerosol measured in the laboratory. Significant changes in air-parcel trajectories and wind direction led to changes in the chemical composition of the sampled aerosol and corresponding changes of the volatility. These results allow the quantification of the effect of atmospheric processing on organic aerosol volatility and can be used as constraints for atmospheric Chemical Transport Models that predict the aerosol volatility.

  8. In vitro aerosol characterization of Staccato(®) Loxapine.

    PubMed

    Dinh, Khe; Myers, Dan J; Glazer, Marc; Shmidt, Tamara; Devereaux, Caitlin; Simis, Kathleen; Noymer, Peter D; He, Min; Choosakul, Corinna; Chen, Qiang; Cassella, James V

    2011-01-17

    Medicinal aerosol products (metered dose and dry powder inhalers) require characterization testing over a wide range of use and pre-operating stress scenarios in order to ensure robust product performance and support submissions for regulatory approval. Aerosol characterization experiments on Staccato(®) Loxapine for inhalation (Staccato Loxapine) product (emitted dose, particle size, and purity) were assessed at different operating settings (flow rates, ambient temperature and humidity, altitude, and orientation) and at nominal test conditions following exposure to various stresses on the device (mechanical shock, vibration, drop, thermal cycling, and light exposure). Emitted dose values were approximately 90% of the coated dose at every condition, meeting target specifications in each case. Aerosol purity was consistently >99.5% for every test setting, with no reportable impurities according to ICH standards (>0.1%). Particle size averaged 2μm (MMAD) and was independent of the different test conditions with the exception of different airflow rates. Particle size decreased slightly with airflow, which may assist in maintaining constant deep lung deposition. The combination of high emitted dose efficiency and a particle size range ideally suited for lung deposition, along with the consistency of these key aerosol attributes, suggests that the Staccato system has distinct advantages over more traditional aerosol systems. PMID:20971174

  9. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    NASA Astrophysics Data System (ADS)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect but with the uncertainty being 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, both in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated

  10. Characterization of aerosol transport in a recoil transfer chamber for heavy element chemistry

    NASA Astrophysics Data System (ADS)

    Lopez Morales, Gabriel; Tereshatov, Evgeny; Folden, Charles

    2014-09-01

    Heavy elements (HE) are elements with Z >103 that can be synthesized via target material bombardment by accelerated charged particles. Production and investigation of properties of new elements result in understanding of upper limit of Periodic Table of Elements. Study of chemical behavior of HE is usually based on comparison with their light homologue properties. Such experiments require transportation of elements of interest from a target chamber to a radiochemical laboratory within several seconds. Aerosol transport is a widely known way to transfer non-volatile elements in on-line experiments. This particular project is devoted to design, characterization and optimization of aerosol transport for implementation in future experiments at Cyclotron Institute, Texas A&M University. Different types of aerosol generators and particle parameters such as: size distribution, concentration and charge have been considered. Results showing procedure development will be presented. *Funded by DOE and NSF-REU Program.

  11. Pampre : a new laboratory experiment to better understand the physico-chemical processes of Titan aerosols formation and growth

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Cernogora, G.; Boufendi, L.; Correia, J. J.; Coll, P.

    2003-04-01

    Titan s atmosphere contains aerosols issued from the organic chemistry induced by the photochemistry of N2 and CH4, the major gaseous atmospheric compounds. These organic aerosols are important as they : i) have a significant influence on the properties of the atmosphere, linked to their optical properties; ii) represent the best known example of transition from the gaseous to the solid phase by chemistry; iii) represent the most complex organics produced in Titan s atmosphere, making them particularly interesting from an exo/astrobiological point of view. However, few direct information are available about them, and their processes of formation and growth are not well understood. In order to bring answers to these questions, we developed a new type of laboratory simulation which is dedicated to better understand the physico-chemical processes involved in the formation and growth of the aerosols. The main originality of this experiment (named PAMPRE) comes from its ability to produce aerosols in volume, as they are maintained in levitation thanks to an electric force compensating gravity, whereas the other similar experiments produce tholins on the reactors walls. Thus, one should produce analogs of Titan s aerosols within representative conditions. Moreover, beyond the ex-situ analyses generally led to characterize the aerosols properties with conventional techniques (MEB, GC-MS), the experimental set-up allows to operate in situ studies of the reactive plasma by UV-vis spectroscopy, in order to deduce the electron energy distribution function which have to be compared with the sun spectrum. Beyond the characterization of the aerosols properties and formation, this experiment will also provide information and materials that will be used to operate the calibrations of the Aerosol and Collector Pyrolyser and Gas Chromatograph-Mass Spectrometer experiments of the Cassini-Huygens mission, and to develop the ICAPS-IMPF facility which should be present in the ISS within

  12. Simulation of aerosol chemical compositions in the Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Chrit, Mounir; Kata Sartelet, Karine; Sciare, Jean; Marchand, Nicolas; Pey, Jorge; Sellegri, Karine

    2016-04-01

    This work aims at evaluating the chemical transport model (CTM) Polair3d of the air-quality modelling platform Polyphemus during the ChArMex summer campaigns of 2013, using ground-based measurements performed at ERSA (Cape Corsica, France), and at determining the processes controlling organic aerosol concentrations at ERSA. Simulations are compared to measurements for concentrations of both organic and inorganic species, as well as the ratio of biogenic versus anthropogenic particles, and organic aerosol properties (oxidation state). For inorganics, the concentrations of sulphate, sodium, chloride, ammonium and nitrate are compared to measurements. Non-sea-salt sulphate and ammonium concentrations are well reproduced by the model. However, because of the geographic location of the measurement station at Cape Corsica which undergoes strong wind velocities and sea effects, sea-salt sulphate, sodium, chloride and nitrate concentrations are strongly influenced by the parameterizations used for sea-salt emissions. Different parameterizations are compared and a parameterization is chosen after comparison to sodium measurements. For organics, the concentrations are well modelled when compared to experimental values. Anthropogenic particles are influenced by emission of semi-volatile organic compounds (SVOC). Measurements allow us to refine the estimation of those emissions, which are currently missing in emission inventories. Although concentrations of biogenic particles are well simulated, the organic chemical compounds are not enough oxidised in the model. The observed oxidation state of organics shows that the oligomerisation of pinonaldehyde was over-estimated in Polyphemus. To improve the oxidation property of organics, the formation of extremely low volatile organic compounds from autoxidation of monoterpenes is added to Polyphemus, using recently published data from chamber experiments. These chemical compounds are highly oxygenated and are formed rapidly, as first

  13. Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California

    NASA Astrophysics Data System (ADS)

    Shields, Laura Grace

    Composed of a mixture of chemical species and phases and existing in a variety of shapes and sizes, atmospheric aerosols are complex and can have serious influence on human health, the environment, and climate. In order to better understand the impact of aerosols on local to global scales, detailed measurements on the physical and chemical properties of ambient particles are essential. In addition, knowing the origin or the source of the aerosols is important for policymakers to implement targeted regulations and effective control strategies to reduce air pollution in their region. One of the most ground breaking techniques in aerosol instrumentation is single particle mass spectrometry (SPMS), which can provide online chemical composition and size information on the individual particle level. The primary focus of this work is to further improve the ability of one specific SPMS technique, aerosol time-of-flight mass spectrometry (ATOFMS), for the use of identifying the specific origin of ambient aerosols, which is known as source apportionment. The ATOFMS source apportionment method utilizes a library of distinct source mass spectral signatures to match the chemical information of the single ambient particles. The unique signatures are obtained in controlled source characterization studies, such as with the exhaust emissions of heavy duty diesel vehicles (HDDV) operating on a dynamometer. The apportionment of ambient aerosols is complicated by the chemical and physical processes an individual particle can undergo as it spends time in the atmosphere, which is referred to as "aging" of the aerosol. Therefore, the performance of the source signature library technique was investigated on the ambient dataset of the highly aged environment of Riverside, California. Additionally, two specific subsets of the Riverside dataset (ultrafine particles and particles containing trace metals), which are known to cause adverse health effects, were probed in greater detail. Finally

  14. Acidic sulfate aerosols: characterization and exposure

    SciTech Connect

    Lioy, P.J.; Waldman, J.M.

    1989-02-01

    Exposures to acidic aerosol in the atmosphere are calculated from data reported in the scientific literature. The majority of date was not derived from studies necessarily designed to examine human exposures. Most of the studies were designed to investigate the characteristics of the atmosphere. However, the measurements were useful in defining two potential exposure situations: regional stagnation and transport conditions and local plume impacts. Levels of acidicaerosol in excess of 20 to 40 micrograms/m/sup 3/ (as H/sub 2/SO/sub 4/) have been observed for time durations ranging from 1 to 12 hr. These were associated with high, but not necessarily the highest, atmospheric SO/sub 4/(2)- levels. Exposures of 100 to 900 micrograms/m/sup 3//hr were calculated for the acid events that were monitored. In contrast, earlier London studies indicated that apparent acidity in excess of 100 micrograms/m/sup 3/ (as H/sub 2/SO/sub 4/) was present in the atmosphere, and exposures less than 2000 micrograms/m/sup 3//hr were possible. Our present knowledge about the frequency, magnitude, and duration of acidic sulfate aerosol events and episodes is insufficient. Efforts must be made to gather more data, but these should be done in such a way that evaluation of human exposure is the focus of the research. In addition, further data are required on the mechanisms of formation of H/sub 2/SO/sub 4/ and on what factors can be used to predict acidic sulfate episodes. 96 references.

  15. Characterization of carbonaceous aerosols in urban air

    NASA Astrophysics Data System (ADS)

    Husain, Liaquat; Dutkiewicz, Vincent A.; Khan, A. J.; Ghauri, Badar M.

    Concentrations of black carbon, [BC], were determined with an Aethalometer every 5 min at Lahore, a city of about 10 million in Pakistan, from 22 November 2005 to 31 January 2006. [BC] were very high, ranging from about 5 to 110μgm-3, with a mean of 21.7μgm-3. A distinct diurnal variation was observed: concentrations were lowest from about 10 a.m. to 4 p.m. local time (LT), and highest around 5-9 p.m. No clear relationship was observed between surface wind directions and [BC], although some of the highest concentrations were observed when the airflow was from southwest to northwest. The daily variations in concentrations were strongly affected by the diurnal variations in the mixing height; BC concentrations were low during the day when the mixing heights were high, ˜1000m, and very high at night when the mixing heights were low <250m. Periods of light to dense fog occurred from 22 December through 4 January. [BC] were generally lower than average when fog occurred during the night and early morning, but they were not necessarily lower during daytime fogs. We also collected aerosols on quartz filters every 3, 6, or 12 h and determined the concentrations of elemental, [EC], and organic carbon, [OC], using the thermal-optical method. The [BC] were highly correlated with EC (r2=0.71), but on average 25% higher than [EC]. The [EC] and [OC] concentrations were moderately correlated (r2=0.65). The [OC]/[EC] ratios varied from 2.8 to 12, with a mean of 5.6. Although a large component of the carbonaceous aerosols in Lahore originated from fossil fuel combustion, a significant fraction was derived from biomass burning.

  16. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in Downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2013-12-01

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was recently developed to provide long-term real-time continuous measurements of ambient non-refractory (i.e., organic, sulfate, ammonium, nitrate, and chloride) submicron particulate matter (NR-PM1). Currently, there are a limited number of field studies that evaluate the long-term performance of the ACSM against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. The collocated measurements included a second ACSM, continuous and integrated sulfate, nitrate, and ammonium measurements, as well as a semi-continuous Sunset organic carbon/elemental carbon (OC/EC) analyzer, continuous tapered element oscillating microbalance (TEOM), 24 h integrated Federal Reference Method (FRM) filters, and continuous scanning electrical mobility system-mixing condensation particle counter (SEMS-MCPC). Intercomparison of the two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21); mass concentration for all chemical species agreed within ±27%, indicating that ACSM instruments are capable of stable and reproducible operation. Chemical constituents measured by the ACSM are also compared with those obtained from the continuous measurements from JST. Since the continuous measurement concentrations are adjusted to match the integrated filter measurements, these comparisons reflect the combined uncertainties of the ACSM, continuous, and filter measurements. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Differences between ACSM mass concentrations and the filter-adjusted JST continuous data are 5-27%, 4

  17. Characterization of near-highway submicron aerosols in New York City with a high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Chen, W.-N.; Bae, M.-S.; Hung, H.-M.; Lin, Y.-C.; Ng, N. L.; Jayne, J.; Massoli, P.; Williams, L. R.; Demerjian, K. L.

    2012-02-01

    Knowledge of the variations of mass concentration, chemical composition and size distributions of submicron aerosols near roadways is of importance for reducing exposure assessment uncertainties in health effects studies. The goal of this study is to deploy and evaluate an Atmospheric Sciences Research Center-Mobile Laboratory (ASRC-ML), equipped with a suite of rapid response instruments for characterization of traffic plumes, adjacent to the Long Island Expressway (LIE) - a high-traffic highway in the New York City Metropolitan Area. In total, four measurement periods, two in the morning and two in the evening were conducted at a location approximately 30 m south of the LIE. The mass concentrations and size distributions of non-refractory submicron aerosol (NR-PM1) species were measured in situ at a time resolution of 1 min by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer, along with rapid measurements (down to 1 Hz) of gaseous pollutants (e.g. HCHO, NO2, NO, O3, and CO2, etc.), black carbon (BC), and particle number concentrations and size distributions. Particulate organics varied dramatically during periods with high traffic influences from the nearby roadway. The variations were mainly observed in the hydrocarbon-like organic aerosol (HOA), a surrogate for primary OA from vehicle emissions. The inorganic species (sulfate, ammonium, and nitrate) and oxygenated OA (OOA) showed much smoother variations indicating minor impacts from traffic emissions. The concentration and chemical composition of NR-PM1 also varied differently on different days depending on meteorology, traffic intensity and vehicle types. Overall, organics dominated the traffic-related NR-PM1 composition (>60%) with HOA accounting for a major fraction of OA. The traffic-influenced organics showed two distinct modes in mass-weighted size distributions, peaking at ∼120 nm and 500 nm (vacuum aerodynamic diameter, Dva), respectively. OOA and inorganic species appear to be

  18. Characterization of aerosols from eruptions of Mount St. Helens

    SciTech Connect

    Chuan, R.L.; Woods, D.C.; McCormick, M.P.

    1981-01-01

    Measurements of mass concentration and size distribution of aerosols from eruptions of Mount St. Helens as well as morphological and elemental analyses were obtained between 7 April and 7 August 1980. In situ measurements were made in early phreatic and later, minor phreatomagmatic eruption clouds near the vent of the volcano and in plumes injected into the stratosphere from the major eruptions of 18 and 25 May. The phreatic aerosol was characterized by an essentially monomodal size distribution dominated by silicate particles larger than 10 micrometers in diameter. The phreatomagmatic eruption cloud was multimodal; the large size mode consisted of silicate particles and the small size modes were made up of mixtures of sulfuric acid and silicate particles. The stratospheric aerosol from the main eruption exhibited a characteristic narrow single mode with particles less than 1 micrometer in diameter and nearly all of the mass made up of sulfuric acid droplets.

  19. Microphysical, chemical and optical aerosol properties in the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Kikas, Ülle; Reinart, Aivo; Pugatshova, Anna; Tamm, Eduard; Ulevicius, Vidmantas

    2008-11-01

    The microphysical structure, chemical composition and prehistory of aerosol are related to the aerosol optical properties and radiative effect in the UV spectral range. The aim of this work is the statistical mapping of typical aerosol scenarios and adjustment of regional aerosol parameters. The investigation is based on the in situ measurements in Preila (55.55° N, 21.00° E), Lithuania, and the AERONET data from the Gustav Dalen Tower (58 N, 17 E), Sweden. Clustering of multiple characteristics enabled to distinguish three aerosol types for clear-sky periods: 1) clean maritime-continental aerosol; 2) moderately polluted maritime-continental aerosol; 3) polluted continental aerosol. Differences between these types are due to significant differences in aerosol number and volume concentration, effective radius of volume distribution, content of SO 4- ions and Black Carbon, as well as different vertical profiles of atmospheric relative humidity. The UV extinction, aerosol optical depth (AOD) and the Ångstrom coefficient α increased with the increasing pollution. The value α = 1.96 was observed in the polluted continental aerosol that has passed over central and eastern Europe and southern Russia. Reduction of the clear-sky UV index against the aerosol-free atmosphere was of 4.5%, 27% and 41% for the aerosol types 1, 2 and 3, respectively.

  20. Long-term measurement of aerosol chemical composition in Athens, Greece.

    NASA Astrophysics Data System (ADS)

    Paraskevopoulou, Despina; Liakakou, Eleni; Theodosi, Christina; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2014-05-01

    The collection of our samples was conducted for a period of five years (2008 - 2013) in Athens, Greece. The site is situated at the premises of the National Observatory of Athens on Penteli Hill, northeast Athens suburbs, and is considered an urban background station. The aim of our study was a first long-term estimation of the chemical mass closure of aerosol. For the purposes of the study, we applied three filter samplers during the sampling period: two Partisol FRM Model 2000 air samplers (one of them collecting PM10 and the other PM2.5 fractions of aerosol) and one Dichotomous Partisol auto-sampler (with PM2.5 and PM2.5-10 inlet). Aerosols were collected on Whatman QM-A quartz fiber filters and the mass of the collected samples was estimated by weighing the pre-combusted filters before and after sampling, under controlled conditions, using a microbalance. All quartz filters were analysed for organic (OC) and elemental carbon (EC) by a thermal - optical transmission technique. The concentration of water soluble organic carbon (WSOC) was defined for each filter using a total organic carbon analyzer, while the content in main water soluble ions (Cl-, Br-, NO-3, SO4-2, PO4-3, C2O4-2, NH4+, K+, Na+, Mg+2, Ca+2) was determined by ion chromatography. Additionally the filters were analyzed for trace metals by inductively coupled plasma optical emission spectrometry (ICP-OES). Aerosol chemical mass closure calculations were conducted for the PM2.5 fraction. The area of Athens is characterized by aged aerosol that can originate from the marine boundary layer, the European mainland and occasionally from North African desert areas. The contribution of dust and particulate organic matter on PM levels was estimated taking into consideration the location of the sampling site, while identification and evaluation of sources was performed. Additionally, non-sea salt concentrations of the main ions were estimated to complete the chemical closure in the extended area. According to

  1. Lidar-radar synergy for characterizing properties of ultragiant volcanic aerosol

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amodeo, A.; D'Amico, G.; Giunta, A.; Mona, L.; Pappalardo, G.

    2011-12-01

    The atmospheric aerosol has a relevant effect on our life influencing climate, aviation safety, air quality and natural hazards. The identification of aerosol layers through inspection of continuous measurements is strongly recommended for quantifying their contribution to natural hazards and air quality and to establish suitable alerting systems. In particular, the study of ultragiant aerosols may improve the knowledge of physical-chemical processes underlying the aerosol-cloud interactions and the effect of giant nuclei as a potential element to expedite the warm-rain process. Moreover, the identification and the characterization of ultragiant aerosols may strongly contribute to quantify their impact on human health and their role in airplane engine damages or in visibility problems, especially in case of extreme events as explosive volcanic eruptions. During spring 2010, volcanic aerosol layers coming from Eyjafjallajökull volcano were observed over most of the European countries, using lidar technique. From 19 April to 19 May 2010, they were also observed at CNR-IMAA Atmospheric Observatory (CIAO) with the multi-wavelength Raman lidar systems of the Potenza EARLINET station (40.60N, 15.72E, 760 m a.s.l), Southern Italy. During this period, ultragiant aerosol were also observed at CIAO using a co-located Ka-band MIRA-36 Doppler microwave radar operating at 8.45 mm (35.5 GHz). The Ka-band radar observed in four separate days (19 April, 7, 10, 13 May) signatures consistent with the observations of non-spherical ultragiant aerosol characterized by anomalous values of linear depolarization ratio higher than -4 dB, probably related to the occurrence of multiple effects as particle alignment and presence of an ice coating. 7-days backward trajectory analysis shows that the air masses corresponding to the ultragiant aerosol observed by the radar were coming from the Eyjafjallajökull volcano area. Only in one case the trajectories do not come directly from Iceland

  2. Chemical composition of the atmospheric aerosol in the troposphere over the Hudson Bay lowlands and Quebec-Labrador regions of Canada

    NASA Technical Reports Server (NTRS)

    Gorzelska, K.; Talbot, R. W.; Klemm, K.; Lefer, B.; Klemm, O.; Gregory, G. L.; Anderson, B.; Barrie, L. A.

    1994-01-01

    Atmospheric aerosols were collected in the boundary layer and free troposphere over continental and coastal subarctic regions of Canada during the July - August 1990 joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B/Northern Wetlands Study (NOWES). The samples were analyzed for the following water soluble species: sulfate, nitrate, ammonium, potassium, sodium, chloride, oxalate, methylsulfonate, and total amine nitrogen. Ammonium and sulfate were the major water soluble components of these aerosols. The nearly neutral (overall) chemical composition of summertime aerosol particles contrasts their strongly acidic wintertime composition. Aerosol samples were separated into several air mass categories and characterized in terms of chemical composition, associated mixing ratios of gaseous compounds, and meteorological parameters. The fundamental category represented particles associated with 'background' air masses. The summertime atmospheric aerosols in background air over the North American subarctic and Arctic regions were characterized by relatively small and spatially uniform mixing ratios of the measured species. These aerosol particles were aged to the extent that they had lost their primary source signature. The chemical profile of the background air aerosols was frequently modified by additions from biomass fire plumes, aged tropical marine air, and intrusions of upper tropospheric/lower stratospheric air. Aerosols in boundary layer background air over the boreal forest region of Quebec-Labrador had significantly larger mixing ratios of ammonium and sulfate relative to the Hudson Bay region. This may reflect infiltration of anthropogenic pollution or be due to natural emissions from this region.

  3. Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

    NASA Astrophysics Data System (ADS)

    Hock, N.; Schneider, J.; Borrmann, S.; Römpp, A.; Moortgat, G.; Franze, T.; Schauer, C.; Pöschl, U.; Plass-Dülmer, C.; Berresheim, H.

    2007-06-01

    Detailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. The online measurement data and techniques included: size-resolved chemical composition of submicron particles by aerosol mass spectrometry (AMS); total particle number concentrations and size distributions over the diameter range of 3 nm to 9 μm (CPC, SMPS, OPC); monoterpenes determined by gas chromatography- ion trap mass spectrometry; OH and H2SO4 determined by atmospheric pressure chemical ionization mass spectrometry (CIMS). Filter sampling and offline analytical techniques were used to determine: fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 μg m-3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 μg m-3). The relative proportions of non-refractory submicron particle components were: 11% ammonium, 19% nitrate, 20% sulfate, and 50% organics (OM1). In spite of strongly changing meteorological conditions and absolute concentration levels of particulate matter (3-13 μg m-3 PM1), OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. In contrast, the ratio of nitrate to sulfate was highly dependent on temperature (14-32°C) and relative humidity (20-100%), which could be explained by thermodynamic model calculations of NH3/HNO3/NH4NO3 gas-particle partitioning. From the combination of optical and other sizing techniques (OPC, AMS, SMPS), an average refractive index of 1.40-1.45 was inferred for the measured rural aerosol

  4. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  5. Characterization of Electronic Cigarette Aerosol and Its Induction of Oxidative Stress Response in Oral Keratinocytes

    PubMed Central

    Zhao, Tongke; Shu, Shi; Chang, Chong Hyun; Messadi, Diana; Xia, Tian; Zhu, Yifang; Hu, Shen

    2016-01-01

    In this study, we have generated and characterized Electronic Cigarette (EC) aerosols using a combination of advanced technologies. In the gas phase, the particle number concentration (PNC) of EC aerosols was found to be positively correlated with puff duration whereas the PNC and size distribution may vary with different flavors and nicotine strength. In the liquid phase (water or cell culture media), the size of EC nanoparticles appeared to be significantly larger than those in the gas phase, which might be due to aggregation of nanoparticles in the liquid phase. By using in vitro high-throughput cytotoxicity assays, we have demonstrated that EC aerosols significantly decrease intracellular levels of glutathione in NHOKs in a dose-dependent fashion resulting in cytotoxicity. These findings suggest that EC aerosols cause cytotoxicity to oral epithelial cells in vitro, and the underlying molecular mechanisms may be or at least partially due to oxidative stress induced by toxic substances (e.g., nanoparticles and chemicals) present in EC aerosols. PMID:27223106

  6. AEROSOL CHEMICAL CHARACTERISTION ON BOARD THE DOE G1 AIRCRAFT USING A PARTICLE INTO LIQUID SAMPLER DURING THE TEXAQS 2000 EXPERIMENT.

    SciTech Connect

    LEE,Y.N.; SONG,Z.; LIU,Y.; DAUM,P.; WEBER,R.; ORSINI,D.; LAULAINEN,N.; HUBBE,J.; MORRIS,V.

    2001-01-13

    Knowledge of aerosol chemical composition is key to understanding a number of properties of ambient aerosol particles including sources, size/number distribution, chemical evolution, optical properties and human health effects. Although filter based techniques have been widely used to determine aerosol chemical constituents, they generally cannot provide sufficiently fast time resolution needed to investigate sources and chemical evolution that effect aerosol chemical, size and number changes. In order to gain an ability to describe and predict the life cycles of ambient aerosols as a basis for ambient air quality control, fast and sensitive determination of the aerosol chemical composition must be made available. To help to achieve this goal, we deployed a newly developed technique, referred to as PILS (particle-into-liquid-sampler), on the DOE G1 aircraft during the 2000 Texas Air Quality Study (TexAQS 2000) to characterize the major ionic species of aerosol particles with aerodynamic size smaller than 2.5 {micro}m (PM 2.5). The results obtained are examined in the context of other simultaneously collected data for insights into the measurement capability of the PILS system.

  7. Aerosol characterization at the Saharan AERONET site Tamanrasset

    NASA Astrophysics Data System (ADS)

    Guirado, C.; Cuevas, E.; Cachorro, V. E.; Toledano, C.; Alonso-Pérez, S.; Bustos, J. J.; Basart, S.; Romero, P. M.; Camino, C.; Mimouni, M.; Zeudmi, L.; Goloub, P.; Baldasano, J. M.; de Frutos, A. M.

    2014-06-01

    More than two years of columnar atmospheric aerosol measurements (2006-2009) at Tamanrasset site, in the heart of the Sahara desert, are analysed. AERONET level 2.0 data were used. The KCICLO method was applied to a part of level 1.5 data series to improve the quality of the results. The annual variability of aerosol optical depth (AOD) and Angstrom exponent (AE) has been found to be strongly linked to the Convective Boundary Layer (CBL) thermodynamic features. The dry-cool season (autumn and winter time) is characterized by a shallow CBL and very low mean turbidity (AOD ~ 0.09 at 440 nm, AE ~ 0.62). The wet-hot season (spring and summer time) is dominated by high turbidity of coarse dust particles (AE ~ 0.28, AOD ~ 0.39 at 440 nm) and a deep CBL. The aerosol-type characterization shows desert mineral dust as prevailing aerosol. Both pure Saharan dust and very clear sky conditions are observed depending on the season. However, several case studies indicate an anthropogenic fine mode contribution from Libya and Algeria's industrial areas. The Concentration Weighted Trajectory (CWT) source apportionment method was used to identify potential sources of air masses arriving at Tamanrasset at several heights for each season. Microphysical and optical properties and precipitable water vapour were also investigated.

  8. Characterization of Atmospheric Aerosols in a Costa Rican Premontane Cloud Forest

    NASA Astrophysics Data System (ADS)

    Dennis, A. R.; Guffin, E. C.; Brooks, S. D.

    2012-12-01

    The composition and size of atmospheric aerosols are key to understanding both the direct effects of aerosols on climate and their role as cloud condensation nuclei (CCN). In this study, aerosols in a Costa Rican tropical premontane cloud forest were collected and analyzed by size, chemical composition, and source to determine their role in specific weather events and cloud formation. Particle concentration and size distributions were measured using a TSI AeroTrak spectrometer. A PIXE Cascade Impactor with two sampling stages was used to collect particles in the submicron and supermicron size ranges. To survey the biogenic component of aerosols, pollen particles were collected with a Rotorod Model 20. Aerosol and pollen samples were analyzed on "typical" and "event" days. Collected aerosol samples were analyzed for molecular functional groups present via Raman Microspectroscopy. AeroTrak collection showed particles in all size bins, with the majority of particles in the 0.3 μm bin. Typical days were consistently dominated by submicron particles. Event days were marked by strong and/or unusual wind speeds and directions, or heavy precipitation events. Concentrations of coarse particles were significantly increased during events. Raman analysis showed peaks at 2900, 1550, 1350, 1068, 450, and 141 wavenumbers, which indicate a mixture of organics, humic-like substances, nitrates, sulfates, and inorganic salts. Light microscopy analysis of pollen samples showed a large variability in daily pollen count with the greatest pollen count occurring on wind event days. Prevalent taxa of pollen identified were genus Pourouma in the Moraceae family, and Asteraceae family. Detailed characterization of the biogenic aerosol population present in the remote cloud forest will be presented and atmospheric implications discussed.

  9. Characterization of submicron aerosols at a suburban site in central China

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Zhao, Jian; Du, Wei; Ana, Godson; Wang, Zhenzhu; Sun, Lu; Wang, Yuying; Zhang, Fang; Li, Zhanqing; Ye, Xingnan; Sun, Yele

    2016-04-01

    We have characterized the chemical composition and sources of submicron aerosol (PM1) at a suburban site in Xinzhou in central China using an Aerosol Chemical Speciation Monitor from July 17 to September 5, 2014. The average (±1σ) PM1 concentration was 35.4 (±20.8) μg/m3 for the entire study period, indicating that Xinzhou was less polluted compared to the megacities in the North China Plain (NCP). The PM1 was mainly composed of organic aerosol and sulfate, on average accounting for 33.1% and 32.4%, respectively, followed by nitrate (14.4%) and ammonium (11.8%). Higher sulfate and lower nitrate contributions than those in megacities in the NCP elucidated an important emission source of coal combustion in central China. Three organic aerosol (OA) factors, i.e., hydrocarbon-like OA (HOA), semi-volatile oxygenated OA (SV-OOA) and low-volatility OOA (LV-OOA), were identified using positive matrix factorization. Secondary OA (=SV-OOA + LV-OOA) dominated OA, on average accounting for 82%, indicating that OA at the Xinzhou site was overall oxidized. We also observed relatively similar aerosol bulk composition and OA composition at low and high mass loading periods, and also from the different source areas, indicating that aerosol species were homogeneously distributed over a regional scale near the site for most of the time during this study. Slightly higher mass concentrations and sulfate contributions from the southern air masses were likely due to the transport from the polluted cities, such as Taiyuan to the south. In addition, the daily variation of PM1 in Xinzhou resembled that observed in Beijing, indicating that the wide-scale regional haze pollution often influences both the NCP and the central China.

  10. The ambient aerosol characterization during the prescribed bushfire season in Brisbane 2013.

    PubMed

    Milic, A; Miljevic, B; Alroe, J; Mallet, M; Canonaco, F; Prevot, A S H; Ristovski, Z D

    2016-08-01

    Prescribed burnings are conducted in Queensland each year from August until November aiming to decrease the impact of bushfire hazards and maintain the health of vegetation. This study reports chemical characteristics of the ambient aerosol, with a focus on source apportionment of the organic aerosol (OA) fraction, during the prescribed biomass burning (BB) season in Brisbane 2013. All measurements were conducted within the International Laboratory for Air Quality and Health (ILAQH) located in Brisbane's Central Business District. Chemical composition, degree of ageing and the influence of BB emission on the air quality of central Brisbane were characterized using a compact Time of Flight Aerosol Mass Spectrometer (cToF-AMS). AMS loadings were dominated by OA (64%), followed by, sulfate (17%), ammonium (14%) and nitrates (5%). Source apportionment was applied on the AMS OA mass spectra via the multilinear engine solver (ME-2) implementation within the recently developed Source Finder (SoFi) interface. Six factors were extracted including hydrocarbon-like OA (HOA), cooking-related OA (COA), biomass burning OA (BBOA), low-volatility oxygenated OA (LV-OOA), semivolatile oxygenated OA (SV-OOA), and nitrogen-enriched OA (NOA). The aerosol fraction that was attributed to BB factor was 9%, on average over the sampling period. The high proportion of oxygenated OA (72%), typically representing aged emissions, could possess a fraction of oxygenated species transfored from BB components on their way to the sampling site. PMID:27101459

  11. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  12. Aerosol characterization at the Saharan AERONET site Tamanrasset

    NASA Astrophysics Data System (ADS)

    Guirado, C.; Cuevas, E.; Cachorro, V. E.; Toledano, C.; Alonso-Pérez, S.; Bustos, J. J.; Basart, S.; Romero, P. M.; Camino, C.; Mimouni, M.; Zeudmi, L.; Goloub, P.; Baldasano, J. M.; de Frutos, A. M.

    2014-11-01

    More than 2 years of columnar atmospheric aerosol measurements (2006-2009) at the Tamanrasset site (22.79° N, 5.53° E, 1377 m a.s.l.), in the heart of the Sahara, are analysed. Aerosol Robotic Network (AERONET) level 2.0 data were used. The KCICLO (K is the name of a constant and ciclo means cycle in Spanish) method was applied to a part of the level 1.5 data series to improve the quality of the results. The annual variability of aerosol optical depth (AOD) and Ångström exponent (AE) has been found to be strongly linked to the convective boundary layer (CBL) thermodynamic features. The dry-cool season (autumn and winter) is characterized by a shallow CBL and very low mean turbidity (AOD ~ 0.09 at 440 nm, AE ~ 0.62). The wet-hot season (spring and summer) is dominated by high turbidity of coarse dust particles (AE ~ 0.28, AOD ~ 0.39 at 440 nm) and a deep CBL. The aerosol-type characterization shows desert mineral dust as the prevailing aerosol. Both pure Saharan dust and very clear sky conditions are observed depending on the season. However, several case studies indicate an anthropogenic fine mode contribution from the industrial areas in Libya and Algeria. The concentration weighted trajectory (CWT) source apportionment method was used to identify potential sources of air masses arriving at Tamanrasset at several heights for each season. Microphysical and optical properties and precipitable water vapour were also investigated.

  13. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization

    PubMed Central

    Chen, Bean T.; Schwegler-Berry, Diane; McKinney, Walter; Stone, Samuel; Cumpston, Jared L.; Friend, Sherri; Porter, Dale W.; Castranova, Vincent; Frazer, David G.

    2015-01-01

    This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT’s, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008–0.10 particles per µm2 filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT’s, resuspended at a concentration of 10 mg/m3, contained 2.7 × 104 particles/cm3. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm3. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm3, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol. PMID:23033994

  14. Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

    NASA Astrophysics Data System (ADS)

    Hock, N.; Schneider, J.; Borrmann, S.; Römpp, A.; Moortgat, G.; Franze, T.; Schauer, C.; Pöschl, U.; Plass-Dülmer, C.; Berresheim, H.

    2008-02-01

    Detailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. Online measurements included: Size-resolved chemical composition of submicron particles; total particle number concentrations and size distributions over the diameter range of 3 nm to 9 μm; gas-phase concentration of monoterpenes, CO, O3, OH, and H2SO4. Filter sampling and offline analytical techniques were used to determine: Fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 μg m-3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 μg m-3). The relative proportions of non-refractory submicron particle components were: (23±39)% ammonium nitrate, (27±23)% ammonium sulfate, and (50±40)% organics (OM1). OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. The average ratio of OM1 to OC2.5 was 2.1±1.4, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA) inferred from the AMS results (4:1), and also with the high abundance of proteins (~3%) indicating a high proportion of primary biological material (~30%) in PM2.5. This finding was confirmed by low abundance of PAHs (<1 ng m-3) and EC (<1 μg m-3) in PM2.5 and detection of several secondary organic aerosol compounds (dicarboxylic acids) and their precursors (monoterpenes). New particle formation was observed almost

  15. Satellite Perspective of Aerosol Intercontinental Transport: From Qualitative Tracking to Quantitative Characterization

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Remer, Lorraine A.; Kahn, Ralph A.; Chin, Mian; Zhang, Yan

    2012-01-01

    Evidence of aerosol intercontinental transport (ICT) is both widespread and compelling. Model simulations suggest that ICT could significantly affect regional air quality and climate, but the broad inter-model spread of results underscores a need of constraining model simulations with measurements. Satellites have inherent advantages over in situ measurements to characterize aerosol ICT, because of their spatial and temporal coverage. Significant progress in satellite remote sensing of aerosol properties during the Earth Observing System (EOS) era offers opportunity to increase quantitative characterization and estimates of aerosol ICT, beyond the capability of pre-EOS era satellites that could only qualitatively track aerosol plumes. EOS satellites also observe emission strengths and injection heights of some aerosols, aerosol precursors, and aerosol-related gases, which can help characterize aerosol ICT. After an overview of these advances, we review how the current generation of satellite measurements have been used to (1) characterize the evolution of aerosol plumes (e.g., both horizontal and vertical transport, and properties) on an episodic basis, (2) understand the seasonal and inter-annual variations of aerosol ICT and their control factors, (3) estimate the export and import fluxes of aerosols, and (4) evaluate and constrain model simulations. Substantial effort is needed to further explore an integrated approach using measurements from on-orbit satellites (e.g., A-Train synergy) for observational characterization and model constraint of aerosol intercontinental transport and to develop advanced sensors for future missions.

  16. Novel characterization of the aerosol and gas-phase composition of aerosolized jet fuel.

    PubMed

    Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W

    2010-04-01

    Few robust methods are available to characterize the composition of aerosolized complex hydrocarbon mixtures. The difficulty in separating the droplets from their surrounding vapors and preserving their content is challenging, more so with fuels, which contain hydrocarbons ranging from very low to very high volatility. Presented here is a novel method that uses commercially available absorbent tubes to measure a series of hydrocarbons in the vapor and droplets from aerosolized jet fuels. Aerosol composition and concentrations were calculated from the differential between measured total (aerosol and gas-phase) and measured gas-phase concentrations. Total samples were collected directly, whereas gas-phase only samples were collected behind a glass fiber filter to remove droplets. All samples were collected for 1 min at 400 ml min(-1) and quantified using thermal desorption-gas chromatography-mass spectrometry. This method was validated for the quantification of the vapor and droplet content from 4-h aerosolized jet fuel exposure to JP-8 and S-8 at total concentrations ranging from 200 to 1000 mg/m(3). Paired samples (gas-phase only and total) were collected every approximately 40 min. Calibrations were performed with neat fuel to calculate total concentration and also with a series of authentic standards to calculate specific compound concentrations. Accuracy was good when compared to an online GC-FID (gas chromatography-flame ionization detection) technique. Variability was 15% or less for total concentrations, the sum of all gas-phase compounds, and for most specific compound concentrations in both phases. Although validated for jet fuels, this method can be adapted to other hydrocarbon-based mixtures. PMID:20218763

  17. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols

    NASA Astrophysics Data System (ADS)

    Li, Ying; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-03-01

    The formation and aging of organic aerosols (OA) proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the saturation mass concentration of organic compounds containing oxygen, nitrogen, and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less-oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle-phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  18. Biokinetics and dosimetry of inhaled Cm aerosols in beagles: effect of aerosol chemical form.

    PubMed

    Guilmette, R A; Kanapilly, G M

    1988-12-01

    This study was designed to provide tissue distribution data of 244Cm that was inhaled by beagle dogs. Two chemical forms that were presumed to bracket the solubility of pure Cm compounds in vivo were used: 244Cm2O3 (oxide) and 244Cm(NO3)3 (nitrate). Adult dogs of both sexes received a single brief pernasal exposure to either a monodisperse aerosol of 244Cm2O3 (1.4 micron activity median aerodynamic diameter, AMAD, and 1.16 geometric standard deviation, sigma g) or a polydisperse aerosol of 244Cm(NO3)3 (1.1 micron AMAD, 1.74 sigma g). The resulting initial pulmonary burdens (IPB) were 1.5 and 1.7 kBq kg-1 body mass for the oxide and nitrate groups, respectively. The tissue distribution data obtained from the dogs that were serially sacrificed from 4 h to 2 y after exposure showed that both chemical forms were very soluble in vivo. For the oxide group, 78% IPB was cleared from the lung with a T 1/2 of 7.6 d, whereas for the nitrate group, 42% IPB cleared with a T 1/2 of 0.6 d. The lung retention for each group was described by three-component exponential functions. Most of the Cm that cleared the lung was redeposited in the liver (37% IPB) and skeleton (27% IPB), with lesser amounts in the muscle, fat and connective tissue (3.5% IPB) and kidney (approximately 2% IPB). The only significant difference noted in the biokinetics of Cm for the two exposure groups was a more rapid translocation of Cm from the lung to liver and bone during the first 10-20 d after exposure to the nitrate compared to the oxide chemical form. Extrapolation of these data to obtain estimates of committed dose equivalents for man indicate substantial agreement with the limits for occupational exposure specified by ICRP 30 (1979). PMID:3198400

  19. Aerosol characterization over the southeastern United States using high resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition, sources, and organic nitrates

    NASA Astrophysics Data System (ADS)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-04-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particles (NR-PM1) in the southeastern US. Measurements were performed in both rural and urban sites in the greater Atlanta area, GA and Centreville, AL for approximately one year, as part of Southeastern Center of Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important but not dominant contributions to total OA in urban sites. Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA (Isoprene-OA) is only deconvolved in warmer months and contributes 18-36% of total OA. The presence of Isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79%) of OA in all sites. MO-OOA correlates well with ozone in summer, but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based on the HR-ToF-AMS measurements, we estimate that the nitrate functionality from organic nitrates

  20. Chemical composition of atmospheric aerosols between Moscow and Vladivostok

    NASA Astrophysics Data System (ADS)

    Kuokka, S.; Teinilä, K.; Saarnio, K.; Aurela, M.; Sillanpää, M.; Hillamo, R.; Kerminen, V.-M.; Vartiainen, E.; Kulmala, M.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.

    2007-05-01

    The TROICA-9 expedition (Trans-Siberian Observations Into the Chemistry of the Atmosphere) was carried out at the Trans-Siberian railway between Moscow and Vladivostok in October 2005. Measurements of aerosol physical and chemical properties were made from an observatory carriage connected to a passenger train. Black carbon (BC) concentrations in fine particles (PM2.5, aerodynamic diameter <2.5 μm) were measured with an aethalometer using a five-minute time resolution. Concentrations of inorganic ions and some organic compounds (Cl-, NO3-, SO42-, Na+, NH4+, K+, Ca2+, Mg2+, oxalate and methane sulphonate) were measured continuously by using an on-line system with a 15-min time resolution. In addition, particle volume size distributions were determined for particles in the diameter range 3-850 nm using a 10-min. time resolution. The continuous measurements were completed with 24-h. PM2.5 filter samples which were stored in a refrigerator and later analyzed in chemical laboratory. The analyses included mass concentrations of PM2.5, ions, monosaccharide anhydrides (levoglucosan, galactosan and mannosan) and trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn). The mass concentrations of PM2.5 varied in the range of 4.3-34.8 μg m-3 with an average of 21.6 μg m-3. Fine particle mass consisted mainly of BC (average 27.6%), SO42- (13.0%), NH4+ (4.1%), and NO3- (1.4%). One of the major constituents was obviously also organic carbon which was not determined. The contribution of BC was high compared with other studies made in Europe and Asia. High concentrations of ions, BC and particle volume were observed between Moscow and roughly 4000 km east of it, as well as close to Vladivostok, primarily due to local anthropogenic sources. In the natural background area between 4000 and 7200 km distance from Moscow, observed concentrations were low, even though there were local particle sources, such as forest fires, that increased occasionally concentrations. The

  1. Investigating the chemical nature of humic-like substances (HULIS) in North American atmospheric aerosols by liquid chromatography tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth A.; Hedman, Curtis J.; Sheesley, Rebecca J.; Shafer, Martin M.; Schauer, James J.

    The high-molecular weight water-soluble organic compounds present in atmospheric aerosols underwent functional-group characterization using liquid chromatography tandem mass spectrometry (LC-MS/MS), with a focus on understanding the chemical structure and origins of humic-like substances (HULIS) in the atmosphere. Aerosol samples were obtained from several locations in North America at times when primary sources contributing to organic aerosol were well-characterized: Riverside, CA, Fresno, CA, urban and peripheral Mexico City, Atlanta, GA, and Bondville, IL. Chemical analysis targeted identification and quantification of functional groups, such as aliphatic, aromatic, and bulk carboxylic acids, organosulfates, and carbohydrate-like substances that comprise species with molecular weights (MW) 200-600 amu. Measured high-MW functional groups were compared to modeled primary sources with the purpose of identifying associations between aerosol sources, high-MW aerosol species, and HULIS. Mobile source emissions were linked to high-molecular weight carboxylic acids, especially aromatic acids, biomass burning was associated with carboxylic acids and carbohydrate-like substances, and secondary organic aerosol (SOA) correlated well with the total amount of HULIS measured, whereas organosulfates showed no correlation with aerosol sources and exhibited unique spatial trends. These results suggested the importance of motor vehicles, biomass burning, and SOA as important sources of precursors to HULIS. Structural characteristics of atmospheric HULIS were compared to terrestrial humic and fulvic acids and revealed striking similarities in chemical structure, with the exception of organosulfates which were unique to atmospheric HULIS.

  2. Molecular Characterization of Organic Aerosols Using Nanospray Desorption/Electrospray Ionization-Mass Spectrometry

    SciTech Connect

    Roach, Patrick J.; Laskin, Julia; Laskin, Alexander

    2010-10-01

    Nanospray desorption electrospray ionization (Nano-DESI) combined with high-resolution mass spectrometry (HR/MS) is a promising approach for detailed chemical characterization of atmospheric organic aerosol (OA) collected in laboratory and field experiments. In Nano-DESI analyte is desorbed into a solvent bridge formed between two capillaries and the analysis surface, which enables fast and efficient characterization of OA collected on substrates without special sample preparation. Stable signals achieved using Nano-DESI make it possible to obtain high-quality HR/MS data using only a small amount of material (<10 ng). Furthermore, Nano-DESI enables efficient detection of chemically labile compounds in OA, which is important for understanding chemical aging phenomena.

  3. Characterization of aerosols and fibers emitted from composite materials combustion.

    PubMed

    Chivas-Joly, C; Gaie-Levrel, F; Motzkus, C; Ducourtieux, S; Delvallée, A; De Lagos, F; Nevé, S Le; Gutierrez, J; Lopez-Cuesta, J-M

    2016-01-15

    This work investigates the aerosols emitted during combustion of aircraft and naval structural composite materials (epoxy resin/carbon fibers and vinyl ester/glass fibers and carbon nanotubes). Combustion tests were performed at lab-scale using a modified cone calorimeter. The aerosols emitted have been characterized using various metrological devices devoted to the analysis of aerosols. The influence of the nature of polymer matrices, the incorporation of fibers and carbon nanotubes as well as glass reinforcements on the number concentration and the size distribution of airborne particles produced, was studied in the 5 nm-10 μm range. Incorporation of carbon fibers into epoxy resin significantly reduced the total particle number concentration. In addition, the interlaced orientation of carbon fibers limited the particles production compared to the composites with unidirectional one. The carbon nanotubes loading in vinyl ester resin composites influenced the total particles production during the flaming combustion with changes during kinetics emission. Predominant populations of airborne particles generated during combustion of all tested composites were characterized by a PN50 following by PN(100-500). PMID:26348148

  4. Characterization of aerosol emitted by the combustion of nanocomposites

    NASA Astrophysics Data System (ADS)

    Motzkus, C.; Chivas-Joly, C.; Guillaume, E.; Ducourtieux, S.; Saragoza, L.; Lesenechal, D.; Macé, T.

    2011-07-01

    Day after day, new applications using nanoparticles appear in industry, increasing the probability to find these particles in the workplace as well as in ambient air. As epidemiological studies have shown an association between increased particulate air pollution and adverse health effects in susceptible members of the population, it is particularly important to characterize aerosols emitted by different sources of emission, during the combustion of composites charged with nanoparticles for example. The present study is led in the framework of the NANOFEU project, supported by the French Research Agency (ANR), in order to characterize the fire behaviour of polymers charged with suitable nanoparticles and make an alternative to retardant systems usually employed. To determine the impact of these composites on the emission of airborne particles produced during their combustions, an experimental setup has been developed to measure the mass distribution in the range of 30 nm - 10 μm and the number concentration of submicrometric particles of the produced aerosol. A comparison is performed on the aerosol emitted during the combustion of several polymers alone (PMMA, PA-6), polymers containing nanofillers (silica, alumina, and carbon nanotubes) and polymers containing both nanofillers and a conventional flame retardant system (ammonium polyphosphate). The results on the morphology of particles were also investigated using AFM.

  5. Identification and quantification of individual chemical compounds in biogenic secondary organic aerosols using GCxGC-VUV/EI-HRTOFMS

    NASA Astrophysics Data System (ADS)

    Decker, M.; Worton, D. R.; Isaacman, G. A.; Chan, A. W.; Ruehl, C.; Zhao, Y.; Wilson, K. R.; Goldstein, A. H.

    2012-12-01

    Atmospheric aerosols have adverse effects on human health and air quality and affect radiative forcing and thus climate. While the organic fraction of aerosols is substantial, the sources and chemistry leading to the formation of secondary organic aerosols are very poorly understood. Characterizing individual compounds present in organic aerosol provides insights into the sources, formation mechanisms and oxidative transformations that have taken place. Fifteen aerosol samples collected over a 5 day period at the Blodgett Forest Research Station in the Sierra Nevada Mountains, part of the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) in July 2009, were analyzed using comprehensive two dimensional gas chromatography with high resolution time of flight mass spectrometry (GCxGC-HRTOFMS). Approximately 600 compounds were observed in each sample as significant peaks in the chromatogram. Of these, around a third were identified by matching the unique electron ionization (EI) mass spectrum of each compound to the NIST library of characteristic fragmentation patterns. One filter sample was also analyzed using vacuum ultraviolet ionization (VUV) instead of EI. This 'soft' ionization technique results in much less fragmentation yielding the molecular ion of each compound, from which the exact mass was determined. If the formula of the EI library matched compound equaled the high mass resolution VUV molecular weight within a certain tolerance (< 30 ppm), then the library match was considered confirmed; 226 compounds were identified in this way. Using the VUV technique 234 additional compounds that were not in the EI mass spectral database were assigned chemical formulas based on the observed molecular weights. The chemical formulas in conjunction with the location of the compound in the GCxGC chromatogram were used to provide further classification of these compounds based on their likely functionalization. The broad array of observed oxygenated

  6. Growth and characterization of nanostructured aerosol produced by diffusion flame and spray pyrolysis methods

    NASA Astrophysics Data System (ADS)

    Kim, Soo Hyung

    The present research is aimed at developing methods to characterize and study the growth of nano-particles and nano-structured materials. The thesis is divided into two parts. One part deals with the development of the tandem differential mobility analyzer (TDMA), which is the principal method used in this study to characterize the size and electrical charge of particles formed in a high temperature flame. The second part of the thesis deals with the formation of nano-structured materials with zeolite-type structures. The particles are characterized to determine their size, porosity and surface area. It is well known that nano-sized aerosol particles from combustion sources are charged. Even though the basic charging mechanisms are reasonably well understood qualitatively, techniques for characterizing the charge and size distribution of aerosols from combustion sources are not well developed. In the present study, a method is developed to accurately measure the charge and size distribution of nano-sized combustion aerosols by means of a TDMA. From a series of TDMA measurements, the charge fraction of nano-sized soot particles from a flame is obtained as a function of equivalent mobility particle diameter ranging from 50 to 200nm. The method is then used to characterize the size and charge of combustion aerosols. The results are compared to theory, including the new theory developed in this study. To develop a new synthetic method of nano-structured aerosol particles, a thermal tubular reactor is employed. New spray-pyrolytic and aerosol-gel methods are developed to form nanoporous metal oxides, in which thermally stable and easily leached inorganic matrix is employed to extend the porosity of zeolite-typed materials. The characteristics of the nanoporous material, such as surface area and particle morphology are investigated as a function of relative humidity, temperature, and precursor fractions. The physical and chemical properties of materials synthesized are

  7. Aerosol characterization over Sundarban mangrove forest at the north-east coast of Bay of Bengal, India

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Das, Sanat Kumar; Sarkar, Chirantan; Ghosh, Sanjay; Raha, Sibaji; Singh, Soumendra; Roy, Arindam

    2016-07-01

    A comprehensive study was conducted on chemical characterization of size segregated and cumulative aerosols during winter, 2015 and summer 2016 over a remote mangrove forest at Sundarban at the north-east coast of Bay of Bengal. Aerosols originated from the surf zone at the land-ocean boundary of Sundarban mangrove forest and aerosols advected from Kolkata and other metropolitan and urban cities at Indo-Gangetic Plain were characterized in terms of major water soluble inorganic species. Attempt was made to investigate the combined effect of locally generated sea-salt and advected anthropogenic aerosols could change the pristine marine character at this region during the above mentioned periods. Significant chloride depletion from sea-salt aerosols was observed in coarse and ultrafine mode compared to fine mode in winter whereas reverse trend was observed during summer. On an average the chloride to sodium ratio in PM10 aerosol was found to be around 0.6 which was much lower than that in sea-water. It was observed that non-sea-sulphate and nitrate aerosols were the major species depleting chloride from sea-salt aerosols. This supported the interaction between fresh marine and polluted anthropogenic aerosols. The average concentration of PM10 aerosols was 64 μg m-3 in winter and 89 μg m-3 in summer. Major water soluble ionic species were used for the source apportionment of aerosol during the two seasons. On an average it was observed that 60-70 % of total PM10 aerosols were constituted by the major water soluble ionic species. Emission flux and deposition flux of aerosols were also studied over this remote forest region. It was also observed that anthropogenic ionic species were mostly accumulated in the ultrafine and fine mode region both during winter and summer. On the other hand sea-salt species were mostly accumulated in the coarse mode region. Sulphate aerosol showed bimodal distribution with prominent peaks both at ultrafine/fine and coarse mode region

  8. Effects of aerosol sources and chemical compositions on cloud drop sizes and glaciation temperatures

    NASA Astrophysics Data System (ADS)

    Zipori, Assaf; Rosenfeld, Daniel; Tirosh, Ofir; Teutsch, Nadya; Erel, Yigal

    2015-09-01

    The effect of aerosols on cloud properties, such as its droplet sizes and its glaciation temperatures, depends on their compositions and concentrations. In order to examine these effects, we collected rain samples in northern Israel during five winters (2008-2011 and 2013) and determined their chemical composition, which was later used to identify the aerosols' sources. By combining the chemical data with satellite-retrieved cloud properties, we linked the aerosol types, sources, and concentrations with the cloud glaciation temperatures (Tg). The presence of dust increased Tg from -26°C to -12°C already at relatively low dust concentrations. This result is in agreement with the conventional wisdom that desert dust serves as good ice nuclei (INs). With higher dust concentrations, Tg saturated at -12°C, even though cloud droplet sizes decreased as a result of the cloud condensation nucleating (CCN) activity of the dust. Marine air masses also encouraged freezing, but in this case, freezing was enhanced by the larger cloud droplet sizes in the air masses (caused by low CCN concentrations) and not by IN concentrations or by aerosol type. An increased fraction of anthropogenic aerosols in marine air masses caused a decrease in Tg, indicating that these aerosols served as poor IN. Anthropogenic aerosols reduced cloud droplet sizes, which further decreased Tg. Our results could be useful in climate models for aerosol-cloud interactions, as we investigated the effects of aerosols of different sources on cloud properties. Such parameterization can simplify these models substantially.

  9. Combined measurements of organic aerosol isotopic and chemical composition to investigate day-night differences in carbonaceous aerosol

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike; Holzinger, Rupert; Meijer, Harro A. J.; Röckmann, Thomas

    2014-05-01

    PM2.5 filter samples have been collected during the Pegasos (Mai, 2012) and Actris (June/July 2012) campaigns at the CESAR site near Cabauw, the Netherlands. This site lies in a rural location surrounded by major urban centers and highways and is a good location for measuring the regional aerosol contamination in the Netherlands. High volume filter samples were taken over several days, but the aerosol was collected on separate filters during day and night time periods. We analyzed these filters for carbon isotopes (14C and 13C) and detailed chemical composition of the organic fraction, which can be a powerful tool, for investigating sources and processing of the organic aerosol. Measurement of the radioactive carbon isotope 14C in aerosols can provide a direct estimate of the contribution of fossil fuel sources to aerosol carbon. The stable carbon isotopes 12C and 13C can be used to get information about sources and processing of organic aerosol. We use a method to measure d13C values of OC desorbed from the filter samples in He at different temperature steps. The chemical composition of the organic fraction at the same temperature steps can be determined using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The PTR-MS method is applied to the filter samples as well to aerosol collected in situ by a impaction using a Collection-Thermal-Desorption Cell. First results show that the mass concentration of the carbonaceous aerosol is higher during night time than during day time, dominated by a strong increase of biogenic organic aerosol. This is at least partially caused by a shallow night time boundary layer combined with decreased traffic sources and increased condensation of semi-volatile biogenic gases during night-time. Evidence for the role of semi-volatile compounds in enhancing organic carbon (OC) night time concentrations comes from several observations: (1) semi-volatile OC with desorption temperatures lower than 250 °C increases

  10. Characterization and cytotoxic assessment of ballistic aerosol particulates for tungsten alloy penetrators into steel target plates.

    PubMed

    Machado, Brenda I; Murr, Lawrence E; Suro, Raquel M; Gaytan, Sara M; Ramirez, Diana A; Garza, Kristine M; Schuster, Brian E

    2010-09-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified. PMID:20948926

  11. Characterization and Cytotoxic Assessment of Ballistic Aerosol Particulates for Tungsten Alloy Penetrators into Steel Target Plates

    PubMed Central

    Machado, Brenda I.; Murr, Lawrence E.; Suro, Raquel M.; Gaytan, Sara M.; Ramirez, Diana A.; Garza, Kristine M.; Schuster, Brian E.

    2010-01-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified. PMID:20948926

  12. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. On regional scales, the impacts are substantial, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado

  13. Aerosols Collected at a Tropical Marine Environment: Size-Resolved Chemical Composition Using IC, TOC, and Thermal-Optical Analyses

    NASA Astrophysics Data System (ADS)

    Morales-García, F.; Mayol-Bracero, O. L.; Repollet-Pedrosa, M.; Kasper-Giebl, A.; Ramírez-Santa Cruz, C.; Puxbaum, H.

    2009-05-01

    Size-resolved chemical characterization was performed on aerosol samples collected at two different marine sites in the tropics: Dian Point (DP), Antigua and Cape San Juan (CSJ), Puerto Rico. A 13-stage Dekati low- pressure impactor (Dp 0.1 to 10 μm), a 10-stage micro-orifice uniform deposit impactor (Dp 0.054 to 18 μm), and stacked-filter units (Dp < 1.7 μm) were used to collect the samples. Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO2-, NO3-, SO42-, acetate, formate, malonate, and oxalate were determined using ion chromatography (IC). Thermal-optical analysis (TOA) was used to determine the concentrations of aerosol total carbon (TC), organic carbon (OC), and elemental carbon (EC). Five-day back trajectories calculated using NOAA's HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model identified air masses coming from the North Atlantic (maritime air), Northwest Africa (desert dust), and North America (anthropogenic pollution). Size-resolved chemical characterization of aerosol samples using IC and TOA confirmed that aerosols become aged as they are transported to the Caribbean and their composition depends on the air mass origin. Gravimetric analyses showed that average fine mass concentrations for CSJ station were higher than for DP station (CSJ: 1.9 μg m-3; DP: 1.2 μg m-3). The aerosol chemical composition changed with air masses of different origin and with different pollution levels. In both locations the predominant water-soluble ions in the fine aerosol fraction were Cl-, Na+, and SO42-. Sulphate was observed in higher concentrations during the polluted case and particulate organic matter concentrations were higher for the maritime case. During desert dust events an increase in Ca2+ and Mg2+ of 4 and 2 times, respectively, was observed mainly in the coarse mode. Results for the size-resolved chemical composition and complete aerosol chemical apportionment including the residual mass will be presented.

  14. Methodology for the passive detection and discrimination of chemical and biological aerosols

    NASA Astrophysics Data System (ADS)

    Marinelli, William J.; Shokhirev, Kirill N.; Konno, Daisei; Rossi, David C.; Richardson, Martin

    2013-05-01

    The standoff detection and discrimination of aerosolized biological and chemical agents has traditionally been addressed through LIDAR approaches, but sensor systems using these methods have yet to be deployed. We discuss the development and testing of an approach to detect these aerosols using the deployed base of passive infrared hyperspectral sensors used for chemical vapor detection. The detection of aerosols requires the inclusion of down welling sky and up welling ground radiation in the description of the radiative transfer process. The wavelength and size dependent ratio of absorption to scattering provides much of the discrimination capability. The approach to the detection of aerosols utilizes much of the same phenomenology employed in vapor detection; however, the sensor system must acquire information on non-line-of-sight sources of radiation contributing to the scattering process. We describe the general methodology developed to detect chemical or biological aerosols, including justifications for the simplifying assumptions that enable the development of a real-time sensor system. Mie scattering calculations, aerosol size distribution dependence, and the angular dependence of the scattering on the aerosol signature will be discussed. This methodology will then be applied to two test cases: the ground level release of a biological aerosol (BG) and a nonbiological confuser (kaolin clay) as well as the debris field resulting from the intercept of a cruise missile carrying a thickened VX warhead. A field measurement, conducted at the Utah Test and Training Range will be used to illustrate the issues associated with the use of the method.

  15. Source term experiments project (STEP): aerosol characterization system

    SciTech Connect

    Schlenger, B.J.; Dunn, P.F.

    1985-01-01

    A series of four experiments is being conducted at Argonne National Laboratory's TREAT Reactor. They have been designed to provide some of the necessary data regarding magnitude and release rates of fission products from degraded fuel pins, physical and chemical characteristics of released fission products, and aerosol formation and transport phenomena. These are in-pile experiments, whereby the test fuel is heated by neutron induced fission and subsequent clad oxidation in steam environments that simulate as closely as practical predicted reactor accident conditions. The test sequences cover a range of pressure and fuel heatup rate, and include the effect of Ag/In/Cd control rod material.

  16. Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry

    SciTech Connect

    Laskin, Alexander; Smith, Jeffrey S.; Laskin, Julia

    2009-05-13

    Although nitrogen-containing organic compounds (NOC) are important components of atmospheric aerosols, little is known about their chemical compositions. Here we present detailed characterization of the NOC constituents of biomass burning aerosol (BBA) samples using high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA can play a significant role in dry and wet deposition of fixed nitrogen in this region.

  17. Chemical and size effects of hygroscopic aerosols on light scattering coefficients

    NASA Astrophysics Data System (ADS)

    Tang, Ignatius N.

    1996-08-01

    The extensive thermodynamic and optical properties recently reported [Tang and Munkelwitz, 1994a] for sulfate and nitrate solution droplets are incorporated into a visibility model for computing light scattering by hygroscopic aerosols. The following aerosol systems are considered: NH4HSO4, (NH4)2SO4, (NH4)3H(SO4), NaHSO4, Na2SO4, NH4NO3, and NaNO3. In addition, H2SO4 and NaCl are included to represent freshly formed sulfate and background sea-salt aerosols, respectively. Scattering coefficients, based on 1 μg dry salt per cubic meter of air, are calculated as a function of relative humidity for aerosols of various chemical compositions and lognormal size distributions. For a given size distribution the light scattered by aerosol particles per unit dry-salt mass concentration is only weakly dependent on chemical constituents of the hygroscopic sulfate and nitrate aerosols. Sulfuric acid and sodium chloride aerosols, however, are exceptions and scatter light more efficiently than all other inorganic salt aerosols considered in this study. Both internal and external mixtures exhibit similar light-scattering properties. Thus for common sulfate and nitrate aerosols, since the chemical effect is outweighed by the size effect, it follows that observed light scattering by the ambient aerosol can be approximated, within practical measurement uncertainties, by assuming the aerosol being an external mixture. This has a definite advantage for either visibility degradation or climatic impact modeling calculations, because relevant data are now available for external mixtures but only very scarce for internal mixtures.

  18. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Zhao, D. F.; Ruppel, M. J.; Laskina, O.; Grandquist, J. R.; Modini, R. L.; Stokes, M. D.; Russell, L. M.; Bertram, T. H.; Grassian, V. H.; Deane, G. B.; Prather, K. A.

    2014-11-01

    Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA) must be under-pinned by a physically and chemically accurate representation of the bubble-mediated production of nascent SSA particles. Bubble bursting is sensitive to the physico-chemical properties of seawater. For a sample of seawater, any important differences in the SSA production mechanism are projected into the composition of the aerosol particles produced. Using direct chemical measurements of SSA at the single-particle level, this study presents an intercomparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits"), a pulsed plunging-waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than those produced by sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic-enriched particles and a different size-resolved elemental composition, especially in the 0.8-2 μm dry diameter range. Interestingly, chemical differences between the methods only emerged when the particles were chemically analyzed at the single-particle level as a function of size; averaging the elemental composition of all particles across all sizes masked the differences between the SSA samples. When dried, SSA generated by the sintered glass filters had the highest fraction of particles with spherical morphology compared to the more cubic structure expected for pure NaCl particles produced when the particle contains relatively little organic carbon. In addition to an intercomparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method on SSA composition was under-taken. In organic-enriched seawater, the continuous

  19. [Chemical Composition of the Single Particle Aerosol in Winter in Nanning Using SPAMS].

    PubMed

    Liu, Hui-lin; Song, Hong-jun; Chen, Zhi-ming; Huang, Jiong-li; Yang, Jun-chao; Mao, Jing-ying; Li, Hong; Liang, Gui-yun; Mo, Zhao-yu

    2016-02-15

    Single Particle Aerosol Mass Spectrometry (SPAMS) was performed to characterize the PM2.5 in Nanning from 15 to 24 February 2015. The correlation (R2) between the PM2.5 number concentration and the mass concentration of PM2.5 obtained using SPAMS was 0.76. The particle number concentration could reflect the atmospheric pollution situation to some degree. The Art-2a classification method was used to classify the chemical composition of PM2.5. The results showed that the principal chemical constituents were elemental carbon, organic elements carbon hybrid particles, organic carbon, rich potassium particles, mineral substance, rich sodium particles, second inorganic particles, levoglucosan and other heavy metals. Among them, the composition of elemental carbon was the highest, followed by organic carbon and rich potassium particles. The particle size of 80% of PM2.5 was mainly concentrated in the range of 0.2 microm to 1.0 microm with a peak value occurring at 0. 62 microm. The particle size distribution characteristics of different chemical components were similar. The number concentration of the chemical components in PM2.5 had the same variation tread with the mass concentration of PM2.5 over time. To a certain extent, the change in chemical composition could reflect the instantaneous pollution source. PMID:27363128

  20. Measurements of the chemical, physical, and optical properties of single aerosol particles

    NASA Astrophysics Data System (ADS)

    Moffet, Ryan Christopher

    Knowledge of aerosol physical, chemical, optical properties is essential for judging the effect that particulates have on human health, climate and visibility. The aerosol time-of-flight mass spectrometer (ATOFMS) is capable of measuring, in real-time, the size and chemical composition of atmospheric aerosols. This was exemplified by the recent deployments of the ATOFMS to Mexico City and Riverside. The ATOFMS provided rapid information about the major particle types present in the atmosphere. Industrial sources of particles, such as fine mode particles containing lead, zinc and chloride were detected in Mexico City. The rapid time response of the ATOFMS was also exploited to characterize a coarse particle concentrator used in human health effects studies. The ATOFMS showed the ability to detect changes in particle composition with a time resolution of 15 min during short 2 hour human exposure studies. As a major component of this work, an optical measurement has been added to the ATOFMS. The scattered light intensity was acquired for each sized and chemically analyzed particle. This scattering information together with the particle aerodynamic diameter, enabled the refractive index and density of the aerosol to be retrieved. This method was validated in the laboratory using different test particles such as oils, aqueous salt solutions and black carbon particles. It was found that the nozzle-type inlet does not evaporate aqueous salt particles as has been observed for aerodynamic lens inlets. These new optical and microphysical measurements were integrated into the ATOFMS for field deployment in Riverside and Mexico City. For both cities, the different mixing states were found to have unique refractive indexes and densities. A fraction of the strongly absorbing elemental carbon particles were observed to have a spherical morphology due to heavy mixing with secondary species. In addition to the quantitative refractive index and effective density measurements

  1. Chemical properties and morphology of Marine Aerosol in the Mediterranean atmosphere: a mesocosm study

    NASA Astrophysics Data System (ADS)

    D'Anna, Barbara; Sellegri, Karine; Charrière, Bruno; Sempéré, Richard; Mas, Sébastien; Marchand, Nicolas; George, Christian; Même, Aurèlie; R'mili, Badr; Delmont, Anne; Schwier, Allison; Rose, Clémence; Colomb, Aurèlie; Pey, Jorge; Langley Dewitt, Helen

    2014-05-01

    The Mediterranean Sea is a special marine environment characterized by low biological activity and high anthropogenic pressure. It is often difficult to discriminate the contribution of Primary Sea Salt Aerosol formed at the sea surface from background level of the aerosol. An alternative tool to study the sea-air exchanges in a controlled environment is provided by the mesocosms, which represent an important link between field studies and laboratory experiments. The sea-air transfer of particles and gases was investigated in relation to water chemical composition and biological activity during a mesocosm experiment within the SAM project (Sources of marine Aerosol in the Mediterranean) at the Oceanographic and Marine Station STARESO in Western Corsica (May 2013). Three 2 m mesocosms were filled with screened (<1000 µm) 2260 L of subsurface (1 m) seawater and covered with a transparent Teflon film dome to minimize atmospheric contamination. The mesocosms were equipped with a pack of optical and physicochemical sensors and received different treatments: one was left unchanged as control and two were enriched by addition of nitrates and phosphates respecting Redfield ratio (N:P = 16). The evolution of the three systems was followed for 20 days. The set of sensors in each mesocosm was allowed to monitor, at high frequency (every 10 min), the water temperature, conductivity, pH, incident light, fluorescence of chlorophyll a and dissolved oxygen concentration. The mesocosm seawaters were daily sampled for chemical (colored dissolved organic matter, particulate matter and related polar compounds, transparent polysaccharides and nutrients concentration) and biological (chlorophyll a, virus, phytoplankton and zooplankton) analyses. Both dissolved and gaseous VOCs were also analyzed. In addition, few liters of seawater from each mesocosm were daily and immediately collected and transferred to a bubble-bursting apparatus to simulate nascent sea spray aerosol. On

  2. Early-spring aerosol characterization across multiple Arctic stations

    NASA Astrophysics Data System (ADS)

    Baibakov, Konstantin; O'Neill, Norm; Ivanescu, Liviu; Perro, Chris; Ritter, Christoph; Herber, Andreas; Duck, Tom J.; Schulz, Karl-Heinz; Schrems, Otto

    2013-04-01

    The Arctic region is characterized by complex interactions between aerosols, clouds and precipitation. Ground-based observations of atmospheric optical properties are usually comprised of photometric aerosol optical depth (AOD) measurements and lidar extinction and backscatter profiles. The night-time AODs obtained with star- and moonphotometry have been extremely limited in the Arctic region. The first part of the paper is based on the synchronous starphotometry and lidar measurements obtained at Eureka (Canada, 80°N, 86°W) and Ny Alesund (Spitsbergen, 79°N, 12°E) in late winter-early spring periods of 2011 and 2012. We present several examples of process-level events as well as the winter to spring climatological dynamics of cloud-screened optical depths. The particular cases include aerosol, thin-cloud, ice crystals and polar stratospheric cloud events. An integral part of the process-level analysis, which ultimately informs the seasonal analysis, is the synergistic interpretation of the spectral, temporal and spatial information content of the passive and active data. In the second part of the paper we present the preliminary results obtained from the intercomparison field campaign at Barrow (Alaska, 71°N,156°W) that took place in spring 2013. The instrumentation suit included high-spectral resolution lidar, a starphotometer and a moonphotometer.

  3. Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign

    SciTech Connect

    Barnard, James C.; Fast, Jerome D.; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Laskin, Alexander

    2010-08-09

    A comparison between observed aerosol optical properties from the MILAGRO field campaign, which took place in the Mexico City Metropolitan Area (MCMA) during March 2006, and values simulated by the Weather Research and Forecasting model (WRF-Chem) model, reveals large differences. To help identify the source of the discrepancies, data from the MILAGRO campaign are used to evaluate the "aerosol chemical to aerosol optical properties" module implemented in the full chemistry version of the WRF-Chem model. The evaluation uses measurements of aerosol size distributions and chemical properties obtained at the MILAGRO T1 site. These observations are fed to the module, which makes predictions of various aerosol optical properties, including the scattering coefficient, Bscat; the absorption coefficient, Babs; and the single-scattering albedo, v0; all as a function of time. This simulation is compared with independent measurements obtained from a photoacoustic spectrometer (PAS) at a wavelength of 870 nm. Because of line losses and other factors, only "fine mode" aerosols with aerodynamic diameters less than 2.5 mm are considered here. Over a 10-day period, the simulations of hour-by-hour variations of Bscat are not satisfactory, but simulations of Babs and v0 are considerably better. When averaged over the 10-day period, the computed and observed optical properties agree within the uncertainty limits of the measurements and simulations. Specifically, the observed and calculated values are, respectively: (1) Bscat, 34.1 ± 5.1 Mm-1 versus 30.4 ± 4.3 Mm-1; (2) Babs, 9.7 ± 1.0 Mm-1 versus 11.7 ± 1.5 Mm-1; and (3) v0, 0.78 ± 0.04 and 0.74 ± 0.03. The discrepancies in values of v0 simulated by the full WRF-Chem model thus cannot be attributed to the "aerosol chemistry to optics" module. The discrepancy is more likely due, in part, to poor characterization of emissions near the T1 site, particularly black carbon emissions.

  4. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.

    PubMed

    Parkhurst, Mary Ann; Cheng, Yung Sung; Kenoyer, Judson L; Traub, Richard J

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65

  5. Physicochemical Characterization of Capstone Depleted Uranium Aerosols I: Uranium Concentration in Aerosols as a Function of Time and Particle Size

    SciTech Connect

    Parkhurst, MaryAnn; Cheng, Yung-Sung; Kenoyer, Judson L.; Traub, Richard J.

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing depleted uranium were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time particularly within the first minute after the shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% 30 min after perforation. In the Bradley vehicle, the initial (and maximum) uranium concentration was lower than those observed in the Abrams tank and decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in the cyclone samplers, which collected aerosol continuously for 2 h post perforation. The percentages of uranium mass in the cyclone separator stages from the Abrams tank tests ranged from 38% to 72% and, in most cases, varied with particle size, typically with less uranium associated with the smaller particle sizes. Results with the Bradley vehicle ranged from 18% to 29% and were not specifically correlated with particle size.

  6. Characterization of indoor cooking aerosol using neutron activation analysis

    SciTech Connect

    Wu, D.; Landsberger, S.; Larson, S. )

    1993-01-01

    Suspended particles in air are potentially harmful to human health, depending on their sizes and chemical composition. Residential indoor particles mainly come from (a) outdoor sources that are transported indoors, (b) indoor dust that is resuspended, and (c) indoor combustion sources, which include cigarette smoking, cooking, and heating. Jedrychowski stated that chronic phlegm in elderly women was strongly related to the cooking exposure. Kamens et al. indicated that cooking could generate small particles (<0.1 [mu]m), and cooking one meal could contribute [approximately]5 to 18% of total daytime particle volume exposure. Although cooking is a basic human activity, there are not many data available on the properties of particles generated by this activity. Some cooking methods, such as stir-frying and frying, which are the most favored for Chinese and other Far East people, generate a large quantity of aerosols. This research included the following efforts: 1. investigating particle number concentrations, distributions, and their variations with four different cooking methods and ventilation conditions; 2. measuring the chemical composition of cooking aerosol samples by instrumental neutron activation analysis.

  7. Chemical Characterization of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku

    2016-07-01

    Exoplanetary discoveries in the past two decades have unveiled an astonishing diversity in the physical characteristics of exoplanetary systems, including their orbital properties, masses, radii, equilibrium temperatures, and stellar hosts. Exoplanets known today range from gas-giants to nearly Earth-size planets, and some even in the habitable zones of their host stars. Recent advances in exoplanet observations and theoretical methods are now leading to unprecedented constraints on the physicochemical properties of exoplanetary atmospheres, interiors, and their formation conditions. I will discuss the latest developments and future prospects of this new era of exoplanetary characterization. In particular, I will present some of the latest constraints on atmospheric chemical compositions of exoplanets, made possible by state-of-the-art high-precision observations from space and ground, and their implications for atmospheric processes and formation conditions of exoplanets. The emerging framework for using atmospheric elemental abundance ratios for constraining the origins and migration pathways of giant exoplanets, e.g. hot Jupiters, will also be discussed. A survey of theoretical and observational directions in the field will be presented along with several open questions on the horizon.

  8. REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS.

    SciTech Connect

    SCHWARTZ, S.E.; MCGRAW, R.; BENKOVITZ, C.M.; WRIGHT, D.L.

    2001-04-01

    Atmospheric aerosols, suspensions of solid or liquid particles, are an important multi-phase system. Aerosols scatter and absorb shortwave (solar) radiation, affecting climate (Charlson et al., 1992; Schwartz, 1996) and visibility; nucleate cloud droplet formation, modifying the reflectivity of clouds (Twomey et al., 1984; Schwartz and Slingo, 1996) as well as contributing to composition of cloudwater and to wet deposition (Seinfeld and Pandis, 1998); and affect human health through inhalation (NRC, 1998). Existing and prospective air quality regulations impose standards on concentrations of atmospheric aerosols to protect human health and welfare (EPA, 1998). Chemical transport and transformation models representing the loading and geographical distribution of aerosols and precursor gases are needed to permit development of effective and efficient strategies for meeting air quality standards, and for examining aerosol effects on climate retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes depend on their size distribution: light scattering, cloud nucleating properties, dry deposition, and penetration into airways of lungs. The evolution of the mass loading itself depends on particle size because of the size dependence of growth and removal processes. For these reasons it is increasingly recognized that chemical transport and transformation models must represent not just the mass loading of atmospheric particulate matter but also the aerosol microphysical properties and the evolution of these properties if aerosols are to be accurately represented in these models. If the size distribution of the aerosol is known, a given property can be evaluated as the integral of the appropriate kernel function over the size distribution. This has motivated the approach of determining aerosol size distribution, and of explicitly representing this distribution and its evolution in chemical transport models.

  9. Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Sun, Yele; Jiang, Qi; Du, Wei; Sun, Chengzhu; Fu, Pingqing; Wang, Zifa

    2015-12-01

    Despite extensive efforts into characterization of the sources and formation mechanisms of severe haze pollution in the megacity of Beijing, the response of aerosol composition and optical properties to coal combustion emissions in the heating season remain poorly understood. Here we conducted a 3 month real-time measurement of submicron aerosol (PM1) composition by an Aerosol Chemical Speciation Monitor and particle light extinction by a Cavity Attenuated Phase Shift extinction monitor in Beijing, China, from 1 October to 31 December 2012. The average (±σ) PM1 concentration was 82.4 (±73.1) µg/m3 during the heating period (HP, 15 November to 31 December), which was nearly 50% higher than that before HP (1 October to 14 November). While nitrate and secondary organic aerosol (SOA) showed relatively small changes, organics, sulfate, and chloride were observed to have significant increases during HP, indicating the dominant impacts of coal combustion sources on these three species. The relative humidity-dependent composition further illustrated an important role of aqueous-phase processing for the sulfate enhancement during HP. We also observed great increases of hydrocarbon-like OA (HOA) and coal combustion OA (CCOA) during HP, which was attributed to higher emissions at lower temperatures and coal combustion emissions, respectively. The relationship between light extinction and chemical composition was investigated using a multiple linear regression model. Our results showed that the largest contributors to particle extinction were ammonium nitrate (32%) and ammonium sulfate (28%) before and during HP, respectively. In addition, the contributions of SOA and primary OA to particle light extinction were quantified. The results showed that the OA extinction was mainly caused by SOA before HP and by SOA and CCOA during HP, yet with small contributions from HOA and cooking aerosol for the entire study period. Our results elucidate substantial changes of aerosol

  10. Generation and characterization of large-particle aerosols using a center flow tangential aerosol generator with a nonhuman-primate, head-only aerosol chamber

    PubMed Central

    Bohannon, J. Kyle; Lackemeyer, Matthew G.; Kuhn, Jens H.; Wada, Jiro; Bollinger, Laura; Jahrling, Peter B.; Johnson, Reed F.

    2016-01-01

    Aerosol droplets or particles produced from infected respiratory secretions have the potential to infect another host through inhalation. These respiratory particles can be polydisperse and range from 0.05–500 μm in diameter. Animal models of infection are generally established to facilitate the potential licensure of candidate prophylactics and/or therapeutics. Consequently, aerosol-based animal infection models are needed to properly study and counter airborne infections. Ideally, experimental aerosol exposure should reliably result in animal disease that faithfully reproduces the modelled human disease. Few studies have been performed to explore the relationship between exposure particle size and induced disease course for infectious aerosol particles. The center flow tangential aerosol generator (CenTAG™) produces large-particle aerosols capable of safely delivering a variety of infectious aerosols to nonhuman primates within a Class III Biological Safety Cabinet (BSC) for establishment or refinement of nonhuman primate infectious disease models. Here we report the adaptation of this technology to the Animal Biosafety Level 4 (ABSL-4) environment for the future study of high-consequence viral pathogens and the characterization of CenTAG™-created sham (no animal, no virus) aerosols using a variety of viral growth media and media supplements. PMID:25970823

  11. Generation and characterization of large-particle aerosols using a center flow tangential aerosol generator with a non-human-primate, head-only aerosol chamber.

    PubMed

    Bohannon, J Kyle; Lackemeyer, Matthew G; Kuhn, Jens H; Wada, Jiro; Bollinger, Laura; Jahrling, Peter B; Johnson, Reed F

    2015-01-01

    Aerosol droplets or particles produced from infected respiratory secretions have the potential to infect another host through inhalation. These respiratory particles can be polydisperse and range from 0.05 to 500 µm in diameter. Animal models of infection are generally established to facilitate the potential licensure of candidate prophylactics and/or therapeutics. Consequently, aerosol-based animal infection models are needed to properly study and counter airborne infections. Ideally, experimental aerosol exposure should reliably result in animal disease that faithfully reproduces the modeled human disease. Few studies have been performed to explore the relationship between exposure particle size and induced disease course for infectious aerosol particles. The center flow tangential aerosol generator (CenTAG™) produces large-particle aerosols capable of safely delivering a variety of infectious aerosols to non-human primates (NHPs) within a Class III Biological Safety Cabinet (BSC) for establishment or refinement of NHP infectious disease models. Here, we report the adaptation of this technology to the Animal Biosafety Level 4 (ABSL-4) environment for the future study of high-consequence viral pathogens and the characterization of CenTAG™-created sham (no animal, no virus) aerosols using a variety of viral growth media and media supplements. PMID:25970823

  12. Importance of Physico-Chemical Properties of Aerosols in the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, S. A.; Girard, E.

    2014-12-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation are poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating very small (radar-unseen) ice crystals whereas TIC-2 are detected by both sensors and are characterized by a low concentration of large precipitating ice crystals. It is hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibit the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a smaller concentration of larger ice crystals. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation have been developed to reflect the various physical and chemical properties of aerosols. These parameterizations are derived from laboratory studies on aerosols of different chemical compositions. The parameterizations are also developed according to two main approaches: stochastic (that nucleation is a probabilistic process, which is time dependent) and singular (that nucleation occurs at fixed conditions of temperature and humidity and time-independent). This research aims to better understand the formation process of TICs using a newly-developed ice nucleation parameterizations. For this purpose, we implement some parameterizations (2 approaches) into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Arctic Cloud (ISDAC) in Alaska. We use both approaches but special attention is focused on the new parameterizations of the singular approach. Simulation

  13. Marine Primary Aerosol in the Mediterranean atmosphere: physical and chemical properties from a mesocosm study

    NASA Astrophysics Data System (ADS)

    D'anna, B.; Sellegri, K.; Charriere, B.; Sempere, R.; Mas, S.; George, C.; Meme, A.; R'Mili, B.; Schwier, A. N.; Rose, C.

    2013-12-01

    The Mediterranean Sea is a special marine environment characterized by low biological activity and high anthropogenic pressure. It is often difficult to discriminated the contribution of Primary Sea Salt Aerosol (SSA) formed at the sea-air interface from background level of the aerosol. An alternative tool to study the sea-air exchanges in a controlled environment is provided by the mesocosms, which represent an important link between field studies and laboratory experiments. A mesocosms experiment was performed in May 2013 at the Oceanographic and Marine Station STARESO in Western Corsica. Three mesocosms were simultaneously filled with pooled and screened (<1000 μm) subsurface (1 m) seawater from the Bay. Each mesocosm had a maximum water column depth of 2 m and contained 2260 L of Bay water and covered with transparent (teflon film) dome to prevent atmospheric contamination. The three mesocosms were equipped with a pack of optical and physicochemical sensors and received different treatements: one was left unchanged as control and two were enriched by addition of nitrates and phosphates respecting Redfield ration (N:P = 16). The evolution of the three systems was followed for 20 days. A set of sensors in each mesocosm were established at 0.5 m and allowed to monitor at high frequency (every 2 min): water temperature, conductivity, pH, incident light, fluorescence of chlorophyll a and dissolved oxygen concentration. The mesocosms waters were daily sampled for chemical (dissolved oxygen, colored dissolved organic matter, nitrates, phosphates, silicates, transparent polyssacharides, dicarboxylic acids and related polar compounds) and biological (chlorophyll a, virus, phytoplankton and zooplankton concentration) analyses. Finally, few liters of sea-water from each mesocosms were sampled daily and immediately transferred to a bubble-bursting apparatus to simulate SSA. Size distribution and particle number were followed by SMPS and APS in the range of 10nm to 10

  14. Analysis of the Effects of Chemical Composition and Humidity on Visibility using Highly Time Resolved Aerosol Data

    NASA Astrophysics Data System (ADS)

    Lunden, M. M.; Brown, N. J.; Liu, D.; Tonse, S.

    2005-12-01

    relationships among extinction, aerosol loading and type, and relative humidity. References 1. Lunden, M.M., T.L. Thatcher, S.V. Hering, and N.J. Brown (2003). The Use of Time- and Chemically-Resolved Particulate Data to Characterize the Infiltration of Outdoor PM-2.5 into a Residence in the San Joaquin Valley. Environmental Science and Technology 37, pp 4724-4732. 2. Malm, W.C., 'IMPROVE, Interagency Monitoring of Protected Visual Environments,' ISSN: 0737-5352-47, Colorado State University, May 2000.

  15. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  16. The global 3-D distribution of tropospheric aerosols as characterized by CALIOP

    NASA Astrophysics Data System (ADS)

    Winker, D. M.; Tackett, J. L.; Getzewich, B. J.; Liu, Z.; Vaughan, M. A.; Rogers, R. R.

    2013-03-01

    The CALIOP lidar, carried on the CALIPSO satellite, has been acquiring global atmospheric profiles since June 2006. This dataset now offers the opportunity to characterize the global 3-D distribution of aerosol as well as seasonal and interannual variations, and confront aerosol models with observations in a way that has not been possible before. With that goal in mind, a monthly global gridded dataset of daytime and nighttime aerosol extinction profiles has been constructed, available as a Level 3 aerosol product. Averaged aerosol profiles for cloud-free and all-sky conditions are reported separately. This 6-yr dataset characterizes the global 3-dimensional distribution of tropospheric aerosol. Vertical distributions are seen to vary with season, as both source strengths and transport mechanisms vary. In most regions, clear-sky and all-sky mean aerosol profiles are found to be quite similar, implying a lack of correlation between high semi-transparent cloud and aerosol in the lower troposphere. An initial evaluation of the accuracy of the aerosol extinction profiles is presented. Detection limitations and the representivity of aerosol profiles in the upper troposphere are of particular concern. While results are preliminary, we present evidence that the monthly-mean CALIOP aerosol profiles provide quantitative characterization of elevated aerosol layers in major transport pathways. Aerosol extinction in the free troposphere in clean conditions, where the true aerosol extinction is typically 0.001 km-1 or less, is generally underestimated, however. The work described here forms an initial global 3-D aerosol climatology which we plan to extend and improve over time.

  17. Chemical composition of aerosols over Bay of Bengal during pre-monsoon: Dominance of anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Nair, Prabha R.; George, Susan K.; Aryasree, S.; Jacob, Salu

    2014-03-01

    Total suspended particulates were collected from the marine boundary layer of Bay of Bengal (BoB) as part of the Integrated Campaign for Aerosols gases & Radiation Budget (ICARB) conducted under the Geosphere Biosphere Programme of Indian Space Research Organisation during pre-monsoon period. These samples were analyzed to quantify various chemical species and to bring out a comprehensive and quantitative picture of the chemical composition of aerosols in the marine environment of Bay of Bengal. Almost all the species showed highest mass concentration over north/head BoB. On the other hand, their mass fractions were high over mid/south BoB which has implications on the radiative forcing in this region. The source characteristics of various species were identified using specific chemical components as tracers. Presence of significant amount of non-sea-salt aerosols (~7-8 times of sea-salt) and several trace species like Ni, Pb, Zn, etc were observed in this marine environment indicating significant continental/anthropogenic influence. An approximate estimate of the contributions of anthropogenic and natural aerosols to the total aerosol mass loading showed prominence of anthropogenic component over mid and south BoB also. Based on this study first-cut aerosol chemical models were evolved for BoB region.

  18. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  19. Spatial distribution and temporal variation of chemical species in the bulk atmospheric aerosols collected at the Okinawa archipelago, Japan

    NASA Astrophysics Data System (ADS)

    Handa, D.; Somada, Y.; Ijyu, M.; Azechi, S.; Nakaema, F.; Arakaki, T.; Tanahara, A.

    2009-12-01

    The economic development and population growth in recent Asia have been increasing air pollution. A computer simulation study showed that air pollutants emitted from Asian continent could spread quickly within northern hemisphere. We initiated a study to elucidate the special distribution and chemical characterization of atmospheric aerosols around Okinawa archipelago, Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. We simultaneously collected bulk aerosol samples by using the same types of high volume air samplers at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS, Okinawa Island), Kume Island (ca. 160 km south-west of CHAAMS) and Minami-daitou Island (ca. 320 km south-east of CHAAMS). We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We report and discuss spatial distribution and temporal variation of chemical species concentrations in bulk atmospheric aerosols collected during July, 2008 to July, 2009. We determine “background” concentration of chemical components in Okinawa archipelago. We then compare each chemical component among CHAAMS, Kume Island and Minami-daito Island to elucidate the influence of the long-range transport of chemical species from Asian continent.

  20. Quantum Chemical Calculations Resolved Identification of Methylnitrocatechols in Atmospheric Aerosols.

    PubMed

    Frka, Sanja; Šala, Martin; Kroflič, Ana; Huš, Matej; Čusak, Alen; Grgić, Irena

    2016-06-01

    Methylnitrocatechols (MNCs) are secondary organic aerosol (SOA) tracers and major contributors to atmospheric brown carbon; however, their formation and aging processes in atmospheric waters are unknown. To investigate the importance of aqueous-phase electrophilic substitution of 3-methylcatechol with nitronium ion (NO2(+)), we performed quantum calculations of their favorable pathways. The calculations predicted the formation of 3-methyl-5-nitrocatechol (3M5NC), 3-methyl-4-nitrocatechol (3M4NC), and a negligible amount of 3-methyl-6-nitrocatechol (3M6NC). MNCs in atmospheric PM2 samples were further inspected by LC/(-)ESI-MS/MS using commercial as well as de novo synthesized authentic standards. We detected 3M5NC and, for the first time, 3M4NC. In contrast to previous reports, 3M6NC was not observed. Agreement between calculated and observed 3M5NC/3M4NC ratios cannot unambiguously confirm the electrophilic mechanism as the exclusive formation pathway of MNCs in aerosol water. However, the examined nitration by NO2(+) is supported by (1) the absence of 3M6NC in the ambient aerosols analyzed and (2) the constant 3M5NC/3M4NC ratio in field aerosol samples, which indicates their common formation pathway. The magnitude of error one could make by incorrectly identifying 3M4NC as 3M6NC in ambient aerosols was also assessed, suggesting the importance of evaluating the literature regarding MNCs with special care. PMID:27136117

  1. CCN frequency distributions and aerosol chemical composition from long-term observations at European ACTRIS supersites

    NASA Astrophysics Data System (ADS)

    Decesari, Stefano; Rinaldi, Matteo; Schmale, Julia Yvonne; Gysel, Martin; Fröhlich, Roman; Poulain, Laurent; Henning, Silvia; Stratmann, Frank; Facchini, Maria Cristina

    2016-04-01

    Cloud droplet number concentration is regulated by the availability of aerosol acting as cloud condensation nuclei (CCN). Predicting the air concentrations of CCN involves knowledge of all physical and chemical processes that contribute to shape the particle size distribution and determine aerosol hygroscopicity. The relevance of specific atmospheric processes (e.g., nucleation, coagulation, condensation of secondary organic and inorganic aerosol, etc.) is time- and site-dependent, therefore the availability of long-term, time-resolved aerosol observations at locations representative of diverse environments is strategic for the validation of state-of-the-art chemical transport models suited to predict CCN concentrations. We focused on long-term (year-long) datasets of CCN and of aerosol composition data including black carbon, and inorganic as well as organic compounds from the Aerosol Chemical Speciation Monitor (ACSM) at selected ACTRIS supersites (http://www.actris.eu/). We discuss here the joint frequency distribution of CCN levels and of aerosol chemical components concentrations for two stations: an alpine site (Jungfraujoch, CH) and a central European rural site (Melpitz, DE). The CCN frequency distributions at Jungfraujoch are broad and generally correlated with the distributions of the concentrations of aerosol chemical components (e.g., high CCN concentrations are most frequently found for high organic matter or black carbon concentrations, and vice versa), which can be explained as an effect of the strong seasonality in the aerosol characteristics at the mountain site. The CCN frequency distributions in Melpitz show a much weaker overlap with the distributions of BC concentrations or other chemical compounds. However, especially at high CCN concentration levels, a statistical correlation with organic matter (OM) concentration can be observed. For instance, the number of CCN (with particle diameter between 20 and 250 nm) at a supersaturation of 0.7% is

  2. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  3. Chemically-resolved volatility measurements of organic aerosol fom different sources.

    PubMed

    Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L

    2009-07-15

    A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs. PMID:19708365

  4. Enabling the identification, quantification, and characterization of organics in complex mixtures to understand atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Isaacman, Gabriel Avram

    Particles in the atmosphere are known to have negative health effects and important but highly uncertain impacts on global and regional climate. A majority of this particulate matter is formed through atmospheric oxidation of naturally and anthropogenically emitted gases to yield highly oxygenated secondary organic aerosol (SOA), an amalgamation of thousands of individual chemical compounds. However, comprehensive analysis of SOA composition has been stymied by its complexity and lack of available measurement techniques. In this work, novel instrumentation, analysis methods, and conceptual frameworks are introduced for chemically characterizing atmospherically relevant mixtures and ambient aerosols, providing a fundamentally new level of detailed knowledge on their structures, chemical properties, and identification of their components. This chemical information is used to gain insights into the formation, transformation and oxidation of organic aerosols. Biogenic and anthropogenic mixtures are observed in this work to yield incredible complexity upon oxidation, producing over 100 separable compounds from a single precursor. As a first step toward unraveling this complexity, a method was developed for measuring the polarity and volatility of individual compounds in a complex mixture using two-dimensional gas chromatography, which is demonstrated in Chapter 2 for describing the oxidation of SOA formed from a biogenic compound (longifolene: C15H24). Several major products and tens of substantial minor products were produced, but none could be identified by traditional methods or have ever been isolated and studied in the laboratory. A major realization of this work was that soft ionization mass spectrometry could be used to identify the molecular mass and formula of these unidentified compounds, a major step toward a comprehensive description of complex mixtures. This was achieved by coupling gas chromatography to high resolution time-of-flight mass spectrometry with

  5. Influence of continental outflow on aerosol chemical characteristics over the Arabian Sea during winter

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Sudheer, A. K.; Goswami, Vineet; Bhushan, Ravi

    2012-04-01

    The chemical composition of aerosol over the Arabian Sea was investigated during December 2007. Elemental Carbon (EC), Organic Carbon (OC), water soluble organic and inorganic constituents and crustal elements (Al, Fe, Ca, and Mg) were measured in total suspended particulate samples (TSP) collected from marine boundary layer of the Arabian Sea when the oceanic region is influenced by continental outflow. Anthropogenic and natural mineral aerosol originating from continental regions dominates the aerosol composition contributing ∼88% of total aerosol mass. The sea-salt aerosol comprises only ∼12% of TSP. The carbonaceous aerosol exhibits spatial trend similar to that of K+ suggesting major source could be biomass burning. Secondary organic aerosol (SOA) contribution estimated by EC-tracer method suggests that up to 67% of OC can be of secondary origin. Average water soluble organic carbon to OC ratio is ∼0.9, indicates significant formation of SOA during transport of continental air masses. These results demonstrate the dominance of continental aerosol over the Arabian Sea during wintertime where deposition may have major impact on surface ocean biogeochemistry.

  6. Isolation of an unknown compound, from both blood of Bhopal aerosol disaster victims and residue of tank E-610 of Union Carbide India Limited--chemical characterization of the structure.

    PubMed

    Chandra, H; Saraf, A K; Jadhav, R K; Rao, G J; Sharma, V K; Sriramachari, S; Vairamani, M

    1994-04-01

    A total of more than 28 chemical entities/reaction products in the form of gases, vapour and particulate matter were reported from the tank E-610 of methyl isocyanate (MIC) storage tank of Union Carbide India Limited on the night of 2/3 December 1984 in Bhopal. In earlier studies, methyl isocyanate and its trimer, with a few other compounds, were reported in the human victims preserved in deep freeze. Randomly selected samples were analysed by gas chromatograph coupled with mass spectrometer (ITD-800, Finnigan MAT, UK). Four of the cases showed the peaks and fragmentation pattern identified with one of the unidentified compound of molecular weight 269 amu in the Tank Residue, which constituted about 0.2 area per cent on GC-ITD. After isolation by column chromatography and being exposed to characterization, it was identified as a Spiro compound. It was possibly formed by the polymerization of five molecules of methyl isocyanate. PMID:8054074

  7. Continuous measurements at the urban roadside in an Asian Megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Li, Y. J.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2015-07-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 at the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear meal-time concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during meal times, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a~lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and influence of continental air masses.

  8. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2016-02-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  9. Aerosol chemical and optical properties over the Paris area within ESQUIF project

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Vautard, R.; Chazette, P.; Menut, L.; Bessagnet, B.

    2006-01-01

    Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environment against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce fairly well the plume structure and location both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirmed the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicated that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated of about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%) and inorganic aerosol fraction (40%) including nitrate (8%), sulfate (22%) and ammonium (10%). The secondary organic aerosols (SOA) represent 12% of the total aerosol mass, while the mineral dust

  10. Aerosol chemical and optical properties over the Paris area within ESQUIF project

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Vautard, R.; Chazette, P.; Menut, L.; Bessagnet, B.

    2006-08-01

    Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environments against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce the plume structure and location fairly well both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirm the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicates that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated by about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%), and inorganic aerosol fraction (40%) including nitrate (8%), sulfate (22%) and ammonium (10%). The secondary organic aerosols (SOA) represent 12% of the total aerosol mass, while the mineral dust

  11. Chemical composition of the atmospheric aerosol in the troposphere over the Hudson Bay lowlands and Quebec-Labrador regions of Canada

    SciTech Connect

    Gorzelska, K.; Talbot, R.W.; Lefer, B.; Klemm, K.; Klemm, O.; Gregory, G.L.; Anderson, B.; Barrie, L.A.

    1994-01-20

    Atmospheric aerosols were collected in the boundary layer and free troposphere over continental and coastal subarctic regions of Canada during the July-August 1990 joint US-Canadian Arctic Boundary Layer Expedition (ABLE) 3B/Northern Wetlands Study (NOWES). The samples were analyzed for the following water soluble species: sulfate, nitrate, ammonium, potassium, sodium, chloride, oxalate, methylsulfonate, and total amine nitrogen. Ammonium and sulfate were the major water soluble components of these aerosols. The nearly neutral (overall) chemical composition of summertime aerosol particles contrasts their strongly acidic wintertime composition. Aerosol samples were separated into several air mass categories and characterized in terms of chemical composition, associated mixing ratios of gaseous compounds, and meteorological parameters. The fundamental category represented particles associated with {open_quotes}background{close_quotes} air masses. The summertime atmospheric aerosols in background air over the North American subarctic and Arctic regions were characterized by relatively small and spatially uniform mixing ratios of the measured species. These aerosol particles were aged to the extent that they had lost their primary source signature. The chemical profile of the background air aerosols was frequently modified by additions from biomass fire plumes, aged tropical marine air, and intrusions of upper troposphere/lower stratospheric air. Aerosols in boundary layer background air over the boreal forested region of Quebec-Labrador had significantly larger mixing ratios of ammonium and sulfate relative to the Hudson Bay region. This may reflect infiltration of anthropogenic pollution or be due to natural emissions from this region. 71 refs., 5 figs., 5 tabs.

  12. Aerosols and clouds in chemical transport models and climate models.

    SciTech Connect

    Lohmann,U.; Schwartz, S. E.

    2008-03-02

    Clouds exert major influences on both shortwave and longwave radiation as well as on the hydrological cycle. Accurate representation of clouds in climate models is a major unsolved problem because of high sensitivity of radiation and hydrology to cloud properties and processes, incomplete understanding of these processes, and the wide range of length scales over which these processes occur. Small changes in the amount, altitude, physical thickness, and/or microphysical properties of clouds due to human influences can exert changes in Earth's radiation budget that are comparable to the radiative forcing by anthropogenic greenhouse gases, thus either partly offsetting or enhancing the warming due to these gases. Because clouds form on aerosol particles, changes in the amount and/or composition of aerosols affect clouds in a variety of ways. The forcing of the radiation balance due to aerosol-cloud interactions (indirect aerosol effect) has large uncertainties because a variety of important processes are not well understood precluding their accurate representation in models.

  13. Temporal variability in Chemical and Stable isotopic characteristics of ambient bulk aerosols over a coastal environment of India

    NASA Astrophysics Data System (ADS)

    Agnihotri, R.; Karapurkar, S. G.; Sarma, V. V.; Praveen, P.; Kumar, M. D.

    2012-12-01

    Atmospheric carbonaceous aerosols are known to influence regional biogeochemical cycles of carbon (C) and nitrogen (N) in addition to regional radiation budgets. Owing to multiplicity of primary sources of natural and anthropogenic origin, their detailed chemical and isotopic characterization can greatly help in source apportionment and identifying secondary processes. From the roof of NIO-Goa (India) [15.46οN, 73.8oE; at ~55.8 MASL], atmospheric bulk aerosols (n=22) were collected on Quartz filters, from 2009 December to January 2011 covering entire 2010 (except monsoon period) to investigate temporal variability in their chemical and isotopic characteristics of the carbonaceous fraction i.e. TC, TOC and TN mass concentrations and their stable isotopic ratios (δ13CTC, δ13CTOC and δ15NTN). Both δ13CTC and δ13CTOC varied in narrow ranges (-24.9±1.1‰, -25.7±0.9‰ respectively), but significant differences were observed between the two during pre-monsoon months (as high as 2.3‰), possibly due to mixing of inorganic mineral dust. δ15NTN values showed a wide range of variability (average = 13.6±7.2‰), with significantly lower values (~2-5‰; as reported earlier by Agnihotri et al. 2011) during pre-monsoon period compared to those during winter (as high as ~26‰). Using δ13CTC values and two end-member mixing model (assuming δ13C of marine and continental carbon as -21 and -27‰ respectively), the average marine carbon fraction for Goa aerosols was estimated as 36±18.5%, significantly higher than reported for Chennai aerosols (~19%) (Pavuluri et al., 2011), but close to the reported average for marine aerosols at Bermuda (38%) (Turekian et al., 2003). Chemical and isotopic characteristics of ambient aerosols over Goa along with contemporaneous meteorological data indicate that winter aerosols contain significant proportion of carbonaceous fraction originated from biomass burning and other anthropogenic activities carried out in northern parts of

  14. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

    NASA Astrophysics Data System (ADS)

    Xu, L.; Williams, L. R.; Young, D. E.; Allan, J. D.; Coe, H.; Massoli, P.; Fortner, E.; Chhabra, P.; Herndon, S.; Brooks, W. A.; Jayne, J. T.; Worsnop, D. R.; Aiken, A. C.; Liu, S.; Gorkowski, K.; Dubey, M. K.; Fleming, Z. L.; Visser, S.; Prevot, A. S. H.; Ng, N. L.

    2015-08-01

    The composition of PM1 (particulate matter with diameter less than 1 μm) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two High-Resolution Time-of-Flight Aerosol Mass Spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the sources of OA are distinctly different. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC, measured by a soot-particle aerosol mass spectrometer) only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS) at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have undergone similar chemical processing as rBC in the atmosphere

  15. Effects of Transport and Processing on Aerosol Chemical and Optical Properties Across the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Bates, T.; Baynard, T.; Onasch, T.; Coffman, D.; Covert, D.; Worsnop, D.; Goldan, P.; Kuster, B.; Degouw, J.; Stohl, A.

    2005-12-01

    NEAQS-ITCT 2004 took place in July and August to study natural and anthropogenic emissions from North America including the processing of gas and particle phase species during transport over the North Atlantic and the resulting impact on air quality and climate. During the experiment, measurements were made onboard the NOAA RV Ronald H. Brown with a ship track that extended from the coast along Cape Cod, MA, Boston, MA and Portland, ME, east into the Gulf of Maine and out to Chebogue Point, Nova Scotia. Although measurements on the ship were not made in a true Lagrangian sense, they reveal information about the effects of transport and processing on aerosol chemical and optical properties. Photochemical age based on measured toluene to benzene ratios can be used in this region to indicate 'younger' versus 'older' aerosol. This approach, coupled with FLEXPART estimates of source contributions and age, reveals that continental aerosol becomes more acidic as it ages with transport over the Gulf of Maine. The increasing acidity is due to the conversion of SO2 to SO4= with no further significant input of NH3 in the well-capped marine boundary layer to neutralize the aerosol. In addition, as the aerosol ages, the organic mass fraction decreases while the organics that are present become more oxidized. These same chemical features were observed in aerosol transported from the Ohio River Valley and beyond. In contrast, recently formed aerosol from urban centers along the Eastern Seaboard are neutralized, have a higher organic content, and the organics are less oxidized. The impact of the observed range of aerosol acidity, organic mass fraction, and degree of oxidation of the organic matter on the f(RH) of the aerosol will be described. Here, f(RH) refers to the dependence of light extinction on relative humidity.

  16. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    NASA Astrophysics Data System (ADS)

    Schroedter-Homscheidt, M.; Elbern, H.; Holzer-Popp, T.

    2010-11-01

    Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions cannot be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1) through validation against AERONET especially in Saharan dust outbreak situations, (2) through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3) through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme) network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the analysis for a test period from July to November 2003

  17. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    NASA Astrophysics Data System (ADS)

    Schroedter-Homscheidt, M.; Elbern, H.; Holzer-Popp, T.

    2010-06-01

    Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions can not be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1) through validation against AERONET especially in Saharan dust outbreak situations, (2) through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3) through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme) network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the analysis for a test period from July to November 2003

  18. Aerosol Characterization and New Instrumentation for Better Understanding Snow Radiative Properties

    NASA Astrophysics Data System (ADS)

    Beres, N. D.

    2015-12-01

    Snow albedo is determined by snowpack thickness and grain size, but also affected by contamination with light-absorbing, microscopic (e.g., mineral dust, combustion aerosols, bio-aerosols) and macroscopic (e.g., microalgae, plant debris, sand, organisms) compounds. Most currently available instruments for measuring snow albedo utilize the natural, downward flux of solar radiation and the reflected upward flux. This reliance on solar radiation (and, thus, large zenith angles and clear-sky conditions) leads to severe constraints, preventing characterization of detailed diurnal snow albedo cycles. Here, we describe instrumentation and methodologies to address these limitations with the development and deployment of new snow radiation sensors for measuring surface spectral and in-snow radiative properties. This novel instrumentation will be tested at the CRREL/UCSB Eastern Sierra (CUES) Snow Study Site at Mammoth Mountain, which is extensively instrumented for characterizing snow properties including snow albedo and surface morphology. However, it has been lacking instrumentation for the characterization of aerosols that can be deposited on the snow surface through dry and wet deposition. Currently, we are installing aerosol instrumentation at the CUES site, which are also described. This includes instruments for the multi-wavelength measurement of aerosol scattering and absorption coefficients and for the characterization of aerosol size distribution. Knowledge of aerosol concentration and physical and optical properties will allow for the study of aerosol deposition and modification of snow albedo and for establishing an aerosol climatology for the CUES site.

  19. Photochemistry of limonene secondary organic aerosol studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, Xiang

    Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to

  20. Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical review of the most recent advances

    SciTech Connect

    Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2012-06-29

    This manuscript presents an overview of the most recent instrument developments for the field and laboratory applications of mass spectrometry (MS) to investigate the chemistry and physics of atmospheric aerosols. A range of MS instruments, employing different sample introduction methods, ionisation and mass detection techniques are used both for ‘online’ and ‘offline’ characterisation of aerosols. Online MS techniques enable detection of individual particles with simultaneous measurement of particle size distributions and aerodynamic characteristics and are ideally suited for field studies that require high temporal resolution. Offline MS techniques provide a means for detailed molecular-level analysis of aerosol samples, which is essential to gain fundamental knowledge regarding aerosol chemistry, mechanisms of particle formation and atmospheric aging. Combined, complementary MS techniques provide comprehensive information on the chemical composition, size, morphology and phase of aerosols – data of key importance for evaluating hygroscopic and optical properties of particles, their health effects, understanding their origins and atmospheric evolution. Over the last few years, developments and applications of MS techniques in aerosol research have expanded remarkably as evident by skyrocketing publication statistics. Finally, the goal of this review is to present the most recent developments in the field of aerosol mass spectrometry for the time period of late 2010 to early 2012, which have not been conveyed in previous reviews.

  1. A Comparison of Aerosol Optical, Microphysical, and Chemical Measurements between LAX and Long Beach Harbor

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L.; Anderson, B. E.; Chen, G.; Winstead, E.; Ziemba, L. D.; Beyersdorf, A. J.; Diskin, G. S.; Nenes, A.; Lathem, T. L.; Arctas Science Team

    2010-12-01

    In the summer of 2008, measurements of aerosols were made on-board the NASA DC-8 over the state of California, as part of the second phase of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) on behalf of the California Air resources Board (CARB). The DC-8 made four flights, between 18 June and 26 June, totaling 33 hours, to examine California’s atmosphere to better understand the chemical dynamics of smog and greenhouse gases over the state. The NASA DC-8 had a suite of aerosol instruments, capable of measuring the number concentrations, optical properties, and size distributions of aerosols between 0.003 and 1500 um. In this presentation, we will compare aerosol observations made at two areas within the Los Angeles Basin, Los Angeles International airport (LAX) and Long Beach Harbor. LAX is in the middle of the second most populated metropolitan area in the United States and is the fifth busiest airport in the world, while Long Beach Harbor (20 miles south of LAX) is the world’s 2nd busiest container port. Initial results suggest a greater aerosol loading and additional presence of ultrafine aerosols during the week due to vehicular emissions. We will also present analysis of aerosol observations as a function of time of day from the four missed approaches at LAX and four over flights of Long Beach Harbor.

  2. Aerosol chemical elemental mass concentration at lower free troposphere

    NASA Astrophysics Data System (ADS)

    do Carmo Freitas, Maria; Dionísio, Isabel; Fialho, Paulo; Barata, Filipe

    2007-08-01

    This paper shows the use of Instrumental neutron activation analysis (INAA) technique to determine elemental masses collected by a seven-wavelength Aethalometer instrument at the summit of Pico mountain in the Azorean archipelago, situated in the Central North Atlantic Ocean. Each sample corresponds to air particulate matter measured continuously for periods of approximately 24 h taken from 14th July 2001 through 14th July 2002. The statistical analysis of the coefficients of correlation between all the elements identified, permitted to establish six groups that could potentially be associated with the type of source responsible for the aerosol sampled in the lower free troposphere at the Azorean archipelago. Calculation of the synoptic back trajectories helped to corroborate the use of the iron/cesium relation as a tracer for the Saharan dust aerosol. It was demonstrated that INAA constituted an important tool to identify these events.

  3. Chemical characteristics of aerosol mists in phosphate fertilizer manufacturing facilities.

    PubMed

    Hsu, Yu-Mei; Wu, Chang-Yu; Lundgren, Dale A; Nall, J Wesley; Birky, Brian K

    2007-01-01

    Of the carcinogens listed by the National Toxicology Program (NTP), strong inorganic mists containing sulfuric acid were identified as a known human carcinogen. In this study, aerosol sampling was conducted at 24 locations in eight Florida phosphoric acid and concentrated fertilizer manufacturing plants and two locations as background in Winter Haven and Gainesville, Florida, using dichotomous samplers. The locations were selected where sulfuric acid mist may potentially exist, including sulfuric acid pump tank areas, belt or rotating table phosphoric acid filter floors, sulfuric acid truck loading/unloading stations, phosphoric acid production reactors (attack tanks), and a concentrated fertilizer granulator during scrubbing with a weak sulfuric acid mixture. An ion chromatography system was used to analyze sulfate and other water soluble ion species. In general, sulfate, fluoride, ammonium, and phosphate were the major species in the fertilizer facilities. For the rotating table/belt phosphoric acid filter floor, phosphate and fluoride were the dominant species for PM10, and the maximum concentrations were 170 and 106 microg/m3, respectively. For the attack tank, fluoride was the dominant species for PM10, and the maximum concentration was 462 microg/m3. At the sulfuric acid pump tank, sulfate was the dominant species, and the maximum PM10 sulfate concentration was 181 microg/m3. The concentration of PM10 sulfate including ammonium sulfate, calcium sulfate, and sulfuric acid were lower than 0.2 mg/m3 at all locations. The aerosols at the filter floor and the attack tank were acidic. The coarse mode aerosol at the sulfuric acid pump tank (an outdoor location) was acidic, whereas the fine mode aerosol was neutral to basic. PMID:17162477

  4. The chemical composition of fine ambient aerosol particles in the Beijing area

    NASA Astrophysics Data System (ADS)

    Nekat, Bettina; van Pinxteren, Dominik; Iinuma, Yoshiteru; Gnauk, Thomas; Müller, Konrad; Herrmann, Hartmut

    2010-05-01

    The strong economical growth in China during the last few decades led to heavy air pollution caused by significantly increased particle emissions. The aerosol particles affect not only the regional air quality and visibility, but can also influence cloud formation processes and the radiative balance of the atmosphere by their optical and microphysical properties. The ability to act as Cloud Condensation Nuclei (CCN) is related to microphysical properties like the hygroscopic growth or the cloud droplet activation. The chemical composition of CCN plays an important role on these properties and varies strongly with the particle size and the time of day. Hygroscopic or surface active substances can increase the hygroscopicity and lower the surface tension of the particle liquid phase, respectively. The presence of such compounds may result in faster cloud droplet activation by faster water uptake. The DFG project HaChi (Haze in China) aimed at studying physical and chemical parameters of urban aerosol particles in the Beijing area in order to associate the chemical composition of aerosol particles with their ability to act as CCN. To this end, two measurement campaigns were performed at the Wuqing National Ordinary Meteorological Observing Station, which is a background site near Beijing. The winter campaign was realized in March 2009 and the summer campaign took place from mid July 2009 to mid August 2009. Fine particles with an aerodynamic diameter smaller than or equal 1 μm were continuously sampled for 24h over the two campaigns using a DIGITEL high volume sampler (DHA-80). The present contribution presents and discusses the results of the chemical characterization of the DIGITEL filters samples. The filters were analyzed for the mass concentration, inorganic ions and carbon sum parameters like elemental (EC), organic (OC) and water soluble organic carbon (WSOC). The WSOC fraction was further characterized for hygroscopic substances like low molecular

  5. Chemical Composition and Cloud Condensation Nuclei Properties of Marine Aerosols during the 2005 Marine Stratus Experiment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Hudson, J.; Daum, P.; Springston, S.; Wang, J.; Senum, G.; Alexander, L.; Jayne, J.; Hubbe, J.

    2006-12-01

    Marine aerosol chemical composition and cloud condensation nuclei (CCN) spectrum were determined on board the DOE G1 aircraft during the Marine Stratus Experiment conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosol components, including sea-salt- (sodium, chloride, magnesium, methansulfonate) and terrestrial/pollution-derived (ammonium, sulfate, nitrate, organics, potassium, and calcium) were measured using the particle-into-liquid sampler-ion chromatography technique and an Aerodyne AMS at a time resolution of 4 min and 30 s, respectively, both covering the size range of ~0.08 to 1.5 micrometers. The CCN spectrum was determined at a 1-s time resolution covering a supersaturation range between 0.02% and 1%. The accumulation mode particle size- number distribution was measured using a passive cavity aerosol spectrometer probe; the cloud droplet size- number distribution was determined using a Cloud Aerosol Probe. During the campaign sulfate/organic aerosols were always present, sea-salt aerosols were observed on half of the flights, and no dust or biomass burning contribution was noted as calcium and potassium were always below their limits-of-detection. Based on CCN spectra and cloud droplet number concentrations, the typical supersaturation of the marine stratus clouds was ~0.06%, corresponding to a CCN critical diameter between 0.1 and 0.2 micrometer. This large critical diameter makes the aerosol chemical composition measured appropriate for investigating the CCN properties and marine stratus clouds. We note that while sea-salt aerosols and sulfate aerosols were most likely externally mixed, the ensemble exhibits similar CCN properties irrespective of the relative mass concentrations of these two types of aerosols, owing partly to the similar activation properties of NaCl and (NH4)2SO4 aerosols, and that sea-salt particles were larger but fewer, accounting for a small fraction of cloud

  6. Characterization of Aerosol Particles around an Open Pit Coal Mine in Germany

    NASA Astrophysics Data System (ADS)

    Mueller-Ebert, Doerthe; Ebert, Martin; Weinbruch, Stephan

    2010-05-01

    PM10 around open pit coal mines in Germany frequently exceeds the 24 hours limit value of 50 ?g/m3. To comply with current EU regulations appropriate mitigation strategies have to be developed. For this goal accurate source apportionment is an indispensable prerequisite. In this study characterization of the dust immission was performed by electronmicroscopic individual particle analysis. Particles were collected close to the open pit mine from January 2007 until February 2008 with a two stage cascade impactor (aerodynamic particle diameter: 0.4 - 1 μm and 1 - 10 μm). The size, shape, and chemical composition of more than 30,000 particles were determined by automated scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). The most abundant particle groups encountered are secondary aerosol particles, soot, silicates, silicate/coal mixtures, coal, sulfates, carbonates, Fe-rich particles and (aged) sea salt. The relative abundance of the different particle groups is highly variable as function of the specific meteorological conditions. It can be distinguished between at least three different scenarios, which were found to cause exceeding of the daily PM10 limit value. a) high concentrations of silicates and silicate/coal mixtures which can be assigned to mining activities, b) high concentrations of secondary aerosol particles and soot (urban background), occurring during inversion periods with stagnant air masses, and c) high concentrations of (aged) sea salt indicating direct transport of air masses from the North Sea. PM2.5 and PM1 are always dominated by urban background aerosol (secondary aerosol particles and soot). Following these results, significant reduction potentials for PM10 only exist for the contribution of the open pit mine (silicates, silicate/coal mixed particles) and for urban background aerosols (secondary aerosol particles and soot). As the contribution of the open pit mine is mainly apparent in the PM10-2.5 fraction

  7. Molecular Characterization of Marine Organic Aerosols Collected during a Round-the-World Cruise

    NASA Astrophysics Data System (ADS)

    Fu, P.; Kawamura, K.; Miura, K.

    2010-12-01

    Total suspended particles (TSP) were collected on board the R/V Hakuho Maru during a round-the-world cruise (KH89-2) and were characterized for organic molecular compositions using solvent extraction/derivatization and gas chromatography/mass spectrometry technique. More than 140 organic species were detected in the marine aerosols and were grouped into 11 organic compound classes, including aliphatic lipids, anhydrosugars and sugar alcohols, lignin/resin acids, sterols, hopanes, polycyclic aromatic hydrocarbons, hydroxy-/polyacids, aromatic acids, as well as secondary organic aerosol (SOA) tracers from the photooxidation of biogenic volatile organic compounds. Concentrations of total quantified organics ranged from 0.94 to 98 ng m-3 (average 31 ng m-3) with higher concentrations in coastal regions (California Coast, South China Sea, and Western North Pacific) than in open marine areas (North Pacific and North Atlantic), suggesting that long-range atmospheric transport from the continents is the main source of marine organic aerosols. Isoprene SOA tracers, i.e., 2-methylglyceric acid, C5-alkene triols and 2-methyltetrols, were detected in all the samples (0.11-22 ng m-3, average 3.6 ng m-3) with higher concentrations in the tropical regions. They accounted for 0.48-29% of the total identified organics. Organic compounds were further categorized into several groups to clarify their sources. In the North Pacific and North Atlantic, secondary oxidation products (30-31%), fossil fuel combustion products (27-28%), as well as marine natural emissions (22-34%) were found as major contributors to the marine aerosols. In California Coast, North Indian Ocean and South China Sea, secondary oxidation products can contribute 44-55% of the total identified organics, followed by terrestrial natural emissions (12-27%), while biomass burning emissions were found to contribute only 1-2%. However, in the western North Pacific near the Asian continent, fossil fuel combustion (27%) and

  8. Design and application of a new modular adapter for laser diffraction characterization of inhalation aerosols.

    PubMed

    de Boer, A H; Gjaltema, D; Hagedoorn, P; Schaller, M; Witt, W; Frijlink, H W

    2002-12-01

    An inhaler adapter has been designed for the characterization of the aerosol clouds from medical aerosol generators such as nebulizers, dry powder inhalers (dpis) and metered dose inhalers (mdis) with laser diffraction technology. The adapter has a pre-separator, for separation of large particles (i.e. carrier crystals) from the aerosol cloud before it is exposed to the laser beam. It also has a fine particle collector for measuring the emitted mass fraction of fines by chemical detection methods after laser diffraction sizing. The closed system enables flow control through the aerosol generators and all test conditions, including ambient temperature and relative humidity, are automatically recorded. Counter flows minimize particle deposition onto the two windows for the laser beam, which make successive measurements without cleaning of these windows possible. The adapter has successfully been tested for nebulizers, mdis and dpis. In a comparative study with ten nebulizers it was found that these devices differ considerably in droplet size (distribution) of the aerosol cloud for the same 10% aqueous tobramycin solution (volume median diameters ranging from 1.25 to 3.25 microm) when they are used under the conditions recommended by the manufacturers. The droplet size distribution generated by the Sidestream (with PortaNeb compressor) is very constant during nebulization until dry running of the device. Comparative testing of dpis containing spherical pellet type of formulations for the drug (e.g. the AstraZeneca Turbuhaler) with the adapter is fast and simple. But also formulations containing larger carrier material could successfully be measured. Disintegration efficiency of a test inhaler with carrier retainment (acting as a pre-separator) could be measured quite accurately both for a colistin sulfate formulation with 16.7% of a lactose fraction 106-150 microm and for a budesonide formulation with a carrier mixture of Pharmatose 325 and 150 M. Therefore, it is

  9. Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong

    NASA Astrophysics Data System (ADS)

    Li, Yunchun

    Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they can be emitted from a variety of sources as well as formed from photochemical reactions of numerous precursors. This thesis work aims to improve the characterization of polar organic compounds and source apportionment analysis of fine organic carbon (OC) in Hong Kong, which consists of two parts: (1) An improved analytical method to determine monocarboxylic acids, dicarboxylic acids, ketocarboxylic acids, and dicarbonyls collected on filter substrates has been established. These oxygenated compounds were determined as their butyl ester or butyl acetal derivatives using gas chromatography-mass spectrometry. The new method made improvements over the original Kawamura method by eliminating the water extraction and evaporation steps. Aerosol materials were directly mixed with the BF 3/BuOH derivatization agent and the extracting solvent hexane. This modification improves recoveries for both the more volatile and the less water-soluble compounds. This improved method was applied to study the abundances and sources of these oxygenated compounds in PM2.5 aerosol samples collected in Hong Kong under different synoptic conditions during 2003-2005. These compounds account for on average 5.2% of OC (range: 1.4%-13.6%) on a carbon basis. Oxalic acid was the most abundant species. Six C2 and C3 oxygenated compounds, namely oxalic, malonic, glyoxylic, pyruvic acids, glyoxal, and methylglyoxal, dominated this suite of oxygenated compounds. More efforts are therefore suggested to focus on these small compounds in understanding the role of oxygenated

  10. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Zhao, D. F.; Ruppel, M. J.; Laskina, O.; Grandquist, J. R.; Modini, R. L.; Stokes, M. D.; Russell, L. M.; Bertram, T. H.; Grassian, V. H.; Deane, G. B.; Prather, K. A.

    2014-07-01

    Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA) must be underpinned by a physically and chemically accurate representation of the bubble mediated production of nascent SSA particles. Since bubble bursting is sensitive to the physicochemical properties of seawater, any important differences in the SSA production mechanism are projected into SSA composition. Using direct chemical measurements of SSA at the single-particle level, this study presents an inter-comparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits"), a pulsed plunging waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic enriched particles and a different size-resolved elemental composition, especially in the 0.8-2 μm size range. These particles, when dried, had more spherical morphologies compared to the more cubic structure expected for pure NaCl particles, which can be attributed to the presence of additional organic carbon. In addition to an inter-comparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method utilized in this study on SSA composition was undertaken. In organic-enriched seawater, the continuous operation of the plunging waterfall mechanism resulted in the accumulation of surface foam and an over-expression of organic matter in SSA particles compared to pulsed plunging waterfall. Throughout this set of experiments, comparative differences in the SSA number size distribution were coincident with differences in aerosol composition, indicating that the production mechanism of SSA exerts

  11. Chemical and Optical Properties of Titan Aerosol Analogs Produced from Aromatic Precursors

    NASA Astrophysics Data System (ADS)

    Trainer, M. G.; Sebree, J. A.; Anderson, C. M.; Loeffler, M. J.; Stern, J. C.

    2012-04-01

    Since Cassini’s arrival at Titan, ppm levels of benzene (C6H6) as well as large positive ions, which may be polycyclic aromatic hydrocarbons (PAHs), have been detected in the atmosphere. Aromatic molecules, photolytically active in the ultraviolet, may be important in the formation of the organic aerosol comprising the Titan haze layer even when present at low mixing ratios. Yet there have not been laboratory simulations exploring the impact of these molecules as precursors to Titan’s organic aerosol. We will discuss laboratory studies forming aerosol analogs via FUV irradiation of several aromatic precursors - with and without nitrogen heteroatoms - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. Optical analyses are focused on the far- and mid-IR spectra of the aromatic aerosol for comparison to the observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS). In particular, observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 cm-1 (~18 to 500 µm) have revealed a broad emission feature centered approximately at 140 cm-1 (71 µm), which cannot be reproduced using currently available optical constants (Anderson et al., 2011; Khare et al., 1984). Chemical analysis is focused on the isotopic fractionation observed in the aerosol relative to molecular precursors, showing that the aerosol may serve as a sink for the lighter carbon and nitrogen atoms. References: Anderson, C.M., et al.: "Titan’s aerosol and stratospheric ice opacities between 18 and 500 µm: Vertical and spectral characteristics from Cassini CIRS”. Icarus, Vol. 212, pp. 762-778, 2011. Khare, B. N., et al.: “Optical constants of organic Tholins produced in a simulated Titanian Atmosphere: From soft X-ray to Microwave Frequencies”. Icarus, Vol. 60, pp. 127-137, 1984.

  12. Correlations between Optical, Chemical and Physical Properties ofBiomass Burn Aerosols

    SciTech Connect

    Hopkins, Rebecca J.; Lewis, K.; Desyaterik, Yury; Wang, Z.; Tivanski, Alexei V.; Arnott, W.P.; Laskin, Alexander; Gilles, M.K.

    2008-01-29

    Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo ({omega}) and Angstrom absorption coefficients ({alpha}{sub ap}) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp{sup 2} hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured {omega} (0.4-1.0 at 405 nm) and {alpha}{sub ap} (1.0-3.5) values displayed a fuel dependence. The category with sp{sup 2} hybridization >80% had values of {omega} (<0.5) and {alpha}{sub ap} ({approx}1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher {omega} (>0.8) and {alpha}{sub ap} (1.0 to 3.5) values, indicating increased absorption spectral selectivity.

  13. Correlations between optical, chemical and physical properties of biomass burn aerosols

    NASA Astrophysics Data System (ADS)

    Hopkins, R. J.; Lewis, K.; Desyaterik, Y.; Wang, Z.; Tivanski, A. V.; Arnott, W. P.; Laskin, A.; Gilles, M. K.

    2007-09-01

    Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo (ω) and Angstrom absorption coefficients (α ap) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp2 hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured ω (0.4 - 1.0 at 405 nm) and α ap (1.0 - 3.5) values displayed a fuel dependence. The category with sp2 hybridization >80% had values of ω (<0.5) and α ap (~1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher ω (>0.8) and α ap (1.0 to 3.5) values, indicating increased absorption spectral selectivity.

  14. Evidence for ships emissions in the Central Mediterranean Sea from aerosol chemical analyses at the island of Lampedusa

    NASA Astrophysics Data System (ADS)

    Becagli, S.; Sferlazzo, D. M.; Pace, G.; di Sarra, A.; Bommarito, C.; Calzolai, G.; Ghedini, C.; Lucarelli, F.; Meloni, D.; Monteleone, F.; Severi, M.; Traversi, R.; Udisti, R.

    2011-11-01

    Measurements of aerosol chemical composition made on the island of Lampedusa, south of the Sicily channel, during years 2004-2008, are used to identify the influence of ship emissions on aerosol particles in the Central Mediterranean. Evidence of ship emissions influence is found in 17% of the daily samples. Aerosol samples influenced by ships are characterized by elevated Ni and V soluble fraction (about 80% for aerosol from ships, versus about 40 % for crustal particles), high V and Ni to Si ratios, and values of Vsol>6 ng m-3. Back trajectories analysis on the selected events show that air masses prevalently come from the Sicily channel, where an intense ship traffic occurs. Vsol, Nisol, and non-sea salt SO42- (nssSO42-) show a marked seasonal behaviour, with an evident summer maximum. Such a pattern can be explained by several processes: (i) increased photochemical activity in summer, leading to a faster production of secondary aerosols, mainly nssSO42-, from the oxidation of SO2 in the ship plume; (ii) stronger marine boundary layer (MBL) stability in summer, leading to higher concentration of emitted compounds in the lowest atmospheric layers; (iii) more frequent meteorological conditions leading to consecutive days with trajectories from the Sicily channel in summer. A very intense event in spring 2008 was studied in detail, also using size segregated chemical measurements. These data show that elements arising from heavy oil combustion (V, Ni, Al, Fe) are distributed in the sub-micrometric fraction of the aerosol, and the metals are present as free metals, carbonates, oxides hydrates or labile complex with organic ligands, so that they are dissolved in mild condition (HNO3, pH1.5). Data suggest a characteristic nssSO42-/V ratio in the range 200-400 for ship emission aerosols in summer at Lampedusa. By using the value of 200 a lower limit for the ship contribution to total sulphates is estimated. Ship emissions account, as a summer average, at least for 1

  15. Analysis of Aerosol Physical and Chemical Properties on the Coast of the Japanese Sea (Tango peninsula) during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Tohno, S.; Hoeller, R.; Ito, K.; Onishi, Y.; Ma, C. J.; Kasahara, M.; Cahill, T. A.; Cliff, S.

    2001-12-01

    During springtime the Japanese archipelago is periodically influenced by haze events originating from the Asian continent. The sources of these materials include both anthropogenic and natural aerosol, including the well-known yellow sand (Kosa) events, which can be recognized at places as far as Hawaii and the west coast of the United States. But there is also strong evidenced, which we want to support in this study, that these Kosa events are accompanied by strongly absorbing material as well as sulfates and organics. The springtime of 2001 was characterized by several strong dust events, which happened to be during the international ACE-Asia campaign. We participated in the ACE observation network by setting up a monitoring station during the period March 19 to April 6, 2001 for the measurement of aerosol optical, physical and chemical properties as well as observations of sky radiation. The measurement site is located on the coast of the Japanese Sea (Tango Peninsula, Kyoto Prefecture). Tango was chosen as an observation site, since it is relatively unpolluted and can therefore serve as a background site for studies of the direct impact of the mainland Asian outflow on the western Pacific area. The purpose of this work is to perform local and column closure experiments on aerosol properties, and to distinguish the anthropogenic part of the aerosol from the natural one. For this purpose, backward air-mass trajectories are calculated to identify potential sources of the observed aerosol. For measurements of aerosol mass-size distributions we used 12-stage low-pressure impactors, which were subsequently analyzed for elemental and ionic concentrations by PIXE, and Ion-chromatography, respectively. In addition, to get both the necessary time- and size-resolution, a DRUM sampler was operated with continuous collection and analysis for mass and optical transmission from 320 nm to 850 nm. Analysis is scheduled by synchrotron-XRF to < 0.1 ng/m3 for trace elemental

  16. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  17. Tying Biological Activity to Changes in Sea Spray Aerosol Chemical Composition via Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Sultana, C. M.; Lee, C.; Collins, D. B.; Axson, J. L.; Laskina, O.; Grandquist, J. R.; Grassian, V. H.; Prather, K. A.

    2014-12-01

    In remote marine environments, sea spray aerosols (SSA) often represent the greatest aerosol burden, thus having significant impacts on direct radiative interactions and cloud processes. Previous studies have shown that SSA is a complex mixture of inorganic salts and an array of dissolved and particulate organic components. Enrichment of SSA organic content is often correlated to seawater chlorophyll concentrations, a measure of oceanic biological activity. As the physical and chemical properties of aerosols control their radiative effects, recent studies conducted by the Center for Aerosol Impacts on Climate and the Environment have endeavored to further elucidate the ties between marine biological activity and primary SSA chemical composition using highly time resolved single particle analyses. A series of experiments performed in the recently developed Marine Aerosol Reference Tank evaluated the effect of changing marine microbial populations on SSA chemical composition, which was monitored via an aerosol time-of-flight mass spectrometer and a variety of offline spectroscopic and microscopic techniques. Each experiment was initiated using unfiltered and untreated seawater, thus maintaining a high level of biogeochemical complexity. This study is the first of its kind to capture daily changes in the primary SSA mixing state over the growth and death of a natural phytoplankton bloom. Increases in organic aerosol types (0.4-3 μm), internally and externally mixed with sea salt, could not be correlated to chlorophyll concentrations. Maximum production of these populations occurred two to four days after the in vivo chlorophyll fluorescence peaked in intensity. This work is in contrast to the current paradigm of correlating SSA organic content to seawater chlorophyll concentration.

  18. Physicochemical Characterization of Coarse Lake Spray Aerosol Particle from Lake Michigan

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Axson, J. L.; May, N.; Pratt, K.; Colon-Bernal, I. D.

    2015-12-01

    Wave breaking across bodies of water releases coarse particles into the air which can impact climate and human health. Freshwater lakes, such as the Great Lakes, can generate lake spray aerosols (LSA), similarly to how sea spray is generated, during periods of high winds and wave action. This LSA has the potential to impact climate through direct and indirect effects (ie. scattering/absorption and cloud nucleation) and are suggested to impact human health via inhalation of these particles during algal bloom periods characterized by toxic cyanobacteria. Very few studies have been conducted to assess the physicochemical properties of freshwater LSA. Prior work in our lab included the construction and characterization of a laboratory based LSA generator. In this work, we examine laboratory generated aerosol particles from laboratory based freshwater standards, freshwater samples collected from Lake Michigan, and ambient particles collected during a wave event on the shores of Lake Michigan in the summer of 2015. Particle size distributions, number concentrations, and chemical composition are presented and discussed as a function of laboratory generated and ambient collected LSA. Results indicate that there are characteristic particles that represent LSA. This study represents the next step towards evaluating and understanding the potential for coarse LSA to impact climate and health in the Great Lakes region.

  19. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  20. Feasibility of polarized all-sky imaging for aerosol characterization

    NASA Astrophysics Data System (ADS)

    Kreuter, A.; Blumthaler, M.

    2012-12-01

    Polarized all-sky distribution measurements contain radiative information about aerosol properties. We investigate the method of all-sky imaging for aerosol property retrieval and propose a technical frame work for image processing and analysis. Using Zernike polynomials, we decompose the relative Stokes parameter distributions, which efficiently captures the information content. The resulting feature vector is well suited for all-sky imaging, independent of calibration and robust against noise. It can be directly used in existing algorithms or alternative types of retrieval methods of aerosol optical properties in the future. By modeling possible aerosol scenarios we investigate the influence of different aerosol types in terms of the first two principal components describing the maximal variances. In this representation we show that the feature vector from a polarized all-sky imager is suitable for aerosol classification with respect to size and single scatter albedo.

  1. Modelling the optical properties of aerosols in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  2. Characterizing Uncertainty in Global Aerosol Retrievals from Multiple Spaceborne Sensors

    NASA Astrophysics Data System (ADS)

    Petrenko, M.; Smirnov, A.; Ichoku, C. M.

    2014-12-01

    Complementary global aerosol products have been routinely available from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, SeaWiFS, and VIIRS. However, a variety of studies suggest that individual aerosol products have significant differences in the geographic distribution of their retrieval uncertainties. Nonetheless, it can be difficult or impractical to track down relevant product validation studies and invest time in mastering the proprietary file formats of these aerosol products. As a result, many studies are performed using data from one or two most familiar products that, oftentimes, may not be optimal for a given region of interest. In this presentation, we will use Aerosol Robotic Network (AERONET) and Maritime Aerosol Network (MAN) data within the framework of the Multi-sensor Aerosol Products Sampling System (MAPSS) to catalog the accuracy of aerosol retrievals from the spaceborne sensors listed above. We will report our findings in analyzing the spatial and temporal distributions of the uncertainties in the global over-land and maritime retrievals of aerosols based on inter-comparing spaceborne data with coincident ground-based measurements from both AERONET and MAN. We will also explain our vision of how this analysis can be used as a base for a multi-sensor aerosol product package that would help end users to make a more informed choice when selecting data for their regions of interest.

  3. XPS analysis of combustion aerosols for chemical composition, surface chemistry, and carbon chemical state.

    PubMed

    Vander Wal, Randy L; Bryg, Vicky M; Hays, Michael D

    2011-03-15

    Carbonaceous aerosols can vary in elemental content, surface chemistry, and carbon nano-structure. Each of these properties is related to the details of soot formation. Fuel source, combustion process (affecting formation and growth conditions), and postcombustion exhaust where oxidation occurs all contribute to the physical structure and surface chemistry of soot. Traditionally such physical and chemical parameters have been measured separately by various techniques. Presented here is the unified measurement of these characteristics using X-ray photoelectron spectroscopy (XPS). In the present study, XPS is applied to combustion soot collected from a diesel engine (running biodiesel and pump-grade fuels); jet engine; and institutional, plant, and residential oil-fired boilers. Elemental composition is mapped by a survey scan over a broad energy range. Surface chemistry and carbon nanostructure are quantified by deconvolution of high-resolution scans over the C1s region. This combination of parameters forms a distinct matrix of identifiers for the soots from these sources. PMID:21322576

  4. Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012

    SciTech Connect

    Meskhidze, Nicholas

    2013-10-21

    The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

  5. Chemical composition of Eastern Black Sea aerosol--preliminary results.

    PubMed

    Balcılar, Ilker; Zararsız, Abdullah; Kalaycı, Yakup; Doğan, Güray; Tuncel, Gürdal

    2014-08-01

    Trace element composition of atmospheric particles collected at a high altitude site on the Eastern Black Sea coast of Turkey was investigated to understand atmospheric transport of pollutants to this semi-closed basin. Aerosol samples were collected at a timber-storage area, which is operated by the General Directorate of Forestry. The site is situated at a rural area and is approximately 50 km to the Black Sea coast and 200 km to the Georgia border of Turkey. Coarse (PM2.5-10) and fine (PM2.5) aerosol samples were collected between 2011 and 2013 using a "stacked filter unit". Collected samples were shipped to the Middle East Technical University in Ankara, where Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Ba, Pb were measured by Energy dispersive x-ray fluorescence technique (EDXRF). Comparison of measured concentrations of elements with corresponding data generated at other parts of Turkey demonstrated that concentrations of pollution derived elements are higher at Eastern Black Sea than their corresponding concentrations measured at other parts of Turkey, which is attributed to frequent transport of pollutants from north wind sector. Positive matric factorization revealed four factors including three anthropogenic and a crustal factor. Southeastern parts of Turkey, Georgia and Black Sea coast of Ukraine were identified as source regions affecting composition of particles at our site, using trajectory statistics, namely "potential source contribution function" (PSCF). PMID:24373640

  6. Aerosol physical, chemical and optical properties observed in the ambient atmosphere during haze pollution conditions

    NASA Astrophysics Data System (ADS)

    Li, Zhengqiang; Xie, Yisong; Li, Donghui; Li, Kaitao; Zhang, Ying; Li, Li; Lv, Yang; Qie, Lili; Xu, Hua

    Aerosol’s properties in the ambient atmosphere may differ significantly from sampling results due to containing of abundant water content. We performed sun-sky radiometer measurements in Beijing during 2011 and 2012 winter to obtain distribution of spectral and angular sky radiance. The measurements are then used to retrieve aerosol physical, chemical and optical properties, including single scattering albedo, size distribution, complex refractive indices and aerosol component fractions identified as black carbon, brown carbon, mineral dust, ammonium sulfate-like components and water content inside particle matters. We found that during winter haze condition aerosol is dominated by fine particles with center radius of about 0.2 micron. Fine particles contribute about 93% to total aerosol extinction of solar light, and result in serious decrease of atmospheric visibility during haze condition. The percentage of light absorption of haze aerosol can up to about 10% among its total extinction, much higher than that of unpolluted conditions, that causes significant radiative cooling effects suppressing atmospheric convection and dispersion of pollutants. Moreover, the average water content occupies about one third of the ambient aerosol in volume which suggests the important effect of ambient humidity in the formation of haze pollution.

  7. A model for studying the composition and chemical effects of stratospheric aerosols

    SciTech Connect

    Tabazadeh, A.; Turco, R.P.; Jacobson, M.Z.

    1994-06-01

    We developed polynomial expressions for the temperature dependence of the mean binary and water activity coefficients for H2SO4 and HNO3 solutions. These activities were used in an equilibrium model to predict the composition of stratospheric aerosols under a wide range of environmental conditions. For typical concentrations of H2O, H2SO4, HNO3, HCl, HBr, HF, and HOCl in the lower stratosphere, the aerosol composition is estimated as a function of the local temperature and the ambient relative humidity. For temperatures below 200 K, our results indicate that (1) HNO3 contributes a significant mass fraction to stratospheric aerosols, and (2) HCl solubility is considerably affected by HNO3 dissolution into sulfate aerosols. We also show that, in volcanically disturbed periods, changes in stratospheric aerosol composition can significantly alter the microphysics that leads to the formation of polar stratospheric clouds. The effects caused by HNO3 dissolution on the physical and chemical properties of stratospheric aerosols are discussed.

  8. A model for studying the composition and chemical effects of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Turco, Richard P.; Jacobson, Mark Z.

    1994-01-01

    We developed polynomial expressions for the temperature dependence of the mean binary and water activity coefficients for H2SO4 and HNO3 solutions. These activities were used in an equilibrium model to predict the composition of stratospheric aerosols under a wide range of environmental conditions. For typical concentrations of H2O, H2SO4, HNO3, HCl, HBr, HF, and HOCl in the lower stratosphere, the aerosol composition is estimated as a function of the local temperature and the ambient relative humidity. For temperatures below 200 K, our results indicate that (1) HNO3 contributes a significant mass fraction to stratospheric aerosols, and (2) HCl solubility is considerably affected by HNO3 dissolution into sulfate aerosols. We also show that, in volcanically disturbed periods, changes in stratospheric aerosol composition can significantly alter the microphysics that leads to the formation of polar stratospheric clouds. The effects caused by HNO3 dissolution on the physical and chemical properties of stratospheric aerosols are discussed.

  9. Determination of the chemical composition of titan4s aerosols analogues using pyrolysis gas chromatography mass spectrometry

    NASA Astrophysics Data System (ADS)

    He, J.; Buch, A.; Szopa, C.; Carrasco, N.

    2013-12-01

    The in situ chemical characterization of Titan's aerosols with the ACP-GCMS (Aerosol Collector and Pyrolyze-Gas Chromatograph and Mass Spectrometer) experiments onboard the Cassini-Huygens mission showed that the aerosols heated at 600°C were releasing two main gaseous compounds: NH3 and HCN. To better understand the process of production of these species at high temperature, and their relationship to the solid aerosol composition, it is possible to mimic in laboratory the Titan's atmosphere chemistry to produce analogues of Titan's aerosols (tholins), chemical and physical properties of which can be studied with laboratory instrumentation. In the present work, we studied the thermal decomposition of tholins produced with the PAMPRE cold plasma experiment[1]. For this study, pyrolysis at various temperatures, coupled to gas chromatography mass spectrometry (Pyr-GCMS), has been used in order to understand the origin and formation mechanism of the NH3 and HCN compounds. With this aim, two samples were produced using different initial CH4/N2 gaseous mixtures with different concentration ratios: (5:95) and (10:90). Pyr-GCMS was applied to characterize their chemical composition and molecule structure. In order to study the evolution of chemical compounds released as a function of temperature, the final pyrolysis temperature has been set from 100°C to 900°C with a 100°C step increment. The results show that the major compounds released are similar for the two different studied samples. They include hydrocarbon compounds, nitriles, ammonia, hydrogen cyanide, and some pyrrole isomers. Moreover, whatever the final temperature is, acetonitrile is the most abundant compound released by the samples. At 100°C only water contribution can be detected. Then the number of compounds released increases with the temperature up to 600°C. With the temperature increase the nature of the gaseous species detected does not change significantly. Pyrrole was not detected until the

  10. Exploring Atmospheric Aqueous Chemistry (and Secondary Organic Aerosol Formation) through OH Radical Oxidation Experiments, Droplet Evaporation and Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Kirkland, J. R.; Lim, Y. B.; Ortiz-Montalvo, D. L.; Sullivan, A.; Häkkinen, S.; Schwier, A. N.; Tan, Y.; McNeill, V. F.; Collett, J. L.; Skog, K.; Keutsch, F. N.; Sareen, N.; Carlton, A. G.; Decesari, S.; Facchini, C.

    2013-12-01

    Gas phase photochemistry fragments and oxidizes organic emissions, making water-soluble organics ubiquitous in the atmosphere. My group and others have found that several water-soluble compounds react further in the aqueous phase forming low volatility products under atmospherically-relevant conditions (i.e., in clouds, fogs and wet aerosols). Thus, secondary organic aerosol can form as a result of gas followed by aqueous chemistry (aqSOA). We have used aqueous OH radical oxidation experiments coupled with product analysis and chemical modeling to validate and refine the aqueous chemistry of glyoxal, methylglyoxal, glycolaldehyde, and acetic acid. The resulting chemical model has provided insights into the differences between oxidation chemistry in clouds and in wet aerosols. Further, we conducted droplet evaporation experiments to characterize the volatility of the products. Most recently, we have conducted aqueous OH radical oxidation experiments with ambient mixtures of water-soluble gases to identify additional atmospherically-important precursors and products. Specifically, we scrubbed water-soluble gases from the ambient air in the Po Valley, Italy using four mist chambers in parallel, operating at 25-30 L min-1. Aqueous OH radical oxidation experiments and control experiments were conducted with these mixtures (total organic carbon ≈ 100 μM-C). OH radicals (3.5E-2 μM [OH] s-1) were generated by photolyzing H2O2. Precursors and products were characterized using electrospray ionization mass spectrometry (ESI-MS), ion chromatography (IC), IC-ESI-MS, and ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chemical modeling suggests that organic acids (e.g., oxalate, pyruvate, glycolate) are major products of OH radical oxidation at cloud-relevant concentrations, whereas organic radical - radical reactions result in the formation of oligomers in wet aerosols. Products of cloud chemistry and droplet evaporation have

  11. Chemical composition and sources of organic aerosols over London from the ClearfLo 2012 campaigns

    NASA Astrophysics Data System (ADS)

    Finessi, Emanuela; Holmes, Rachel; Hopkins, James; Lee, James; Harrison, Roy; Hamilton, Jacqueline

    2014-05-01

    Air quality in urban areas represents a major public health issue with around one third of the European population concentrated in cities and numbers expected to increase at global scale, particularly in developing countries. Particulate matter (PM) represents a primary threat for human health as numerous studies have confirmed the association between increased levels of cardiovascular and respiratory diseases with the exposure to PM. Despite considerable efforts made in improving air quality and progressively stricter emissions regulations, the PM concentrations have not changed much over the past decades for reasons that remain unclear, and highlight that studies on PM source apportionment are required for the formulation of effective policy. We investigated the chemical composition of organic aerosol (OA) collected during two intensive field campaigns held in winter and summer 2012 in the frame of the project Clean air for London (http://www.clearflo.ac.uk/). PM samples were collected both at a city background site (North Kensington) and at a rural site 50 km southeast of London (Detling) with 8 to 24 hours sampling schedule and analysed using off-line methods. Thermal-optical analysis was used to quantify OC-EC components while a suite of soft ionization mass spectrometric techniques was deployed for detailed chemical characterization. Liquid chromatography mass Spectrometry (LC-MSn) was mostly used for the simultaneous detection and quantification of various tracers for both primary and secondary OA sources. Well-established markers for wood burning primary OA like levoglucosan and azelaic acid were quantified together with various classes of nitroaromatics including methyl-nitrocatechols that are potential tracers for wood burning secondary OA. In addition, oxidation products of biogenic VOCs such as isoprene and monoterpenes were also quantified for both seasons and sites. A non-negligible contribution from biogenic SOA to urban OA was found in summertime

  12. Enabling the identification, quantification, and characterization of organics in complex mixtures to understand atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Isaacman, Gabriel Avram

    Particles in the atmosphere are known to have negative health effects and important but highly uncertain impacts on global and regional climate. A majority of this particulate matter is formed through atmospheric oxidation of naturally and anthropogenically emitted gases to yield highly oxygenated secondary organic aerosol (SOA), an amalgamation of thousands of individual chemical compounds. However, comprehensive analysis of SOA composition has been stymied by its complexity and lack of available measurement techniques. In this work, novel instrumentation, analysis methods, and conceptual frameworks are introduced for chemically characterizing atmospherically relevant mixtures and ambient aerosols, providing a fundamentally new level of detailed knowledge on their structures, chemical properties, and identification of their components. This chemical information is used to gain insights into the formation, transformation and oxidation of organic aerosols. Biogenic and anthropogenic mixtures are observed in this work to yield incredible complexity upon oxidation, producing over 100 separable compounds from a single precursor. As a first step toward unraveling this complexity, a method was developed for measuring the polarity and volatility of individual compounds in a complex mixture using two-dimensional gas chromatography, which is demonstrated in Chapter 2 for describing the oxidation of SOA formed from a biogenic compound (longifolene: C15H24). Several major products and tens of substantial minor products were produced, but none could be identified by traditional methods or have ever been isolated and studied in the laboratory. A major realization of this work was that soft ionization mass spectrometry could be used to identify the molecular mass and formula of these unidentified compounds, a major step toward a comprehensive description of complex mixtures. This was achieved by coupling gas chromatography to high resolution time-of-flight mass spectrometry with

  13. Winter time chemical characteristics of aerosols over the Bay of Bengal: continental influence.

    PubMed

    Aryasree, S; Nair, Prabha R; Girach, I A; Jacob, Salu

    2015-10-01

    As part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) conducted under the Geosphere Biosphere Programme of Indian Space Research Organisation, ship-based aerosol sampling was carried out over the marine environment of Bay of Bengal (BoB) during the northern winter months of December 2008 to January 2009. About 101 aerosol samples were collected, covering the region from 3.4° to 21° N latitude and 76° to 98° E longitude-the largest area covered-including the south east (SE) BoB for the first time. These samples were subjected to gravimetric and chemical analysis and the total aerosol loading as well the mass concentration of the ionic species namely F(-), Cl(-), Br(-), NO2 (-), NO3 (-), PO4 (2-), SO4 (2-), NH4 (+), etc. and the metallic species, Na, Mg, Ca, K, Al, Fe, Mn, Zn, and Pb were estimated for each sample. Based on the spatial distribution of individual chemical species, the air flow pattern, and airmass back trajectory analysis, the source characteristics of aerosols for different regions of BoB were identified. Significant level of continental pollution was noticed over BoB during winter. While transport of pollution from Indo-Gangetic Plain (IGP) contributed to aerosols over north BoB, those over SE BoB were influenced by SE Asia. A quantitative study on the wind-induced production of sea salt aerosols and a case study on the species dependent effect of rainfall are also presented in this paper. PMID:25994269

  14. Sensitivity of Scattering and Backscattering Coefficients to Microphysical and Chemical Properties: Weakly Absorbing Aerosol

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J.; Pekour, M. S.; Berg, L. K.; Shilling, J.; Flynn, C. J.; Mei, F.; Jefferson, A.

    2014-12-01

    Scattering and backscattering coefficients of atmospheric aerosol are crucial parameters for numerous climate-relevant applications, including studies related to the Earth's radiation budget. Due to their strong connection to aerosol chemical and microphysical characteristics, in situ measurements have been commonly used for evaluating optical properties routines in global and regional scale models. However, these in situ measurements, including size distribution and chemical composition data, can be subject to uncertainties. Techniques for obtaining these data depend on particle size (submicron versus supermicron) and relative humidity range (dry versus wet conditions). In this study, we examine how the data uncertainties can impact the level of agreement between the calculated and measured optical properties (commonly known as optical closure). Moreover, we put forth a novel technique for inferring in parallel the effective density and real refractive index of weakly absorbing aerosols from simultaneously measured size distributions (with mobility and aerodynamic sizes), and two optical properties, namely the scattering coefficient and hemispheric backscatter fraction, measured by integrating nephelometer. We demonstrate the performance of our technique, which permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10-micron particles, using both a sensitivity study with synthetically generated inputs with random noise and a six-week case study with real measurements. These measurements cover a wide range of coastal summertime conditions observed during the recent Two-Column Aerosol Project (TCAP, http://campaign.arm.gov/tcap/) and include periods with a wide range of aerosol loading and relative humidity. Finally, we discuss how in situ data and retrievals of aerosol characteristics can be applied for model evaluation.

  15. The application of thermal methods for determining chemical composition of carbonaceous aerosols: a review.

    PubMed

    Chow, Judith C; Yu, Jian Zhen; Watson, John G; Ho, Steven Sai Hang; Bohannan, Theresa L; Hays, Michael D; Fung, Kochy K

    2007-09-01

    Thermal methods of various forms have been used to quantify carbonaceous materials. Thermal/optical carbon analysis provides measurements of organic and elemental carbon concentrations as well as fractions evolving at specific temperatures in ambient and source aerosols. Detection of thermally desorbed organic compounds with thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) identifies and quantifies over 100 individual organic compounds in particulate matter (PM) samples. The resulting mass spectra contain information that is consistent among, but different between, source emissions even in the absence of association with specific organic compounds. TD-GC/MS is a demonstrated alternative to solvent extraction for many organic compounds and can be applied to samples from existing networks. It is amenable to field-deployable instruments capable of measuring organic aerosol composition in near real-time. In this review, thermal stability of organic compounds is related to chemical structures, providing a basis for understanding thermochemical properties of carbonaceous aerosols. Recent advances in thermal methods applied to determine aerosol chemical compositions are summarized and their potential for uncovering aerosol chemistry are evaluated. Current limitations and future research needs of the thermal methods are included. PMID:17849294

  16. Modelling Aerosol Influences on Temperature and Visibility as a Module for Chemical Weather Forecasts

    NASA Astrophysics Data System (ADS)

    Riemer, N.; Vogel, B.; Vogel, H.; Kottmeier, Ch.

    2003-04-01

    Aerosol particles modify the radiative transfer in the atmosphere pronouncedly. Their impact on the global radiation and on the heating or cooling rates within the atmosphere is not very well quantified. Moreover, the presence of aerosol particles in the atmosphere determines the visual range which is an important parameter for aviation and other traffic systems and for tourism. While the optical properties of the aerosol particles depend on their chemical composition and size distribution, present day’s operational forecast models, however, use a highly simplified scheme using the relative humidity in combination with statistical models to forecast the visual range. We used the mesoscale-gamma model KAMM/DRAIS to determine the influence of aerosol particles on the global radiation, the vertical profiles of the heating rates and the visual range. Applications are run for south-western Germany, but the methods can be also used for weather forecast models. The aerosol model MADEsoot is used to calculate the size dependent aerosol dynamics. It takes into account secondary inorganic and organic particles and soot in internal and external mixture. With the exception of the radiative transfer calculations, the model system is run in a fully coupled mode. To determine the spatial distribution of the extinction coefficient, the single scattering albedo, and the phase-function Mie calculations are carried out based on the simulated aerosol distributions. Using this data radiative transfer calculations with libRadtran are performed to determine the impact of the aerosols on the global radiation and the vertical profiles of the heating rates for a clear summer day. Based on the extinction coefficients the visual range is calculated. Diurnal cycles of the visual range are compared to observed ones.

  17. Studies of the chemical mixing state of sea spray aerosol and associated climate relevant properties (Invited)

    NASA Astrophysics Data System (ADS)

    Prather, K. A.; Bertram, T. H.; Grassian, V. H.; Collins, D. B.; Ault, A. P.; Ruppel, M. J.; Axson, J. L.; Ryder, O. S.; Schill, S.

    2013-12-01

    The ocean plays a large but highly uncertain role in affecting clouds and climate, generating sea spray aerosols that can directly impact climate by scattering solar radiation and indirectly through nucleating clouds. A tremendous amount has been learned about these interactions over decades of marine studies, however the goal of establishing robust relationships between seawater composition and sea spray climate properties has remained elusive. Much of the impediment stems from difficulties associated with unraveling the impacts of nascent sea spray and background marine aerosols which have been shown to dominate field measurements. In an effort to advance our understanding of nascent sea spray properties, we have developed a new approach for studying this issue in a newly developed ocean-atmosphere facility equipped with breaking waves. After establishing extremely low background aerosol concentrations (< 1 per cc), studies have probed the size distribution and chemical mixing state of sea spray aerosols produced by breaking waves in natural seawater. The critical importance of using bubble size distributions representative of real breaking waves to generate sea spray aerosol (SSA) is discussed. Using a combination of techniques probing individual particle composition and morphology including aerosol time-of-flight mass spectrometry (ATOFMS), scanning tunnel x-ray microscopy (STXM), and electron microscopy, four major sea spray particle types are prevalent in all studies, consisting of sea salt, mixed sea salt and biogenic organic species, biogenic organic species, and primary biological aerosol particles (PBAP). Results from studies aimed at probing how changes in seawater composition due to biological activity impact sea spray aerosol composition and climate properties will be discussed.

  18. AEROSOL Characterization in SW Asia from long-term AERONET Observations

    NASA Astrophysics Data System (ADS)

    Holben, B. N.

    2005-12-01

    The Arabian Gulf is a focus of aerosol sources and transport in Southwest Asia owing to arid landscapes modified by land degradation, a highly developed fossil fuel industry and the unique meteorology of the region. The aerosol properties were well characterized in the gulf during the UAE2 campaign but their impact on the greater South and Southwest Asia aerosol environment is not well known. The AERONET program has a well established network in the gulf region with a growing distribution in SW Asia including India, Israel, Chad, and SE Africa and Indian Ocean island sites. This presentation will compare the UAE2 campaign and longer term gulf region aerosol characterizations from AERONET to the wider subcontinental and oceanic aerosol properties measured by AERONET over the last decade. These long-term point observations will be supported by backtrajectories and selected MODIS and MISR data since 2001.

  19. Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter

    NASA Astrophysics Data System (ADS)

    Li, Z. Q.; Gu, X.; Wang, L.; Li, D.; Li, K.; Dubovik, O.; Schuster, G.; Goloub, P.; Zhang, Y.; Li, L.; Xie, Y.; Ma, Y.; Xu, H.

    2013-02-01

    With the development of economy in the past thirty years, many large cities in the eastern and southwestern China are experiencing increased haze events and atmospheric pollution, causing significant impacts on the regional environment and even climate. However, knowledge on the aerosol physical and chemical properties in heavy haze conditions is still insufficient. In this study, two winter heavy haze events in Beijing occurred in 2011 and 2012 were selected and investigated by using the ground-based remote sensing measurements. We used CIMEL CE318 sun-sky radiometer to derive haze aerosol optical, physical and chemical properties, including aerosol optical depth (AOD), size distribution, complex refractive indices and fractions of chemical components like black carbon (BC), brown carbon (BrC), mineral dust (DU), ammonium sulfate-like (AS) components and aerosol water content (AW). The retrieval results from a total of five haze days showed that the aerosol loading and properties during the two winter haze events were relatively stable. Therefore, a parameterized heavy haze characterization was drawn to present a research case for future studies. The averaged AOD is 3.2 at 440 nm and Ångström exponent is 1.3 from 440-870 nm. The coarse particles occupied a considerable fraction of the bimodal size distribution in winter haze events, with the mean particle radius of 0.21 and 2.9 μm for the fine and coarse mode respectively. The real part of the refractive indices exhibited a relatively flat spectral behavior with an average value of 1.48 from 440 to 1020 nm. The imaginary part showed obviously spectral variation with the value at 440 nm (about 0.013) higher than other three wavelengths (e.g. about 0.008 at 675 nm). The chemical composition retrieval results showed that BC, BrC, DU, AS and AW occupied 1%, 2%, 49%, 15% and 33% respectively on average for the investigated haze events. The comparison of these remote sensing results with in situ BC and PM2

  20. Generation and characterization of aerosols and vapors for inhalation experiments.

    PubMed Central

    Tillery, M I; Wood, G O; Ettinger, H J

    1976-01-01

    Control of aerosol and vapor characteristics that affect the toxicity of inhaled contaminants often determines the methods of generating exposure atmospheres. Generation methods for aerosols and vapors are presented. The characteristics of the resulting exposure atmosphere and the limitations of the various generation methods are discussed. Methods and instruments for measuring the airborne contaminant with respect to various charcteristics are also described. PMID:797565

  1. Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

    NASA Astrophysics Data System (ADS)

    Sič, B.; El Amraoui, L.; Marécal, V.; Josse, B.; Arteta, J.; Guth, J.; Joly, M.; Hamer, P. D.

    2015-02-01

    This paper deals with recent improvements to the global chemical transport model of Météo-France MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species: desert dust, sea salt, black carbon, organic carbon, and also volcanic ash in the case of large volcanic eruptions. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging and by changing the in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI), the ground (AERONET, EMEP), and a model inter-comparison project (AeroCom) are compared with MOCAGE simulations and show that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD) observations over the oceans, the updated model configuration shows a decrease in the modified normalized mean bias (MNMB; from 0.42 to 0.10) and a better correlation (from 0.06 to 0.32) in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive MNMB in the sea salt representation at high latitudes (from 0.65 to 0.16), and a negative MNMB in the desert

  2. Coupling aerosol optics to the chemical transport model MATCH (v5.5.0) and aerosol dynamics module SALSA (v1)

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    Modelling aerosol optical properties is a notoriously difficult task due to the particles' complex morphologies and compositions. Yet aerosols and their optical properties are important for Earth system modelling and remote sensing applications. Operational optics models often make drastic and non realistic approximations regarding morphological properties, which can introduce errors. In this study a new aerosol optics model is implemented, in which more realistic morphologies and mixing states are assumed, especially for black carbon aerosols. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel "core-grey shell" model. Simulated results of radiative fluxes, backscattering coefficients and the Ångström exponent from the new optics model are compared with results from another model simulating particles as externally mixed homogeneous spheres. To gauge the impact on the optical properties from the new optics model, the known and important effects from using aerosol dynamics serves as a reference. The results show that using a more detailed description of particle morphology and mixing states influences the optical properties to the same degree as aerosol dynamics. This is an important finding suggesting that over-simplified optics models coupled to a chemical transport model can introduce considerable errors; this can strongly effect simulations of radiative fluxes in Earth-system models, and it can compromise the use of remote sensing observations of aerosols in model evaluations and chemical data assimilation.

  3. CHARACTERIZATION OF VISIBILITY-REDUCING AEROSOLS IN THE SOUTHWEST. PROJECT VISTTA. PROGRESS REPORT NO. 1

    EPA Science Inventory

    The atmospheric visibility-reducing aerosol in the Southwest has been experimentally characterized with respect to particle size, composition, and contribution to light scattering. Measurements were taken within the mixing layer using the MRI instrumented Beechcraft Queen Air air...

  4. Characteristics of aerosol size distributions and chemical compositions during wintertime pollution episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Liu, Zirui; Hu, Bo; Zhang, Junke; Yu, Yangchun; Wang, Yuesi

    2016-02-01

    To characterize the features of particle pollution, continuous measurements of particle number size distributions and chemical compositions were performed at an urban site in Beijing in January 2013. The particle number and volume concentration from 14 nm to 1000 nm were (37.4 ± 15.3) × 103 cm- 3 and (85.2 ± 65.6) μm3 cm- 3, respectively. N-Ait (Aitken mode) particles dominated the number concentration, whereas N-Acc (accumulation mode) particles dominated the volume concentration. Submicron particles were generally characterized by a high content of organics and SO42 -, and a low level of NO3- and Cl-. Two types of pollution episodes were observed, characterized by the "explosive growth" (EXP) and "sustained growth" (SUS) of PM2.5. Fine particles greater than 100 nm dominated the volume concentration during the ends of these pollution episodes, shifting the maximum of the number size distribution from 60 nm to greater than 100 nm in a few hours (EXP) or a few days (SUS). Secondary transformation is the main reason for the pollution episodes; SO42 -, NO3- and NH4+ (SNA) accounted for approximately 42% (EXP) and greater than 60% (SUS) of the N-Acc particle mass increase. The size distributions of particulate organics and SNA varied on timescales of hours to days, the characteristics of which changed from bimodal to unimodal during the evolution of haze episodes. The accumulation mode (peaking at approximately 500-700 nm) was dominated by organics that appeared to be internally mixed with nitrate or sulfate. The sulfate was most likely formed via heterogeneous reactions, because the SOR was constant under dry conditions (RH < 50%) and began to increase when RH > 50%, suggesting an important contribution from heterogeneous reactions with abundant aerosol water under wet conditions. Finally, the correlations between [NO3-]/[SO42 -] and [NH4+]/[SO42 -] suggest that the homogenous reaction between HNO3 and NH3 dominated the formation of nitrate under conditions of

  5. The chemical composition of organic nitrogen in marine rainwater and aerosols

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Hastings, M. G.; Peters, A.; Sigman, D. M.

    2010-12-01

    The current state of knowledge on organic nitrogen in the atmosphere is very limited. Atmospheric water soluble organic nitrogen (WSON) is a subset of the complex water soluble organic matter measured in atmospheric aerosols and rainwater; as such, it impacts cloud condensation processes and aerosol chemical and optical properties. In marine and continental atmospheric deposition, the organic N fraction can be 20-80% of total N potentially influencing receiving ecosystems. Therefore, atmospheric WSON plays an important role in both atmospheric chemistry and the global biogeochemical N cycle. However, the sources (i.e., anthropogenic vs. terrestrial vs. marine), composition (e.g., reduced or oxidized N), potential connections to inorganic N (NO3- and NH4+), and spatio-temporal variability of atmospheric WSON are largely unknown. Samples were collected on or near the island of Bermuda (32.27°N, 64.87°W), which is located in the western North Atlantic and experiences seasonal changes in transport that allow for study of both anthropogenically and primarily marine influenced air masses. Rainwater samples (n=7) and aqueous extracted aerosol samples (n=4) were analyzed by positive ion ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to characterize the chemical composition of the water soluble organic N on a per compound level. We found ~ 800 N containing compounds in 8 compound classes. The CHON+ compound class contained the largest number of N compounds (~ 460). Compared to continental rainwater [Altieri et al., ES&T, 2009], the CHON+ compounds in the marine samples are as dominant in number, yet have less regular patterns and lower O:C ratios for comparable N:C ratios. In fact, average O:C ratios of all N containing compound classes were lower in the marine samples than in continental rainwater samples. No organosulfates or nitrooxy-organosulfates were detected in the marine samples, both of

  6. Combined X-Ray and Raman Spectroscopic Techniques for the Characterization of Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.; Alpert, P. A.; Knopf, D. A.; Kilthau, W.; Bothe, D.; Charnawskas, J. C.; Gilles, M. K.; OBrien, R. E.; Moffet, R.; Radway, J.

    2014-12-01

    Sea spray aerosol along with mineral dust dominates the global mass flux of particles to the atmosphere. Marine aerosol particles are of particular interest because of their continual impact on cloud formation, precipitation, atmospheric chemical processes, and thus global climate. Here we report on the physical/chemical characteristics of sub-surface waters, aerosolized sea spray particles, and particles/organic species present in surface microlayer (SML) samples collected during oceanic field campaigns and generated during laboratory experiments, revealing a biogenic primary source of the organic fraction of airborne particles. We also report on ice nucleation experiments with aerosolized particles collected during the May 2014 WACS II North Atlantic cruise and with laboratory generated exudate material from diatom cultures with the potential to impact cirrus and mixed phase clouds. Physicochemical analyses using a multi-modal approach which includes Scanning Transmission X-ray Microscopy coupled with Near-Edge Absorption Fine Structure Spectroscopy (STXM/NEXAFS) and Raman spectroscopy confirm the presence and chemical similarity of polysaccharide-rich transparent exopolymer (TEP) material and proteins in both SML sea spray aerosol and ice forming aerosol particles, regardless of the extent of biological activity in surface waters. Our results demonstrate a direct relationship between the marine environment and composition of marine aerosol through primary particle emission.

  7. a Study on the Physical and Chemical Properties of Stratospheric Aerosols.

    NASA Astrophysics Data System (ADS)

    Tabazadeh, Azadeh

    The physical and chemical properties of stratospheric aerosols under background and perturbed conditions are discussed. First, a multi-component aerosol physical chemistry model was developed to study the composition and reactivity of stratospheric aerosols. The compositions are predicted from an equilibrium assumption between the condensed-and gas-phases, and they are calculated as a function of ambient temperature, relative humidity, and the total mass of nitric acid and sulfuric acid present per unit volume of air. The water and solute activity parameters in the aerosol model are derived from various laboratory sources, and the set of equilibrium equations are solved using a unique numerical scheme. The aerosol model is applied to study the formation of nitric acid-containing aerosols in the stratosphere. Also, the equilibrium compositions are used to estimate the extent of aqueous phase processing of chlorine species in the aerosol solutions. This processing can contribute to the depletion of the stratospheric ozone layer, especially after major volcanic eruptions where sulfate aerosols are more abundant. Second, a surface chemistry model was constructed that includes Langmuir trace-gas adsorption and desorption, Brunauer, Emmett and Teller adsorption of water vapor, surface poisoning, solvation and diffusion of molecules on the surface, chemical activation and reaction of adsorbates, and product desorption or reaction. This model is used to study the effects of relative humidity and other physical parameters on the efficiency of heterogeneous chemical processes which occur on the surfaces of solid polar stratospheric clouds. These heterogeneous chemical processes are responsible for the formation of the "ozone hole", can contribute to global ozone depletion, and may have tropospheric significance. Finally, a fluid dynamics and thermodynamics model of volcanic eruption columns was used to develop a scheme for predicting the extent of HCl removal from volcanic

  8. Recent Improvements to CALIOP Level 3 Aerosol Profile Product for Global 3-D Aerosol Extinction Characterization

    NASA Astrophysics Data System (ADS)

    Tackett, J. L.; Getzewich, B. J.; Winker, D. M.; Vaughan, M. A.

    2015-12-01

    With nine years of retrievals, the CALIOP level 3 aerosol profile product provides an unprecedented synopsis of aerosol extinction in three dimensions and the potential to quantify changes in aerosol distributions over time. The CALIOP level 3 aerosol profile product, initially released as a beta product in 2011, reports monthly averages of quality-screened aerosol extinction profiles on a uniform latitude/longitude grid for different cloud-cover scenarios, called "sky conditions". This presentation demonstrates improvements to the second version of the product which will be released in September 2015. The largest improvements are the new sky condition definitions which parse the atmosphere into "cloud-free" views accessible to passive remote sensors, "all-sky" views accessible to active remote sensors and "cloudy-sky" views for opaque and transparent clouds which were previously inaccessible to passive remote sensors. Taken together, the new sky conditions comprehensively summarize CALIOP aerosol extinction profiles for a broad range of scientific queries. In addition to dust-only extinction profiles, the new version will include polluted-dust and smoke-only extinction averages. A new method is adopted for averaging dust-only extinction profiles to reduce high biases which exist in the beta version of the level 3 aerosol profile product. This presentation justifies the new averaging methodology and demonstrates vertical profiles of dust and smoke extinction over Africa during the biomass burning season. Another crucial advancement demonstrated in this presentation is a new approach for computing monthly mean aerosol optical depth which removes low biases reported in the beta version - a scenario unique to lidar datasets.

  9. Probabilistic Exposure Analysis for Chemical Risk Characterization

    PubMed Central

    Bogen, Kenneth T.; Cullen, Alison C.; Frey, H. Christopher; Price, Paul S.

    2009-01-01

    This paper summarizes the state of the science of probabilistic exposure assessment (PEA) as applied to chemical risk characterization. Current probabilistic risk analysis methods applied to PEA are reviewed. PEA within the context of risk-based decision making is discussed, including probabilistic treatment of related uncertainty, interindividual heterogeneity, and other sources of variability. Key examples of recent experience gained in assessing human exposures to chemicals in the environment, and other applications to chemical risk characterization and assessment, are presented. It is concluded that, although improvements continue to be made, existing methods suffice for effective application of PEA to support quantitative analyses of the risk of chemically induced toxicity that play an increasing role in key decision-making objectives involving health protection, triage, civil justice, and criminal justice. Different types of information required to apply PEA to these different decision contexts are identified, and specific PEA methods are highlighted that are best suited to exposure assessment in these separate contexts. PMID:19223660

  10. Characterization of the Sunset Semi-Continuous Carbon Aerosol Analyzer

    SciTech Connect

    Bauer, Jace J.; Yu, Xiao-Ying; Cary, R.; Laulainen, Nels S.; Berkowitz, Carl M.

    2009-07-01

    Accurate quantification of carbonaceous aerosols is essential for reducing uncertainty in climate change models and is important for long-term air quality monitoring by government agencies. The field-deployable Sunset Semi-Continuous Organic Carbon/Elemental Carbon Aerosol Analyzer (Sunset OCEC) utilizes a modified National Institute for Occupational Safety and Health thermal-optical method to determine total carbon (TC), organic carbon (OC), and elemental carbon (EC) at near real-time; however, its performance is not yet fully characterized. Two collocated Sunset OCEC Analyzers, Unit A and Unit B, were used to determine the relative standard deviation (RSD) and limit of detection (LOD) between June 23 and July 9, 2007, in Richland, Washington, USA. A high-efficiency particulate air filter was utilized to determine the LODs of both instruments. The RSDs between the two Sunset OCECs were 9.12% for TC, 13.0% for Optical OC, and 8.97% for Thermal OC, indicating good precision between the instruments, although the RSDs for Thermal and Optical EC were higher, 29.0% and 48.3%, respectively. The LOD of Unit A was approximately 0.21 µgC/m3 for TC, Optical OC, and Thermal OC, and ~0.004 µgC/m3 for Optical and Thermal EC. Similarly, Unit B had an LOD of ~0.29 µgC/m3 for TC, Optical OC, and Thermal OC, 0.018 µgC/m3 for Optical EC, and 0.004 µgC/m3 for Thermal EC. Factors that may have contributed to the poor RSDs of Thermal and Optical EC include the low EC mass loading in Richland, minor leakage in the oxygen valve of Unit B, and excessive noise from the non-dispersive infrared (NDIR) laser in Unit B, resulting in scattered Optical EC measurements. Improved RSDs of all OC and EC parameters are expected after the Unit B NDIR is tuned up. Future work should reevaluate the precision of the Sunset OCECs and investigate the differences in various thermal-optical protocols on OCEC quantification.

  11. Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.

    2011-11-01

    Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.

  12. Characterization of smoke aerosols over the Indochina Peninsula from multi-platform satellite observations

    NASA Astrophysics Data System (ADS)

    Jeong, M. J.; Hsu, N. Y. C.; Lee, J.; Sayer, A. M.; Bettenhausen, C.; Huang, J.

    2015-12-01

    Multi-faceted near-simultaneous observations from the sensors aboard multiple satellite platforms, so called the A-Train, are utilized to characterize the spatial distributions and the optical properties of smoke aerosols over the Indochina Peninsula. Observations from the A-Train sensors, especially, MODerate resolution Imaging Spectroradiometer (MODIS), Ozone Monitoring Instrument (OMI), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), are synthesized to retrieve single-scattering albedo (SSA) and effective aerosol layer height (ALH) of BBS aerosols in the region. The retrieval algorithm extracts the absorption and height information about smoke aerosols, which is lumped into ultraviolet spectra at the top of the atmosphere, by taking the most reliable information contents that each satellite measurement can deliver. The results of retrieved SSA and ALH showed reasonable agreements with in-situ measurements, AEROsol Robotic NETwork (AERONET) data, and lidar-based observations. The uncertainty and sensitivity of the retrieval algorithm are also presented. The retrieved quantities are then used together with other satellite datasets to characterize the three-dimensional distributions of smoke aerosols over the Indochina Peninsular during the boreal spring time. Given the frequent horizontal collocations of smoke and clouds in the region, implication of smoke vertical distributions for long-range transports is also discussed. The results of this study are anticipated to advance our understanding on the climatic impacts of the smoke aerosols in the region.

  13. Experimental Measurements of the Effects of Photo-chemical Oxidation on Aerosol Emissions in Aircraft Exhaust

    NASA Astrophysics Data System (ADS)

    Miracolo, M. A.; Presto, A. A.; Hennigan, C. J.; Nguyen, N.; Ranjan, M.; Reeder, A.; Lipsky, E.; Donahue, N. M.; Robinson, A. L.

    2009-12-01

    Many military and commercial airfields are located in non-attainment areas for particulate matter (PM2.5), but the contribution of emissions from in-use aircraft to local and regional PM2.5 concentrations is uncertain. In collaboration with the Pennsylvania Air National Guard 171st Air Refueling Wing, the Carnegie Mellon University (CMU) Mobile Laboratory was deployed to measure fresh and aged emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135 Stratotanker airframe. The CFM-56 family of engine powers many different types of military and civilian aircraft, including the Boeing 737 and several Airbus models. It is one of the most widely deployed models of engines in the world. The goal of this work was to measure the gas-particle partitioning of the fresh emissions at atmospherically relevant conditions and to investigate the effect of atmospheric oxidation on aerosol loadings as the emissions age. Emissions were sampled from an inlet installed one meter downstream of the engine exit plane and transferred into a portable smog chamber via a heated inlet line. Separate experiments were conducted at different engine loads ranging from ground idle to take-off rated thrust. During each experiment, some diluted exhaust was added to the chamber and the volatility of the fresh emissions was then characterized using a thermodenuder. After this characterization, the chamber was exposed to either ambient sunlight or UV lights to initiate photochemical oxidation, which produced secondary aerosol and ozone. A suite of gas and particle-phase instrumentation was used to characterize the evolution of the gas and particle-phase emissions, including an aerosol mass spectrometer (AMS) to measure particle size and composition distributions. Fresh emissions of fine particles varied with engine load with peak emission factors at low and high loads. At high engine loads, the fresh emissions were dominated by black carbon; at low loads volatile organic carbon emissions were

  14. MODIS and AERONET characterization of the global aerosol

    NASA Astrophysics Data System (ADS)

    Kaufman, Y. J.; Remer, L. A.; Tanre, D.

    2002-05-01

    Recently produced daily MODIS aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere. To use the MODIS data for global assessment of aerosol forcing AERONET data are used to answer some key critical questions: - Are MODIS data collected at 10:30 am representative of the daily forcing? - What is the concentration and properties of background aerosol and that of anthropogenic aerosol These questions and more will be answered in the talk

  15. Aerosol load characterization over South East Italy for one year of AERONET sun-photometer measurements

    NASA Astrophysics Data System (ADS)

    Perrone, M. R.; Santese, M.; Tafuro, A. M.; Holben, B.; Smirnov, A.

    2005-04-01

    Daily averaged retrievals of AERONET sun photometer measurements from March 2003 to March 2004 are used to provide preliminary results on the characterization of aerosol properties and changes over south-east Italy (40°20'N, 18°6'E). It is shown that aerosol optical and microphysical properties and the dominating aerosol types depend on seasons. Aerosol-parameter frequency distributions reveal the presence of individual modes that lead to the assumption that moderately absorbing urban-industrial and marine-polluted aerosols dominate in spring-summer and autumn-winter, respectively. It is shown that aerosol optical depths (AODs), single scattering albedos (SSAs), and Angstrom coefficients (Å) of urban-industrial (spring-summer) aerosols are characterized by lognormal distributions with peak values of 0.20±0.03, 0.94±0.01, and 1.58±0.03, respectively. On the contrary AOD, SSA and Å values of maritime-polluted (autumn-winter) aerosols are characterized by lognormal distributions with peak values of 0.049±0.008, 0.974±0.003, and 0.7±0.1, respectively. It is also shown that the frequency distribution of real n and imaginary k refractive indices permits inference of the dominant aerosol constituents: sea-salt, water soluble, soot, and mineral particles. Finally, it is shown that dust outbreaks do not significantly affect the seasonal evolution of aerosol parameters, and that sunphotometry retrievals along dust events are in satisfactory accord with experimental findings indicating that moderately-absorbing (0.005≤ k≤0.05) dust particles with a high content of illite are mainly advected over the Mediterranean basin during Sahara dust storms.

  16. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol.

    PubMed

    Prather, Kimberly A; Bertram, Timothy H; Grassian, Vicki H; Deane, Grant B; Stokes, M Dale; Demott, Paul J; Aluwihare, Lihini I; Palenik, Brian P; Azam, Farooq; Seinfeld, John H; Moffet, Ryan C; Molina, Mario J; Cappa, Christopher D; Geiger, Franz M; Roberts, Gregory C; Russell, Lynn M; Ault, Andrew P; Baltrusaitis, Jonas; Collins, Douglas B; Corrigan, Craig E; Cuadra-Rodriguez, Luis A; Ebben, Carlena J; Forestieri, Sara D; Guasco, Timothy L; Hersey, Scott P; Kim, Michelle J; Lambert, William F; Modini, Robin L; Mui, Wilton; Pedler, Byron E; Ruppel, Matthew J; Ryder, Olivia S; Schoepp, Nathan G; Sullivan, Ryan C; Zhao, Defeng

    2013-05-01

    The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60-180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties. PMID:23620519

  17. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol

    PubMed Central

    Prather, Kimberly A.; Bertram, Timothy H.; Grassian, Vicki H.; Deane, Grant B.; Stokes, M. Dale; DeMott, Paul J.; Aluwihare, Lihini I.; Palenik, Brian P.; Azam, Farooq; Seinfeld, John H.; Moffet, Ryan C.; Molina, Mario J.; Cappa, Christopher D.; Geiger, Franz M.; Roberts, Gregory C.; Russell, Lynn M.; Ault, Andrew P.; Baltrusaitis, Jonas; Collins, Douglas B.; Corrigan, Craig E.; Cuadra-Rodriguez, Luis A.; Ebben, Carlena J.; Forestieri, Sara D.; Guasco, Timothy L.; Hersey, Scott P.; Kim, Michelle J.; Lambert, William F.; Modini, Robin L.; Mui, Wilton; Pedler, Byron E.; Ruppel, Matthew J.; Ryder, Olivia S.; Schoepp, Nathan G.; Sullivan, Ryan C.; Zhao, Defeng

    2013-01-01

    The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60–180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties. PMID:23620519

  18. Coupling aerosol optics to the MATCH (v5.5.0) chemical transport model and the SALSA (v1) aerosol microphysics module

    NASA Astrophysics Data System (ADS)

    Andersson, Emma; Kahnert, Michael

    2016-05-01

    A new aerosol-optics model is implemented in which realistic morphologies and mixing states are assumed, especially for black carbon particles. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel "core-grey-shell" model. Simulated results of aerosol optical properties, such as aerosol optical depth, backscattering coefficients and the Ångström exponent, as well as radiative fluxes are computed with the new optics model and compared with results from an older optics-model version that treats all particles as externally mixed homogeneous spheres. The results show that using a more detailed description of particle morphology and mixing state impacts the aerosol optical properties to a degree of the same order of magnitude as the effects of aerosol-microphysical processes. For instance, the aerosol optical depth computed for two cases in 2007 shows a relative difference between the two optics models that varies over the European region between -28 and 18 %, while the differences caused by the inclusion or omission of the aerosol-microphysical processes range from -50 to 37 %. This is an important finding, suggesting that a simple optics model coupled to a chemical transport model can introduce considerable errors affecting radiative fluxes in chemistry-climate models, compromising comparisons of model results with remote sensing observations of aerosols, and impeding the assimilation of satellite products for aerosols into chemical-transport models.

  19. Chemical characterization of bohrium (element 107)

    NASA Astrophysics Data System (ADS)

    Eichler, R.; Brüchle, W.; Dressler, R.; Düllmann, Ch. E.; Eichler, B.; Gäggeler, H. W.; Gregorich, K. E.; Hoffman, D. C.; Hübener, S.; Jost, D. T.; Kirbach, U. W.; Laue, C. A.; Lavanchy, V. M.; Nitsche, H.; Patin, J. B.; Piguet, D.; Schädel, M.; Shaughnessy, D. A.; Strellis, D. A.; Taut, S.; Tobler, L.; Tsyganov, Y. S.; Türler, A.; Vahle, A.; WiIk, P. A.; Yakushev, A. B.

    2000-09-01

    The arrangement of the chemical elements in the periodic table highlights resemblances in chemical properties, which reflect the elements' electronic structure. For the heaviest elements, however, deviations in the periodicity of chemical properties are expected: electrons in orbitals with a high probability density near the nucleus are accelerated by the large nuclear charges to relativistic velocities, which increase their binding energies and cause orbital contraction. This leads to more efficient screening of the nuclear charge and corresponding destabilization of the outer d and f orbitals: it is these changes that can give rise to unexpected chemical properties. The synthesis of increasingly heavy elements, now including that of elements 114, 116 and 118, allows the investigation of this effect, provided sufficiently long-lived isotopes for chemical characterization are available. In the case of elements 104 and 105, for example, relativistic effects interrupt characteristic trends in the chemical properties of the elements constituting the corresponding columns of the periodic table, whereas element 106 behaves in accordance with the expected periodicity. Here we report the chemical separation and characterization of six atoms of element 107 (bohrium, Bh), in the form of its oxychloride. We find that this compound is less volatile than the oxychlorides of the lighter elements of group VII, thus confirming relativistic calculations that predict the behaviour of bohrium, like that of element 106, to coincide with that expected on the basis of its position in the periodic table.

  20. Chemical characterization of bohrium (element 107)

    PubMed

    Eichler; Bruchle; Dressler; Dullmann; Eichler; Gaggeler; Gregorich; Hoffman; Hubener; Jost; Kirbach; Laue; Lavanchy; Nitsche; Patin; Piguet; Schadel; Shaughnessy; Strellis; Taut; Tobler; Tsyganov; Turler; Vahle; Wilk; Yakushev

    2000-09-01

    The arrangement of the chemical elements in the periodic table highlights resemblances in chemical properties, which reflect the elements' electronic structure. For the heaviest elements, however, deviations in the periodicity of chemical properties are expected: electrons in orbitals with a high probability density near the nucleus are accelerated by the large nuclear charges to relativistic velocities, which increase their binding energies and cause orbital contraction. This leads to more efficient screening of the nuclear charge and corresponding destabilization of the outer d and f orbitals: it is these changes that can give rise to unexpected chemical properties. The synthesis of increasingly heavy elements, now including that of elements 114, 116 and 118, allows the investigation of this effect, provided sufficiently long-lived isotopes for chemical characterization are available. In the case of elements 104 and 105, for example, relativistic effects interrupt characteristic trends in the chemical properties of the elements constituting the corresponding columns of the periodic table, whereas element 106 behaves in accordance with the expected periodicity. Here we report the chemical separation and characterization of six atoms of element 107 (bohrium, Bh), in the form of its oxychloride. We find that this compound is less volatile than the oxychlorides of the lighter elements of group VII, thus confirming relativistic calculations that predict the behaviour of bohrium, like that of element 106, to coincide with that expected on the basis of its position in the periodic table. PMID:10993071

  1. Experimental Determination of Chemical Diffusion within Secondary Organic Aerosol Particles

    SciTech Connect

    Abramson, Evan H.; Imre, D.; Beranek, Josef; Wilson, Jacqueline; Zelenyuk, Alla

    2013-02-28

    Formation, properties, transformations, and temporal evolution of secondary organic aerosols (SOA) particles strongly depend on particle phase. Recent experimental evidence from a number of groups indicates that SOA is in a semi-solid phase, the viscosity of which remained unknown. We find that when SOA is made in the presence of vapors of volatile hydrophobic molecules the SOA particles absorb and trap them. Here, we illustrate that it is possible to measure the evaporation rate of these molecules that is determined by their diffusion in SOA, which is then used to calculate a reasonably accurate value for the SOA viscosity. We use pyrene as a tracer molecule and a-pinene SOA as an illustrative case. It takes ~24 hours for half the pyrene to evaporate to yield a viscosity of 10^8 Pa s for a-pinene. This viscosity is consistent with measurements of particle bounce and evaporation rates. We show that viscosity of 10^8 Pa s implies coalescence times of minutes, consistent with the findings that SOA particles are spherical. Similar measurements on aged SOA particles doped with pyrene yield a viscosity of 10^9 Pa s, indicating that hardening occurs with time, which is consistent with observed decrease in water uptake and evaporation rate with aging.

  2. Aerosol-induced chemical perturbations of stratospheric ozone: Three-dimensional simulations and analysis of mechanisms

    NASA Astrophysics Data System (ADS)

    Zhao, Xuepeng; Turco, Richard P.; Kao, C.-Y. Jim; Elliott, Scott

    1997-02-01

    An atmospheric general circulation model is coupled with a stratospheric photochemical model to simulate the chemical/dynamical perturbations associated with background and volcanically perturbed aerosols in the lower stratosphere. The present work focuses on short-term anomalies at middle and high latitudes in the northern hemisphere, where large ozone depletions have been observed in late winter and early spring, particularly following the eruption of Mount Pinatubo. Five fully coupled simulations are analyzed, corresponding to a control case with only gas phase chemistry, and cases including heterogeneous chemistry on background aerosols, on El Chichón-type, and on Pinatubo-type aerosols. It is found that heterogeneous reactions occurring on sulfate aerosols (background or postvolcanic) can strongly perturb the chemical partitioning in the lower stratosphere, leading to significant ozone depletion through enhanced chlorine, bromine, and odd-hydrogen catalytic cycles. In the Arctic lower stratosphere, the maximum zonal and March monthly mean local ozone reductions (with respect to the control case) can exceed 15% for the background aerosol case, 40% for the El Chichón case, and 50% for the Pinatubo case. The corresponding zonal mean total column ozone decreases are roughly 5% and 15% for the background and volcanic aerosol cases, respectively. In the most extreme case tested (post-Pinatubo), a large ozone depletion below 30 mbar is offset to some extent by an ozone increase above that level. The results of a sensitivity study (in which the aerosols are distributed closer to the tropics, as might occur early after an eruption at low latitude) lead to relatively small total ozone depletions at northern high latitudes, and small ozone increases in the tropical lower stratosphere. The reduced impact on total ozone at high latitudes is associated both with local ozone increases above 30 mbar and with poleward transport of enhanced ozone from the tropical lower

  3. Characterization of particulate products for aging of ethylbenzene secondary organic aerosol in the presence of ammonium sulfate seed aerosol.

    PubMed

    Huang, Mingqiang; Zhang, Jiahui; Cai, Shunyou; Liao, Yingmin; Zhao, Weixiong; Hu, Changjin; Gu, Xuejun; Fang, Li; Zhang, Weijun

    2016-09-01

    Aging of secondary organic aerosol (SOA) particles formed from OH- initiated oxidation of ethylbenzene in the presence of high mass (100-300μg/m(3)) concentrations of (NH4)2SO4 seed aerosol was investigated in a home-made smog chamber in this study. The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with a Fuzzy C-Means (FCM) clustering algorithm. Experimental results showed that nitrophenol, ethyl-nitrophenol, 2,4-dinitrophenol, methyl glyoxylic acid, 5-ethyl-6-oxo-2,4-hexadienoic acid, 2-ethyl-2,4-hexadiendioic acid, 2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid, 1H-imidazole, hydrated N-glyoxal substituted 1H-imidazole, hydrated glyoxal dimer substituted imidazole, 1H-imidazole-2-carbaldehyde, N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight (HMW) components were the predominant products in the aged particles. Compared to the previous aromatic SOA aging studies, imidazole compounds, which can absorb solar radiation effectively, were newly detected in aged ethylbenzene SOA in the presence of high concentrations of (NH4)2SO4 seed aerosol. These findings provide new information for discussing aromatic SOA aging mechanisms. PMID:27593289

  4. Analysis of Chemical Composition of Atmospheric Aerosols Above a South East Asian Rainforest

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Allan, J. D.; Williams, P. I.; Hamilton, J. F.; Chen, Q.; Martin, S. T.; Coe, H.; McFiggans, G. B.

    2008-12-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth's atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are not well understood or quantified. Insight into the origins and properties of these particles can be gained by analysis of their composition. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects in the rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Other tools such as positive matrix factorisation (PMF) have been used to help assess the relative source contributions to the organic aerosol. The aerosol's chemical origins have been further investigated by comparing these spectra to chamber experiments, mass spectral libraries and data from comparable locations in other locations. These data are also being analysed in conjunction with high complexity offline techniques applied to samples collected using filters and a Particle-Into-Liquid Sampler (PILS). Methods used include liquid chromatography and comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry. These techniques provide a more detailed chemical characterisation of the SOA and water soluble organic carbon, allowing direct links back to gas phase precursors.

  5. Characterizing the Retrieval of Cloud Optical Thickness and Droplet Effective Radius to Overlying Aerosols Using a General Inverse Theory Approach

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Pilewskie, P.; Schmidt, S.

    2013-12-01

    The upwelling shortwave irradiance measured by the airborne Solar Spectral Flux Radiometer (SSFR) flying above a cloud and aerosol layer is influenced by the properties of the cloud and aerosol particles below, just as would the radiance measured from satellite. Unlike satellite measurements, those from aircraft provide the unique capability to fly a lower-level leg above the cloud, yet below the aerosol layer, to characterize the extinction of the aerosol layer and account for its impact on the measured cloud albedo. Previous work [Coddington et al., 2010] capitalized on this opportunity to test the effects of aerosol particles (or more appropriately, the effects of neglecting aerosols in forward modeling calculations) on cloud retrievals using data obtained during the Intercontinental Chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution (INTEX-A/ITCT) study. This work showed aerosols can cause a systematic bias in the cloud retrieval and that such a bias would need to be distinguished from a true aerosol indirect effect (i.e. the brightening of a cloud due to aerosol effects on cloud microphysics) as theorized by Haywood et al., [2004]. The effects of aerosols on clouds are typically neglected in forward modeling calculations because their pervasiveness, variable microphysical properties, loading, and lifetimes makes forward modeling calculations under all possible combinations completely impractical. Using a general inverse theory technique, which propagates separate contributions from measurement and forward modeling errors into probability distributions of retrieved cloud optical thickness and droplet effective radius, we have demonstrated how the aerosol presence can be introduced as a spectral systematic error in the distributions of the forward modeling solutions. The resultant uncertainty and bias in cloud properties induced by the aerosols is identified by the shape and peak of the posteriori

  6. Global and regional impacts of HONO on the chemical composition of clouds and aerosols

    NASA Astrophysics Data System (ADS)

    Elshorban, Y. F.; Crutzen, P. J.; Steil, B.; Pozzer, A.; Tost, H.; Lelieveld, J.

    2013-09-01

    Nitrous acid (HONO) photolysis can significantly increase HOx (OH+HO2) radical formation, enhancing organic and inorganic oxidation products in polluted regions, especially during winter. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that HONO can significantly enhance aerosol sulphate (S(VI)), mainly due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model-measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and the central role of cloud chemical processing in aerosol formation.

  7. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilge, S.; Zhang, Y.; Dall'Osto, M.

    2014-11-01

    The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterised by a less dense urbanisation. We present here the results obtained at a background site in the Po Valley, Italy, in summer 2009. For the first time in Europe, six state-of-the-art spectrometric techniques were used in parallel: aerosol time-of-flight mass spectrometer (ATOFMS), two aerosol mass spectrometers (high-resolution time-of-flight aerosol mass spectrometer - HR-ToF-AMS and soot particle aerosol mass spectrometer - SP-AMS), thermal desorption aerosol gas chromatography (TAG), chemical ionisation mass spectrometry (CIMS) and (offline) proton nuclear magnetic resonance (1H-NMR) spectroscopy. The results indicate that, under high-pressure conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), secondary semivolatile compounds such as ammonium nitrate and amines and a class of monocarboxylic acids which correspond to the AMS cooking organic aerosol (COA) already identified in urban areas. In daytime, the entrainment of aged air masses in the mixing layer is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOA) and also for the recycling of non-volatile primary species such as black carbon. According to organic aerosol source apportionment, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in

  8. Characterizing the Hygroscopicity of Nascent Sea Spray Aerosol from Synthetic Blooms

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Cappa, C. D.; Sultana, C. M.; Lee, C.; Wang, X.; Helgestad, T.; Moore, K.; Prather, K. A.; Cornwell, G.; Novak, G.; Bertram, T. H.

    2015-12-01

    Marine sea spray aerosol (SSA) particles make up a significant portion of natural aerosols and are therefore important in establishing the baseline for anthropogenic aerosol climate impacts. Scattering of solar radiation by aerosols affects Earth's radiative budget and the degree of scattering is size-dependent. Thus, aerosols scatter more light at elevated relative humidities when they grow larger via water uptake. This growth depends critically on chemical composition. SSA can become enriched in organics during phytoplankton blooms, becoming less salty and therefore less hygroscopic. Subsaturated hygroscopic growth factors at 85% relative humidity (GF(85%)) of SSA particles were quantified during two mesocosm experiments in enclosed marine aerosol reference tanks (MARTs). The two experiments were conducted with filtered seawater collected at separate times from the Scripps Institute of Oceanography Pier in La Jolla, CA. Phytoplankton blooms in each tank were induced via the addition of nutrients and photosynthetically active radiation. The "indoor" MART was illuminated with fluorescent light and the other "outdoor" MART was illuminated with sunlight. The peak chlorophyll-a concentrations were 59 micrograms/L and 341 micrograms /L for the indoor and outdoor MARTs, respectively. GF(85%) values for SSA particles were quantified using a humidified cavity ringdown spectrometer and particle size distributions. Particle composition was monitored with a single particle aerosol mass spectrometer (ATOFMS) and an Aerodyne aerosol mass spectrometer (AMS). Relationships between the observed particle GFs and the particle composition markers will be discussed.

  9. Characterization of the seasonal cycle of south Asian aerosols: A Regional-Scale Modeling Analysis.

    SciTech Connect

    Adhikary, Bhupesh; Carmichael, Gregory; Tang, Youhua; Leung, Lai-Yung R.; Qian, Yun; Schauer, James J.; Stone, Elizabeth A.; Ramanathan, Veerabhadran; Ramana, Muvva V.

    2007-11-07

    The STEM chemical transport model is used to study the aerosol distribution, composition and seasonality over South Asia from September 2004 to August 2005. Model predictions of sulfate, black carbon, primary organic carbon, other anthropogenic particulate matter, wind blown mineral dusts and sea salt are compared at two sites in South Asia where year long experimental observations are available from the Atmospheric Brown Cloud (ABC) Project. The model predictions are able to capture both the magnitude and seasonality of aerosols over Hanimaadhoo Observatory, Maldives. However, the model is not able to explain the seasonality at the Kathmandu Observatory; but the model does capture Kathmandu’s observed annual mean concentration. The absence of seasonal brick kiln emissions within Kathmandu valley in the current inventory is a probable reason for this problem. This model study reveals high anthropogenic aerosol loading over the Ganges valley even in the monsoonal months, which needs to be corroborated by experimental observations. Modeling results also show a high dust loading over South Asia with a distinct seasonality. Model results of aerosol monthly composition are also presented at 5 cities in South Asia. Total and fine mode aerosol optical depth along with contribution from each aerosol species is presented; the results show that the anthropogenic fraction dominates in the dry season with major contributions from sulfate and absorbing aerosols. Finally comparison with observations show that model improvements are needed in the treatment of aerosol dry and wet removal processes and increase in sulfate production via heterogeneous pathways.

  10. Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006

    SciTech Connect

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; VanReken, T.; Fischer, M.; Matias, E.; Moya, M.; Farmer, D.; Cohen, R.C.

    2008-12-05

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM{sub 2.5} is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1 {micro}m diameter, semi-volatile partitioning requires 30-60 min to equilibrate; longer time is typically required during the night and early morning hours. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as 'equivalent sodium' (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  11. MODIS and AERONET Characterization of the Global Aerosol

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Reme, Lorraine; Tanre, Didier; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Recently produced daily MODIS aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere.

  12. Characterization of intense aerosol episodes in the Mediterranean basin from satellite observations

    NASA Astrophysics Data System (ADS)

    Gkikas, Antonis; Hatzianastassiou, Nikos; Mihalopoulos, Nikolaos

    2014-05-01

    The properties and distribution of aerosols over the broader Mediterranean region are complex since particles of different nature are either produced within its boundaries or transported from other regions. Thus, coarse dust aerosols are transported primarily from Sahara and secondarily from Middle East, while fine polluted aerosols are either produced locally from anthropogenic activities or they are transported from neighbouring or remote European areas. Also during summer biomass aerosols are transported towards the Mediterranean, originating from massive and extended fires occurring in northern Balkans and Eastern Europe and favoured by the prevailing synoptic conditions. In addition, sea-salt aerosols originate from the Mediterranean Sea or the Atlantic Ocean. Occasionally, aerosols are encountered at very high concentrations (aerosol episodes or events) significantly affecting atmospheric dynamics and climate as well as human health. Given the coexistence of different aerosols as internal and external mixtures characterizing and discriminating between the different types of aerosol episodes is a big challenge. A characterization and classification of intense aerosol episodes in the Mediterranean basin (March 2000 - February 2007) is attempted in the present study. This is achieved by implementing an objective and dynamic algorithm which uses daily aerosol optical properties derived from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMI-Aura. The aerosol episodes are first classified into strong and extreme ones, according to their intensity, by means of aerosol optical depth at 550nm (AOD550nm). Subsequently, they are discriminated into the following aerosol types: (i) biomass/urban-industrial (BU), (ii) desert dust (DD), (iii) sea-salt like (SS), (iv) mixed (MX) and (v) undetermined (UN). The classification is based on aerosol optical properties accounting for the particles' size (Ångström exponent, Effective radius), the

  13. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

    NASA Astrophysics Data System (ADS)

    Xu, L.; Williams, L. R.; Young, D. E.; Allan, J. D.; Coe, H.; Massoli, P.; Fortner, E.; Chhabra, P.; Herndon, S.; Brooks, W. A.; Jayne, J. T.; Worsnop, D. R.; Aiken, A. C.; Liu, S.; Gorkowski, K.; Dubey, M. K.; Fleming, Z. L.; Visser, S.; Prévôt, A. S. H.; Ng, N. L.

    2016-02-01

    The composition of PM1 (particulate matter with diameter less than 1 µm) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer) only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS) at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have undergone similar chemical

  14. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

    DOE PAGESBeta

    Xu, L.; Williams, L. R.; Young, D. E.; Allan, J. D.; Coe, H.; Massoli, P.; Fortner, E.; Chhabra, P.; Herndon, S.; Brooks, W. A.; et al

    2016-02-02

    The composition of PM1 (particulate matter with diameter less than 1 µm) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites.more » The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer) only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS) at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have

  15. Characterization of ambient aerosols at the San Francisco International Airport using BioAerosol Mass Spectrometry

    SciTech Connect

    Steele, P T; McJimpsey, E L; Coffee, K R; Fergenson, D P; Riot, V J; Tobias, H J; Woods, B W; Gard, E E; Frank, M

    2006-03-16

    The BioAerosol Mass Spectrometry (BAMS) system is a rapidly fieldable, fully autonomous instrument that can perform correlated measurements of multiple orthogonal properties of individual aerosol particles. The BAMS front end uses optical techniques to nondestructively measure a particle's aerodynamic diameter and fluorescence properties. Fluorescence can be excited at 266nm or 355nm and is detected in two broad wavelength bands. Individual particles with appropriate size and fluorescence properties can then be analyzed more thoroughly in a dual-polarity time-of-flight mass spectrometer. Over the course of two deployments to the San Francisco International Airport, more than 6.5 million individual aerosol particles were fully analyzed by the system. Analysis of the resulting data has provided a number of important insights relevant to rapid bioaerosol detection, which are described here.

  16. Hygroscopic properties of the Paris urban aerosol in relation to its chemical composition

    NASA Astrophysics Data System (ADS)

    Kamilli, K. A.; Poulain, L.; Held, A.; Nowak, A.; Birmili, W.; Wiedensohler, A.

    2014-01-01

    Aerosol hygroscopic growth factors and chemical properties were measured as part of the MEGAPOLI "Megacities Plume Case Study" at the urban site Laboratoire d'Hygiène de la Ville de Paris (LHVP) in the city center of Paris from June to August 2009, and from January to February 2010. Descriptive hygroscopic growth factors (DGF) were derived in the diameter range from 25 to 350 nm at relative humidities of 30, 55, 75, and 90% by applying the summation method on humidified and dry aerosol size distributions measured simultaneously with a humidified differential mobility particle sizer (HDMPS) and a twin differential mobility particle sizer (TDMPS). For 90% relative humidity, the DGF varied from 1.06 to 1.46 in summer, and from 1.06 to 1.66 in winter. Temporal variations in the observed mean DGF could be well explained with a simple growth model based on the aerosol chemical composition measured by aerosol mass spectrometry (AMS) and black carbon photometry (MAAP). In particular, good agreement was observed when sulfate was the predominant inorganic factor. A clear overestimation of the predicted growth factor was found when the nitrate mass concentration exceeded values of 10 μg m-3, e.g., during winter.

  17. Hygroscopic properties of the Paris urban aerosol in relation to its chemical composition

    NASA Astrophysics Data System (ADS)

    Kamilli, K. A.; Poulain, L.; Held, A.; Nowak, A.; Birmili, W.; Wiedensohler, A.

    2013-05-01

    Aerosol hygroscopic growth factors and chemical properties were measured as part of the MEGAPOLI "Megacities Plume Case Study" at the urban site LHVP in the city center of Paris from June to August 2009, and from January to February 2010. Descriptive hygroscopic growth factors (DGF) were derived in the diameter range from 25 to 350 nm at relative humidities of 30, 55, 75, and 90% by applying the summation method on humidified and dry aerosol size distributions measured simultaneously with a humidified differential mobility particle sizer (HDMPS) and a twin differential mobility particle sizer (TDMPS). For 90% relative humidity, the DGF varied from 1.06 to 1.46 in summer, and from 1.06 to 1.66 in winter. Temporal variations in the observed mean DGF could be well explained with a simple growth model based on the aerosol chemical composition measured by aerosol mass spectrometry (AMS) and black carbon photometry (MAAP). In particular, good agreement was observed when sulfate was the predominant inorganic factor. A clear overestimation of the predicted growth factor was found when the nitrate mass concentration exceeded values of 10 μg m3, e.g. during winter.

  18. Chemical composition, sources, and processes of urban aerosols during summertime in Northwest China: insights from High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D.

    2014-06-01

    An aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed along with a Scanning Mobility Particle Sizer (SMPS) and a Multi Angle Absorption Photometers (MAAP) to measure the temporal variations of the mass loading, chemical composition, and size distribution of sub-micrometer particulate matter (PM1) in Lanzhou, northwest China, during 12 July-7 August 2012. The average PM1 mass concentration including non-refractory PM1 (NR-PM1) measured by HR-ToF-AMS and black carbon (BC) measured by MAAP during this study was 24.5 μg m-3 (ranging from 0.86 to 105μg m-3), with a mean composition consisting of 47% organics, 16% sulfate, 12% BC, 11% ammonium, 10% nitrate, and 4% chloride. The organics was consisted of 70% carbon, 21% oxygen, 8% hydrogen, and 1% nitrogen, with the average oxygen-to-carbon ratio (O / C) of 0.33 and organic mass-to-carbon ratio (OM / OC) of 1.58. Positive matrix factorization (PMF) of the high-resolution mass spectra of organic aerosols (OA) identified four distinct factors which represent, respectively, two primary OA (POA) emission sources (traffic and food cooking) and two secondary OA (SOA) types - a fresher, semi-volatile oxygenated OA (SV-OOA) and a more aged, low-volatility oxygenated OA (LV-OOA). Traffic-related hydrocarbon-like OA (HOA) and BC displayed distinct diurnal patterns both with peak at ~07:00-11:00 (BJT: UTC +8) corresponding to the morning rush hours, while cooking OA (COA) peaked during three meal periods. The diurnal profiles of sulfate and LV-OOA displayed a broad peak between ∼07:00-15:00, while those of nitrate, ammonium, and SV-OOA showed a narrower peak at ~08:00-13:00. The later morning and early afternoon peak in the diurnal profiles of secondary aerosol species was likely caused by mixing down of pollutants aloft, which were likely produced in the residual layer decoupled from the boundary layer during night time. The mass spectrum of SV-OOA also showed similarity with that of

  19. Characterizing interactions between aerosols and cloud droplets in marine boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Andersen, Hendrik; Cermak, Jan

    2016-04-01

    This contribution presents a method to characterize the nonlinearities of interactions between aerosols and cloud droplets in marine boundary layer clouds based on global MODIS observations. Clouds play a crucial role in the climate system as their radiative properties and precipitation patterns significantly impact the Earth's energy balance. Cloud properties are determined by environmental conditions, as cloud formation requires the availability of water vapour ("precipitable water") and condensation nuclei in sufficiently saturated conditions. The ways in which aerosols as condensation nuclei in particular influence the optical, micro- and macrophysical properties of clouds are one of the largest remaining uncertainties in climate-change research. In particular, cloud droplet size is believed to be impacted, and thereby cloud reflectivity, lifetime, and precipitation susceptibility. However, the connection between aerosols and cloud droplets is nonlinear, due to various factors and processes. The impact of aerosols on cloud properties is thought to be strongest with low aerosol loadings, whereas it saturates with high aerosol loadings. To gain understanding of the processes that govern low cloud water properties in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. In this study, global Terra MODIS L3 data sets are used to characterize the nonlinearities of the interactions between aerosols and cloud droplets in marine boundary layer clouds. MODIS observations are binned in classes of aerosol loading to identify at what loading aerosol impact on cloud droplets is the strongest and at which loading it saturates. Results are connected to ERA-Interim and MACC data sets to identify connections of detected patterns to meteorology and aerosol species.

  20. Chemical characteristics of aerosol particles (PM2.5) at a site of Horqin Sand-land in northeast China.

    PubMed

    Shen, Zhen-xing; Cao, Jun-ji; Li, Xu-xiang; Wang, Ya-qiang; Jie, Dong-mei; Zhang, Xiao-ye

    2006-01-01

    The objective of this study was to characterize the mass concentration and chemical composition of aerosol particles (PM2.5) collected at Tongliao (Inner Mongolia Autonomous Region, China), a site in Horqin Sand-land in northeast China. During spring 2005, the mass concentration for PM2.5 was (126 +/- 71)microg/m3 in average. Five dust storm events were monitored with higher concentration of (255 +/- 77)microg/m3 in average than the non dusty days of (106 +/- 44)microg/m3. Concentrations for 20 elements were obtained by the PIXE method. Mass concentrations of Al, Mg, Si, K, Ca, Ti, Mn, and V, which increased with the PM2.5 concentration, were higher than the pollution elements (S, Cl, Zn, Ar, Se, Br, and Pb). Enrichment factor relative to crust material was also calculated, which showed dust trace elements were mainly from earth upper crust and pollution elements were dominated the anthropogenic aerosols. The Si/Al, Ca/Al, and Fe/Al ratios in PM2.5 samples at Tongliao were 4.07, 0.94, and 0.82, respectively, which were remarkably different with those on other source regions, such as "Western desert source region", "North desert source region" and central Asia source. Air mass back-trajectory analysis identified three kinds of general pathways were associated with the aerosol particle transport to Tongliao, but have the similar elemental ratios, implying that elemental signatures for dust aerosol from Horqin Sand-land were different with other regions. PMID:17078548

  1. Chemical Composition of Atmospheric Aerosols Above a Pristine South East Asian Rainforest

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Allan, J. D.; Williams, P. I.; Coe, H.; Hamilton, J.; Chen, Q.; Martin, S.; Trembath, J.

    2009-04-01

    conjunction with a constant pressure inlet. The aerosols' chemical origins have been further investigated by comparing these spectra to chamber experiments, mass spectral libraries and data from comparable experiments in other locations. These data are also being analysed in conjunction with offline techniques applied to samples collected using filters and a Particle-Into-Liquid Sampler (PILS). Methods used include liquid chromatography and comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry. These techniques provide a more detailed chemical characterisation of the SOA and water soluble organic carbon, allowing direct links back to gas phase precursors. In conjunction with the field measurements, a programme of chamber experiments is being carried out at Manchester as part of the ACES project. This will generate comparable SOA under controlled conditions and subjecting them to similar analysis.

  2. Characterization of aerosols from biomass burning--a case study from Mizoram (Northeast), India.

    PubMed

    Badarinath, K V S; Madhavi Latha, K; Kiran Chand, T R; Gupta, Prabhat K; Ghosh, A B; Jain, S L; Gera, B S; Singh, Risal; Sarkar, A K; Singh, Nahar; Parmar, R S; Koul, S; Kohli, R; Nath, Shambhu; Ojha, V K; Singh, Gurvir

    2004-01-01

    Physical and optical properties of biomass burning aerosols in Northeastern region, India analyzed based on measurements made during February 2002. Large spatial extent of Northeastern Region moist tropical to moist sub-tropical forests in India have high frequency of burning in annual dry seasons. Characterization of resultant trace gases and aerosols from biomass burning is important for the atmospheric radiative process. Aerosol optical depth (AOD) observed to be high during burning period compared to pre- and post-burning days. Peak period of biomass burning is highly correlated with measured AOD and total columnar water vapor. Size distribution of aerosols showed bimodal size distribution during burning day and unimodal size distribution during pre- and post-burning days. Size distribution retrievals from biomass burning aerosols show dominance of accumulation mode particles. Weighted mean radius is high (0.22 microm) during burning period. Columnar content of aerosols observed to be high during burning period in addition to the drastic reduction of visibility. During the burning day Anderson sampler measurements showed dominance of accumulation mode particles. The diurnal averaged values of surface shortwave aerosol radiative forcing af biomass burning aerosols varies from -59 to -87 Wm(-2) on different days. Measured and modeled solar irradiances are also discussed in the paper. PMID:14559268

  3. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  4. Chemical Analysis of Fractionated Halogens in Atmospheric Aerosols Collected in Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Tsuhako, A.; Miyagi, Y.; Somada, Y.; Azechi, S.; Handa, D.; Oshiro, Y.; Murayama, H.; Arakaki, T.

    2013-12-01

    Halogens (Cl, Br and I) play important roles in the atmosphere, e.g. ozone depletion by Br during spring in Polar Regions. Sources of halogens in atmospheric aerosols are mainly from ocean. But, for example, when we analyzed Br- with ion chromatography, its concentrations were almost always below the detection limit, which is also much lower than the estimated concentrations from sodium ion concentrations. We hypothesized that portions of halogens are escaped to the atmosphere, similar to chlorine loss, changed their chemical forms to such as BrO3- and IO3-, and/or even formed precipitates. There was few reported data so far about fractionated halogen concentrations in atmospheric aerosols. Thus, purpose of this study was to determine halogen concentrations in different fractions; free ion, water-soluble chemically transformed ions and precipitates using the authentic aerosols. Moreover, we analyzed seasonal variation for each fraction. Atmospheric aerosol samples were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) of Okinawa, Japan during January 2010 and August 2013. A high volume air sampler was used for collecting total particulate matters on quartz filters on a weekly basis. Ultrapure water was used to extract water-soluble factions of halogens. The extracted solutions were filtered with the membrane filter and used for chemical analysis with ion chromatography and ICP-MS. Moreover, the total halogens in aerosols were obtained after digesting aerosols with tetramethylammonium hydroxide (TMAH) using the microwave and analysis with ICP-MS. For Cl, water-soluble Cl- accounted for about 70% of the estimates with Na content. No other forms of water-soluble Cl were found. About 30% of Cl was assumed volatilized to the gas-phase. For Br, water-soluble Br accounted for about 43% of the estimates with Na content, and within the 43%, about 10% of Br was not in the form of Br-. About 46% of Br was assumed volatilized to the gas-phase. For I

  5. Chemical and physical properties of single aerosol particles using a quadrupole trap

    SciTech Connect

    Carleton, K.L.; Sonnenfroh, D.M.; Kang, S.

    1995-12-31

    The importance of aerosols in controlling the chemical balance of the stratosphere has been demonstrated through studies of the polar ozone hole and polar stratospheric clouds. Our laboratory program is designed to explore the physical and chemical properties of aerosol particles under stratospheric conditions for single particles suspended in the electrodynamic field of a quadrupole trap. The goal of this work is to provide data on important stratospheric processes, with particular attention to processes resulting from increased aircraft emissions from the current subsonic fleet or a proposed fleet of supersonic aircraft. Optical methods including Mie scattering and Raman spectroscopy are used to probe the phase and composition of individual particles. Results will be presented on the freezing behavior of sulfuric acid particles.

  6. Detection and characterization of biological and other organic-carbon aerosol particles in atmosphere using fluorescence

    NASA Astrophysics Data System (ADS)

    Pan, Yong-Le

    2015-01-01

    This paper offers a brief review on the detection and characterization of biological and other organic-carbon (OC) aerosol particles in atmosphere using laser-induced-fluorescence (LIF) signatures. It focuses on single individual particles or aggregates in the micron and super-micron size range when they are successively drawn through the interrogation volume of a point detection system. Related technologies for these systems that have been developed in last two decades are also discussed. These results should provide a complementary view for studying atmospheric aerosol particles, particularly bioaerosol and OC aerosol particles from other analytical technologies.

  7. SPICAV-SOIR mesospheric aerosols observations characterization and modelling

    NASA Astrophysics Data System (ADS)

    Wilquet, V.; Piccialli, A.; Vandaele, A. C.; Montmessin, F.; Bertaux, J. L.

    2013-09-01

    From independent retrievals for the 3 channels of the SPICAV/SOIR instrument, it has been postulated that the upper haze on Venus includes, in some instances, a bimodal population, one type of particles with a radius comprised between ~0.1 and 0.3 μm and the second type, detected in the IR, with a radius varying between ~0.4 and 1 μm. In addition, a high temporal variability in the aerosol loading was inferred from SOIR observations over 4 years, as well as a latitudinal dependency. We propose to refine the size distribution retrieval of aerosols based on the Mie theory and on the observed spectral dependence of light extinction in the spectra through a unique retrieval procedure combining the data from the 3 channels of the instrument. We also search for a dependence on altitude of the aerosol particles size distribution and of aerosol composition and compare the variations in aerosol loading to other key parameters retrieved such as water and SO2 composition or temperature.

  8. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008

    SciTech Connect

    Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth; Earle, Michael; MacDonald, A. M.; Liu, Peter S.K.; Leaitch, W. R.

    2014-03-06

    Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 μm (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm-3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust. For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 μm) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of

  9. Preliminary characterization of submicron secondary aerosol in the amazon forest - ATTO station

    NASA Astrophysics Data System (ADS)

    Carbone, S.; Ferreira De Brito, J.; Andreae, M. O.; Pöhlker, C.; Chi, X.; Saturno, J.; Barbosa, H. M.; Artaxo, P.

    2014-12-01

    Biogenic secondary organic aerosol particles are investigated in the Amazon in the context of the GoAmazon Project. The forest naturally emits a large number of gaseous compounds; they are called the volatile organic compounds (VOCs). They are emitted through processes that are not totally understood. Part of those gaseous compounds are converted into aerosol particles, which affect the biogeochemical cycles, the radiation balance, the mechanisms involving cloud formation and evolution, among few other important effects. In this study the aerosol life-cycle is investigated at the ATTO station, which is located about 150 km northeast of Manaus, with emphasis on the natural organic component and its impacts in the ecosystem. To achieve these objectives physical and chemical aerosol properties have been investigated, such as the chemical composition with aerosol chemical speciation monitor (ACSM), nanoparticle size distribution (using the SMPS - Scanning Mobility Particle Sizer), optical properties with measurements of scattering and absorption (using nephelometers and aethalometers). Those instruments have been operating continuously since February 2014 together with trace gases (O3, CO2, CO, SO2 and NOx) analyzers and additional meteorological instruments. On average PM1 (the sum of black carbon, organic and inorganic ions) totalized 1.0±0.3 μg m-3, where the organic fraction was dominant (75%). During the beginning of the dry season (July/August) the organic aerosol presented a moderate oxygenated character with the oxygen to carbon ratio (O:C) of 0.7. In the wet season some episodes containing significant amount of chloride and backward wind trajectories suggest aerosol contribution from the Atlantic Ocean. A more comprehensive analysis will include an investigation of the different oxidized fractions of the organic aerosol and optical properties.

  10. Development of aerosol assisted chemical vapor deposition for thin film fabrication

    NASA Astrophysics Data System (ADS)

    Maulana, Dwindra Wilham; Marthatika, Dian; Panatarani, Camellia; Mindara, Jajat Yuda; Joni, I. Made

    2016-02-01

    Chemical vapor deposition (CVD) is widely used to grow a thin film applied in many industrial applications. This paper report the development of an aerosol assisted chemical vapor deposition (AACVD) which is one of the CVD methods. Newly developed AACVD system consists of a chamber of pyrex glass, two wire-heating elements placed to cover pyrex glass, a substrate holder, and an aerosol generator using an air brush sprayer. The temperature control system was developed to prevent condensation on the chamber walls. The control performances such as the overshoot and settling time were obtained from of the developed temperature controller. Wire-heating elements were controlled at certain setting value to heat the injected aerosol to form a thin film in the substrate. The performance of as-developed AACVD system tested to form a thin film where aerosol was sprayed into the chamber with a flow rate of 7 liters/minutes, and vary in temperatures and concentrations of precursor. The temperature control system have an overshoot around 25 °C from the desired set point temperature, very small temperature ripple 2 °C and a settling time of 20 minutes. As-developed AACVD successfully fabricated a ZnO thin film with thickness of below 1 µm. The performances of system on formation of thin films influenced by the generally controlled process such as values of setting temperature and concentration where the aerosol flow rate was fixed. Higher temperature was applied, the more uniform ZnO thin films were produced. In addition, temperature of the substrate also affected on surface roughness of the obtained films, while concentration of ZnO precursor determined the thickness of produce films. It is concluded that newly simple AACVD can be applied to produce a thin film.

  11. Soft ionization chemical analysis of secondary organic aerosol from green leaf volatiles emitted by turf grass.

    PubMed

    Jain, Shashank; Zahardis, James; Petrucci, Giuseppe A

    2014-05-01

    Globally, biogenic volatile organic compound (BVOC) emissions contribute 90% of the overall VOC emissions. Green leaf volatiles (GLVs) are an important component of plant-derived BVOCs, including cis-3-hexenylacetate (CHA) and cis-3-hexen-1-ol (HXL), which are emitted by cut grass. In this study we describe secondary organic aerosol (SOA) formation from the ozonolysis of dominant GLVs, their mixtures and grass clippings. Near-infrared laser desorption/ionization aerosol mass spectrometry (NIR-LDI-AMS) was used for chemical analysis of the aerosol. The chemical profile of SOA generated from grass clippings was correlated with that from chemical standards of CHA and HXL. We found that SOA derived from HXL most closely approximated SOA from turf grass, in spite of the approximately 5× lower emission rate of HXL as compared to CHA. Ozonolysis of HXL results in formation of low volatility, higher molecular weight compounds, such as oligomers, and formation of ester-type linkages. This is in contrast to CHA, where the hydroperoxide channel is the dominant oxidation pathway, as oligomer formation is inhibited by the acetate functionality. PMID:24666343

  12. Effects of Chemical Aging on Global Secondary Organic Aerosol using the Volatility Basis Set Approach

    NASA Astrophysics Data System (ADS)

    Park, R.; Jo, D.; Kim, M.; Spracklen, D. V.; Hodzic, A.

    2014-12-01

    Organic aerosol (OA) constitutes significant mass fractions (20-90%) of total dry fine aerosols in the atmosphere. However, global models of OA have shown large discrepancies when compared to the observations because of the limited capability to simulate secondary OA (SOA). For reducing the discrepancies between observations and models, recent studies have shown that chemical aging reactions in the atmosphere are important because they can lead to decreases in organic volatility, resulting in increase of SOA mass yields. To efficiently simulate chemical aging of SOA in the atmosphere, we implemented the volatility basis set approach in a global 3-D chemical transport model (GEOS-Chem). We present full-year simulations and their comparisons with multiple observations - global aerosol mass spectrometer dataset, the Interagency Monitoring of Protected Visual Environments from the United States, the European Monitoring and Evaluation Programme dataset and water-soluble organic carbon observation data collected over East Asia. Using different input parameters in the model, we also explore the uncertainty of the SOA simulation for which we use an observational constraint to find the optimized values with which the model reduces the discrepancy from the observations. Finally, we estimate the effect of OA on climate using our best simulation results.

  13. Aerosol Chemical and Physical Properties Observed over Puerto Rico in the Tropical North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Jusino-Atresino, R.; Xia, L.; Song, F.; Gao, Y.

    2008-12-01

    Tropospheric aerosols that originate in Africa and are transported over the Atlantic Ocean have potential impacts over the Caribbean region. To investigate aerosol properties over this region, air sampling was conducted at San Juan Cape (18.46°N, 66.12°W), Puerto Rico during the summer months in 2006. Aerosol samples were collected by both commercial PM2.5 sampler and in-house fabricated TSP sampler. Analyses of aerosols were made through the use of the following instrumental methods: (1)Ion Chromatography for the determinations of water-soluble cations (sodium, ammonium, potassium, magnesium and calcium) and anions (fluoride, acetate, propionate, methanesulfonate, chloride, nitrate, succinate, malonate, sulfate and oxalate); (2)Inductively Coupled Plasma Mass Spectrometry for the concentrations of selected trace elements (Al, Fe, Mn, Sc, Cd, Pb, Sb, Ni, Co, Cr, Cu, Zn and V); (3)Scanning Electron Microscopy for individual aerosol particle characterization. Crustal enrichment factors were calculated to determine the strength of crustal source. Preliminary results indicate that sodium (22 - 99 μg m- 3) and ammonium (1.1 - 50 μg m-3) were the major cations and chloride (1.5 - 99 μg m-3) and sulfate (35 μg m-3) were the dominant anions. Malonate (3.8 - 6.9 μg m- 3) was the most abundant organic anion. Atmospheric concentrations of iron ranged 0.30 - 3.3 ng m- 3. The elements, Sc, Cd, Pb, Sb, Ni, Co, Cr, Cu, Zn and V, were enriched by factors of 600 to 40,000 relative to their natural abundance in crustal soil. Principal components analysis indicates six assemblages of fifteen types of aerosol particles, dominated by Si - rich particles.

  14. The advanced characterization of aerosol properties from measurements of spectral optical thickness of the atmosphere.

    NASA Astrophysics Data System (ADS)

    Torres, Benjamin; Toledano, Carlos; Dubovik, Oleg; Litvinov, Pavel; Lapyonok, Tatyana; Fuertes, David; Tanre, Didier; Goloub, Phillipe

    The main purpose of the work is to assess the potential of using spectral optical thickness measurement for characterizing aerosol properties. While the use of these measurements is limited to the characterization of aerosol loading in the atmosphere, several studies demonstrated that these observations could be used for deriving more detailed information about aerosol, such as size distribution (King et al. 1978) and for discriminating between the extinction of fine and coarse modes of aerosol (O’Neill 2003). In this study, we test the possibilities of using AERONET inversion (Dubovik and King 2000) for improving the interpretation of measurements of optical thickness. In addition, we study the potential of synergetic scenarios for inverting optical thickness using GRASP (Generalized Retrieval of Aerosol and Surface Properties) algorithm (Dubovik et al., 2011). This algorithm uses new multi-pixel retrieval approach. According to this approach, the accuracy of aerosol retrieval can be improved if several sets of observations (e.g. observations of satellite over several pixels) are inverted together under additional a priori constraints on time and spatial variability of the retrieved parameters. The application of this approach appears to be promising for the present study. First, the retrieval stability can be improved by inverting more than a single set of spectral aerosol optical depth at once. Second, the set of spectral aerosol optical depth can be inverted together with the radiances observed in the same day. The preliminary results of using simulated data (for different scenarios and aerosol models), as well as, the applications to real data from several AERONET sites will be presented.

  15. Profile and Morphology of Fungal Aerosols Characterized by Field Emission Scanning Electron Microscopy (FESEM)

    PubMed Central

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Skaar, Ida; Hjeljord, Linda; Skare, Øivind; Green, Brett James; Tronsmo, Arne; Eduard, Wijnand

    2016-01-01

    Fungal aerosols consist of spores and fragments with diverse array of morphologies; however, the size, shape, and origin of the constituents require further characterization. In this study, we characterize the profile of aerosols generated from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum grown for 8 weeks on gypsum boards. Fungal particles were aerosolized at 12 and 20 L min−1 using the Fungal Spore Source Strength Tester (FSSST) and the Stami particle generator (SPG). Collected particles were analyzed with field emission scanning electron microscopy (FESEM). We observed spore particle fraction consisting of single spores and spore aggregates in four size categories, and a fragment fraction that contained submicronic fragments and three size categories of larger fragments. Single spores dominated the aerosols from A. fumigatus (median: 53%), while the submicronic fragment fraction was the highest in the aerosols collected from A. versicolor (median: 34%) and P. chrysogenum (median: 31%). Morphological characteristics showed near spherical particles that were only single spores, oblong particles that comprise some spore aggregates and fragments (<3.5 μm), and fiber-like particles that regroup chained spore aggregates and fragments (>3.5 μm). Further, the near spherical particles dominated the aerosols from A. fumigatus (median: 53%), while oblong particles were dominant in the aerosols from A. versicolor (68%) and P. chrysogenum (55%). Fiber-like particles represented 21% and 24% of the aerosols from A. versicolor and P. chrysogenum, respectively. This study shows that fungal particles of various size, shape, and origin are aerosolized, and supports the need to include a broader range of particle types in fungal exposure assessment. PMID:26855468

  16. Characterization of the Aerosol Instrument Package for the In-service Aircraft Global Observing System IAGOS

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Berg, Marcel; Tettig, Frank; Franke, Harald; Petzold, Andreas

    2015-04-01

    The atmospheric aerosol influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the aerosol microphysical properties is needed to reduce the reported uncertainty of the aerosol climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The IAGOS Aerosol Package (IAGOS-P2C) consists of two modified Butanol based CPCs (Model Grimm 5.410) and one optical particle counter (Model Grimm Sky OPC 1.129). A thermodenuder at 250°C is placed upstream the second CPC, thus the number concentrations of the total aerosol and the non-volatile aerosol fraction is measured. The Sky OPC measures the size distribution in the rage theoretically up to 32 μ m. Because of the inlet cut off diameter of D50=3 μ m we are using the 16 channel mode in the range of 250 nm - 2.5 μ m at 1 Hz resolution. In this presentation the IAGOS Aerosol package is characterized for pressure levels relevant for the planned application, down to cruising level of 150 hPa including the inlet system. In our aerosol lab we have tested the system against standard instrumentation with different aerosol test substances in a long duration test. Particle losses are characterized for the inlet system. In addition first results for airborne measurements are shown from a first field campaign.

  17. Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system.

    PubMed

    Afshari, Aliakbar; Zeidler-Erdely, Patti C; McKinney, Walter; Chen, Bean T; Jackson, Mark; Schwegler-Berry, Diane; Friend, Sherri; Cumpston, Amy; Cumpston, Jared L; Leonard, H Donny; Meighan, Terence G; Frazer, David G; Antonini, James M

    2014-10-01

    Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes. PMID:25140455

  18. Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth; Schauer, James; Quraishi, Tauseef A.; Mahmood, Abid

    2010-03-01

    Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM 2.5 and PM 10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM 2.5 was 194 ± 94 μg m -3 and PM 10 was 336 ± 135 μg m -3. Coarse aerosol (PM 10-2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM 2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.

  19. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.

    2015-12-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under CMA chemical weather modeling system GRAPES/CUACE. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred. The results show that interactive aerosols with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content and cloud droplet number concentrations while decrease the mean diameter of cloud droplets with varying magnitudes of the changes in each case and region. These interactive micro-physical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24% to 48% enhancements of TS scoring for 6-h precipitation in almost all regions. The interactive aerosols with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3°C.

  20. Investigating the Chemical Pathways to PAH- and PANH-Based Aerosols in Titan's Atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Sciamma-O'Brien, Ella Marion; Contreras, Cesar; Ricketts, Claire Louise; Salama, Farid

    2011-01-01

    A complex organic chemistry between Titan's two main constituents, N2 and CH4, leads to the production of more complex molecules and subsequently to solid organic aerosols. These aerosols are at the origin of the haze layers giving Titan its characteristic orange color. In situ measurements by the Ion Neutral Mass Spectrometer (INMS) and Cassini Plasma Spectrometer (CAPS) instruments onboard Cassini have revealed the presence of large amounts of neutral, positively and negatively charged heavy molecules in the ionosphere of Titan. In particular, benzene (C6H6) and toluene (C6H5CH3), which are critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds, have been detected, suggesting that PAHs might play a role in the production of Titan s aerosols. Moreover, results from numerical models as well as laboratory simulations of Titan s atmospheric chemistry are also suggesting chemical pathways that link the simple precursor molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN ...) to benzene, and to PAHs and nitrogen-containing PAHs (or PANHs) as precursors to the production of solid aerosols.

  1. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2015-06-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under CMA chemical weather modeling system GRAPES/CUACE. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred. The results show that interactive aerosols with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content and cloud droplet number concentrations while decrease the mean diameter of cloud droplets with varying magnitudes of the changes in each case and region. These interactive micro-physical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48% enhancements of TS scoring for 6 h precipitation in almost all regions. The interactive aerosols with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  2. CHARACTERIZATION OF THE AEROSOL IN THE GREAT SMOKY MOUNTAINS

    EPA Science Inventory

    A 6-day field study was conducted in the Great Smoky Mountains to measure the composition of the aerosol that pervades this region. Sampling was performed with three dichotomous samplers, a mobile laboratory containing instruments to measure gaseous pollutants, and two gas chroma...

  3. Airborne in situ characterization of dry urban aerosol optical properties around complex topography

    NASA Astrophysics Data System (ADS)

    Targino, Admir Créso; Noone, Kevin J.

    2006-02-01

    In situ data from the 1997 Southern California Ozone Study—NARSTO were used to describe the aerosol optical properties in an urban area whose aerosol distribution is modified as the aerosols are advected over the surrounding topography. The data consist of measurements made with a nephelometer and absorption photometer onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Pelican aircraft. The cases investigated in this study include vertical profiles flown over coastal sites as well as sites located along some important mountain ranges in southern California. The vertical distribution of the aerosol in the Los Angeles Basin showed a complex configuration, directly related with the local meteorological circulations and the surrounding topography. High spatial and temporal variability in air pollutant concentrations within a relatively small area was found, as indicated by the aerosol scattering and absorption coefficient data. The results suggest that in areas with such complex terrain, a high spatial resolution is required in order to adequately describe the aerosol optical quantities. Principal components analysis (PCA) has been applied to aerosol chemical samples in order to identify the major aerosol types in the Los Angeles Basin. The technique yielded four components that accounted for 78% of the variance in the data set. These were indicative of marine aerosols, urban aerosols, trace elements and secondary aerosol components of traffic emissions and agricultural activities. A Monte Carlo radiation transfer model has been employed to simulate the effects that different aerosol vertical profiles have on the attenuation of solar energy. The cases examined were selected using the results of the PCA and in situ data were used to describe the atmospheric optical properties in the model. These investigations comprise a number of sensitivity tests to evaluate the effects on the results of the location of the aerosol layers as well as

  4. Multisensor analyzer detector (MSAD) for low cost chemical and aerosol detection and pattern fusion

    NASA Astrophysics Data System (ADS)

    Swanson, David C.; Merdes, Daniel W.; Lysak, Daniel B., Jr.; Curtis, Richard C.; Lang, Derek C.; Mazzara, Andrew F.; Nicholas, Nicholas C.

    2002-08-01

    MSAD is being developed as a low-cost point detection chemical and biological sensor system designed around an information fusion inference engine that also allows additional sensors to be included in the detection process. The MSAD concept is based on probable cause detection of hazardous chemical vapors and aerosols of either chemical or biological composition using a small portable unit containing an embedded computer system and several integrated sensors with complementary capabilities. The configuration currently envisioned includes a Surface-Enhanced Raman Spectroscopy (SERS) sensor of chemical vapors and a detector of respirable aerosols based on Fraunhofer diffraction. Additional sensors employing Ion Mobility Spectrometry (IMS), Surface Acoustic Wave (SAW) detection, Flame Photometric Detection (FPD), and other principles are candidates for integration into the device; also, available commercial detectors implementing IMS, SAW, and FPD will be made accessible to the unit through RS232 ports. Both feature and decision level information fusion is supported using a Continuous Inference Network (CINET) of fuzzy logic. Each class of agents has a unique CINET with information inputs from a number of available sensors. Missing or low confidence sensor information is gracefully blended out of the output confidence for the particular agent. This approach constitutes a plug and play arrangement between the sensors and the information pattern recognition algorithms. We are currently doing simulant testing and developing out CINETs for actual agent testing at Edgewood Chemical and Biological Center (ECBC) later this year.

  5. Characterization of submicron aerosols during a serious pollution month in Beijing (2013) using an aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, J. K.; Sun, Y.; Liu, Z. R.; Ji, D. S.; Hu, B.; Liu, Q.; Wang, Y. S.

    2013-07-01

    In January 2013, Beijing experienced several serious haze events. To achieve a better understanding of the characteristics, sources and processes of aerosols during this month, an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at an urban site between 1 January and 1 February 2013 to obtain the size-resolved chemical composition of non-refractory submicron particles (NR-PM1). During this period, the mean measured NR-PM1 mass concentration was 87.4 μg m-3 and was composed of organics (49.8%), sulfate (21.4%), nitrate (14.6%), ammonium (10.4%), and chloride (3.8%). Moreover, inorganic matter, such as sulfate and nitrate comprised an increasing fraction of the NR-PM1 load as NR-PM1 loading increased, denoting their key roles in particulate pollution during this month. The average size distributions of the species were all dominated by an accumulation mode peaking at approximately 600 nm in vacuum aerodynamic diameter and organics characterized by an additional smaller size (∼200 nm). Elemental analyses showed that the average O/C, H/C, and N/C (molar ratio) of organic matter were 0.34, 1.44 and 0.015, respectively, corresponding to an OM/OC ratio (mass ratio of organic matter to organic carbon) of 1.60. Positive matrix factorization (PMF) analyses of the high-resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., oxygenated organic aerosols (OOA), cooking-related (COA), nitrogen-containing (NOA) and hydrocarbon-like (HOA), which on average accounted for 40.0, 23.4, 18.1 and 18.5% of the total organic mass, respectively. Back trajectory clustering analyses indicated that the WNW air masses were associated with the highest NR-PM1 pollution during the campaign. Aerosol particles in southern air masses were especially rich in inorganic and oxidized organic species, whereas northern air masses contained a large fraction of primary species.

  6. Characterization of ambient aerosols during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL with a high-resolution time-of-flight aerosol mass spectrometer Basak Karakurt Cevik1, Yu Jun Leong1, Carlos Hernandez1, Robert Griffin1 1 Rice University, CEE Department, 6100 Main St., Houston, TX 77005, USA

    NASA Astrophysics Data System (ADS)

    Karakurt Cevik, B.; Leong, Y.; Hernandez, C.; Griffin, R. J.

    2013-12-01

    An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a Brechtel Manufacturing, Inc. particle-into-liquid sampler (PILS) were deployed at a rural location in Centreville, AL, from 1 June to 15 July 2013 as a part of the Southern Oxidant and Aerosol Study (SOAS). PILS samples were analyzed with Dionex ion chromatographs. The data will allow us to characterize the temporal characteristics of the concentrations and size distributions of non-refractory (NR) chemical species in the ambient submicron particles. Preliminary analysis of the data indicates that the sub-micron particulate matter is highly dominated by organic matter with a relatively high state of oxidation and it is followed by smaller contributions from sulfate and ammonium. In order to investigate the processes and sources that lead to observed aerosol concentrations at the site, the time series will be analyzed in conjunction with additional trace gas, aerosol, and meteorological measurements. The region is known to have high biogenic volatile organic compounds (VOCs) emissions and many of these biogenic VOCs (BVOCs) are important secondary organic aerosol (SOA) precursors. Preliminary data from the HR-ToF-AMS indicates the importance of oxidized organic aerosol during SOAS. The study will also focus on the importance of the SOA in the total organic fraction and the effect of atmospheric processing on the chemical composition of the organic fraction.

  7. Characterization and deposition of aerosol organic matter in the eastern United States

    NASA Astrophysics Data System (ADS)

    Wozniak, Andrew S.

    Aerosol organic carbon (OC) was characterized in two eastern United States watersheds to investigate the potential importance of aerosol OC in watershed OC budgets and cycling. Fluxes of 1.7 and 2.1 mg aerosol OC m-2 d-1 were measured for aerosol samples in Harcum, VA and Millbrook, NY, respectively. Scaled to the area of nearby watersheds (York River watershed, VA and Hudson River watershed, NY) these fluxes are similar in magnitude or greater than the magnitude of riverine OC exported by corresponding rivers indicating that aerosols must be taken into account when thinking about biogeochemical exchanges between the atmospheric, terrestrial, and aquatic realms. Fossil fuel and contemporary biomass emissions are the major sources of aerosol total OC (TOC) to the eastern United States, and radiocarbon signatures were used to estimate the relative contributions from these two sources. On average 33% of aerosol TOC could be attributed to fossil sources throughout the year with mean seasonal fossil TOC contributions (11% to 57% fossil) revealing significant heterogeneity in the relative magnitude of anthropogenic fossil and contemporary biomass TOC sources throughout the year. The 33% fossil aerosol TOC corresponds to a human-derived, 50% increase in aerosol TOC delivered to watersheds and aquatic systems above pre-industrial levels. The effects of such an increase in the delivery of TOC to watersheds are unknown and warrant further investigation. Further radiocarbon analyses on aerosol TOC sub-fractions showed the water-soluble component of aerosol OC (WSOC) to contain significantly more contemporary-aged OC than either bulk aerosol OC or its water-insoluble components. These differences represent a fundamental partitioning in the solubility of fossil and contemporary-derived aerosol OC, and its potential post-depositional fate in watersheds and soils. Fossil OC remains in the less bioavailable particulate phase and its transport is dependent on the erodibility of

  8. Estimation of aerosol type from airborne hyperspectral data: a new technique designed for industrial plume characterization

    NASA Astrophysics Data System (ADS)

    Deschamps, A.; Marion, R.; Foucher, P.-Y.; Briottet, X.

    2012-11-01

    The determination of the aerosol type in a plume from remotely sensed data without any a priori knowledge is a challenging task. If several methods have already been developed to characterize the aerosols from multi or hyperspectral data, they are not suited for industrial particles, which have specific physical and optical properties, changing quickly and in a complex way with the distance from the source emission. From radiative transfer equations, we have developed an algorithm, based on a Look-Up Table approach, enabling the determination of the type of this kind of particles from hyperspectral data. It consists in the selection of pixels pairs, located at the transitions between two kinds of grounds (or between an illuminated and a shadow area), then in the comparison between normalized estimated Aerosol Optical Thicknesses (AOTs) and pre-calculated AOTs. The application of this algorithm to simulated data leads to encouraging results: the selection of only six pixels pairs allows the algorithm to differentiate aerosols emitted by a metallurgical plant from biomass burning particles, urban aerosols and particles from an oil depot explosion, regardless the size and the aerosol concentration. The algorithm performances are better for a relatively high AOT but the single scattering approximation does not enable the characterization of thick plumes (AOT above 2.0). However, the choice of transitions (type of grounds) does not seem to significantly affect the results.

  9. Aerosol Layering Characterization Near the Gobi Desert by a Double Polarization Lidar System

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Boselli, A.; Sannino, A.; Song, C.; Spinelli, N.; Wang, X.

    2016-06-01

    In order to carry out 4-D (space and time) analysis of the atmospheric aerosol distribution and to make a characterization of their properties and time evolution, a transportable multi-wavelength, Elastic/Raman scanning lidar system with angular scanning capability has been realized. The system uses a diode pumped Nd:YAG laser source, specifically designed for this device, and a receiving systems able to detect elastic signals at 355, 532 and 1064 nm and Raman signals at 386, 407 and 607 nm. It also allows to perform aerosol depolarization measurements at both 355nm and 532nm. A first measurement campaign has been carried out in Dunhuang, North-West of China, in the region of the Gobi desert with the aims to study and characterize desert dust at source. Optical properties of aerosol layers developing in the atmosphere have been analyzed and lidar data are discussed in terms of profiles of aerosol backscatter coefficient at 355nm, 532nm, aerosol extinction coefficient at 355nm, aerosol depolarization ratio at 355nm and 532nm and water vapor mixing ratio. Depolarization ratio measured simultaneously at two wavelengths allowed also to study its dependence on the wavelength.

  10. Development of a Global Tropospheric Aerosol Chemical Transport Model MASINGAR and its Application to the Dust Storm Forecasting

    NASA Astrophysics Data System (ADS)

    Tanaka, T. Y.

    2002-12-01

    We are developing a new three-dimensional aerosol chemical transport model coupled with the MRI/JMA98 GCM, named Model of Aerosol Species IN the Global AtmospheRe (MASINGAR), for the study of atmospheric aerosols and related trace species. MASINGAR treats four major aerosol species that include nss-sulfate, carbonaceous, mineral dust, and sea-salt aerosols. The model accounts for large-scale advective transport, subgrid-scale eddy diffusive and convective transport, surface emission and deposition, wet deposition, as well as chemical reactions. The advective transport is calculated using the semi-Lagrangian transport scheme. Parameterization of convective transport is based on the convective mass flux by Arakawa-Schubert scheme. The space and time resolution of the model are variable, with a standard resolution of T42 (2.8ox2.8o) and 30 levels (up to 0.8hPa). In addition, the model has a built-in four-dimensional data assimilation with assimilated meteorological field, which enables the model to perform a realistic simulation on a specific period and short-period forecast of aerosols. The model was applied to the numerical forecasting of dust storm in spring, 2002, when the first intensive observational period of Aeolian Dust Experiment on the Climatic impact (ADEC) project was conducted. The model simulation of mineral dust aerosol suggests that the synoptic scale aerosol events can be simulated by MASINGAR.

  11. Chemical and Physical Properties of Bulk Aerosols within Four Sectors Observed during TRACE-P

    NASA Technical Reports Server (NTRS)

    Jordan, C. E.; Anderson, B. E.; Talbot, R. W.; Dibb, J. E.; Fuelberg, E.; Hudgins, C. H.; Kiley, C. M.; Russo, R.; Scheuer, E.; Seid, G.

    2003-01-01

    Chemical and physical aerosol data collected on the DC-8 during TRACE-P were grouped into four sectors based on back trajectories. The four sectors represent long-range transport from the west (WSW), regional circulation over the western Pacific and Southeast Asia (SE Asia), polluted transport from Northern Asia with substantial sea salt at low altitudes (NNW) and a substantial amount of dust (Channel). WSW has generally low mixing ratios at both middle and high altitudes, with the bulk of the aerosol mass due to non-sea-salt water-soluble inorganic species. Low altitude SE Asia also has low mean mixing ratios in general, with the majority of the aerosol mass comprised of non-sea-salts, however, soot is also relatively important m this region. "w had the highest mean sea salt mixing ratios, with the aerosol mass at low altitudes (a km) evenly divided between sea salts, mm-sea-salts, and dust. The highest mean mixing ratios of water-soluble ions and soot were observed at the lowest altitudes (a km) in the Channel sector. The bulk of the aerosol mass exported from Asia emanates h m Channel at both low and midaltitudes, due to the prevalence of dust compared to other sectors. Number densities show enhanced fine particles for Channel and NNW, while their volume distributions are enhanced due to sea salt and dust Low-altitude Channel exhibits the highest condensation nuclei ((34) number densities along with enhanced scattering coefficients, compared to the other sectors. At midaltitudes (2-7 km), low mean CN number densities coupled with a high proportion of nonvolatile particles (265%) observed in polluted sectors (Channel and NNW) are attributed to wet scavenging which removes hygroscopic CN particles. Low single scatter albedo m SE Asia reflects enhanced soot

  12. Chemical and physical properties of bulk aerosols within four sectors observed during TRACE-P

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Talbot, R. W.; Dibb, J. E.; Fuelberg, H. E.; Hudgins, C. H.; Kiley, C. M.; Russo, R.; Scheuer, E.; Seid, G.; Thornhill, K. L.; Winstead, E.

    2003-11-01

    Chemical and physical aerosol data collected on the DC-8 during TRACE-P were grouped into four sectors based on back trajectories. The four sectors represent long-range transport from the west (WSW), regional circulation over the western Pacific and Southeast Asia (SE Asia), polluted transport from northern Asia with substantial sea salt at low altitudes (NNW) and a substantial amount of dust (Channel). WSW has generally low mixing ratios at both middle and high altitudes, with the bulk of the aerosol mass due to non-sea-salt water-soluble inorganic species. Low altitude SE Asia also has low mean mixing ratios in general, with the majority of the aerosol mass comprised of non-sea-salts, however, soot is also relatively important in this region. NNW had the highest mean sea salt mixing ratios, with the aerosol mass at low altitudes (<2 km) evenly divided between sea salts, non-sea-salts, and dust. The highest mean mixing ratios of water-soluble ions and soot were observed at the lowest altitudes (<2 km) in the Channel sector. The bulk of the aerosol mass exported from Asia emanates from Channel at both low and midaltitudes, due to the prevalence of dust compared to other sectors. Number densities show enhanced fine particles for Channel and NNW, while their volume distributions are enhanced due to sea salt and dust. Low-altitude Channel exhibits the highest condensation nuclei (CN) number densities along with enhanced scattering coefficients, compared to the other sectors. At midaltitudes (2-7 km), low mean CN number densities coupled with a high proportion of nonvolatile particles (≥65%) observed in polluted sectors (Channel and NNW) are attributed to wet scavenging which removes hygroscopic CN particles. Low single scatter albedo in SE Asia reflects enhanced soot.

  13. Investigation of the detailed chemical composition of organic aerosol in a South East Asian Rainforest

    NASA Astrophysics Data System (ADS)

    Hamilton, Jacqueline; Ward, Martyn; Rami Alfarra, M.; Lewis, Alastair; McFiggans, Gordon; Robinson, Niall

    2010-05-01

    The formation of secondary organic aerosol (SOA) in tropical regions is a key uncertainty in quantifying the effect of man made emissions on the climate. Large quantities of volatile organic compounds are emitted from natural biogenic sources in the tropics, including isoprene, monoterpenes and sequiterpenes. There are very few studies of the detailed chemical composition of organic aerosols in tropical rainforest regions, but these would provide information on the importance of primary versus secondary organic aerosols, the key VOC precursors, oxidation state and volatility. Particle samples were collected in a tropical rainforest at Danum Valley in Borneo as part of the OP3 field campaign in 2008. Twenty four hour filter samples were collected at the Global Atmospheric Watch station at a height of around 10 m and shipped back to the laboratory (below -4 °C) for offline analysis. The OA composition was studied using multiple high resolution chromatographic techniques including comprehensive two dimensional gas chromatography coupled to time of flight mass spectrometry (GCXGC-TOFMS) and liquid chromatography coupled to ion trap mass spectrometry (LC-MSn). The composition was directly compared to chamber generated SOA (as part of the Aerosol Coupling in the Earths System , ACES, experiment) to determine SOA tracers. A biogenic SOA tracer MS fragmentation library was constructed and a number of SOA components from limonene, linalool and -pinene were identified in the rainforest OA. Very high resolution mass spectrometry (Fourier Transform Ion Cyclotron Resonance FTICR-MS) allowed the O:C and H:C ratios to be determined and these will be compared to those obtained by aerosol mass spectrometry (AMS). In addition, the OA composition from the rainforest will be compared to other locations.

  14. Chemical characteristics of ambient aerosols contributed by cooking process at Noorpur village near New Delhi

    NASA Astrophysics Data System (ADS)

    Singh, Sudha

    Generally, industrial and transport sectors are considered as major contributors of air pollution but recently, biomass burning is also reported as a major source of atmospheric aerosols (1, 2) especially in the developing world where solid fuels such as dung cake, wood and crop residues are used in traditional cooking which are responsible for poor air quality, respiratory problems and radiative forcing etc .In India, most of the research has been focused on emission estimates from biomass burning and cooking. No effort has been made to understand the chemistry and sources of fine aerosols in rural areas during cooking hours. This study fills this knowledge gap and strengthens our understanding about abundance of various chemical constituents of atmospheric aerosols emitted during cooking hours.Aerosol samples were collected from village called Noorpur (28.470 N, 77.030 E) which lies near Delhi city. Sampling was carried out during August 2011-May 2012 by using handy sampler (Envirotech model APM 821) installed at the terrace of a building (~6m). The aerosol samples were collected on 8 hourly basis at a flow rate of 1 LPM. Water extracts of these filters were analyzed for major anions (F-, Cl-, NO3-, SO42-) and major cations (Na+, NH4+, K+, Ca2+ Mg2+) by ion chromatography (Metrohm 883 Basic IC Plus). During cooking period, the concentration of the major ions followed the order of Ca2+> SO42-> NO3-> Cl-> K+> NH4+> Mg2+> Na2+> F-. Among anion SO42 (5 µg/m3) showed highest value and in case of cations Ca2+ (7.32µg/m3) has highest value.

  15. Relating Aerosol Absorption due to Soot, Organic Carbon, and Dust to Emission Sources Determined from In-situ Chemical Measurements

    SciTech Connect

    Cazorla, Alberto; Bahadur, R.; Suski, Kaitlyn; Cahill, John F.; Chand, Duli; Schmid, Beat; Ramanathan, V.; Prather, Kimberly

    2013-09-17

    Estimating the aerosol contribution to the global or regional radiative forcing can take advantage of the relationship between the spectral aerosol optical properties and the size and chemical composition of aerosol. Long term global optical measurements from observational networks or satellites can be used in such studies, and using in-situ chemical mixing state measurements can help us to constrain the limitations of such an estimation. In this study, the Absorption Ångström Exponent (AAE) and the Scattering Ångström Exponent (SAE) are used to develop a new methodology for deducing chemical speciation based on wavelength dependence of the optical properties. In addition, in-situ optical properties and single particle chemical composition measured during three aircraft field campaigns are combined in order to validate the methodology for the estimation of aerosol composition using spectral optical properties. Results indicate a dominance of mixed types in the classification leading to an underestimation of the primary sources, however secondary sources are better classified. The distinction between carbonaceous aerosols from fossil fuel and biomass burning origins is not clear. On the other hand, the knowledge of the aerosol sources in California from chemical studies help to identify other misclassification such as the dust contribution.

  16. Implications of the chemical transformation of Asian outflow aerosols for the long-range transport of inorganic nitrogen species

    NASA Astrophysics Data System (ADS)

    Chou, Charles C.-K.; Lee, C. T.; Yuan, C. S.; Hsu, W. C.; Lin, C.-Y.; Hsu, S.-C.; Liu, S. C.

    To improve our understanding of the chemical characteristics of aerosols transported from the Asian continent to the western North Pacific, an aerosol observation network has been established in Taiwan. From the measurements made during 2003-2005, it was found that the aerosol concentrations in the continental outflows were much higher than those of remote areas, evidently due to the long-range transport of air pollutants and dust from the Asian continent. Analysis on the chemical compositions of aerosols revealed that the Asian outflow aerosols underwent chemical transformation and, consequently, became more abundant in ammonium and nitrate when they mixed with air pollutants originating from Taiwan. The NH 4+/SO 42- ratio in fine aerosols (PM2.5) increased from 1.55 at the Cape Fuguei, the northern tip of Taiwan, to 2.30 at Penghu, in the middle of the Taiwan Strait. The increased NH 4+/SO 42- ratio implied that the acidity of the sulfate aerosols in Asian outflows was totally neutralized by ammonia as the aerosols traveled through the North Taiwan and its vicinity. In addition, the analysis indicated that the chlorine deficiency of sea salt aerosols was higher at the southern stations than at the Cape Fuguei. The chlorine deficiency was attributed to the heterogeneous reaction of NaCl and HNO 3(g), which means that the oxidation of SO 2 in sea spray droplets was inhibited. Moreover, uptake of secondary acids by the dust particles was observed. The results of this study suggested that the Asian outflow aerosols are important carriers of gaseous inorganic nitrogen species, particularly nitric acid and ammonia, in this region. Hence the atmospheric deposition of soluble inorganic nitrogen could become enhanced in the northern South China Sea, which is downwind of Taiwan during the periods of Asian winter monsoons.

  17. Detailed Characterization of aerosol properties from satellite Observations using GRASP algorithm

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Ducos, F.; Huang, X.; Lopatin, A.; Fuertes, D.; Torres, B.

    2015-12-01

    GRASP (Generalized Retrieval of Aerosol and Surface Properties) is rather sophisticated algorithm was developed recently by Dubovik et al. (2011, 2014) with objective of achieving more complete and accurate aerosols and surface retrieval. Specifically, GPASP searches in continuous space of solutions and doesn't utilize look-up-tables. It based on highly elaborated statistically optimized fitting. For example, it uses multi-pixel retrieval when statistically optimized inversion is implemented simultaneously for a group of satellite pixels. This allows using additional a priori information about limited variability of aerosol of surface properties in time and/or space. As a result, GRASP doesn't use any specific information about aerosol or surface type in the each observed pixel, and the results are essentially driven by observations. However GRASP retrieval takes longer computational time compare to most conventional algorithms that is the main practical challenge of employing GRASP for massive data processing. Nonetheless, in last two years, GRASP has been significantly optimized and adapted to operational needs. As a result of this optimization, GRASP has been accelerated to the level acceptable for processing large volumes of satellite observations. Recently GRASP has been applied to multi-years archives of PARASO/POLDER and ENVISAT/MERIS. Based, on the preliminary analysis GRASP results are very promising for comprehensive characterization of aerosol even for observations over bright surfaces and for monitoring very high aerosol loading events (with AOD 2 or 3). In addition, it was made the attempts to estimate such aerosol characteristics as aerosol height, air mass, radiative forcing, aerosol type, etc. The results and illustrations will be presented.

  18. Characterization of PM2.5 aerosols dominated by local pollution and Asian dust observed at an urban site in Korea during aerosol characterization experiments (ACE)--Asia Project.

    PubMed

    Park, Seung Shik; Kim, Young J; Cho, Sung Yong; Kim, Seung Jai

    2007-04-01

    Daily fine particulate matter (PM2.5) samples were collected at Gwangju, Korea, during the Aerosol Characterization Experiments (ACE)-Asia Project to determine the chemical properties of PM2.5 originating from local pollution and Asian dust (AD) storms. During the study period, two significant events occurred on April 10-13 and 24-25, 2001, and a minor event occurred on April 19, 2001. Based on air mass transport pathways identified by back-trajectory calculation, the PM2.5 dataset was classified into three types of aerosol populations: local pollution and two AD aerosol types. The two AD types were transported along different pathways. One originated from Gobi desert area in Mongolia, passing through Hunshandake desert in Northern Inner Mongolia, urban and polluted regions of China (AD1), and the other originated in sandy deserts located in the Northeast Inner Mongolia Plateau and then flowed southward through the Korean peninsula (AD2). During the AD2 event, a smoke plume that originated in North Korea was transported to our study site. Mass balance closures show that crustal materials were the most significant species during both AD events, contributing -48% to the PM2.5 mass; sulfate aerosols (19.1%) and organic matter (OM; 24.6%) were the second greatest contributors during the AD1 and AD2 periods, respectively, indicating that aerosol properties were dependent on the transport pathway. The sulfate concentration constituted only 6.4% (4.5 microg/m3) of the AD2 PM2.5 mass. OM was the major chemical species in the local pollution-dominated PM2.5 aerosols, accounting for 28.7% of the measured PM2.5 mass, followed by sulfate (21.4%), nitrate (15%), ammonium (12.8%), elemental carbon (8.9%), and crustal material (6.5%). Together with substantial enhancement of the crustal elements (Mg, Al, K, Ca, Sc, Ti, Mn, Fe, Sr, Zr, Ba, and Ce), higher concentrations of pollution elements (S, V, Ni, Zn, As, Cd, and Pb) were observed during AD1 and AD2 than during the local

  19. Dual carbon isotope characterization of total organic carbon in wintertime carbonaceous aerosols from northern India

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Andersson, August; Sarin, M. M.; Sheesley, R. J.; Kirillova, E.; Rengarajan, R.; Sudheer, A. K.; Ram, K.; Gustafsson, Örjan

    2016-05-01

    Large-scale emissions of carbonaceous aerosols (CA) from South Asia impact both regional climate and air quality, yet their sources are not well constrained. Here we use source-diagnostic stable and radiocarbon isotopes (δ13C and Δ14C) to characterize CA sources at a semiurban site (Hisar: 29.2°N, 75.2°E) in the NW Indo-Gangetic Plain (IGP) and a remote high-altitude location in the Himalayan foothills (Manora Peak: 29.4°N, 79.5°E, 1950 m above sea level) in northern India during winter. The Δ14C of total aerosol organic carbon (TOC) varied from -178‰ to -63‰ at Hisar and from -198‰ to -1‰ at Manora Peak. The absence of significant differences in the 14C-based fraction biomass of TOC between Hisar (0.81 ± 0.03) and Manora Peak (0.82 ± 0.07) reveals that biomass burning/biogenic emissions (BBEs) are the dominant sources of CA at both sites. Combining this information with δ13C, other chemical tracers (K+/OC and SO42-/EC) and air mass back trajectory analyses indicate similar source regions in the IGP (e.g., Punjab and Haryana). These results highlight that CA from BBEs in the IGP are not only confined to the atmospheric boundary layer but also extend to higher elevations of the troposphere, where the synoptic-scale circulations could substantially influence their abundances both to the Himalayas and over the downwind oceanic regions such as the Indian Ocean. Given the vast emissions of CA from postharvest crop residue combustion practices in the IGP during early Northeast Monsoon, this information is important for both improved process and model understanding of climate and health effects, as well as in guiding policy decision aiming at reducing emissions.

  20. Computational modeling and experimental characterization of indoor aerosol transport

    SciTech Connect

    Konecni, S.; Whicker, J. J.; Martin, R. A.

    2002-01-01

    When a hazardous aerosol or gas is inadvertently or deliberately released in an occupied facility, the airborne material presents a hazard to people. Inadvertent accidents and exposures continue to occur in Los Alamos and other nuclear facilities despite state-of-art engineering and administrative controls, and heightened diligence. Despite the obvious need in occupational settings and for homeland defense, the body of research in hazardous aerosol dispersion and control in large, complex, ventilated enclosures is extremely limited. The science governing generation, transport, inhalation, and detection of airborne hazards is lacking and must be developed to where it can be used by engineers or safety professionals in the prediction of worker exposure, in the prevention of accidents, or in the mitigation of terrorist actions. In this study, a commercial computational fluid dynamics (CFD) code, CFX5.4, and experiments were used to assess flow field characteristics, and to investigate aerosol release and transport in a large, ventilated workroom in a facility at Savannah River Site. Steady state CFD results illustrating a complex, ventilation-induced, flow field with vortices, velocity gradients, and quiet zones are presented, as are time-dependent CFD and experimental aerosol dispersion results. The comparison of response times between CFD and experimental results was favorable. It is believed that future applications of CFD and experiments can have a favorable impact on the design of ventilation (HVAC) systems and worker safety with consideration to facility costs. Ultimately, statistical methods will be used in conjunction with CFD calculations to determine the optimal number and location of detectors, as well as optimal egress routes in event of a release.

  1. Chemical compositions of black carbon particle cores and coatings via soot particle aerosol mass spectrometry with photoionization and electron ionization.

    PubMed

    Canagaratna, Manjula R; Massoli, Paola; Browne, Eleanor C; Franklin, Jonathan P; Wilson, Kevin R; Onasch, Timothy B; Kirchstetter, Thomas W; Fortner, Edward C; Kolb, Charles E; Jayne, John T; Kroll, Jesse H; Worsnop, Douglas R

    2015-05-14

    Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores

  2. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-01

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking. PMID:26730457

  3. Measurement of aerosol chemical, physical and radiative properties in the Yangtze delta region of China

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Bergin, M. H.; Yu, X.; Liu, G.; Zhao, J.; Carrico, C. M.; Baumann, K.

    In order to understand the possible influence of aerosols on the environment in the agricultural Yangtze delta region of China, a one-month field sampling campaign was carried out during November 1999 in Linan, China. Measurements included the aerosol light scattering coefficient at 530 nm, σsp, measured at both dry relative humidity (RH<40%) and under ambient conditions (sample RH=63±19%), and the absorption coefficient at 565 nm, σap, for aerosol particles having diameters <2.5 μm (PM 2.5). At the same time, daily filter samples of PM 2.5 as well as aerosol particles having diameters <10 μm (PM 10) were collected and analyzed for mass, major ion, organic compound (OC), and elemental carbon (EC) concentrations in order to determine which anthropogenic chemical species were primarily responsible for aerosol light extinction. The aerosol loading in the rural Yangtze delta region was comparable to highly polluted urban areas, with mean and standard deviation (S.D.) values for σsp, σap and PM 2.5 of 353 Mm -1 (202 Mm -1), 23 Mm -1 (14 Mm -1) and 90 μg m -3 (47 μg m -3), respectively. A clear diurnal pattern was observed in σsp and σap with minimum values occurring in the middle of the day, most likely associated with the maximum midday mixing height. The ratio of the change in light scattering coefficient at ambient RH to that at controlled RH (RH<40%), Fσsp (RH), indicates that condensed water typically contributed ˜40% to the light scattering budget in this region. The mass scattering efficiency of the dry aerosol, E scat_2.5, and mass absorption efficiency of EC, E abs_2.5, have mean and S.D. values of 4.0 m 2 g -1 (0.4 m 2 g -1) and 8.6 m 2 g -1 (7.0 m 2 g -1), respectively. PM 2.5 concentrations in Linan and two other locations in the Yangtze delta, Sheshan and Changshu (which have monthly mean values ranging from ˜80 to 110 μg m -3), are all significantly higher than the proposed 24-h average US PM 2.5 NAAQS of 65 μg m -3. Organic compounds are

  4. Molecular Characterization of Free Tropospheric Aerosol Collected at the Pico Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Dzepina, K.; Mazzoleni, C.; Fialho, P. J.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Jacques, H.; Kumar, S.; Perlinger, J. A.; Kramer, L. J.; Dziobak, M.; Ampadu, M.; Olsen, S. C.; Wuebbles, D. J.; Mazzoleni, L. R.

    2014-12-01

    the two samples was corroborated by the changes in ozone, ethane, propane, morphology of particles, as well as by the FLEXPART retroplumes. In this presentation we will report the first detailed molecular characterization of free tropospheric aged aerosol intercepted at the Pico Mountain Observatory.

  5. Aerosol Chemical Composition in Asian Continental Outflow during the TRACE-P Campaign: Comparison with PEM-West B

    NASA Technical Reports Server (NTRS)

    Dibb, Jack E.; Talbot, Robert W.; Scheuer, Eric M.; Seid, Garry; Avery, Melody A.; Singh, Hanwant B.

    2003-01-01

    Aerosol associated soluble ions and the radionuclide tracers (7)Be and (210)Pb were quantified in 414 filter samples collected in spring 2001 from the DC-8 during the Transport and Chemical Evolution over the Pacific (TRACE-P) campaign. Binning the data into near Asia (flights from Hong Kong and Japan) and remote Pacific (all other flights) revealed large enhancements of NO3(-), SO4(-), C2O4(-), NH4(+), K(+), Mg2(+), and Ca2(+) near Asia. The boundary layer and lower troposphere were most strongly influenced by continental outflow, and the largest enhancements were seen in Ca2(+) (a dust tracer) and NO3(-) (reflecting uptake of HNO3 onto the dust). Comparing the TRACE P near Asia bin with earlier results from the same region during PEM-West B (in 1994) shows at least twofold enhancements during TRACE P in most of the ions listed above. Calcium and NO3(-) were most enhanced in this comparison as well (more than sevenfold higher in the boundary layer and threefold higher in the lower troposphere). Independent estimation of Asian emissions of gaseous precursors of the aerosol-associated ions suggest only small changes between the two missions, and precipitation fields do not suggest any significant difference in the efficiency of the primary sink, precipitation scavenging. It thus appears that with the possible exception of dust, the enhancements of aerosol-associated species during TRACE P cannot be explained by stronger sources or weaker sinks. We argue that the enhancements largely reflect the fact that TRACE P focused on characterizing Asian outflow, and thus the DC-8 was more frequently flown into regions that were influenced by well-organized flow off the continent.

  6. Summertime aerosol chemical components in the marine boundary layer of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Xie, Zhouqing; Sun, Liguang; Blum, Joel D.; Huang, Yuying; He, Wei

    2006-05-01

    Samples of aerosols from the marine boundary layer of the Arctic Ocean were collected aboard the R/V Xuelong during summer on the Second Chinese Arctic Research Expedition (July-September 2003). Synchrotron radiation X-ray fluorescence (SR-XRF) was used to determine chemical compositions of aerosol particles. Multivariate analysis of the SR-XRF data resolved a number of components (factors), which, on the basis of their chemical compositions and from their affiliation with specific meteorological flow patterns, were assigned physical meanings. Five factors explaining 94.7% of the total variance were identified. Ship emissions accounted for 35.3% of the variance (factor 1 (F1)) and are loaded significantly with S, Fe, V, and Ni. The total Fe emitted from ships globally was estimated at 8.60 × 106 kg yr-1. Heavy-metal-rich factors included 34.0% of the variance (F2 and F3) and were interpreted to be pollution carried into the Arctic Ocean by long-range transport. Anthropogenic contributions from industrial regions to the Arctic Ocean during the summer vary and depend on the source locations. Air mass backward trajectories indicate that the metals including Hg, Pb, Cu, and Zn come mainly from northern Russia. The third source controlling the chemical compositions of aerosols was sea salt (F4, 12.8%). The role of sea salt decreased from the open sea to areas near pack ice. On the basis of the factor scores of aerosol samples, we infer that chlorine volatilization from sea salt may occur, enhanced by nitrogen and sulfur contamination emitted from ships. Because the global inventories of nitrogen and sulfur for ship exhausts are large, and halogens could have important consequences in possible tropospheric ozone destruction, the role of ships in influencing halogen depression in sea salt should be further investigated. Finally, we also identified a crustal factor (F5, 12.6%) and suggest that crustal elements (e.g., Ca) contaminating sea ice may become reinjected into

  7. WRF-Chem model sensitivity to chemical mechanisms choice in reconstructing aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Balzarini, A.; Pirovano, G.; Honzak, L.; Žabkar, R.; Curci, G.; Forkel, R.; Hirtl, M.; San José, R.; Tuccella, P.; Grell, G. A.

    2015-08-01

    In the framework of the AQMEII initiative WRF-Chem has been applied over Europe adopting two chemical configurations for the calendar year 2010. The first one employed the RADM2 gas-phase chemistry and MADE/SORGAM aerosol module, while the second one implemented the CBM-Z gaseous parameterization and MOSAIC aerosol chemistry. Configurations shared the same domain, meteorological setups and input data. The Comparison demonstrated that CBM-Z has a more efficient ozone-NO titration than RADM2 in regions with sufficiently high levels of NOx and VOCs. At the same time, CBM-Z is found to have a more effective NO2 + OH reaction. The parameterization of the relative humidity of deliquescence point has a strong impact on HNO3 and NO3 concentrations over Europe, particularly over the sea. The MADE approach showed to be more efficient than MOSAIC. Differently, particulate sulfate and SO2 ground concentrations proved to be more influenced by the heterogeneous SO2 cloud oxidation. PM10 and PM2.5 have shown similar results for MOSAIC and MADE/SORGAM, even though some differences were found in the dust and sea salt size partitioning between modes and bins. Indeed, in MADE the sea salt was distributed only in the coarse fraction, while the dust emissions were distributed mainly in the fine fraction. Finally, different chemical mechanisms give different Aerosol Optical Depths (AOD). WRF-Chem is found to under predict the AODs in both configurations because of the misrepresentation of the dust coarse particle, as shown by the analysis of the relationship between the Angström exponent and the AOD bias. Differently, when the AOD is dominated by fine particles, the differences