Science.gov

Sample records for aerosol chemical transport

  1. Parameterization of Aerosol Sinks in Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2012-01-01

    The modelers point of view is that the aerosol problem is one of sources, evolution, and sinks. Relative to evolution and sink processes, enormous attention is given to the problem of aerosols sources, whether inventory based (e.g., fossil fuel emissions) or dynamic (e.g., dust, sea salt, biomass burning). On the other hand, aerosol losses in models are a major factor in controlling the aerosol distribution and lifetime. Here we shine some light on how aerosol sinks are treated in modern chemical transport models. We discuss the mechanisms of dry and wet loss processes and the parameterizations for those processes in a single model (GEOS-5). We survey the literature of other modeling studies. We additionally compare the budgets of aerosol losses in several of the ICAP models.

  2. Secondary organic aerosol in the global aerosol - chemical transport model Oslo CTM2

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Berntsen, T.; Myhre, G.; Isaksen, I. S. A.

    2007-11-01

    The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA). Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics). A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr-1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA) values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA) is the dominant OA component) than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%-60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes. Reducing the yield

  3. REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS.

    SciTech Connect

    SCHWARTZ, S.E.; MCGRAW, R.; BENKOVITZ, C.M.; WRIGHT, D.L.

    2001-04-01

    Atmospheric aerosols, suspensions of solid or liquid particles, are an important multi-phase system. Aerosols scatter and absorb shortwave (solar) radiation, affecting climate (Charlson et al., 1992; Schwartz, 1996) and visibility; nucleate cloud droplet formation, modifying the reflectivity of clouds (Twomey et al., 1984; Schwartz and Slingo, 1996) as well as contributing to composition of cloudwater and to wet deposition (Seinfeld and Pandis, 1998); and affect human health through inhalation (NRC, 1998). Existing and prospective air quality regulations impose standards on concentrations of atmospheric aerosols to protect human health and welfare (EPA, 1998). Chemical transport and transformation models representing the loading and geographical distribution of aerosols and precursor gases are needed to permit development of effective and efficient strategies for meeting air quality standards, and for examining aerosol effects on climate retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes depend on their size distribution: light scattering, cloud nucleating properties, dry deposition, and penetration into airways of lungs. The evolution of the mass loading itself depends on particle size because of the size dependence of growth and removal processes. For these reasons it is increasingly recognized that chemical transport and transformation models must represent not just the mass loading of atmospheric particulate matter but also the aerosol microphysical properties and the evolution of these properties if aerosols are to be accurately represented in these models. If the size distribution of the aerosol is known, a given property can be evaluated as the integral of the appropriate kernel function over the size distribution. This has motivated the approach of determining aerosol size distribution, and of explicitly representing this distribution and its evolution in chemical transport models.

  4. Effects of Transport and Processing on Aerosol Chemical and Optical Properties Across the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Bates, T.; Baynard, T.; Onasch, T.; Coffman, D.; Covert, D.; Worsnop, D.; Goldan, P.; Kuster, B.; Degouw, J.; Stohl, A.

    2005-12-01

    NEAQS-ITCT 2004 took place in July and August to study natural and anthropogenic emissions from North America including the processing of gas and particle phase species during transport over the North Atlantic and the resulting impact on air quality and climate. During the experiment, measurements were made onboard the NOAA RV Ronald H. Brown with a ship track that extended from the coast along Cape Cod, MA, Boston, MA and Portland, ME, east into the Gulf of Maine and out to Chebogue Point, Nova Scotia. Although measurements on the ship were not made in a true Lagrangian sense, they reveal information about the effects of transport and processing on aerosol chemical and optical properties. Photochemical age based on measured toluene to benzene ratios can be used in this region to indicate 'younger' versus 'older' aerosol. This approach, coupled with FLEXPART estimates of source contributions and age, reveals that continental aerosol becomes more acidic as it ages with transport over the Gulf of Maine. The increasing acidity is due to the conversion of SO2 to SO4= with no further significant input of NH3 in the well-capped marine boundary layer to neutralize the aerosol. In addition, as the aerosol ages, the organic mass fraction decreases while the organics that are present become more oxidized. These same chemical features were observed in aerosol transported from the Ohio River Valley and beyond. In contrast, recently formed aerosol from urban centers along the Eastern Seaboard are neutralized, have a higher organic content, and the organics are less oxidized. The impact of the observed range of aerosol acidity, organic mass fraction, and degree of oxidation of the organic matter on the f(RH) of the aerosol will be described. Here, f(RH) refers to the dependence of light extinction on relative humidity.

  5. Aerosols and clouds in chemical transport models and climate models.

    SciTech Connect

    Lohmann,U.; Schwartz, S. E.

    2008-03-02

    Clouds exert major influences on both shortwave and longwave radiation as well as on the hydrological cycle. Accurate representation of clouds in climate models is a major unsolved problem because of high sensitivity of radiation and hydrology to cloud properties and processes, incomplete understanding of these processes, and the wide range of length scales over which these processes occur. Small changes in the amount, altitude, physical thickness, and/or microphysical properties of clouds due to human influences can exert changes in Earth's radiation budget that are comparable to the radiative forcing by anthropogenic greenhouse gases, thus either partly offsetting or enhancing the warming due to these gases. Because clouds form on aerosol particles, changes in the amount and/or composition of aerosols affect clouds in a variety of ways. The forcing of the radiation balance due to aerosol-cloud interactions (indirect aerosol effect) has large uncertainties because a variety of important processes are not well understood precluding their accurate representation in models.

  6. Modelling the optical properties of aerosols in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  7. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    NASA Astrophysics Data System (ADS)

    Schroedter-Homscheidt, M.; Elbern, H.; Holzer-Popp, T.

    2010-11-01

    Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions cannot be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1) through validation against AERONET especially in Saharan dust outbreak situations, (2) through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3) through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme) network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the analysis for a test period from July to November 2003

  8. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    NASA Astrophysics Data System (ADS)

    Schroedter-Homscheidt, M.; Elbern, H.; Holzer-Popp, T.

    2010-06-01

    Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions can not be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1) through validation against AERONET especially in Saharan dust outbreak situations, (2) through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3) through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme) network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the analysis for a test period from July to November 2003

  9. Chemical and Aerosol Signatures of Biomass Burning via Long Range Transport observed at Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; Obrist, D.; McCubbin, I. B.; Fain, X.; Rahn, T.

    2008-12-01

    The Desert Research Institute operates a high elevation facility, Storm Peak Laboratory (SPL), located on the Steamboat Springs Ski Resort in Colorado at an elevation 3.2 km. During the spring of 2008, two field projects were conducted at SPL; Storm Peak Cloud and Aerosol Characterization (SPACC) and a State of Colorado Mercury Monitoring project. Measurements of gaseous elemental mercury (GEM), along with CO, ozone and aerosol concentrations and aerosol size distributions will be presented from April 28 to July 1st 2008. This work focuses on specific case studies pertaining to long range transport events. Specifically, high levels of GEM and CO will be presented from May 15, 2008. This data will be coupled with HYSPLIT backtrajectories, chemical modeling via MOZART, and satellite imagery (MODIS) to present evidence that Siberian wildfires impacted the air quality at Storm Peak Laboratory.

  10. Development of a Global Tropospheric Aerosol Chemical Transport Model MASINGAR and its Application to the Dust Storm Forecasting

    NASA Astrophysics Data System (ADS)

    Tanaka, T. Y.

    2002-12-01

    We are developing a new three-dimensional aerosol chemical transport model coupled with the MRI/JMA98 GCM, named Model of Aerosol Species IN the Global AtmospheRe (MASINGAR), for the study of atmospheric aerosols and related trace species. MASINGAR treats four major aerosol species that include nss-sulfate, carbonaceous, mineral dust, and sea-salt aerosols. The model accounts for large-scale advective transport, subgrid-scale eddy diffusive and convective transport, surface emission and deposition, wet deposition, as well as chemical reactions. The advective transport is calculated using the semi-Lagrangian transport scheme. Parameterization of convective transport is based on the convective mass flux by Arakawa-Schubert scheme. The space and time resolution of the model are variable, with a standard resolution of T42 (2.8ox2.8o) and 30 levels (up to 0.8hPa). In addition, the model has a built-in four-dimensional data assimilation with assimilated meteorological field, which enables the model to perform a realistic simulation on a specific period and short-period forecast of aerosols. The model was applied to the numerical forecasting of dust storm in spring, 2002, when the first intensive observational period of Aeolian Dust Experiment on the Climatic impact (ADEC) project was conducted. The model simulation of mineral dust aerosol suggests that the synoptic scale aerosol events can be simulated by MASINGAR.

  11. Optical, physical and chemical properties of transported African mineral dust aerosols in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Di Biagio, Claudia; Chevaillier, Servanne; Gaimoz, Cécile; Grand, Noel; Loisil, Rodrigue; Triquet, Sylvain; Zapf, Pascal; Roberts, Greg; Bourrianne, Thierry; Torres, Benjamin; Blarel, Luc; Sellegri, Karine; Freney, Evelyn; Schwarzenbock, Alfons; Ravetta, François; Laurent, Benoit; Mallet, Marc; Formenti, Paola

    2014-05-01

    The transport of mineral dust aerosols is a global phenomenon with strong climate implications. Depending on the travel distance over source regions, the atmospheric conditions and the residence time in the atmosphere, various transformation processes (size-selective sedimentation, mixing, condensation of gaseous species, and weathering) can modify the physical and chemical properties of mineral dust, which, in turn, can change the dust's optical properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of these properties, and their temporal evolution with transport time. Within the frame of the ChArMex project (Chemistry-Aerosol Mediterranean experiment, http://charmex.lsce.ipsl.fr/), two intensive airborne campaigns (TRAQA, TRansport and Air QuAlity, 18 June - 11 July 2012, and ADRIMED, Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region, 06 June - 08 July 2013) have been performed over the Central and Western Mediterranean, one of the two major transport pathways of African mineral dust. In this study we have set up a systematic strategy to determine the optical, physical and optical properties of mineral dust to be compared to an equivalent dataset for dust close to source regions in Africa. This study is based on airborne observations onboard the SAFIRE ATR-42 aircraft, equipped with state of the art in situ instrumentation to measure the particle scattering and backscattering coefficients (nephelometer at 450, 550, and 700 nm), the absorption coefficient (PSAP at 467, 530, and 660 nm), the extinction coefficient (CAPS at 530 nm), the aerosol optical depth (PLASMA at 340 to 1640 nm), the size distribution in the extended range 40 nm - 30 µm by the combination of different particle counters (SMPS, USHAS, FSSP, GRIMM) and the chemical composition obtained by filter sampling. The chemistry and transport model CHIMERE-Dust have been used to classify the air masses according to

  12. Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

    NASA Astrophysics Data System (ADS)

    Sič, B.; El Amraoui, L.; Marécal, V.; Josse, B.; Arteta, J.; Guth, J.; Joly, M.; Hamer, P. D.

    2015-02-01

    This paper deals with recent improvements to the global chemical transport model of Météo-France MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species: desert dust, sea salt, black carbon, organic carbon, and also volcanic ash in the case of large volcanic eruptions. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging and by changing the in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI), the ground (AERONET, EMEP), and a model inter-comparison project (AeroCom) are compared with MOCAGE simulations and show that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD) observations over the oceans, the updated model configuration shows a decrease in the modified normalized mean bias (MNMB; from 0.42 to 0.10) and a better correlation (from 0.06 to 0.32) in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive MNMB in the sea salt representation at high latitudes (from 0.65 to 0.16), and a negative MNMB in the desert

  13. Implications of the chemical transformation of Asian outflow aerosols for the long-range transport of inorganic nitrogen species

    NASA Astrophysics Data System (ADS)

    Chou, Charles C.-K.; Lee, C. T.; Yuan, C. S.; Hsu, W. C.; Lin, C.-Y.; Hsu, S.-C.; Liu, S. C.

    To improve our understanding of the chemical characteristics of aerosols transported from the Asian continent to the western North Pacific, an aerosol observation network has been established in Taiwan. From the measurements made during 2003-2005, it was found that the aerosol concentrations in the continental outflows were much higher than those of remote areas, evidently due to the long-range transport of air pollutants and dust from the Asian continent. Analysis on the chemical compositions of aerosols revealed that the Asian outflow aerosols underwent chemical transformation and, consequently, became more abundant in ammonium and nitrate when they mixed with air pollutants originating from Taiwan. The NH 4+/SO 42- ratio in fine aerosols (PM2.5) increased from 1.55 at the Cape Fuguei, the northern tip of Taiwan, to 2.30 at Penghu, in the middle of the Taiwan Strait. The increased NH 4+/SO 42- ratio implied that the acidity of the sulfate aerosols in Asian outflows was totally neutralized by ammonia as the aerosols traveled through the North Taiwan and its vicinity. In addition, the analysis indicated that the chlorine deficiency of sea salt aerosols was higher at the southern stations than at the Cape Fuguei. The chlorine deficiency was attributed to the heterogeneous reaction of NaCl and HNO 3(g), which means that the oxidation of SO 2 in sea spray droplets was inhibited. Moreover, uptake of secondary acids by the dust particles was observed. The results of this study suggested that the Asian outflow aerosols are important carriers of gaseous inorganic nitrogen species, particularly nitric acid and ammonia, in this region. Hence the atmospheric deposition of soluble inorganic nitrogen could become enhanced in the northern South China Sea, which is downwind of Taiwan during the periods of Asian winter monsoons.

  14. Coupling aerosol optics to the chemical transport model MATCH (v5.5.0) and aerosol dynamics module SALSA (v1)

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    Modelling aerosol optical properties is a notoriously difficult task due to the particles' complex morphologies and compositions. Yet aerosols and their optical properties are important for Earth system modelling and remote sensing applications. Operational optics models often make drastic and non realistic approximations regarding morphological properties, which can introduce errors. In this study a new aerosol optics model is implemented, in which more realistic morphologies and mixing states are assumed, especially for black carbon aerosols. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel "core-grey shell" model. Simulated results of radiative fluxes, backscattering coefficients and the Ångström exponent from the new optics model are compared with results from another model simulating particles as externally mixed homogeneous spheres. To gauge the impact on the optical properties from the new optics model, the known and important effects from using aerosol dynamics serves as a reference. The results show that using a more detailed description of particle morphology and mixing states influences the optical properties to the same degree as aerosol dynamics. This is an important finding suggesting that over-simplified optics models coupled to a chemical transport model can introduce considerable errors; this can strongly effect simulations of radiative fluxes in Earth-system models, and it can compromise the use of remote sensing observations of aerosols in model evaluations and chemical data assimilation.

  15. Coupling aerosol optics to the MATCH (v5.5.0) chemical transport model and the SALSA (v1) aerosol microphysics module

    NASA Astrophysics Data System (ADS)

    Andersson, Emma; Kahnert, Michael

    2016-05-01

    A new aerosol-optics model is implemented in which realistic morphologies and mixing states are assumed, especially for black carbon particles. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel "core-grey-shell" model. Simulated results of aerosol optical properties, such as aerosol optical depth, backscattering coefficients and the Ångström exponent, as well as radiative fluxes are computed with the new optics model and compared with results from an older optics-model version that treats all particles as externally mixed homogeneous spheres. The results show that using a more detailed description of particle morphology and mixing state impacts the aerosol optical properties to a degree of the same order of magnitude as the effects of aerosol-microphysical processes. For instance, the aerosol optical depth computed for two cases in 2007 shows a relative difference between the two optics models that varies over the European region between -28 and 18 %, while the differences caused by the inclusion or omission of the aerosol-microphysical processes range from -50 to 37 %. This is an important finding, suggesting that a simple optics model coupled to a chemical transport model can introduce considerable errors affecting radiative fluxes in chemistry-climate models, compromising comparisons of model results with remote sensing observations of aerosols, and impeding the assimilation of satellite products for aerosols into chemical-transport models.

  16. Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005

    NASA Astrophysics Data System (ADS)

    Prank, Marje; Sofiev, Mikhail; Tsyro, Svetlana; Hendriks, Carlijn; Semeena, Valiyaveetil; Vazhappilly Francis, Xavier; Butler, Tim; Denier van der Gon, Hugo; Friedrich, Rainer; Hendricks, Johannes; Kong, Xin; Lawrence, Mark; Righi, Mattia; Samaras, Zissis; Sausen, Robert; Kukkonen, Jaakko; Sokhi, Ranjeet

    2016-05-01

    Four regional chemistry transport models were applied to simulate the concentration and composition of particulate matter (PM) in Europe for 2005 with horizontal resolution ~ 20 km. The modelled concentrations were compared with the measurements of PM chemical composition by the European Monitoring and Evaluation Programme (EMEP) monitoring network. All models systematically underestimated PM10 and PM2.5 by 10-60 %, depending on the model and the season of the year, when the calculated dry PM mass was compared with the measurements. The average water content at laboratory conditions was estimated between 5 and 20 % for PM2.5 and between 10 and 25 % for PM10. For majority of the PM chemical components, the relative underestimation was smaller than it was for total PM, exceptions being the carbonaceous particles and mineral dust. Some species, such as sea salt and NO3-, were overpredicted by the models. There were notable differences between the models' predictions of the seasonal variations of PM, mainly attributable to different treatments or omission of some source categories and aerosol processes. Benzo(a)pyrene concentrations were overestimated by all the models over the whole year. The study stresses the importance of improving the models' skill in simulating mineral dust and carbonaceous compounds, necessity for high-quality emissions from wildland fires, as well as the need for an explicit consideration of aerosol water content in model-measurement comparison.

  17. Mesoscale and synoptic scale transport of aerosols

    SciTech Connect

    Wolff, G.T.

    1980-01-01

    An overview is presented of mesoscale and synoptic-scale (macroscale) aerosol transport as observed in recent air pollution field studies. Examples of mesoscale transport systems are discussed, including urban plumes, sea breezes, the mountain-valley wind cycle, and the urban-heat-island circulation. The synoptic-scale systems considered are migrating high- and low-pressure systems. Documented cases are reviewed of aerosol transport in the various mesoscale systems, aerosol accumulation and transport in high-pressure systems, and acid precipitation in low-pressure systems. The characteristics of the transported aerosols are identified, along with the chemical species that occur primarily in aerosols in the accumulation mode (particle diameters of 0.1-3 microns). It is shown that aerosol particles in the accumulation mode are the most important in terms of synoptic-scale and mesoscale transport and that such particles are primarily responsible for visible haze.

  18. Aerosol Types using Passive Remote Sensing: Global Distribution, Consistency Check, Total-Column Investigation and Translation into Composition Derived from Climate and Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Dawson, K. W.; Johnson, M. S.; Burton, S. P.; Redemann, J.; Hasekamp, O. P.; Hair, J. W.; Ferrare, R. A.; Butler, C. F.; Holben, B. N.; Beyersdorf, A. J.; Ziemba, L. D.; Froyd, K. D.; Dibb, J. E.; Shingler, T.; Sorooshian, A.; Jimenez, J. L.; Campuzano Jost, P.; Jacob, D. J.

    2015-12-01

    To improve the predictions of aerosol composition in chemical transport models (CTMs) and global climate models (GCMs), we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. We apply the SCMC method to two different total-column datasets of aerosol optical properties: inversions from the ground-based AErosol RObotic NETwork (AERONET) and retrievals from the space-borne POLDER (Polarization and Directionality of Earth's Reflectances) instrument. The POLDER retrievals that we use differ from the standard POLDER retrievals [Deuzé et al., 2001] as they make full use of multi-angle, multispectral polarimetric data [Hasekamp et al., 2011]. We analyze agreement in the aerosol types inferred from both AERONET and POLDER globally. Then, we investigate how our total-column "effective" SCMC aerosol types relate to different aerosol types within the column (i.e. either a mixture of different types within one layer in the vertical or the stacking of different aerosol types within the vertical column). For that, we compare AERONET-SCMC aerosol types to collocated NASA LaRC HSRL vertically resolved aerosol types [Burton et al., 2012] during the SEAC4RS and DISCOVER-AQ airborne field experiments, mostly over Texas in Aug-Sept 2013. Finally, in order to evaluate the GEOS-Chem CTM aerosol types, we translate each of our SCMC aerosol type into a unique distribution of GEOS-Chem aerosol composition (e.g. biomass burning, dust, sulfate, sea salt). We bridge the gap between remote sensing and model-inferred aerosol types by using multiple years of collocated AERONET

  19. Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling

    PubMed Central

    Schwartz, Stephen E.; Harshvardhan; Benkovitz, Carmen M.

    2002-01-01

    The Twomey effect of enhanced cloud droplet concentration, optical depth, and albedo caused by anthropogenic aerosols is thought to contribute substantially to radiative forcing of climate change over the industrial period. However, present model-based estimates of this indirect forcing are highly uncertain. Satellite-based measurements would provide global or near-global coverage of this effect, but previous efforts to identify and quantify enhancement of cloud albedo caused by anthropogenic aerosols in satellite observations have been limited, largely because of strong dependence of albedo on cloud liquid water path (LWP), which is inherently highly variable. Here we examine satellite-derived cloud radiative properties over two 1-week episodes for which a chemical transport and transformation model indicates substantial influx of sulfate aerosol from industrial regions of Europe or North America to remote areas of the North Atlantic. Despite absence of discernible dependence of optical depth or albedo on modeled sulfate loading, examination of the dependence of these quantities on LWP readily permits detection and quantification of increases correlated with sulfate loading, which are otherwise masked by variability of LWP, demonstrating brightening of clouds because of the Twomey effect on a synoptic scale. Median cloud-top spherical albedo was enhanced over these episodes, relative to the unperturbed base case for the same LWP distribution, by 0.02 to 0.15. PMID:11854481

  20. Improving the representation of secondary organic aerosol (SOA) in the MOZART-4 global chemical transport model

    NASA Astrophysics Data System (ADS)

    Mahmud, A.; Barsanti, K. C.

    2012-12-01

    The secondary organic aerosol (SOA) module in the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) has been updated by replacing existing two-product (2p) parameters with those obtained from two-product volatility basis set (2p-VBS) fits, and by treating SOA formation from the following volatile organic compounds (VOCs): isoprene, propene and lumped alkenes. Strong seasonal and spatial variations in global SOA distributions were demonstrated, with significant differences in the predicted concentrations between the base-case and updated model versions. The base-case MOZART-4 predicted annual average SOA of 0.36 ± 0.50 μg m-3 in South America, 0.31 ± 0.38 μg m-3 in Indonesia, 0.09 ± 0.05 μg m-3 in the USA, and 0.12 ± 0.07 μg m-3 in Europe. Concentrations from the updated versions of the model showed a~marked increase in annual average SOA. Using the updated set of parameters alone (MZ4-v1) increased annual average SOA by ~8%, ~16%, ~56%, and ~108% from the base-case in South America, Indonesia, USA, and Europe, respectively. Treatment of additional parent VOCs (MZ4-v2) resulted in an even more dramatic increase of ~178-406% in annual average SOA for these regions over the base-case. The increases in predicted SOA concentrations further resulted in increases in corresponding SOA contributions to annual average total aerosol optical depth (AOD) by <1% for MZ4-v1 and ~1-6% for MZ4-v2. Estimated global SOA production was ~6.6 Tg yr-1 and ~19.1 Tg yr-1 with corresponding burdens of ~0.24 Tg and ~0.59 Tg using MZ4-v1 and MZ4-v2, respectively. The SOA budgets predicted in the current study fall well within reported ranges for similar modeling studies, 6.7 to 96 Tg yr-1, but are lower than recently reported observationally-constrained values, 50 to 380 Tg yr-1. With MZ4-v2, simulated SOA concentrations at the surface were also in reasonable agreement with comparable modeling studies and observations. Concentrations of estimated organic aerosol (OA

  1. IMPROVING CHEMICAL TRANSPORT MODEL PREDICTIONS OF ORGANIC AEROSOL: MEASUREMENT AND SIMULATION OF SEMIVOLATILE ORGANIC EMISSIONS FROM MOBILE AND NON-MOBILE SOURCES

    EPA Science Inventory

    Organic material contributes a significant fraction of PM2.5 mass across all regions of the United States, but state-of-the-art chemical transport models often substantially underpredict measured organic aerosol concentrations. Recent revisions to these models that...

  2. Seasonal variation of spherical aerosols distribution in East Asia based on ground and space Lidar observation and a Chemical transport model

    NASA Astrophysics Data System (ADS)

    Hara, Y.; Yumimoto, K.; Uno, I.; Shimizu, A.; Sugimoto, N.; Ohara, T.

    2009-12-01

    The anthropogenic aerosols largely impact on not only human health but also global climate system, therefore air pollution in East Asia due to a rapid economic growth has been recognized as a significant environmental problem. Several international field campaigns had been conducted to elucidate pollutant gases, aerosols characteristics and radiative forcing in East Asia. (e.g., ACE-Asia, TRACE-P, ADEC, EAREX 2005). However, these experiments were mainly conducted in springtime, therefore seasonal variation of aerosols distribution has not been clarified well yet. National Institute for Environmental Studies (NIES) has been constructing a lidar networks by automated dual wavelength / polarization Mie-lidar systems to observe the atmospheric environment in Asian region since 2001. Furthermore, from June 2006, space-borne backscatter lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), onboard NASA/CALIPSO satellite, measures continuous global aerosol and cloud vertical distribution with very high spatial resolution. In this paper, we will show the seasonal variation of aerosols distribution in East Asia based on the NIES lidar network observation, Community Multi-scale Air Quality Modeling System (CMAQ) chemical transport model simulation and CALIOP observation over the period from July 2006 to December 2008. We found that CMAQ result explains the typical seasonal aerosol characteristics by lidar observations. For example, CMAQ and ground lidar showed a summertime peak of aerosol optical thickness (AOT) at Beijing, an autumn AOT peak at Guangzhou and summertime AOT trough at Hedo, Okinawa. These characteristics are mainly controlled by seasonal variations of Asian summer/winter monsoon system. We also examined the CMAQ seasonal average aerosol extinction profiles with ground lidar and CALIOP extinction data. These comparisons clarified that the CMAQ reproduced the observed aerosol layer depth well in the downwind region. Ground lidar and CALIOP seasonal

  3. Measurements of HNO3, SO2 High Resolution Aerosol SO4 (sup 2-), and Selected Aerosol Species Aboard the NASA DC-8 Aircraft: During the Transport and Chemical Evolution Over the Pacific Airborne Mission (TRACE-P)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    2004-01-01

    The UNH investigation during TRACE-P provided measurements of selected acidic gases and aerosol species aboard the NASA DC-8 research aircraft. Our investigation focused on measuring HNO3, SO2, and fine (less than 2 microns) aerosol SO4(sup 2-) with two minute time resolution in near-real-time. We also quantified mixing ratios of aerosol ionic species, and aerosol (210)Pb and (7)Be collected onto bulk filters at better than 10 minute resolution. This suite of measurements contributed extensively to achieving the principal objectives of TRACE-P. In the context of the full data set collected by experimental teams on the DC-8, our observations provide a solid basis for assessing decadal changes in the chemical composition and source strength of Asian continental outflow. This region of the Pacific should be impacted profoundly by Asian emissions at this time with significant degradation of air quality over the next few decades. Atmospheric measurements in the western Pacific region will provide a valuable time series to help quantify the impact of Asian anthropogenic activities. Our data also provide important insight into the chemical and physical processes transforming Asian outflow during transport over the Pacific, particularly uptake and reactions of soluble gases on aerosol particles. In addition, the TRACE-P data set provide strong constraints for assessing and improving the chemical fields simulated by chemical transport models.

  4. Chemical composition, sources, solubility, and transport of aerosol trace elements in a tropical region.

    PubMed

    Gioda, Adriana; Amaral, Beatriz Silva; Monteiro, Isabela Luizi Gonçalves; Saint'Pierre, Tatiana Dillenburg

    2011-08-01

    Aerosol particle samples (PM10) were collected at urban, industrial and rural sites located in Rio de Janeiro, Brazil, between October 2008 and September 2009. Aerosol samples for each site were analyzed for total and soluble metals, water-soluble ions, carboxylic acids, and water-soluble organic carbon (WSOC). The results showed that the mean PM10 concentrations were 34 μg m(-3); 47 μg m(-3) and 71 μg m(-3) at the rural, urban and industrial sites, respectively. An increase in the average concentration of these particles due to air stagnation was observed during the period from May to September for all sites, and an increase in hospitalization for respiratory problems was also reported. On average, the anions species represented 4 to 14% of total content, while cations species corresponded to 1 to 11% and 7.5% for WSOC. The overall metal content at the industrial site was nearly the double that at the rural site. The concentrations of the studied species are influenced mainly by site location and the specific characteristics present at each site. However, higher concentrations of some species were observed on particular dates and were probably due to biomass burning and African dust events. The acid/aqueous percentiles showed that the most efficiently extracted metals from the aqueous phase were V and Ni (40%), while Al and Fe represented a lower percentage (<3%). Analysis of the aqueous fraction provides important information about the bioavailability of metals that is associated with the inflammatory process in the lungs. PMID:21677995

  5. Top-Down Inversion of Aerosol Emissions through Adjoint Integration of Satellite Radiance and GEOS-Chem Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Xu, X.; Wang, J.; Henze, D. K.; Qu, W.; Kopacz, M.

    2012-12-01

    The knowledge of aerosol emissions from both natural and anthropogenic sources are needed to study the impacts of tropospheric aerosol on atmospheric composition, climate, and human health, but large uncertainties persist in quantifying the aerosol sources with the current bottom-up methods. This study presents a new top-down approach that spatially constrains the amount of aerosol emissions from satellite (MODIS) observed reflectance with the adjoint of a chemistry transport model (GEOS-Chem). We apply this technique with a one-month case study (April 2008) over the East Asia. The bottom-up estimated sulfate-nitrate-ammonium precursors, such as sulfur dioxide (SO2), ammonia (NH3), and nitrogen oxides (NOx), all from INTEX-B 2006 inventory, emissions of black carbon (BC), organic carbon (OC) from Bond-2007 inventory, and mineral dust simulated from DEAD dust mobilization scheme, are spatially optimized from the GEOS-Chem model and its adjoint constrained by the aerosol optical depth (AOD) that are derived from MODIS reflectance with the GEOS-Chem aerosol single scattering properties. The adjoint inverse modeling for the study period yields notable decreases in anthropogenic aerosol emissions over China: 436 Gg (33.5%) for SO2, 378 Gg (34.5%) for NH3, 319 (18.8%) for NOx, 10 Gg (9.1%) for BC, and 30 Gg (15.0%) for OC. The total amount of the mineral dust emission is reduced by 56.4% from the DEAD mobilization module which simulates dust production of 19020 Gg. Sub-regional adjustments are significant and directions of changes are spatially different. The model simulation with optimized aerosol emissions shows much better agreement with independent observations from sun-spectrophotometer observed AOD from AERONET, MISR (Multi-angle Imaging SpectroRadiometer) AOD, OMI (Ozone Monitoring Instrument) NO2 and SO2 columns, and surface aerosol concentrations measured over both anthropogenic pollution and dust source regions. Assuming the used bottom-up anthropogenic

  6. Sources, seasonality, and trends of Southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    NASA Astrophysics Data System (ADS)

    Kim, P. S.; Jacob, D. J.; Fisher, J. A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Jimenez, J. L.; Campuzano-Jost, P.; Froyd, K. D.; Liao, J.; Hair, J. W.; Fenn, M. A.; Butler, C. F.; Wagner, N. L.; Gordon, T. D.; Welti, A.; Wennberg, P. O.; Crounse, J. D.; St. Clair, J. M.; Teng, A. P.; Millet, D. B.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.

    2015-07-01

    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the Southeast US during the summer-fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 km × 25 km resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the Southeast US. GEOS-Chem simulation of sulfate requires a missing oxidant, taken here to be stabilized Criegee intermediates, but which could alternatively reflect an unaccounted for heterogeneous process. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 20 % in the cloud convective layer at 1.5-3 km, and 20 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42-] + [NO3-])) is only 0.5-0.7 mol mol-1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by organic aerosol. This would explain the long-term decline of ammonium aerosol in the Southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the Southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the Southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 21 %. The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from

  7. Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    NASA Astrophysics Data System (ADS)

    Kim, P. S.; Jacob, D. J.; Fisher, J. A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Jimenez, J. L.; Campuzano-Jost, P.; Froyd, K. D.; Liao, J.; Hair, J. W.; Fenn, M. A.; Butler, C. F.; Wagner, N. L.; Gordon, T. D.; Welti, A.; Wennberg, P. O.; Crounse, J. D.; St. Clair, J. M.; Teng, A. P.; Millet, D. B.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.

    2015-09-01

    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the southeast US during the summer-fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 × 25 km2 resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the southeast US. OA is simulated successfully with a simple parameterization, assuming irreversible uptake of low-volatility products of hydrocarbon oxidation. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 25 % in the cloud convective layer at 1.5-3 km, and 15 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42-] + [NO3-]) is only 0.5-0.7 mol mol-1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by OA. This would explain the long-term decline of ammonium aerosol in the southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 8-28 % (consistently biased low). The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines

  8. Aerosol Transport Over Equatorial Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  9. Aerosol simulation including chemical and nuclear reactions

    SciTech Connect

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs.

  10. Chemical Properties of Combustion Aerosols: An Overview

    EPA Science Inventory

    A wide variety of pyrogenic and anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is remarkably complex. ...

  11. Aerosol transport in the coastal environment and effects on extinction

    NASA Astrophysics Data System (ADS)

    Vignati, Elizabetta; de Leeuw, Gerrit; Berkowicz, Ruwim

    1998-11-01

    The aerosol in the coastal environment consists of a complicated mixture of anthropogenic and rural aerosol generated over land, and sea spray aerosol. Also, particles are generate dover sea by physical and chemical processes and the chemical composition may change due to condensation/evaporation of gaseous materials. The actual composition is a function of air mass history and fetch. At the land-sea transition the continental sources cease to exist, and thus the concentrations of land-based particles and gases will gradually decrease. At the same time, sea spray is generated due to the interaction between wind and waves in a developing wave field. A very intense source for sea spray aerosol is the surf zone. Consequently, the aerosol transported over sea in off-shore winds will abruptly charge at the land-sea transition and then gradually loose its continental character, while also the contribution of the surf-generated aerosol will decrease. The latter will be compensated, at least in part, by the production of sea spray aerosol. A Coastal Aerosol Transport model is being developed describing the evolution of the aerosol size distribution in an air column advected from the coast line over sea in off-shore winds. Both removal and production are taken into account. The result are applied to estimate the effect of the changing size distribution on the extinction coefficients. In this contribution, preliminary results are presented from a study of the effects of the surf-generated aerosol and the surface production.

  12. Global aerosol modeling with the online NMMB/BSC Chemical Transport Model: sensitivity to fire injection height prescription and secondary organic aerosol schemes

    NASA Astrophysics Data System (ADS)

    Spada, Michele; Jorba, Oriol; Pérez García-Pando, Carlos; Tsigaridis, Kostas; Soares, Joana; Obiso, Vincenzo; Janjic, Zavisa; Baldasano, Jose M.

    2015-04-01

    We develop and evaluate a fully online-coupled model simulating the life-cycle of the most relevant global aerosols (i.e. mineral dust, sea-salt, black carbon, primary and secondary organic aerosols, and sulfate) and their feedbacks upon atmospheric chemistry and radiative balance. Following the capabilities of its meteorological core, the model has been designed to simulate both global and regional scales with unvaried parameterizations: this allows detailed investigation on the aerosol processes bridging the gap between global and regional models. Since the strong uncertainties affecting aerosol models are often unresponsive to model complexity, we choose to introduce complexity only when it clearly improves results and leads to a better understanding of the simulated aerosol processes. We test two important sources of uncertainty - the fires injection height and secondary organic aerosol (SOA) production - by comparing a baseline simulation with experiments using more advanced approaches. First, injection heights prescribed by Dentener et al. (2006, ACP) are compared with climatological injection heights derived from satellite measurements and produced through the Integrated Monitoring and Modeling System For Wildland Fires (IS4FIRES). Also global patterns of SOA produced by the yield conversion of terpenes as prescribed by Dentener et al. (2006, ACP) are compared with those simulated by the two-product approach of Tsigaridis et al. (2003, ACP). We evaluate our simulations using a variety of observations and measurement techniques. Additionally, we discuss our results in comparison to other global models within AEROCOM and ACCMIP.

  13. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle-component-based factor analysis

    NASA Astrophysics Data System (ADS)

    Stroud, C. A.; Moran, M. D.; Makar, P. A.; Gong, S.; Gong, W.; Zhang, J.; Slowik, J. G.; Abbatt, J. P. D.; Lu, G.; Brook, J. R.; Mihele, C.; Li, Q.; Sills, D.; Strawbridge, K. B.; McGuire, M. L.; Evans, G. J.

    2012-02-01

    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in southern Ontario (ON), Canada, were used to evaluate Environment Canada's regional chemical transport model predictions of primary organic aerosol (POA). Environment Canada's operational numerical weather prediction model and the 2006 Canadian and 2005 US national emissions inventories were used as input to the chemical transport model (named AURAMS). Particle-component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two rural sites (Harrow and Bear Creek, ON) to derive hydrocarbon-like organic aerosol (HOA) factors. Co-located carbon monoxide (CO), PM2.5 black carbon (BC), and PM1 SO4 measurements were also used for evaluation and interpretation, permitting a detailed diagnostic model evaluation. At the urban site, good agreement was observed for the comparison of daytime campaign PM1 POA and HOA mean values: 1.1 μg m-3 vs. 1.2 μg m-3, respectively. However, a POA overprediction was evident on calm nights due to an overly-stable model surface layer. Biases in model POA predictions trended from positive to negative with increasing HOA values. This trend has several possible explanations, including (1) underweighting of urban locations in particulate matter (PM) spatial surrogate fields, (2) overly-coarse model grid spacing for resolving urban-scale sources, and (3) lack of a model particle POA evaporation process during dilution of vehicular POA tail-pipe emissions to urban scales. Furthermore, a trend in POA bias was observed at the urban site as a function of the BC/HOA ratio, suggesting a possible association of POA underprediction for diesel combustion sources. For several time periods, POA overprediction was also observed for sulphate-rich plumes, suggesting that our model POA fractions for the PM2.5 chemical speciation profiles may be too high for these point sources. At the rural Harrow site

  14. Insights into a dust event transported through Beijing in spring 2012: Morphology, chemical composition and impact on surface aerosols.

    PubMed

    Hu, Wei; Niu, Hongya; Zhang, Daizhou; Wu, Zhijun; Chen, Chen; Wu, Yusheng; Shang, Dongjie; Hu, Min

    2016-09-15

    Multiple approaches were used to investigate the evolution of surface aerosols in Beijing during the passage of a dust event at high altitude, which was from the Gobi areas of southern Mongolia and covered a wide range of North China. Single particle analysis with electron microscope showed that the majority of coarse particles were mineral ones, and most of them were in the size range of 1-7μm with a peak of number concentration at about 3.5μm. Based on elemental composition and morphology, the mineral particles could be classified into several groups, including Si-rich (71%), Ca-rich (15%), Fe-rich (6%), and halite-rich (2%), etc., and they were the main contributors to the aerosol optical depth as the dust occurred. The size distributions of surface aerosols were significantly affected by the dust intrusion. The average number concentration of accumulation mode particles during the event was about 400cm(-3), which was much lower than that in heavily polluted days (6300cm(-3)). At the stage of floating dust, the number concentration of accumulation mode particles decreased, and coarse particles contributed to total volume concentration of particulate matter as much as 90%. The accumulation mode particles collected in this stage were mostly in the size range of 0.2-0.5μm, and were rectangular or spherical. They were considered to be particles consisting of ammonium sulfate. New particle formation (NPF) was observed around noon in the three days during the dust event, indicating that the passage of the dust was probably favorable for NPF. PMID:27177135

  15. CHEMICAL ANALYSIS METHODS FOR ATMOSPHERIC AEROSOL COMPONENTS

    EPA Science Inventory

    This chapter surveys the analytical techniques used to determine the concentrations of aerosol mass and its chemical components. The techniques surveyed include mass, major ions (sulfate, nitrate, ammonium), organic carbon, elemental carbon, and trace elements. As reported in...

  16. Atmospheric aerosols as prebiotic chemical reactors

    PubMed Central

    Dobson, Christopher M.; Ellison, G. Barney; Tuck, Adrian F.; Vaida, Veronica

    2000-01-01

    Aerosol particles in the atmosphere have recently been found to contain a large number of chemical elements and a high content of organic material. The latter property is explicable by an inverted micelle model. The aerosol sizes with significant atmospheric lifetimes are the same as those of single-celled organisms, and they are predicted by the interplay of aerodynamic drag, surface tension, and gravity. We propose that large populations of such aerosols could have afforded an environment, by means of their ability to concentrate molecules in a wide variety of physical conditions, for key chemical transformations in the prebiotic world. We also suggest that aerosols could have been precursors to life, since it is generally agreed that the common ancestor of terrestrial life was a single-celled organism. The early steps in some of these initial transformations should be accessible to experimental investigation. PMID:11035775

  17. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle component-based factor analysis

    NASA Astrophysics Data System (ADS)

    Stroud, C. A.; Moran, M. D.; Makar, P. A.; Gong, S.; Gong, W.; Zhang, J.; Slowik, J. G.; Abbatt, J. P. D.; Lu, G.; Brook, J. R.; Mihele, C.; Li, Q.; Sills, D.; Strawbridge, K. B.; McGuire, M. L.; Evans, G. J.

    2012-09-01

    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA) and two other carbonaceous species, black carbon (BC) and carbon monoxide (CO), made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two rural sites (Harrow and Bear Creek, ON) to derive hydrocarbon-like organic aerosol (HOA) factors. A novel diagnostic model evaluation was performed by investigating model POA bias as a function of HOA mass concentration and indicator ratios (e.g. BC/HOA). Eight case studies were selected based on factor analysis and back trajectories to help classify model bias for certain POA source types. By considering model POA bias in relation to co-located BC and CO biases, a plausible story is developed that explains the model biases for all three species. At the rural sites, daytime mean PM1 POA mass concentrations were under-predicted compared to observed HOA concentrations. POA under-predictions were accentuated when the transport arriving at the rural sites was from the Detroit/Windsor urban complex and for short-term periods of biomass burning influence. Interestingly, the daytime CO concentrations were only slightly under-predicted at both rural sites, whereas CO was over-predicted at the urban Windsor site with a normalized mean bias of 134%, while good agreement was observed at Windsor for the comparison of daytime PM1 POA and HOA mean values, 1.1 μg m-3 and 1.2 μg m-3, respectively. Biases in model POA predictions also trended from positive to negative with increasing HOA values. Periods of POA over-prediction were most evident at the urban site on calm nights due to an overly-stable model surface layer. This model behaviour can be explained by a combination of model under

  18. Physical and Chemical Properties of Anthropogenic Aerosols: An Overview

    EPA Science Inventory

    Aerosol chemical composition is complex. Combustion aerosols can comprise tens of thousands of organic compounds, refractory brown and black carbon, heavy metals, cations, anions, salts, and other inorganic phases. Aerosol organic matter normally contains semivolatile material th...

  19. Study of Aerosol Chemical Composition Based on Aerosol Optical Properties

    NASA Astrophysics Data System (ADS)

    Berry, Austin; Aryal, Rudra

    2015-03-01

    We investigated the variation of aerosol absorption optical properties obtained from the CIMEL Sun-Photometer measurements over three years (2012-2014) at three AERONET sites GSFC; MD Science_Center and Tudor Hill, Bermuda. These sites were chosen based on the availability of data and locations that can receive different types of aerosols from land and ocean. These absorption properties, mainly the aerosol absorption angstrom exponent, were analyzed to examine the corresponding aerosol chemical composition. We observed that the retrieved absorption angstrom exponents over the two sites, GSFC and MD Science Center, are near 1 (the theoretical value for black carbon) and with low single scattering albedo values during summer seasons indicating presence of black carbon. Strong variability of aerosol absorption properties were observed over Tudor Hill and will be analyzed based on the air mass embedded from ocean side and land side. We will also present the seasonal variability of these properties based on long-range air mass sources at these three sites. Brent Holben, NASA GSFC, AERONET, Jon Rodriguez.

  20. Size-Resolved Volatility and Chemical Composition of Aged European Aerosol Measured During FAME-2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Mohr, C.; Lee, B.; Engelhart, G. J.; Decarlo, P. F.; Prevot, A. S.; Baltensperger, U.; Donahue, N. M.; Pandis, S. N.

    2008-12-01

    We present first results on the volatility and chemical composition of aged organic aerosol measured during the Finokalia Aerosol Measurement Experiment - 2008 (FAME-2008). Finokalia is located in the Southeast of Crete, Greece, and this remote site allows for the measurement of aged European aerosol as it is transported from Central to Southeastern Europe. We measured the volatility of the aerosol at Finokalia as a function of its size by combining several instruments. We used an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) to measure the size-resolved chemical composition of the particles, a scanning mobility particle sizer (SMPS) to measure the volume distribution of particles, and a thermodenuder system to induce changes in size and composition via moderate heating of the particles. The largest fraction of the non-refractory material in the aerosol sampled was ammonium sulfate and ammonium bisulfate, followed by organic material and a small contribution from nitrate. Most of the organic aerosol was highly oxidized, even after only a few days of transport over continental Europe. These highly oxidized organics had lower volatility than fresh primary or secondary aerosol measured in the laboratory. Significant changes in air-parcel trajectories and wind direction led to changes in the chemical composition of the sampled aerosol and corresponding changes of the volatility. These results allow the quantification of the effect of atmospheric processing on organic aerosol volatility and can be used as constraints for atmospheric Chemical Transport Models that predict the aerosol volatility.

  1. Physical and Chemical Properties of Anthropogenic Aerosols: An overview

    EPA Science Inventory

    A wide variety of anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is complex. Combustion aerosols can c...

  2. Sensitivity of aerosol properties to new particle formation mechanism and to primary emissions in a continental-scale chemical transport model

    SciTech Connect

    Chang,L.S.; Schwartz, S.E.; McGraw, R.; Lewis, E.R.

    2009-04-02

    Four theoretical formulations of new particle formation (NPF) and one empirical formulation are used to examine the sensitivity of observable aerosol properties to NPF formulation and to properties of emitted particles in a continental-scale model for the United States over a 1-month simulation (July 2004). For each formulation the dominant source of Aitken mode particles is NPF with only a minor contribution from primary emissions, whereas for the accumulation mode both emissions and transfer of particles from the Aitken mode are important. The dominant sink of Aitken mode number is coagulation, whereas the dominant sink of accumulation mode number is wet deposition (including cloud processing), with a minor contribution from coagulation. The aerosol mass concentration, which is primarily in the accumulation mode, is relatively insensitive to NPF formulation despite order-of-magnitude differences in the Aitken mode number concentration among the different parameterizations. The dominant sensitivity of accumulation mode number concentration is to the number of emitted particles (for constant mass emission rate). Comparison of modeled aerosol properties with aircraft measurements shows, as expected, better agreement in aerosol mass concentration than in aerosol number concentration for all NPF formulations considered. These comparisons yield instances of rather accurate simulations in the planetary boundary layer, with poor model performance in the free troposphere attributed mainly to lack of representation of biomass burning and/or to long-range transport of particles from outside the model domain. Agreement between model results and measurements is improved by using smaller grid cells (12 km versus 60 km).

  3. Chemical aerosol flow synthesis of semiconductor nanoparticles.

    PubMed

    Didenko, Yuri T; Suslick, Kenneth S

    2005-09-01

    Nanometer-sized semiconductor particles (quantum dots) have been the subject of intense research during the past decade owing to their novel electronic, catalytic, and optical properties. Fundamental properties of these nanoparticles (1-20 nm diameter) can be systematically changed simply by controlling the size of the crystals while holding their chemical composition constant. We describe here a new methodology for the continuous production of fluorescent CdS, CdSe, and CdTe nanoparticles using ultrasonically generated aerosols of high boiling point solvents. Each submicron droplet serves as a separate nanoscale chemical reactor, with reactions proceeding as the liquid droplets (which hold both reactants and surface stabilizers) are heated in a gas stream. The method is inexpensive, scalable, and allows for the synthesis of high quality nanocrystals. This chemical aerosol flow synthesis (CAFS) can be extended to the synthesis of nanostructured metals, oxides, and other materials. PMID:16131177

  4. Electrostatic sampler for semivolatile aerosols: chemical artifacts.

    PubMed

    Volckens, John; Leith, David

    2002-11-01

    Electrostatic precipitators (ESPs) show promise as an alternative sampling method for semivolatile aerosols because they are less susceptible to adsorptive and evaporative artifacts than filter based methods. However, the corona discharge may after the chemical composition of a sampled aerosol. Chemical artifacts associated with electrostatic precipitation of semivolatile aerosols were investigated in the laboratory. ESPs and filters sampled both particles and vapors of alkanes, polycyclic aromatic hydrocarbons, and alkenes across varying concentrations. Gravimetric measurements between the two sampling methods were well correlated. Ozone generated by the ESP corona was the primary cause of alkene reactions in the gas phase. Particles collected within the corona region were vulnerable to irradiation by corona ions overtime. Particles collected outside the corona region did not react. Vapors passing through the corona reacted to a lesser extent. Vapors captured after passing through the ESP reacted with ozone that was not removed by the vapor trap. Chemical speciation of highly reactive compounds (i.e., alkenes or other compounds with relatively short half-lives outdoors) is not appropriate with ESPs. Electrostatic precipitation of these compounds is appropriate, however, when total organic carbon is of interest as the ESP does not alter the amount of mass measured gravimetrically. ESPs can make accurate measurements of more persistent semivolatile compounds, such as alkanes and PAHs. PMID:12433171

  5. Multi- year Arctic and Antarctic aerosol chemical characterization

    NASA Astrophysics Data System (ADS)

    Udisti, Roberto; Becagli, Silvia; Caiazzo, Laura; Calzolai, Giulia; Cappelletti, David; Giardi, Fabio; Grotti, Marco; Malandrino, Mery; Nava, Silvia; Severi, Mirko; Traversi, Rita

    2016-04-01

    Long term measurements of aerosol chemical composition in polar region are particularly relevant to investigate potential climatic effects of atmospheric components arising from both natural and anthropogenic emissions. In order to improve our knowledge on the atmospheric load and chemical composition of polar aerosol, several measurements and sampling campaigns were carried out both in Antarctica and in the Arctic since 2005.The main results are here reported. As regard as Antarctica, a continuous all-year-round sampling of size-segregated aerosol was carried from 2005 to 2013 at Dome C (East Antarctica; 75° 60' S, 123° 200' E, 3220 m a.s.l. and 1100 km away from the nearest coast). Aerosol was collected by PM10 and PM2.5 samplers and by multi-stage impactors (Dekati 4-stage impactor). Chemical analysis was carried out by Ion Chromatography (ions composition) and ICP-MS (trace metals). Sea spray showed a sharp seasonal pattern, with winter (Apr-Nov) concentrations about ten times larger than summer (Dec-Mar). Besides, in winter, sea spray particles are mainly sub micrometric, while the summer size-mode is around 1-2 um. Meteorological analysis and air mass back trajectory reconstructions allowed the identification of two major air mass pathways: micrometric fractions for transport from the closer Indian-Pacific sector, and sub-micrometric particles for longer trajectories over the Antarctic Plateau. The markers of oceanic biogenic emission (methanesulfonic acid - MSA, and non-sea-salt sulphate) exhibit a seasonal cycle with summer maxima (Nov-Mar). Their size distributions show two modes (0.4- 0.7 um and 1.1-2.1 um) in early summer and just one sub-micrometric mode in full summer. The two modes are related to different transport pathways. In early summer, air masses came primarily from the Indian Ocean and spent a long time over the continent. The transport of sulphur compounds is related to sea spray aerosols and the resulting condensation of H2SO4 and MSA over

  6. Evolution of Asian aerosols during transpacific transport in INTEX-B

    SciTech Connect

    Dunlea, E. J.; DeCarlo, Peter; Aiken, Allison; Kimmel, Joel; Peltier, R. E.; Weber, R. J.; Tomlinson, Jason M.; Collins, Donald R.; Shinozuka, Yohei; McNaughton, C. S.; Howell, S. G.; Clarke, A. D.; Emmons, L.; Apel, Eric; Pfister, G. G.; van Donkelaar, A.; Martin, R. V.; Millet, D. B.; Heald, C. L.; Jimenez, J. L.

    2009-10-01

    Measurements of aerosol composition were made with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) on board the NSF/NCAR C-130 aircraft as part of the Intercontinental Chemical Transport Experiment Phase B 5 (INTEX-B) field campaign over the Eastern Pacific Ocean. The HR-ToF-AMS measurements of non-refractory submicron aerosol mass are shown to compare well with other aerosol instrumentation in the INTEX-B field study. Two case studies are described for pollution layers transported across the Pacific from the Asian continent, intercepted 3–4 days and 7–10 days downwind of Asia, respectively. Aerosol chemistry is shown to 10 be a robust tracer for air masses originating in Asia, specifically the presence of sulfate dominated aerosol is a distinguishing feature of Asian pollution layers that have been transported to the Eastern Pacific. We examine the time scales of processing for sulfate and organic aerosol in the atmosphere and show that our observations confirm a conceptual model for transpacific transport from Asia proposed by Brock et al. (2004). 15 Our observations of both sulfate and organic aerosol in aged Asian pollution layers are consistent with fast formation near the Asian continent, followed by washout during lofting and subsequent transformation during transport across the Pacific. Our observations are the first atmospheric measurements to indicate that although secondary organic aerosol (SOA) formation from pollution happens on the timescale of one day, 20 the oxidation of organic aerosol continues at longer timescales in the atmosphere. Comparisons with chemical transport models of data from the entire campaign reveal an under-prediction of SOA mass in the MOZART model, but much smaller discrepancies with the GEOS-Chem model than found in previous studies over the Western Pacific. No evidence is found to support a previous hypothesis for significant secondary 25 organic aerosol formation in the free troposphere.

  7. Chemical characterization of aerosol particles by laser Raman spectroscopy. Revision

    SciTech Connect

    Fung, K.H.

    1999-12-01

    The importance of aerosol particles in many branches of science, such as atmospheric chemistry, combustion, interfacial science, and material processing, has been steadily growing during the past decades. One of the unique properties of these particles is the very high surface-to-volume ratios, thus making them readily serve as centers for gas-phase condensation and heterogeneous reactions. These particles must be characterized by size, shape, physical state, and chemical composition. Traditionally, optical elastic scattering has been applied to obtain the physical properties of these particle (e.g., particle size, size distribution, and particle density). These physical properties are particularly important in atmospheric science as they govern the distribution and transport of atmospheric aerosols.

  8. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  9. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  10. Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways

    NASA Astrophysics Data System (ADS)

    Drozd, Greg T.; Worton, David R.; Aeppli, Christoph; Reddy, Christopher M.; Zhang, Haofei; Variano, Evan; Goldstein, Allen H.

    2015-11-01

    Releases of hydrocarbons from oil spills have large environmental impacts in both the ocean and atmosphere. Oil evaporation is not simply a mechanism of mass loss from the ocean, as it also causes production of atmospheric pollutants. Monitoring atmospheric emissions from oil spills must include a broad range of volatile organic compounds (VOC), including intermediate-volatile and semivolatile compounds (IVOC, SVOC), which cause secondary organic aerosol (SOA) and ozone production. The Deepwater Horizon (DWH) disaster in the northern Gulf of Mexico during Spring/Summer of 2010 presented a unique opportunity to observe SOA production due to an oil spill. To better understand these observations, we conducted measurements and modeled oil evaporation utilizing unprecedented comprehensive composition measurements, achieved by gas chromatography with vacuum ultraviolet time of flight mass spectrometry (GC-VUV-HR-ToFMS). All hydrocarbons with 10-30 carbons were classified by degree of branching, number of cyclic rings, aromaticity, and molecular weight; these hydrocarbons comprise ˜70% of total oil mass. Such detailed and comprehensive characterization of DWH oil allowed bottom-up estimates of oil evaporation kinetics. We developed an evaporative model, using solely our composition measurements and thermodynamic data, that is in excellent agreement with published mass evaporation rates and our wind-tunnel measurements. Using this model, we determine surface slick samples are composed of oil with a distribution of evaporative ages and identify and characterize probable subsurface transport of oil.

  11. Sources, Transport, and Climate Impacts of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    In this presentation, I will first talk about fundamentals of modeling of biomass burning emissions of aerosols, then show the results of GOCART model simulated biomass burning aerosols. I will compare the model results with observations of satellite and ground-based network in terms of total aerosol optical depth, aerosol absorption optical depth, and vertical distributions. Finally the long-range transport of biomass burning aerosols and the climate effects will be addressed. I will also discuss the uncertainties associated with modeling and observations of biomass burning aerosols

  12. Projected effect of 2000-2050 changes in climate and emissions on aerosol levels in China and associated transboundary transport

    EPA Science Inventory

    We investigate projected 2000–2050 changes in concentrations of aerosols in China and the associated transboundary aerosol transport by using the chemical transport model GEOS-Chem driven by the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 3 at 4° × ...

  13. Evaluating global atmospheric transport of plutonium with dust aerosols

    NASA Astrophysics Data System (ADS)

    Velarde, R.; Arimoto, R.; Gill, T. E.; Kang, C.; Goodell, P.

    2009-12-01

    The resuspension of soils contaminated with radionuclides from nuclear weapons tests is a mechanism by which plutonium can be re-distributed throughout the environment. To better understand the global atmospheric transport of plutonium, we measured the activity of Pu in aerosol samples from four widely separated sites that receive dust from distant sources in both Asia and Africa. High-volume aerosol samples were collected from Barbados (2005 - 2006); Gosan, South Korea (2005 - 2006); Izaña, Canary Islands (1989 - 1996); and Mauna Loa Observatory, Hawaii (2005 - 2006) to evaluate the relationship between Pu activity and mineral dust concentrations (using crustal elements such as aluminum as a dust proxy). The activity of 239,240Pu (239Pu + 240Pu) in the aerosol samples was determined by alpha spectrometry following a series of chemical separations. Concentrations of other elements were determined by a variety of techniques. Pu activity was below the detection limit in many samples. In those samples where it was detected, the Gosan site had the highest dust concentrations and highest total plutonium activity, while Mauna Loa Observatory had the lowest dust concentrations and lowest 239,240Pu activity. The Izaña samples had the second highest concentrations of dust and plutonium activity, while Barbados had the third highest levels of both crustal aerosols and plutonium activity. The dust concentrations are consistent with previous observations at these remote sites, and we propose that the plutonium (primarily from past atmospheric nuclear weapons testing, much of which took place in arid lands) was deposited on erodible soil surfaces and subsequently transported as part of the overall mineral dust load. The results of this study have implications for the global transport and fate of Pu through its association with dust, the biogeochemical and environmental impacts of other substances associated with dust, and the workings of the dust cycle itself.

  14. Aerosol chemical components in Alaska air masses: 1. Aged pollution

    NASA Astrophysics Data System (ADS)

    Shaw, Glenn E.

    1991-12-01

    A 4-year Alaska chemical data set of aerosols or "dust" in the air clearly reveals a mixture of distinct aerosol components with different and interesting chemical composition, one or two being ascribed to pollution imported to Alaska by winds all the way from other continents. Of particular note is a strong chemical contrast between what we imagine to be highly scavenged, orographically lifted, northern Pacific air (Pacific marine air mass) and stagnant Arctic air (polar air mass), the latter containing seasonal average concentrations of between 2-4 times the concentration of the former, at least for pollution markers noncrustal vanadium, noncrustal manganese, arsenic, selenium, bromine, and antimony. The findings concur our old discovery that Arctic air is persistently polluted (Arctic haze), but Pacific air is relatively clean, in spite of the fact that Alaska is downwind of major pollution sources in the Orient. This is remarkable. In this the first of a two-part paper, we concentrate on the pollution component found primarily during incursion of Arctic polar air. Two major occurrences of visual haze with optical depths of approximately 0.2 and elevated aerosol concentration lasting about a month (spring 1985 and 1986) were affiliated with strong incoming transport of polar air, temperatures ranging from 10° to 20°C below normal (polar air) and air trajectory hindcasts leading back to industrial pollution sources in Eurasia. These long-range transport pollution events brought metal-rich aerosol of removal-resistant submicron particles. The size, chemistry, and meteorology all strongly suggest the presence of a well-aged (10-100 day) polluted air mass. An important implication is that in spring a large fraction of the Arctic polar air mass becomes charged with by-products of industrial pollution. In this multiyear chemical data set one finds a notable summer-winter contrast, changing by factors of 2 to 4 for pollution markers As, Se, Sb, and noncrustal

  15. MELCOR aerosol transport module modification for NSSR-1

    SciTech Connect

    Merrill, B.J.; Hagrman, D.L.

    1996-03-01

    This report describes modifications of the MELCOR computer code aerosol transport module that will increase the accuracy of calculations for safety analysis of the International Thermonuclear Experimental Reactor (ITER). The modifications generalize aerosol deposition models to consider gases other than air, add specialized models for aerosol deposition during high speed gas flows in ducts, and add models for resuspension of aerosols that are entrained in coolants when these coolants flash. Particular attention has been paid to the adhesion of aerosol particles once they are transported to duct walls. The results of calculations with the modified models have been successfully compared to data from Light Water Reactor Aerosol Containment Experiments (LACE) conducted by an international consortium at Hanford, Washington.

  16. Informing Aerosol Transport Models With Satellite Multi-Angle Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Limbacher, J.; Patadia, F.; Petrenko, M.; Martin, M. Val; Chin, M.; Gaitley, B.; Garay, M.; Kalashnikova, O.; Nelson, D.; Scollo, S.

    2011-01-01

    As the aerosol products from the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) mature, we are placing greater focus on ways of using the aerosol amount and type data products, and aerosol plume heights, to constrain aerosol transport models. We have demonstrated the ability to map aerosol air-mass-types regionally, and have identified product upgrades required to apply them globally, including the need for a quality flag indicating the aerosol type information content, that varies depending upon retrieval conditions. We have shown that MISR aerosol type can distinguish smoke from dust, volcanic ash from sulfate and water particles, and can identify qualitative differences in mixtures of smoke, dust, and pollution aerosol components in urban settings. We demonstrated the use of stereo imaging to map smoke, dust, and volcanic effluent plume injection height, and the combination of MISR and MODIS aerosol optical depth maps to constrain wildfire smoke source strength. This talk will briefly highlight where we stand on these application, with emphasis on the steps we are taking toward applying the capabilities toward constraining aerosol transport models, planet-wide.

  17. Evaluation of liquid aerosol transport through porous media.

    PubMed

    Hall, R; Murdoch, L; Falta, R; Looney, B; Riha, B

    2016-07-01

    Application of remediation methods in contaminated vadose zones has been hindered by an inability to effectively distribute liquid- or solid-phase amendments. Injection as aerosols in a carrier gas could be a viable method for achieving useful distributions of amendments in unsaturated materials. The objectives of this work were to characterize radial transport of aerosols in unsaturated porous media, and to develop capabilities for predicting results of aerosol injection scenarios at the field-scale. Transport processes were investigated by conducting lab-scale injection experiments with radial flow geometry, and predictive capabilities were obtained by developing and validating a numerical model for simulating coupled aerosol transport, deposition, and multi-phase flow in porous media. Soybean oil was transported more than 2m through sand by injecting it as micron-scale aerosol droplets. Oil saturation in the sand increased with time to a maximum of 0.25, and decreased with radial distance in the experiments. The numerical analysis predicted the distribution of oil saturation with only minor calibration. The results indicated that evolution of oil saturation was controlled by aerosol deposition and subsequent flow of the liquid oil, and simulation requires including these two coupled processes. The calibrated model was used to evaluate field applications. The results suggest that amendments can be delivered to the vadose zone as aerosols, and that gas injection rate and aerosol particle size will be important controls on the process. PMID:27149690

  18. Evaluation of liquid aerosol transport through porous media

    NASA Astrophysics Data System (ADS)

    Hall, R.; Murdoch, L.; Falta, R.; Looney, B.; Riha, B.

    2016-07-01

    Application of remediation methods in contaminated vadose zones has been hindered by an inability to effectively distribute liquid- or solid-phase amendments. Injection as aerosols in a carrier gas could be a viable method for achieving useful distributions of amendments in unsaturated materials. The objectives of this work were to characterize radial transport of aerosols in unsaturated porous media, and to develop capabilities for predicting results of aerosol injection scenarios at the field-scale. Transport processes were investigated by conducting lab-scale injection experiments with radial flow geometry, and predictive capabilities were obtained by developing and validating a numerical model for simulating coupled aerosol transport, deposition, and multi-phase flow in porous media. Soybean oil was transported more than 2 m through sand by injecting it as micron-scale aerosol droplets. Oil saturation in the sand increased with time to a maximum of 0.25, and decreased with radial distance in the experiments. The numerical analysis predicted the distribution of oil saturation with only minor calibration. The results indicated that evolution of oil saturation was controlled by aerosol deposition and subsequent flow of the liquid oil, and simulation requires including these two coupled processes. The calibrated model was used to evaluate field applications. The results suggest that amendments can be delivered to the vadose zone as aerosols, and that gas injection rate and aerosol particle size will be important controls on the process.

  19. Aerosol Chemical and Physical Characterization in Central Amazonia during the 2013 Dry Season

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Stern, R.; Brito, J.; Carbone, S.

    2015-12-01

    During the dry season, the central Amazon forest is highly influenced by forest fires transported through large distances, changing drastically the atmospheric composition even in remote places. This work focuses on a physical-chemical characterization of the aerosol population over a pristine site in Central Amazonia during the dry season. The submicrometer organic aerosols were measured with the Aerodyne ACSM (Aerosol Chemical Speciation Monitor, Aerodyne Inc). Optical properties, size distribution and other micro-physical characteristics were also analyzed. Other instruments were simultaneously used. The measurements were taken during the dry season of 2013 in the Cuieiras ecological reserve (ZF2), northwest of Manaus. The statistical analysis of the data was done with the PMF (Positive Matrix Factorization) technique, in which the organic aerosol was separated into different factors, and then its sources and forming processes were attributed. Results show that the mean aerosol loading was 5,91 μg m-3, from which 78% are of organic composition, 8.5% are sulfate, 6.5% are equivalent black carbon, 4% are ammonium and 3% are nitrate. The mass spectra variability can be explained by 3 factors only, determined with the PMF technique. They were identified as BBOA (Biomass Burning Organic Aerosol), representing 12% of the total organic mass, OOA (Oxygenated Organic Aerosol), representing 66% of the total organic mass and IEPOX-SOA (Isoprene derived Epoxydiol-Secondary Organic Aerosol), representing 21% of the total organic mass. Even in remote and pristine regions, Central Amazonia is highly impacted by biomass burning. Biogenic secondary organic aerosols are also present during the dry season, and the suppression of its wet deposition processes increases their concentration. The oxidation level and other physical-chemical characteristics indicate that the long range transport is responsible for the regional range of this impact.

  20. Acid aerosol transport episodes in Toronto, Ontario

    SciTech Connect

    Thurston, G.D. . Inst. of Environmental Medicine); Waldman, J. )

    1987-01-01

    In this paper, the authors examine the pollution data collected during a 1986 field study in order to assess the nature and sources of acidic aerosols in the Toronto metropolitan area during this period. Through the examination of the continuous and filter aerosol data, isobaric back-trajectories of air masses, weather maps, and available trace element data, assessment are made of the character and possible sources of acid aerosols in this Southern Ontario city.

  1. Simulation of aerosol chemical compositions in the Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Chrit, Mounir; Kata Sartelet, Karine; Sciare, Jean; Marchand, Nicolas; Pey, Jorge; Sellegri, Karine

    2016-04-01

    This work aims at evaluating the chemical transport model (CTM) Polair3d of the air-quality modelling platform Polyphemus during the ChArMex summer campaigns of 2013, using ground-based measurements performed at ERSA (Cape Corsica, France), and at determining the processes controlling organic aerosol concentrations at ERSA. Simulations are compared to measurements for concentrations of both organic and inorganic species, as well as the ratio of biogenic versus anthropogenic particles, and organic aerosol properties (oxidation state). For inorganics, the concentrations of sulphate, sodium, chloride, ammonium and nitrate are compared to measurements. Non-sea-salt sulphate and ammonium concentrations are well reproduced by the model. However, because of the geographic location of the measurement station at Cape Corsica which undergoes strong wind velocities and sea effects, sea-salt sulphate, sodium, chloride and nitrate concentrations are strongly influenced by the parameterizations used for sea-salt emissions. Different parameterizations are compared and a parameterization is chosen after comparison to sodium measurements. For organics, the concentrations are well modelled when compared to experimental values. Anthropogenic particles are influenced by emission of semi-volatile organic compounds (SVOC). Measurements allow us to refine the estimation of those emissions, which are currently missing in emission inventories. Although concentrations of biogenic particles are well simulated, the organic chemical compounds are not enough oxidised in the model. The observed oxidation state of organics shows that the oligomerisation of pinonaldehyde was over-estimated in Polyphemus. To improve the oxidation property of organics, the formation of extremely low volatile organic compounds from autoxidation of monoterpenes is added to Polyphemus, using recently published data from chamber experiments. These chemical compounds are highly oxygenated and are formed rapidly, as first

  2. Estimate of Nutrient Input to the Pacific Ocean from Long-Range Transport of Aerosols

    NASA Astrophysics Data System (ADS)

    Cliff, S. S.; Vancuren, T.

    2003-12-01

    Dust and pollution generation and transport have increasingly become the subject of scrutiny for their impacts on global climate, the ecosystem, and human health. Several recent regional and hemispheric scale campaigns were conducted to better characterize aerosol composition and transport. These campaigns include the 2001 Aerosol Characterization Experiment in Asia (ACE-Asia) and the Intercontinental Transport and Chemical Transformation Experiment of 2002 (ITCT-2K2). In addition, long-term sampling has been conducted at National Parks and Monuments across the United States as part of the Interagency Monitoring of Protected Visual Environments (IMPROVE) program. These data provide a basis for estimating the transport and deposition of atmospheric particulate matter to the northern hemisphere oceans. Here we focus on the aerosol that is generated in Asia (i.e. compositionally distinct from North America and Europe) and transported across the Pacific Basin. The flux of aerosol from the source region from ACE-Asia data combined with data from receptor sites in North America from ACE-Asia, ITCT, and IMPROVE sampling are used to estimate oceanic deposition. A previously identified signature for Asian aerosol (VanCuren and Cahill, JGR December 2003) is used as a marker for transport. Comparison with direct deposition measurements is made.

  3. URBAN AEROSOL TRANSFORMATION AND TRANSPORT MODELING

    EPA Science Inventory

    Modules for secondary aerosol formation have been included in the urban scale K-theory aerosol model, AR0S0L. hese are: (1) An empirical first-order 502 conversion scheme due to Meaghers, termed EMM; (2) The lumped parameter kinetic model termed the Carbon Bond Mechanism, in the ...

  4. Vertical transport and processing of aerosols in a mixed-phase convective cloud and the feedback on cloud development

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Carslaw, K. S.; Feingold, G.

    2005-01-01

    A modelling study of vertical transport and processing of sulphate aerosol by a mixed-phase convective cloud, and the feedback of the cloud-processed aerosols on the development of cloud microphysical properties and precipitation is presented. An axisymmetric dynamic cloud model with bin-resolved microphysics and aqueousphase chemistry is developed and is used to examine the relative importance of microphysical and chemical processes on the aerosol budget, the fate of the aerosol material inside hydrometeors, and the size distributions of cloud-processed sulphate aerosols. Numerical simulations are conducted for a moderately deep convective cloud observed during the Cooperative Convective Precipitation Experiments. The results show that aerosol particles that have been transported from the boundary layer, detrained, and then re-entrained at midcloud levels account for a large fraction of the aerosol inside hydrometeors (~40% by mass). Convective transport by the simulated cloud enhances upper-tropospheric aerosol number and mass concentrations by factors of 2-3 and 3-4, respectively. Sensitivity studies suggest that, for the simulated case, aqueous chemistry does not modify the evolution of the cloud significantly. Finally, ice-phase hydrometeor development is very sensitive to aerosol concentrations at midcloud levels. The latter result suggests that the occurrence of mid-tropospheric aerosol layers that have been advected through long-range transport could strongly affect cloud microphysical processes and precipitation formation.

  5. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol

    NASA Astrophysics Data System (ADS)

    Riva, Matthieu; Budisulistiorini, Sri Hapsari; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.

    2016-04-01

    Isoprene is the most abundant non-methane hydrocarbon emitted into Earth's atmosphere and is predominantly derived from terrestrial vegetation. Prior studies have focused largely on the hydroxyl (OH) radical-initiated oxidation of isoprene and have demonstrated that highly oxidized compounds, such as isoprene-derived epoxides, enhance the formation of secondary organic aerosol (SOA) through heterogeneous (multiphase) reactions on acidified sulfate aerosol. However, studies on the impact of acidified sulfate aerosol on SOA formation from isoprene ozonolysis are lacking and the current work systematically examines this reaction. SOA was generated in an indoor smog chamber from isoprene ozonolysis under dark conditions in the presence of non-acidified or acidified sulfate seed aerosol. The effect of OH radicals on SOA chemical composition was investigated using diethyl ether as an OH radical scavenger. Aerosols were collected and chemically characterized by ultra performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) and gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS). Analysis revealed the formation of highly oxidized compounds, including organosulfates (OSs) and 2-methylterols, which were significantly enhanced in the presence of acidified sulfate seed aerosol. OSs identified in the chamber experiments were also observed and quantified in summertime fine aerosol collected from two rural locations in the southeastern United States during the 2013 Southern Oxidant and Aerosol Study (SOAS).

  6. Influence of continental outflow on aerosol chemical characteristics over the Arabian Sea during winter

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Sudheer, A. K.; Goswami, Vineet; Bhushan, Ravi

    2012-04-01

    The chemical composition of aerosol over the Arabian Sea was investigated during December 2007. Elemental Carbon (EC), Organic Carbon (OC), water soluble organic and inorganic constituents and crustal elements (Al, Fe, Ca, and Mg) were measured in total suspended particulate samples (TSP) collected from marine boundary layer of the Arabian Sea when the oceanic region is influenced by continental outflow. Anthropogenic and natural mineral aerosol originating from continental regions dominates the aerosol composition contributing ∼88% of total aerosol mass. The sea-salt aerosol comprises only ∼12% of TSP. The carbonaceous aerosol exhibits spatial trend similar to that of K+ suggesting major source could be biomass burning. Secondary organic aerosol (SOA) contribution estimated by EC-tracer method suggests that up to 67% of OC can be of secondary origin. Average water soluble organic carbon to OC ratio is ∼0.9, indicates significant formation of SOA during transport of continental air masses. These results demonstrate the dominance of continental aerosol over the Arabian Sea during wintertime where deposition may have major impact on surface ocean biogeochemistry.

  7. Measurements of aerosol chemical composition in boreal forest summer conditions

    NASA Astrophysics Data System (ADS)

    ńijälä, M.; Junninen, H.; Ehn, M.; Petäjä, T.; Vogel, A.; Hoffmann, T.; Corrigan, A.; Russell, L.; Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Kulmala, M.; Worsnop, D.

    2012-04-01

    Boreal forests are an important biome, covering vast areas of the northern hemisphere and affecting the global climate change via various feedbacks [1]. Despite having relatively few anthropogenic primary aerosol sources, they always contain a non-negligible aerosol population [2]. This study describes aerosol chemical composition measurements using Aerodyne Aerosol Mass Spectrometer (C-ToF AMS, [3]), carried out at a boreal forest area in Hyytiälä, Southern Finland. The site, Helsinki University SMEAR II measurement station [4], is situated at a homogeneous Scots pine (Pinus sylvestris) forest stand. In addition to the station's permanent aerosol, gas phase and meteorological instruments, during the HUMPPA (Hyytiälä United Measurements of Photochemistry and Particles in Air) campaign in July 2010, a very comprehensive set of atmospheric chemistry measurement instrumentation was provided by the Max Planck Institute for chemistry, Johannes Gutenberg-University, University of California and the Finnish Meteorological institute. In this study aerosol chemical composition measurements from the campaign are presented. The dominant aerosol chemical species during the campaign were the organics, although periods with elevated amounts of particulate sulfates were also seen. The overall AMS measured particle mass concentrations varied from near zero to 27 μg/m observed during a forest fire smoke episode. The AMS measured aerosol mass loadings were found to agree well with DMPS derived mass concentrations (r2=0.998). The AMS data was also compared with three other aerosol instruments. The Marga instrument [5] was used to provide a quantitative semi-online measurement of inorganic chemical compounds in particle phase. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed on daily filter samples, enabling the identification and quantification of organic aerosol subspecies. Finally an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI

  8. Modeling of aerosol transport as an aid to corrosivity assessment

    SciTech Connect

    Klassen, R.D.; Roberge, P.R.; Tullmin, M.A.

    1999-07-01

    In certain regimes of atmospheric corrosion, the corrosion rate is limited not by electrochemical reactions but by the rate of mass transfer of pollutants. In these cases, a mass transfer model that accounts for the transport of pollutants, such as a marine salt aerosol, provides a theoretical and predictive framework for assessing corrosivity severity. Such a model of the transport of a marine aerosol fairly near the ground and well within the planetary boundary layer was developed. The predicted aerosol concentration as a function of distance for 1500 m from a steady source was consistent with published data on steel corrosion and salinity rates near an ocean. Implications from the model regarding objects that are exposed to aerosol-containing wind include: (1) increasing wind speed increases the aerosol deposition rate and therefore the corrosion rate, (2) objects that are in the lee of prevailing winds from an aerosol source will corrode faster than objects on the windward side of an aerosol source, and (3) smaller objects can be expected to corrode faster because of a greater capture efficiency of salt aerosols.

  9. CCN frequency distributions and aerosol chemical composition from long-term observations at European ACTRIS supersites

    NASA Astrophysics Data System (ADS)

    Decesari, Stefano; Rinaldi, Matteo; Schmale, Julia Yvonne; Gysel, Martin; Fröhlich, Roman; Poulain, Laurent; Henning, Silvia; Stratmann, Frank; Facchini, Maria Cristina

    2016-04-01

    Cloud droplet number concentration is regulated by the availability of aerosol acting as cloud condensation nuclei (CCN). Predicting the air concentrations of CCN involves knowledge of all physical and chemical processes that contribute to shape the particle size distribution and determine aerosol hygroscopicity. The relevance of specific atmospheric processes (e.g., nucleation, coagulation, condensation of secondary organic and inorganic aerosol, etc.) is time- and site-dependent, therefore the availability of long-term, time-resolved aerosol observations at locations representative of diverse environments is strategic for the validation of state-of-the-art chemical transport models suited to predict CCN concentrations. We focused on long-term (year-long) datasets of CCN and of aerosol composition data including black carbon, and inorganic as well as organic compounds from the Aerosol Chemical Speciation Monitor (ACSM) at selected ACTRIS supersites (http://www.actris.eu/). We discuss here the joint frequency distribution of CCN levels and of aerosol chemical components concentrations for two stations: an alpine site (Jungfraujoch, CH) and a central European rural site (Melpitz, DE). The CCN frequency distributions at Jungfraujoch are broad and generally correlated with the distributions of the concentrations of aerosol chemical components (e.g., high CCN concentrations are most frequently found for high organic matter or black carbon concentrations, and vice versa), which can be explained as an effect of the strong seasonality in the aerosol characteristics at the mountain site. The CCN frequency distributions in Melpitz show a much weaker overlap with the distributions of BC concentrations or other chemical compounds. However, especially at high CCN concentration levels, a statistical correlation with organic matter (OM) concentration can be observed. For instance, the number of CCN (with particle diameter between 20 and 250 nm) at a supersaturation of 0.7% is

  10. Characterization of aerosol transport in a recoil transfer chamber for heavy element chemistry

    NASA Astrophysics Data System (ADS)

    Lopez Morales, Gabriel; Tereshatov, Evgeny; Folden, Charles

    2014-09-01

    Heavy elements (HE) are elements with Z >103 that can be synthesized via target material bombardment by accelerated charged particles. Production and investigation of properties of new elements result in understanding of upper limit of Periodic Table of Elements. Study of chemical behavior of HE is usually based on comparison with their light homologue properties. Such experiments require transportation of elements of interest from a target chamber to a radiochemical laboratory within several seconds. Aerosol transport is a widely known way to transfer non-volatile elements in on-line experiments. This particular project is devoted to design, characterization and optimization of aerosol transport for implementation in future experiments at Cyclotron Institute, Texas A&M University. Different types of aerosol generators and particle parameters such as: size distribution, concentration and charge have been considered. Results showing procedure development will be presented. *Funded by DOE and NSF-REU Program.

  11. Analysis of the chemical and physical properties of combustion aerosols: Properties overview

    EPA Science Inventory

    Aerosol chemical composition is remarkably complex. Combustion aerosols can comprise tens of thousands of organic compounds and fragments, refractory carbon, metals, cations, anions, salts, and other inorganic phases and substituents [Hays et al., 2004]. Aerosol organic matter no...

  12. Physical and Chemical Characterization of Carbonaceous Aerosols in Korea

    NASA Astrophysics Data System (ADS)

    Choung, S.; Jin, J. S.; Hwang, G. S.; Jang, K. S.; Han, W. S.; OH, J.; Kwon, Y.

    2014-12-01

    Atmospheric aerosols have been recently paid attention more in environmental research due to their negative effects on air quality, public health, and climate change. The aerosols contain approximately >20-50% carbonaceous components such as organic carbon (OC) and black carbon (BC) (or elemental carbon [EC]) derived from organic compounds, biomass burning, and incomplete combustion of fossil fuels. The physical, chemical, and biological properties of atmospheric aerosols are strongly dependent on the carbonaceous components. In particular, the BC could significantly affect the regional air quality in the northeastern Asia, because China is one of the foremost BC emission country in the world. Previous studies have mainly focused on the quantification and source identification for carbonaceous aerosols. However, understanding of physical and chemical properties for the carbonaceous aerosols related to environmental contamination and toxicity was still incomplete due to analytical difficulties. This study is addressed to evaluate the contribution of carbonaceous aerosols to air pollution through the surface, mass spectroscopic, and electron microscopic analyses, and determination of chemical composition and structure using the air particulate matter (PM2.5 and >PM2.5) samples.

  13. Aerosol chemical and optical properties over the Paris area within ESQUIF project

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Vautard, R.; Chazette, P.; Menut, L.; Bessagnet, B.

    2006-01-01

    Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environment against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce fairly well the plume structure and location both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirmed the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicated that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated of about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%) and inorganic aerosol fraction (40%) including nitrate (8%), sulfate (22%) and ammonium (10%). The secondary organic aerosols (SOA) represent 12% of the total aerosol mass, while the mineral dust

  14. Aerosol chemical and optical properties over the Paris area within ESQUIF project

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Vautard, R.; Chazette, P.; Menut, L.; Bessagnet, B.

    2006-08-01

    Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environments against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce the plume structure and location fairly well both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirm the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicates that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated by about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%), and inorganic aerosol fraction (40%) including nitrate (8%), sulfate (22%) and ammonium (10%). The secondary organic aerosols (SOA) represent 12% of the total aerosol mass, while the mineral dust

  15. Chemical Transport--Coping with Disasters.

    ERIC Educational Resources Information Center

    Rawls, Rebecca L.

    1980-01-01

    Describes operations of CHEMTREC, a chemical emergency information system supported by the Chemical Manufacturer's Association. Presents data on transportation incidents involving hazardous materials and the most frequently involved chemicals in transportation incidents. (CS)

  16. Optical Properties and Climate Impacts of Tropospheric Aerosols that Undergo Long-Range Transport to the Arctic

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Bates, T.; Coffman, D.; Schulz, K.; Shank, L.; Jefferson, A.; Ogren, J.; Burkhart, J.; Shaw, G.

    2009-04-01

    Tropospheric aerosol particles undergo long range transport from the mid-latitudes to the Arctic each winter and spring. Once in the Arctic, aerosols may impact regional climate in several ways. Aerosols can affect climate directly by scattering and absorbing incoming solar radiation and indirectly by acting as cloud condensation nuclei and altering cloud properties. In addition, absorbing aerosol that is deposited onto ice and snow can lower the surface albedo and enhance the ice-albedo feedback mechanism. Measurements of aerosol properties relevant to climate forcing (chemical composition, light scattering, and light absorption) have been made by NOAA at Barrow, AK for over a decade. Measurements of aerosol chemical composition have been made over the same time period at the three more southern Alaskan sites of Poker Flat, Denali National Park, and Homer. In addition, in March and April of 2008, aerosol measurements were made during a NOAA research cruise (ICEALOT) to the Greenland, Norwegian and Barents Seas. Onboard the ship, measurements were made of aerosol optical and cloud nucleating properties. Results from the long-term measurements and ICEALOT will be presented in order to describe trends and climate-relevant properties of aerosol particles transported to the Arctic.

  17. Aerosol chemical mass closure during the EUROTRAC-2 AEROSOL Intercomparison 2000

    NASA Astrophysics Data System (ADS)

    Maenhaut, Willy; Schwarz, Jaroslav; Cafmeyer, Jan; Chi, Xuguang

    2002-04-01

    The field work for the AEROSOL Intercomparison 2000 took place from 4 to 14 April 2000 at Melpitz, Germany. One objective was to assess to which extent aerosol chemical mass closure could be obtained for the site. For this purpose, we operated four filter samplers in parallel (mostly using 12-h collections): two Gent PM10 stacked filter unit (SFU) samplers (one with coarse and fine Nuclepore polycarbonate filters, the other with a Gelman Teflo filter as fine filter) and two single filter holders (one with PM2.5 inlet, the other with PM10 inlet) with Whatman QM-A quartz fibre filters. All samples were analysed for the particulate mass (PM) by weighing; the samples from the first SFU were analysed for 42 elements by a combination of particle-induced X-ray emission spectroscopy and instrumental neutron activation analysis, those from the other SFU for major anions and cations by ion chromatography. All quartz filters were analysed for organic carbon and elemental carbon by a thermal-optical transmission technique. Aerosol chemical mass closure calculations were done for the separate fine (PM2) and coarse (2-10 μm) size fractions. As gravimetric PM data we used the averages from the parallel SFU collections. For reconstituting this PM, nine aerosol types (or components) were considered. Crustal matter, organic aerosol and nitrate were the major aerosol types in the coarse size fraction; the dominant aerosol types in the fine fraction were organic aerosol, nitrate and sulphate. The included components explained 116% and 86% of the gravimetric PM in the coarse and fine size fractions, respectively.

  18. Stratospheric aerosol modification by supersonic transport operations with climate implications

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Turco, R. P.; Pollack, J. B.; Whitten, R. C.; Poppoff, I. G.; Hamill, P.

    1980-01-01

    The potential effects on stratospheric aerosois of supersonic transport emissions of sulfur dioxide gas and submicron size soot granules are estimated. An interactive particle-gas model of the stratospheric aerosol is used to compute particle changes due to exhaust emissions, and an accurate radiation transport model is used to compute the attendant surface temperature changes. It is shown that a fleet of several hundred supersonic aircraft, operating daily at 20 km, could produce about a 20% increase in the concentration of large particles in the stratosphere. Aerosol increases of this magnitude would reduce the global surface temperature by less than 0.01 K.

  19. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M.; Surratt, J. D.; Chan, A. W.; Schlling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J.

    2011-12-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI- TOFMS). A number of first- , second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  20. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Surratt, J. D.; Chan, A. W. H.; Schilling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E. O.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J. H.

    2011-02-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  1. Influence of aerosol acidity on the chemical composition of Secondary Organic Aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Surratt, J. D.; Chan, A. W. H.; Schilling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E. O.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J. H.

    2010-11-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increase of acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are identified as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  2. Physico-chemical properties of aerosols in Sao Paulo, Brazil and mechanisms of secondary organic aerosol formation.

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Luiza Godoy, Maria; Godoy, Jose Marcus

    2013-04-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an increasingly important role. Sao Paulo is a megacity with a population of about 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in Sao Paulo is bellow WMO standards for aerosol particles and ozone. Many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission characteristics, we are running a source apportionment study in Sao Paulo focused on the mechanisms of organic aerosol formation. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles). This study comprises four sampling sites with continuous measurements for one year, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, O3, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to measure in real time VOCs and aerosol composition, respectively. Trace elements were measured using XRF and OC/EC analysis was determined with a Sunset OC/EC instrument. A TSI Nephelometer with 3 wavelengths measure light scattering and a MAAP measure black carbon. Results show aerosol number concentrations ranging between 10,000 and 35,000 cm-3, mostly concentrated in the nucleation and Aitken modes, with a peak in size at 80

  3. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter < 10 microns) and PM2.5 (particles with diameter 2.5 microns) are 50 pg/cu m and 15 pg/cu m, respectively. While local and regional emission sources are the main cause of air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  4. Acid aerosol transport episodes in Toronto, Ontario

    SciTech Connect

    Thurston, G.D.; Waldman, J.M.

    1987-07-01

    Authors used recently developed equipment to continuously monitor levels of H/sub 2/SO/sub 4/, NH/sub 4/HSO/sub 4/ and (NH/sub 4/)/sub 2/SO/sub 4/ concentrations in the ambient air outside Toronto, Ontario. These data were combined with 48-hour isobaric air mass back-trajectories ending in Toronto on each of the four days with highest acid (and sulfate) aerosol levels. The air masses with highest acid levels were found to have first passed over the SO/sub 2/ source region of the U.S. and then across the Great Lakes to Toronto. The role of ammonia as a modulator of aerosol acidity for eastern U.S. cities but not for Toronto (where the Great Lakes serve as ammonia sinks) is also discussed.

  5. Chemical Composition and Size Distributions of Coastal Aerosols Observed on the U.S. East Coast

    NASA Astrophysics Data System (ADS)

    Xia, L.; Song, F.; Jusino-Atresino, R.; Thuman, C.; Gao, Y.

    2008-12-01

    Aerosol input is an important source of certain limiting nutrients, such as iron, for phytoplankton growth in several large oceanic regions. As the efficiency of biological uptake of nutrients may depend on the aerosol properties, a better knowledge of aerosol properties is critically important. Characterizing aerosols over the coastal ocean needs special attention, because the properties of aerosols could be altered by many anthropogenic processes in this land-ocean transition zone before they are transported over the remote ocean. The goal of this experiment was to examine aerosol properties, in particular chemical composition, particle-size distributions and iron solubility, over the US Eastern Seaboard, an important boundary for the transport of continental substances from North America to the North Atlantic Ocean. Our field sampling site was located at Tuckerton (39°N, 74°W) on the southern New Jersey coast. Fourteen sets of High-Volume aerosol samples and three sets of size segregated aerosol samples by a 10-stage MOUDI impactor were collected during 2007 and 2008. The ICP-MS methodology was used to analyze aerosol samples for the concentrations of thirteen trace elements: Al, Fe, Mn, Sc, Cd, Pb, Sb, Ni, Co, Cr, Cu, Zn and V. The IC procedures were applied to determine five cations (sodium, ammonium, potassium, magnesium and calcium) and eleven anions (fluoride, acetate, propionate, formate, MSA, chloride, nitrate, succinate, malonate, sulfate and oxalate). The UV spectrometry was employed for the determination of iron solubility. Preliminary results suggest three major sources of aerosols: anthropogenic, crustal and marine. At this location, the concentrations of iron (II) ranged from 2.8 to 29ng m-3, accounting for ~20% of the total iron. The iron concentrations at this coastal site were substantially lower than those observed in Newark, an urban site in northern NJ. High concentrations of iron (II) were associated with both fine and coarse aerosol

  6. Transported acid aerosols measured in southern Ontario

    NASA Astrophysics Data System (ADS)

    Keeler, Gerald J.; Spengler, John D.; Koutrakis, Petros; Allen, George A.; Raizenne, Mark; Stern, Bonnie

    During the period 29 June 1986-9 August 1986, a field health study assessing the acute health effects of air pollutants on children was conducted at a summer girls' camp on the northern shore of Lake Erie in SW Ontario. Continuous air pollution measurements of SO 2, O 3, NO x, particulate sulfates, light scattering, and meteorological measurements including temperature, dew point, and wind speed and direction were made. Twelve-hour integrated samples of size fractioned particles were also obtained using dichotomous samplers and Harvard impactors equipped with an ammonia denuder for subsequent hydrogen ion determination. Particulate samples were analyzed for trace elements by X-ray fluorescence and Neutron Activation, and for organic and elemental carbon by a thermal/optical technique. The measured aerosol was periodically very acidic with observed 12-h averaged H + concentrations in the range < 10-560 nmoles m -3. The aerosol H + appeared to represent the net strong acidity after H 2SO 4 reaction with NH 3(g). Average daytime concentrations were higher than night-time for aerosol H +, sulfate, fine mass and ozone. Prolonged episodes of atmospheric acidity, sulfate, and ozone were associated with air masses arriving at the measurement site from the west and from the southwest over Lake Erie. Sulfate concentrations measured at the lakeshore camp were more than twice those measured at inland sites during extreme pollution episodes. The concentration gradient observed with onshore flow was potentially due to enhanced deposition near the lakeshore caused by discontinuities in the meteorological fields in this region.

  7. Hand calculations for transport of radioactive aerosols through sampling systems.

    PubMed

    Hogue, Mark; Thompson, Martha; Farfan, Eduardo; Hadlock, Dennis

    2014-05-01

    Workplace air monitoring programs for sampling radioactive aerosols in nuclear facilities sometimes must rely on sampling systems to move the air to a sample filter in a safe and convenient location. These systems may consist of probes, straight tubing, bends, contractions and other components. Evaluation of these systems for potential loss of radioactive aerosols is important because significant losses can occur. However, it can be very difficult to find fully described equations to model a system manually for a single particle size and even more difficult to evaluate total system efficiency for a polydispersed particle distribution. Some software methods are available, but they may not be directly applicable to the components being evaluated and they may not be completely documented or validated per current software quality assurance requirements. This paper offers a method to model radioactive aerosol transport in sampling systems that is transparent and easily updated with the most applicable models. Calculations are shown with the R Programming Language, but the method is adaptable to other scripting languages. The method has the advantage of transparency and easy verifiability. This paper shows how a set of equations from published aerosol science models may be applied to aspiration and transport efficiency of aerosols in common air sampling system components. An example application using R calculation scripts is demonstrated. The R scripts are provided as electronic attachments. PMID:24667389

  8. The Cloud-Aerosol Transport System (CATS): Demonstrating New Techniques for Cloud and Aerosol Measurements

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Palm, S. P.; Hlavka, D. L.; Nowottnick, E. P.; Selmer, P. A.

    2015-12-01

    The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar that provides vertical profiles of cloud and aerosol properties. The CATS payload has been operating since early February 2015 from the International Space Station (ISS). CATS was designed to operate for six months, and up to three years, providing a combination of operational science, in-space technology demonstration, and technology risk reduction for future Earth Science missions. One of the primary project goals of CATS is to demonstrate technology in support of future space-based lidar mission development. The CATS instrument has been demonstrating the high repetition rate laser and photon counting detection approach to lidar observations, in contrast to the low repetition rate, high energy technique employed by CALIPSO. Due to this technique, cloud and aerosol profile data exhibit high spatial and temporal resolution, which was never before possible from a space-based platform. Another important science goal of the CATS-FO project is accurate determination of aerosol type on a global scale. CATS provided the first space-based depolarization measurements at multiple wavelengths (532 and 1064 nm), and first measurements at 1064 nm from space. The ratio of the depolarization measurements at these two wavelengths enables significant improvement in aerosol typing. The CATS retrievals at 1064 nm also provide improvements to detecting aerosols above clouds. The CATS layer identification algorithm is a threshold-based layer detection method that uses the 1064 nm attenuated scattering ratio and also includes a routine to identify clouds embedded within aerosol layers. This technique allows CATS to detect the full extent of the aerosol layers above the cloud, and differentiate these two layers so that the optical properties can be more accurately determined.

  9. Winter time chemical characteristics of aerosols over the Bay of Bengal: continental influence.

    PubMed

    Aryasree, S; Nair, Prabha R; Girach, I A; Jacob, Salu

    2015-10-01

    As part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) conducted under the Geosphere Biosphere Programme of Indian Space Research Organisation, ship-based aerosol sampling was carried out over the marine environment of Bay of Bengal (BoB) during the northern winter months of December 2008 to January 2009. About 101 aerosol samples were collected, covering the region from 3.4° to 21° N latitude and 76° to 98° E longitude-the largest area covered-including the south east (SE) BoB for the first time. These samples were subjected to gravimetric and chemical analysis and the total aerosol loading as well the mass concentration of the ionic species namely F(-), Cl(-), Br(-), NO2 (-), NO3 (-), PO4 (2-), SO4 (2-), NH4 (+), etc. and the metallic species, Na, Mg, Ca, K, Al, Fe, Mn, Zn, and Pb were estimated for each sample. Based on the spatial distribution of individual chemical species, the air flow pattern, and airmass back trajectory analysis, the source characteristics of aerosols for different regions of BoB were identified. Significant level of continental pollution was noticed over BoB during winter. While transport of pollution from Indo-Gangetic Plain (IGP) contributed to aerosols over north BoB, those over SE BoB were influenced by SE Asia. A quantitative study on the wind-induced production of sea salt aerosols and a case study on the species dependent effect of rainfall are also presented in this paper. PMID:25994269

  10. Evolution of a Canadian biomass burning aerosol smoke plume transported to the U.S. East Coast

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Sun, K.; Zondlo, M. A.; Kanter, D.; Ginoux, P. A.

    2010-12-01

    We synthesize ground-based and satellite measurements to track the physical and chemical evolution of a biomass burning aerosol plume emitted in central Canada as it was transported to the U.S. East Coast. Biomass burning emissions strongly influence both air quality and radiative processes through trace gas and aerosol emissions. Organic carbon and black carbon smoke aerosols can be transported long distances downwind of the emissions source region. In some cases, biomass burning aerosol emissions have larger impacts than anthropogenic emissions, with implications for human health and aerosol radiative forcing on climate. Boreal forest fires in Canada on July 4, 2006 led to significant smoke aerosol emissions that were transported in layers at different altitudes over the Great Lakes to the northeastern United States. We track the aerosol plume with space-borne remote sensing satellite instrument (MODIS, OMI, MISR and CALIOP lidar) data as well as ground-based in-situ and remote aerosol observations (AERONET CIMEL sky/sun photometer, MPLNET lidar, IMPROVE and EPA AirNow). Combining total column, surface and vertical profile observations, we illustrate how plume altitude can affect spatial and temporal transport as well as optical and chemical properties. Convective lofting elevated smoke emissions above the boundary layer into the free troposphere (~3 km altitude) where higher speed winds led to rapid, long-range upper level transport to the Atlantic Ocean in 4-5 days. A lower aerosol layer led to enhancements in surface fine particulate matter (PM-2.5) mass concentrations accompanied by changes in aerosol composition as the plume mixed with anthropogenic sulfate aerosols. The extensive coverage of this smoke plume over the U.S. East Coast, a heavily populated region known for high anthropogenic aerosol loadings, significantly influenced regional air quality. Average PM-2.5 concentrations across Pennsylvania exceeded the U.S. EPA 24-hour PM-2.5 standard by 20.37

  11. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008

    SciTech Connect

    Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth; Earle, Michael; MacDonald, A. M.; Liu, Peter S.K.; Leaitch, W. R.

    2014-03-06

    Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 μm (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm-3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust. For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 μm) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of

  12. Assessment of aerosol transport into the Mojave Desert. Final report

    SciTech Connect

    Myrup, L.O.; Flocchini, R.G.

    1986-02-01

    The objective of the project was to assess the transport of atmospheric aerosols into the Mojave Desert from the San Joaquin Valley (via Techachapi Pass), Los Angeles (via Soledad Canyon), and San Bernadino (via Cajon Pass). The authors conducted a field study in summer, 1983 to measure the concentrations of aerosols and the meteorology at these three sites. They measured particles in five size ranges with a six-hour time resolution, hourly average wind speed and direction, temperature, and humidity at two meters and ten meters above ground, upper air winds (pibals) at four-hour intervals, and boundary layer structure with continuous acoustic sounder. The upper air data were not used in the analysis. The authors developed two new analytical methods for the data set, the 8-sector binary method and the shaped acceptance window method. Both methods proved useful in analyzing the data. As expected, there is a net transport of aerosol from the population centers to the Mojave Desert at each of the three passes studied. Lead and sulfur aerosol transport was highest at night, and was primarily from the direction of the passes. Crustal elements did not show a directional influence, so most likely were generated locally from wind-dust in the Mojave Desert.

  13. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE PAGESBeta

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; Vitalis, Elizabeth A.; Thomas, Cynthia B.; Jones, A. Daniel; Day, James A.; Tur-Rojas, Vincent R.; Jorgensen, Trond; Herchert, Edwin; et al

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  14. The impact of long-range transport on secondary aerosol in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Carmichael, G. R.; Woo, J.; Zhang, Q.

    2013-12-01

    Long-range transport air pollution is an important issue in Northeast Asia. Large amounts of anthropogenic emissions of SO2 and NOx aggravate air pollution in the region. Most of the emissions come from the industrialized regions along the East China coast. China and Korea are changing their air quality standards for particle pollutant from PM10 to PM2.5 in 2012 and 2015, respectively. According to many previous studies, the long-rang transport of particle matter contributes to Korean air pollution problems, but there are many uncertainties regarding the impact of long range transport. Secondary inorganic aerosols (sulfate, nitrate and ammonium) are dominant ionic contributors to PM2.5. Especially high relative contributions of secondary aerosol appear under westerly wind cases at Korea. The secondary aerosols are produced by converting from SO2 and NOx during the long-range transport, but the contribution varies dramatically depending on season and wind pattern. So far, sulfate is the primary contributor to PM2.5, but nitrate levels are increasing because that NOx emissions in China are increasing dramatically since 2000 due to the growth in power, industry, and transport, while SO2 emissions are trending downward since 2005. We will present chemical characteristics of PM2.5 by westerly long-range transport focused on secondary aerosol, tracking their transport pattern, and production pathway in order to better understand regional air quality modeling of the long-range transport. This study will be performed based on the international study, MICS-Asia phase III, initiated with many researchers. Results using CMAQ with the modeling domain covering Northeast and Southeast China, Korea, and Japan with 15km resolution will be discussed.

  15. Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan - Implication of aerosol aging during long-range transport

    NASA Astrophysics Data System (ADS)

    Chuang, Ming-Tung; Lee, Chung-Te; Chou, Charles C.-K.; Engling, Guenter; Chang, Shih-Yu; Chang, Shuenn-Chin; Sheu, Guey-Rong; Lin, Neng-Huei; Sopajaree, Khajornsak; Chang, You-Jia; Hong, Guo-Jun

    2016-07-01

    The transport of biomass burning (BB) aerosol from Indochina may cause a potential effect on climate change in Southeast Asia, East Asia, and the Western Pacific. Up to now, the understanding of BB aerosol composition modification during long-range transport (LRT) is still very limited due to the lack of observational data. In this study, atmospheric aerosols were collected at the Suthep/Doi Ang Khang (DAK) mountain sites in Chiang Mai, Thailand and the Lulin Atmospheric Background Station (Mt. Lulin) in central Taiwan from March to April 2010 and from February to April 2013, respectively. During the study period, an upwind and downwind relationship between the Suthep/DAK and Lulin sites (2400 km apart) was validated by backward trajectories. Comprehensive aerosol properties were resolved for PM2.5 water-soluble inorganic ions, carbonaceous content, water-soluble/insoluble organic carbon (WSOC/WIOC), dicarboxylic acids and their salts (DCAS), and anhydrosugars. A Modification Factor (MF) is proposed by employing non-sea-salt potassium ion (nss-K+) or fractionalized elemental carbon evolved at 580 °C after pyrolized OC correction (EC1-OP) as a BB aerosol tracer to evaluate the mass fraction changes of aerosol components from source to receptor regions during LRT. The MF values of nss-SO42-, NH4+, NO3-, OC1 (fractionalized organic carbon evolved from room temperature to 140 °C), OP (pyrolized OC fraction), DCAS, and WSOC were above unity, which indicated that these aerosol components were enhanced during LRT as compared with those in the near-source region. In contrast, the MF values of anhydrosugars ranged from 0.1 to 0.3, indicating anhydrosugars have degraded during LRT.

  16. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilde, S.; Zhang, Y.; Dall'Osto, M.

    2014-04-01

    The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterized by a less dense urbanization. We present here the results obtained in San Pietro Capofiume, which is located in a sparsely inhabited sector of the Po Valley, Italy. The experiment was carried out in summer 2009 in the framework of the EUCAARI project ("European Integrated Project on Aerosol, Cloud Climate Aerosol Interaction"). For the first time in Europe, six state-of-the-art techniques were used in parallel: (1) on-line TSI aerosol time-of-flight mass spectrometer (ATOFMS), (2) on-line Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS), (3) soot particle aerosol mass spectrometer (SP-AMS), (4) on-line high resolution time-of-flight mass spectrometer-thermal desorption aerosol gas chromatograph (HR-ToFMS-TAG), (5) off-line twelve-hour resolution proton nuclear magnetic resonance (H-NMR) spectroscopy, and (6) chemical ionization mass spectrometry (CIMS) for the analysis of gas-phase precursors of secondary aerosol. Data from each aerosol spectroscopic method were analysed individually following ad-hoc tools (i.e. PMF for AMS, Art-2a for ATOFMS). The results obtained from each techniques are herein presented and compared. This allows us to clearly link the modifications in aerosol chemical composition to transitions in air mass origin and meteorological regimes. Under stagnant conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC

  17. Global and regional impacts of HONO on the chemical composition of clouds and aerosols

    NASA Astrophysics Data System (ADS)

    Elshorban, Y. F.; Crutzen, P. J.; Steil, B.; Pozzer, A.; Tost, H.; Lelieveld, J.

    2013-09-01

    Nitrous acid (HONO) photolysis can significantly increase HOx (OH+HO2) radical formation, enhancing organic and inorganic oxidation products in polluted regions, especially during winter. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that HONO can significantly enhance aerosol sulphate (S(VI)), mainly due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model-measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and the central role of cloud chemical processing in aerosol formation.

  18. On-line coupling of volcanic ash and aerosols transport with multiscale meteorological models

    NASA Astrophysics Data System (ADS)

    Marti, Alejandro; Folch, Arnau; Jorba, Oriol

    2014-05-01

    Large explosive volcanic eruptions can inject significant amounts of tephra and aerosols (e.g. SO2) into the atmosphere inducing a multi-scale array of physical, chemical and biological feedbacks within the environment. Effective coupled Numerical Weather Prediction (NWP) models capable to forecast on-line the spatial and temporal distribution of volcanic ash and aerosols are necessary to assess the magnitude of these feedback effects. However, due to several limitations (users from different communities, operational constrains, computational power, etc.), tephra transport models and NWP models have evolved independently. Within the framework of NEMOH(an Initial Training Network of the European Commission FP7 Program), we aim to quantify the feedback effects of volcanic ash clouds and aerosols emitted during large-magnitude eruptions on regional meteorology. As a first step, we have focused on the differences between the off-line hypothesis, currently assumed by tephra transport models (e.g. FALL3D), and the on-line approach, where transport and sedimentation of volcanic ash is coupled on-line to the NMMB (Non-hydrostatic Multiscale Meteorological model on a B grid) meteorological model; the evolution of the WRF-NMME meteorological model. We compared the spatiotemporal transport of volcanic ash particles simulated with the on-line coupled FALL3D-NMMB/BSC-CTM model with those from the off-line FALL3D model, by using the 2011 Cordón-Caulle eruption as a test-case and validating results against satellite data. Additionally, this presentation introduces the forthcoming steps to implement a sulfate aerosol module within the chemical transport module of the FALL3D-NMMB/BSC-CTM model, in order to quantify the feedback effects on the atmospheric radiative budget, particularly during large-magnitude explosive volcanic eruptions. Keywords: volcanic ash, SO2, FALL3D, NMMB, meteorology, on-line coupling, NEMOH.

  19. Chemical and physicochemial properties of submicron aerosol agglomerates

    SciTech Connect

    Scripsick, R.C.; Ehrman, S.; Friedlander, S.K.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory. The formation of nanometer-sized aerosol particles in a premixed methane flame from both solid-phase aerosol precursors and gas-phase precursors was investigated. Techniques were developed to determine the distribution of the individual chemical species as a function of agglomerate size by using inductively coupled plasma atomic emission spectroscopy (ICP-AES). To determine the distribution of chemical species both from particle to particle and within the particles on a nanometer scale, we used the analytical electron microscopy techniques of energy dispersive x-ray spectrometry (EDS) and electron energy loss spectrometry (EELS) coupled with transmission electron microscopy (TEM). The observed distribution of individual chemical species as a function of agglomerate size was linked to the material properties of the solid-phase precursors. For aerosol formed from gas-phase precursors by gas-to-particle conversion, the distribution of species on a manometer scale was found to correspond to the equilibrium phase distribution expected from equilibrium for the system at the flame temperatures.

  20. Code System to Calculate Particle Penetration Through Aerosol Transport Lines.

    1999-07-14

    Version 00 Distribution is restricted to US Government Agencies and Their Contractors Only. DEPOSITION1.03 is an interactive software program which was developed for the design and analysis of aerosol transport lines. Models are presented for calculating aerosol particle penetration through straight tubes of arbitrary orientation, inlets, and elbows. An expression to calculate effective depositional velocities of particles on tube walls is derived. The concept of maximum penetration is introduced, which is the maximum possible penetrationmore » through a sampling line connecting any two points in a three-dimensional space. A procedure to predict optimum tube diameter for an existing transport line is developed. Note that there is a discrepancy in this package which includes the DEPOSITION 1.03 executable and the DEPOSITION 2.0 report. RSICC was unable to obtain other executables or reports.« less

  1. Chemical evolution of multicomponent aerosol particles during evaporation

    NASA Astrophysics Data System (ADS)

    Zardini, Alessandro; Riipinen, Ilona; Pagels, Joakim; Eriksson, Axel; Worsnop, Douglas; Switieckli, Erik; Kulmala, Markku; Bilde, Merete

    2010-05-01

    Atmospheric aerosol particles have an important but not well quantified effect on climate and human health. Despite the efforts made in the last decades, the formation and evolution of aerosol particles in the atmosphere is still not fully understood. The uncertainty is partly due to the complex chemical composition of the particles which comprise inorganic and organic compounds. Many organics (like dicarboxylic acids) can be present both in the gas and in the condensed phase due to their low vapor pressure. Clearly, an understanding of this partition is crucial to address any other issue in atmospheric physics and chemistry. Moreover, many organics are water soluble, and their influence on the properties of aqueous solution droplets is still poorly characterized. The solid and sub-cooled liquid state vapor pressures of some organic compounds have been previously determined by measuring the evaporation rate of single-compound crystals [1-3] or binary aqueous droplets [4-6]. In this work, we deploy the HTDMA technique (Hygroscopicity Tandem Differential Mobility Analyzer) coupled with a 3.5m laminar flow-tube and an Aerosol Mass Spectrometer (AMS) for determining the chemical evolution during evaporation of ternary droplets made of one dicarboxylic acid (succinic acid, commonly found in atmospheric samples) and one inorganic compound (sodium chloride or ammonium sulfate) in different mixing ratios, in equilibrium with water vapor at a fixed relative humidity. In addition, we investigate the evaporation of multicomponent droplets and crystals made of three organic species (dicarboxylic acids and sugars), of which one or two are semi-volatile. 1. Bilde M. and Pandis, S.N.: Evaporation Rates and Vapor Pressures of Individual Aerosol Species Formed in the Atmospheric Oxidation of alpha- and beta-Pinene. Environmental Science and Technology, 35, 2001. 2. Bilde M., et al.: Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols

  2. Uranium Oxide Aerosol Transport in Porous Graphite

    SciTech Connect

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  3. In Situ Chemical Characterization of Organic Aerosol Surfaces using Direct Analysis in Real Time

    NASA Astrophysics Data System (ADS)

    Chan, M.; Nah, T.; Wilson, K. R.

    2012-12-01

    Obtaining in situ information on the molecular composition of atmospheric aerosol is important for understanding the sources, formation mechanisms, aging and physiochemical properties of atmospheric aerosol. Most recently, we have used Direct Analysis in Real Time (DART), which is a "soft" atmospheric pressure ionization technique, for in situ chemical characterization of a variety of laboratory generated organic aerosol and heterogeneous processing oleic acid aerosol. A stream of aerosol particles is crossed with a thermal flow of metastable He atoms (produced by the DART source) in front of an inlet of a mass spectrometer. The thermally desorbed analytes are subsequently ionized with minimal fragmentation by reactive species in the DART ionization source (e.g., metastable He atoms). The ion signal scales with the aerosol surface area rather than aerosol volume, suggesting that aerosol particles are not completely vaporized in the ionization region. The DART can thus measure the chemical composition as a function of aerosol depth. Probing aerosol depth is determined by the thermal desorption rates of aerosol particles. Here, we investigate how the experimental parameters (e.g., DART gas temperature and residence time) and the physiochemical properties of aerosol particles (e.g., enthalpy of vaporization) affect the probing aerosol depth and the desorption-ionization mechanism of aerosol particles in the DART using a series of model organic compounds. We also demonstrate the potential application of DART for in situ chemically analyzing wet aerosol particles undergoing oxidation reactions.

  4. Commuter exposure to aerosol pollution on public transport in Singapore

    NASA Astrophysics Data System (ADS)

    Tan, S.; Velasco, E.; Roth, M.; Norford, L.

    2013-12-01

    Personal exposure to aerosol pollutants in the transport microenvironment of Singapore has not been well documented. Studies from many cities suggest that brief periods of exposure to high concentrations of airborne pollutants may have significant health impacts. Thus, a large proportion of aerosol exposure may be experienced during daily commuting trips due to the proximity to traffic. A better understanding of the variability across transport modes is therefore needed to design transport policies that minimize commuters' exposure. In light of this, personal exposure measurements of PM10 and PM2.5, particle number (PN), black carbon (BC), carbon monoxide (CO), particle-bound polycyclic aromatic hydrocarbons (pPAH), and active surface area (SA) were conducted on a selected route in downtown Singapore. Portable and real-time monitoring instruments were carried onto three different modes of public transport (bus, taxi, subway) and by foot. Simultaneous measurements were taken at a nearby park to capture the background concentrations. Large variability was observed amongst the various transport modes investigated. For example, the particle number concentration was on average 1.5, 1.6, 0.8, and 2.2 times higher inside buses, taxis, subway and by foot, respectively, than at the background site. Based on the results, it is possible to come up with a ranking of the 'cleanest' transport mode for Singapore.

  5. Aerosol-induced chemical perturbations of stratospheric ozone: Three-dimensional simulations and analysis of mechanisms

    NASA Astrophysics Data System (ADS)

    Zhao, Xuepeng; Turco, Richard P.; Kao, C.-Y. Jim; Elliott, Scott

    1997-02-01

    An atmospheric general circulation model is coupled with a stratospheric photochemical model to simulate the chemical/dynamical perturbations associated with background and volcanically perturbed aerosols in the lower stratosphere. The present work focuses on short-term anomalies at middle and high latitudes in the northern hemisphere, where large ozone depletions have been observed in late winter and early spring, particularly following the eruption of Mount Pinatubo. Five fully coupled simulations are analyzed, corresponding to a control case with only gas phase chemistry, and cases including heterogeneous chemistry on background aerosols, on El Chichón-type, and on Pinatubo-type aerosols. It is found that heterogeneous reactions occurring on sulfate aerosols (background or postvolcanic) can strongly perturb the chemical partitioning in the lower stratosphere, leading to significant ozone depletion through enhanced chlorine, bromine, and odd-hydrogen catalytic cycles. In the Arctic lower stratosphere, the maximum zonal and March monthly mean local ozone reductions (with respect to the control case) can exceed 15% for the background aerosol case, 40% for the El Chichón case, and 50% for the Pinatubo case. The corresponding zonal mean total column ozone decreases are roughly 5% and 15% for the background and volcanic aerosol cases, respectively. In the most extreme case tested (post-Pinatubo), a large ozone depletion below 30 mbar is offset to some extent by an ozone increase above that level. The results of a sensitivity study (in which the aerosols are distributed closer to the tropics, as might occur early after an eruption at low latitude) lead to relatively small total ozone depletions at northern high latitudes, and small ozone increases in the tropical lower stratosphere. The reduced impact on total ozone at high latitudes is associated both with local ozone increases above 30 mbar and with poleward transport of enhanced ozone from the tropical lower

  6. Aerosol Physical, Optical and Chemical Properties during African Dust Events at Cape San Juan (CPR)

    NASA Astrophysics Data System (ADS)

    Reyes de Jongh, C.; Mayol Bracero, O. L.; Rivera Vazquez, H.; Sheridan, P.; Ogren, J. A.

    2008-12-01

    Large amounts of atmospheric dust are lifted from the North African deserts and are transported by the trade winds over the Caribbean region, especially during the summer months. How African dust particles influence the earth's radiative budget is not well understood because these particles are highly variable and their physical, optical, and chemical properties are poorly characterized, especially when they are atmospherically processed as are those that travel from Africa to the Caribbean region. Here we present results of aerosol measurements performed at Cape San Juan (CPR), a ground-based station located at the northeastern tip of the Caribbean island of Puerto Rico. We used a condensation particle counter to determine the particle number concentration, a sunphotometer (part of the AErosol RObotical NETwork, AERONET, aeronet.gsfc.nasa.gov) to determine volume size distributions and aerosol optical thickness, and a 3-wavelength nephelometer and particle/soot absorption photometer to determine the scattering and absorption coefficients. Filter samples for chemical analyses were collected with stacked-filter units. Preliminary results show that African dust air masses have higher average particle number concentrations (N=720 cm -3 ), aerosol optical depth (AOD = 0.27), and scattering and absorption coefficients (σ s = 30 Mm -1 , σ a = 0.46 Mm -1 ) than clean air masses (N = 460 cm -3 , AOD= 0.08, σ s = 11 Mm -1 , σ a = 0.37 Mm -1 . Results presented will also show how changes in aerosol optical properties in the presence and absence of African dust relate to the physical and chemical composition of the particles.

  7. Optical and Chemical Characterization of Aerosols Produced from Cooked Meats

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Foreman, E.; Blanc, L. E.

    2011-12-01

    Cooking processes can release a variety compounds into the air immediately above a cooking surface. The distribution of compounds will largely depend on the type of food that is being processed and the temperatures at which the food is prepared. High temperatures release compounds from foods like meats and carry them away from the preparation surface into cooler regions where condensation into particles can occur. Aerosols formed in this manner can impact air quality, particularly in urban areas where the amount of food preparation is high. Reported here are the results of laboratory experiments designed to optically and chemically characterize aerosols derived from cooking several types of meats including ground beef, salmon, chicken, and pork both in an inert atmosphere and in synthetic air. The laboratory-generated aerosols are studied using a laminar flow cell that is configured to accommodate simultaneous optical characterization in the mid-infrared and collection of particles for subsequent chemical analysis by gas chromatography. Preliminary optical results in the visible and ultra-violet will also be presented.

  8. Complete chemical analysis of aerosol particles in real-time

    SciTech Connect

    Yang, Mo; Reilly, P.T.A.; Gieray, R.A.; Whitten, W.B.; Ramsey, J.M.

    1996-12-31

    Real-time mass spectrometry of individual aerosol particles using an ion trap mass spectrometer is described. The microparticles are sampled directly from the air by a particle inlet system into the vacuum chamber. An incoming particle is detected as it passes through two CW laser beams and a pulsed laser is triggered to intercept the particle for laser ablation ionization at the center of the ion trap. The produced ions are analyzed by the ion trap mass spectrometer. Ions of interest are selected and dissociated through collision with buffer gas atoms for further fragmentation analysis. Real-time chemical analyses of inorganic, organic, and bacterial aerosol articles have been demonstrated. It has been confirmed that the velocity and the size of the incoming particles highly correlate to each other. The performance of the inlet system, particle detection, and preliminary results are discussed.

  9. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: an AQMEII-2 perspective

    EPA Science Inventory

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model in...

  10. 77 FR 70453 - Chemical Transportation Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... of the Federal Register (73 FR 3316). Docket: This notice, and documents or comments related to it... SECURITY Coast Guard Chemical Transportation Advisory Committee AGENCY: Coast Guard, DHS. ] ACTION: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Chemical...

  11. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Cassola, F.; Mazzino, A.; Triquet, S.; Chevaillier, S.; Grand, N.; Bourrianne, T.; Momboisse, G.; Sellegri, K.; Schwarzenbock, A.; Freney, E.; Mallet, M.; Formenti, P.

    2016-02-01

    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June-July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of transport (1-5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l.) than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling studies and satellite retrievals

  12. Effects of Chemical Aging on Global Secondary Organic Aerosol using the Volatility Basis Set Approach

    NASA Astrophysics Data System (ADS)

    Park, R.; Jo, D.; Kim, M.; Spracklen, D. V.; Hodzic, A.

    2014-12-01

    Organic aerosol (OA) constitutes significant mass fractions (20-90%) of total dry fine aerosols in the atmosphere. However, global models of OA have shown large discrepancies when compared to the observations because of the limited capability to simulate secondary OA (SOA). For reducing the discrepancies between observations and models, recent studies have shown that chemical aging reactions in the atmosphere are important because they can lead to decreases in organic volatility, resulting in increase of SOA mass yields. To efficiently simulate chemical aging of SOA in the atmosphere, we implemented the volatility basis set approach in a global 3-D chemical transport model (GEOS-Chem). We present full-year simulations and their comparisons with multiple observations - global aerosol mass spectrometer dataset, the Interagency Monitoring of Protected Visual Environments from the United States, the European Monitoring and Evaluation Programme dataset and water-soluble organic carbon observation data collected over East Asia. Using different input parameters in the model, we also explore the uncertainty of the SOA simulation for which we use an observational constraint to find the optimized values with which the model reduces the discrepancy from the observations. Finally, we estimate the effect of OA on climate using our best simulation results.

  13. Chemical Equilibrium And Transport (CET)

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.

    1991-01-01

    Powerful, machine-independent program calculates theoretical thermodynamic properties of chemical systems. Aids in design of compressors, turbines, engines, heat exchangers, and chemical processing equipment.

  14. Chemical pollution from transportation vehicles.

    PubMed

    Starkman, E S

    1969-04-01

    Recent publicity on electrically powered vehicles notwithstanding, the gasoline engine will probably be the principal power plant for passenger cars for at least the next decade. Chemical pollutants discharged by the gasoline engine are now under partial control. Motor cars of 1968 and 1969 model discharge only about 30 percent as much carbon monoxide and unburned hydrocarbons as do older models. In theory, carbon monoxide, unburned hydrocarbons and oxides of nitrogen ultimately can be completely removed from gasoline engine exhaust. In order to accomplish this it would be necessary to modify cars to operate satisfactorily on a lean mixture and perhaps to use a catalyst in the exhaust system. Present designs of gas turbines for aircraft and for future projected application to ground vehicles yield pollutants (except for smoke) at levels below those of gasoline engines for a decade to come. It has also been shown possible to eliminate smoke as well as odor from the gas turbine. Thus with proper effort it is feasible to reduce pollution of the atmosphere due to transportation to an acceptable level, even if electrically or alternatively powered vehicles cannot be developed for a decade. PMID:4183827

  15. Properties of transported African mineral dust aerosols in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Chevaillier, Servanne; Gaimoz, Cécile; Grand, Noel; Triquet, Sylvain; Zapf, Pascal; Loisil, Rodrigue; Bourrianne, Thierry; Freney, Evelyn; Dupuy, Regis; Sellegri, Karine; Schwarzenbock, Alfons; Torres, Benjamin; Mallet, Marc; Cassola, Federico; Prati, Paolo; Formenti, Paola

    2015-04-01

    The transport of mineral dust aerosols is a global phenomenon with strong climate implications. Depending on the travel distance over source regions, the atmospheric conditions and the residence time in the atmosphere, various transformation processes (size-selective sedimentation, mixing, condensation of gaseous species, and weathering) can modify the physical and chemical properties of mineral dust, which, in turn, can change the dust's optical properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of these properties, and their temporal evolution with transport time. Within the frame of the ChArMex project (Chemistry-Aerosol Mediterranean experiment, http://charmex.lsce.ipsl.fr/), one intensive airborne campaign (ADRIMED, Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region, 06 June - 08 July 2013) has been performed over the Central and Western Mediterranean, one of the two major transport pathways of African mineral dust. In this study we have set up a systematic strategy to determine the optical, physical and optical properties of mineral dust to be compared to an equivalent dataset for dust close to source regions in Africa. This study is based on airborne observations onboard the SAFIRE ATR-42 aircraft, equipped with state of the art in situ instrumentation to measure the particle scattering and backscattering coefficients (nephelometer at 450, 550, and 700 nm), the absorption coefficient (PSAP at 467, 530, and 660 nm), the extinction coefficient (CAPS at 530 nm), the aerosol optical depth (PLASMA at 340 to 1640 nm), the size distribution in the extended range 40 nm - 30 µm by the combination of different particle counters (SMPS, USHAS, FSSP, GRIMM) and the chemical composition obtained by filter sampling. The chemistry and transport model CHIMERE-Dust have been used to classify the air masses according to the dust origin and transport. Case studies of dust transport

  16. Chemical and Physical Properties of Bulk Aerosols within Four Sectors Observed during TRACE-P

    NASA Technical Reports Server (NTRS)

    Jordan, C. E.; Anderson, B. E.; Talbot, R. W.; Dibb, J. E.; Fuelberg, E.; Hudgins, C. H.; Kiley, C. M.; Russo, R.; Scheuer, E.; Seid, G.

    2003-01-01

    Chemical and physical aerosol data collected on the DC-8 during TRACE-P were grouped into four sectors based on back trajectories. The four sectors represent long-range transport from the west (WSW), regional circulation over the western Pacific and Southeast Asia (SE Asia), polluted transport from Northern Asia with substantial sea salt at low altitudes (NNW) and a substantial amount of dust (Channel). WSW has generally low mixing ratios at both middle and high altitudes, with the bulk of the aerosol mass due to non-sea-salt water-soluble inorganic species. Low altitude SE Asia also has low mean mixing ratios in general, with the majority of the aerosol mass comprised of non-sea-salts, however, soot is also relatively important m this region. "w had the highest mean sea salt mixing ratios, with the aerosol mass at low altitudes (a km) evenly divided between sea salts, mm-sea-salts, and dust. The highest mean mixing ratios of water-soluble ions and soot were observed at the lowest altitudes (a km) in the Channel sector. The bulk of the aerosol mass exported from Asia emanates h m Channel at both low and midaltitudes, due to the prevalence of dust compared to other sectors. Number densities show enhanced fine particles for Channel and NNW, while their volume distributions are enhanced due to sea salt and dust Low-altitude Channel exhibits the highest condensation nuclei ((34) number densities along with enhanced scattering coefficients, compared to the other sectors. At midaltitudes (2-7 km), low mean CN number densities coupled with a high proportion of nonvolatile particles (265%) observed in polluted sectors (Channel and NNW) are attributed to wet scavenging which removes hygroscopic CN particles. Low single scatter albedo m SE Asia reflects enhanced soot

  17. Chemical and physical properties of bulk aerosols within four sectors observed during TRACE-P

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Talbot, R. W.; Dibb, J. E.; Fuelberg, H. E.; Hudgins, C. H.; Kiley, C. M.; Russo, R.; Scheuer, E.; Seid, G.; Thornhill, K. L.; Winstead, E.

    2003-11-01

    Chemical and physical aerosol data collected on the DC-8 during TRACE-P were grouped into four sectors based on back trajectories. The four sectors represent long-range transport from the west (WSW), regional circulation over the western Pacific and Southeast Asia (SE Asia), polluted transport from northern Asia with substantial sea salt at low altitudes (NNW) and a substantial amount of dust (Channel). WSW has generally low mixing ratios at both middle and high altitudes, with the bulk of the aerosol mass due to non-sea-salt water-soluble inorganic species. Low altitude SE Asia also has low mean mixing ratios in general, with the majority of the aerosol mass comprised of non-sea-salts, however, soot is also relatively important in this region. NNW had the highest mean sea salt mixing ratios, with the aerosol mass at low altitudes (<2 km) evenly divided between sea salts, non-sea-salts, and dust. The highest mean mixing ratios of water-soluble ions and soot were observed at the lowest altitudes (<2 km) in the Channel sector. The bulk of the aerosol mass exported from Asia emanates from Channel at both low and midaltitudes, due to the prevalence of dust compared to other sectors. Number densities show enhanced fine particles for Channel and NNW, while their volume distributions are enhanced due to sea salt and dust. Low-altitude Channel exhibits the highest condensation nuclei (CN) number densities along with enhanced scattering coefficients, compared to the other sectors. At midaltitudes (2-7 km), low mean CN number densities coupled with a high proportion of nonvolatile particles (≥65%) observed in polluted sectors (Channel and NNW) are attributed to wet scavenging which removes hygroscopic CN particles. Low single scatter albedo in SE Asia reflects enhanced soot.

  18. Computational modeling and experimental characterization of indoor aerosol transport

    SciTech Connect

    Konecni, S.; Whicker, J. J.; Martin, R. A.

    2002-01-01

    When a hazardous aerosol or gas is inadvertently or deliberately released in an occupied facility, the airborne material presents a hazard to people. Inadvertent accidents and exposures continue to occur in Los Alamos and other nuclear facilities despite state-of-art engineering and administrative controls, and heightened diligence. Despite the obvious need in occupational settings and for homeland defense, the body of research in hazardous aerosol dispersion and control in large, complex, ventilated enclosures is extremely limited. The science governing generation, transport, inhalation, and detection of airborne hazards is lacking and must be developed to where it can be used by engineers or safety professionals in the prediction of worker exposure, in the prevention of accidents, or in the mitigation of terrorist actions. In this study, a commercial computational fluid dynamics (CFD) code, CFX5.4, and experiments were used to assess flow field characteristics, and to investigate aerosol release and transport in a large, ventilated workroom in a facility at Savannah River Site. Steady state CFD results illustrating a complex, ventilation-induced, flow field with vortices, velocity gradients, and quiet zones are presented, as are time-dependent CFD and experimental aerosol dispersion results. The comparison of response times between CFD and experimental results was favorable. It is believed that future applications of CFD and experiments can have a favorable impact on the design of ventilation (HVAC) systems and worker safety with consideration to facility costs. Ultimately, statistical methods will be used in conjunction with CFD calculations to determine the optimal number and location of detectors, as well as optimal egress routes in event of a release.

  19. Chemical characterization of Brown Carbon from biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Mayol-Bracero, O. L.; Andreae, M. O.; Andreae, T. W.; Artaxo, P.; Gelencser, A.; Graham, B.; Guyon, P.; Maenhaut, W.

    2003-04-01

    The term "elemental carbon" (EC) is used to describe the most polymerized and refractory fraction of combustion-produced atmospheric carbonaceous aerosols, having chemical properties similar to graphitic carbon (disordered graphite lattice, mostly with carbon, but also with some oxygen and hydrogen atoms, and highly resistant to thermal degradation and oxidation). This species is insoluble either in water or organic solvents. In evolved gas analysis (EGA), it is usually represented by the peak evolving above ca. 400 ^oC in the thermograms. EGA analyses before and after water extraction have shown that in samples from biomass burning aerosols ca. 50% of the material evolving above 400 ^oC was removed by extraction with water and therefore was not true EC. These results suggest that this apparent EC (EC_a) is high-molecular weight organic material with thermal and oxidative properties similar to EC. This EC_a material also absorbs light, therefore, we have adopted the term of "brown carbon" (Cbrown) to refer to it. Here we will present a detailed chemical characterization of EC_a and Cbrown using EGA, optical transmission, thermo-optical analysis and pyrolysis GC/MS. This last technique will provide, for the first time, molecular characterization of Cbrown. The results of these analytical techniques will improve our understanding of the chemical, thermal and oxidative properties of true EC, EC_a and Cbrown from biomass burning aerosols. Brown carbon can be formed both during thermal decomposition of organic matter (charring) and through low-temperature microbial and abiotic reactions (humic/fulvic acids).

  20. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  1. Quantification of aerosol chemical composition using continuous single particle measurements

    NASA Astrophysics Data System (ADS)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-07-01

    Mass concentrations of sulphate, nitrate, ammonium, organic carbon (OC), elemental carbon (EC) were determined from real time single particle data in the size range 0.1-3.0 μm measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) at urban and rural sites in Canada. To quantify chemical species within individual particles measured by an ATOFMS, ion peak intensity of m/z -97 for sulphate, -62 for nitrate, +18 for ammonium, +43 for OC, and +36 for EC were scaled using the number and size distribution data by an Aerodynamic Particle Sizer (APS) and a Fast Mobility Particle Sizer (FMPS). Hourly quantified chemical species from ATOFMS single-particle analysis were compared with collocated fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5) chemical composition measurements by an Aerosol Mass Spectrometer (AMS) at a rural site, a Gas-Particle Ion Chromatograph (GPIC) at an urban site, and a Sunset Lab field OCEC analyzer at both sites. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 (ATOFMS vs. GPIC) and 0.85 (ATOFMS vs. AMS). ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM2.5 chemical components at the rural site near the US border in southern Ontario. Mass reconstruction using the ATOFMS mass calibration factors agreed very well with the PM2.5 mass concentrations measured by a Tapered Element Oscillating Microbalance (TEOM, r = 0.86) at the urban site and a light scattering monitor (DustTrak, r = 0.87) at the rural site. In the urban area nitrate was the largest contributor to PM2.5 mass in the winter, while organics and sulphate contributed ~64 % of the summer PM2.5 in the rural area, suggesting a strong influence of regional/trans-boundary pollution. The mass concentrations of five major species in ten size-resolved particle-types and aerosol acidity of each particle-type were determined for the rural site. On a mass basis

  2. Polycyclic Aromatic Aerosol Components: Chemical Analysis and Reactivity

    NASA Astrophysics Data System (ADS)

    Schauer, C.; Niessner, R.; Pöschl, U.

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants in the atmosphere and originate primarily from incomplete combustion of organic matter and fossil fuels. Their main sources are anthropogenic (e.g. vehicle emissions, domes- tic heating or tobacco smoke), and PAHs consisting of more than four fused aromatic rings reside mostly on combustion aerosol particles, where they can react with atmo- spheric trace gases like O3, NOx or OH radicals leading to a wide variety of partially oxidized and nitrated derivatives. Such chemical transformations can strongly affect the activity of the aerosol particles as condensation nuclei, their atmospheric residence times, and consequently their direct and indirect climatic effects. Moreover some poly- cyclic aromatic compounds (PACs = PAHs + derivatives) are known to have a high carcinogenic, mutagenic and allergenic potential, and are thus of major importance in air pollution control. Furthermore PACs can be used as well defined soot model sub- stances, since the basic structure of soot can be regarded as an agglomerate of highly polymerized PAC-layers. For the chemical analysis of polycyclic aromatic aerosol components a new analyti- cal method based on LC-APCI-MS has been developed, and a data base comprising PAHs, Oxy-PAHs and Nitro-PAHs has been established. Together with a GC-HRMS method it will be applied to identify and quantify PAHs and Nitro-PAHs in atmo- spheric aerosol samples, diesel exhaust particle samples and model soot samples from laboratory reaction kinetics and product studies. As reported before, the adsorption and surface reaction rate of ozone on soot and PAH-like particle surfaces is reduced by competitive adsorption of water vapor at low relative humidity (< 25 %). Recent results at higher relative humidities (ca. 50 %), however, indicate re-enhanced gas phase ozone loss, which may be due to absorbtion of ozone into an aqueous surface layer. The interaction of ozone and nitrogen

  3. Hygroscopic, Morphological, and Chemical Properties of Agricultural Aerosols

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Cheek, L.; Thornton, D. C.; Auvermann, B. W.; Littleton, R.

    2007-12-01

    Agricultural fugitive dust is a significant source of localized air pollution in the semi-arid southern Great Plains. In the Texas Panhandle, daily episodes of ground-level fugitive dust emissions from the cattle feedlots are routinely observed in conjunction with increased cattle activity in the late afternoons and early evenings. We conducted a field study to characterize size-selected agricultural aerosols with respect to hygroscopic, morphological, and chemical properties and to attempt to identify any correlations between these properties. To explore the hygroscopic nature of agricultural particles, we have collected size-resolved aerosol samples using a cascade impactor system at a cattle feedlot in the Texas Panhandle and have used the Environmental Scanning Electron Microscope (ESEM) to determine the water uptake by individual particles in those samples as a function of relative humidity. To characterize the size distribution of agricultural aerosols as a function of time, A GRIMM aerosol spectrometer and Sequential Mobility Particle Sizer and Counter (SMPS) measurements were simultaneously performed in an overall size range of 11 nm to 20 µm diameters at a cattle feedlot. Complementary determination of the elemental composition of individual particles was performed using Energy Dispersive X-ray Spectroscopy (EDS). In addition to the EDS analysis, an ammonia scrubber was used to collect ammonia and ammonium in the gas and particulate phases, respectively. The concentration of these species was quantified offline via UV spectrophotometry at 640 nanometers. The results of this study will provide important particulate emission data from a feedyard, needed to improve our understanding of the role of agricultural particulates in local and regional air quality.

  4. Modeling regional secondary organic aerosol using the Master Chemical Mechanism

    NASA Astrophysics Data System (ADS)

    Li, Jingyi; Cleveland, Meredith; Ziemba, Luke D.; Griffin, Robert J.; Barsanti, Kelley C.; Pankow, James F.; Ying, Qi

    2015-02-01

    A modified near-explicit Master Chemical Mechanism (MCM, version 3.2) with 5727 species and 16,930 reactions and an equilibrium partitioning module was incorporated into the Community Air Quality Model (CMAQ) to predict the regional concentrations of secondary organic aerosol (SOA) from volatile organic compounds (VOCs) in the eastern United States (US). In addition to the semi-volatile SOA from equilibrium partitioning, reactive surface uptake processes were used to simulate SOA formation due to isoprene epoxydiol, glyoxal and methylglyoxal. The CMAQ-MCM-SOA model was applied to simulate SOA formation during a two-week episode from August 28 to September 7, 2006. The southeastern US has the highest SOA, with a maximum episode-averaged concentration of ∼12 μg m-3. Primary organic aerosol (POA) and SOA concentrations predicted by CMAQ-MCM-SOA agree well with AMS-derived hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA) urban concentrations at the Moody Tower at the University of Houston. Predicted molecular properties of SOA (O/C, H/C, N/C and OM/OC ratios) at the site are similar to those reported in other urban areas, and O/C values agree with measured O/C at the same site. Isoprene epoxydiol is predicted to be the largest contributor to total SOA concentration in the southeast US, followed by methylglyoxal and glyoxal. The semi-volatile SOA components are dominated by products from β-caryophyllene oxidation, but the major species and their concentrations are sensitive to errors in saturation vapor pressure estimation. A uniform decrease of saturation vapor pressure by a factor of 100 for all condensable compounds can lead to a 150% increase in total SOA. A sensitivity simulation with UNIFAC-calculated activity coefficients (ignoring phase separation and water molecule partitioning into the organic phase) led to a 10% change in the predicted semi-volatile SOA concentrations.

  5. 76 FR 34240 - Chemical Transportation Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). Establishment of the... SECURITY Coast Guard Chemical Transportation Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee... that the establishment of the Chemical Transportation Advisory Committee (CTAC) is necessary and in...

  6. 78 FR 67379 - Chemical Transportation Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ..., issue of the Federal Register (73 FR 3316). Docket: This notice, and documents or comments related to it... SECURITY Coast Guard Chemical Transportation Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Chemical Transportation...

  7. 78 FR 55278 - Chemical Transportation Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... Federal Register (73 FR 3316). Re-Establishment of the Committee For the reasons set forth below, the... SECURITY Coast Guard Chemical Transportation Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee... that the re- establishment of the Chemical Transportation Advisory Committee (CTAC) is necessary and...

  8. 78 FR 23773 - Chemical Transportation Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... January 17, 2008, issue of the Federal Register (73 FR 3316). Docket: This notice, and documents or... SECURITY Coast Guard Chemical Transportation Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Chemical Transportation...

  9. Aerosol particles at a high-altitude site on the Southeast Tibetan Plateau, China: Implications for pollution transport from South Asia

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuzi; Cao, Junji; Shen, Zhenxing; Xu, Baiqing; Zhu, Chongshu; Chen, L.-W. Antony; Su, Xiaoli; Liu, Suixin; Han, Yongming; Wang, Gehui; Ho, Kinfai

    2013-10-01

    aerosol samples were collected from 16 July 2008 to 26 July 2009 at Lulang, a high-altitude (>3300m above sea level) site on the southeast Tibetan Plateau (TP); objectives were to determine chemical characteristics of the aerosol and identify its major sources. We report aerosol (total suspended particulate, TSP) mass levels and the concentrations of selected elements, carbonaceous species, and water-soluble inorganic ions. Significant buildup of aerosol mass and chemical species (organic carbon, element carbon, nitrate, and sulfate) occurred during the premonsoon, while lower concentrations were observed during the monsoon. Seasonal variations in aerosol and chemical species were driven by precipitation scavenging and atmospheric circulation. Two kinds of high-aerosol episodes were observed: one was enriched with dust indicators (Fe and Ca2+), and the other was enhanced with organic and elemental carbon (OC and EC), SO42-, NO3-, and Fe. The TSP loadings during the latter were 3 to 6 times those on normal days. The greatest aerosol optical depths (National Centers for Environmental Protection/National Center for Atmospheric Research reanalysis) occurred upwind, in eastern India and Bangladesh, and trajectory analysis indicates that air pollutants were transported from the southwest. Northwesterly winds brought high levels of natural emissions (Fe, Ca2+) and low levels of pollutants (SO42-, NO3-, K+, and EC); this was consistent with high aerosol optical depths over the western deserts and Gobi. Our work provides evidence that both geological and pollution aerosols from surrounding regions impact the aerosol population of the TP.

  10. Satellite Perspective of Aerosol Intercontinental Transport: From Qualitative Tracking to Quantitative Characterization

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Remer, Lorraine A.; Kahn, Ralph A.; Chin, Mian; Zhang, Yan

    2012-01-01

    Evidence of aerosol intercontinental transport (ICT) is both widespread and compelling. Model simulations suggest that ICT could significantly affect regional air quality and climate, but the broad inter-model spread of results underscores a need of constraining model simulations with measurements. Satellites have inherent advantages over in situ measurements to characterize aerosol ICT, because of their spatial and temporal coverage. Significant progress in satellite remote sensing of aerosol properties during the Earth Observing System (EOS) era offers opportunity to increase quantitative characterization and estimates of aerosol ICT, beyond the capability of pre-EOS era satellites that could only qualitatively track aerosol plumes. EOS satellites also observe emission strengths and injection heights of some aerosols, aerosol precursors, and aerosol-related gases, which can help characterize aerosol ICT. After an overview of these advances, we review how the current generation of satellite measurements have been used to (1) characterize the evolution of aerosol plumes (e.g., both horizontal and vertical transport, and properties) on an episodic basis, (2) understand the seasonal and inter-annual variations of aerosol ICT and their control factors, (3) estimate the export and import fluxes of aerosols, and (4) evaluate and constrain model simulations. Substantial effort is needed to further explore an integrated approach using measurements from on-orbit satellites (e.g., A-Train synergy) for observational characterization and model constraint of aerosol intercontinental transport and to develop advanced sensors for future missions.

  11. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Cassola, F.; Mazzino, A.; Triquet, S.; Chevaillier, S.; Grand, N.; Bourrianne, T.; Momboisse, G.; Sellegri, K.; Schwarzenbock, A.; Freney, E.; Mallet, M.; Formenti, P.

    2015-08-01

    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June-July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of tranport (1-5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried higher concentration of pollution particles at intermediate altitude (1-3 km) than at elevated altitude (> 3 km), resulting in scattering Angstrom exponent up to 2.2 within the intermediate altitude. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate light absorption of the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00 ± 0.04. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assimilated to those of native dust in radiative transfer simulations, modeling studies and

  12. Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities

    NASA Astrophysics Data System (ADS)

    Allan, J. D.; Williams, P. I.; Morgan, W. T.; Martin, C. L.; Flynn, M. J.; Lee, J.; Nemitz, E.; Phillips, G. J.; Gallagher, M. W.; Coe, H.

    2009-09-01

    burning and occurred mainly at night. Grid-scale emission factors of the combustion aerosols suitable for use in chemical transport models were derived relative to CO and NOx. The traffic aerosols were found to be 14.4 μg m-3 ppm-1 relative to CO for Manchester and 28 μg m-3 ppm-1 relative to NOx for London. Solid fuel emissions were derived as 17.3 μg m-3 ppm-1 relative to CO for Manchester. These correspond to mass emission ratios of 0.012, 0.021 (as NO) and 0.014 respectively and are of a similar order to previously published estimates, derived from other regions or using other approaches.

  13. Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities

    NASA Astrophysics Data System (ADS)

    Allan, J. D.; Williams, P. I.; Morgan, W. T.; Martin, C. L.; Flynn, M. J.; Lee, J.; Nemitz, E.; Phillips, G. J.; Gallagher, M. W.; Coe, H.

    2010-01-01

    with biomass burning and occurred mainly at night. Grid-scale emission factors of the combustion aerosols suitable for use in chemical transport models were derived relative to CO and NOx. The traffic aerosols were found to be 20.5 μg m-3 ppm-1 relative to CO for Manchester and 31.6 μg m-3 ppm-1 relative to NOx for London. Solid fuel emissions were derived as 24.7 μg m-3 ppm-1 relative to CO for Manchester. These correspond to mass emission ratios of 0.018, 0.026 (as NO) and 0.021 respectively and are of a similar order to previously published estimates, derived from other regions or using other approaches.

  14. Chemical composition of Eastern Black Sea aerosol--preliminary results.

    PubMed

    Balcılar, Ilker; Zararsız, Abdullah; Kalaycı, Yakup; Doğan, Güray; Tuncel, Gürdal

    2014-08-01

    Trace element composition of atmospheric particles collected at a high altitude site on the Eastern Black Sea coast of Turkey was investigated to understand atmospheric transport of pollutants to this semi-closed basin. Aerosol samples were collected at a timber-storage area, which is operated by the General Directorate of Forestry. The site is situated at a rural area and is approximately 50 km to the Black Sea coast and 200 km to the Georgia border of Turkey. Coarse (PM2.5-10) and fine (PM2.5) aerosol samples were collected between 2011 and 2013 using a "stacked filter unit". Collected samples were shipped to the Middle East Technical University in Ankara, where Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Ba, Pb were measured by Energy dispersive x-ray fluorescence technique (EDXRF). Comparison of measured concentrations of elements with corresponding data generated at other parts of Turkey demonstrated that concentrations of pollution derived elements are higher at Eastern Black Sea than their corresponding concentrations measured at other parts of Turkey, which is attributed to frequent transport of pollutants from north wind sector. Positive matric factorization revealed four factors including three anthropogenic and a crustal factor. Southeastern parts of Turkey, Georgia and Black Sea coast of Ukraine were identified as source regions affecting composition of particles at our site, using trajectory statistics, namely "potential source contribution function" (PSCF). PMID:24373640

  15. Improving Molecular Level Chemical Speciation of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Worton, D. R.; Decker, M.; Isaacman, G. A.; Chan, A.; Wilson, K. R.; Goldstein, A. H.

    2013-12-01

    A substantial fraction of fine mode aerosols are organic with the majority formed in the atmosphere through oxidation of gas phase compounds emitted from a variety of natural and man-made sources. As a result, organic aerosols are comprised of thousands of individual organic species whose complexity increases exponentially with carbon number and degree of atmospheric oxidation. Chemical characterization of individual compounds present in this complex mixture provides information on sources and transformation processes that are critical for apportioning organic carbon from an often convoluted mixture of sources and to constrain oxidation mechanisms needed for atmospheric models. These compounds also affect the physical and optical properties of the aerosol but the vast majority remain unidentified and missing from published mass spectral libraries because of difficulties in separating and identifying them. We have developed improved methodologies for chemical identification in order to better understand complex environmental mixtures. Our approach has been to combine two-dimensional gas chromatography with high resolution time of flight mass spectrometry (GC×GC-HRTOFMS) and both traditional electron ionization (EI) and vacuum ultraviolet (VUV) photoionization. GC×GC provides improved separation of individual compounds over traditional one dimensional GC and minimizes co-elution of peaks resulting in mass spectra that are virtually free of interferences. VUV ionization is a ';soft' ionization technique that reduces fragmentation and enhances the abundance of the parent or molecular ion, which when combined with high resolution mass spectrometry can provide molecular formulas for chromatographic peaks. We demonstrate our methodology by applying it to identify more than 500 individual compounds in aerosol filter samples collected at Blodgett Forest, a rural site in the Sierra Nevada Mountains. Using the EI NIST mass spectral library and molecular formulas determined

  16. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies Among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Chu, Allen; Levy, Robert; Remer, Lorraine; Kaufman, Yoram; Dubovik, Oleg; Holben, Brent; Eck, Tom; Anderson, Tad; Quinn, Patricia

    2004-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, .biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERON" at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  17. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  18. Gas uptake and chemical aging of semisolid organic aerosol particles

    PubMed Central

    Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich

    2011-01-01

    Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate. PMID:21690350

  19. Smoke aerosol transport patterns over the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Xian, Peng; Reid, Jeffrey S.; Atwood, Samuel A.; Johnson, Randall S.; Hyer, Edward J.; Westphal, Douglas L.; Sessions, Walter

    2013-03-01

    Smoke transport patterns over the Maritime Continent (MC) are studied through a combination of approaches, including a) analyzing AODs obtained from satellite products; b) aerosol transport modeling with AOD assimilation along with the atmospheric flow patterns; c) analyzing smoke wet deposition distributions; and d) examining forward trajectories for smoke events defined in this study. It is shown that smoke transport pathways are closely related to the low-level atmospheric flow, i.e., during June-Sept, smoke originating from the MC islands with a dominant source over central and southern Sumatra, and southern and western Borneo, is generally transported northwestward south of the equator and northeastward north of the equator with the cross-equatorial flow, to the South China Sea (SCS), the Philippines and even further to the western Pacific. During the October-November transitional period, smoke transport paths are more zonally oriented compared to June-September. Smoke originating from Java, Bali, Timor etc, and southern New Guinea, which are in the domain of easterlies and southeasterlies during the boreal summer (June-November), is generally transported westward. It is also found that smoke transport over the MC exhibits multi-scale variability. Smoke typically lives longer and can be transported farther in El Niño years and later MJO phases compared with non El Niño years and earlier MJO phases. During El Niño periods there is much stronger westward transport to the east tropical Indian Ocean. Finally, orographic effect on smoke transport over the MC is also clearly discernable.

  20. Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Saarikoski, S.; Carbone, S.; Decesari, S.; Giulianelli, L.; Angelini, F.; Canagaratna, M.; Ng, N. L.; Trimborn, A.; Facchini, M. C.; Fuzzi, S.; Hillamo, R.; Worsnop, D.

    2012-09-01

    The chemistry of submicron particles was investigated at San Pietro Capofiume (SPC) measurement station in the Po Valley, Italy, in spring 2008. The measurements were performed by using both off-line and on-line instruments. Organic carbon (OC) and elemental carbon, organic acids and biomass burning tracers were measured off-line by using a 24-h PM1 filter sampling. More detailed particle chemistry was achieved by using a Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and analyzing the data by positive matrix factorization (PMF). Oxalic acid had the highest concentrations of organic acids (campaign-average 97.4 ng m-3) followed by methane sulfonic, formic, malonic, and malic acids. Samples were also analyzed for glyoxylic, succinic, azelaic and maleic acids. In total, the nine acids composed 1.9 and 3.8% of OC and water-soluble OC, respectively (average), in terms of carbon atoms. Levoglucosan concentration varied from 17.7 to 495 ng m-3 with the concentration decreasing in the course of the campaign most likely due to the reduced use of domestic heating with wood. Six factors were found for organic aerosol (OA) at SPC by PMF: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), nitrogen-containing OA (N-OA) and three different oxygenated OAs (OOA-a, OOA-b and OOA-c). Most of the OA mass was composed of OOA-a, HOA and OOA-c (26, 24 and 22%, respectively) followed by OOA-b (13%), BBOA (8%) and N-OA (7%). As expected, OOAs were the most oxygenated factors with organic matter:organic carbon (OM : OC) ratios ranging from 1.9 to 2.2. The diurnal variability of the aerosol chemical composition was greatly affected by the boundary layer meteorology. Specifically, the effect of the nocturnal layer break-up in morning hours was most evident for nitrate and N-OA indicating that these compounds originated mainly from the local sources in the Po Valley. For sulfate and OOA-a the concentration did not change during the break-up suggesting their

  1. Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Saarikoski, S.; Carbone, S.; Decesari, S.; Giulianelli, L.; Angelini, F.; Teinilä, K.; Canagaratna, M.; Ng, N. L.; Trimborn, A.; Facchini, M. C.; Fuzzi, S.; Hillamo, R.; Worsnop, D.

    2012-03-01

    The chemistry of submicron particles was investigated at San Pietro Capofiume (SPC) measurement station in the Po Valley, Italy, in spring 2008. The measurements were performed by using both off-line and on-line instruments. Organic carbon (OC) and elemental carbon, organic acids and biomass burning tracers were measured off-line by using a 24-h PM1 filter sampling. More detailed particle chemistry was achieved by using an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and analyzing the data by positive matrix factorization (PMF). Oxalic acid had the highest concentrations of organic acids (campaign-average 97.4 ng m-3) followed by methane sulfonic, formic, malonic, and malic acids. Samples were also analyzed for glyoxylic, succinic, azelaic and maleic acids. In total, the nine acids composed 1.9 and 3.8% of OC and water-soluble OC, respectively (average), in terms of carbon atoms. Levoglucosan concentration varied from 17.7 to 495 ng m-3 with the concentration decreasing in the course of the campaign most likely due to the reduced use of domestic heating with wood. Six factors were found for organic aerosol (OA) at SPC by PMF: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), nitrogen-containing OA (N-OA) and three different oxygenated OAs (OOA-a, OOA-b and OOA-c). Most of the OA mass was composed of OOA-a, HOA and OOA-c (26, 24 and 22%, respectively) followed by OOA-b (13%), BBOA (8%) and N-OA (7%). As expected, OOAs were the most oxygenated factors with organic matter:organic carbon (OM:OC) ratios ranging from 1.9 to 2.2. The diurnal variability of the aerosol chemical composition was greatly affected by the boundary layer meteorology. Specifically, the effect of the nocturnal layer break-up in morning hours was most evident for nitrate and N-OA indicating that these compounds originated mainly from the local sources in the Po Valley. For sulfate and OOA-a the concentration did not change during the break-up suggesting their

  2. The long-range transport of southern African aerosols to the tropical South Atlantic

    NASA Astrophysics Data System (ADS)

    Swap, R.; Garstang, M.; Macko, S. A.; Tyson, P. D.; Maenhaut, W.; Artaxo, P.; KâLlberg, P.; Talbot, R.

    1996-10-01

    Two episodes of long-range aerosol transport (4000 km) from southern Africa into the central tropical South Atlantic are documented. Stable nitrogen isotope analysis, multielemental analysis, and meteorological observations on local and regional scales are used to describe the observed surface aerosol chemistry during these transport episodes. The chemical, kinematic, and thermodynamic analyses suggest that for the central tropical South Atlantic, west Africa between 0° and 10°S is the primary air mass source region (over 50%) during austral spring. Over 70% of all air arriving in the lower and middle troposphere in the central tropical South Atlantic comes from a broad latitudinal band extending from 20°S to 10°N. Air coming from the east subsides and is trapped below the midlevel and trade wind inversion layers. Air from the west originates at higher levels (500 hPa) and contributes less than 30% of the air masses arriving in the central tropical South Atlantic. The source types of aerosols and precursor trace gases extend over a broad range of biomes from desert and savanna to the rain forest. During austral spring, over this broad region, processes include production from vegetation, soils, and biomass burning. The aerosol composition of air masses over and the atmospheric chemistry of the central South Atlantic is a function of the supply of biogenic, biomass burning, and aeolian emissions from tropical Africa. Rainfall is a common controlling factor for all three sources. Rain, in turn, is governed by the large-scale circulations which show pronounced interannual variability. The field measurements were taken in an extremely dry year and reflect the circulation and transport fields typical of these conditions.

  3. Chemical characteristics of ambient aerosols contributed by cooking process at Noorpur village near New Delhi

    NASA Astrophysics Data System (ADS)

    Singh, Sudha

    Generally, industrial and transport sectors are considered as major contributors of air pollution but recently, biomass burning is also reported as a major source of atmospheric aerosols (1, 2) especially in the developing world where solid fuels such as dung cake, wood and crop residues are used in traditional cooking which are responsible for poor air quality, respiratory problems and radiative forcing etc .In India, most of the research has been focused on emission estimates from biomass burning and cooking. No effort has been made to understand the chemistry and sources of fine aerosols in rural areas during cooking hours. This study fills this knowledge gap and strengthens our understanding about abundance of various chemical constituents of atmospheric aerosols emitted during cooking hours.Aerosol samples were collected from village called Noorpur (28.470 N, 77.030 E) which lies near Delhi city. Sampling was carried out during August 2011-May 2012 by using handy sampler (Envirotech model APM 821) installed at the terrace of a building (~6m). The aerosol samples were collected on 8 hourly basis at a flow rate of 1 LPM. Water extracts of these filters were analyzed for major anions (F-, Cl-, NO3-, SO42-) and major cations (Na+, NH4+, K+, Ca2+ Mg2+) by ion chromatography (Metrohm 883 Basic IC Plus). During cooking period, the concentration of the major ions followed the order of Ca2+> SO42-> NO3-> Cl-> K+> NH4+> Mg2+> Na2+> F-. Among anion SO42 (5 µg/m3) showed highest value and in case of cations Ca2+ (7.32µg/m3) has highest value.

  4. Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Sato, Y.; Jia, R.; Xie, Y.; Huang, J.; Nakajima, T.

    2015-11-01

    The Tibetan Plateau (TP) is located at the juncture of several important natural and anthropogenic aerosol sources. Satellites have observed substantial dust and anthropogenic aerosols in the atmosphere during summer over the TP. These aerosols have distinct effects on the earth's energy balance, microphysical cloud properties, and precipitation rates. To investigate the transport of summer dust and anthropogenic aerosols over the TP, we combined the Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS) with a non-hydrostatic regional model (NHM). The model simulation shows heavily loaded dust aerosols over the northern slope and anthropogenic aerosols over the southern slope and the east of the TP. The dust aerosols are primarily mobilized around the Taklimakan Desert, where a portion of the aerosols are transported eastward due to the northwesterly current; simultaneously, a portion of the particles are transported southward when a second northwesterly current becomes northeasterly because of the topographic blocking of the northern slope of the TP. Because of the strong upward current, dust plumes can extend upward to approximately 7-8 km a.s.l. over the northern slope of the TP. When a dust event occurs, anthropogenic aerosols that entrained into the southwesterly current via the Indian summer monsoon are transported from India to the southern slope of the TP. Simultaneously, a large amount of anthropogenic aerosol is also transported from eastern China to the east of the TP by easterly winds. An investigation on the transport of dust and anthropogenic aerosols over the plateau may provide the basis for determining aerosol impacts on summer monsoons and climate systems.

  5. Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Sato, Y.; Jia, R.; Xie, Y.; Huang, J.; Nakajima, T.

    2015-05-01

    The Tibetan Plateau (TP) is located at the juncture of several important natural and anthropogenic aerosol sources. Satellites have observed substantial dust and anthropogenic aerosols in the atmosphere during summer over the TP. These aerosols have distinct effects on the earth's energy balance, microphysical cloud properties, and precipitation rates. To investigate the transport of summer dust and anthropogenic aerosols over the TP, we combined the Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS) with a non-hydrostatic regional model (NHM). The model simulation shows heavily loaded dust aerosols over the northern slope and anthropogenic aerosols over the southern slope and to the east of the TP. The dust aerosols are primarily mobilized around the Taklimakan Desert, where a portion of the aerosols are transported eastward due to the northwesterly current; simultaneously, a portion of the particles are transported northward when a second northwesterly current becomes northeasterly because of the topographic blocking of the northern slope of the TP. Because of the strong upward current, dust plumes can extend upward to approximately 7-8 km a.s.l. over the northern slope of the TP. When a dust event occurs, anthropogenic aerosols that entrain into the southwesterly current via the Indian summer monsoon are transported from India to the southern slope of the TP. Simultaneously, a large amount of anthropogenic aerosols is also transported from eastern China to east of the TP by easterly winds. An investigation on the transport of dust and anthropogenic aerosols over the plateau may provide the basis for determining aerosol impacts on summer monsoons and climate systems.

  6. Trans-Pacific transport and evolution of aerosols: evaluation of quasi-global WRF-Chem simulation with multiple observations

    NASA Astrophysics Data System (ADS)

    Hu, Zhiyuan; Zhao, Chun; Huang, Jianping; Leung, L. Ruby; Qian, Yun; Yu, Hongbin; Huang, Lei; Kalashnikova, Olga V.

    2016-05-01

    interannual variability of aerosol characteristics for 2010-2014 averaged over three Pacific sub-regions. The evaluation in this study demonstrates that the WRF-Chem quasi-global simulation can be used for investigating trans-Pacific transport of aerosols and providing reasonable inflow chemical boundaries for the western USA, allowing one to further understand the impact of transported pollutants on the regional air quality and climate with high-resolution nested regional modeling.

  7. Biological availability of lead in a paint aerosol. 1. Physical and chemical characterization of a lead paint aerosol.

    PubMed

    Kalman, D; Schumacher, R; Covert, D; Eaton, D L

    1984-09-01

    This study was conducted to determine the physical and chemical characteristics of an aerosol of lead-based paint, generated in an industrial spray operation, that might influence the biological availability of lead present in inhaled aerosols. Paint aerosols were collected, and mass-size distribution was determined using a portable cascade impactor under actual occupational conditions. Approx. 2% of the particulate mass collected was in the respirable range (less than 10 micron mean aerodynamic diameter), although the maximum airborne concentration of lead was found to be 2-3 mg/m3. The lead concentration in a dried aerosol was very resistant to chemical digestion. Analysis by X-ray diffraction, atomic absorption spectroscopy and inductively coupled plasma emission spectroscopy showed approx. 11% lead by dry weight, although the wet weight concentration of lead reported by the manufacturer was 12.8%. PMID:6485003

  8. Chemical composition, sources, and processes of urban aerosols during summertime in Northwest China: insights from High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D.

    2014-06-01

    An aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed along with a Scanning Mobility Particle Sizer (SMPS) and a Multi Angle Absorption Photometers (MAAP) to measure the temporal variations of the mass loading, chemical composition, and size distribution of sub-micrometer particulate matter (PM1) in Lanzhou, northwest China, during 12 July-7 August 2012. The average PM1 mass concentration including non-refractory PM1 (NR-PM1) measured by HR-ToF-AMS and black carbon (BC) measured by MAAP during this study was 24.5 μg m-3 (ranging from 0.86 to 105μg m-3), with a mean composition consisting of 47% organics, 16% sulfate, 12% BC, 11% ammonium, 10% nitrate, and 4% chloride. The organics was consisted of 70% carbon, 21% oxygen, 8% hydrogen, and 1% nitrogen, with the average oxygen-to-carbon ratio (O / C) of 0.33 and organic mass-to-carbon ratio (OM / OC) of 1.58. Positive matrix factorization (PMF) of the high-resolution mass spectra of organic aerosols (OA) identified four distinct factors which represent, respectively, two primary OA (POA) emission sources (traffic and food cooking) and two secondary OA (SOA) types - a fresher, semi-volatile oxygenated OA (SV-OOA) and a more aged, low-volatility oxygenated OA (LV-OOA). Traffic-related hydrocarbon-like OA (HOA) and BC displayed distinct diurnal patterns both with peak at ~07:00-11:00 (BJT: UTC +8) corresponding to the morning rush hours, while cooking OA (COA) peaked during three meal periods. The diurnal profiles of sulfate and LV-OOA displayed a broad peak between ∼07:00-15:00, while those of nitrate, ammonium, and SV-OOA showed a narrower peak at ~08:00-13:00. The later morning and early afternoon peak in the diurnal profiles of secondary aerosol species was likely caused by mixing down of pollutants aloft, which were likely produced in the residual layer decoupled from the boundary layer during night time. The mass spectrum of SV-OOA also showed similarity with that of

  9. Microphysical, chemical and optical aerosol properties in the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Kikas, Ülle; Reinart, Aivo; Pugatshova, Anna; Tamm, Eduard; Ulevicius, Vidmantas

    2008-11-01

    The microphysical structure, chemical composition and prehistory of aerosol are related to the aerosol optical properties and radiative effect in the UV spectral range. The aim of this work is the statistical mapping of typical aerosol scenarios and adjustment of regional aerosol parameters. The investigation is based on the in situ measurements in Preila (55.55° N, 21.00° E), Lithuania, and the AERONET data from the Gustav Dalen Tower (58 N, 17 E), Sweden. Clustering of multiple characteristics enabled to distinguish three aerosol types for clear-sky periods: 1) clean maritime-continental aerosol; 2) moderately polluted maritime-continental aerosol; 3) polluted continental aerosol. Differences between these types are due to significant differences in aerosol number and volume concentration, effective radius of volume distribution, content of SO 4- ions and Black Carbon, as well as different vertical profiles of atmospheric relative humidity. The UV extinction, aerosol optical depth (AOD) and the Ångstrom coefficient α increased with the increasing pollution. The value α = 1.96 was observed in the polluted continental aerosol that has passed over central and eastern Europe and southern Russia. Reduction of the clear-sky UV index against the aerosol-free atmosphere was of 4.5%, 27% and 41% for the aerosol types 1, 2 and 3, respectively.

  10. INFLUENCE OF MACROMOLECULES ON CHEMICAL TRANSPORT

    EPA Science Inventory

    Macromolecules in the pore fluid influence the mobility of hydrophobic compounds through soils. his study evaluated the significance of macromolecules in facilitating chemical transport under laboratory conditions. Partition coefficients between 14C-labeled hexachlorobenzene and ...

  11. Transport of traffic-related aerosols in urban areas.

    PubMed

    Wróbel, A; Rokita, E; Maenhaut, W

    2000-08-10

    This study was undertaken to assess the influence of traffic on particulate air pollution in an urban area, and to characterise the short-range transport of the aerosols generated by traffic. The study was conducted in Kraków, a city located in southern Poland with a population of approximately 800,000. Aerosol samples were collected using automatic sampling equipment at five sites located at different distances from the main road in Kraków, ranging from 5 to 1500 m. The sampling set-up allowed standardisation of the results due to continuous determination of the meteorological parameters (temperature, atmospheric pressure, wind speed and direction, rainfall and humidity). Aerosol particles were separated according to aerodynamic diameter into two size fractions: > 1.9 microm (coarse fraction); and 1.9-72 microm (fine fraction). The concentrations of 27 elements were measured in both size fractions (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Zr, Ba, Pb). The multielement analyses were performed by Particle-Induced X-ray Emission (PIXE) spectrometry. Traffic contribution to particulate air pollution was determined on the basis of 13 elements which were present above the detection limit in all samples (Mg, Al, Si, P, S, K, Ca, Ti, Mn, Fe, Cu, Zn, Pb). It was found that the traffic contribution in the coarse size fraction was approximately 80% up to 150 m from the road; it dropped abruptly by a factor of 2 over a distance of 150-200 m and declined further to 20% at 1500 m from the road. Traffic contribution for the fine particle concentrations of individual elements was 50-70% in the close vicinity of the road (5 m); then there was a decrease, followed by an increase at a greater distance from the road. Possible explanations for this behaviour of the fine particles are given. PMID:10989929

  12. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    NASA Astrophysics Data System (ADS)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2010-10-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (Hi-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While extensive BB is not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m=1.53(±0.03)+0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m=1.54(±0.01)+0.04i(±0.01) compared to m=1.49(±0.01)+0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  13. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    NASA Astrophysics Data System (ADS)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2011-02-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03) + 0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01) + 0.04i(±0.01) compared to m = 1.49(±0.01) + 0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  14. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  15. Aerosol transport and deposition efficiency in the respiratory airways

    NASA Astrophysics Data System (ADS)

    Nicolaou, Laura; Zaki, Tamer

    2015-11-01

    Prediction of aerosol deposition in the respiratory system is important for improving the efficiency of inhaled drug delivery and for assessing the toxicity of airborne pollutants. Particle deposition in the airways is typically described as a function of the Stokes number based on a reference flow timescale. This choice leads to significant scatter in deposition data since the velocity and length scales experienced by the particles as they are advected through the flow deviate considerably from the reference values in many sections of the airways. Therefore, the use of an instantaneous Stokes number based on the local properties of the flow field is proposed instead. We define the effective Stokes number as the time-average of the instantaneous value. Our results demonstrate that this average, or effective, Stokes number can deviate significantly from the reference value particularly in the intermediate Stokes number range. In addition, the effective Stokes number shows a very clear correlation with deposition efficiency, and is therefore a more appropriate parameter to describe aerosol transport.

  16. Elucidating the Chemical Complexity of Organic Aerosol Constituents Measured During the Southeastern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Yee, L.; Isaacman, G. A.; Spielman, S. R.; Worton, D. R.; Zhang, H.; Kreisberg, N. M.; Wilson, K. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Thousands of volatile organic compounds are uniquely created in the atmosphere, many of which undergo chemical transformations that result in more highly-oxidized and often lower vapor pressure species. These species can contribute to secondary organic aerosol, a complex mixture of organic compounds that is still not chemically well-resolved. Organic aerosol collected on filters taken during the Southeastern Oxidant and Aerosol Study (SOAS) constitute hundreds of unique chemical compounds. Some of these include known anthropogenic and biogenic tracers characterized using standardized analytical techniques (e.g. GC-MS, UPLC, LC-MS), but the majority of the chemical diversity has yet to be explored. By employing analytical techniques involving sample derivatization and comprehensive two-dimensional gas chromatography (GC x GC) with high-resolution-time-of-flight mass spectrometry (HR-ToF-MS), we elucidate the chemical complexity of the organic aerosol matrix along the volatility and polarity grids. Further, by utilizing both electron impact (EI) and novel soft vacuum ultraviolet (VUV) ionization mass spectrometry, a greater fraction of the organic mass is fully speciated. The GC x GC-HR-ToF-MS with EI/VUV technique efficiently provides an unprecedented level of speciation for complex ambient samples. We present an extensive chemical characterization and quantification of organic species that goes beyond typical atmospheric tracers in the SOAS samples. We further demonstrate that complex organic mixtures can be chemically deconvoluted by elucidation of chemical formulae, volatility, functionality, and polarity. These parameters provide insight into the sources (anthropogenic vs. biogenic), chemical processes (oxidation pathways), and environmental factors (temperature, humidity), controlling organic aerosol growth in the Southeastern United States.

  17. Summertime aerosol chemical components in the marine boundary layer of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Xie, Zhouqing; Sun, Liguang; Blum, Joel D.; Huang, Yuying; He, Wei

    2006-05-01

    Samples of aerosols from the marine boundary layer of the Arctic Ocean were collected aboard the R/V Xuelong during summer on the Second Chinese Arctic Research Expedition (July-September 2003). Synchrotron radiation X-ray fluorescence (SR-XRF) was used to determine chemical compositions of aerosol particles. Multivariate analysis of the SR-XRF data resolved a number of components (factors), which, on the basis of their chemical compositions and from their affiliation with specific meteorological flow patterns, were assigned physical meanings. Five factors explaining 94.7% of the total variance were identified. Ship emissions accounted for 35.3% of the variance (factor 1 (F1)) and are loaded significantly with S, Fe, V, and Ni. The total Fe emitted from ships globally was estimated at 8.60 × 106 kg yr-1. Heavy-metal-rich factors included 34.0% of the variance (F2 and F3) and were interpreted to be pollution carried into the Arctic Ocean by long-range transport. Anthropogenic contributions from industrial regions to the Arctic Ocean during the summer vary and depend on the source locations. Air mass backward trajectories indicate that the metals including Hg, Pb, Cu, and Zn come mainly from northern Russia. The third source controlling the chemical compositions of aerosols was sea salt (F4, 12.8%). The role of sea salt decreased from the open sea to areas near pack ice. On the basis of the factor scores of aerosol samples, we infer that chlorine volatilization from sea salt may occur, enhanced by nitrogen and sulfur contamination emitted from ships. Because the global inventories of nitrogen and sulfur for ship exhausts are large, and halogens could have important consequences in possible tropospheric ozone destruction, the role of ships in influencing halogen depression in sea salt should be further investigated. Finally, we also identified a crustal factor (F5, 12.6%) and suggest that crustal elements (e.g., Ca) contaminating sea ice may become reinjected into

  18. Global and Regional Impacts of HONO on the Chemical Composition of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    Elshorbany, Y. F.; Crutzen, P. J.; Steil, B.; Pozzer, A.; Tost, H.; Lelieveld, J.

    2014-01-01

    Recently, realistic simulation of nitrous acid (HONO) based on the HONO/NO(sub x) ratio of 0.02 was found to have a significant impact on the global budgets of HO(sub x) (OH + HO2) and gas phase oxidation products in polluted regions, especially in winter when other photolytic sources are of minor importance. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that simulating realistic HONO levels can significantly enhance aerosol sulphate (S(VI)) due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and corroborate the central role of cloud chemical processing in S(IV) formation.

  19. Global and Regional Impacts of HONO on the Chemical Composition of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    Elshorbany, Y. F.; Crutzen, P. J.; Steil, B.; Pozzer, A.; Tost, H.; Lelieveld, J.

    2014-01-01

    Recently, realistic simulation of nitrous acid (HONO) based on the HONO / NOx ratio of 0.02 was found to have a significant impact on the global budgets of HOx (OH + HO2) and gas phase oxidation products in polluted regions, especially in winter when other photolytic sources are of minor importance. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that simulating realistic HONO levels can significantly enhance aerosol sulphate (S(VI)) due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and corroborate the central role of cloud chemical processing in S(IV) formation

  20. Global and regional impacts of HONO on the chemical composition of clouds and aerosols

    NASA Astrophysics Data System (ADS)

    Elshorbany, Y. F.; Crutzen, P. J.; Steil, B.; Pozzer, A.; Tost, H.; Lelieveld, J.

    2014-02-01

    Recently, realistic simulation of nitrous acid (HONO) based on the HONO / NOx ratio of 0.02 was found to have a significant impact on the global budgets of HOx (OH + HO2) and gas phase oxidation products in polluted regions, especially in winter when other photolytic sources are of minor importance. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that simulating realistic HONO levels can significantly enhance aerosol sulphate (S(VI)) due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model-measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and corroborate the central role of cloud chemical processing in S(IV) formation.

  1. Chemical, physical, and optical evolution of biomass burning aerosols: A case study

    NASA Astrophysics Data System (ADS)

    Adler, G.; Flores, M.; Borrmann, S.; Rudich, Y.

    2010-12-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols of a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (Hi-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While extensive BB is not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). EBRI during the smoldering phase of the fires was m=1.54(±0.01)+0.04i(±0.01) compared to m=1.49(±0.01)+0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  2. Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece.

    PubMed

    Paraskevopoulou, D; Liakakou, E; Gerasopoulos, E; Mihalopoulos, N

    2015-09-15

    To identify the sources of aerosols in Greater Athens Area (GAA), a total of 1510 daily samples of fine (PM 2.5) and coarse (PM 10-2,5) aerosols were collected at a suburban site (Penteli), during a five year period (May 2008-April 2013) corresponding to the period before and during the financial crisis. In addition, aerosol sampling was also conducted in parallel at an urban site (Thissio), during specific, short-term campaigns during all seasons. In all these samples mass and chemical composition measurements were performed, the latest only at the fine fraction. Particulate organic matter (POM) and ionic masses (IM) are the main contributors of aerosol mass, equally contributing by accounting for about 24% of the fine aerosol mass. In the IM, nss-SO4(-2) is the prevailing specie followed by NO3(-) and NH4(+) and shows a decreasing trend during the 2008-2013 period similar to that observed for PM masses. The contribution of water in fine aerosol is equally significant (21 ± 2%), while during dust transport, the contribution of dust increases from 7 ± 2% to 31 ± 9%. Source apportionment (PCA and PMF) and mass closure exercises identified the presence of six sources of fine aerosols: secondary photochemistry, primary combustion, soil, biomass burning, sea salt and traffic. Finally, from winter 2012 to winter 2013 the contribution of POM to the urban aerosol mass is increased by almost 30%, reflecting the impact of wood combustion (dominant fuel for domestic heating) to air quality in Athens, which massively started in winter 2013. PMID:25958364

  3. Biokinetics and dosimetry of inhaled Cm aerosols in beagles: effect of aerosol chemical form.

    PubMed

    Guilmette, R A; Kanapilly, G M

    1988-12-01

    This study was designed to provide tissue distribution data of 244Cm that was inhaled by beagle dogs. Two chemical forms that were presumed to bracket the solubility of pure Cm compounds in vivo were used: 244Cm2O3 (oxide) and 244Cm(NO3)3 (nitrate). Adult dogs of both sexes received a single brief pernasal exposure to either a monodisperse aerosol of 244Cm2O3 (1.4 micron activity median aerodynamic diameter, AMAD, and 1.16 geometric standard deviation, sigma g) or a polydisperse aerosol of 244Cm(NO3)3 (1.1 micron AMAD, 1.74 sigma g). The resulting initial pulmonary burdens (IPB) were 1.5 and 1.7 kBq kg-1 body mass for the oxide and nitrate groups, respectively. The tissue distribution data obtained from the dogs that were serially sacrificed from 4 h to 2 y after exposure showed that both chemical forms were very soluble in vivo. For the oxide group, 78% IPB was cleared from the lung with a T 1/2 of 7.6 d, whereas for the nitrate group, 42% IPB cleared with a T 1/2 of 0.6 d. The lung retention for each group was described by three-component exponential functions. Most of the Cm that cleared the lung was redeposited in the liver (37% IPB) and skeleton (27% IPB), with lesser amounts in the muscle, fat and connective tissue (3.5% IPB) and kidney (approximately 2% IPB). The only significant difference noted in the biokinetics of Cm for the two exposure groups was a more rapid translocation of Cm from the lung to liver and bone during the first 10-20 d after exposure to the nitrate compared to the oxide chemical form. Extrapolation of these data to obtain estimates of committed dose equivalents for man indicate substantial agreement with the limits for occupational exposure specified by ICRP 30 (1979). PMID:3198400

  4. Characterization of chemical agent transport in paints.

    PubMed

    Willis, Matthew P; Gordon, Wesley; Lalain, Teri; Mantooth, Brent

    2013-09-15

    A combination of vacuum-based vapor emission measurements with a mass transport model was employed to determine the interaction of chemical warfare agents with various materials, including transport parameters of agents in paints. Accurate determination of mass transport parameters enables the simulation of the chemical agent distribution in a material for decontaminant performance modeling. The evaluation was performed with the chemical warfare agents bis(2-chloroethyl) sulfide (distilled mustard, known as the chemical warfare blister agent HD) and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), an organophosphate nerve agent, deposited on to two different types of polyurethane paint coatings. The results demonstrated alignment between the experimentally measured vapor emission flux and the predicted vapor flux. Mass transport modeling demonstrated rapid transport of VX into the coatings; VX penetrated through the aliphatic polyurethane-based coating (100 μm) within approximately 107 min. By comparison, while HD was more soluble in the coatings, the penetration depth in the coatings was approximately 2× lower than VX. Applications of mass transport parameters include the ability to predict agent uptake, and subsequent long-term vapor emission or contact transfer where the agent could present exposure risks. Additionally, these parameters and model enable the ability to perform decontamination modeling to predict how decontaminants remove agent from these materials. PMID:23872337

  5. Chemical characterization and physico-chemical properties of aerosols at Villum Research Station, Greenland during spring 2015

    NASA Astrophysics Data System (ADS)

    Glasius, M.; Iversen, L. S.; Svendsen, S. B.; Hansen, A. M. K.; Nielsen, I. E.; Nøjgaard, J. K.; Zhang, H.; Goldstein, A. H.; Skov, H.; Massling, A.; Bilde, M.

    2015-12-01

    The effects of aerosols on the radiation balance and climate are of special concern in Arctic areas, which have experienced warming at twice the rate of the global average. As future scenarios include increased emissions of air pollution, including sulfate aerosols, from ship traffic and oil exploration in the Arctic, there is an urgent need to obtain the fundamental scientific knowledge to accurately assess the consequences of pollutants to environment and climate. In this work, we studied the chemistry of aerosols at the new Villum Research Station (81°36' N, 16°40' W) in north-east Greenland during the "inauguration campaign" in spring 2015. The chemical composition of sub-micrometer Arctic aerosols was investigated using a Soot Particle Time-of-Flight Aerosol Mass Spectrometer (SP-ToF-AMS). Aerosol samples were also collected on filters using both a high-volume sampler and a low-volume sampler equipped with a denuder for organic gases. Chemical analyses of filter samples include determination of inorganic anions and cations using ion-chromatography, and analysis of carboxylic acids and organosulfates of anthropogenic and biogenic origin using ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Previous studies found that organosulfates constitute a surprisingly high fraction of organic aerosols during the Arctic Haze period in winter and spring. Investigation of organic molecular tracers provides useful information on aerosol sources and atmospheric processes. The physico-chemical properties of Arctic aerosols are also under investigation. These measurements include particle number size distribution, water activity and surface tension of aerosol samples in order to deduct information on their hygroscopicity and cloud-forming potential. The results of this study are relevant to understanding aerosol sources and processes as well as climate effects in the Arctic, especially during the Arctic haze

  6. Chemical composition of atmospheric aerosols between Moscow and Vladivostok

    NASA Astrophysics Data System (ADS)

    Kuokka, S.; Teinilä, K.; Saarnio, K.; Aurela, M.; Sillanpää, M.; Hillamo, R.; Kerminen, V.-M.; Vartiainen, E.; Kulmala, M.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.

    2007-05-01

    The TROICA-9 expedition (Trans-Siberian Observations Into the Chemistry of the Atmosphere) was carried out at the Trans-Siberian railway between Moscow and Vladivostok in October 2005. Measurements of aerosol physical and chemical properties were made from an observatory carriage connected to a passenger train. Black carbon (BC) concentrations in fine particles (PM2.5, aerodynamic diameter <2.5 μm) were measured with an aethalometer using a five-minute time resolution. Concentrations of inorganic ions and some organic compounds (Cl-, NO3-, SO42-, Na+, NH4+, K+, Ca2+, Mg2+, oxalate and methane sulphonate) were measured continuously by using an on-line system with a 15-min time resolution. In addition, particle volume size distributions were determined for particles in the diameter range 3-850 nm using a 10-min. time resolution. The continuous measurements were completed with 24-h. PM2.5 filter samples which were stored in a refrigerator and later analyzed in chemical laboratory. The analyses included mass concentrations of PM2.5, ions, monosaccharide anhydrides (levoglucosan, galactosan and mannosan) and trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn). The mass concentrations of PM2.5 varied in the range of 4.3-34.8 μg m-3 with an average of 21.6 μg m-3. Fine particle mass consisted mainly of BC (average 27.6%), SO42- (13.0%), NH4+ (4.1%), and NO3- (1.4%). One of the major constituents was obviously also organic carbon which was not determined. The contribution of BC was high compared with other studies made in Europe and Asia. High concentrations of ions, BC and particle volume were observed between Moscow and roughly 4000 km east of it, as well as close to Vladivostok, primarily due to local anthropogenic sources. In the natural background area between 4000 and 7200 km distance from Moscow, observed concentrations were low, even though there were local particle sources, such as forest fires, that increased occasionally concentrations. The

  7. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols

    NASA Astrophysics Data System (ADS)

    Li, Ying; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-03-01

    The formation and aging of organic aerosols (OA) proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the saturation mass concentration of organic compounds containing oxygen, nitrogen, and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less-oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle-phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  8. Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph

    2008-01-01

    Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.

  9. Spatial distribution and temporal variation of chemical species in the bulk atmospheric aerosols collected at the Okinawa archipelago, Japan

    NASA Astrophysics Data System (ADS)

    Handa, D.; Somada, Y.; Ijyu, M.; Azechi, S.; Nakaema, F.; Arakaki, T.; Tanahara, A.

    2009-12-01

    The economic development and population growth in recent Asia have been increasing air pollution. A computer simulation study showed that air pollutants emitted from Asian continent could spread quickly within northern hemisphere. We initiated a study to elucidate the special distribution and chemical characterization of atmospheric aerosols around Okinawa archipelago, Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. We simultaneously collected bulk aerosol samples by using the same types of high volume air samplers at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS, Okinawa Island), Kume Island (ca. 160 km south-west of CHAAMS) and Minami-daitou Island (ca. 320 km south-east of CHAAMS). We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We report and discuss spatial distribution and temporal variation of chemical species concentrations in bulk atmospheric aerosols collected during July, 2008 to July, 2009. We determine “background” concentration of chemical components in Okinawa archipelago. We then compare each chemical component among CHAAMS, Kume Island and Minami-daito Island to elucidate the influence of the long-range transport of chemical species from Asian continent.

  10. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth retrievals

    NASA Astrophysics Data System (ADS)

    Naeger, A. R.; Gupta, P.; Zavodsky, B.; McGrath, K. M.

    2015-10-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America. However, we identify several areas across the domain of interest from Asia to North America where the new product can encounter significant uncertainties due to the inclusion of the geostationary AOD retrievals. The uncertainties associated with geostationary AOD retrievals are expected to be minimized after the successful launch of the next-generation advanced NOAA GOES-R and recently launched JMA Himawari satellites. Observations from these advanced satellites will ultimately provide an enhanced understanding of the spatial and temporal distribution of aerosols over the Pacific.

  11. Aerosol transport along the Andes from Amazonia to the remote Pacific Ocean: A multiyear CALIOP assessment

    NASA Astrophysics Data System (ADS)

    Bourgeois, Quentin; Ekman, Annica; Krejci, Radovan

    2015-04-01

    The free troposphere over South America and the Pacific Ocean is a particularly interesting region to study due to the prevailing easterly wind direction, forcing air over Amazonia towards the Pacific Ocean but encountering a natural barrier - the Andes - in between which might play a significant role. In addition, the strong contrast between the wet, relatively clean season and the dry, relatively polluted season as well as the difference between day and night meteorological conditions may influence the vertical distribution of aerosols in the free troposphere. Six years (2007-2012) of CALIOP observations at both day and night were used to investigate the vertical distribution, transport and removal processes of aerosols over South America and the Pacific Ocean. The multiyear assessment shows that aerosols, mainly biomass burning particles emitted during the dry season in Amazonia, may be lifted along the Andes. During their lifting, aerosols remain in the boundary layer which makes them subject to scavenging and deposition processes. The removal aerosol extinction rate was quantified. After reaching the top of the Andes, free tropospheric aerosols are likely pushed by the large-scale subsidence towards the marine boundary layer (MBL) during their transport over the Pacific Ocean. CALIOP observations may indicate that aerosols are transported over thousands of kilometers in the free troposphere over the Pacific Ocean. During their long range transport, aerosols could be entrained into the MBL and may further act as cloud condensation nuclei, and influence climate and the radiative budget of the Earth.

  12. Real-time chemical analysis of aerosol particles

    SciTech Connect

    Yang, M.; Whitten, W.B.; Ramsey, J.M.

    1995-04-01

    An important aspect of environmental atmospheric monitoring requires the characterization of airborne microparticles and aerosols. Unfortunately, traditional sample collection and handling techniques are prone to contamination and interference effects that can render an analysis invalid. These problems can be avoided by using real-time atmospheric sampling techniques followed by immediate mass spectrometric analysis. The former is achieved in these experiments via a two state differential pumping scheme that is attached directly to a commercially available quadruple ion trap mass spectrometer. Particles produced by an external particle generator enter the apparatus and immediately pass through two cw laser/fiberoptic based detectors positioned two centimeters apart. Timing electronics measure the time between detection events, estimate the particles arrival in the center of the ion trap and control the firing of a YAG laser. Ions produced when the UV laser light ablates the particle`s surface are stored by the ion trap for mass analysis. Ion trap mass spectrometers have several advantages over conventional time-of-flight instruments. First, they are capable of MS/MS analysis by the collisional dissociation of a stored species, This permits complete chemical characterization of airborne samples. Second, ion traps are small and lend themselves to portable, field oriented applications.

  13. Transport Simulations of Carbon Monoxide and Aerosols from Boreal Wildfires during ARCTAS using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Sessions, W.; Fuelberg, H. E.; Winker, D. M.; Chu, A. D.; Kahn, R. A.

    2009-12-01

    The Weather Research and Forecasting Model (WRF) was developed by the National Center for Atmospheric Research as the next generation of mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem) allows transport simulations of chemical and aerosol species such as those observed during NASA’s Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) during 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia. We identified fires using the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA) and thermal hotspot detections from MODIS sensors onboard the Aqua and Terra satellites. The fires on both continents produced plumes large enough to affect the atmospheric chemical composition of downwind population centers as well as the Arctic. Atmospheric steering currents vary greatly with altitude, making plume injection height one of the most important aspects of accurately modeling the transport of burning emissions. WRF-Chem integrates a one-dimensional plume model at grid cells containing fires to explicitly resolve the upper and lower limits of injection height. The early July fires provide multiple cases to satellite remotely sense the horizontal and vertical evolution of carbon monoxide (AIRS/MISR) and aerosols (CALIPSO) downwind of the fires. Lidar and in situ measurements from the NASA DC-8 and B-200 aircraft permit further validation of results from WRF-Chem. Using these various data sources, this paper will evaluate the ability of WRF-Chem to properly model the biomass injection heights and the downwind transport of fire plumes. Model-derived plume characteristics also will be compared with those observed by the satellites and in situ data. Finally, forecast sensitivities to varying WRF-Chem grid resolutions and plume rise mechanics will be presented.

  14. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo

    2010-01-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of

  15. Effects of aerosol sources and chemical compositions on cloud drop sizes and glaciation temperatures

    NASA Astrophysics Data System (ADS)

    Zipori, Assaf; Rosenfeld, Daniel; Tirosh, Ofir; Teutsch, Nadya; Erel, Yigal

    2015-09-01

    The effect of aerosols on cloud properties, such as its droplet sizes and its glaciation temperatures, depends on their compositions and concentrations. In order to examine these effects, we collected rain samples in northern Israel during five winters (2008-2011 and 2013) and determined their chemical composition, which was later used to identify the aerosols' sources. By combining the chemical data with satellite-retrieved cloud properties, we linked the aerosol types, sources, and concentrations with the cloud glaciation temperatures (Tg). The presence of dust increased Tg from -26°C to -12°C already at relatively low dust concentrations. This result is in agreement with the conventional wisdom that desert dust serves as good ice nuclei (INs). With higher dust concentrations, Tg saturated at -12°C, even though cloud droplet sizes decreased as a result of the cloud condensation nucleating (CCN) activity of the dust. Marine air masses also encouraged freezing, but in this case, freezing was enhanced by the larger cloud droplet sizes in the air masses (caused by low CCN concentrations) and not by IN concentrations or by aerosol type. An increased fraction of anthropogenic aerosols in marine air masses caused a decrease in Tg, indicating that these aerosols served as poor IN. Anthropogenic aerosols reduced cloud droplet sizes, which further decreased Tg. Our results could be useful in climate models for aerosol-cloud interactions, as we investigated the effects of aerosols of different sources on cloud properties. Such parameterization can simplify these models substantially.

  16. Combined measurements of organic aerosol isotopic and chemical composition to investigate day-night differences in carbonaceous aerosol

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike; Holzinger, Rupert; Meijer, Harro A. J.; Röckmann, Thomas

    2014-05-01

    PM2.5 filter samples have been collected during the Pegasos (Mai, 2012) and Actris (June/July 2012) campaigns at the CESAR site near Cabauw, the Netherlands. This site lies in a rural location surrounded by major urban centers and highways and is a good location for measuring the regional aerosol contamination in the Netherlands. High volume filter samples were taken over several days, but the aerosol was collected on separate filters during day and night time periods. We analyzed these filters for carbon isotopes (14C and 13C) and detailed chemical composition of the organic fraction, which can be a powerful tool, for investigating sources and processing of the organic aerosol. Measurement of the radioactive carbon isotope 14C in aerosols can provide a direct estimate of the contribution of fossil fuel sources to aerosol carbon. The stable carbon isotopes 12C and 13C can be used to get information about sources and processing of organic aerosol. We use a method to measure d13C values of OC desorbed from the filter samples in He at different temperature steps. The chemical composition of the organic fraction at the same temperature steps can be determined using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The PTR-MS method is applied to the filter samples as well to aerosol collected in situ by a impaction using a Collection-Thermal-Desorption Cell. First results show that the mass concentration of the carbonaceous aerosol is higher during night time than during day time, dominated by a strong increase of biogenic organic aerosol. This is at least partially caused by a shallow night time boundary layer combined with decreased traffic sources and increased condensation of semi-volatile biogenic gases during night-time. Evidence for the role of semi-volatile compounds in enhancing organic carbon (OC) night time concentrations comes from several observations: (1) semi-volatile OC with desorption temperatures lower than 250 °C increases

  17. Methodology for the passive detection and discrimination of chemical and biological aerosols

    NASA Astrophysics Data System (ADS)

    Marinelli, William J.; Shokhirev, Kirill N.; Konno, Daisei; Rossi, David C.; Richardson, Martin

    2013-05-01

    The standoff detection and discrimination of aerosolized biological and chemical agents has traditionally been addressed through LIDAR approaches, but sensor systems using these methods have yet to be deployed. We discuss the development and testing of an approach to detect these aerosols using the deployed base of passive infrared hyperspectral sensors used for chemical vapor detection. The detection of aerosols requires the inclusion of down welling sky and up welling ground radiation in the description of the radiative transfer process. The wavelength and size dependent ratio of absorption to scattering provides much of the discrimination capability. The approach to the detection of aerosols utilizes much of the same phenomenology employed in vapor detection; however, the sensor system must acquire information on non-line-of-sight sources of radiation contributing to the scattering process. We describe the general methodology developed to detect chemical or biological aerosols, including justifications for the simplifying assumptions that enable the development of a real-time sensor system. Mie scattering calculations, aerosol size distribution dependence, and the angular dependence of the scattering on the aerosol signature will be discussed. This methodology will then be applied to two test cases: the ground level release of a biological aerosol (BG) and a nonbiological confuser (kaolin clay) as well as the debris field resulting from the intercept of a cruise missile carrying a thickened VX warhead. A field measurement, conducted at the Utah Test and Training Range will be used to illustrate the issues associated with the use of the method.

  18. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    NASA Astrophysics Data System (ADS)

    Potter, Lauren E.

    data were supplemented with observations of gaseous radon (Rn222) and carbon monoxide (CO), used as tracers of long distance continental influence. Our study applied trajectory analysis and multiple linear regression to interpret the relative roles of aerosol precursor emissions and large-scale transport characteristics on observed MLO sulfate aerosol variability. We conclude that observed sulfate aerosol at MLO likely originated from a combination of anthropogenic, volcanic, and biogenic sources that varied seasonally and from year to year. Analysis of chemical continental tracer concentrations and HYSPLIT back trajectories suggests that non-negligible long distance influence from either the Asian or North American continents can be detected at MLO during all seasons although large interannual variability was observed. Possible influence of circulation changes in the Pacific Basin related to the El Nino-Southern Oscillation were found to be both species and seasonally dependent. We further found an increasing trend in monthly mean sulfate aerosol concentrations at MLO of 4.8% (7.3 ng m-3) per year during 1995-2008, significant at the 95% confidence level. Multiple linear regression results suggest that the observed trend in sulfate concentrations at MLO cannot reasonably be explained by variations in meteorology and transport efficiency alone. An increasing sulfate trend of 5.8 ng m-3 per year, statistically significant at the 90% confidence level, was found to be associated with the variable representing East Asian SO2 emissions. The results of this study provide evidence that MLO sulfate aerosol observations during 1995-2008 reflect, in part, recent trends in anthropogenic SO2 emissions which are superimposed onto the natural meteorological variability affecting transport efficiency.

  19. Evaluation of a Three-Dimensional Chemical Transport Model (PMCAMx) in the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Tsimpidi, A. P.; Karydis, V. A.; Zavala, M.; Lei, W.; Molina, L. T.; Pandis, S. N.

    2007-05-01

    Atmospheric aerosols have adverse effects on human health, contribute to the visibility reduction and influence the energy balance of the planet. A three-dimensional chemical transport model (PMCAMx) (Gaydos et al., 2007) is used to simulate the particular matter (PM) mass composition distribution in the Mexico City Metropolitan Area (MCMA). PMCAMx uses the framework of CAMx (ENVIRON, 2002) modelling the processes of horizontal and vertical advection, horizontal and vertical dispersion, wet and dry deposition, and gas-phase chemistry. In addition to the above, PMCAMx includes three detailed aerosol modules: inorganic aerosol growth (Gaydos et al., 2003; Koo et al., 2003a), aqueous-phase chemistry (Fahey and Pandis, 2001), and secondary organic aerosol formation and growth (Koo et al., 2004). The aerosol thermodynamic model ISORROPIA has been improved as it now simulates explicitly the chemistry of Ca, Mg, and K salts and is linked to PMCAMx. The hybrid approach (Koo et al., 2003b) for modelling aerosol dynamics is applied in order to accurately simulate the inorganic components in coarse mode. This approach assumes that the smallest particles are in equilibrium while the condensation/evaporation equation is solved for the larger ones. The new CMU organic aerosol model, which is based on the splitting of the organic aerosol volatility range in discrete bins, is also used. The model predictions are evaluated against the PM and vapour concentration measurements from the MCMA-2003 Campaign (Molina et al., 2007). References Gaydos, T., Pinder, R., Koo, B., Fahey, Κ., Yarwood, G., and Pandis, S. N., (2007). Development and application of a three-dimensional Chemical Transport Model, PMCAMx. Atmospheric Environment, in press. ENVIRON (2002). User's guide to the comprehensive air quality model with extensions (CAMx). Version 3.10. Report prepared by ENVIRON International corporation, Novato, CA Gaydos, T., Koo, B., and Pandis, S. N., (2003). Development and application of

  20. Aerosol content survey by mini N 2 -Raman lidar: Application to local and long-range transport aerosols

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Chazette, Patrick; Lardier, Melody; Sauvage, Laurent

    2011-12-01

    This study shows an aerosol content survey in the low and middle troposphere over Paris with a compact and light Nitrogen-Raman lidar which has been recently developed by the Commissariat à l'Energie Atomique (CEA) and LEOSPHERE company. This eye-safe and wide field-of-view system (full overlap between 150 and 200 m) is particularly well-adapted to air pollution survey in the vicinity of Megalopolis. Extinction-to-backscatter coefficient (so-called Lidar Ratio LR) profiles obtained with a Tikhonov regularization scheme are presented for long-range transport events of aerosols (volcanic ash plume LR = 48 ± 10 sr, and desert dust, LR = 45 ± 8 sr) which may contribute to the local load of aerosols emitted by traffic and industries in Megalopolis. Due to an insufficient signal to noise ratio (SNR < 30), a new dichotomous algorithm has been developed to perform daytime inversions every hour which is in accordance with the typical time evolution of aerosols within the planetary boundary layer. This inversion scheme is based on the constraint of the elastic channel with the aerosol optical depth (between typically 0.2 and 0.7 km) determined with the N 2-Raman channel and thus only gives access to an equivalent LR between 0.2 and 0.7 km with a relative uncertainty lower than 15%. This approach has been applied to retrieve diurnal cycle of LR for polluted continental aerosols over Paris and is compared with Tikhonov regularization applied during the night. We found a mean value of 85 ± 18 sr for polluted continental aerosols which is in agreement with other studies performed around the Paris urban area. Results for aerosol optical properties are presented and the error sources are discussed for each approach.

  1. Drug Transport and Pharmacokinetics for Chemical Engineers

    ERIC Educational Resources Information Center

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  2. Chemical and size effects of hygroscopic aerosols on light scattering coefficients

    NASA Astrophysics Data System (ADS)

    Tang, Ignatius N.

    1996-08-01

    The extensive thermodynamic and optical properties recently reported [Tang and Munkelwitz, 1994a] for sulfate and nitrate solution droplets are incorporated into a visibility model for computing light scattering by hygroscopic aerosols. The following aerosol systems are considered: NH4HSO4, (NH4)2SO4, (NH4)3H(SO4), NaHSO4, Na2SO4, NH4NO3, and NaNO3. In addition, H2SO4 and NaCl are included to represent freshly formed sulfate and background sea-salt aerosols, respectively. Scattering coefficients, based on 1 μg dry salt per cubic meter of air, are calculated as a function of relative humidity for aerosols of various chemical compositions and lognormal size distributions. For a given size distribution the light scattered by aerosol particles per unit dry-salt mass concentration is only weakly dependent on chemical constituents of the hygroscopic sulfate and nitrate aerosols. Sulfuric acid and sodium chloride aerosols, however, are exceptions and scatter light more efficiently than all other inorganic salt aerosols considered in this study. Both internal and external mixtures exhibit similar light-scattering properties. Thus for common sulfate and nitrate aerosols, since the chemical effect is outweighed by the size effect, it follows that observed light scattering by the ambient aerosol can be approximated, within practical measurement uncertainties, by assuming the aerosol being an external mixture. This has a definite advantage for either visibility degradation or climatic impact modeling calculations, because relevant data are now available for external mixtures but only very scarce for internal mixtures.

  3. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Zhao, D. F.; Ruppel, M. J.; Laskina, O.; Grandquist, J. R.; Modini, R. L.; Stokes, M. D.; Russell, L. M.; Bertram, T. H.; Grassian, V. H.; Deane, G. B.; Prather, K. A.

    2014-11-01

    Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA) must be under-pinned by a physically and chemically accurate representation of the bubble-mediated production of nascent SSA particles. Bubble bursting is sensitive to the physico-chemical properties of seawater. For a sample of seawater, any important differences in the SSA production mechanism are projected into the composition of the aerosol particles produced. Using direct chemical measurements of SSA at the single-particle level, this study presents an intercomparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits"), a pulsed plunging-waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than those produced by sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic-enriched particles and a different size-resolved elemental composition, especially in the 0.8-2 μm dry diameter range. Interestingly, chemical differences between the methods only emerged when the particles were chemically analyzed at the single-particle level as a function of size; averaging the elemental composition of all particles across all sizes masked the differences between the SSA samples. When dried, SSA generated by the sintered glass filters had the highest fraction of particles with spherical morphology compared to the more cubic structure expected for pure NaCl particles produced when the particle contains relatively little organic carbon. In addition to an intercomparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method on SSA composition was under-taken. In organic-enriched seawater, the continuous

  4. Long-term observation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Handa, Daishi; Somada, Yuka; Ijyu, Moriaki; Azechi, Sotaro; Nakaema, Fumiya; Arakaki, Takemitsu; Tanahara, Akira

    2010-05-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the long-range transported air pollution from Asian continent has gained a special attention in Japan because of increase in photochemical oxidants in relatively remote islands. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) in the bulk aerosols collected at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We will report water-soluble chemical components data of anions, cations and DOC in bulk atmospheric aerosols collected at CHAAMS during August, 2005 to April, 2010. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions. In addition, we calculated background concentration of water-soluble chemical components at Okinawa

  5. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-09-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information for determining potential reaction mechanisms and sequences. Additionally, bond-scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double-bond-equivalence-to-carbon ratio (DBE/#C). The trajectory of LG photooxidation on this plot suggests formation of polycarbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an aerosol mass spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the

  6. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-04-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase, despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol-ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information to determine potential reaction mechanisms and sequences. As well, bond scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double bond equivalence to carbon ratio (DBE / #C). The trajectory of LG photooxidation on this plot suggests formation of poly-carbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an Aerosol Mass Spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol-ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the ambient

  7. Long-term Measurements of Submicrometer Aerosol Chemistry at the Southern Great Plains (SGP) Using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect

    Parworth, Caroline; Fast, Jerome D.; Mei, Fan; Shippert, Timothy R.; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the U.S. Department of Energy’s Southern Great Plains (SGP) site are discussed. Over the period of 19 months (Nov. 20, 2010 – June 2012) highly time resolved (~30 min.) NR-PM1 data was recorded. Using this dataset the value-added product (VAP) of deriving organic aerosol components (OACOMP) is introduced. With this VAP, multivariate analysis of the measured organic mass spectral matrix can be performed on long term data to return organic aerosol (OA) factors that are associated with distinct sources, evolution processes, and physiochemical properties. Three factors were obtained from this VAP including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when nitrate increased due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations showed little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increased and were mainly associated with local fires. Isoprene and carbon monoxide emission rates were computed by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) to represent the spatial distribution of biogenic and anthropogenic sources, respectively. From this model there is evidence to support that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  8. Global transport of Asian dust revealed by NASA/CALIPSO and a global aerosol transport model

    NASA Astrophysics Data System (ADS)

    Eguchi, K.; Yumimoto, K.; Uno, I.; Takemura, T.

    2009-12-01

    Trans-Pacific transport of mineral dust and air pollutants originating from Asia to North America is well known. Eguchi et al. (2009, ACP) pointed out that the Taklimakan Desert supplies mineral dust for upper troposphere and can play an important role in intercontinental-scale dust transport. Asian dust is also detected from ice cores on Greenland and French Alps. The effects of Asian dust on cloud systems and the associated radiative forcing can extend over the Northern Hemisphere. In this study, we report the detailed structure of Asian dust during the global transport using integrated analysis of observations by CALIOP on-boarded NASA/CALIPSO satellite and a glocal aerosol transport model. We used the CALIOP Level 1B data products (ver. 2.01), containing the total attenuated backscatter coefficients at 532/1064 nm and the volume depolarization ratio at 532 nm. Dust extinction coefficients are then derived from the Fernald’s inversion method by setting the lidar ratio to S1=50 sr. As for a global aerosol transport model, we used the Spectral Radiation Transport Model for the Aerosol Species (SPRINTARS; Takemura et al., 2005, JGR). We performed a sensitivity experiment that aims at an analysis specified for a single dust event originating from the Taklimakan. The simulation was performed over May 2007. A sever dust storm occurred on 8-9 May 2007 in Taklimakan Desert. Dust cloud emitted during this dust storm is uplifted to altitude of 8-10 km and starts the travel of full circuit around the globe. It has a meridional width of 100-200 km. About one tenth of the original uplifted dust mass (8.1 Gg) is encircling the globe taking about 2 weeks. Because of its high transport height, the dust cloud almost unaffected by wet removal so that the decay of its concentration level is small. Over the western North Pacific of 2nd circuit, the dust cloud pulls down to the lower troposphere by anticyclonic down draft, and finally it settles on North Pacific because of wet

  9. Biosensor discovery of thyroxine transport disrupting chemicals

    SciTech Connect

    Marchesini, Gerardo R. Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J.

    2008-10-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds.

  10. Aerosols Collected at a Tropical Marine Environment: Size-Resolved Chemical Composition Using IC, TOC, and Thermal-Optical Analyses

    NASA Astrophysics Data System (ADS)

    Morales-García, F.; Mayol-Bracero, O. L.; Repollet-Pedrosa, M.; Kasper-Giebl, A.; Ramírez-Santa Cruz, C.; Puxbaum, H.

    2009-05-01

    Size-resolved chemical characterization was performed on aerosol samples collected at two different marine sites in the tropics: Dian Point (DP), Antigua and Cape San Juan (CSJ), Puerto Rico. A 13-stage Dekati low- pressure impactor (Dp 0.1 to 10 μm), a 10-stage micro-orifice uniform deposit impactor (Dp 0.054 to 18 μm), and stacked-filter units (Dp < 1.7 μm) were used to collect the samples. Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO2-, NO3-, SO42-, acetate, formate, malonate, and oxalate were determined using ion chromatography (IC). Thermal-optical analysis (TOA) was used to determine the concentrations of aerosol total carbon (TC), organic carbon (OC), and elemental carbon (EC). Five-day back trajectories calculated using NOAA's HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model identified air masses coming from the North Atlantic (maritime air), Northwest Africa (desert dust), and North America (anthropogenic pollution). Size-resolved chemical characterization of aerosol samples using IC and TOA confirmed that aerosols become aged as they are transported to the Caribbean and their composition depends on the air mass origin. Gravimetric analyses showed that average fine mass concentrations for CSJ station were higher than for DP station (CSJ: 1.9 μg m-3; DP: 1.2 μg m-3). The aerosol chemical composition changed with air masses of different origin and with different pollution levels. In both locations the predominant water-soluble ions in the fine aerosol fraction were Cl-, Na+, and SO42-. Sulphate was observed in higher concentrations during the polluted case and particulate organic matter concentrations were higher for the maritime case. During desert dust events an increase in Ca2+ and Mg2+ of 4 and 2 times, respectively, was observed mainly in the coarse mode. Results for the size-resolved chemical composition and complete aerosol chemical apportionment including the residual mass will be presented.

  11. Impact of Local Pollution Versus Long Range Transported Aerosols on Clouds and Precipitation over California

    NASA Astrophysics Data System (ADS)

    Prather, K. A.

    2015-12-01

    Aerosols form cloud droplets and ice crystals in clouds and can profoundly impact precipitation processes. In-situ aircraft measurements of the composition of individual cloud residuals have been used to study the impact of different aerosol sources including sea spray, dust, soot, and biomass burning on cloud microphysics and precipitation processes. Aircraft studies in 2011 as part of the CalWater project showed that long range transport of dust aerosols from as far away as Africa and biological particles can lead to an increase in the amount of snowfall over California. This presentation will describe results from CalWater-2015 involving aircraft and ground-based measurements at a coastal site. A discussion of the aerosol sources measured in clouds will be presented detailing the relative impacts of local versus long range transported pollution aerosols over California.

  12. Chemical Characterization of Submicron Aerosol Particles in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Ferreira De Brito, J.; Rizzo, L. V.; Godoy, J.; Godoy, M. L.; de Assunção, J. V.; Alves, N. D.; Artaxo, P.

    2013-12-01

    Megacities, large urban conglomerates with a population of 10 million or more inhabitants, are increasingly receiving attention as strong pollution hotspots with significant global impact. The emissions from such large centers in both the developed and developing parts of the world are strongly impacted by the transportation sector. The São Paulo Metropolitan Area (SPMA), located in the Southeast of Brazil, is a megacity with a population of 18 million people and 7 million vehicles, many of which fuelled by a considerably amount of anhydrous ethanol. Such fleet is considered a unique case of large scale biofuel usage worldwide. Despite the large impact on human health and atmospheric chemistry/dynamics, many uncertainties are found in terms of gas and particulate matter emissions from vehicles and their atmospheric reactivity, e.g. secondary organic aerosol formation. In order to better understand aerosol life cycle on such environment, a suite of instruments for gas and particulate matter characterization has been deployed in two sampling sites within the SPMA, including an Aerosol Chemical Speciation Monitor (ACSM). The instrumentation was deployed at the rooftop of a 45m high building in the University of São Paulo during winter/spring 2012. The site is located roughly 6km downwind of the city center with little influence from local sources. The second site is located in a downtown area, sampling at the top floor of the Public Health Faculty, approximately 10m above ground. The instrumentation was deployed at the Downtown site during summer/fall 2013. The average non-refractory submicron aerosol concentration at the University site was 6.7 μg m-3, being organics the most abundant specie (70%), followed by NO3 (12%), NH4 (8%), SO4 (8%) and Chl (2%). At the Downtown site, average aerosol concentration was 15.1 μg m-3, with Organics composing 65% of the mass, followed by NH4 (12%), NO3 (11%), SO4 (11%) and Chl (1%). The analysis of specific fragmentation

  13. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations of the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  14. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    DOE PAGESBeta

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less

  15. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    NASA Astrophysics Data System (ADS)

    Parworth, Caroline; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ∼30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations of the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  16. Physical and Chemical Characterization of Particles in the Upper Troposphere and Lower Stratosphere: Microanalysis of Aerosol Impactor Samples

    NASA Technical Reports Server (NTRS)

    Sheridan, Patrick J.

    1999-01-01

    Herein is reported activities to support the characterization of the aerosol in the upper troposphere (UT) and lower stratosphere (LS) collected during the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) missions in 1994. Through a companion proposal, another group was to measure the size distribution of aerosols in the 0.008 to 2 micrometer diameter range and to collect for us impactor samples of particles larger than about 0.02 gm. In the first year, we conducted laboratory studies related to particulate deposition patterns on our collection substrates, and have performed the analysis of many ASHOE/MAESA aerosol samples from 1994 using analytical electron microscopy (AEM). We have been building an "aerosol climatology" with these data that documents the types and relative abundances of particles observed at different latitudes and altitudes. The second year (and non-funded extension periods) saw continued analyses of impactor aerosol samples, including more ASHOE/MAESA samples, some northern hemisphere samples from the NASA Stratospheric Photochemistry Aerosols and Dynamics Expedition (SPADE) program for comparison, and a few aerosol samples from the NASA Stratospheric TRacers of Atmospheric Transport (STRAT) program. A high-resolution field emission microscope was used for the analysis and re-analysis of a number of samples to determine if this instrument was superior in performance to our conventional electron microscope. In addition, some basic laboratory studies were conducted to determine the minimum detectable and analyzable particle size for different types of aerosols. In all, 61 aerosol samples were analyzed, with a total of over 30,000 individual particle analyses. In all analyzed samples, sulfate particles comprised the major aerosol number fraction. It must be stressed that particles composed of more than one species, for example sulfate and organic carbon, were classified

  17. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2014-07-01

    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.

  18. Analysis of the Effects of Chemical Composition and Humidity on Visibility using Highly Time Resolved Aerosol Data

    NASA Astrophysics Data System (ADS)

    Lunden, M. M.; Brown, N. J.; Liu, D.; Tonse, S.

    2005-12-01

    Transported aerosols from populated and industrial areas result in regional haze that causes visibility degradation in areas valued for their scenic beauty, such as the National Parks. These areas are designated as Class I Areas in the United States, and there are specific visibility goals put forth to ultimately return these areas to natural conditions. To both understand current conditions and chart progress towards meeting these goals requires measurement of important aerosol species and an understanding of how these different aerosol species affect light attenuation to allow for predictive modeling capabilities. The current investigation seeks to understand if more highly time resolved measurements of chemically speciated particle mass, relative humidity, scattering, and absorption would enable a better estimation of extinction as the relationship between these variables is non-linear. Our particular objective is to explore the contributions of the aerosol species mentioned above to visibility degradation, and the role played by relative humidity. We performed analyses on a data set collected in Central California from the intensive ambient aerosol sampling campaign conducted from 2000 summer-2001 winter1. The data include PM-2.5 mass concentrations of nitrate, sulfate, organic carbon and black carbon aerosol, as well as simultaneous measurements on light scattering, ambient temperature and relative humidity. The dataset is highly time-resolved, allowing the affect of temporal variations of particle chemical composition and meteorological features to be considered. The final results provide response curves that allow calculation of light scattering given aerosol concentrations and relative humidity. Our results are compared with those obtained using formulae suggested for analysis of IMPROVE (a regional haze monitoring network2) data collected under lower temporal resolution to understand the effects of temporal resolution on the characteristics of the

  19. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites

    NASA Astrophysics Data System (ADS)

    Naeger, Aaron R.; Gupta, Pawan; Zavodsky, Bradley T.; McGrath, Kevin M.

    2016-06-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America as the frequent geostationary observations lead to a greater coverage of cloud-free AOD retrievals equatorward of about 35° N, while the polar-orbiting satellites provide a greater coverage of AOD poleward of 35° N. However, we note several areas across the domain of interest from Asia to North America where the GOES-15 and MTSAT-2 retrieval algorithms can introduce significant uncertainties into the new product.

  20. Dispersion and transport of tropospheric aerosol and pollutants in the Western Mediterranean: the role of the Po Valley under different transport regimes

    NASA Astrophysics Data System (ADS)

    Bucci, Silvia; Fierli, Federico; Ravetta, François; Raut, Jean Christophe; Cristofanelli, Paolo; Decesari, Stefano; Diliberto, Luca; Größ, Johannes; Pap, Ines; Weinhold, Kay; Wiedensohler, Alfred; Cairo, Francesco

    2016-04-01

    This work reports a characterization of the vertical variability of tropospheric aerosol and gaseous pollutants, over the western Mediterranean, during the 2012 summer season. In particular, we investigate the role of the Po Valley region as a receptor and emissive region of both natural and anthropogenic aerosol. The observational analysis, based on a comprehensive database of meteorological, aerosol and chemical measurements, is integrated with a model analysis using the Lagrangian transport system FLEXPART combined with emission databases, and WRF-Chem, the Weather Research and Forecasting (WRF) model coupled with Chemistry. Observations have been performed in the framework of the Supersito project by Regional Agency of Prevention and Environment of the Emilia Romagna region (ARPA-ER, Ital), the TRAQA campaign (TRAnsport et Qualité de l'Air au dessus du bassin Méditerranéen) performed in the ChArMEx (Chemistry-Aerosol Mediterranean Experiment) project, and the european project PEGASOS (Pan-European Gas-AeroSOl-climate interaction Study). An alternation between different transport regimes characterized the 2012 summer, resulting in a large variability of aerosol and pollution at different time and spatial scales. Particles of different nature have been discriminated basing on optical properties retrieved from lidar data and supported by in-situ observations and transport analysis. Results show that, during the analysed season, aerosol in the Po Valley was mainly confined below 2000 m and dominated (50% of detections) by spherical particles. Two events of dust advection from northern Africa were identified (19th-21th June and 29th June-2nd July), with intrusion and mixing with local pollution in the PBL and a non-negligible occurrence (~7%) of dust at the ground. Frequent events (22% of occurrence) of non-spherical particles resuspension, likely due to uplift of mineral soil particles, were observed from the ground to 2000 m during afternoon and evening. In the

  1. Metals and Rare Earth Elements in polar aerosol as specific markers of natural and anthropogenic aerosol sources areas and atmospheric transport processes

    NASA Astrophysics Data System (ADS)

    Giardi, Fabio; Becagli, Silvia; Caiazzo, Laura; Cappelletti, David; Grotti, Marco; Malandrino, Mery; Salzano, Roberto; Severi, Mirko; Traversi, Rita; Udisti, Roberto

    2016-04-01

    Metals and Rare Earth Elements (REEs) in the aerosol have conservative properties from the formation to the deposition and can be useful to identify and quantify their natural and anthropic sources and to study the atmospheric transport processes. In spite of their importance relatively little is known about metals and especially REEs in the Artic atmosphere due to their low concentration in such environment. The present work reports the first attempt to determine and interpret the behaviour of metals and REEs in polar aerosol at high temporal resolution. Daily PM10 samples of arctic atmospheric particulate were collected on Teflon filters, during six spring-summer campaigns, since 2010, in the laboratory of Gruvebadet in Ny Ålesund (78°56' N, 11°56' E, Svalbard Islands, Norway). Chemical analyses were carried out through Inductively Coupled Plasma Mass Spectrometer provided with a desolvation nebulizer inlet system, allowing to reduce isobaric interferences and thus to quantify trace and ultra-trace metals in very low concentration in the Arctic aerosol samples. The results are useful in order to study sources areas, transport processes and depositional effects of natural and anthropic atmospheric particulate reaching the Arctic from southern industrialized areas; moreover, the observed seasonal trends give information about the different impact of natural and anthropic emissions driven by phenomena such as the Arctic Haze and the melting of the snow. In particular Rare Earth Elements (often in the ppt range) can be considered as soil's fingerprints of the particulate source areas and their determination, together with air-mass backtrajectory analysis, allow to identify dust source areas for the arctic mineral aerosol.

  2. Optical and chemical properties of marine boundary-layer aerosol around Japan determined from shipboard measurements in 2002

    NASA Astrophysics Data System (ADS)

    Shiobara, Masataka; Hara, Keiichiro; Yabuki, Masanori; Kobayashi, Hiroshi

    Shipboard measurements of the optical and chemical properties of marine boundary-layer aerosol were made around Japan over the period from 28 August to 25 September 2002. Measurements were conducted aboard the Research Vessel (R/V) Shirase along cruise tracks beginning from Yokosuka, and proceeding on to Hakodate, Sakata, Sasebo, Naha, Kure, and Yokkaichi. This paper describes the results of optical measurements using an Optical Particle Counter (OPC), an Integrating Nephelometer (IN), and a Particle Soot/Absorption Photometer (PSAP), as well as chemical analyses of water-soluble aerosol particles collected by impactor and filter systems. Coulter Multisizer measurements were used for water-insoluble aerosol particles. The complex refractive index (CRI), scattering and absorption coefficients, and size distribution of aerosols were estimated from combined measurements made using OPC, IN, and PSAP. Contrasting aerosol characteristics were observed during different stages of the cruise. Discussion on these differences focuses mainly on two legs: Leg-1 from Yokosuka to Hakodate and Leg-4 from Sasebo to Naha. Backward trajectory analyses indicate that the air sampled during Leg-1 originated from the Pacific Ocean, whereas the air sampled during Leg-4 originated from the Chinese Continent via the Korean Peninsula. For the first half of Leg-1, the number concentration was low and larger particles were relatively predominant. The real and imaginary parts of the CRI were estimated to be 1.38-1.40 and close to zero, respectively. This estimation is consistent with the results of chemical analyses, which show that the sea salt is rich in aerosols sourced from remote ocean areas. In contrast, small particles were predominant during Leg-4, and the real and imaginary parts of the CRI were estimated to be 1.52-1.59 and approximately -0.002, respectively. These findings are also consistent with chemical analyses that reveal a mixture of mineral dust and sulfate aerosol likely

  3. Aerosol dynamics within and above forest in relation to turbulent transport and dry deposition

    NASA Astrophysics Data System (ADS)

    Rannik, Üllar; Zhou, Luxi; Zhou, Putian; Gierens, Rosa; Mammarella, Ivan; Sogachev, Andrey; Boy, Michael

    2016-03-01

    A 1-D atmospheric boundary layer (ABL) model coupled with a detailed atmospheric chemistry and aerosol dynamical model, the model SOSAA, was used to predict the ABL and detailed aerosol population (characterized by the number size distribution) time evolution. The model was applied over a period of 10 days in May 2013 to a pine forest site in southern Finland. The period was characterized by frequent new particle formation events and simultaneous intensive aerosol transformation. The aim of the study was to analyze and quantify the role of aerosol and ABL dynamics in the vertical transport of aerosols. It was of particular interest to what extent the fluxes above the canopy deviate from the particle dry deposition on the canopy foliage due to the above-mentioned processes. The model simulations revealed that the particle concentration change due to aerosol dynamics frequently exceeded the effect of particle deposition by even an order of magnitude or more. The impact was, however, strongly dependent on particle size and time. In spite of the fact that the timescale of turbulent transfer inside the canopy is much smaller than the timescales of aerosol dynamics and dry deposition, leading us to assume well-mixed properties of air, the fluxes at the canopy top frequently deviated from deposition inside the forest. This was due to transformation of aerosol concentration throughout the ABL and resulting complicated pattern of vertical transport. Therefore we argue that the comparison of timescales of aerosol dynamics and deposition defined for the processes below the flux measurement level do not unambiguously describe the importance of aerosol dynamics for vertical transport above the canopy. We conclude that under dynamical conditions reported in the current study the micrometeorological particle flux measurements can significantly deviate from the dry deposition into the canopy. The deviation can be systematic for certain size ranges so that the time

  4. Silicon refinement by chemical vapor transport

    NASA Technical Reports Server (NTRS)

    Olson, J.

    1984-01-01

    Silicon refinement by chemical vapor transport is discussed. The operating characteristics of the purification process, including factors affecting the rate, purification efficiency and photovoltaic quality of the refined silicon were studied. The casting of large alloy plates was accomplished. A larger research scale reactor is characterized, and it is shown that a refined silicon product yields solar cells with near state of the art conversion efficiencies.

  5. Research of transport and deposition of aerosol in human airway replica

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Durdina, Lukas; Halasova, Tereza; Mravec, Filip; Jicha, Miroslav

    2012-04-01

    Growing concern about knowledge of aerosol transport in human lungs is caused by great potential of use of inhaled pharmaceuticals. Second substantial motive for the research is an effort to minimize adverse effects of particular matter emitted by traffic and industry on human health. We created model geometry of human lungs to 7th generation of branching. This model geometry was used for fabrication of two physical models. The first one is made from thin walled transparent silicone and it allows a measurement of velocity and size of aerosol particles by Phase Doppler Anemometry (PDA). The second one is fabricated by stereolithographic method and it is designed for aerosol deposition measurements. We provided a series of measurements of aerosol transport in the transparent model and we ascertained remarkable phenomena linked with lung flow. The results are presented in brief. To gather how this phenomena affects aerosol deposition in human lungs we used the second model and we developed a technique for deposition fraction and deposition efficiency assessment. The results confirmed that non-symmetric and complicated shape of human airways essentially affects transport and deposition of aerosol. The research will now focus on deeper insight in aerosol deposition.

  6. Sensitivity of chemical transport model simulations to the duration of chemical and transport operators: a case study with GEOS-Chem v10-01

    NASA Astrophysics Data System (ADS)

    Philip, S.; Martin, R. V.; Keller, C. A.

    2015-11-01

    Chemical transport models involve considerable computational expense. Fine temporal resolution offers accuracy at the expense of computation time. Assessment is needed of the sensitivity of simulation accuracy to the duration of chemical and transport operators. We conduct a series of simulations with the GEOS-Chem chemical transport model at different temporal and spatial resolutions to examine the sensitivity of simulated atmospheric composition to temporal resolution. Subsequently, we compare the tracers simulated with operator durations from 10 to 60 min as typically used by global chemical transport models, and identify the timesteps that optimize both computational expense and simulation accuracy. We found that longer transport timesteps increase concentrations of emitted species such as nitrogen oxides and carbon monoxide since a more homogeneous distribution reduces loss through chemical reactions and dry deposition. The increased concentrations of ozone precursors increase ozone production at longer transport timesteps. Longer chemical timesteps decrease sulfate and ammonium but increase nitrate due to feedbacks with in-cloud sulfur dioxide oxidation and aerosol thermodynamics. The simulation duration decreases by an order of magnitude from fine (5 min) to coarse (60 min) temporal resolution. We assess the change in simulation accuracy with resolution by comparing the root mean square difference in ground-level concentrations of nitrogen oxides, ozone, carbon monoxide and secondary inorganic aerosols with a finer temporal or spatial resolution taken as truth. Simulation error for these species increases by more than a factor of 5 from the shortest (5 min) to longest (60 min) temporal resolution. Chemical timesteps twice that of the transport timestep offer more simulation accuracy per unit computation. However, simulation error from coarser spatial resolution generally exceeds that from longer timesteps; e.g. degrading from 2° × 2.5° to 4° × 5

  7. Chemical composition of aerosols over Bay of Bengal during pre-monsoon: Dominance of anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Nair, Prabha R.; George, Susan K.; Aryasree, S.; Jacob, Salu

    2014-03-01

    Total suspended particulates were collected from the marine boundary layer of Bay of Bengal (BoB) as part of the Integrated Campaign for Aerosols gases & Radiation Budget (ICARB) conducted under the Geosphere Biosphere Programme of Indian Space Research Organisation during pre-monsoon period. These samples were analyzed to quantify various chemical species and to bring out a comprehensive and quantitative picture of the chemical composition of aerosols in the marine environment of Bay of Bengal. Almost all the species showed highest mass concentration over north/head BoB. On the other hand, their mass fractions were high over mid/south BoB which has implications on the radiative forcing in this region. The source characteristics of various species were identified using specific chemical components as tracers. Presence of significant amount of non-sea-salt aerosols (~7-8 times of sea-salt) and several trace species like Ni, Pb, Zn, etc were observed in this marine environment indicating significant continental/anthropogenic influence. An approximate estimate of the contributions of anthropogenic and natural aerosols to the total aerosol mass loading showed prominence of anthropogenic component over mid and south BoB also. Based on this study first-cut aerosol chemical models were evolved for BoB region.

  8. Sources and Transport of Aerosol above the Boundary Layer over the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Roberts, Greg; Corrigan, Craig; Ritchie, John; Pont, Veronique; Claeys, Marine; Sciare, Jean; Mallet, Marc; Dulac, François; Mihalopoulos, Nikos

    2015-04-01

    The Mediterranean Region has been identified as sensitive to changes in the hydrological cycle, which could affect the water resources for millions of people by the turn of the century. However, prior to recent observations, most climate models have not accounted for the impacts of aerosol in this region. Past airborne studies have shown that aerosol sources from Europe and Africa are often transported throughout the lower troposphere; yet, because of their complex vertical distribution, it is a challenge to capture the variability and quantify the contribution of these sources to the radiative budget and precipitation processes. The PAEROS ChArMEx Mountain Experiment (PACMEx) complemented the regional activities by collecting aerosol data from atop a mountain on the island of Corsica, France in order to assess boundary layer / free troposphere atmospheric processes. In June/July 2013, PACMEx instruments were deployed at 2000 m.asl near the center of Corsica, France to complement ground-based aerosol observations at 550 m.asl on the northern peninsula, as well as airborne measurements. Comparisons between the peninsula site and the mountain site show similar general trends in aerosol properties; yet, differences in aerosol properties reveal the myriad transport mechanisms over the Mediterranean Basin. Using aerosol physicochemical data coupled with back trajectory analysis, different sources have been identified including Saharan dust transport, residual dust mixed with sea salt, anthropogenic emissions from Western Europe, and a period of biomass burning from Eastern Europe. Each period exhibits distinct signatures in the aerosol related to transport processes above and below the boundary layer. In addition, the total aerosol concentrations at the mountain site revealed a strong diurnal cycling the between the atmospheric boundary layer and the free troposphere, which is typical of mountain-top observations. PACMEx was funded by the National Science Foundation

  9. Long-range Transport of Aerosol at a Mountain Site in the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Roberts, Greg; Corrigan, Craig; Ritchie, John; Pont, Véronique; Claeys, Marine; Sciare, Jean; Dulac, François

    2016-04-01

    The Mediterranean Region has been identified as sensitive to changes in the hydrological cycle, which could affect the water resources for millions of people by the turn of the century. However, prior to recent observations, most climate models have not accounted for the impacts of aerosol in this region. Past airborne studies have shown that aerosol sources from Europe and Africa are often transported throughout the lower troposphere; yet, because of their complex vertical distribution, it is a challenge to capture the variability and quantify the contribution of these sources to the radiative budget and precipitation processes. The PAEROS ChArMEx Mountain Experiment (PACMEx) complemented the regional activities by collecting aerosol data from atop a mountain on the island of Corsica, France in order to assess boundary layer / free troposphere atmospheric processes. In June/July 2013, PACMEx instruments were deployed at 2000 m.asl near the center of Corsica, France to complement ground-based aerosol observations at 550 m.asl on the northern peninsula, as well as airborne measurements. Comparisons between the peninsula site and the mountain site show similar general trends in aerosol properties; yet, differences in aerosol properties reveal the myriad transport mechanisms over the Mediterranean Basin. Using aerosol physicochemical data coupled with back trajectory analysis, different sources have been identified including Saharan dust transport, residual dust mixed with sea salt, anthropogenic emissions from Western Europe, and a period of biomass burning from Eastern Europe. Each period exhibits distinct signatures in the aerosol related to transport processes above and below the boundary layer. In addition, the total aerosol concentrations at the mountain site revealed a strong diurnal cycling the between the atmospheric boundary layer and the free troposphere, which is typical of mountain-top observations. PACMEx was funded by the National Science Foundation

  10. Transport and Evolution of Aerosol Above/Below the Boundary Layer in the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Roberts, G. C.; Corrigan, C.; Ritchie, J.; Pont, V.; Claeys, M.; Sciare, J.; Mallet, M.; Dulac, F.

    2014-12-01

    The Mediterranean Region has been identified as sensitive to changes in the hydrological cycle, which could affect the water resources for millions of people by the turn of the century. However, prior to recent observations, most climate models have not accounted for the impacts of aerosol in this region. Past airborne studies have shown that aerosol sources from Europe and Africa are often transported throughout the lower troposphere; yet, because of their complex vertical distribution, it is a challenge to capture the variability and quantify the contribution of these sources to the radiative budget and precipitation processes. The PAEROS ChArMEx Mountain Experiment (PACMEx) complemented the regional activities of the ChArMEx/ADRIMED summer 2013 campaign by collecting aerosol data from atop a mountain on the island of Corsica, France in order to assess boundary layer / free troposphere atmospheric processes. In June/July 2013, PACMEx instruments were deployed at 2000 m.asl near the center of Corsica to complement ground-based aerosol observations at 550 m.asl on the northern peninsula, as well as airborne measurements. Comparisons between the peninsula site and the mountain site show similar general trends in aerosol properties; yet, differences in aerosol properties reveal the myriad transport mechanisms over the Mediterranean Basin. Using aerosol physicochemical data coupled with back trajectory analysis, different sources have been identified including Saharan dust transport, residual dust mixed with sea salt, anthropogenic emissions from Western Europe, and a period of biomass burning from Eastern Europe. Each period exhibits distinct signatures in the aerosol related to transport processes above and below the boundary layer. In addition, the total aerosol concentrations at the mountain site revealed a strong diurnal cycling between the atmospheric boundary layer and the free troposphere, which is typical of mountain-top observations. PACMEx was funded by the

  11. Chemically generated convective transport in microfluidic system

    NASA Astrophysics Data System (ADS)

    Shklyaev, Oleg; Das, Sambeeta; Altemose, Alicia; Shum, Henry; Balazs, Anna; Sen, Ayusman

    High precision manipulation of small volumes of fluid, containing suspended micron sized objects like cells, viruses, and large molecules, is one of the main goals in designing modern lab-on-a-chip devices which can find a variety of chemical and biological applications. To transport the cargo toward sensing elements, typical microfluidic devices often use pressure driven flows. Here, we propose to use enzymatic chemical reactions which decompose reagent into less dense products and generate flows that can transport particles. Density variations that lead to flow in the assigned direction are created between the place where reagent is fed into the solution and the location where it is decomposed by enzymes attached to the surface of the microchannel. When the reagent is depleted, the fluid motion stops and particles sediment to the bottom. We demonstrate how the choice of chemicals, leading to specific reaction rates, can affect the transport properties. In particular, we show that the intensity of the fluid flow, the final location of cargo, and the time for cargo delivery are controlled by the amount and type of reagent in the system.

  12. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  13. Development of an aerosol-chemistry transport model coupled to non-hydrostatic icosahedral atmospheric model (NICAM) through applying a stretched grid system to regional simulations around Japan

    NASA Astrophysics Data System (ADS)

    Goto, D.; Nakajima, T.; Masaki, S.

    2014-12-01

    Air pollution has a great impact on both climate change and human health. One effective way to tackle with these issues is a use of atmospheric aerosol-chemistry models with high-resolution in a global scale. For this purpose, we have developed an aerosol-chemistry model based on a global cloud-resolving model (GCRM), Nonhydrostatic Icosahedral Atmospheric Model (NICAM; Tomita and Satoh, Fluid. Dyn. Res. 2004; Satoh et al., J. Comput. Phys. 2008, PEPS, 2014) under MEXT/RECCA/SALSA project. In the present study, we have simulated aerosols and tropospheric ozone over Japan by our aerosol-chemistry model "NICAM-Chem" with a stretched-grid system of approximately 10 km resolution, for saving the computer resources. The aerosol and chemistry modules are based on Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS; Takemura et al., J. Geophys. Res., 2005) and Chemical AGCM for Study of Atmospheric Environment and Radiative Forcing (CHASER; Sudo et al., J. Geophys. Res., 2002). We found that our model can generally reproduce both aerosols and ozone, in terms of temporal variations (daily variations of aerosols and diurnal variations of ozone). Under MEXT/RECCA/SALSA project, we also have used these results obtained by NICAM-Chem for the assessment of their impact on human health.

  14. INTEX-NA: Intercontinental Chemical Transport Experiment - North America

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Jacob, D.; Pfister, L.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    INTEX-NA is an integrated atmospheric chemistry field experiment to be performed over North America using the NASA DC-8 and P-3B aircraft as its primary platforms. It seeks to understand the exchange of chemicals and aerosols between continents and the global troposphere. The constituents of interest are ozone and its precursors (hydrocarbons, NOX and HOX), aerosols, and the major greenhouse gases (CO2, CH4, N2O). INTEX-NA will provide the observational database needed to quantify inflow, outflow, and transformations of chemicals over North America. INTEX-NA is to be performed in two phases. Phase A will take place during the period of May-August 2004 and Phase B during March-June 2006. Phase A is in summer when photochemistry is most intense and climatic issues involving aerosols and carbon cycle are most pressing, and Phase B is in spring when Asian transport to North America is at its peak. INTEX-NA will coordinate its activities with concurrent measurement programs including satellites (e. g. Terra, Aura, Envisat), field activities undertaken by the North American Carbon Program (NACP), and other U.S. and international partners. However, it is being designed as a 'stand alone' mission such that its successful execution is not contingent on other programs. Synthesis of the ensemble of observation from surface, airborne, and space platforms, with the help of global/regional models is an important It is anticipated that approximately 175 flight hours for each of the aircraft (DC-8 and P-3B) will be required for each Phase. Principal operational sites are tentatively selected to be Bangor, ME; Wallops Island, VA; Seattle, WA; Rhinelander, WI; Lancaster, CA; and New Orleans, LA. These coastal and continental sites can support large missions and are suitable for INTEX-NA objectives. The experiment will be supported by forecasts from meteorological and chemical models, satellite observations, surface networks, and enhanced O3,-sonde releases. In addition to

  15. Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime

    NASA Astrophysics Data System (ADS)

    Zhang, Yunjiang; Tang, Lili; Yu, Hongxia; Wang, Zhuang; Sun, Yele; Qin, Wei; Chen, Wentai; Chen, Changhong; Ding, Aijun; Wu, Jing; Ge, Shun; Chen, Cheng; Zhou, Hong-cang

    2015-12-01

    To investigate the composition, sources and evolution processes of submicron aerosol during wintertime, a field experiment was conducted during December 1-31, 2013 in urban Nanjing, a megacity in Yangtze River Delta of China. Non-refractory submicron aerosol (NR-PM1) species were measured with an Aerodyne Aerosol Chemical Speciation Monitor. NR-PM1 is dominated by secondary inorganic aerosol (55%) and organic aerosol (OA, 42%) during haze periods. Six OA components were identified by positive matrix factorization of the OA mass spectra. The hydrocarbon-like OA and cooking-related OA represent the local traffic and cooking sources, respectively. A highly oxidized factor related to biomass burning OA accounted for 15% of the total OA mass during haze periods. Three types of oxygenated OA (OOA), i.e., a less-oxidized OOA (LO-OOA), a more-oxidized OOA (MO-OOA), and a low-volatility OOA (LV-OOA), were identified. LO-OOA is likely associated with fresh urban secondary OA. MO-OOA likely represents photochemical products showing a similar diurnal cycle to nitrate with a pronounced noon peak. LV-OOA appears to be a more oxidized factor with a pronounced noon peak. The OA composition is dominated by secondary species, especially during haze events. LO-OOA, MO-OOA and LV-OOA on average account for 11%, (18%), 24% (21%) and 23% (18%) of the total OA mass for the haze (clean) periods respectively. Analysis of meteorological influence suggested that regional transport from the northern and southeastern areas of the city is responsible for large secondary and low-volatility aerosol formation.

  16. Quantum Chemical Calculations Resolved Identification of Methylnitrocatechols in Atmospheric Aerosols.

    PubMed

    Frka, Sanja; Šala, Martin; Kroflič, Ana; Huš, Matej; Čusak, Alen; Grgić, Irena

    2016-06-01

    Methylnitrocatechols (MNCs) are secondary organic aerosol (SOA) tracers and major contributors to atmospheric brown carbon; however, their formation and aging processes in atmospheric waters are unknown. To investigate the importance of aqueous-phase electrophilic substitution of 3-methylcatechol with nitronium ion (NO2(+)), we performed quantum calculations of their favorable pathways. The calculations predicted the formation of 3-methyl-5-nitrocatechol (3M5NC), 3-methyl-4-nitrocatechol (3M4NC), and a negligible amount of 3-methyl-6-nitrocatechol (3M6NC). MNCs in atmospheric PM2 samples were further inspected by LC/(-)ESI-MS/MS using commercial as well as de novo synthesized authentic standards. We detected 3M5NC and, for the first time, 3M4NC. In contrast to previous reports, 3M6NC was not observed. Agreement between calculated and observed 3M5NC/3M4NC ratios cannot unambiguously confirm the electrophilic mechanism as the exclusive formation pathway of MNCs in aerosol water. However, the examined nitration by NO2(+) is supported by (1) the absence of 3M6NC in the ambient aerosols analyzed and (2) the constant 3M5NC/3M4NC ratio in field aerosol samples, which indicates their common formation pathway. The magnitude of error one could make by incorrectly identifying 3M4NC as 3M6NC in ambient aerosols was also assessed, suggesting the importance of evaluating the literature regarding MNCs with special care. PMID:27136117

  17. New Measurements of Aerosol Vertical Structure from Space using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, E. J.; Spinhime, J.; Palm, S.; Hlavka, D.; Hart, W.; Ginoux, P.; Chin, M.; Colarco, P.

    2004-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth,s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GLAS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output.

  18. New Measurements of Aerosol Vertical Structure from Space Using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Ginoux, Paul; Colarco, Peter; Chin, Mian; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William

    2003-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GUS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output,

  19. Chemical and optical properties of atmospheric aerosols in Phimai, Thailand by intensive surface measurements and satellite data analysis

    NASA Astrophysics Data System (ADS)

    Tsuruta, H.; Thana, B.; Takamura, T.; Hashimoto, M.; Yabuki, M.; Oikawa, E.; Nakajima, T.

    2013-12-01

    Atmospheric aerosols were measured at the Observatory of Atmospheric Research, in Phimai, Thailand, a key station of SKYNET, during 2006-2008. In the surface measurement, mass concentrations and major chemical components in fine and coarse aerosols were analyzed, and the optical properties such as AOT and SSA were measured by skyradiometer. Analysis of MODIS and CALIPSO satellite data was made for wild fire activities and aerosol distribution, respectively. In this paper, the following topics are summarized. The surface wind pattern in dry season was divided into the three periods as follows; D1 (Oct.-Nov.) with northeasterly monsoon, D3 (middle March-April) with southerly wind, and D2 (Dec.-early March) with a transit stage between D1 and D3. Wet season in southwesterly monsoon was from May to September. The concentration ratio of BC/nss-SO4 showed that the dominant PM2.5 aerosols in D1 were due to long-range transport of air pollutants emitted from urban/industrial area of east Asia. In contrast, most of aerosols in D3 were derived from biomass burning in Indochina, because the activity of biomass burning was highest in the latter D2 and early D3 period, by the analysis of the fire database in MODIS and of BC/nss-SO4. The mass concentration in PM2.5 showed a clear seasonal variation with the maximum in D2. On the contrary, AOT showed the maximum in D3, and which could be attributed to an increase in the vertical thickness of high aerosol concentration in the boundary layer by the CALIOP data analysis. Dust particles in D1 were directly transported from east Asia, and re-suspension of soil dusts was dominant in D2 because the surface soil became dry. In D3, soil dusts were re-suspended with the thermal plume caused by biomass burning. In contrast, high dust particles measured in the wet season was due to long range transport of dust aerosols from western desert area by the CALIOP data analysis.

  20. Coupled aerosol-chemical modeling of UARS HNO3 and N2O5 measurements in the Arctic upper stratosphere

    NASA Astrophysics Data System (ADS)

    Bekki, S.; Chipperfield, M. P.; Pyle, J. A.; Remedios, J. J.; Smith, S. E.; Grainger, R. G.; Lambert, A.; Kumer, J. B.; Mergenthaler, J. L.

    1997-04-01

    Gas-phase photochemical models do not account for the formation of a secondary altitude HNO3 maximum in the upper stratosphere at high latitudes during winter, suggesting that some processes are missing in the currently accepted chemistry of reactive nitrogen species [Kawa et al, 1995]. Heterogeneous chemistry on aerosol particles had been discounted as the cause because the aerosol surface area is expected to be very low at these altitudes. We have coupled a sulphate aerosol microphysical model to a chemical transport model to investigate this model deficiency in the Arctic during January 1992. The aerosol model predicts the formation of small sulphate particles at 1100 K. Comparisons with cryogenic limb array etalon spectrometer (CLAES) HNO3 and improved stratospheric and mesospheric sounder (ISAMS) N2O5 observations show that the heterogeneous conversion of N2O5 to HNO3 on the modeled small sulphate particles can account for some of the unexpected features seen in Upper Atmosphere Research Satellite (UARS) observations.

  1. Impacts of intercontinental transport of aerosols on human mortality

    NASA Astrophysics Data System (ADS)

    Anenberg, S.; West, J. J.; Schulz, M.; Hemispheric Transport of Air Pollution (HTAP) modelers

    2011-12-01

    Fine particulate matter (PM2.5) is associated with deleterious health impacts, including premature death from cardiopulmonary disease and lung cancer. Although the lifetime of tropospheric PM2.5 is roughly only a week, observations and modeling studies demonstrate that PM2.5 can be transported long distances, impacting air quality and health on regional or global scales. We estimate the mortality impacts of 20% primary PM and PM precursor emission reductions in four major world regions - North America, Europe, East Asia, and South Asia. We use surface concentrations simulated by an ensemble of global chemical transport models convened by the Task Force on Hemispheric Transport of Air Pollution and epidemiologically-derived concentration-response functions to calculate mortality impacts. We estimate that while >90% of avoided premature deaths resulting from these emission reductions occur within the source region, about 9,600 annual avoided deaths occur in other parts of the world. Reducing emissions in Europe avoids the most extra-regional premature deaths, due to large downwind populations in relatively close proximity. Compared with a previous study of 20% ozone precursor emission reductions, we find that the impacts of intercontinental ozone are greater than or equal to those of PM2.5 for most source-receptor pairs, due to the longer atmospheric lifetime and greater transport efficiency for ozone. However, impacts of intercontinental PM2.5 are greater for source-receptor pairs not separated by an ocean, due to the stronger relationship of PM2.5 with mortality. We examine the sensitivity of estimated premature deaths to the shape and magnitude of the concentration-response function, as well as the inter-model variation in simulated PM2.5 responses to emission reductions.

  2. LMFBR aerosol release and transport program. Quarterly progress report, July-September 1981

    SciTech Connect

    Kress, T.S.; Tobias, M.L.

    1982-01-01

    This report summarizes progress for the Aerosol Release and Transport Program sponsored by the Office of Nuclear Regulatory Research, Division of Accident Evaluation of the Nuclear Regulatory Commission for the period July-September 1981. Topics discussed include (1) preparations for under-sodium tests at the Fast Aerosol Simulant Test Facility, (2) progress in interpretation of Oak Ridge National Laboratory-Sandia Laboratory normalization test results, (3) U/sub 3/O/sub 8/ in steam (light-water reactor accident) aerosol experiments conducted in the Nuclear Safety Power Plant, (4) experiments on B/sub 2/O/sub 3/ and SiO/sub 2/ aerosols at the Containment Research Installation-II Facility, (5) fuel-melting tests in small-scale experimental facilities for the core-melt aerosol program, (6) analytical comparison of simple adiabatic nonlinear and linear analytical models of bubble oscillation phenomena with experimental data.

  3. Laboratory experiments on the formation and recoil jet transport of aerosol by laser ablation

    NASA Astrophysics Data System (ADS)

    Hirooka, Yoshi; Tanaka, Kazuo A.; Imamura, Keisuke; Okazaki, Katsuya

    2016-05-01

    In a high-repetition rate inertial fusion reactor, the first wall will be subjected to repeated ablation along with pellet implosions, which then leads to the formation of aerosol to scatter and/or deflect laser beams for the subsequent implosion, affecting the overall reactor performance. Proposed in the present work is a method of in-situ directed transport of aerosol particles by the use of laser ablation-induced jet recoil momenta. Lithium and carbon are used as the primary ablation targets, the former of which is known to form aerosol in the form of droplet, and the latter of which tends to form carbon nanotubes. Laboratory-scale experiments have been conducted to irradiate airborne aerosol particles with high-intensity laser to produce ablation-induced jet. Data have indicated a change in aerosol flow direction, but only in the case of lithium.

  4. Aerosol release and transport program. Quarterly progress report, October-December 1981. [LMFBR; PWR; BWR

    SciTech Connect

    Adams, R. E.; Tobias, M. L.

    1982-05-01

    This report summarizes progress for the Aerosol Release and Transport Program sponsored by the Nuclear Regulatory Commission's Office of Nuclear Regulatory Research, Division of Accident Evaluation, for the period October-December 1981. Topics discussed include (1) under-sodium tests in the Fuel Aerosol Simulant Test (FAST) Facility, (2) U/sub 3/O/sub 8/ and Fe/sub 2/O/sub 3/ in steam (light-water reactor accident) aerosol experiments in the Nuclear Safety Pilot Plant, (3) generation and characterization of cadmium and CdO aerosols in the basic aerosol experimental program, (4) core-melt tests of Zircaloy-clad fuel capsules, (5) initial results of a piston-model bubble oscillation code allowing liquid bypass, and (6) calculations with the UVABUBL code to compare with underwater and under-sodium period measurements in FAST experiments.

  5. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  6. Contributions of local sources, long-range and mountain wind transport for aerosols over an eastern Himalayan high-altitude station in India

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Sarkar, Chirantan; Singh, Ajay; Ghosh, Sanjay; Raha, Sibaji; Das, Sanat

    A long-term study (2010-2013) on aerosols mass concentrations (PM2.5), number concentrations of size segregated aerosols and mass concentration of total suspended black carbon aerosols has been made over Darjeeling (27.01 N, 88.15 E), a high altitude (2200 m asl) station at eastern Himalaya in India. Seasonal and diurnal variation of all types of aerosols, their chemical composition and source apportionment revealed that aerosols over this part of Himalaya are mainly of two types; locally generated and long-range transported aerosols. The diurnal variation of aerosols including black carbon showed distinct feature of up-slope mountain wind transport mainly during premonsoon (Mar-May) which brings aerosol particles from low land regions. This present study focuses on the estimation of the individual contributions from local emissions (LE), long-range transport (LRT) and mountain wind transport (MWT) towards the total aerosol loading over Darjeeling. Several strike events (called by local political party) were observed at Darjeeling over the entire period of study (2008-2013) when all the local activities (schools, colleges, offices, vehicular, industrial etc) were stopped fully. Most of the strike events occurred during premonsoon. We have observed three types of events during premonsoon over the entire study period; 1) strike events with the contribution of LRT+MWT with zero local emissions (LE=0), 2) normal days with the contribution of LE+LRT+MWT, 3) normal days with the contribution of LE+MWT with zero long-range contribution (LRT=0). On normal days, the diurnal variation of aerosols during premonsoon showed sharp morning and evening peaks associated to local anthropogenic activities with the effect of up-slope mountain wind during afternoon. During strike events, the morning and evening peaks were absent but a broad peak was observed during afternoon associated to up-slope mountain wind. The increase in aerosol concentrations during afternoon on strike days

  7. A Satellite-based Assessment of Trans-Pacific Transport of Pollution Aerosol

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Remer, Lorraine; Chin, Mian; Bian, Huisheng; Kleidman, Richard; Diehl. Thomas

    2007-01-01

    It has been well documented that pollution aerosol and dust from East Asia can transport across the North Pacific basin, reaching North America and beyond. Such intercontinental transport extends the impact of aerosols for climate change, air quality, atmospheric chemistry, and ocean biology from local and regional scales to hemispheric and global scales. Long term, measurement-based studies are necessary to adequately assess the implications of these wider impacts. A satellite-based assessment can augment intensive field campaigns by expanding temporal and spatial scales and also serve as constraints for model simulations. Satellite imagers have been providing a wealth of evidence for the intercontinental transport of aerosols for more than two decades. Quantitative assessments, however, became feasible only recently as a result of the much improved measurement accuracy and enhanced new capabilities of satellite sensors. In this study, we generated a 4-year (2002 to 2005) climatology of optical depth for pollution aerosol (defined as a mixture of aerosols from urbanlindustrial pollution and biomass burning in this study) over the North Pacific from MODerate resolution Imaging Spectro-radiometer (MODIS) observations of fine- and coarse-mode aerosol optical depths. The pollution aerosol mass loading and fluxes were then calculated using measurements of the dependence of aerosol mass extinction efficiency on relative humidity and of aerosol vertical distributions from field campaigns and available satellite observations in the region. We estimated that about 18 Tg/year pollution aerosol is exported from East Asia to the northwestern Pacific Ocean, of which about 25% reaches the west coast of North America. The pollution fluxes are largest in spring and smallest in summer. For the period we have examined the strongest export and import of pollution particulates occurred in 2003, due largely to record intense Eurasia wildfires in spring and summer. The overall

  8. Cumulus parameterizations in chemical transport models

    NASA Astrophysics Data System (ADS)

    Mahowald, Natalie M.; Rasch, Philip J.; Prinn, Ronald G.

    1995-12-01

    Global three-dimensional chemical transport models (CTMs) are valuable tools for studying processes controlling the distribution of trace constituents in the atmosphere. A major uncertainty in these models is the subgrid-scale parametrization of transport by cumulus convection. This study seeks to define the range of behavior of moist convective schemes and point toward more reliable formulations for inclusion in chemical transport models. The emphasis is on deriving convective transport from meteorological data sets (such as those from the forecast centers) which do not routinely include convective mass fluxes. Seven moist convective parameterizations are compared in a column model to examine the sensitivity of the vertical profile of trace gases to the parameterization used in a global chemical transport model. The moist convective schemes examined are the Emanuel scheme [Emanuel, 1991], the Feichter-Crutzen scheme [Feichter and Crutzen, 1990], the inverse thermodynamic scheme (described in this paper), two versions of a scheme suggested by Hack [Hack, 1994], and two versions of a scheme suggested by Tiedtke (one following the formulation used in the ECMWF (European Centre for Medium-Range Weather Forecasting) and ECHAM3 (European Centre and Hamburg Max-Planck-Institut) models [Tiedtke, 1989], and one formulated as in the TM2 (Transport Model-2) model (M. Heimann, personal communication, 1992). These convective schemes vary in the closure used to derive the mass fluxes, as well as the cloud model formulation, giving a broad range of results. In addition, two boundary layer schemes are compared: a state-of-the-art nonlocal boundary layer scheme [Holtslag and Boville, 1993] and a simple adiabatic mixing scheme described in this paper. Three tests are used to compare the moist convective schemes against observations. Although the tests conducted here cannot conclusively show that one parameterization is better than the others, the tests are a good measure of the

  9. Influence of Aerosol Heating on the Stratospheric Transport of the Mt. Pinatubo Eruption

    NASA Technical Reports Server (NTRS)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.

    2011-01-01

    On June 15th, 1991 the eruption of Mt. Pinatubo (15.1 deg. N, 120.3 Deg. E) in the Philippines injected about 20 Tg of sulfur dioxide in the stratosphere, which was transformed into sulfuric acid aerosol. The large perturbation of the background aerosol caused an increase in temperature in the lower stratosphere of 2-3 K. Even though stratospheric winds climatological]y tend to hinder the air mixing between the two hemispheres, observations have shown that a large part of the SO2 emitted by Mt. Pinatubo have been transported from the Northern to the Southern Hemisphere. We simulate the eruption of Mt. Pinatubo with the Goddard Earth Observing System (GEOS) version 5 global climate model, coupled to the aerosol module GOCART and the stratospheric chemistry module StratChem, to investigate the influence of the eruption of Mt. Pinatubo on the stratospheric transport pattern. We perform two ensembles of simulations: the first ensemble consists of runs without coupling between aerosol and radiation. In these simulations the plume of aerosols is treated as a passive tracer and the atmosphere is unperturbed. In the second ensemble of simulations aerosols and radiation are coupled. We show that the set of runs with interactive aerosol produces a larger cross-equatorial transport of the Pinatubo cloud. In our simulations the local heating perturbation caused by the sudden injection of volcanic aerosol changes the pattern of the stratospheric winds causing more intrusion of air from the Northern into the Southern Hemisphere. Furthermore, we perform simulations changing the injection height of the cloud, and study the transport of the plume resulting from the different scenarios. Comparisons of model results with SAGE II and AVHRR satellite observations will be shown.

  10. Aerosol chemistry during the wet season in central Amazonia - The influence of long-range transport

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Andreae, M. O.; Berresheim, H.; Artaxo, P.; Garstang, M.

    1990-01-01

    The temporal variation in the concentration and chemistry of the atmospheric aerosol over central Amazonia, Brazil, during the 1987 wet season is discussed based on ground and aircraft collected data obtained during the NASA GTE ABLE 2B expedition conducted in April/May 1987. It is found that wet-season aerosol concentrations and composition are variable in contrast to the more uniform biogenic aerosol observed during the 1985 dry season; four distinct intervals of enhanced aerosol concentration coincided with short periods (3 to 5 d) of extensive rainfall. It is hypothesized that aerosol chemistry in Amazonia during the wet season is strongly influenced by long-range transport of soil dust, marine aerosol, and possibly biomass combustion products advected into the central Basin by large-scale tropospheric circulation, producing periodic pulses of material input to local boundary layer air. The resultant wet-season aerosol regime is dynamic, in contrast to the uniformity of natural biogenic aerosols during the dry season.

  11. Aerosol optical properties at Lampedusa (Central Mediterranean) 1. Influence of transport and identification of different aerosol types

    NASA Astrophysics Data System (ADS)

    Pace, G.; di Sarra, A.; Meloni, D.; Piacentino, S.; Chamard, P.

    2005-07-01

    Aerosol optical depth andÅngström exponent were obtained from multi filter rotating shadowband radiometer (MFRSR) observations carried out at the island of Lampedusa, in the Central Mediterranean, in the period July 2001-September 2003. The average aerosol optical depth at 495.7 nm, τ, is 0.24±0.14; the averageÅngström exponent, α, is 0.86±0.63. The observed values of τ range from 0.03 to 1.13, and the values of α vary from -0.32 to 2.05, indicating a large variability in aerosol content and size. In cloud-free conditions, 36% of the airmasses come from Africa, 25% from Central-Eastern Europe, and 19% from Western France, Spain and the North Atlantic. In summer, 42% of the airmasses are of African origin. In almost all cases African aerosols display high values of τ and low values of α, typical of Saharan dust (average values of τ and α are 0.36 and 0.42, respectively). Particles originating from Central-Eastern Europe show relatively large average values of τ and α (0.23 and 1.5, respectively), while particles from Western France, Spain and the North Atlantic show the lowest average values of τ (0.15), and relatively small values of α (0.92). Intermediate values of α are often connected with relatively fast changes of the airmass originating sector, suggesting the contemporary presence of different types of particles in the air column. The largest values of α (about 2) were observed in August 2003, when large scale forest fires in Southern Europe produced consistent amounts of fine combustion particles that were transported to the Central Mediterranean by a persistent high pressure system over Central Europe. Smoke particles in some cases mix with desert dust, producing intermediate values of α. The seasonal distribution of the meteorological patterns over the Mediterranean, the efficiency of the aerosol production mechanisms, and the variability of the particles' residence time produce a distinct seasonal cycle of aerosol optical depths and

  12. Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types

    NASA Astrophysics Data System (ADS)

    Pace, G.; di Sarra, A.; Meloni, D.; Piacentino, S.; Chamard, P.

    2006-03-01

    Aerosol optical depth and Ångström exponent were obtained from multi filter rotating shadowband radiometer (MFRSR) observations carried out at the island of Lampedusa, in the Central Mediterranean, in the period July 2001-September 2003. The average aerosol optical depth at 495.7 nm, τ, is 0.24±0.14; the average Ångström exponent, α, is 0.86±0.63. The observed values of τ range from 0.03 to 1.13, and the values of α vary from -0.32 to 2.05, indicating a large variability in aerosol content and size. In cloud-free conditions, 36% of the airmasses come from Africa, 25% from Central-Eastern Europe, and 19% from Western France, Spain and the North Atlantic. In summer, 42% of the airmasses is of African origin. In almost all cases African aerosols display high values of τ and low values of α, typical of Saharan dust (average values of τ and α are 0.36 and 0.42, respectively). Particles originating from Central-Eastern Europe show relatively large average values of τ and α (0.23 and 1.5, respectively), while particles from Western France, Spain and the North Atlantic show the lowest average values of τ (0.15), and relatively small values of α (0.92). Intermediate values of α are often connected with relatively fast changes of the airmass originating sector, suggesting the contemporary presence of different types of particles in the air column. Clean marine conditions are rare at Lampedusa, and are generally associated with subsidence of the airmasses reaching the island. Average values of τ and α for clean marine conditions are 0.11 and 0.86, respectively. The largest values of α (about 2) were observed in August 2003, when large scale forest fires in Southern Europe produced consistent amounts of fine combustion particles, that were transported to the Central Mediterranean by a persistent high pressure system over Central Europe. Smoke particles in some cases mix with desert dust, producing intermediate values of α. The seasonal distribution of

  13. New capabilities for space-based cloud and aerosols measurements: The Cloud-Aerosol Transport System (CATS)

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Hlavka, D. L.; Palm, S. P.; Hart, W. D.; Nowottnick, E. P.; Vaughan, M.; Rodier, S. D.; Colarco, P. R.; da Silva, A.; Buchard-Marchant, V.

    2013-12-01

    Current uncertainties in cloud and aerosol properties limit our ability to accurately model the Earth's climate system and predict climate change. These limitations are due primarily to difficulties in adequately measuring aerosols and clouds on a global scale. NASA's A-Train satellites provide an unprecedented opportunity to address these uncertainties. In particular, the Cloud-Aerosol Lidar Infrared Pathfinder Spaceborne Observations (CALIPSO) satellite provides vertical profiles of cloud and aerosol properties. The CALIOP lidar onboard CALIPSO has reached its seventh year of operation, well past its expected lifetime. The ATLID lidar on EarthCARE is not expected to launch until 2016 or later. If the CALIOP lidar fails before a new mission is operational, there will be a gap in global lidar measurements. The Cloud-Aerosol Transport System (CATS), built at NASA Goddard Space Flight Center as a payload for the International Space Station (ISS), is set to launch in the summer of 2014. CATS is an elastic backscatter lidar with three wavelengths (1064, 532, 355 nm) and HSRL capability at 532 nm. Depolarization measurements will be made at all three wavelengths. The ISS orbit is a 51 degree inclination orbit at an altitude of about 405 km. This orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three day repeat cycle. Thus, science applications of CATS include cloud and aerosol climate studies, air quality monitoring, and smoke/volcanic plume tracking. The primary science objectives of CATS include: continuing the CALIPSO aerosol and cloud vertical profile data record, providing near real time data to support operational applications such as air quality modeling, and advancing technology in support of future mission development using the HSRL channel. Furthermore, the vertical profiles of cloud and aerosol properties provided by CATS will complement current and future passive satellite

  14. Multi-Decadal Variation of Aerosols: Sources, Transport, and Climate Effects

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Bian, Huisheng; Streets, David

    2008-01-01

    We present a global model study of multi-decadal changes of atmospheric aerosols and their climate effects using a global chemistry transport model along with the near-term to longterm data records. We focus on a 27-year time period of satellite era from 1980 to 2006, during which a suite of aerosol data from satellite observations, ground-based measurements, and intensive field experiments have become available. We will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which involves a time-varying, comprehensive global emission dataset that we put together in our previous investigations and will be improved/extended in this project. This global emission dataset includes emissions of aerosols and their precursors from fuel combustion, biomass burning, volcanic eruptions, and other sources from 1980 to the present. Using the model and satellite data, we will analyze (1) the long-term global and regional aerosol trends and their relationship to the changes of aerosol and precursor emissions from anthropogenic and natural sources, (2) the intercontinental source-receptor relationships controlled by emission, transport pathway, and climate variability.

  15. Continuous measurements at the urban roadside in an Asian Megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Li, Y. J.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2015-07-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 at the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear meal-time concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during meal times, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a~lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and influence of continental air masses.

  16. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2016-02-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  17. Aerosol chemical characterization and role of carbonaceous aerosol on radiative effect over Varanasi in central Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Dumka, U. C.; Kaskaoutis, D. G.; Ram, Kirpa; Panicker, A. S.; Srivastava, M. K.; Tiwari, Shani; Attri, S. D.; Soni, V. K.; Pandey, A. K.

    2016-01-01

    This study investigates the chemical composition of PM10 aerosols at Varanasi, in the central Indo-Gangetic Plain (IGP) during April to July 2011, with emphasis on examining the contribution of elemental carbon (EC) to the estimates of direct aerosol radiative effect (DARE). PM10 samples are analysed for carbonaceous aerosols (Organic Carbon, OC and EC) and water-soluble ionic species (WSIS: Cl-, SO42-, NO3-, PO42- NH4+, Na+, K+, Mg2+ and Ca2+) and several diagnostic ratios (OC/EC, K+/EC, etc) have been also used for studying the aerosol sources at Varanasi. PM10 mass concentration varies between 53 and 310 μg m-3 (mean of 168 ± 73 μg m-3), which is much higher than the National and International air quality standards. The OC mass concentration varies from 6 μg m-3 to 24 μg m-3 (mean of 12 ± 5 μg m-3; 7% of PM10 mass), whereas EC ranges between 1.0 and 14.3 μg m-3 (4.4 ± 3.9 μg m-3; ˜3% of PM10 mass). The relative low OC/EC of 3.9 ± 2.0 and strong correlation (R2 = 0.82) between them suggest the dominance of primary carbonaceous aerosols. The contribution of WSIS to PM10 is found to be ˜12%, out of which ˜57% and 43% are anions and cations, respectively. The composite DARE estimates via SBDART model reveal significant radiative effect and atmospheric heating rates (0.9-2.3 K day-1). Although the EC contributes only ˜3% to the PM10 mass, its contribution to the surface and atmospheric forcing is significantly high (37-63% and 54-77%, respectively), thus playing a major role in climate implications over Varanasi.

  18. Pdf - Transport equations for chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Kollmann, W.

    1989-01-01

    The closure problem for the transport equations for pdf and the characteristic functions of turbulent, chemically reacting flows is addressed. The properties of the linear and closed equations for the characteristic functional for Eulerian and Lagrangian variables are established, and the closure problem for the finite-dimensional case is discussed for pdf and characteristic functions. It is shown that the closure for the scalar dissipation term in the pdf equation developed by Dopazo (1979) and Kollmann et al. (1982) results in a single integral, in contrast to the pdf, where double integration is required. Some recent results using pdf methods obtained for turbulent flows with combustion, including effects of chemical nonequilibrium, are discussed.

  19. The chemical composition of organic nitrogen in marine rainwater and aerosols

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Hastings, M. G.; Peters, A.; Sigman, D. M.

    2010-12-01

    The current state of knowledge on organic nitrogen in the atmosphere is very limited. Atmospheric water soluble organic nitrogen (WSON) is a subset of the complex water soluble organic matter measured in atmospheric aerosols and rainwater; as such, it impacts cloud condensation processes and aerosol chemical and optical properties. In marine and continental atmospheric deposition, the organic N fraction can be 20-80% of total N potentially influencing receiving ecosystems. Therefore, atmospheric WSON plays an important role in both atmospheric chemistry and the global biogeochemical N cycle. However, the sources (i.e., anthropogenic vs. terrestrial vs. marine), composition (e.g., reduced or oxidized N), potential connections to inorganic N (NO3- and NH4+), and spatio-temporal variability of atmospheric WSON are largely unknown. Samples were collected on or near the island of Bermuda (32.27°N, 64.87°W), which is located in the western North Atlantic and experiences seasonal changes in transport that allow for study of both anthropogenically and primarily marine influenced air masses. Rainwater samples (n=7) and aqueous extracted aerosol samples (n=4) were analyzed by positive ion ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to characterize the chemical composition of the water soluble organic N on a per compound level. We found ~ 800 N containing compounds in 8 compound classes. The CHON+ compound class contained the largest number of N compounds (~ 460). Compared to continental rainwater [Altieri et al., ES&T, 2009], the CHON+ compounds in the marine samples are as dominant in number, yet have less regular patterns and lower O:C ratios for comparable N:C ratios. In fact, average O:C ratios of all N containing compound classes were lower in the marine samples than in continental rainwater samples. No organosulfates or nitrooxy-organosulfates were detected in the marine samples, both of

  20. Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical review of the most recent advances

    SciTech Connect

    Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2012-06-29

    This manuscript presents an overview of the most recent instrument developments for the field and laboratory applications of mass spectrometry (MS) to investigate the chemistry and physics of atmospheric aerosols. A range of MS instruments, employing different sample introduction methods, ionisation and mass detection techniques are used both for ‘online’ and ‘offline’ characterisation of aerosols. Online MS techniques enable detection of individual particles with simultaneous measurement of particle size distributions and aerodynamic characteristics and are ideally suited for field studies that require high temporal resolution. Offline MS techniques provide a means for detailed molecular-level analysis of aerosol samples, which is essential to gain fundamental knowledge regarding aerosol chemistry, mechanisms of particle formation and atmospheric aging. Combined, complementary MS techniques provide comprehensive information on the chemical composition, size, morphology and phase of aerosols – data of key importance for evaluating hygroscopic and optical properties of particles, their health effects, understanding their origins and atmospheric evolution. Over the last few years, developments and applications of MS techniques in aerosol research have expanded remarkably as evident by skyrocketing publication statistics. Finally, the goal of this review is to present the most recent developments in the field of aerosol mass spectrometry for the time period of late 2010 to early 2012, which have not been conveyed in previous reviews.

  1. A Comparison of Aerosol Optical, Microphysical, and Chemical Measurements between LAX and Long Beach Harbor

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L.; Anderson, B. E.; Chen, G.; Winstead, E.; Ziemba, L. D.; Beyersdorf, A. J.; Diskin, G. S.; Nenes, A.; Lathem, T. L.; Arctas Science Team

    2010-12-01

    In the summer of 2008, measurements of aerosols were made on-board the NASA DC-8 over the state of California, as part of the second phase of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) on behalf of the California Air resources Board (CARB). The DC-8 made four flights, between 18 June and 26 June, totaling 33 hours, to examine California’s atmosphere to better understand the chemical dynamics of smog and greenhouse gases over the state. The NASA DC-8 had a suite of aerosol instruments, capable of measuring the number concentrations, optical properties, and size distributions of aerosols between 0.003 and 1500 um. In this presentation, we will compare aerosol observations made at two areas within the Los Angeles Basin, Los Angeles International airport (LAX) and Long Beach Harbor. LAX is in the middle of the second most populated metropolitan area in the United States and is the fifth busiest airport in the world, while Long Beach Harbor (20 miles south of LAX) is the world’s 2nd busiest container port. Initial results suggest a greater aerosol loading and additional presence of ultrafine aerosols during the week due to vehicular emissions. We will also present analysis of aerosol observations as a function of time of day from the four missed approaches at LAX and four over flights of Long Beach Harbor.

  2. Aerosol chemical elemental mass concentration at lower free troposphere

    NASA Astrophysics Data System (ADS)

    do Carmo Freitas, Maria; Dionísio, Isabel; Fialho, Paulo; Barata, Filipe

    2007-08-01

    This paper shows the use of Instrumental neutron activation analysis (INAA) technique to determine elemental masses collected by a seven-wavelength Aethalometer instrument at the summit of Pico mountain in the Azorean archipelago, situated in the Central North Atlantic Ocean. Each sample corresponds to air particulate matter measured continuously for periods of approximately 24 h taken from 14th July 2001 through 14th July 2002. The statistical analysis of the coefficients of correlation between all the elements identified, permitted to establish six groups that could potentially be associated with the type of source responsible for the aerosol sampled in the lower free troposphere at the Azorean archipelago. Calculation of the synoptic back trajectories helped to corroborate the use of the iron/cesium relation as a tracer for the Saharan dust aerosol. It was demonstrated that INAA constituted an important tool to identify these events.

  3. Impacts of Long-Range Transport of Metals from East Asia in Bulk Aerosols Collected at the Okinawa Archipelago, Japan

    NASA Astrophysics Data System (ADS)

    A, Sotaro; S, Yuka; I, Moriaki; N, Fumiya; H, Daishi; A, Takemitsu; T, Akira

    2010-05-01

    Economy of East Asia has been growing rapidly, and atmospheric aerosols discharged from this region have been transported to Japan. Okinawa island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km of south Korea. Its location in Asian is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air mass which has been affected by anthropogenic activities. Therefore, Okinawa region is suitable area for studying impacts of air pollutants from East Asia. We simultaneously collected bulk aerosol samples by using the same type of high volume air samplers at Cape Hedo Atmospheric Aerosol Monitoring Station (CHAAMS, Okinawa island), Kume island (ca. 160 km south-west of CHAAMS), and Minami-Daitou island (ca. 320 km south-east of CHAAMS). We determined the concentrations of acid-digested metals using atomic absorption spectrometer and inductively-coupled plasma mass spectrometry (ICP-MS). We report and discuss spatial and temporal distribution of metals in the bulk atmospheric aerosols collected at CHAAMS, Kume island and Minami-Daitou island during June, 2008 to June 2009. We also determined 'background' concentration of metals in Okinawa archipelago. We then compare each chemical component among CHAAMS, Kume island and Minami-Daitou island to elucidate the influence of the transport processes and distances from Asian continent on metal concentrations.

  4. Aplication of LIRIC algorithm to study aerosol transport over Belsk, Poland

    NASA Astrophysics Data System (ADS)

    Pietruczuk, Aleksander; Posyniak, Michał

    2015-04-01

    In this work synergy of measurements done by of a LIDAR and a sun-sky scanning photometer is presented. The LIdar-Radiometer Inversion Code (LIRIC) was applied to study periodic events of increased values of the aerosol optical depth (AOD) observed at Belsk (Poland). Belsk is a background site located in a rural area around 50 km south from Warsaw. Events of increased AOD occur mainly during spring and they coincide with events of elevated concentrations of particulate matter (PM10). This phenomenon is observed in all eastern Europe, e.g. in Minsk, and is caused by long range aerosol transport. Our previous work showed aerosol transport from the border between Belarus, Ukraine and Russia in the planetary boundary layer (PBL), and from north Africa in the free troposphere. The LIRIC algorithm, which uses optical and microphysical properties of the aerosol derived from photometric measurements and LIDAR profiles, was applied to study vertical distribution of fine and coarse modes of aerosol. The analysis of the airmass backward trajectories and models results (DREAM and NAAPS)was also used to determine a possible aerosol type and its source region. This study proved our previous findings. Most of events with increased AODs are observed during spring. In this season the fine mode aerosol is mainly present in the PBL. On the basis of the trajectory analysis and the NAAPS results we presume that it is the absorbing aerosol originating from the regions of seasonal biomass burning in eastern Europe, i.e. the area mentioned above. The events with increased AODs were also found during summer. In this case the fine mode aerosol is transported in the PBL a like to spring season. However, our analysis of trajectories and model results indicated western Europe as a source region. It is probably urban/industrial aerosol. The coarse mode aerosol is transported mainly in the free troposphere as separate layers. The analysis of backward trajectories indicates northern Africa as a

  5. Chemical characterization of challenge aerosols for HEPA filter penetration testing

    SciTech Connect

    Strandberg, S.W.

    1985-04-01

    Quality assurance penetration testing of high efficiency particulate air (HEPA) filters use oil mists as challenge aerosols. Concern over the carcinogenic risk associated with the use of di-(2-ethylhexyl)phthalate (DEHP) has led to the investigation of alternative materials and generation methods for these aerosols. Since several commonly used generation methods for quality assurance testing of HEPA filters utilize heating of the starting material, it was determined essential to evaluate the starting material and the resultant aerosol which might contain thermal degradation by-products. A penetrometer utilizing flash vaporization has been developed by A.D. Little, Inc., for the US Government as a possible alternative generation method to the Q-127 thermally generated DEHP penetrometer. Tetraethylene glycol, oleic acid, and DEHP aerosols were generated in this unit, and particulate and vapor samples were collected and identified using gas chromatography/mass spectrometry techniques. Thermally generated DEHP by-products were also sampled and identified using a Q-107 penetrometer used in the testing of large HEPA filters. Determination of the toxicological hazards of starting materials and all of the identified compounds was made by reviewing available literature obtained on the Toxline system of the National Library of Medicine. No major degradation products were found in the flash vaporization penetrometer although a number of thermally generated by-products were found in the Q-107 penetrometer. Toxicologically, no hazards were found to preclude the use of either tetraethylene glycol or oleic acid as tested in the A.D. Little penetrometer. 133 refs., 5 figs., 9 tabs.

  6. Chemical characteristics of aerosol mists in phosphate fertilizer manufacturing facilities.

    PubMed

    Hsu, Yu-Mei; Wu, Chang-Yu; Lundgren, Dale A; Nall, J Wesley; Birky, Brian K

    2007-01-01

    Of the carcinogens listed by the National Toxicology Program (NTP), strong inorganic mists containing sulfuric acid were identified as a known human carcinogen. In this study, aerosol sampling was conducted at 24 locations in eight Florida phosphoric acid and concentrated fertilizer manufacturing plants and two locations as background in Winter Haven and Gainesville, Florida, using dichotomous samplers. The locations were selected where sulfuric acid mist may potentially exist, including sulfuric acid pump tank areas, belt or rotating table phosphoric acid filter floors, sulfuric acid truck loading/unloading stations, phosphoric acid production reactors (attack tanks), and a concentrated fertilizer granulator during scrubbing with a weak sulfuric acid mixture. An ion chromatography system was used to analyze sulfate and other water soluble ion species. In general, sulfate, fluoride, ammonium, and phosphate were the major species in the fertilizer facilities. For the rotating table/belt phosphoric acid filter floor, phosphate and fluoride were the dominant species for PM10, and the maximum concentrations were 170 and 106 microg/m3, respectively. For the attack tank, fluoride was the dominant species for PM10, and the maximum concentration was 462 microg/m3. At the sulfuric acid pump tank, sulfate was the dominant species, and the maximum PM10 sulfate concentration was 181 microg/m3. The concentration of PM10 sulfate including ammonium sulfate, calcium sulfate, and sulfuric acid were lower than 0.2 mg/m3 at all locations. The aerosols at the filter floor and the attack tank were acidic. The coarse mode aerosol at the sulfuric acid pump tank (an outdoor location) was acidic, whereas the fine mode aerosol was neutral to basic. PMID:17162477

  7. Aerosol variability and atmospheric transport in the Himalayan region from CALIOP 2007-2010 observations

    NASA Astrophysics Data System (ADS)

    Bucci, S.; Cagnazzo, C.; Cairo, F.; Di Liberto, L.; Fierli, F.

    2014-05-01

    This work quantifies the spatial distribution of different aerosol types, their seasonal variability and sources.The analysis of four years of CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) vertically resolved aerosol data allows the identification of spatial patterns of desert dust and carbonaceous particles in different atmospheric layers. Clusters of Lagrangian back trajectories highlight the transport pathways from source regions during the dusty spring season. The analysis shows a prevalence of dust; at low heights it occurs frequently (up to 70% of available observations) and is distributed north of the Tibetan Plateau with a main contribution from the Gobi and Taklamakan deserts, and west of the Tibetan Plateau, originating from the deserts of southwest Asia and advected by the Westerlies. Above the Himalayas the dust amount is minor but still not negligible (occurrence around 20%) and mainly affected by the transport from more distant deserts sources (Sahara and Arabian Peninsula). Carbonaceous aerosol, produced mainly in northern India and eastern China, is subject to shorter-range transport and is indeed observed closer to the sources, while there is a limited amount reaching the top of the plateau. Data analysis reveals a clear seasonal variability in the frequencies of occurrence for the main aerosol types; dust is regulated principally by the monsoon dynamics, with maximal occurrence in spring. We also highlight relevant interannual differences, showing a larger presence of aerosol in the region during 2007 and 2008. The characterization of the aerosol spatial and temporal distribution in terms of observational frequency is a key piece of information that can be directly used for the evaluation of global aerosol models.

  8. Chemical Composition and Cloud Condensation Nuclei Properties of Marine Aerosols during the 2005 Marine Stratus Experiment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Hudson, J.; Daum, P.; Springston, S.; Wang, J.; Senum, G.; Alexander, L.; Jayne, J.; Hubbe, J.

    2006-12-01

    Marine aerosol chemical composition and cloud condensation nuclei (CCN) spectrum were determined on board the DOE G1 aircraft during the Marine Stratus Experiment conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosol components, including sea-salt- (sodium, chloride, magnesium, methansulfonate) and terrestrial/pollution-derived (ammonium, sulfate, nitrate, organics, potassium, and calcium) were measured using the particle-into-liquid sampler-ion chromatography technique and an Aerodyne AMS at a time resolution of 4 min and 30 s, respectively, both covering the size range of ~0.08 to 1.5 micrometers. The CCN spectrum was determined at a 1-s time resolution covering a supersaturation range between 0.02% and 1%. The accumulation mode particle size- number distribution was measured using a passive cavity aerosol spectrometer probe; the cloud droplet size- number distribution was determined using a Cloud Aerosol Probe. During the campaign sulfate/organic aerosols were always present, sea-salt aerosols were observed on half of the flights, and no dust or biomass burning contribution was noted as calcium and potassium were always below their limits-of-detection. Based on CCN spectra and cloud droplet number concentrations, the typical supersaturation of the marine stratus clouds was ~0.06%, corresponding to a CCN critical diameter between 0.1 and 0.2 micrometer. This large critical diameter makes the aerosol chemical composition measured appropriate for investigating the CCN properties and marine stratus clouds. We note that while sea-salt aerosols and sulfate aerosols were most likely externally mixed, the ensemble exhibits similar CCN properties irrespective of the relative mass concentrations of these two types of aerosols, owing partly to the similar activation properties of NaCl and (NH4)2SO4 aerosols, and that sea-salt particles were larger but fewer, accounting for a small fraction of cloud

  9. The Cloud-Aerosol Transport System (CATS): a New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2011-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064, 532, 355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time data capability of the ISS will enable CATS to support operational applications such as air quality and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science

  10. MATCH-SALSA - Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model - Part 1: Model description and evaluation

    NASA Astrophysics Data System (ADS)

    Andersson, C.; Bergström, R.; Bennet, C.; Robertson, L.; Thomas, M.; Korhonen, H.; Lehtinen, K. E. J.; Kokkola, H.

    2015-02-01

    We have implemented the sectional aerosol dynamics model SALSA (Sectional Aerosol module for Large Scale Applications) in the European-scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry). The new model is called MATCH-SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC) in central Europe and lower concentrations in remote regions. The modeled PNC size distribution peak occurs at the same or smaller particle size as the observed peak at four measurement sites spread across Europe. Total PNC is underestimated at northern and central European sites and accumulation-mode PNC is underestimated at all investigated sites. The low nucleation rate coefficient used in this study is an important reason for the underestimation. On the other hand, the model performs well for particle mass (including secondary inorganic aerosol components), while elemental and organic carbon concentrations are underestimated at many of the sites. Further development is needed, primarily for treatment of secondary organic aerosol, in terms of biogenic emissions and chemical transformation. Updating the biogenic secondary organic aerosol (SOA) scheme will likely have a large impact on modeled PM2.5 and also affect the model performance for PNC through impacts on nucleation and condensation.

  11. Effect of particle settling on lidar profiles of long-range transported Saharan aerosols

    NASA Astrophysics Data System (ADS)

    Gasteiger, Josef; Groß, Silke

    2016-04-01

    A large amount of desert aerosol is transported in the Saharan Air Layer (SAL) westwards from Africa over the Atlantic Ocean. Lidar profiles of transported Saharan aerosol may contain some information about the vertically-resolved aerosol microphysics that could be used to characterize processes that affected the measured aerosol during transport. We present modelled lidar profiles of long-range transported Saharan aerosol assuming that initially the SAL is well-mixed and that there is no vertical mixing of air within the SAL as soon as it reaches the Atlantic. We consider Stokes gravitational settling of aerosol particles over the ocean. The lidar profiles are calculated using optical models for irregularly-shaped mineral dust particles assuming settling-induced particle removal as function of distance from the SAL top. Within the SAL we find a decrease of both the backscatter coefficients and the linear depolarization ratios with decreasing distance from the SAL top. For example, the linear depolarization ratio at a wavelength of 532nm decreases from 0.289 at 1000m to 0.256 at 200m and 0.215 at 100m below SAL top. We compare the modelled backscatter coefficients and linear depolarization ratios to ground-based lidar measurements performed during the SALTRACE field campaign in Barbados (Caribbean) and find agreement within the estimated uncertainties. We discuss the uncertainties of our modeling approach in our presentation. Assumed mineral dust particle shapes, assumed particle mixture properties, and assumptions about processes in the SAL over the continent and the ocean are important aspects to be considered. Uncertainties are relevant for the potential of lidar measurements of transported Saharan dust to learn something about processes occuring in the SAL during long-range transport. We also compare our modeling results to modeling results previously published in the literature.

  12. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Zhao, D. F.; Ruppel, M. J.; Laskina, O.; Grandquist, J. R.; Modini, R. L.; Stokes, M. D.; Russell, L. M.; Bertram, T. H.; Grassian, V. H.; Deane, G. B.; Prather, K. A.

    2014-07-01

    Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA) must be underpinned by a physically and chemically accurate representation of the bubble mediated production of nascent SSA particles. Since bubble bursting is sensitive to the physicochemical properties of seawater, any important differences in the SSA production mechanism are projected into SSA composition. Using direct chemical measurements of SSA at the single-particle level, this study presents an inter-comparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits"), a pulsed plunging waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic enriched particles and a different size-resolved elemental composition, especially in the 0.8-2 μm size range. These particles, when dried, had more spherical morphologies compared to the more cubic structure expected for pure NaCl particles, which can be attributed to the presence of additional organic carbon. In addition to an inter-comparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method utilized in this study on SSA composition was undertaken. In organic-enriched seawater, the continuous operation of the plunging waterfall mechanism resulted in the accumulation of surface foam and an over-expression of organic matter in SSA particles compared to pulsed plunging waterfall. Throughout this set of experiments, comparative differences in the SSA number size distribution were coincident with differences in aerosol composition, indicating that the production mechanism of SSA exerts

  13. Influence of aqueous chemistry on the chemical composition of fog water and interstitial aerosol in Fresno

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin; Ge, Xinlei; Collier, Sonya; Xu, Jianzhong; Sun, Yele; Wang, Youliang; Herckes, Pierre; Zhang, Qi

    2015-04-01

    A measurement study was conducted in the Central Valley (Fresno) of California in January 2010, during which radiation fog events were frequently observed. Fog plays important roles in atmospheric chemistry by scavenging aerosol particles and trace gases and serving as a medium for various aqueous-phase reactions. Understanding the effects of fog on the microphysical and chemical processing of aerosol particles requires detailed information on their chemical composition. In this study, we characterized the chemical composition of fog water and interstitial aerosol particles to study the effects of fog processing on aerosol properties. Fog water samples were collected during the 2010 Fresno campaigns with a Caltech Active Strand Cloud water Collector (CASCC) while interstitial submicron aerosols were characterized in real time with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a scanning Mobility Particle Sizer (SMPS). The fog water samples were later analyzed using the HR-ToF-AMS, ion chromatography, and a total carbon analyzer. The chemical composition and characteristics of interstitial particles during the fog events were compared to those of dissolved inorganic and organic matter in fog waters. Compared to interstitial aerosols, fog water is composed of a higher fraction of ammonium nitrate and oxygenated organics, due to aqueous formation of secondary aerosol species as well as enhanced gas-to-particle partitioning of water soluble species under water rich conditions. Sulfate is formed most efficiently in fog water although its contribution to total dissolved mass is relatively low. The HR-ToF-AMS mass spectra of organic matter in fog water (FOM) are very similar to that of oxygenated organic aerosols (OOA) derived from positive matrix factorization (PMF) of the HR-ToF-AMS spectra of ambient aerosol (r2 = 0.96), but FOM appears to contain a large fraction of acidic functional groups than OOA. FOM is also enriched of

  14. Chemical and Optical Properties of Titan Aerosol Analogs Produced from Aromatic Precursors

    NASA Astrophysics Data System (ADS)

    Trainer, M. G.; Sebree, J. A.; Anderson, C. M.; Loeffler, M. J.; Stern, J. C.

    2012-04-01

    Since Cassini’s arrival at Titan, ppm levels of benzene (C6H6) as well as large positive ions, which may be polycyclic aromatic hydrocarbons (PAHs), have been detected in the atmosphere. Aromatic molecules, photolytically active in the ultraviolet, may be important in the formation of the organic aerosol comprising the Titan haze layer even when present at low mixing ratios. Yet there have not been laboratory simulations exploring the impact of these molecules as precursors to Titan’s organic aerosol. We will discuss laboratory studies forming aerosol analogs via FUV irradiation of several aromatic precursors - with and without nitrogen heteroatoms - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. Optical analyses are focused on the far- and mid-IR spectra of the aromatic aerosol for comparison to the observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS). In particular, observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 cm-1 (~18 to 500 µm) have revealed a broad emission feature centered approximately at 140 cm-1 (71 µm), which cannot be reproduced using currently available optical constants (Anderson et al., 2011; Khare et al., 1984). Chemical analysis is focused on the isotopic fractionation observed in the aerosol relative to molecular precursors, showing that the aerosol may serve as a sink for the lighter carbon and nitrogen atoms. References: Anderson, C.M., et al.: "Titan’s aerosol and stratospheric ice opacities between 18 and 500 µm: Vertical and spectral characteristics from Cassini CIRS”. Icarus, Vol. 212, pp. 762-778, 2011. Khare, B. N., et al.: “Optical constants of organic Tholins produced in a simulated Titanian Atmosphere: From soft X-ray to Microwave Frequencies”. Icarus, Vol. 60, pp. 127-137, 1984.

  15. Aerosol transport and wet scavenging in deep convective clouds: a case study and model evaluation using a multiple passive tracer analysis approach

    SciTech Connect

    Yang, Qing; Easter, Richard C.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Fast, Jerome D.; Ghan, Steven J.; Wang, Hailong; Berg, Larry K.; Barth, Mary; Liu, Ying; Shrivastava, ManishKumar B.; Singh, Balwinder; Morrison, H.; Fan, Jiwen; Ziegler, Conrad L.; Bela, Megan; Apel, Eric; Diskin, G. S.; Mikoviny, Tomas; Wisthaler, Armin

    2015-08-20

    The effect of wet scavenging on ambient aerosols in deep, continental convective clouds in the mid-latitudes is studied for a severe storm case in Oklahoma during the Deep Convective Clouds and Chemistry (DC3) field campaign. A new passive-tracer based transport analysis framework is developed to characterize the convective transport based on the vertical distribution of several slowly reacting and nearly insoluble trace gases. The passive gas concentration in the upper troposphere convective outflow results from a mixture of 47% from the lower level (0-3 km), 21% entrained from the upper troposphere, and 32% from mid-atmosphere based on observations. The transport analysis framework is applied to aerosols to estimate aerosol transport and wet-scavenging efficiency. Observations yield high overall scavenging efficiencies of 81% and 68% for aerosol mass (Dp < 1μm) and aerosol number (0.03< Dp < 2.5μm), respectively. Little chemical selectivity to wet scavenging is seen among observed submicron sulfate (84%), organic (82%), and ammonium (80%) aerosols, while nitrate has a much lower scavenging efficiency of 57% likely due to the uptake of nitric acid. Observed larger size particles (0.15 - 2.5μm) are scavenged more efficiently (84%) than smaller particles (64%; 0.03 - 0.15μm). The storm is simulated using the chemistry version of the WRF model. Compared to the observation based analysis, the standard model underestimates the wet scavenging efficiency for both mass and number concentrations with low biases of 31% and 40%, respectively. Adding a new treatment of secondary activation significantly improves simulation results, so that the bias in scavenging efficiency in mass and number concentrations is reduced to <10%. This supports the hypothesis that secondary activation is an important process for wet removal of aerosols in deep convective storms.

  16. Tracking Transport and Transformation of Aerosols using C and O-triple Isotopic Composition of Carbonates: CSI La Jolla

    NASA Astrophysics Data System (ADS)

    Thiemens, M. H.; Shaheen, R.; Chong, K.; Hill, A.; Wong, J.; Zhang, Z.; Dominguez, G.

    2012-12-01

    Aerosols affect climate in numerous ways, including change in the earth's energy balance by absorbing and scattering solar radiations, alteration of the hydrological cycle by serving as cloud condensation nuclei, change in biogeochemical cycles by providing nutrients. Another significant process is the effect on the chemical composition of the atmosphere by providing surfaces for heterogeneous chemical reactions. Fine particles of aerodynamic diameter less than 2.5μm (PM2.5) also impinge upon human health by admission to the respiratory system causing a range of cardiopulmonary diseases. Both climate and public health aspects depend on their physical and chemical properties, therefore, understanding physico-chemical and photochemical transformations on aerosol surfaces is important for predicting their effects on climate change, atmospheric chemistry and human health. Here we present initial findings on the processes occurring on aerosol surfaces using isotopes to delineate day and night time chemistry, thus resolving photochemistry effects, and to identify their sources by way of the carbon isotopes. Aerosols were collected on filter papers for 12h during the day and at night time from June-Dec. 2011in La Jolla, CA., using high volume, multi stage cascade impactors. CO2 released after treating these filter papers with 100% phosphoric acid at 27oC was collected, purified chromatographically and analyzed for both C and O isotopes. Our data indicate that both C and O isotopes can be used to distinguish between heterogeneous and photochemical transformations. Aerosol carbonates collected during the day time were depleted in δ13Cday = -23 to -28‰ and δ18Oday = +3 to +10‰ and were isotopically distinct from the carbonates collected at night time δ13Cnight = 0 to -12‰, δ18Onightnight = +23 to +32‰. Higher chloride concentration in the samples collected at night time indicated the transport of marine air masses whereas higher nitrate and sulfate concentration

  17. Evaluating inter-continental transport of fine aerosols:(2) Global health impact

    NASA Astrophysics Data System (ADS)

    Liu, Junfeng; Mauzerall, Denise L.; Horowitz, Larry W.

    In this second of two companion papers, we quantify for the first time the global impact on premature mortality of the inter-continental transport of fine aerosols (including sulfate, black carbon, organic carbon, and mineral dust) using the global modeling results of (Liu et al., 2009). Our objective is to estimate the number of premature mortalities in each of ten selected continental regions resulting from fine aerosols transported from foreign regions in approximately year 2000. Our simulated annual mean population-weighted (P-W) concentrations of total PM2.5 (aerosols with diameter less than 2.5 μm) are highest in East Asia (EA, 30 μg m -3) and lowest in Australia (3.6 μg m -3). Dust is the dominant component of PM2.5 transported between continents. We estimate global annual premature mortalities (for adults age 30 and up) due to inter-continental transport of PM2.5 to be nearly 380 thousand (K) in 2000. Approximately half of these deaths occur in the Indian subcontinent (IN), mostly due to aerosols transported from Africa and the Middle East (ME). Approximately 90K deaths globally are associated with exposure to foreign (i.e., originating outside a receptor region) non-dust PM2.5. More than half of the premature mortalities associated with foreign non-dust aerosols are due to aerosols originating from Europe (20K), ME (18K) and EA (15K); and nearly 60% of the 90K deaths occur in EA (21K), IN (19K) and Southeast Asia (16K). The lower and higher bounds of our estimated 95% confidence interval (considering uncertainties from the concentration-response relationship and simulated aerosol concentrations) are 18% and 240% of the estimated deaths, respectively, and could be larger if additional uncertainties were quantified. We find that in 2000 nearly 6.6K premature deaths in North America (NA) were associated with foreign PM2.5 exposure (5.5K from dust PM2.5). NA is least impacted by foreign PM2.5 compared to receptors on the Eurasian continent. However, the

  18. Effects on stratospheric ozone from high-speed civil transport: Sensitivity to stratospheric aerosol loading

    SciTech Connect

    Weisenstein, D.K.; Ko, M.K.W.; Rodriguez, J.M.; Sze, N.

    1993-12-01

    The potential impact of high-speed civil transport (HSCT) aircraft emissions on stratospheric ozone and the sensitivity of these results to changes in aerosol loading are examined with a two-dimensional model. With aerosols fixed at background levels, calculated ozone changes due to HSCT aircraft emissions range from negligible up to 4-6% depletions in column zone at northern high latitudes. The magnitude of the ozone change depends mainly on the NO(x) increase due to aircraft emissions, which depends on fleet size, cruise altitude, and engine design. The partitioning of the odd nitrogen species in the lower stratosphere among NO, NO2, N2O5, is strongly dependent on the concentration of sulfuric acid aerosol particles, and thus the sensitivity of O3 to NO(x) emissions changes when the stratospheric aerosol loading changes. Aerosol concentrations 4 times greater than background levels have not been unusual in the last 2 decades. Our model results show that a factor of 4 increase in aerosol loading would significantly reduce the calculated ozone depletion due to HSCT emissions. Because of the neutral variabiltiy of stratospheric aerosols, the possible impact of HSCT emissions on ozone must be viewed as a range of possible results.

  19. Tying Biological Activity to Changes in Sea Spray Aerosol Chemical Composition via Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Sultana, C. M.; Lee, C.; Collins, D. B.; Axson, J. L.; Laskina, O.; Grandquist, J. R.; Grassian, V. H.; Prather, K. A.

    2014-12-01

    In remote marine environments, sea spray aerosols (SSA) often represent the greatest aerosol burden, thus having significant impacts on direct radiative interactions and cloud processes. Previous studies have shown that SSA is a complex mixture of inorganic salts and an array of dissolved and particulate organic components. Enrichment of SSA organic content is often correlated to seawater chlorophyll concentrations, a measure of oceanic biological activity. As the physical and chemical properties of aerosols control their radiative effects, recent studies conducted by the Center for Aerosol Impacts on Climate and the Environment have endeavored to further elucidate the ties between marine biological activity and primary SSA chemical composition using highly time resolved single particle analyses. A series of experiments performed in the recently developed Marine Aerosol Reference Tank evaluated the effect of changing marine microbial populations on SSA chemical composition, which was monitored via an aerosol time-of-flight mass spectrometer and a variety of offline spectroscopic and microscopic techniques. Each experiment was initiated using unfiltered and untreated seawater, thus maintaining a high level of biogeochemical complexity. This study is the first of its kind to capture daily changes in the primary SSA mixing state over the growth and death of a natural phytoplankton bloom. Increases in organic aerosol types (0.4-3 μm), internally and externally mixed with sea salt, could not be correlated to chlorophyll concentrations. Maximum production of these populations occurred two to four days after the in vivo chlorophyll fluorescence peaked in intensity. This work is in contrast to the current paradigm of correlating SSA organic content to seawater chlorophyll concentration.

  20. Effects of Chemical Aging on the Heterogeneous Freezing of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Collier, K.; Brooks, S. D.

    2014-12-01

    Organic aerosols are emitted into the atmosphere from a variety of sources and display a wide range of effectiveness in promoting the nucleation of ice in clouds. Soot and polycyclic aromatic hydrocarbons (PAHS) arise from incomplete combustion and other pollutant sources. Hydrocarbon compounds in diesel motor oil and other fuel blends include compounds such as octacosane (a straight saturated alkane), squalane (a branched saturated alkane) and squalene (an unsaturated branched alkene). At temperatures above -36°C, the formation of ice crystals in the atmosphere is facilitated by heterogeneous freezing processes in which atmospheric aerosols act as ice nuclei (IN). The variability in ability of organic particles to facilitate heterogeneous ice nucleation causes major uncertainties in predictions of aerosol effects on climate. Further, atmospheric aerosol composition and ice nucleation ability can be altered via chemical aging and reactions with atmospheric oxidants such as ozone. In this study, we take a closer look at the role of chemical oxidation on the efficiency of specific IN during contact freezing laboratory experiments. The freezing temperatures of droplets in contact with representative organic aerosols are determined through the use of an optical microscope apparatus equipped with a cooling stage and a digital camera. Chemical changes at the surface of aerosols due to ozone exposure are characterized using Raman Microspectroscopy and Fourier Transform Infrared Spectroscopy with Horizontal Attenuated Total Reflectance. Our results indicate that oxidation of certain atmospheric organics (soot and PAHS) enhances their ice nucleation ability. In this presentation, results of heterogeneous nucleation on various types of organic aerosols will be presented, and the role of structure in promoting freezing will be discussed.

  1. Seasonal variation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa Island, Japan

    NASA Astrophysics Data System (ADS)

    Handa, D.; Nakajima, H.; Nakaema, F.; Arakaki, T.; Tanahara, A.

    2008-12-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the air pollution transported from Asian continent has gained a special attention in Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asian atmospheric aerosols because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. In 2005, Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) was established by the National Institute for Environmental Studies (NIES) at the northern tip of Okinawa Island, Japan to monitor the air quality of Asia. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon in the bulk aerosols collected at the CHAAMS, using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions.

  2. Pollution transport efficiency toward the Arctic: Sensitivity to aerosol scavenging and source regions

    NASA Astrophysics Data System (ADS)

    Bourgeois, Quentin; Bey, Isabelle

    2011-04-01

    The processes driving current changes in Arctic atmospheric composition and climate are still uncertain. In particular the relative contributions of major source regions from the midlatitudes remain a matter of debate in the literature. The objectives of this study are to better quantify the relative contributions of different processes governing the transport of pollution from the midlatitudes to the Arctic and the relative contributions of different geopolitical source regions. We use a suite of observational data sets (including the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaigns and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite instrument) to constrain a global aerosol simulation from the ECHAM5-HAMMOZ model. Preliminary comparison of model results with vertical profiles of sulfate and black carbon (BC) collected during the ARCTAS campaigns and with aerosol extinction time series retrieved from CALIOP indicates that the model underestimates export of aerosols from the planetary boundary layer to the free troposphere in the midlatitudes and long-range transport of aerosols from the midlatitudes toward the Arctic. In contrast, observed CO profiles are relatively well simulated, which points to a possible problem with wet scavenging. Decreasing the prescribed aerosol scavenging coefficients within the range of experimental data available in the literature significantly improves the agreement with observations. Sulfate and BC burdens in the Arctic increase by a factor 5-6. Annual global lifetimes of sulfate and BC increase from 3.1 to 4.6 days and from 4.4 to 5.9 days, respectively. Using the improved simulation, we find that 59% of sulfate in the Arctic troposphere comes from the oxidation of SO2 emitted in Siberia (19%), Europe (18%), Asia (13%), and North America (9%). Anthropogenic and biomass burning BC emitted in Siberia, Asia, Europe, and North America contributes 29, 27, 25, and

  3. Assessment of microphysical and chemical factors of aerosols over seas of the Russian Artic Eastern Section

    NASA Astrophysics Data System (ADS)

    Golobokova, Liudmila; Polkin, Victor

    2014-05-01

    The newly observed kickoff of the Northern Route development drew serious attention to state of the Arctic Resource environment. Occurring climatic and environmental changes are more sensitively seen in polar areas in particular. Air environment control allows for making prognostic assessments which are required for planning hazardous environmental impacts preventive actions. In August - September 2013, RV «Professor Khlustin» Northern Sea Route expeditionary voyage took place. En-route aerosol sampling was done over the surface of the Beringov, Chukotka and Eastern-Siberia seas (till the town of Pevek). The purpose of sampling was to assess spatio-temporal variability of optic, microphysical and chemical characteristics of aerosol particles of the surface layer within different areas adjacent to the Northern Sea Route. Aerosol test made use of automated mobile unit consisting of photoelectric particles counter AZ-10, aetalometr MDA-02, aspirator on NBM-1.2 pump chassis, and the impactor. This set of equipment allows for doing measurements of number concentration, dispersed composition of aerosols within sizes d=0.3-10 mkm, mass concentration of submicron sized aerosol, and filter-conveyed aerosols sampling. Filter-conveyed aerosols sampling was done using method accepted by EMEP and EANET monitoring networks. The impactor channel was upgraded to separate particles bigger than 1 mkm in size, and the fine grain fraction settled down on it. Reverse 5-day and 10-day trajectories of air mass transfer executed at heights of 10, 1500 and 3500 m were analyzed. The heights were selected by considerations that 3000 m is the height which characterizes air mass trend in the lower troposphere. 1500 m is the upper border of the atmospheric boundary layer, and the sampling was done in the Earth's surface layer at less than 10 m. Minimum values of the bespoken microphysical characteristics are better characteristic of higher latitudes where there are no man induced sources of

  4. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles <100 nm generated by means of jets

  5. The global impact of the transport sectors on atmospheric aerosol in 2030 - Part 2: Aviation

    NASA Astrophysics Data System (ADS)

    Righi, M.; Hendricks, J.; Sausen, R.

    2015-12-01

    We use the EMAC (ECHAM/MESSy Atmospheric Chemistry) global climate-chemistry model coupled to the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications) to simulate the impact of aviation emissions on global atmospheric aerosol and climate in 2030. Emissions of short-lived gas and aerosol species follow the four Representative Concentration Pathways (RCPs) designed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We compare our findings with the results of a previous study with the same model configuration focusing on year 2000 emissions. We also characterize the aviation results in the context of the other transport sectors presented in a companion paper. In spite of a relevant increase in aviation traffic volume and resulting emissions of aerosol (black carbon) and aerosol precursor species (nitrogen oxides and sulfur dioxide), the aviation effect on particle mass concentration in 2030 remains quite negligible (on the order of a few ng m-3), about one order of magnitude less than the increase in concentration due to other emission sources. Due to the relatively small size of the aviation-induced aerosol, however, the increase in particle number concentration is significant in all scenarios (about 1000 cm-3), mostly affecting the northern mid-latitudes at typical flight altitudes (7-12 km). This largely contributes to the overall change in particle number concentration between 2000 and 2030, which results also in significant climate effects due to aerosol-cloud interactions. Aviation is the only transport sector for which a larger impact on the Earth's radiation budget is simulated in the future: The aviation-induced RF in 2030 is more than doubled with respect to the year 2000 value of -15 mW m-2, with a maximum value of -63 mW m-2 simulated for RCP2.6.

  6. The global impact of the transport sectors on atmospheric aerosol in 2030 - Part 2: Aviation

    NASA Astrophysics Data System (ADS)

    Righi, Mattia; Hendricks, Johannes; Sausen, Robert

    2016-04-01

    We use the EMAC (ECHAM/MESSy Atmospheric Chemistry) global climate-chemistry model coupled to the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications) to simulate the impact of aviation emissions on global atmospheric aerosol and climate in 2030. Emissions of short-lived gas and aerosol species follow the four Representative Concentration Pathways (RCPs) designed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We compare our findings with the results of a previous study with the same model configuration focusing on year 2000 emissions. We also characterize the aviation results in the context of the other transport sectors presented in a companion paper. In spite of a relevant increase in aviation traffic volume and resulting emissions of aerosol (black carbon) and aerosol precursor species (nitrogen oxides and sulfur dioxide), the aviation effect on particle mass concentration in 2030 remains quite negligible (on the order of a few ng m-3), about 1 order of magnitude less than the increase in concentration due to other emission sources. Due to the relatively small size of the aviation-induced aerosol, however, the increase in particle number concentration is significant in all scenarios (about 1000 cm-3), mostly affecting the northern mid-latitudes at typical flight altitudes (7-12 km). This largely contributes to the overall change in particle number concentration between 2000 and 2030, which also results in significant climate effects due to aerosol-cloud interactions. Aviation is the only transport sector for which a larger impact on the Earth's radiation budget is simulated in the future: the aviation-induced radiative forcing in 2030 is more than doubled with respect to the year 2000 value of -15 mW m-2 in all scenarios, with a maximum value of -63 mW m-2 simulated for RCP2.6.

  7. Global model simulations of the impact of the transport sectors on atmospheric aerosol and climate

    NASA Astrophysics Data System (ADS)

    Righi, Mattia; Hendricks, Johannes; Sausen, Robert

    2013-04-01

    The transport sector, including land transport, shipping and aviation, is one of the major sources of tropospheric aerosol. Land transport, in particular, is a relevant source of pollution in highly populated areas (e.g. megacities), with significant impacts on climate and health. Transport emissions are expected to grow in the near future, especially in the developing countries. In this work we use the EMAC-MADE global aerosol model to quantify the impact of transport emissions on global aerosol, for both present-day (2000) and future (2030) scenarios. Number emissions are also included in the model and derived from mass emissions under different assumptions on the size distribution of particles emitted by the three transport modes. Additional sensitivity experiments are performed to quantify the effects of the uncertainties behind such assumptions. The model simulations reveal that land transport is the most important source of black carbon pollution in the densely populated regions of Eastern U.S. and Europe. High particle concentrations are simulated for Southeast Asian areas, although pollution in this region is mostly due to non-transport sources. Shipping strongly contributes to aerosol sulphate concentrations along the most-traveled routes of the Northern Atlantic and Northern Pacific oceans, with significant impact along the coastlines and nearby major harbors and with large effects on cloud properties. The impacts on particle number concentrations are very sensitive to the assumptions on size distribution of emitted particles, with the largest uncertainties simulated for the land transport sector. The model results further reveal significant climate impacts of transport-induced particles.

  8. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  9. The global impact of the transport sectors on atmospheric aerosol: simulations for year 2000 emissions

    NASA Astrophysics Data System (ADS)

    Righi, M.; Hendricks, J.; Sausen, R.

    2013-05-01

    We use the EMAC-MADE global aerosol model to quantify the impact of transport emissions (land transport, shipping and aviation) on global aerosol. We consider a present-day (2000) scenario and the CMIP5 emission dataset developed in support of the IPCC Fifth Assessment Report. The model takes also into account particle number emissions, which are derived from mass emissions under different assumptions on the size distribution of particles emitted by the three transport sectors. Additional sensitivity experiments are performed to quantify the effects of the uncertainties behind such assumptions. The model simulations show that the impact of the transport sectors closely matches the emission patterns. Land transport is the most important source of black carbon pollution in USA, Europe and Arabian Peninsula. Shipping strongly contributes to aerosol sulfate concentrations along the most-traveled routes of the northern Atlantic and northern Pacific oceans, with a significant impact along the coastlines. The effect of aviation is mostly confined to the upper-troposphere (7-12 km), in the northern mid-latitudes, although significant effects are also simulated at the ground, due to the emissions from landing and take-off cycles. The transport-induced perturbations to particle number concentrations are very sensitive to the assumptions on the size distribution of emitted particles, with the largest uncertainties obtained for the land transport sector. The simulated climate impacts, due to aerosol direct and indirect effects, are strongest for the shipping sector, as a consequence of the large impact of sulfate aerosol on low marine clouds and their optical properties.

  10. XPS analysis of combustion aerosols for chemical composition, surface chemistry, and carbon chemical state.

    PubMed

    Vander Wal, Randy L; Bryg, Vicky M; Hays, Michael D

    2011-03-15

    Carbonaceous aerosols can vary in elemental content, surface chemistry, and carbon nano-structure. Each of these properties is related to the details of soot formation. Fuel source, combustion process (affecting formation and growth conditions), and postcombustion exhaust where oxidation occurs all contribute to the physical structure and surface chemistry of soot. Traditionally such physical and chemical parameters have been measured separately by various techniques. Presented here is the unified measurement of these characteristics using X-ray photoelectron spectroscopy (XPS). In the present study, XPS is applied to combustion soot collected from a diesel engine (running biodiesel and pump-grade fuels); jet engine; and institutional, plant, and residential oil-fired boilers. Elemental composition is mapped by a survey scan over a broad energy range. Surface chemistry and carbon nanostructure are quantified by deconvolution of high-resolution scans over the C1s region. This combination of parameters forms a distinct matrix of identifiers for the soots from these sources. PMID:21322576

  11. Aerosol vertical distribution, optical properties and transport over Corsica (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Léon, J.-F.; Augustin, P.; Mallet, M.; Bourrianne, T.; Pont, V.; Dulac, F.; Fourmentin, M.; Lambert, D.; Sauvage, B.

    2015-03-01

    This paper presents the aerosol vertical distribution observed in the western Mediterranean between February and April 2011 and between February 2012 and August 2013. An elastic backscattering lidar was continuously operated at a coastal site in the northern part of Corsica Island (Cap Corse) for a total of more than 14 000 h of observations. The aerosol extinction coefficient retrieved from cloud-free lidar profiles are analyzed along with the SEVIRI satellite aerosol optical depth (AOD). The SEVIRI AOD was used to constrain the retrieval of the aerosol extinction profiles from the lidar range-corrected signal and to detect the presence of dust or pollution aerosols. The daily average AOD at 550 nm is 0.16 (±0.09) and ranges between 0.05 and 0.80. A seasonal cycle is observed with minima in winter and maxima in spring-summer. High AOD days (above 0.3 at 550 nm) represent less than 10% of the totality of daily observations and correspond to the large scale advection of desert dust from Northern Africa or pollution aerosols from Europe. The respective origin of the air masses is confirmed using FLEXPART simulations in the backward mode. Dust events are characterized by a large turbid layer between 2 and 5 km height while pollution events show a lower vertical development with a thick layer below 3 km in altitude. However low level dust transport is also reported during spring while aerosol pollution layer between 2 and 4 km height has been also observed. We report an effective lidar ratio at 355 nm for pollution aerosols 68 (±13) Sr while it is 63 (±18) Sr for dust. The daily mean AOD at 355 nm for dust events is 0.61 (±0.14) and 0.71 (±0.16) for pollution aerosols events.

  12. Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012

    SciTech Connect

    Meskhidze, Nicholas

    2013-10-21

    The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

  13. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  14. Status of the solar and infrared radiation submodels in the LLNL 1-D and 2-D chemical-transport models

    SciTech Connect

    Grant, K.E.; Taylor, K.E.; Ellis, J.S.; Wuebbles, D.J.

    1987-07-01

    The authors have implemented a series of state of the art radiation transport submodels in previously developed one dimensional and two dimensional chemical transport models of the troposphere and stratosphere. These submodels provide the capability of calculating accurate solar and infrared heating rates. They are a firm basis for further radiation submodel development as well as for studying interactions between radiation and model dynamics under varying conditions of clear sky, clouds, and aerosols. 37 refs., 3 figs.

  15. Aerosol physical, chemical and optical properties observed in the ambient atmosphere during haze pollution conditions

    NASA Astrophysics Data System (ADS)

    Li, Zhengqiang; Xie, Yisong; Li, Donghui; Li, Kaitao; Zhang, Ying; Li, Li; Lv, Yang; Qie, Lili; Xu, Hua

    Aerosol’s properties in the ambient atmosphere may differ significantly from sampling results due to containing of abundant water content. We performed sun-sky radiometer measurements in Beijing during 2011 and 2012 winter to obtain distribution of spectral and angular sky radiance. The measurements are then used to retrieve aerosol physical, chemical and optical properties, including single scattering albedo, size distribution, complex refractive indices and aerosol component fractions identified as black carbon, brown carbon, mineral dust, ammonium sulfate-like components and water content inside particle matters. We found that during winter haze condition aerosol is dominated by fine particles with center radius of about 0.2 micron. Fine particles contribute about 93% to total aerosol extinction of solar light, and result in serious decrease of atmospheric visibility during haze condition. The percentage of light absorption of haze aerosol can up to about 10% among its total extinction, much higher than that of unpolluted conditions, that causes significant radiative cooling effects suppressing atmospheric convection and dispersion of pollutants. Moreover, the average water content occupies about one third of the ambient aerosol in volume which suggests the important effect of ambient humidity in the formation of haze pollution.

  16. A model for studying the composition and chemical effects of stratospheric aerosols

    SciTech Connect

    Tabazadeh, A.; Turco, R.P.; Jacobson, M.Z.

    1994-06-01

    We developed polynomial expressions for the temperature dependence of the mean binary and water activity coefficients for H2SO4 and HNO3 solutions. These activities were used in an equilibrium model to predict the composition of stratospheric aerosols under a wide range of environmental conditions. For typical concentrations of H2O, H2SO4, HNO3, HCl, HBr, HF, and HOCl in the lower stratosphere, the aerosol composition is estimated as a function of the local temperature and the ambient relative humidity. For temperatures below 200 K, our results indicate that (1) HNO3 contributes a significant mass fraction to stratospheric aerosols, and (2) HCl solubility is considerably affected by HNO3 dissolution into sulfate aerosols. We also show that, in volcanically disturbed periods, changes in stratospheric aerosol composition can significantly alter the microphysics that leads to the formation of polar stratospheric clouds. The effects caused by HNO3 dissolution on the physical and chemical properties of stratospheric aerosols are discussed.

  17. A model for studying the composition and chemical effects of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Turco, Richard P.; Jacobson, Mark Z.

    1994-01-01

    We developed polynomial expressions for the temperature dependence of the mean binary and water activity coefficients for H2SO4 and HNO3 solutions. These activities were used in an equilibrium model to predict the composition of stratospheric aerosols under a wide range of environmental conditions. For typical concentrations of H2O, H2SO4, HNO3, HCl, HBr, HF, and HOCl in the lower stratosphere, the aerosol composition is estimated as a function of the local temperature and the ambient relative humidity. For temperatures below 200 K, our results indicate that (1) HNO3 contributes a significant mass fraction to stratospheric aerosols, and (2) HCl solubility is considerably affected by HNO3 dissolution into sulfate aerosols. We also show that, in volcanically disturbed periods, changes in stratospheric aerosol composition can significantly alter the microphysics that leads to the formation of polar stratospheric clouds. The effects caused by HNO3 dissolution on the physical and chemical properties of stratospheric aerosols are discussed.

  18. Atmospheric aerosols: A literature summary of their physical characteristics and chemical composition

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.

    1976-01-01

    This report contains a summary of 199 recent references on the characterization of atmospheric aerosols with respect to their composition, sources, size distribution, and time changes, and with particular reference to the chemical elements measured by modern techniques, especially activation analysis.

  19. The Cloud-Aerosol Transport System (CATS): A New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2012-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a

  20. Hygroscopic and Chemical Properties of Aerosols collected near a Copper Smelter: Implications for Public and Environmental Health

    PubMed Central

    Sorooshian, Armin; Csavina, Janae; Shingler, Taylor; Dey, Stephen; Brechtel, Fred J.; Sáez, A. Eduardo; Betterton, Eric A.

    2012-01-01

    Particulate matter emissions near active copper smelters and mine tailings in the southwestern United States pose a potential threat to nearby environments owing to toxic species that can be inhaled and deposited in various regions of the body depending on the composition and size of the particles, which are linked by particle hygroscopic properties. This study reports the first simultaneous measurements of size-resolved chemical and hygroscopic properties of particles next to an active copper smelter and mine tailings by the towns of Hayden and Winkelman in southern Arizona. Size-resolved particulate matter samples collected near an active copper smelter were examined with inductively coupled plasma mass spectrometry, ion chromatography, and a humidified tandem differential mobility analyzer. Aerosol particles collected at the measurement site are enriched in metals and metalloids (e.g. arsenic, lead, and cadmium) and water-uptake measurements of aqueous extracts of collected samples indicate that the particle diameter range of particles most enriched with these species (0.18–0.55 µm) overlaps with the most hygroscopic mode at a relative humidity of 90% (0.10–0.32 µm). These measurements have implications for public health, microphysical effects of aerosols, and regional impacts owing to the transport and deposition of contaminated aerosol particles. PMID:22852879

  1. A Model for the Transport of Sea-Spray Aerosols in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Piazzola, J.; Tedeschi, G.; Demoisson, A.

    2015-05-01

    We study the dynamics of sea-spray particles in the coastal region of La Reunion Island on the basis of numerical simulations using the transport aerosol model MACMod (Marine Aerosol Concentration Model) and a survey of the aerosol size distributions measured at four locations at two different heights in the north-west part of the island. This allows evaluation of the performance of our model in case of pure marine air masses with implementation of accurate boundary conditions. First of all, an estimate of the aerosol concentration at 10-m height at the upwind boundary of the calculation domain is obtained using a revisited version of the MEDEX (Mediterranean Extinction) model. Estimates of the vertical profile of aerosol concentrations are then provided using aerosol data obtained at two different heights at the upwind boundary of the calculation domain. A parametrization of the vertical profiles of aerosol concentrations for maritime environment is proposed. The results are then compared to the vertical profiles of 0.532 m aerosol particle extinction coefficient obtained from lidar data provided by the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and also to the data provided by the Aerosol Robotic Network (AERONET). This allows validation of the complete vertical profiles in the mixed layer and shows the validity of satellite data for determination of the vertical profiles. Two kinds of simulation were made: one without a particle advection flux at the upwind boundary of the numerical domain, whereas the second simulation was made with a particle advection flux. In the first case, the influence of the distance to the shoreline on the local sea-spray dynamics is investigated. In the second set of simulation, the particles issued from the local production in the surf zone near the shoreline are mixed with aerosols advected from the remote ocean. A good agreement between the model calculations using our boundary conditions and the data was found. The

  2. Sensitivity of Scattering and Backscattering Coefficients to Microphysical and Chemical Properties: Weakly Absorbing Aerosol

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J.; Pekour, M. S.; Berg, L. K.; Shilling, J.; Flynn, C. J.; Mei, F.; Jefferson, A.

    2014-12-01

    Scattering and backscattering coefficients of atmospheric aerosol are crucial parameters for numerous climate-relevant applications, including studies related to the Earth's radiation budget. Due to their strong connection to aerosol chemical and microphysical characteristics, in situ measurements have been commonly used for evaluating optical properties routines in global and regional scale models. However, these in situ measurements, including size distribution and chemical composition data, can be subject to uncertainties. Techniques for obtaining these data depend on particle size (submicron versus supermicron) and relative humidity range (dry versus wet conditions). In this study, we examine how the data uncertainties can impact the level of agreement between the calculated and measured optical properties (commonly known as optical closure). Moreover, we put forth a novel technique for inferring in parallel the effective density and real refractive index of weakly absorbing aerosols from simultaneously measured size distributions (with mobility and aerodynamic sizes), and two optical properties, namely the scattering coefficient and hemispheric backscatter fraction, measured by integrating nephelometer. We demonstrate the performance of our technique, which permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10-micron particles, using both a sensitivity study with synthetically generated inputs with random noise and a six-week case study with real measurements. These measurements cover a wide range of coastal summertime conditions observed during the recent Two-Column Aerosol Project (TCAP, http://campaign.arm.gov/tcap/) and include periods with a wide range of aerosol loading and relative humidity. Finally, we discuss how in situ data and retrievals of aerosol characteristics can be applied for model evaluation.

  3. The application of thermal methods for determining chemical composition of carbonaceous aerosols: a review.

    PubMed

    Chow, Judith C; Yu, Jian Zhen; Watson, John G; Ho, Steven Sai Hang; Bohannan, Theresa L; Hays, Michael D; Fung, Kochy K

    2007-09-01

    Thermal methods of various forms have been used to quantify carbonaceous materials. Thermal/optical carbon analysis provides measurements of organic and elemental carbon concentrations as well as fractions evolving at specific temperatures in ambient and source aerosols. Detection of thermally desorbed organic compounds with thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) identifies and quantifies over 100 individual organic compounds in particulate matter (PM) samples. The resulting mass spectra contain information that is consistent among, but different between, source emissions even in the absence of association with specific organic compounds. TD-GC/MS is a demonstrated alternative to solvent extraction for many organic compounds and can be applied to samples from existing networks. It is amenable to field-deployable instruments capable of measuring organic aerosol composition in near real-time. In this review, thermal stability of organic compounds is related to chemical structures, providing a basis for understanding thermochemical properties of carbonaceous aerosols. Recent advances in thermal methods applied to determine aerosol chemical compositions are summarized and their potential for uncovering aerosol chemistry are evaluated. Current limitations and future research needs of the thermal methods are included. PMID:17849294

  4. Modelling Aerosol Influences on Temperature and Visibility as a Module for Chemical Weather Forecasts

    NASA Astrophysics Data System (ADS)

    Riemer, N.; Vogel, B.; Vogel, H.; Kottmeier, Ch.

    2003-04-01

    Aerosol particles modify the radiative transfer in the atmosphere pronouncedly. Their impact on the global radiation and on the heating or cooling rates within the atmosphere is not very well quantified. Moreover, the presence of aerosol particles in the atmosphere determines the visual range which is an important parameter for aviation and other traffic systems and for tourism. While the optical properties of the aerosol particles depend on their chemical composition and size distribution, present day’s operational forecast models, however, use a highly simplified scheme using the relative humidity in combination with statistical models to forecast the visual range. We used the mesoscale-gamma model KAMM/DRAIS to determine the influence of aerosol particles on the global radiation, the vertical profiles of the heating rates and the visual range. Applications are run for south-western Germany, but the methods can be also used for weather forecast models. The aerosol model MADEsoot is used to calculate the size dependent aerosol dynamics. It takes into account secondary inorganic and organic particles and soot in internal and external mixture. With the exception of the radiative transfer calculations, the model system is run in a fully coupled mode. To determine the spatial distribution of the extinction coefficient, the single scattering albedo, and the phase-function Mie calculations are carried out based on the simulated aerosol distributions. Using this data radiative transfer calculations with libRadtran are performed to determine the impact of the aerosols on the global radiation and the vertical profiles of the heating rates for a clear summer day. Based on the extinction coefficients the visual range is calculated. Diurnal cycles of the visual range are compared to observed ones.

  5. Studies of the chemical mixing state of sea spray aerosol and associated climate relevant properties (Invited)

    NASA Astrophysics Data System (ADS)

    Prather, K. A.; Bertram, T. H.; Grassian, V. H.; Collins, D. B.; Ault, A. P.; Ruppel, M. J.; Axson, J. L.; Ryder, O. S.; Schill, S.

    2013-12-01

    The ocean plays a large but highly uncertain role in affecting clouds and climate, generating sea spray aerosols that can directly impact climate by scattering solar radiation and indirectly through nucleating clouds. A tremendous amount has been learned about these interactions over decades of marine studies, however the goal of establishing robust relationships between seawater composition and sea spray climate properties has remained elusive. Much of the impediment stems from difficulties associated with unraveling the impacts of nascent sea spray and background marine aerosols which have been shown to dominate field measurements. In an effort to advance our understanding of nascent sea spray properties, we have developed a new approach for studying this issue in a newly developed ocean-atmosphere facility equipped with breaking waves. After establishing extremely low background aerosol concentrations (< 1 per cc), studies have probed the size distribution and chemical mixing state of sea spray aerosols produced by breaking waves in natural seawater. The critical importance of using bubble size distributions representative of real breaking waves to generate sea spray aerosol (SSA) is discussed. Using a combination of techniques probing individual particle composition and morphology including aerosol time-of-flight mass spectrometry (ATOFMS), scanning tunnel x-ray microscopy (STXM), and electron microscopy, four major sea spray particle types are prevalent in all studies, consisting of sea salt, mixed sea salt and biogenic organic species, biogenic organic species, and primary biological aerosol particles (PBAP). Results from studies aimed at probing how changes in seawater composition due to biological activity impact sea spray aerosol composition and climate properties will be discussed.

  6. Aerosol Measurements From Recent Alaskan Volcanic Eruptions: Implications for Volcanic Ash Transport Predictions

    NASA Astrophysics Data System (ADS)

    Cahill, C. F.; Rinkleff, P. G.; Dehn, J.; Webley, P.; Cahill, T. A.; Barnes, D. E.

    2007-12-01

    Size and time-resolved aerosol compositional measurements conducted during the 2006 Augustine Volcano and 2007 Pavlof Volcano eruptions provide ground-truth information for use in the validation of volcanic ash transport models. These measurements provide quantitative information on the size and concentration of the aerosol, which can be used to test the volcanic aerosol source profiles and transport characteristics used in volcanic ash transport models. Augustine Volcano is on an island in Cook Inlet in southern Alaska. For the 2006 Augustine Volcano eruption, the size and time-resolved aerosol measurements were made using an eight stage (35-5.0, 5.0-2.5, 2.5-1.15, 1.15- 0.75, 0.75-0.56, 0.56-0.34, 0.34-0.26 and 0.26-0.09 microns in aerodynamic diameter) DRUM aerosol impactor deployed in Homer, approximately 120 km northeast of the volcano. Aerosols from the volcano reached the sampler and showed that the size distribution of the volcanic emissions changed during the course of the eruption. For example, crustal elements were present in high concentrations in the largest size fraction (35-5.0 microns) but low concentrations in a smaller size fraction (0.75-0.56 microns) during the phreatomagmatic explosive events. However, during the magmatic emissions period, the concentrations of these elements in the large size fraction decreased, but greatly increased in the smaller size fraction. Pavlof Volcano is a volcano on the Alaska Peninsula in southwestern Alaska. During the 2007 Pavlof Volcano eruption, a network of four DRUM aerosol impactors was deployed downwind of the volcano in an attempt to characterize the change in aerosol size distribution and composition during transport away from the volcano. The samplers were located at Nelson Lagoon, approximately 80 km northeast of the volcano (eight stage DRUM impactor with a top cut point of approximately 12 microns), Sand Point approximately 90 km east of the volcano (three stage DRUM impactor with aerodynamic diameter

  7. Simulation of the recent evolution of stratospheric aerosols by the MOSTRA Simulation of the recent evolution of stratospheric aerosols by the MOSTRA microphysical/transport model

    NASA Astrophysics Data System (ADS)

    Bingen, Christine; Errera, Quentin; Vanhellemont, Filip; Fussen, Didier; Mateshvili, Nina; Dekemper, Emmanuel; Loodts, Nicolas

    2010-05-01

    We present recent advances in the development of a microphysical/transport model for stratospheric aerosols, called MOdel for STRatospheric Aerosols (MOSTRA). MOSTRA is a 3D model describing the evolution in time and space of the stratospheric aerosol distribution described using a set of discrete size bins. The microphysical module used in this model makes use of the PSCBOX model developed by Larsen (2000). The transport module is based on the flux-form semi-Lagragian scheme by Lin and Rood (1996). The model structure will be presented with simulations of the evolution of the volcanic aerosol plume after recent volcanic eruptions. References: N. Larsen, Polar Stratospheric Clouds, Microphysical and optical models, Scientific Report 00-06, Danish Meteorological Institute, 2000 Lin, S.-J. Rood, R.B., Multidimensional Flux-Form Semi-Lagrangian Transport Schemes, Monthly Weather Review, 124, 2046-2070, 1996.

  8. Urban aerosol in Oporto, Portugal: Chemical characterization of PM10 and PM2.5

    NASA Astrophysics Data System (ADS)

    Custódio, Danilo; Ferreira, Catarina; Alves, Célia; Duarte, Mácio; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Frosini, Daniele; Colombi, Cristina; Gianelle, Vorne; Karanasiou, Angeliki; Querol, Xavier

    2014-05-01

    Several urban and industrial areas in Southern Europe are not capable of meeting the implemented EU standards for particulate matter. Efficient air quality management is required in order to ensure that the legal limits are not exceeded and that the consequences of poor air quality are controlled and minimized. Many aspects of the direct and indirect effects of suspended particulate matter on climate and public health are not well understood. The temporal variation of the chemical composition is still demanded, since it enables to adopt off-set strategies and to better estimate the magnitude of anthropogenic forcing on climate. This study aims to provide detailed information on concentrations and chemical composition of aerosol from Oporto city, an urban center in Southern Europe. This city is located near the coast line in the North of Portugal, being the country's second largest urban area. Moreover, Oporto city economic prospects depend heavily on a diversified industrial park, which contribute to air quality degradation. Another strong source of air pollution is traffic. The main objectives of this study are: 1) to characterize the chemical composition of PM10 and PM2.5 by setting up an orchestra of aerosol sampling devices in a strategic place in Oporto; 2) to identify the sources of particles exploring parameters such as organic and inorganic markers (e.g. sugars as tracers for biomass burning; metals and elemental carbon for industrial and vehicular emissions); 3) to evaluate long range transport of pollutants using back trajectory analysis. Here we present data obtained between January 2013 and January 2014 in a heavy traffic roadside sampling site located in the city center. Different PM10 and PM2.5 samplers were operated simultaneously in order to collect enough mass on different filter matrixes and to fulfill the requirements of analytical methodologies. More than 100 aerosol samples were collected and then analysed for their mass concentration and

  9. Investigation of biomass burning and aerosol loading and transport in South America utilizing geostationary satellites

    NASA Technical Reports Server (NTRS)

    Menzel, Paul; Prins, Elaine

    1995-01-01

    This study attempts to assess the extent of burning and associated aerosol transport regimes in South America and the South Atlantic using geostationary satellite observations, in order to explore the possible roles of biomass burning in climate change and more directly in atmospheric chemistry and radiative transfer processes. Modeling and analysis efforts have suggested that the direct and indirect radiative effects of aerosols from biomass burning may play a major role in the radiative balance of the earth and are an important factor in climate change calculations. One of the most active regions of biomass burning is located in South America, associated with deforestation in the selva (forest), grassland management, and other agricultural practices. As part of the NASA Aerosol Interdisciplinary Program, we are utilizing GOES-7 (1988) and GOES-8 (1995) visible and multispectral infrared data (4, 11, and 12 microns) to document daily biomass burning activity in South America and to distinguish smoke/aerosols from other multi-level clouds and low-level moisture. This study catalogues the areal extent and transport of smoke/aerosols throughout the region and over the Atlantic Ocean for the 1988 (July-September) and 1995 (June-October) biomass burning seasons. The smoke/haze cover estimates are compared to the locations of fires to determine the source and verify the haze is actually associated with biomass burning activities. The temporal resolution of the GOES data (half-hourly in South America) makes it possible to determine the prevailing circulation and transport of aerosols by considering a series of visible and infrared images and tracking the motion of smoke, haze and adjacent clouds. The study area extends from 40 to 70 deg W and 0 to 40 deg S with aerosol coverage extending over the Atlantic Ocean when necessary. Fire activity is estimated with the GOES Automated Biomass Burning Algorithm (ABBA). To date, our efforts have focused on GOES-7 and GOES-8 ABBA

  10. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specified in 40 CFR part 50, appendix L or appendix O, as applicable. The test requirements and performance... specified for a reference method sampler in 40 CFR part 50, appendix L or appendix O, as applicable, such as... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Aerosol transport test for Class...

  11. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... specified in 40 CFR part 50, appendix L or appendix O, as applicable. The test requirements and performance... specified for a reference method sampler in 40 CFR part 50, appendix L or appendix O, as applicable, such as... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Aerosol transport test for Class...

  12. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... specified in 40 CFR part 50, appendix L or appendix O, as applicable. The test requirements and performance... specified for a reference method sampler in 40 CFR part 50, appendix L or appendix O, as applicable, such as... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Aerosol transport test for Class...

  13. High-Resolution Desorption Electrospray Ionization Mass Spectrometry for Chemical Characterization of Organic Aerosols

    SciTech Connect

    Laskin, Julia; Laskin, Alexander; Roach, Patrick J.; Slysz, Gordon W.; Anderson, Gordon A.; Nizkorodov, Serguei; Bones, David L.; Nguyen, Lucas

    2010-03-01

    Characterization of the chemical composition and chemical transformations of secondary organic aerosol (SOA) is both a major challenge and the area of greatest uncertainty in current aerosol research. This study presents the first application of desorption electrospray ionization combined with high-resolution mass spectrometry (DESI-MS) for detailed chemical characterization and studies of chemical aging of OA collected on Teflon substrates. DESI-MS offers unique advantages both for detailed characterization of chemically labile components in OA that cannot be detected using more traditional electrospray ionization mass spectrometry (ESI-MS) and for studying chemical aging of OA. DESI-MS enables rapid characterization of OA samples collected on substrates by eliminating the sample preparation stage. In addition, it enables detection and structural characterization of chemically labile molecules in OA samples by minimizing the residence time of analyte in the solvent. SOA produced by the ozonolysis of limonene (LSOA) was allowed to react with gaseous ammonia. Chemical aging resulted in measurable changes in the optical properties of LSOA observed using UV- visible spectroscopy. DESI-MS combined with tandem mass spectrometry experiments (MS/MS) enabled identification of species in aged LSOA responsible for absorption of the visible light. Detailed analysis of the experimental data allowed us to identify chemical changes induced by reactions of LSOA constituents with ammonia and distinguish between different mechanisms of chemical aging.

  14. Aeronet-based Microphysical and Optical Properties of Smoke-dominated Aerosol near Source Regions and Transported over Oceans, and Implications for Satellite Retrievals of Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-01-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad families of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA 0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA 0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savanna at Mongu (Zambia), with average SSA 0.85 in the midvisible. These can serve as candidate sets of aerosol microphysicaloptical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  15. The global impact of the transport sectors on atmospheric aerosol: simulations for year 2000 emissions

    NASA Astrophysics Data System (ADS)

    Righi, M.; Hendricks, J.; Sausen, R.

    2013-10-01

    We use the EMAC (ECHAM/MESSy Atmospheric Chemistry) global model with the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications) to quantify the impact of transport emissions (land transport, shipping and aviation) on the global aerosol. We consider a present-day (2000) scenario according to the CMIP5 (Climate Model Intercomparison Project Phase 5) emission data set developed in support of the IPCC (Intergovernmental Panel on Climate Change) Fifth Assessment Report. The model takes into account particle mass and number emissions: The latter are derived from mass emissions under different assumptions on the size distribution of particles emitted by the three transport sectors. Additional sensitivity experiments are performed to quantify the effects of the uncertainties behind such assumptions. The model simulations show that the impact of the transport sectors closely matches the emission patterns. Land transport is the most important source of black carbon (BC) pollution in the USA, Europe and the Arabian Peninsula, contributing up to 60-70% of the total surface-level BC concentration in these regions. Shipping contributes about 40-60% of the total aerosol sulfate surface-level concentration along the most-traveled routes of the northern Atlantic and northern Pacific oceans, with a significant impact (~ 10-20%) along the coastlines. Aviation mostly affects aerosol number, contributing about 30-40% of the particle number concentration in the northern midlatitudes' upper troposphere (7-12 km), although significant effects are also simulated at the ground, due to the emissions from landing and take-off cycles. The transport-induced perturbations to the particle number concentrations are very sensitive to the assumptions on the size distribution of emitted particles, with the largest uncertainties (about one order of magnitude) obtained for the land transport sector. The simulated climate impacts, due to aerosol direct and

  16. Long- and/or short-range transportation of local Asian aerosols in DRAGON-Osaka Experiment

    NASA Astrophysics Data System (ADS)

    Nakata, M.; Sano, I.; Mukai, S.; Holben, B. N.

    2013-12-01

    This work intends to demonstrate the spatial and temporal variation of atmospheric particles in East Asia, especially around AERONET (Aerosol Robotics Network) -Osaka site during Dragon Asia period in the spring of 2012, named Dragon-Osaka. It is known that the air pollution in East Asia becomes to be severe due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the complicated behavior of natural aerosols. Thus the precise observations of atmospheric particles in East Asia are desired. Osaka is the second big city in Japan and a typical Asian urban area. The population of the region is around 20 millions including neighbor prefectures. Therefore, air quality in the region is slightly bad compared to remote area due to industries and auto mobiles. In recent years, Asian dusts and anthropogenic small particles transported from China and cover those cities throughout year. AERONET Osaka site was established in 2002 on the campus of Kinki University. Nowadays, LIDAR (Light Detection and Ranging), an SPM sampler (SPM-613D, Kimoto Electric, Japan) and others are available on the roof of a building. The site data are useful for algorithm development of aerosol retrieval over busy city. On the other hand, human activities in this region also emit the huge amount of pollutions, thus it is needed to investigate the local distribution of aerosols in this region. In order to investigate change of aerosol properties, PM-individual analysis is made with scanning electron microscope (SEM) coupled with energy dispersive X-ray analyzer (EDX). SEM/EDX is an effective instrument to observe the surface microstructure and analyze the chemical composition of such materials as metals, powders, biological specimens, etc. We used sampling data from the SPM sampler at AERONET Osaka site. During a period of DRAGON-Asia, high concentrations of air pollutant were observed on the morning of March 11 in Fukue Island in the East China Sea. On the

  17. A HTAP Multi-Model Assessment of the Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing and the Role of Intercontinental Transport

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; West, J. Jason; Atherton, Cynthia S.; Bellouin, Nicolas; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Forberth, Gerd; Hess, Peter; Schulz, Michael; Shindell, Drew; Takemura, Toshihiko; Tan, Qian

    2012-01-01

    In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the northern hemisphere by using results from 10 global chemical transport models in the framework of the Hemispheric Transport of Air Pollution (HTAP). The multi-model results show that on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia and South Asia lowers the global mean AOD and DRF by about 9%, 4%, and 10% for sulfate, organic matter, and black carbon aerosol, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport. On an annual basis, intercontinental transport accounts for 10-30% of the overall AOD and DRF in a receptor region, with domestic emissions accounting for the remainder, depending on regions and species. While South Asia is most influenced by import of sulfate aerosol from Europe, North America is most influenced by import of black carbon from East Asia. Results show a large spread among models, highlighting the need to improve aerosol processes in models and evaluate and constrain models with observations.

  18. Remote monitoring of aerosol layers over Sofia during Sahara dust transport episode (April, 2012)

    NASA Astrophysics Data System (ADS)

    Stoyanov, Dimitar; Grigorov, Ivan; Deleva, Atanaska; Kolev, Nikolay; Peshev, Zahari; Kolarov, Georgi; Donev, Evgeni; Ivanov, Danko

    2013-03-01

    In this work we present results of lidar remote sensing of aerosol layers in the atmosphere above Sofia during an episode of Sahara dust transport, 02-07 April, 2012. The investigations were made using two lidar systems, one equipped with a CuBr-vapor laser, emitting at wavelength 510.6 nm, and a second one - with Nd:YAG laser, at wavelengths 1064 nm and 532 nm. The results of lidar measurements are presented in terms of vertical atmospheric backscatter coefficient profiles and color maps of the aerosol stratification evolution. The involved into discussions ceilometer data (CHM 15k ceilometer) and satellite data from CALIPSO lidar, enhance the synergy of observations. Conclusion about atmospheric aerosol's origin was made upon analyses of the information of weather-forecast maps provided by the Forecast system of Barcelona Supercomputing Centre, which are accessible via Internet. Additional information was provided by calculations of the backward air mass trajectories, using online software of NOAA about HYSPLIT model. The comparison between the data from the two lidars and the ceilometer showed similar behavior of aerosol layers development in the atmosphere above Sofia. All information about aerosol layers origin, their altitude above ground, persistence during lidar observations, confirmed the conclusion of observation of a long-distance Sahara dust transport beyond Balkans and Sofia. An interesting completion of CALIPSO lidar and ground based lidars results of measurement is presented in case of thick opaque cloud layer in the atmosphere, which slices the path of lidar sensing in both directions.

  19. a Study on the Physical and Chemical Properties of Stratospheric Aerosols.

    NASA Astrophysics Data System (ADS)

    Tabazadeh, Azadeh

    The physical and chemical properties of stratospheric aerosols under background and perturbed conditions are discussed. First, a multi-component aerosol physical chemistry model was developed to study the composition and reactivity of stratospheric aerosols. The compositions are predicted from an equilibrium assumption between the condensed-and gas-phases, and they are calculated as a function of ambient temperature, relative humidity, and the total mass of nitric acid and sulfuric acid present per unit volume of air. The water and solute activity parameters in the aerosol model are derived from various laboratory sources, and the set of equilibrium equations are solved using a unique numerical scheme. The aerosol model is applied to study the formation of nitric acid-containing aerosols in the stratosphere. Also, the equilibrium compositions are used to estimate the extent of aqueous phase processing of chlorine species in the aerosol solutions. This processing can contribute to the depletion of the stratospheric ozone layer, especially after major volcanic eruptions where sulfate aerosols are more abundant. Second, a surface chemistry model was constructed that includes Langmuir trace-gas adsorption and desorption, Brunauer, Emmett and Teller adsorption of water vapor, surface poisoning, solvation and diffusion of molecules on the surface, chemical activation and reaction of adsorbates, and product desorption or reaction. This model is used to study the effects of relative humidity and other physical parameters on the efficiency of heterogeneous chemical processes which occur on the surfaces of solid polar stratospheric clouds. These heterogeneous chemical processes are responsible for the formation of the "ozone hole", can contribute to global ozone depletion, and may have tropospheric significance. Finally, a fluid dynamics and thermodynamics model of volcanic eruption columns was used to develop a scheme for predicting the extent of HCl removal from volcanic

  20. Inland Transport of Aerosolized Florida Red Tide Toxins

    PubMed Central

    Kirkpatrick, Barbara; Pierce, Richard; Cheng, Yung Sung; Henry, Michael S.; Blum, Patricia; Osborn, Shannon; Nierenberg, Kate; Pederson, Bradley A.; Fleming, Lora E.; Reich, Andrew; Naar, Jerome; Kirkpatrick, Gary; Backer, Lorraine C; Baden, Daniel

    2009-01-01

    Florida red tides, an annual event off the west coast of Florida, are caused by the toxic dinoflagellate, Karenia brevis. K. brevis produces a suite of potent neurotoxins, brevetoxins, which kill fish, sea birds, and marine mammals, as well as sickening humans who consume contaminated shellfish. These toxins become part of the marine aerosol, and can also be inhaled by humans and other animals. Recent studies have demonstrated a significant increase in symptoms and decrease lung function in asthmatics after only one hour of beach exposure during an onshore Florida red tide bloom. This study constructed a transect line placing high volume air samplers to measure brevetoxins at sites beginning at the beach, moving approximately 6.4 km inland. One non-exposure and 2 exposure studies, each of 5 days duration, were conducted. No toxins were measured in the air during the non-exposure period. During the 2 exposure periods, the amount of brevetoxins varied considerably by site and by date. Nevertheless, brevetoxins were measured at least 4.2 kilometers from the beach and/or 1.6 km from the coastal shoreline. Therefore, populations sensitive to brevetoxins (such as asthmatics) need to know that leaving the beach may not discontinue their environmental exposure to brevetoxin aerosols. PMID:20161504

  1. Transport of charged Aerosol OT inverse micelles in nonpolar liquids.

    PubMed

    Karvar, Masoumeh; Strubbe, Filip; Beunis, Filip; Kemp, Roger; Smith, Ashley; Goulding, Mark; Neyts, Kristiaan

    2011-09-01

    Surfactants such as Aerosol OT (AOT) are commonly used to stabilize and electrically charge nonpolar colloids in devices such as electronic ink displays. The electrical behavior of such devices is strongly influenced by the presence of charged inverse micelles, formed by excess surfactant that does not cover the particles. The presence of charged inverse micelles results in increased conductivity of the solution, affecting both the energy consumption of the device and its switching characteristics. In this work, we use transient current measurements to investigate the electrical properties of suspensions of the surfactant Aerosol OT in dodecane. No particles are added, to isolate the effect of excess surfactant. The measured currents upon application of a voltage step are found to be exponentially decaying, and can be described by an analytical model based on an equivalent electric circuit. This behavior is physically interpreted, first by the high generation rate of charged inverse micelles giving the suspension resistor like properties, and second by the buildup of layers of charged inverse micelles at both electrodes, acting as capacitors. The model explains the measurements over a large range of surfactant concentrations, applied voltages, and device thicknesses. PMID:21728309

  2. Inland Transport of Aerosolized Florida Red Tide Toxins.

    PubMed

    Kirkpatrick, Barbara; Pierce, Richard; Cheng, Yung Sung; Henry, Michael S; Blum, Patricia; Osborn, Shannon; Nierenberg, Kate; Pederson, Bradley A; Fleming, Lora E; Reich, Andrew; Naar, Jerome; Kirkpatrick, Gary; Backer, Lorraine C; Baden, Daniel

    2010-02-01

    Florida red tides, an annual event off the west coast of Florida, are caused by the toxic dinoflagellate, Karenia brevis. K. brevis produces a suite of potent neurotoxins, brevetoxins, which kill fish, sea birds, and marine mammals, as well as sickening humans who consume contaminated shellfish. These toxins become part of the marine aerosol, and can also be inhaled by humans and other animals. Recent studies have demonstrated a significant increase in symptoms and decrease lung function in asthmatics after only one hour of beach exposure during an onshore Florida red tide bloom.This study constructed a transect line placing high volume air samplers to measure brevetoxins at sites beginning at the beach, moving approximately 6.4 km inland. One non-exposure and 2 exposure studies, each of 5 days duration, were conducted. No toxins were measured in the air during the non-exposure period. During the 2 exposure periods, the amount of brevetoxins varied considerably by site and by date. Nevertheless, brevetoxins were measured at least 4.2 kilometers from the beach and/or 1.6 km from the coastal shoreline. Therefore, populations sensitive to brevetoxins (such as asthmatics) need to know that leaving the beach may not discontinue their environmental exposure to brevetoxin aerosols. PMID:20161504

  3. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in Downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2013-12-01

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was recently developed to provide long-term real-time continuous measurements of ambient non-refractory (i.e., organic, sulfate, ammonium, nitrate, and chloride) submicron particulate matter (NR-PM1). Currently, there are a limited number of field studies that evaluate the long-term performance of the ACSM against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. The collocated measurements included a second ACSM, continuous and integrated sulfate, nitrate, and ammonium measurements, as well as a semi-continuous Sunset organic carbon/elemental carbon (OC/EC) analyzer, continuous tapered element oscillating microbalance (TEOM), 24 h integrated Federal Reference Method (FRM) filters, and continuous scanning electrical mobility system-mixing condensation particle counter (SEMS-MCPC). Intercomparison of the two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21); mass concentration for all chemical species agreed within ±27%, indicating that ACSM instruments are capable of stable and reproducible operation. Chemical constituents measured by the ACSM are also compared with those obtained from the continuous measurements from JST. Since the continuous measurement concentrations are adjusted to match the integrated filter measurements, these comparisons reflect the combined uncertainties of the ACSM, continuous, and filter measurements. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Differences between ACSM mass concentrations and the filter-adjusted JST continuous data are 5-27%, 4

  4. Quantification of chemical transport processes from soil to surface runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although there is a conceptual understanding on processes governing chemical transport from soil to surface runoff, there are little literature and research results actually quantifying these individual processes. We developed a laboratory flow cell and experimental procedures to quantify chemical ...

  5. Chemical characteristics of aerosol particles (PM2.5) at a site of Horqin Sand-land in northeast China.

    PubMed

    Shen, Zhen-xing; Cao, Jun-ji; Li, Xu-xiang; Wang, Ya-qiang; Jie, Dong-mei; Zhang, Xiao-ye

    2006-01-01

    The objective of this study was to characterize the mass concentration and chemical composition of aerosol particles (PM2.5) collected at Tongliao (Inner Mongolia Autonomous Region, China), a site in Horqin Sand-land in northeast China. During spring 2005, the mass concentration for PM2.5 was (126 +/- 71)microg/m3 in average. Five dust storm events were monitored with higher concentration of (255 +/- 77)microg/m3 in average than the non dusty days of (106 +/- 44)microg/m3. Concentrations for 20 elements were obtained by the PIXE method. Mass concentrations of Al, Mg, Si, K, Ca, Ti, Mn, and V, which increased with the PM2.5 concentration, were higher than the pollution elements (S, Cl, Zn, Ar, Se, Br, and Pb). Enrichment factor relative to crust material was also calculated, which showed dust trace elements were mainly from earth upper crust and pollution elements were dominated the anthropogenic aerosols. The Si/Al, Ca/Al, and Fe/Al ratios in PM2.5 samples at Tongliao were 4.07, 0.94, and 0.82, respectively, which were remarkably different with those on other source regions, such as "Western desert source region", "North desert source region" and central Asia source. Air mass back-trajectory analysis identified three kinds of general pathways were associated with the aerosol particle transport to Tongliao, but have the similar elemental ratios, implying that elemental signatures for dust aerosol from Horqin Sand-land were different with other regions. PMID:17078548

  6. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol.

    PubMed

    Prather, Kimberly A; Bertram, Timothy H; Grassian, Vicki H; Deane, Grant B; Stokes, M Dale; Demott, Paul J; Aluwihare, Lihini I; Palenik, Brian P; Azam, Farooq; Seinfeld, John H; Moffet, Ryan C; Molina, Mario J; Cappa, Christopher D; Geiger, Franz M; Roberts, Gregory C; Russell, Lynn M; Ault, Andrew P; Baltrusaitis, Jonas; Collins, Douglas B; Corrigan, Craig E; Cuadra-Rodriguez, Luis A; Ebben, Carlena J; Forestieri, Sara D; Guasco, Timothy L; Hersey, Scott P; Kim, Michelle J; Lambert, William F; Modini, Robin L; Mui, Wilton; Pedler, Byron E; Ruppel, Matthew J; Ryder, Olivia S; Schoepp, Nathan G; Sullivan, Ryan C; Zhao, Defeng

    2013-05-01

    The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60-180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties. PMID:23620519

  7. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol

    PubMed Central

    Prather, Kimberly A.; Bertram, Timothy H.; Grassian, Vicki H.; Deane, Grant B.; Stokes, M. Dale; DeMott, Paul J.; Aluwihare, Lihini I.; Palenik, Brian P.; Azam, Farooq; Seinfeld, John H.; Moffet, Ryan C.; Molina, Mario J.; Cappa, Christopher D.; Geiger, Franz M.; Roberts, Gregory C.; Russell, Lynn M.; Ault, Andrew P.; Baltrusaitis, Jonas; Collins, Douglas B.; Corrigan, Craig E.; Cuadra-Rodriguez, Luis A.; Ebben, Carlena J.; Forestieri, Sara D.; Guasco, Timothy L.; Hersey, Scott P.; Kim, Michelle J.; Lambert, William F.; Modini, Robin L.; Mui, Wilton; Pedler, Byron E.; Ruppel, Matthew J.; Ryder, Olivia S.; Schoepp, Nathan G.; Sullivan, Ryan C.; Zhao, Defeng

    2013-01-01

    The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60–180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties. PMID:23620519

  8. Investigating long-range transport of pollution to the Arctic troposphere using aircraft observations and a global chemical transport model

    NASA Astrophysics Data System (ADS)

    Monks, S.; Arnold, S.; Chipperfield, M.; Turquety, S.; Ancellet, G.; Law, K.; Schlager, H.

    2009-04-01

    Surface temperatures in the Arctic have increased more than in any other region over the past few decades. A better understanding of the processes governing this warming, including the role of short-lived greenhouse gases, is therefore urgently required. During summer 2008, the POLARCAT campaign aimed to collect an extensive gas-phase and aerosol dataset within the Arctic troposphere, which will aid the evaluation of our understanding of oxidant photochemistry and aerosol processing in the region. Previous comparisons of global chemical transport models have shown that they exhibit large variability in their Arctic chemical budgets, indicating that the processes controlling Arctic tropospheric composition are not well understood or represented within models. Here, we will use new trace-gas observations from the French ATR and German DLR Falcon aircraft during the POLARCAT experiment to evaluate the ability of a global chemical transport model (TOMCAT) to simulate the summertime transport of pollutants to the Arctic, and their impact on oxidant budgets. In particular, we aim to quantify the impact of anthropogenic and biomass burning sources on the Arctic tropospheric ozone budget. Initial results show that the model underestimates observed concentrations of CO which has led to a re-evaluation of the different sources of CO to the region. Model performance in the Arctic is highly sensitive to the treatment of boreal biomass burning emissions. Boreal biomass burning plumes were sampled frequently over the course of the campaign therefore accurate representation of emission injection heights and fire locations is essential. Model CO is improved with real-time satellite derived daily biomass burning emissions, however large uncertainties in these emissions result in large variability in the Arctic CO budget. We will also present results on the ability of the model to capture pollution transport pathways to the Arctic and contributions to the oxidant and NOy budgets

  9. Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D.

    2014-12-01

    An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed along with a scanning mobility particle sizer (SMPS) and a multi-angle absorption photometer (MAAP) to measure the temporal variations of the mass loading, chemical composition, and size distribution of submicron particulate matter (PM1) in Lanzhou, northwest China, during 11 July-7 August 2012. The average (PM1 mass concentration including non-refractory (PM1 (NR-(PM1) measured by HR-ToF-AMS and black carbon (BC) measured by MAAP during this study was 24.5 μg m-3 (ranging from 0.86 to 105 μg m-3), with a mean composition consisting of 47% organics, 16% sulfate, 12% BC, 11% ammonium, 10% nitrate, and 4% chloride. Organic aerosol (OA) on average consisted of 70% carbon, 21% oxygen, 8% hydrogen, and 1% nitrogen, with the average oxygen-to-carbon ratio (O / C) of 0.33 and organic mass-to-carbon ratio (OM / OC) of 1.58. Positive matrix factorization (PMF) of the high-resolution organic mass spectra identified four distinct factors which represent, respectively, two primary OA (POA) emission sources (traffic and food cooking) and two secondary OA (SOA) types - a fresher, semi-volatile oxygenated OA (SV-OOA) and a more aged, low-volatility oxygenated OA (LV-OOA). Traffic-related hydrocarbon-like OA (HOA) and BC displayed distinct diurnal patterns, both with peak at ~ 07:00-11:00 (BJT: UTC +8), corresponding to the morning rush hours, while cooking-emission related OA (COA) peaked during three meal periods. The diurnal profiles of sulfate and LV-OOA displayed a broad peak between ~ 07:00 and 15:00, while those of nitrate, ammonium, and SV-OOA showed a narrower peak between ~ 08:00-13:00. The later morning and early afternoon maximum in the diurnal profiles of secondary aerosol species was likely caused by downward mixing of pollutants aloft, which were likely produced in the residual layer decoupled from the boundary layer during nighttime. The mass spectrum of SV-OOA was

  10. Coupled Effects of Vadose Zone Hydrodynamics and Anionic Surfactant Aerosol-22 on the Transport of Cryptosporidium parvum in Soil

    NASA Astrophysics Data System (ADS)

    Darnault, C. J.; Jacobson, A. R.; Powelson, D.; Baveye, P.; Peng, Z.; Yu, C.

    2013-12-01

    Cryptosporidium parvum is a microbial pathogen that may be found in soil, surface and groundwater resources. We studied their transport behavior under conditions where both C. parvum oocysts and chemicals that may affect their mobility are present in soils. Surfactants occur widely in soils due to agricultural practices such as wastewater irrigation and application of agrichemicals. Surfactants decrease the surface tension of the soil solution, which may reduce the ability of C. parvum oocysts to be retained at gas-water interfaces. Understanding the fate and transport of C. parvum oocysts following land application of manure and use of surfactants in rural and agricultural watersheds is critical to assess the threat to water resources. We investigated the coupled effects of vadose zone hydrodynamics and an anionic surfactant Aerosol-22 on the transport of C. parvum oocysts in natural structured and non-structured agricultural or range soils from Illinois and Utah. Column transport experiments consisted of unsaturated flow subject to macropore and fingered flows resulting from simulated rainfall with and without surfactant. To assess the behavior of C. parvum oocysts in soils, the breakthrough and distribution of C. parvum oocysts in soil profiles were obtained using qPCR. We observed that surfactant enhanced the transport of C. parvum oocysts when preferential flow paths are present. However, when the interconnection between macropores is not established in the soils, surfactant limited the transport of C. parvum oocysts through the soil matrix by forming oocyst-surfactant-Ca flocs.

  11. Experimental Determination of Chemical Diffusion within Secondary Organic Aerosol Particles

    SciTech Connect

    Abramson, Evan H.; Imre, D.; Beranek, Josef; Wilson, Jacqueline; Zelenyuk, Alla

    2013-02-28

    Formation, properties, transformations, and temporal evolution of secondary organic aerosols (SOA) particles strongly depend on particle phase. Recent experimental evidence from a number of groups indicates that SOA is in a semi-solid phase, the viscosity of which remained unknown. We find that when SOA is made in the presence of vapors of volatile hydrophobic molecules the SOA particles absorb and trap them. Here, we illustrate that it is possible to measure the evaporation rate of these molecules that is determined by their diffusion in SOA, which is then used to calculate a reasonably accurate value for the SOA viscosity. We use pyrene as a tracer molecule and a-pinene SOA as an illustrative case. It takes ~24 hours for half the pyrene to evaporate to yield a viscosity of 10^8 Pa s for a-pinene. This viscosity is consistent with measurements of particle bounce and evaporation rates. We show that viscosity of 10^8 Pa s implies coalescence times of minutes, consistent with the findings that SOA particles are spherical. Similar measurements on aged SOA particles doped with pyrene yield a viscosity of 10^9 Pa s, indicating that hardening occurs with time, which is consistent with observed decrease in water uptake and evaporation rate with aging.

  12. Influence of atmospheric parameters on vertical profiles and horizontal transport of aerosols generated in the surf zone

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Tedeschi, G.; Van Eijk, A. M. J.; Piazzola, J.

    2013-10-01

    The vertical and horizontal transport of aerosols generated over the surf zone is discussed. Experimental data were collected during the second campaign of the Surf Zone Aerosol Experiment that took place in Duck NC (USA) in November 2007. The Empirical Orthogonal Function (EOF) method was used to analyze the vertical concentration gradients, and allowed separating the surf aerosols from aerosols advected from elsewhere. The numerical Marine Aerosol Concentration Model (MACMod) supported the analysis by confirming that the concentration gradients are more pronounced under stable conditions and that aerosol plumes are then more confined to the surface. The model also confirmed the experimental observations made during two boat runs along the offshore wind vector that surf-generated aerosols are efficiently advected out to sea over several tens of kilometers.

  13. Analysis of Chemical Composition of Atmospheric Aerosols Above a South East Asian Rainforest

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Allan, J. D.; Williams, P. I.; Hamilton, J. F.; Chen, Q.; Martin, S. T.; Coe, H.; McFiggans, G. B.

    2008-12-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth's atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are not well understood or quantified. Insight into the origins and properties of these particles can be gained by analysis of their composition. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects in the rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Other tools such as positive matrix factorisation (PMF) have been used to help assess the relative source contributions to the organic aerosol. The aerosol's chemical origins have been further investigated by comparing these spectra to chamber experiments, mass spectral libraries and data from comparable locations in other locations. These data are also being analysed in conjunction with high complexity offline techniques applied to samples collected using filters and a Particle-Into-Liquid Sampler (PILS). Methods used include liquid chromatography and comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry. These techniques provide a more detailed chemical characterisation of the SOA and water soluble organic carbon, allowing direct links back to gas phase precursors.

  14. Long-range-transported Saharan dust in the Caribbean - an electron microscopy perspective of aerosol composition and modification

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Hartmann, Markus; Ebert, Martin; Weinbruch, Stephan; Weinzierl, Bernadett; Walser, Adrian; Sauer, Daniel; Wadinga Fomba, Khanneh

    2015-04-01

    From June to July in 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was performed in the Caribbean. Airborne aerosol sampling was performed onboard the DLR Falcon aircraft in altitudes between 300 m and 5500 m. Ground-based samples were collected at Ragged Point (Barbados, 13.165 °N, 59.432 °W) and at the Cape Verde Atmospheric Observatory (Sao Vicente, 16.864 °N, 24.868 °W). Different types of impactors and sedimentation samplers were used to collect particles between 0.1 µm and 4 µm (airborne) and between 0.1 µm and 100 µm (ground-based). Particles were analyzed by scanning electron microscopy with attached energy-dispersive X-ray analysis, yielding information on particle size, particle shape and chemical composition for elements heavier than nitrogen. A particle size correction was applied to the chemical data to yield better quantification. A total of approximately 100,000 particles were analyzed. For particles larger than 0.7 µm, the aerosol in the Caribbean during the campaign was a mixture of mineral dust, sea-salt at different aging states, and sulfate. Inside the Saharan dust plume - outside the marine boundary layer (MBL) - the aerosol is absolutely dominated by mineral dust. Inside the upper MBL, sea-salt exists as minor component in the aerosol for particles smaller than 2 µm in diameter, larger ones are practically dust only. When crossing the Soufriere Hills volcano plume with the aircraft, an extremely high abundance of small sulfate particles could be observed. At Ragged Point, in contrast to the airborne measurements, aerosol is frequently dominated by sea-salt particles. Dust relative abundance at Ragged Point has a maximum between 5 µm and 10 µm particles diameter; at larger sizes, sea-salt again prevails due to the sea-spray influence. A significant number of dust particles larger than 20 µm was encountered. The dust component in the Caribbean - airborne as well as ground

  15. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilge, S.; Zhang, Y.; Dall'Osto, M.

    2014-11-01

    The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterised by a less dense urbanisation. We present here the results obtained at a background site in the Po Valley, Italy, in summer 2009. For the first time in Europe, six state-of-the-art spectrometric techniques were used in parallel: aerosol time-of-flight mass spectrometer (ATOFMS), two aerosol mass spectrometers (high-resolution time-of-flight aerosol mass spectrometer - HR-ToF-AMS and soot particle aerosol mass spectrometer - SP-AMS), thermal desorption aerosol gas chromatography (TAG), chemical ionisation mass spectrometry (CIMS) and (offline) proton nuclear magnetic resonance (1H-NMR) spectroscopy. The results indicate that, under high-pressure conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), secondary semivolatile compounds such as ammonium nitrate and amines and a class of monocarboxylic acids which correspond to the AMS cooking organic aerosol (COA) already identified in urban areas. In daytime, the entrainment of aged air masses in the mixing layer is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOA) and also for the recycling of non-volatile primary species such as black carbon. According to organic aerosol source apportionment, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in

  16. Hygroscopic properties of the Paris urban aerosol in relation to its chemical composition

    NASA Astrophysics Data System (ADS)

    Kamilli, K. A.; Poulain, L.; Held, A.; Nowak, A.; Birmili, W.; Wiedensohler, A.

    2014-01-01

    Aerosol hygroscopic growth factors and chemical properties were measured as part of the MEGAPOLI "Megacities Plume Case Study" at the urban site Laboratoire d'Hygiène de la Ville de Paris (LHVP) in the city center of Paris from June to August 2009, and from January to February 2010. Descriptive hygroscopic growth factors (DGF) were derived in the diameter range from 25 to 350 nm at relative humidities of 30, 55, 75, and 90% by applying the summation method on humidified and dry aerosol size distributions measured simultaneously with a humidified differential mobility particle sizer (HDMPS) and a twin differential mobility particle sizer (TDMPS). For 90% relative humidity, the DGF varied from 1.06 to 1.46 in summer, and from 1.06 to 1.66 in winter. Temporal variations in the observed mean DGF could be well explained with a simple growth model based on the aerosol chemical composition measured by aerosol mass spectrometry (AMS) and black carbon photometry (MAAP). In particular, good agreement was observed when sulfate was the predominant inorganic factor. A clear overestimation of the predicted growth factor was found when the nitrate mass concentration exceeded values of 10 μg m-3, e.g., during winter.

  17. Hygroscopic properties of the Paris urban aerosol in relation to its chemical composition

    NASA Astrophysics Data System (ADS)

    Kamilli, K. A.; Poulain, L.; Held, A.; Nowak, A.; Birmili, W.; Wiedensohler, A.

    2013-05-01

    Aerosol hygroscopic growth factors and chemical properties were measured as part of the MEGAPOLI "Megacities Plume Case Study" at the urban site LHVP in the city center of Paris from June to August 2009, and from January to February 2010. Descriptive hygroscopic growth factors (DGF) were derived in the diameter range from 25 to 350 nm at relative humidities of 30, 55, 75, and 90% by applying the summation method on humidified and dry aerosol size distributions measured simultaneously with a humidified differential mobility particle sizer (HDMPS) and a twin differential mobility particle sizer (TDMPS). For 90% relative humidity, the DGF varied from 1.06 to 1.46 in summer, and from 1.06 to 1.66 in winter. Temporal variations in the observed mean DGF could be well explained with a simple growth model based on the aerosol chemical composition measured by aerosol mass spectrometry (AMS) and black carbon photometry (MAAP). In particular, good agreement was observed when sulfate was the predominant inorganic factor. A clear overestimation of the predicted growth factor was found when the nitrate mass concentration exceeded values of 10 μg m3, e.g. during winter.

  18. PHYSICAL AND CHEMICAL CHARACTERIZATION OF INDOOR AEROSOLS RESULTING FROM THE USE OF TAP WATER IN PORTABLE HOME HUMIDIFIERS

    EPA Science Inventory

    An indoor air quality study was conducted in Boise, ID, residences to evaluate the range of aerosol concentrations that result from using tap water in portable home humidifiers and to characterize the physical and chemical properties of the humidifier aerosol. M10 concentrations ...

  19. Evidence for the Convective Transport of Dust Aerosol During DC-3

    NASA Astrophysics Data System (ADS)

    Corr, C.; Ziemba, L. D.; Beyersdorf, A. J.; Moore, R.; Winstead, E.; Thornhill, K. L., II; Shook, M.; Anderson, B. E.; Lawson, P.; Froyd, K. D.; Ryerson, T. B.; Peischl, J.; Pollack, I. B.; Scheuer, E. M.; Dibb, J. E.

    2014-12-01

    Bulk aerosol composition and aerosol volume size distributions measured aboard the NASA DC-8 during the NCAR DC-3 (Deep Convective Clouds and Chemistry Experiment) mission in May/June 2012 were used to investigate the transport of mineral dust through twelve storms encountered over Colorado and Oklahoma. Measurements made at low altitudes (< 5 km) in the storm inflow region were compared to those made in the outflow in and around storm cirrus anvils (altitude > 9 km). Total coarse (1 μm < diameter < 5 μm) aerosol volume (Vc) and Ca2+ measured in both storm inflow and outflow were highly correlated, thus dust was assumed to dominate the aerosol coarse volume. Mean outflow Ca2+ concentrations were comparable to mean inflow values as demonstrated by average outflow/inflow Ca2+ ratios near unity. Vc outflow/inflow ratios were also high (>> 0.5) for most storms, suggesting coarse mode dust was efficiently transported through the CO and OK storms. Comparisons between inflow aerosol number concentration (Nc) calculated over a size range characteristic of dust ice nuclei (0.5 μm < diameter < 5 μm) and ice particle concentrations in storm anvils further suggested interstitial coarse mode dust was present in these cirrus anvils. For over half the storms, mean inflow Nc exceeded mean anvil ice particle concentrations implying ice nucleation mechanisms may be sensitive to complex dust characteristics beyond size. Possible artifacts associated with shattered ice crystals were examined via 1) closure calculations for observations from different instrumentation and independent aircraft inlets, and 2) assessment of relationships with cloud microphysical observations. Initial results indicate minimal influence of ice shatter on aerosol measurements, but effects vary for individual storms with different cloud microphysical characteristics.

  20. Aerosol optical and physical properties during winter monsoon pollution transport in an urban environment.

    PubMed

    Verma, S; Bhanja, S N; Pani, S K; Misra, A

    2014-04-01

    We analysed aerosol optical and physical properties in an urban environment (Kolkata) during winter monsoon pollution transport from nearby and far-off regions. Prevailing meteorological conditions, viz. low temperature and wind speed, and a strong downdraft of air mass, indicated weak dispersion and inhibition of vertical mixing of aerosols. Spectral features of WinMon aerosol optical depth (AOD) showed larger variability (0.68-1.13) in monthly mean AOD at short-wavelength (SW) channels (0.34-0.5 μm) compared to that (0.28-0.37) at long-wavelength (LW) channels (0.87-1.02 μm), thereby indicating sensitivity of WinMon AOD to fine aerosol constituents and the predominant contribution from fine aerosol constituents to WinMon AOD. WinMon AOD at 0.5 μm (AOD 0. 5) and Angstrom parameter ( α) were 0.68-0.82 and 1.14-1.32, respectively, with their highest value in December. Consistent with inference from spectral features of AOD, surface aerosol loading was primarily constituted of fine aerosols (size 0.23-3 μm) which was 60-70 % of aerosol 10- μm (size 0.23-10 μm) concentration. Three distinct modes of aerosol distribution were obtained, with the highest WinMon concentration at a mass median diameter (MMD) of 0.3 μm during December, thereby indicating characteristics of primary contribution related to anthropogenic pollutants that were inferred to be mostly due to contribution from air mass originating in nearby region having predominant emissions from biofuel and fossil fuel combustion. A relatively higher contribution from aerosols in the upper atmospheric layers than at the surface to WinMon AOD was inferred during February compared to other months and was attributed to predominant contribution from open burning emissions arising from nearby and far-off regions. A comparison of ground-based measurements with Moderate Resolution Imaging Spectroradiometer (MODIS) data showed an underestimation of MODIS AOD and α values for most of the days. Discrepancy in

  1. Chemical Composition of Atmospheric Aerosols Above a Pristine South East Asian Rainforest

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Allan, J. D.; Williams, P. I.; Coe, H.; Hamilton, J.; Chen, Q.; Martin, S.; Trembath, J.

    2009-04-01

    conjunction with a constant pressure inlet. The aerosols' chemical origins have been further investigated by comparing these spectra to chamber experiments, mass spectral libraries and data from comparable experiments in other locations. These data are also being analysed in conjunction with offline techniques applied to samples collected using filters and a Particle-Into-Liquid Sampler (PILS). Methods used include liquid chromatography and comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry. These techniques provide a more detailed chemical characterisation of the SOA and water soluble organic carbon, allowing direct links back to gas phase precursors. In conjunction with the field measurements, a programme of chamber experiments is being carried out at Manchester as part of the ACES project. This will generate comparable SOA under controlled conditions and subjecting them to similar analysis.

  2. Variabilities and uncertainties in characterising water transport kinetics in glassy and ultraviscous aerosol.

    PubMed

    Rickards, Andrew M J; Song, Young-Chul; Miles, Rachael E H; Preston, Thomas C; Reid, Jonathan P

    2015-04-21

    We present a comprehensive evaluation of the variabilities and uncertainties present in determining the kinetics of water transport in ultraviscous aerosol droplets, alongside new measurements of the water transport timescale in sucrose aerosol. Measurements are performed on individual droplets captured using aerosol optical tweezers and the change in particle size during water evaporation or condensation is inferred from shifts in the wavelength of the whispering gallery mode peaks at which spontaneous Raman scattering is enhanced. The characteristic relaxation timescale (τ) for condensation or evaporation of water from viscous droplets following a change in gas phase relative humidity can be described by the Kohlrausch-Williams-Watts function. To adequately characterise the water transport kinetics and determine τ, sufficient time must be allowed for the particle to progress towards the final state. However, instabilities in the environmental conditions can prevent an accurate characterisation of the kinetics over such long time frames. Comparison with established thermodynamic and diffusional water transport models suggests the determination of τ is insensitive to the choice of thermodynamic treatment. We report excellent agreement between experimental and simulated evaporation timescales, and investigate the scaling of τ with droplet radius. A clear increase in τ is observed for condensation with increase in drying (wait) time. This trend is qualitatively supported by model simulations. PMID:25786190

  3. Chemical Analysis of Fractionated Halogens in Atmospheric Aerosols Collected in Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Tsuhako, A.; Miyagi, Y.; Somada, Y.; Azechi, S.; Handa, D.; Oshiro, Y.; Murayama, H.; Arakaki, T.

    2013-12-01

    Halogens (Cl, Br and I) play important roles in the atmosphere, e.g. ozone depletion by Br during spring in Polar Regions. Sources of halogens in atmospheric aerosols are mainly from ocean. But, for example, when we analyzed Br- with ion chromatography, its concentrations were almost always below the detection limit, which is also much lower than the estimated concentrations from sodium ion concentrations. We hypothesized that portions of halogens are escaped to the atmosphere, similar to chlorine loss, changed their chemical forms to such as BrO3- and IO3-, and/or even formed precipitates. There was few reported data so far about fractionated halogen concentrations in atmospheric aerosols. Thus, purpose of this study was to determine halogen concentrations in different fractions; free ion, water-soluble chemically transformed ions and precipitates using the authentic aerosols. Moreover, we analyzed seasonal variation for each fraction. Atmospheric aerosol samples were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) of Okinawa, Japan during January 2010 and August 2013. A high volume air sampler was used for collecting total particulate matters on quartz filters on a weekly basis. Ultrapure water was used to extract water-soluble factions of halogens. The extracted solutions were filtered with the membrane filter and used for chemical analysis with ion chromatography and ICP-MS. Moreover, the total halogens in aerosols were obtained after digesting aerosols with tetramethylammonium hydroxide (TMAH) using the microwave and analysis with ICP-MS. For Cl, water-soluble Cl- accounted for about 70% of the estimates with Na content. No other forms of water-soluble Cl were found. About 30% of Cl was assumed volatilized to the gas-phase. For Br, water-soluble Br accounted for about 43% of the estimates with Na content, and within the 43%, about 10% of Br was not in the form of Br-. About 46% of Br was assumed volatilized to the gas-phase. For I

  4. Aerosol Chemical and Physical Properties Observed over Puerto Rico in the Tropical North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Jusino-Atresino, R.; Xia, L.; Song, F.; Gao, Y.

    2008-12-01

    Tropospheric aerosols that originate in Africa and are transported over the Atlantic Ocean have potential impacts over the Caribbean region. To investigate aerosol properties over this region, air sampling was conducted at San Juan Cape (18.46°N, 66.12°W), Puerto Rico during the summer months in 2006. Aerosol samples were collected by both commercial PM2.5 sampler and in-house fabricated TSP sampler. Analyses of aerosols were made through the use of the following instrumental methods: (1)Ion Chromatography for the determinations of water-soluble cations (sodium, ammonium, potassium, magnesium and calcium) and anions (fluoride, acetate, propionate, methanesulfonate, chloride, nitrate, succinate, malonate, sulfate and oxalate); (2)Inductively Coupled Plasma Mass Spectrometry for the concentrations of selected trace elements (Al, Fe, Mn, Sc, Cd, Pb, Sb, Ni, Co, Cr, Cu, Zn and V); (3)Scanning Electron Microscopy for individual aerosol particle characterization. Crustal enrichment factors were calculated to determine the strength of crustal source. Preliminary results indicate that sodium (22 - 99 μg m- 3) and ammonium (1.1 - 50 μg m-3) were the major cations and chloride (1.5 - 99 μg m-3) and sulfate (35 μg m-3) were the dominant anions. Malonate (3.8 - 6.9 μg m- 3) was the most abundant organic anion. Atmospheric concentrations of iron ranged 0.30 - 3.3 ng m- 3. The elements, Sc, Cd, Pb, Sb, Ni, Co, Cr, Cu, Zn and V, were enriched by factors of 600 to 40,000 relative to their natural abundance in crustal soil. Principal components analysis indicates six assemblages of fifteen types of aerosol particles, dominated by Si - rich particles.

  5. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    NASA Astrophysics Data System (ADS)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect but with the uncertainty being 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, both in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated

  6. Chemical and physical properties of single aerosol particles using a quadrupole trap

    SciTech Connect

    Carleton, K.L.; Sonnenfroh, D.M.; Kang, S.

    1995-12-31

    The importance of aerosols in controlling the chemical balance of the stratosphere has been demonstrated through studies of the polar ozone hole and polar stratospheric clouds. Our laboratory program is designed to explore the physical and chemical properties of aerosol particles under stratospheric conditions for single particles suspended in the electrodynamic field of a quadrupole trap. The goal of this work is to provide data on important stratospheric processes, with particular attention to processes resulting from increased aircraft emissions from the current subsonic fleet or a proposed fleet of supersonic aircraft. Optical methods including Mie scattering and Raman spectroscopy are used to probe the phase and composition of individual particles. Results will be presented on the freezing behavior of sulfuric acid particles.

  7. The Effect of the Anionic Surfactant Aerosol-80 on the Transport of Cryptosporidium parvum Oocysts through Soil

    NASA Astrophysics Data System (ADS)

    Jacobson, A. R.; Powelson, D.; Darnault, C.

    2012-12-01

    Transport of the pathogenic protozoan Cryptosporidium parvum through soils threatens ground and surface waters. C. parvum may be introduced into soils in the manure of infected calves. The presence of other chemicals in the soil applied as or with amendments, may affect the transport of the C. parvum oocysts. Surfactants, which are used in many herbicide formulations, decrease water tension and may disrupt the air-water interface where oocysts are thought to accumulate. We investigate the effect of the anionic surfactant Aerosol-80, at two concentrations, on the transport of C. parvum oocysts by unsaturated flow through "undisturbed" soil columns from Illinois and Utah. Following each experiment oocysts in the leachate and distributed throughout the soil profile are quantified by real time PCR. We find that the presence of the surfactant accelerates the transport of the oocysts through preferential flow paths. On the other hand, when connected macropores are not present in the soils, the presence of the surfactant retards the transport of the oocysts through the soil matrix by straining oocyst-surfactant-Ca flocs. Surfactant efficacy is affected by soil type.

  8. Urban Pollution in the Nocturnal Boundary Layer: Chemical Processing and Vertical Transport

    NASA Astrophysics Data System (ADS)

    Stutz, J.; Flynn, C. J.; Rappenglück, B.; Lefer, B.; Brune, W. H.; Dibb, J. E.; Griffin, R. J.

    2007-12-01

    For many decades research on urban pollution and its chemistry has concentrated on processes occurring during the day. In recent years, however, it has become clear that transport and chemical processing at night can also play an important role for urban air quality. Various chemical pathways are known to remove gaseous pollutants, such as nitrogen oxides, ozone and hydrocarbons, as well as influence aerosol composition at night. The quantification of these processes is difficult due to the influence of vertical stability, which leads to a much slower vertical transport of trace gases emitted at the surface at night than during the day. As a consequence, chemistry at night is often very altitude dependent, making investigations in the NBL challenging. In recent years a number of field experiments have been performed where the nocturnal meteorology and the vertical distribution of the dominant trace gases at night have been observed. Here we will review the lessons learned in past studies and present results from a recent study in Houston, TX, which gives new insights into the meteorological and chemical processes at night. The TexAQS II Radical Measurement Project (TRAMP) was performed in August and September 2006, on the University of Houston campus. We will present data from a number of measurements, including a long-path Differential Optical Absorption Spectrometer, in situ instrumentation for gas phase compounds (O3, NO, NO2, CO, VOC), HOx radicals, aerosol size and composition, various meteorological and radiation parameters, and an aerosol LIDAR. The field observations will be compared to 1D model calculations which show the dominant chemical processes and allow the identification of gaps in our understanding of the polluted nocturnal urban boundary layer.

  9. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  10. Characterization of Transport Errors in Chemical Forecasts from a Global Tropospheric Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Bey, I.; Jacob, D. J.; Liu, H.; Yantosca, R. M.; Sachse, G. W.

    2004-01-01

    We propose a new methodology to characterize errors in the representation of transport processes in chemical transport models. We constrain the evaluation of a global three-dimensional chemical transport model (GEOS-CHEM) with an extended dataset of carbon monoxide (CO) concentrations obtained during the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft campaign. The TRACEP mission took place over the western Pacific, a region frequently impacted by continental outflow associated with different synoptic-scale weather systems (such as cold fronts) and deep convection, and thus provides a valuable dataset. for our analysis. Model simulations using both forecast and assimilated meteorology are examined. Background CO concentrations are computed as a function of latitude and altitude and subsequently subtracted from both the observed and the model datasets to focus on the ability of the model to simulate variability on a synoptic scale. Different sampling strategies (i.e., spatial displacement and smoothing) are applied along the flight tracks to search for systematic model biases. Statistical quantities such as correlation coefficient and centered root-mean-square difference are computed between the simulated and the observed fields and are further inter-compared using Taylor diagrams. We find no systematic bias in the model for the TRACE-P region when we consider the entire dataset (i.e., from the surface to 12 km ). This result indicates that the transport error in our model is globally unbiased, which has important implications for using the model to conduct inverse modeling studies. Using the First-Look assimilated meteorology only provides little improvement of the correlation, in comparison with the forecast meteorology. These general statements can be refined when the entire dataset is divided into different vertical domains, i.e., the lower troposphere (less than 2 km), the middle troposphere (2-6 km), and the upper troposphere (greater than

  11. Development of aerosol assisted chemical vapor deposition for thin film fabrication

    NASA Astrophysics Data System (ADS)

    Maulana, Dwindra Wilham; Marthatika, Dian; Panatarani, Camellia; Mindara, Jajat Yuda; Joni, I. Made

    2016-02-01

    Chemical vapor deposition (CVD) is widely used to grow a thin film applied in many industrial applications. This paper report the development of an aerosol assisted chemical vapor deposition (AACVD) which is one of the CVD methods. Newly developed AACVD system consists of a chamber of pyrex glass, two wire-heating elements placed to cover pyrex glass, a substrate holder, and an aerosol generator using an air brush sprayer. The temperature control system was developed to prevent condensation on the chamber walls. The control performances such as the overshoot and settling time were obtained from of the developed temperature controller. Wire-heating elements were controlled at certain setting value to heat the injected aerosol to form a thin film in the substrate. The performance of as-developed AACVD system tested to form a thin film where aerosol was sprayed into the chamber with a flow rate of 7 liters/minutes, and vary in temperatures and concentrations of precursor. The temperature control system have an overshoot around 25 °C from the desired set point temperature, very small temperature ripple 2 °C and a settling time of 20 minutes. As-developed AACVD successfully fabricated a ZnO thin film with thickness of below 1 µm. The performances of system on formation of thin films influenced by the generally controlled process such as values of setting temperature and concentration where the aerosol flow rate was fixed. Higher temperature was applied, the more uniform ZnO thin films were produced. In addition, temperature of the substrate also affected on surface roughness of the obtained films, while concentration of ZnO precursor determined the thickness of produce films. It is concluded that newly simple AACVD can be applied to produce a thin film.

  12. Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes

    SciTech Connect

    Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.

    1989-09-01

    The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

  13. Soft ionization chemical analysis of secondary organic aerosol from green leaf volatiles emitted by turf grass.

    PubMed

    Jain, Shashank; Zahardis, James; Petrucci, Giuseppe A

    2014-05-01

    Globally, biogenic volatile organic compound (BVOC) emissions contribute 90% of the overall VOC emissions. Green leaf volatiles (GLVs) are an important component of plant-derived BVOCs, including cis-3-hexenylacetate (CHA) and cis-3-hexen-1-ol (HXL), which are emitted by cut grass. In this study we describe secondary organic aerosol (SOA) formation from the ozonolysis of dominant GLVs, their mixtures and grass clippings. Near-infrared laser desorption/ionization aerosol mass spectrometry (NIR-LDI-AMS) was used for chemical analysis of the aerosol. The chemical profile of SOA generated from grass clippings was correlated with that from chemical standards of CHA and HXL. We found that SOA derived from HXL most closely approximated SOA from turf grass, in spite of the approximately 5× lower emission rate of HXL as compared to CHA. Ozonolysis of HXL results in formation of low volatility, higher molecular weight compounds, such as oligomers, and formation of ester-type linkages. This is in contrast to CHA, where the hydroperoxide channel is the dominant oxidation pathway, as oligomer formation is inhibited by the acetate functionality. PMID:24666343

  14. Contribution of long-range transported aerosols to aerosol optical and physical properties: 3-year measurements at Gosan, Korea

    NASA Astrophysics Data System (ADS)

    Heo, J.; Kim, S. W.; Kim, J. H.; Ogren, J. A.; Yoon, S. C.

    2015-12-01

    Recently, more attentions have been paid to air quality in East Asia due to the enhanced loading of atmospheric pollutants related to rapid industrialization. Gosan Climate Observatory (GCO), Korea is regarded as an ideal site to study the transport of atmospheric pollutants because it is frequently influenced by various airmasses from China, Korea, Japan and Pacific Ocean. In order to understand aerosol optical and physical properties according to airmass transport routes, three-year (2012-2014) continuous measurements of aerosol scattering/absorption coefficient and number size distribution were analyzed, together with 48-hour backward trajectory calculations. The averaged aerosol absorption (σa) and scattering coefficient (σs) for airmasses transported from North China (NC; 36% of all trajectories) were 6.65 Mm-1 and 94.72 Mm-1 at 550 nm wavelength, respectively, which were similar to those for stagnant airmasses (ST; 22% of all trajectories; σa: 6.26 Mm-1, σs: 93.99 Mm-1). The highest values of σa (7.03 Mm-1) and σs (108.34 Mm-1) were observed when airmasses were traveled from South China (SC; 11% of all trajectories). σa and σs for airmasses from Korean Peninsula (KP; 7% of all trajectories) and Pacific Ocean (PO; 14% of all trajectories; in parenthesis) were 5.63 (2.76) Mm-1 and 73.63 (50.93) Mm-1, respectively. Compared to other airmasses, the higher values of Scattering Angstrom Exponent (SAE) for ST (1.65) is thought to be the build-up of anthropogenic fine particulate pollutants. The Absorption Angstrom Exponent (AAE) was estimated to be 1.32 for NC airmass and 1.02 for SC airmass. Over the study period, 130 days of total 557 days were identified as new particle formation and growth event (NPF) from Scanning Mobility Particle Sizer (SMPS) measurements by Cyclostationary Empirical Orthogonal Function (CSEOF) approach. Especially, 55.4% (72 days) of total 130 NPF days were found when a cold and dry airmass comes from NC after passing the frontal

  15. Persistence and transport potential of chemicals in a multimedia environment

    SciTech Connect

    van de Meent, D.; McKone, T.E.; Parkerton, T.; Matthies, M.; Scheringer, M.; Wania, F.; Purdy, R.; Bennett, D.H.

    2000-02-01

    Persistence in the environment and potential for long-range transport are related since time in the environment is required for transport. A persistent chemical will travel longer distances than a reactive chemical that shares similar chemical properties. Scheringer (1997) has demonstrated the correlation between persistence and transport distance for different organic chemicals. However, this correlation is not sufficiently robust to predict one property from the other. Specific chemicals that are persistent mayor may not exhibit long-range transport potential. Persistence and long-range transport also present different societal concerns. Persistence concerns relate to the undesired possibility that chemicals produced and used now may somehow negatively affect future generations. Long-range transport concerns relate to the undesired presence of chemicals in areas where these compounds have not been used. Environmental policy decisions can be based on either or both considerations depending on the aim of the regulatory program. In this chapter, definitions and methods for quantifying persistence and transport potential of organic chemicals are proposed which will assist in the development of sound regulatory frameworks.

  16. Chemical and isotopic characterization of fatty acids and polycyclic aromatic hydrocarbons in aerosols - implications for biomass burning

    SciTech Connect

    Ballentine, D.C.

    1995-12-31

    Emissions of organic materials during biomass burning have been suggested to influence the biogeochemical distribution of nutrients in a range of ecosystems. Additionally, some organic components survive pyrolytic processes and are of regional and global biogeochemical significance because they may serve as tracers for transport of biomass burning products. Two classes of compounds that are of interest in determining the transport of these products are polycyclic aromatic hydrocarbons (PAH) and fatty acids. Polycyclic aromatic hydrocarbons are stable to biodegradation and are typically produced during natural and anthropogenic combustion processes. Fatty acids are also stable to atmospheric degradation and have been implicated as useful biomarkers for atmospheric transport. In this study, PAH and fatty acids emitted during controlled low and high temperature burns of sugar cane have been chemically and isotopically characterized using GC/MS and GC/IRMS, respectively. In order to determine if these species are suitable biomarkers for the transport of biomass burning materials, aerosols collected during sugar cane burning in South Africa have been similarly analyzed.

  17. Aerosol-halogen interaction: Change of physico-chemical properties of SOA by naturally released halogen species

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Krüger, H.; Platt, U.; Schmitt-Kopplin, P.; Zetzsch, C.

    2011-12-01

    Reactive halogen species are released by various sources like photo-activated sea-salt aerosol or salt pans and salt lakes. These heterogeneous release mechanisms have been overlooked so far, although their potential of interaction with organic aerosols like Secondary Organic Aerosol (SOA), Biomass Burning Organic Aerosol (BBOA) or Atmospheric Humic LIke Substances (HULIS) is completely unknown. Such reactions can constitute sources of gaseous organo-halogen compounds or halogenated organic particles in the atmospheric boundary layer. To study the interaction of organic aerosols with reactive halogen species (RHS), SOA was produced from α-pinene, catechol and guaiacol using an aerosol smog-chamber. The model SOAs were characterized in detail using a variety of physico-chemical methods (Ofner et al., 2011). Those aerosols were exposed to molecular halogens in the presence of UV/VIS irradiation and to halogens, released from simulated natural halogen sources like salt pans, in order to study the complex aerosol-halogen interaction. The heterogeneous reaction of RHS with those model aerosols leads to different gaseous species like CO2, CO and small reactive/toxic molecules like phosgene (COCl2). Hydrogen containing groups on the aerosol particles are destroyed to form HCl or HBr, and a significant formation of C-Br bonds could be verified in the particle phase. Carbonyl containing functional groups of the aerosol are strongly affected by the halogenation process. While changes of functional groups and gaseous species were visible using FTIR spectroscopy, optical properties were studied using Diffuse Reflectance UV/VIS spectroscopy. Overall, the optical properties of the processed organic aerosols are significantly changed. While chlorine causes a "bleaching" of the aerosol particles, bromine shifts the maximum of UV/VIS absorption to the red end of the UV/VIS spectrum. Further physico-chemical changes were recognized according to the aerosol size-distributions or the

  18. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.

    2015-12-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under CMA chemical weather modeling system GRAPES/CUACE. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred. The results show that interactive aerosols with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content and cloud droplet number concentrations while decrease the mean diameter of cloud droplets with varying magnitudes of the changes in each case and region. These interactive micro-physical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24% to 48% enhancements of TS scoring for 6-h precipitation in almost all regions. The interactive aerosols with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3°C.

  19. Investigating the Chemical Pathways to PAH- and PANH-Based Aerosols in Titan's Atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Sciamma-O'Brien, Ella Marion; Contreras, Cesar; Ricketts, Claire Louise; Salama, Farid

    2011-01-01

    A complex organic chemistry between Titan's two main constituents, N2 and CH4, leads to the production of more complex molecules and subsequently to solid organic aerosols. These aerosols are at the origin of the haze layers giving Titan its characteristic orange color. In situ measurements by the Ion Neutral Mass Spectrometer (INMS) and Cassini Plasma Spectrometer (CAPS) instruments onboard Cassini have revealed the presence of large amounts of neutral, positively and negatively charged heavy molecules in the ionosphere of Titan. In particular, benzene (C6H6) and toluene (C6H5CH3), which are critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds, have been detected, suggesting that PAHs might play a role in the production of Titan s aerosols. Moreover, results from numerical models as well as laboratory simulations of Titan s atmospheric chemistry are also suggesting chemical pathways that link the simple precursor molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN ...) to benzene, and to PAHs and nitrogen-containing PAHs (or PANHs) as precursors to the production of solid aerosols.

  20. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2015-06-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under CMA chemical weather modeling system GRAPES/CUACE. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred. The results show that interactive aerosols with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content and cloud droplet number concentrations while decrease the mean diameter of cloud droplets with varying magnitudes of the changes in each case and region. These interactive micro-physical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48% enhancements of TS scoring for 6 h precipitation in almost all regions. The interactive aerosols with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  1. Chemical Characterization of Biomass Burning Aerosols and an Examination of Their Impact on Clouds

    NASA Astrophysics Data System (ADS)

    Pratt, K. A.; Murphy, S. M.; Twohy, C. H.; Subramanian, R.; Seinfeld, J.; Prather, K. A.

    2009-12-01

    Biomass burning is a considerable global source of carbon dioxide, methane, and carbonaceous aerosols. In addition to exerting a significant, but uncertain, direct radiative forcing, biomass burning aerosols impact cloud formation and properties by serving as cloud condensation nuclei and impacting cloud droplet and ice crystal size. During the 2007 Ice in Clouds Experiment - Layer Clouds (ICE-L), detailed size-resolved chemical composition measurements of biomass burning particles were completed using an aircraft aerosol time-of-flight mass spectrometer (A-ATOFMS), compact time-of-flight aerosol mass spectrometer (C-TOF-AMS), single-particle soot photometer (SP2), and electron microscopy. Aboard the NCAR/NSF C-130, real-time sampling of the smoke plumes of two prescribed fires allowed characterization of fresh biomass burning particles having aged less than one hour. Knowledge of fuel characteristics and burn conditions on the ground allowed a detailed comparison with emphasis on smoldering versus flaming combustion. In addition, using a counterflow virtual impactor (CVI) in series with the above techniques, aged biomass burning particles were found as residues of homogeneously-nucleated cloud ice crystals within orographic wave clouds. A comparison between A-ATOFMS, C-TOF-AMS, SP2, and electron microscopy results will be presented, as well as a discussion of the impacts of fresh and aged biomass burning particles on clouds.

  2. Aerosol transport over the Andes from the Amazon Basin to the remote Pacific Ocean: A multiyear CALIOP assessment

    NASA Astrophysics Data System (ADS)

    Bourgeois, Quentin; Ekman, Annica M. L.; Krejci, Radovan

    2015-08-01

    Six years (2007-2012) of data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite instrument were used to investigate the vertical distribution and transport of aerosols over the tropical South American continent and the southeast Pacific Ocean. The multiyear aerosol extinction assessment indicates that aerosols, mainly biomass burning particles emitted during the dry season in the Amazon Basin, are lifted in significant amounts over the Andes. The aerosols are mainly transported in the planetary boundary layer between the surface and 2 km altitude with an aerosol extinction maximum near the surface. During the transport toward the Andes, the aerosol extinction decreases at a rate of 0.02 km-1 per kilometer of altitude likely due to dilution and deposition processes. Aerosols reaching the top of the Andes, at altitudes typically between 4 and 5 km, are entrained into the free troposphere (FT) over the southeast Pacific Ocean. A comparison between CALIOP observations and ERA-Interim reanalysis data indicates that during their long-range transport over the tropical Pacific Ocean, these aerosols are slowly transported toward the marine boundary layer by the large-scale subsidence at a rate of 0.4 cm s-1. The observed vertical/horizontal transport ratio is 0.7-0.8 m km-1. Continental aerosols linked to transport over the Andes can be traced on average over 4000 km away from the continent indicating an aerosol residence time of 8-9 days in the FT over the Pacific Ocean. The FT aerosol optical depth (AOD) above the Pacific Ocean near South American coast accounts on average for 6% and 25% of the total AOD during the season of low and high biomass burning, respectively. This result shows that, during the biomass burning season, continental aerosols largely influence the AOD over the remote southeast Pacific Ocean. Overall, FT AOD decrease exponentially with the distance to continental sources at a rate of about 10% per degree of longitude over the

  3. Monitoring biomass burning and aerosol loading and transport using multispectral GOES data

    NASA Astrophysics Data System (ADS)

    Menzel, W. Paul; Prins, Elaine

    1996-10-01

    The successful launch of GOES-8 in 1994 introduced an enhanced capability for diurnal monitoring of subpixel fire activity and aerosol transport in the Western Hemisphere. The higher spatial and temporal resolution, greater radiometric sensitivity, and improved navigation of GOES-8 offer many advantages for monitoring fires and smoke in North, Central, and South America. In South America the GOES-8 automated biomass burning algorithm (ABBA) is being used to continue monitoring trends in biomass burning associated with agricultural practices and deforestation activities as well as documenting the extent and transport of associated aerosols. GOES-8 ABBA results obtained during the 1995 biomass burning season indicate a strong diurnal cycle in fire activity and associated aerosol transport regimes extending over millions of km2. Examples of GOES-8 diurnal monitoring of fire intensity and size in the United States, Canada, Mexico, Guatemala and Belize show the utility of using GOES-8 as an early warning mechanism for identifying and monitoring wildfires in these regions. The success of the GOES-8 ABBA in the Western Hemisphere suggests the utility of initiating a global geostationary fire monitoring effort.

  4. Real-time characterization of the size and chemical composition of individual particles in ambient aerosol systems in Riverside, California

    SciTech Connect

    Noble, C.A.; Prather, K.A.

    1995-12-31

    Atmospheric aerosols, although ubiquitous, are highly diverse and continually fluctuating systems. A typical aerosol system may consist of particles with diameters between {approximately}0.002 {mu}m and {approximately}200 {mu}m. Even in rural or pristine areas, atmospheric particle concentration is significant, with concentrations up to 10{sup 8} particles/cm{sup 3} not being uncommon. Chemical composition of atmospheric particles vary from simple water droplets or acidic ices to soot particles and cigarette smoke. Due to changes in atmospheric conditions, processes such as nucleation, coagulation or heterogeneous chemistry may effect both physical and chemical properties of individual particles over relatively short time intervals. Recently, aerosol measurement techniques are focusing on determining the size and/or chemical composition of individual aerosol particles. This research group has recently developed aerosol time-of-flight mass spectrometry (ATOFMS), a technique which allows for real-time determination of the size and chemical composition of individual aerosol particles. Single particle measurements are performed in one instrument using dual laser aerodynamic particle sizing and time-of-flight mass spectrometry. Aerosol-time-of-flight mass spectrometry is briefly described in several other abstracts in this publication.

  5. A new Method to Study Aerosol Source Contributions Along the Tracks of air Parcels and its Application to the Near-ground Level Aerosol Chemical Composition in Central Europe

    NASA Astrophysics Data System (ADS)

    Lammel, G.; Brüggemann, E.; Gnauk, T.; Müller, K.; Neusüss, C.; Röhrl, A.

    2002-12-01

    A novel method is presented to reveal significance and contribution of source types and characteristic formation times for individual aerosol constituents: Backward trajectory analyses are used to allocate time resolved information about residence time of air masses over different types of ground surfaces. The correlation coefficients between the concentrations of individual aerosol constituents and the residence times of air masses over certain types of ground surfaces at a certain time difference to arrival time were used to compose time profiles. The method has been applied to aerosol chemical composition data from various seasons and from rural and urban sites in Germany. For various ground types we obtain correlations between weighted (and normalized) residence times on one hand and the abundances of trace constituents known as markers for marine (Na, Cl), continental-rural (e.g. mineral dust components) and industrial sources (e.g., organic and elemental C, As, Pb) on the other hand. The occurrence of super-A~¦m particulate NO3- in central Europe is found to originate largely in the marginal seas. The time profiles indicate that the characteristic formation time of the secondary aerosol is 48-72 h, while the coarse mode particulate matter including some heavy metals was determined by emissions < 36 h back. The occurrence of particulate elemental carbon was temporally bimodal with regard to the elapsed time since emission (maxima at Δt ~ 60 h and Δt = 12-24 h), which indicates the presence of two types undergoing a selection process during aging. The factors which explained most of the variability of the aerosol chemical composition were the season and the type of ground surface in contact with the air mass during its transport. More immediate influences on the samples, such as the weather conditions during sampling and the type of site (rural or urban) were distinctly less significant.

  6. Long-term Chemical Characterization of Submicron Aerosol Particles in the Amazon Forest - ATTO Station

    NASA Astrophysics Data System (ADS)

    Carbone, S.; Brito, J.; Rizzo, L. V.; Holanda, B. A.; Cirino, G. G.; Saturno, J.; Krüger, M. L.; Pöhlker, C.; Ng, N. L.; Xu, L.; Andreae, M. O.; Artaxo, P.

    2015-12-01

    The study of the chemical composition of aerosol particles in the Amazon forest represents a step forward to understand the strong coupling between the atmosphere and the forest. For this reason submicron aerosol particles were investigated in the Amazon forest, where biogenic and anthropogenic aerosol particles coexist at the different seasons (wet/dry). The measurements were performed at the ATTO station, which is located about 150 km northeast of Manaus. At ATTO station the Aerosol chemical speciation monitor (ACSM, Aerodyne) and the Multiangle absorption photometer (MAAP, Thermo 5012) have been operated continuously from March 2014 to July 2015. In this study, long-term measurements (near-real-time, ~30 minutes) of PM1 chemical composition were investigated for the first time in this environment.The wet season presented lower concentrations than the dry season (~5 times). In terms of chemical composition, both seasons were dominated by organics (75 and 63%) followed by sulfate (11 and 13%). Nitrate presented different ratio values between the mass-to-charges 30 to 46 (main nitrate fragments) suggesting the presence of nitrate as inorganic and organic nitrate during both seasons. The results indicated that about 75% of the nitrate signal was from organic nitrate during the dry season. In addition, several episodes with elevated amount of chloride, likely in the form of sea-salt from the Atlantic Ocean, were observed during the wet season. During those episodes, chloride comprised up to 7% of the PM1. During the dry season, chloride was also observed; however, with different volatility, which suggested that Chloride was present in different form and source. Moreover, the constant presence of sulfate and BC during the wet season might be related to biomass burning emissions from Africa. BC concentration was 2.5 times higher during the dry season. Further characterization of the organic fraction was accomplished with the positive matrix factorization (PMF), which

  7. Long-term measurement of aerosol chemical composition in Athens, Greece.

    NASA Astrophysics Data System (ADS)

    Paraskevopoulou, Despina; Liakakou, Eleni; Theodosi, Christina; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2014-05-01

    The collection of our samples was conducted for a period of five years (2008 - 2013) in Athens, Greece. The site is situated at the premises of the National Observatory of Athens on Penteli Hill, northeast Athens suburbs, and is considered an urban background station. The aim of our study was a first long-term estimation of the chemical mass closure of aerosol. For the purposes of the study, we applied three filter samplers during the sampling period: two Partisol FRM Model 2000 air samplers (one of them collecting PM10 and the other PM2.5 fractions of aerosol) and one Dichotomous Partisol auto-sampler (with PM2.5 and PM2.5-10 inlet). Aerosols were collected on Whatman QM-A quartz fiber filters and the mass of the collected samples was estimated by weighing the pre-combusted filters before and after sampling, under controlled conditions, using a microbalance. All quartz filters were analysed for organic (OC) and elemental carbon (EC) by a thermal - optical transmission technique. The concentration of water soluble organic carbon (WSOC) was defined for each filter using a total organic carbon analyzer, while the content in main water soluble ions (Cl-, Br-, NO-3, SO4-2, PO4-3, C2O4-2, NH4+, K+, Na+, Mg+2, Ca+2) was determined by ion chromatography. Additionally the filters were analyzed for trace metals by inductively coupled plasma optical emission spectrometry (ICP-OES). Aerosol chemical mass closure calculations were conducted for the PM2.5 fraction. The area of Athens is characterized by aged aerosol that can originate from the marine boundary layer, the European mainland and occasionally from North African desert areas. The contribution of dust and particulate organic matter on PM levels was estimated taking into consideration the location of the sampling site, while identification and evaluation of sources was performed. Additionally, non-sea salt concentrations of the main ions were estimated to complete the chemical closure in the extended area. According to

  8. Multisensor analyzer detector (MSAD) for low cost chemical and aerosol detection and pattern fusion

    NASA Astrophysics Data System (ADS)

    Swanson, David C.; Merdes, Daniel W.; Lysak, Daniel B., Jr.; Curtis, Richard C.; Lang, Derek C.; Mazzara, Andrew F.; Nicholas, Nicholas C.

    2002-08-01

    MSAD is being developed as a low-cost point detection chemical and biological sensor system designed around an information fusion inference engine that also allows additional sensors to be included in the detection process. The MSAD concept is based on probable cause detection of hazardous chemical vapors and aerosols of either chemical or biological composition using a small portable unit containing an embedded computer system and several integrated sensors with complementary capabilities. The configuration currently envisioned includes a Surface-Enhanced Raman Spectroscopy (SERS) sensor of chemical vapors and a detector of respirable aerosols based on Fraunhofer diffraction. Additional sensors employing Ion Mobility Spectrometry (IMS), Surface Acoustic Wave (SAW) detection, Flame Photometric Detection (FPD), and other principles are candidates for integration into the device; also, available commercial detectors implementing IMS, SAW, and FPD will be made accessible to the unit through RS232 ports. Both feature and decision level information fusion is supported using a Continuous Inference Network (CINET) of fuzzy logic. Each class of agents has a unique CINET with information inputs from a number of available sensors. Missing or low confidence sensor information is gracefully blended out of the output confidence for the particular agent. This approach constitutes a plug and play arrangement between the sensors and the information pattern recognition algorithms. We are currently doing simulant testing and developing out CINETs for actual agent testing at Edgewood Chemical and Biological Center (ECBC) later this year.

  9. Monitoring aerosol elemental composition in particle size fractions of long-range transport

    NASA Astrophysics Data System (ADS)

    Metternich, P.; Georgii, H.-W.; Groeneveld, K. O.

    1983-04-01

    Collection of atmospheric samples was performed at Malta, a semi-remote environment in the Mediterranean, in case of long-range transport studies of pollutants and natural substances. Using PIXE as a non-destructive trace-element analytical tool, the elemental composition of these samples was determined. Atmospheric concentrations obtained in this study were of one magnitude higher than those observed over the open North Alantic in purely marine air. For most of the anomalously enriched elements in the Mediterranean aerosol, the high concentrations can be explained by long-range transport.

  10. MATCH-SALSA - Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model - Part 1: Model description and evaluation

    NASA Astrophysics Data System (ADS)

    Andersson, C.; Bergström, R.; Bennet, C.; Robertson, L.; Thomas, M.; Korhonen, H.; Lehtinen, K. E. J.; Kokkola, H.

    2014-05-01

    We have implemented the sectional aerosol dynamics model SALSA in the European scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry). The new model is called MATCH-SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC) in central Europe and lower concentrations in remote regions. The model PNC size distribution peak occurs at the same or smaller particle size as the observed peak at five measurement sites spread across Europe. Total PNC is underestimated at Northern and Central European sites and accumulation mode PNC is underestimated at all investigated sites. On the other hand the model performs well for particle mass, including secondary inorganic aerosol components. Elemental and organic carbon concentrations are underestimated at many of the sites. Further development is needed, primarily for treatment of secondary organic aerosol, both in terms of biogenic emissions and chemical transformation, and for nitrogen gas-particle partitioning. Updating the biogenic SOA scheme will likely have a large impact on modeled PM2.5 and also affect the model performance for PNC through impacts on nucleation and condensation. An improved nitrogen partitioning model may also improve the description of condensational growth.

  11. Aerosol Chemical Composition in Asian Continental Outflow during the TRACE-P Campaign: Comparison with PEM-West B

    NASA Technical Reports Server (NTRS)

    Dibb, Jack E.; Talbot, Robert W.; Scheuer, Eric M.; Seid, Garry; Avery, Melody A.; Singh, Hanwant B.

    2003-01-01

    Aerosol associated soluble ions and the radionuclide tracers (7)Be and (210)Pb were quantified in 414 filter samples collected in spring 2001 from the DC-8 during the Transport and Chemical Evolution over the Pacific (TRACE-P) campaign. Binning the data into near Asia (flights from Hong Kong and Japan) and remote Pacific (all other flights) revealed large enhancements of NO3(-), SO4(-), C2O4(-), NH4(+), K(+), Mg2(+), and Ca2(+) near Asia. The boundary layer and lower troposphere were most strongly influenced by continental outflow, and the largest enhancements were seen in Ca2(+) (a dust tracer) and NO3(-) (reflecting uptake of HNO3 onto the dust). Comparing the TRACE P near Asia bin with earlier results from the same region during PEM-West B (in 1994) shows at least twofold enhancements during TRACE P in most of the ions listed above. Calcium and NO3(-) were most enhanced in this comparison as well (more than sevenfold higher in the boundary layer and threefold higher in the lower troposphere). Independent estimation of Asian emissions of gaseous precursors of the aerosol-associated ions suggest only small changes between the two missions, and precipitation fields do not suggest any significant difference in the efficiency of the primary sink, precipitation scavenging. It thus appears that with the possible exception of dust, the enhancements of aerosol-associated species during TRACE P cannot be explained by stronger sources or weaker sinks. We argue that the enhancements largely reflect the fact that TRACE P focused on characterizing Asian outflow, and thus the DC-8 was more frequently flown into regions that were influenced by well-organized flow off the continent.

  12. Transport of aerosols into the UTLS and their impact on the Asian monsoon region as seen in a global model simulation

    NASA Astrophysics Data System (ADS)

    Fadnavis, S.; Semeniuk, K.; Pozzoli, L.; Schultz, M. G.; Ghude, S. D.; Das, S.; Kakatkar, R.

    2013-09-01

    An eight-member ensemble of ECHAM5-HAMMOZ simulations for a boreal summer season is analysed to study the transport of aerosols in the upper troposphere and lower stratosphere (UTLS) during the Asian summer monsoon (ASM). The simulations show persistent maxima in black carbon, organic carbon, sulfate, and mineral dust aerosols within the anticyclone in the UTLS throughout the ASM (period from July to September), when convective activity over the Indian subcontinent is highest, indicating that boundary layer aerosol pollution is the source of this UTLS aerosol layer. The simulations identify deep convection and the associated heat-driven circulation over the southern flanks of the Himalayas as the dominant transport pathway of aerosols and water vapour into the tropical tropopause layer (TTL). Comparison of model simulations with and without aerosols indicates that anthropogenic aerosols are central to the formation of this transport pathway. Aerosols act to increase cloud ice, water vapour, and temperature in the model UTLS. Evidence of ASM transport of aerosols into the stratosphere is also found, in agreement with aerosol extinction measurements from the Halogen Occultation Experiment (HALOE) and Stratospheric Aerosol and Gas Experiment (SAGE) II. As suggested by the observations, aerosols are transported into the Southern Hemisphere around the tropical tropopause by large-scale mixing processes. Aerosol-induced circulation changes also include a weakening of the main branch of the Hadley circulation and a reduction of monsoon precipitation over India.

  13. Modeling of photolysis rates over Europe: impact on chemical gaseous species and aerosols

    NASA Astrophysics Data System (ADS)

    Real, E.; Sartelet, K.

    2011-02-01

    This paper evaluates the impact of photolysis rate calculation on simulated European air composition and air quality. In particular, the impact of the cloud parametrisation and the impact of aerosols on photolysis rates are analysed. Photolysis rates are simulated using the Fast-JX photolysis scheme and gas and aerosol concentrations over Europe are simulated with the regional chemistry-transport model Polair3D of the Polyphemus platform. The photolysis scheme is first used to update the clear-sky tabulation of photolysis rates used in the previous Polair3D version. Important differences in photolysis rates are simulated, mainly due to updated cross-sections and quantum yields in the Fast-JX scheme. In the previous Polair3D version, clouds were taken into account by multiplying the clear-sky photolysis rates by a correction factor. In the new version, clouds are taken into account more accurately by simulating them directly in the photolysis scheme. Differences in photolysis rates inside clouds can be large but outside clouds, and especially at the ground, differences are small. To take into account the impact of aerosols on photolysis rates, Polair3D and Fast-JX are coupled. Photolysis rates are updated every hour. Large impact on photolysis rates is observed at the ground, decreasing with altitude. The aerosol specie that impact the most photolysis rates is dust especially in south Europe. Strong impact is also observed over anthropogenic emission regions (Paris, The Po and the Ruhr Valley) where mainly nitrate and sulphate reduce the incoming radiation. Differences in photolysis rates lead to changes in gas concentrations, with the largest impact simulated on OH and NO concentrations. At the ground, monthly mean concentrations of both species are reduced over Europe by around 10 to 14% and their tropospheric burden by around 10%. The decrease in OH leads to an increase of the life-time of several species such as VOC. NO2 concentrations are not strongly impacted

  14. New Lidar Capabilities in Space: An Overview of the Cloud-Aerosol Transport System (CATS)

    NASA Astrophysics Data System (ADS)

    McGill, M. J.; Yorks, J. E.; Hlavka, D. L.; Selmer, P. A.; Hart, W. D.; Palm, S. P.; Nowottnick, E. P.; Vaughan, M.; Rodier, S. D.; Colarco, P. R.; da Silva, A.; Buchard, V.

    2014-12-01

    The Cloud-Aerosol Transport System (CATS), built at NASA Goddard Space Flight Center as a payload for the International Space Station (ISS), is set to launch in the late 2014. CATS is an elastic backscatter lidar operating in one of three science modes with three wavelengths (1064, 532, 355 nm) and HSRL capability at 532 nm. Depolarization measurements will be made at the 532 and 1064 nm wavelengths. The CATS science modes are described in Figure 1. The ISS orbit is a 51 degree inclination orbit at an altitude of about 405 km. This orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three day repeat cycle. Thus, science applications of CATS include cloud and aerosol climate studies, air quality monitoring, and smoke/volcanic plume tracking. Current uncertainties in cloud and aerosol properties limit our ability to accurately model the Earth's climate system and predict climate change. These limitations are due primarily to difficulties in adequately measuring aerosols and clouds on a global scale. A primary science objectives of CATS is to provide global aerosol and cloud vertical profile data in near real time to for assimilation in aerosol transport models such as the NASA GEOS-5 model. Furthermore, the vertical profiles of cloud and aerosol properties provided by CATS will complement current and future passive satellite sensors. Another important science objective of CATS is to advance technology in support of future mission development. CATS will employ 355 nm and HSRL capabilities, as well as depolarization at multiple wavelengths. These expanded measurement capabilities will provide the science community with new and improved global data products that have yet to be retrieved from space-based lidar. In preparation for launch, simulations of the CATS lidar signal are produced using GEOS5 model data to develop and test future data products. An example of the simulated CATS attenuated

  15. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    NASA Astrophysics Data System (ADS)

    Marelle, L.; Raut, J.-C.; Thomas, J. L.; Law, K. S.; Quennehen, B.; Ancellet, G.; Pelon, J.; Schwarzenboeck, A.; Fast, J. D.

    2014-11-01

    During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using EMEP measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic, showing a good agreement, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that during the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5-6 km. Both modeled plume types had significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne LIDAR measurements. Evaluating the regional impacts in the Arctic of this event in terms of aerosol vertical structure, we find that during the 4 day presence of these aerosols in the lower European Arctic (< 75° N), biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~1.5 km) and higher altitudes (~4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface. The European plumes sampled during POLARCAT-France were transported over the region of springtime snow cover in Northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this transport event, the average modeled top of atmosphere (TOA

  16. Transport and Mixing Patterns over Central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES)

    SciTech Connect

    Fast, Jerome D.; Gustafson, William I.; Berg, Larry K.; Shaw, William J.; Pekour, Mikhail S.; Shrivastava, ManishKumar B.; Barnard, James C.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Erickson, Matthew H.; Jobson, Tom; Flowers, Bradley; Dubey, Manvendra K.; Springston, Stephen R.; Pirce, Bradley R.; Dolislager, Leon; Pederson, J. R.; Zaveri, Rahul A.

    2012-02-17

    We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scales flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley

  17. Transport and mixing patterns over Central California during the carbonaceous aerosol and radiative effects study (CARES)

    SciTech Connect

    Fast J. D.; Springston S.; Gustafson Jr., W. I.; Berg, L. K.; Shaw, W. J.; Pekour, M.; Shrivastava, M.; Barnard, J. C.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. A.; Erickson, M.; Jobson, B. T.; Flowers, B.; Dubey, M. K.; Pierce, R. B.; Dolislager, L.; Pederson, J.; Zaveri, R. A.

    2012-02-17

    We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scale flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 time periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin

  18. Investigation of the detailed chemical composition of organic aerosol in a South East Asian Rainforest

    NASA Astrophysics Data System (ADS)

    Hamilton, Jacqueline; Ward, Martyn; Rami Alfarra, M.; Lewis, Alastair; McFiggans, Gordon; Robinson, Niall

    2010-05-01

    The formation of secondary organic aerosol (SOA) in tropical regions is a key uncertainty in quantifying the effect of man made emissions on the climate. Large quantities of volatile organic compounds are emitted from natural biogenic sources in the tropics, including isoprene, monoterpenes and sequiterpenes. There are very few studies of the detailed chemical composition of organic aerosols in tropical rainforest regions, but these would provide information on the importance of primary versus secondary organic aerosols, the key VOC precursors, oxidation state and volatility. Particle samples were collected in a tropical rainforest at Danum Valley in Borneo as part of the OP3 field campaign in 2008. Twenty four hour filter samples were collected at the Global Atmospheric Watch station at a height of around 10 m and shipped back to the laboratory (below -4 °C) for offline analysis. The OA composition was studied using multiple high resolution chromatographic techniques including comprehensive two dimensional gas chromatography coupled to time of flight mass spectrometry (GCXGC-TOFMS) and liquid chromatography coupled to ion trap mass spectrometry (LC-MSn). The composition was directly compared to chamber generated SOA (as part of the Aerosol Coupling in the Earths System , ACES, experiment) to determine SOA tracers. A biogenic SOA tracer MS fragmentation library was constructed and a number of SOA components from limonene, linalool and -pinene were identified in the rainforest OA. Very high resolution mass spectrometry (Fourier Transform Ion Cyclotron Resonance FTICR-MS) allowed the O:C and H:C ratios to be determined and these will be compared to those obtained by aerosol mass spectrometry (AMS). In addition, the OA composition from the rainforest will be compared to other locations.

  19. Relating Aerosol Absorption due to Soot, Organic Carbon, and Dust to Emission Sources Determined from In-situ Chemical Measurements

    SciTech Connect

    Cazorla, Alberto; Bahadur, R.; Suski, Kaitlyn; Cahill, John F.; Chand, Duli; Schmid, Beat; Ramanathan, V.; Prather, Kimberly

    2013-09-17

    Estimating the aerosol contribution to the global or regional radiative forcing can take advantage of the relationship between the spectral aerosol optical properties and the size and chemical composition of aerosol. Long term global optical measurements from observational networks or satellites can be used in such studies, and using in-situ chemical mixing state measurements can help us to constrain the limitations of such an estimation. In this study, the Absorption Ångström Exponent (AAE) and the Scattering Ångström Exponent (SAE) are used to develop a new methodology for deducing chemical speciation based on wavelength dependence of the optical properties. In addition, in-situ optical properties and single particle chemical composition measured during three aircraft field campaigns are combined in order to validate the methodology for the estimation of aerosol composition using spectral optical properties. Results indicate a dominance of mixed types in the classification leading to an underestimation of the primary sources, however secondary sources are better classified. The distinction between carbonaceous aerosols from fossil fuel and biomass burning origins is not clear. On the other hand, the knowledge of the aerosol sources in California from chemical studies help to identify other misclassification such as the dust contribution.

  20. A Simulated Climatology of Asian Dust Aerosol and Its Trans-Pacific Transport. Part I: Mean Climate and Validation.

    NASA Astrophysics Data System (ADS)

    Zhao, T. L.; Gong, S. L.; Zhang, X. Y.; Blanchet, J.-P.; McKendry, I. G.; Zhou, Z. J.

    2006-01-01

    The Northern Aerosol Regional Climate Model (NARCM) was used to construct a 44-yr climatology of spring Asian dust aerosol emission, column loading, deposition, trans-Pacific transport routes, and budgets during 1960 2003. Comparisons with available ground dust observations and Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) measurements verified that NARCM captured most of the climatological characteristics of the spatial and temporal distributions, as well as the interannual and daily variations of Asian dust aerosol during those 44 yr. Results demonstrated again that the deserts in Mongolia and in western and northern China (mainly the Taklimakan and Badain Juran, respectively) were the major sources of Asian dust aerosol in East Asia. The dust storms in spring occurred most frequently from early April to early May with a daily averaged dust emission (diameter d < 41 μm) of 1.58 Mt in April and 1.36 Mt in May. Asian dust aerosol contributed most of the dust aerosol loading in the troposphere over the midlatitude regions from East Asia to western North America during springtime. Climatologically, dry deposition was a dominant dust removal process near the source areas, while the removal of dust particles by precipitation was the major process over the trans-Pacific transport pathway (where wet deposition exceeded dry deposition up to a factor of 20). The regional transport of Asian dust aerosol over the Asian subcontinent was entrained to an elevation of <3 km. The frontal cyclone in Mongolia and northern China uplifted dust aerosol in the free troposphere for trans-Pacific transport. Trans-Pacific dust transport peaked between 3 and 10 km in the troposphere along a zonal transport axis around 40°N. Based on the 44-yr-averaged dust budgets for the modeling domain from East Asia to western North America, it was estimated that of the average spring dust aerosol (diameter d < 41 μm) emission of 120 Mt from Asian source regions, about 51% was

  1. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Xia, X.; Che, H.; Wang, J.; Zhang, J.; Duan, Y.

    2016-03-01

    Seasonal variation of aerosol optical properties and dominant aerosol types at Kunming (KM), an urban site in southwest China, is characterized. Substantial influences of the hygroscopic growth and long-range transport of biomass burning (BB) aerosols on aerosol optical properties at KM are revealed. These results are derived from a detailed analysis of (a) aerosol optical properties (e.g. aerosol optical depth (AOD), columnar water vapor (CWV), single scattering albedo (SSA) and size distribution) retrieved from sunphotometer measurements during March 2012-August 2013, (b) satellite AOD and active fire products, (c) the attenuated backscatter profiles from the space-born lidar, and (d) the back-trajectories. The mean AOD440nm and extinction Angstrom exponent (EAE440 - 870) at KM are 0.42 ± 0.32 and 1.25 ± 0.35, respectively. Seasonally, high AOD440nm (0.51 ± 0.34), low EAE440 - 870 (1.06 ± 0.34) and high CWV (4.25 ± 0.97 cm) during the wet season (May - October) contrast with their counterparts 0.17 ± 0.11, 1.40 ± 0.31 and 1.91 ± 0.37 cm during the major dry season (November-February) and 0.53 ± 0.29, 1.39 ± 0.19, and 2.66 ± 0.44 cm in the late dry season (March-April). These contrasts between wet and major dry season, together with the finding that the fine mode radius increases significantly with AOD during the wet season, suggest the importance of the aerosol hygroscopic growth in regulating the seasonal variation of aerosol properties. BB and Urban/Industrial (UI) aerosols are two major aerosol types. Back trajectory analysis shows that airflows on clean days during the major dry season are often from west of KM where the AOD is low. In contrast, air masses on polluted days are from west (in late dry season) and east (in wet season) of KM where the AOD is often large. BB air mass is found mostly originated from North Burma where BB aerosols are lifted upward to 5 km and then subsequently transported to southwest China via prevailing westerly winds.

  2. Halogen-induced organic aerosol (XOA): a study on ultra-fine particle formation and time-resolved chemical characterization.

    PubMed

    Ofner, Johannes; Kamilli, Katharina A; Held, Andreas; Lendl, Bernhard; Zetzsch, Cornelius

    2013-01-01

    The concurrent presence of high values of organic SOA precursors and reactive halogen species (RHS) at very low ozone concentrations allows the formation of halogen-induced organic aerosol, so-called XOA, in maritime areas where high concentrations of RHS are present, especially at sunrise. The present study combines aerosol smog-chamber and aerosol flow-reactor experiments for the characterization of XOA. XOA formation yields from alpha-pinene at low and high concentrations of chlorine as reactive halogen species (RHS) were determined using a 700 L aerosol smog-chamber with a solar simulator. The chemical transformation of the organic precursor during the aerosol formation process and chemical aging was studied using an aerosol flow-reactor coupled to an FTIR spectrometer. The FTIR dataset was analysed using 2D correlation spectroscopy. Chlorine induced homogeneous XOA formation takes place at even 2.5 ppb of molecular chlorine, which was photolysed by the solar simulator. The chemical pathway of XOA formation is characterized by the addition of chlorine and abstraction of hydrogen atoms, causing simultaneous carbon-chlorine bond formation. During further steps of the formation process, carboxylic acids are formed, which cause a SOA-like appearance of XOA. During the ozone-free formation of secondary organic aerosol with RHS a special kind of particulate matter (XOA) is formed, which is afterwards transformed to SOA by atmospheric aging or degradation pathways. PMID:24601001

  3. Physicochemical characterization of aged biomass burning aerosol after long-range transport to Greece from large scale wildfires in Russia and surrounding regions, Summer 2010

    NASA Astrophysics Data System (ADS)

    Diapouli, E.; Popovicheva, O.; Kistler, M.; Vratolis, S.; Persiantseva, N.; Timofeev, M.; Kasper-Giebl, A.; Eleftheriadis, K.

    2014-10-01

    Smoke aerosol emitted by large scale wildfires in the European part of Russia and Ukraine, was transported to Athens, Greece during August 2010 and detected at an urban background site. Measurements were conducted for physico-chemical characterization of the aged aerosol and included on-line monitoring of PM10 and carbonaceous particles mass concentrations, as well as number size distributions and aerosol optical properties. In addition TSP filter samples were analyzed for major inorganic ions, while morphology and composition of particles was studied by individual particle analysis. Results supported the long-range transport of smoke plumes from Ukraine and Russia burning areas indicated by back trajectory analysis. An increase of 50% and 40% on average in organic (OC) and elemental carbon (EC) concentrations respectively, and more than 95% in carbonate carbon (CC) levels was observed for the biomass burning (BB) transport period of August with respect to the previous month of July. Mean 24-h OC/EC ratio was found in the range 3.2-8.5. Single scattering albedo (SSA) was also increased, indicating abundance of light scattering constituents and/or shift of size distributions towards larger particles. Increase in particle size was further supported by a decreasing trend in absorption Angström exponent (AAE). Ion analysis showed major contribution of secondary species (ammonium sulfate and nitrate) and soil components (Ca2+, Mg2+). Non-sea salt K+ exhibited very good correlation with secondary species, indicating the long-range transport of BB smoke as a possible common source. Individual particle analysis of the samples collected during BB-transport event in Athens revealed elevated number of soot externally mixed with fly ash Ca-rich particles. This result is in agreement with the increased OC and CC levels measured, thus pointing towards the main components comprising the aged BB aerosol microstructure.

  4. Simulated Transport and Mixing of Anthropogenic and Biogenic Aerosol and Their Entrainment into Clouds during the Goamazon Campaign

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Shrivastava, M. B.; Fan, J.; Berg, L. K.; Chand, D.; Fortner, E.; Mei, F.; Pekour, M. S.; Shilling, J. E.; Springston, S. R.; Tomlinson, J. M.; Wang, J.

    2014-12-01

    Several recent studies have suggested that anthropogenic emissions enhance the production of biogenic secondary organic aerosol (SOA). Because Manaus, Brazil is an isolated large city within the Amazon rainforest, measurements collected within and outside of the downwind urban plume during the 2014 Green Ocean Amazon (GoAmazon) campaign (supported by the U.S. Department of Energy's Atmospheric Radiation and Measurement program) will provide valuable information needed by regional and global models to evaluate parameterizations of SOA. The isolated urban plume should also provide distinct patterns of mixing with biogenic emissions and eliminate complications of multiple anthropogenic sources found in most other regions of the world. The objective of this study is to evaluate the performance of preliminary simulations of the transport, mixing, and chemical evolution of the Manaus urban plume from the chemistry version of the Weather Research and Forecasting model (WRF-Chem) using the available surface and aircraft measurements collected during the first intensive observation period (IOP) of GoAmazon. Simulations are performed using both a 10 km or 2 km grid spacing as well as a newly developed treatment that couples a sectional aerosol model and its parameterization of SOA using a volatility basis set approach with resolved clouds and a sub-grid scale cloud parameterization. Since the first IOP of GoAmazon was conducted during the wet season, shallow and deep convection were observed on most days and likely impacts the transport and vertical mixing of the Manaus plume. Therefore, we are using the available field campaign cloud measurements to evaluate the impact of sub-grid scale clouds on the horizontal and vertical distribution of aerosols. Satellite data is also used to assess the regional variability in simulated clouds and precipitation. Analyses of the simulations during the first IOP will be presented. Simulations with and without anthropogenic emissions will

  5. Influences of land-ocean-atmosphere dynamics and emissions sectors on atmospheric chemical transport during VOCALS REx

    NASA Astrophysics Data System (ADS)

    Spak, S.; Mena, M.; Carmichael, G. R.

    2009-12-01

    Measurements and modeling from the VOCALS REx campaign have identified a range of transport regimes based on synoptic meteorology, and suggested roles for the marine boundary layer inversion, downslope katabatic winds from the Andean cordillera, and Hadley cell subsidence as primary causes for observed aerosol and trace gas concentration gradients over the Southeast Pacific. This study employs atmospheric chemical transport modeling and airmass trajectory analyses to more directly address the influence of orographic winds, boundary layer dynamics, coastal circulations, and large-scale circulation by the subtropical high on the diurnal and episodic variability of pollution transport in the region. Using hourly simulations with the Weather Research and Forecasting model and the STEM chemical transport model at 12 km x 12 km resolution, we introduce tracer emissions within and above the boundary layer at representative locations--including the western slopes of the Andes, on-shore and off-shore coastal areas, metropolitan Santiago, the Chilean altiplano, and the free troposphere over the open ocean--and follow their transport and fate throughout the REx experiment of October-November 2008. Comparison between trajectories and tracer concentrations illustrate long range airmass history and allow for an understanding of the representativeness of instantaneous trajectories on transport phenomena. We further assess the contributions of emissions from power generation, copper smelters, natural sources, and anthropogenic area sources to aerosol concentrations over the Southeast Pacific, identifying their role in each transport regime.

  6. Aerosol measurements from a recent Alaskan volcanic eruption: Implications for volcanic ash transport predictions

    NASA Astrophysics Data System (ADS)

    Cahill, Catherine F.; Rinkleff, Peter G.; Dehn, Jonathan; Webley, Peter W.; Cahill, Thomas A.; Barnes, David E.

    2010-12-01

    Size and time-resolved aerosol compositional measurements conducted during the 2006 eruption of Augustine Volcano provide quantitative information on the size and concentration of the fine volcanic ash emitted during the eruption and carried and deposited downwind. These data can be used as a starting point to attempt to validate volcanic ash transport models. For the 2006 eruption of Augustine Volcano, an island volcano in south-central Alaska, size and time-resolved aerosol measurements were made using an eight-stage (0.09-0.26, 0.26-0.34, 0.34-0.56, 0.56-0.75, 0.75-1.15, 1.15-2.5, 2.5-5.0, and 5.0-35.0 μm in aerodynamic diameter) Davis Rotating Unit for Monitoring (DRUM) aerosol impactor deployed near ground level in Homer, Alaska, approximately 110 km east-northeast of the volcano. The aerosol samples collected by the DRUM impactor were analyzed for mass and elemental composition every 90 min during a four-week sampling period from January 13 to February 11, 2006, that spanned several explosive episodes during the 2006 eruption. The collected aerosols showed that the size distribution of the volcanic ash fallout changed during this period of eruption. Ash had its highest concentrations in the largest size fraction (5.0-35.0 μm) with no ash present in the less than 1.15 μm size fractions during the short-lived explosive events. In contrast, during the continuous ash emission phase, concentrations of volcanic ash were more significant in the less than 1.15 μm size fractions. Settling velocities dictate that the smaller size particles will transport far from the volcano and, unlike the larger particles, not be retained in the proximal stratigraphic record. These results show that volcanic ash transport and dispersion (VATD) model predictions based on massless tracer particles, such as the predictions from the PUFF VATD model, provide a good first-order approximation of the transport of both large and small volcanic ash particles. Unfortunately, the

  7. Measurement of aerosol chemical, physical and radiative properties in the Yangtze delta region of China

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Bergin, M. H.; Yu, X.; Liu, G.; Zhao, J.; Carrico, C. M.; Baumann, K.

    In order to understand the possible influence of aerosols on the environment in the agricultural Yangtze delta region of China, a one-month field sampling campaign was carried out during November 1999 in Linan, China. Measurements included the aerosol light scattering coefficient at 530 nm, σsp, measured at both dry relative humidity (RH<40%) and under ambient conditions (sample RH=63±19%), and the absorption coefficient at 565 nm, σap, for aerosol particles having diameters <2.5 μm (PM 2.5). At the same time, daily filter samples of PM 2.5 as well as aerosol particles having diameters <10 μm (PM 10) were collected and analyzed for mass, major ion, organic compound (OC), and elemental carbon (EC) concentrations in order to determine which anthropogenic chemical species were primarily responsible for aerosol light extinction. The aerosol loading in the rural Yangtze delta region was comparable to highly polluted urban areas, with mean and standard deviation (S.D.) values for σsp, σap and PM 2.5 of 353 Mm -1 (202 Mm -1), 23 Mm -1 (14 Mm -1) and 90 μg m -3 (47 μg m -3), respectively. A clear diurnal pattern was observed in σsp and σap with minimum values occurring in the middle of the day, most likely associated with the maximum midday mixing height. The ratio of the change in light scattering coefficient at ambient RH to that at controlled RH (RH<40%), Fσsp (RH), indicates that condensed water typically contributed ˜40% to the light scattering budget in this region. The mass scattering efficiency of the dry aerosol, E scat_2.5, and mass absorption efficiency of EC, E abs_2.5, have mean and S.D. values of 4.0 m 2 g -1 (0.4 m 2 g -1) and 8.6 m 2 g -1 (7.0 m 2 g -1), respectively. PM 2.5 concentrations in Linan and two other locations in the Yangtze delta, Sheshan and Changshu (which have monthly mean values ranging from ˜80 to 110 μg m -3), are all significantly higher than the proposed 24-h average US PM 2.5 NAAQS of 65 μg m -3. Organic compounds are

  8. Aged Organic Aerosol in the Upper Troposphere: Aging of boundary layer aerosol during and after convective transport and in-situ SOA formation during DC3. (Invited)

    NASA Astrophysics Data System (ADS)

    Campuzano Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Jimenez, J. L.; Hodzic, A.; Bela, M. M.; Barth, M. C.; Olson, J. R.; Crawford, J. H.; Brune, W. H.; Pollack, I. B.; Ryerson, T. B.; Blake, D. R.; Wisthaler, A.; Mikoviny, T.

    2013-12-01

    While aerosol scavenging in deep convection is efficient (comparable to soluble species like formaldehyde), significant transport of submicron aerosol was observed repeatedly during storms targeted in the course of the DC3 (Deep Convective Clouds and Chemistry ) campaign. The lofted aerosol was mostly organic, and even in fresh outflow was significantly more oxidized than the aerosol sampled in the source region of the convection. Organic aerosol (OA) sampled in both day-old outflow as well as in the background continental UT was in general significantly more oxidized than OA observed both in the fresh outflow, and in most lower tropospheric aerosol. This suggests either fast oxidative chemistry, and/or long residence times in the UT. Some of the potential factors contributing to this fast oxidation will be explored in this talk. A second source of UT OA was observed during several flights where gas-phase organics in the presence of NOx lead to the formation of secondary OA (SOA), including particulate organic nitrate. Most observations of this UT SOA during DC3 were made in fresh outflow. However, a unique opportunity to study the chemistry of this SOA formation in more detail with a box model presented itself in the flight on July 21st, 2012; here an initially near-particle-free UT airmass originating in the wake of a dissolving nighttime mesoscale convective system (MCS) was observed over several hours until new particle growth dominated by OA and particulate nitrate was measured.

  9. Aerosol Transport to the Greenland Summit Site, June, 2003 to August 2004

    NASA Astrophysics Data System (ADS)

    Cahill, T. A.; Cliff, S. S.; Jimenez-Cruz, M. P.; Portnoff, L.; Perry, K.; McConnell, J.; Burkhart, J.; Bales, R. C.

    2004-12-01

    With the resumption of year-round staffing of the Summit Greenland Environmental Observatory (GEOSummit) in 2003, we were able to sample aerosols year round by size (8 size modes), time (3 hr to 24 hr), and composition (mass, optical attenuation, and elements H, Na to Mo, plus lead) for association with particulate layers in snow, firn and ice. Sampling was accomplished using a 10 L/min slotted 8-stage rotating drum impactor (DELTA 8 DRUM, http://delta.ucdavis.edu)in the clean sector 0.5 km upwind from the main camp pollution sources. The air intake was approximately 2m above the snow surface. The rotation rate of the DRUM was slowed to 0.5 mm/day, allowing continuous sampling for 48 weeks with 12-hr time resolution on a single set of lightly greased 480 ?g/cm2 Mylar substrates. Early results show transport of relatively coarse (12 to 5 ?m aerodynamic diameter) soil aerosols to the site in spring, 2003, in well -defined plumes of 1- to 2-day duration. Trajectory analysis shows potential Asian sources. Sulfur-containing aerosols, also seen in plumes of short duration, occur in two size modes, a typical accumulation mode aerosol (0.75?0.34 ?m) and a very fine aerosol mode ( 0.34?0.09 ?m), the latter likely stratospheric in origin. We wish to acknowledge the excellent on-site support of the GEOSummit staff, including M. Lewis, R. Abbott, B. Torrison, and K. Hess, and T. Wood.

  10. WRF-Chem model sensitivity to chemical mechanisms choice in reconstructing aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Balzarini, A.; Pirovano, G.; Honzak, L.; Žabkar, R.; Curci, G.; Forkel, R.; Hirtl, M.; San José, R.; Tuccella, P.; Grell, G. A.

    2015-08-01

    In the framework of the AQMEII initiative WRF-Chem has been applied over Europe adopting two chemical configurations for the calendar year 2010. The first one employed the RADM2 gas-phase chemistry and MADE/SORGAM aerosol module, while the second one implemented the CBM-Z gaseous parameterization and MOSAIC aerosol chemistry. Configurations shared the same domain, meteorological setups and input data. The Comparison demonstrated that CBM-Z has a more efficient ozone-NO titration than RADM2 in regions with sufficiently high levels of NOx and VOCs. At the same time, CBM-Z is found to have a more effective NO2 + OH reaction. The parameterization of the relative humidity of deliquescence point has a strong impact on HNO3 and NO3 concentrations over Europe, particularly over the sea. The MADE approach showed to be more efficient than MOSAIC. Differently, particulate sulfate and SO2 ground concentrations proved to be more influenced by the heterogeneous SO2 cloud oxidation. PM10 and PM2.5 have shown similar results for MOSAIC and MADE/SORGAM, even though some differences were found in the dust and sea salt size partitioning between modes and bins. Indeed, in MADE the sea salt was distributed only in the coarse fraction, while the dust emissions were distributed mainly in the fine fraction. Finally, different chemical mechanisms give different Aerosol Optical Depths (AOD). WRF-Chem is found to under predict the AODs in both configurations because of the misrepresentation of the dust coarse particle, as shown by the analysis of the relationship between the Angström exponent and the AOD bias. Differently, when the AOD is dominated by fine particles, the differences in model performance are more evident, with MADE/SORGAM generally performing better than MOSAIC. Indeed the higher availability of both sulfate and nitrate has a significant influence on reconstruction of the AOD estimations. This paper shows the great importance of chemical mechanisms in both gaseous and

  11. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    NASA Astrophysics Data System (ADS)

    Marelle, L.; Raut, J.-C.; Thomas, J. L.; Law, K. S.; Quennehen, B.; Ancellet, G.; Pelon, J.; Schwarzenboeck, A.; Fast, J. D.

    2015-04-01

    During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using European Monitoring and Evaluation Programme (EMEP) measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic. Total PM2.5 agrees well with the measurements, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that during the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5-6 km. Both modeled plume types had undergone significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne lidar measurements. Model results show that the pollution event transported aerosols into the Arctic (> 66.6° N) for a 4-day period. During this 4-day period, biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~ 1.5 km) and higher altitudes (~ 4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface in anthropogenic plumes. The European plumes sampled during the POLARCAT-France campaign were transported over the region of springtime snow cover in northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this transport

  12. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    DOE PAGESBeta

    Marelle, L.; Raut, Jean-Christophe; Thomas, J. L.; Law, K. S.; Quennehen, Boris; Ancellet, G.; Pelon, J.; Schwarzenboeck, A.; Fast, Jerome D.

    2015-04-10

    During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using European Monitoring and Evaluation Programme (EMEP) measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic. Total PM2.5 agrees well with the measurements, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that duringmore » the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had undergone significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne lidar measurements. Model results show that the pollution event transported aerosols into the Arctic (> 66.6° N) for a 4-day period. During this 4-day period, biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~ 1.5 km) and higher altitudes (~ 4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface in anthropogenic plumes. The European plumes sampled during the POLARCAT-France campaign were transported over the region of springtime snow cover in northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this

  13. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    SciTech Connect

    Marelle, L.; Raut, Jean-Christophe; Thomas, J. L.; Law, K. S.; Quennehen, Boris; Ancellet, G.; Pelon, J.; Schwarzenboeck, A.; Fast, Jerome D.

    2015-04-10

    During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using European Monitoring and Evaluation Programme (EMEP) measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic. Total PM2.5 agrees well with the measurements, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that during the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had undergone significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne lidar measurements. Model results show that the pollution event transported aerosols into the Arctic (> 66.6° N) for a 4-day period. During this 4-day period, biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~ 1.5 km) and higher altitudes (~ 4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface in anthropogenic plumes. The European plumes sampled during the POLARCAT-France campaign were transported over the region of springtime snow cover in northern Scandinavia, where they had a significant

  14. Airflow, transport and regional deposition of aerosol particles during chronic bronchitis of human central airways.

    PubMed

    Farkhadnia, Fouad; Gorji, Tahereh B; Gorji-Bandpy, Mofid

    2016-03-01

    In the present study, the effects of airway blockage in chronic bronchitis disease on the flow patterns and transport/deposition of micro-particles in a human symmetric triple bifurcation lung airway model, i.e., Weibel's generations G3-G6 was investigated. A computational fluid and particle dynamics model was implemented, validated and applied in order to evaluate the airflow and particle transport/deposition in central airways. Three breathing patterns, i.e., resting, light activity and moderate exercise, were considered. Using Lagrangian approach for particle tracking and random particle injection, an unsteady particle tracking method was performed to simulate the transport and deposition of micron-sized aerosol particles in human central airways. Assuming laminar, quasi-steady, three-dimensional air flow and spherical non-interacting particles in sequentially bifurcating rigid airways, airflow patterns and particle transport/deposition in healthy and chronic bronchitis (CB) affected airways were evaluated and compared. Comparison of deposition efficiency (DE) of aerosols in healthy and occluded airways showed that at the same flow rates DE values are typically larger in occluded airways. While in healthy airways, particles deposit mainly around the carinal ridges and flow dividers-due to direct inertial impaction, in CB affected airways they deposit mainly on the tubular surfaces of blocked airways because of gravitational sedimentation. PMID:26541595

  15. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  16. The long-range transport of atmospheric aerosols from South Asia to Himalayas

    NASA Astrophysics Data System (ADS)

    Cong, Zhiyuan; Kang, Shichang; Kawamura, Kimitaka

    2016-04-01

    High levels of carbonaceous aerosol exist over South Asia, the area adjacent to the Himalayas and Tibetan Plateau. Little is known about if they can be transported across the Himalayas, and as far inland as the Tibetan Plateau. To resolve such scientific questions, aerosol samples were collected weekly from August 2009 to July 2010 at Qomolangma (Mt. Everest) Station for Atmospheric and Environmental Observation and Research(QOMS, 4276 m a.s.l.). In the laboratory, major ions, elemental carbon, organic carbon, levoglucosan, water-soluble organic carbon, and organic acids were analyzed. The concentration levels of OC and EC at QOMS are comparable to those at high-elevation sites on the southern slopes of the Himalayas (Langtang and NCO-P), but 3 to 6 times lower than those at Manora Peak, India, and Godavari, Nepal. Sulfate was the most abundant anion species followed by nitrate. The dust loading, represented by Ca2+ concentration, was relatively constant throughout the year. OC, EC and other ionic species (NH+4 , K+, NO‑ and SO2‑) exhibited a pronounced peak in the pre-monsoon period and a minimum in the monsoon season, being similar to the seasonal trends of aerosol compo-sition reported previously from the southern slope of the Himalayas. The strong correlation of OC and EC in QOMS aerosols with K+ and levoglucosan indicates that they mainly originated from biomass burning. Molecular distributions of dicarboxylic acids and related compounds (malonic acid/ succinic acid, maleic acid/fumaric acid) further support this finding. The fire spots observed by MODIS and backward air-mass trajectories further demonstrate that in pre-monsoon season, agricultural and forest fires in northern India and Nepal were most likely sources of carbonaceous aerosol at QOMS. In addition to large-scale atmospheric circulation, the unique mountain/valley breeze system can also have an important effect on air-pollutant transport.With the consideration of the darkening force of

  17. Intra and inter-continental aerosol transport and local and regional impacts

    NASA Astrophysics Data System (ADS)

    Charles, Leona Ann Marie

    Under the Clean Air Act, the Environmental Protection Agency (EPA) is required to establish a nationally uniform air quality index for the reporting of air quality. In 1976, the EPA established this index, then called the Pollutant Standards Index, for use by state and local communities across the country. The Index provides information on pollutant concentrations for ground-level ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. On July 18, 1997, the EPA revised the ozone and particulate matter standards, in light of a comprehensive review of new scientific evidence including refined fine particulate matter standards.* Any program which is designed to improve air quality must devise tools in which emissions, meteorology, air chemistry and transport are understood. Clearly, the complexity of this task requires measurements at both regional and mesoscale ranges, as well as on a continental scale to investigate long range transport. Unfortunately, determination of fine particulate matter (PM) concentrations is particularly difficult since an accurate measurement of PM2.5 relies on costly equipment which cannot provide the complete transport story and the mixing and dispersion of particulate matter is much more complex than that for trace gases. Besides the need for accurate measurements as a way of documenting air quality standards, the EPA is required in the near future to implement a 24 hour Air Quality Forecast. Current forecast tools are usually based on emission inventories and meteorological forecasts, but significant work is being done in trying to assimilate both ground measurements as well as satellite measurements into these schemes. Clearly, the 'Holy Grail' would be the capability of assimilating full 3D (+ time) measurements. However, since satellite measurements are primarily passive, only total air column properties such as aerosol optical depth can be retrieved. In particular, it is not possible to determine the

  18. Intercomparisons of airborne measurements of aerosol ionic chemical composition during TRACE-P and ACE-Asia

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Weber, R. J.; Maxwell-Meier, K.; Orsini, D. A.; Lee, Y.-N.; Huebert, B. J.; Howell, S. G.; Bertram, T.; Talbot, R. W.; Dibb, J. E.; Scheuer, E.

    2004-08-01

    As part of the two field studies, Transport and Chemical Evolution over the Pacific (TRACE-P) and the Asian Aerosol Characterization Experiment (ACE-Asia), the inorganic chemical composition of tropospheric aerosols was measured over the western Pacific from three separate aircraft using various methods. Comparisons are made between the rapid online techniques of the particle into liquid sampler (PILS) for measurement of a suite of fine particle a mist chamber/ion chromatograph (MC/IC) measurement of fine sulfate, and the longer time-integrated filter and micro-orifice impactor (MOI) measurements. Comparisons between identical PILS on two separate aircraft flying in formation showed that they were highly correlated (e.g., sulfate r2 of 0.95), but were systematically different by 10 ± 5% (linear regression slope and 95% confidence bounds), and had generally higher concentrations on the aircraft with a low-turbulence inlet and shorter inlet-to-instrument transmission tubing. Comparisons of PILS and mist chamber measurements of fine sulfate on two different aircraft during formation flying had an r2 of 0.78 and a relative difference of 39% ± 5%. MOI ionic data integrated to the PILS upper measurement size of 1.3 μm sampling from separate inlets on the same aircraft showed that for sulfate, PILS and MOI were within 14% ± 6% and correlated with an r2 of 0.87. Most ionic compounds were within ±30%, which is in the range of differences reported between PILS and integrated samplers from ground-based comparisons. In many cases, direct intercomparison between the various instruments is difficult due to differences in upper-size detection limits. However, for this study, the results suggest that the fine particle mass composition measured from aircraft agree to within 30-40%.

  19. Intercomparisons of Airborne Measurements of Aerosol Ionic Chemical Composition during TRACE-P and ACE-Asia

    NASA Technical Reports Server (NTRS)

    Ma, Y.; Weber, R. J.; Maxwell-Meier, K.; Orsini, D. A.; Lee, Y.-N.; Huebert, B. J.; Howell, S. G.; Bertram, T.; Talbot, R. W.

    2003-01-01

    As part of the two field studies, Transport and Chemical Evolution over the Pacific (TRACE-P), and the Asian Aerosol Characterization Experiment (ACEAsia), the inorganic chemical composition of tropospheric aerosols was measured over the western Pacific from three separate aircraft using various methods. Comparisons are made between the rapid online techniques of the Particle Into Liquid Sampler (PILS) for measurement of a suite of fine particle ionic compounds and a mist chamber (MC/IC) measurement of fine sulfate, and the longer time-integrated filter and multi-orifice impactor (MOI) measurements. Comparisons between identical PILS on two separate aircraft flying in formation showed that they were highly correlated (e.g., sulfate r(sup 2) of 0.95), but were systematically different by 10 +/- 5% (linear regression slope and 95% confidence bounds), and had generally higher concentrations on the aircraft with a low turbulence inlet and shorter inlet-to-instrument transmission tubing. Comparisons of PILS and mist chamber measurements of fine sulfate on two different aircraft during formation flying had an 3 of 0.78 and a relative difference of 39% +/- 5%. MOI ionic data integrated to the PILS upper measurement size of 1.3 pm sampling from separate inlets on the same aircraft showed that for sulfate, PILS and MOI were within 14% +/- 6% and correlated with an r(sup 2) of 0.87. Most ionic compounds were within f 30%, which is in the range of differences reported between PILS and integrated samplers from ground-based comparisons. In many cases, direct intercomparison between the various instruments is difficult due to differences in upper-size detection limits. However, for this study, the results suggest that the fine particle mass composition measured from aircraft agree to within 30-40%.

  20. Multiple species reactive chemical transport in groundwater: A verification exercise

    SciTech Connect

    Narasimhan, T.N.; Apps, J.A.; Zhu, Ming.

    1991-04-01

    Two multiple-species reactive chemical transport models (FASTCHEM and DYNAMIX) were tested against each other to check for consistency of solutions. For the particular problem studied, FASTCHEM and DYNAMIX led to differences in aqueous concentrations and mineral assemblages primarily because FASTCHEM ignores redox reactions in the transport phase of the calculations. Also, the spatial concentration profiles generated by FASTCHEM tend to be sharper than those generated by DYNAMIX because FASTCHEM is particularly designed to handle advection-dominated transport systems.

  1. "EFFECT OF NON-TARGET ORGANICS ON ORGANIC CHEMICAL TRANSPORT."

    EPA Science Inventory

    NRMRL/IO BOOK NRMRL-CIN-1363 Enfield*, C.G., Lien*, B.K., and Wood*, A.L. "Effect of Non-Target Organics on Organic Chemical Transport." Published in: Humic Substances and Chemical Contaminants, Chapter 23, C.E. Clapp, M.H.B. Hayes, et al (Ed.), Madison, WI: So...

  2. 18. VIEW OF THE CEILING, THE PIPING TRANSPORTED CHEMICALS FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF THE CEILING, THE PIPING TRANSPORTED CHEMICALS FROM A CHEMICAL PREPARATION ROOM ON THE SECOND FLOOR TO THE FIRST FLOOR PROCESS AREAS. (6/12/73) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  3. Transport (Computer Programs for Chemical Engineering Education).

    ERIC Educational Resources Information Center

    Gordon, R., Ed.

    This work contains 21 computer programs intended for use in a chemical engineering education format. The programs represent appropriate homework exercises for undergraduate students. The intended academic level is listed for each example. Although the activities deal with specific problems, the computer programs represent the areas of kinetics,…

  4. Chemical characteristics of size-resolved aerosols from Asian dust and haze episode in Seoul Metropolitan City

    NASA Astrophysics Data System (ADS)

    Kang, Eunha; Han, Jihyun; Lee, Meehye; Lee, Gangwoong; Kim, Jong Chun

    2013-06-01

    We collected aerosol particles in Seoul using a 10 stage Micro-Orifice Uniform Deposit Impactor (MOUDI) to investigate the size distributions of aerosol mass and water-soluble inorganic ions (Na+, NH4+, K+, Mg2 +, Ca2 +, Cl-, NO3-, and SO42 -) for the two high-mass episodes taking place in February and April, 2009. The former was a heavy Asian dust (AD) event and the latter was a haze episode associated with stagnant condition that prevailed over the Yellow Sea region. In AD plume, the mass peak was noticeable at coarse mode between 1.0 and 1.8 μm but SO42 - and NH4+ were enriched in condensation mode between 0.056 and 0.1 μm. There was little chance for the heavy AD plume to pick up SO2 and water vapor, which are in good accordance with its transport paths and the chemical characteristics of aerosols and gaseous species. These results imply that the heterogeneous reaction of SO2 on dust particles would not be substantial in determining sulfate concentrations for this particular type of dust plume, considering the possibility of loss of large soil particles in MOUDI. During the haze episode, both total aerosol mass and water-soluble inorganic ions showed bimodal size distributions with the droplet (0.32-0.56 μm) and coarse (1.0-1.8 μm) mode peaks. In this haze event, acidic gases tend to be dissolved more efficiently in larger particles, shifting the peaks of SO42 - and NO3- to larger droplet particles. For NH4+, however, the mode change was not observed, which was probably due to the depleted source and high solubility of NH3. These results demonstrated that the availability of precursor gases such as SO2, NO2, and NH3, and the water-vapor contents were important factor to determine the formation of droplet-mode particles and their sizes.

  5. Effect of phytoplankton biomass in seawater on chemical properties of sea spray aerosols.

    PubMed

    Park, Jiyeon; Kim, Dohyung; Lee, Kwangyul; Han, Seunghee; Kim, Hyunji; Williams, Leah R; Joo, Hung Soo; Park, Kihong

    2016-09-15

    This study is to investigate the effect of biological seawater properties on sea spray aerosols (SSA). Concentrations of chlorophyll-a and bacteria were measured at coastal site in Korea in fall and summer seasons. Also, aerosol mass spectrometer (AMS) was used to determine chemical constituents (organics, sulfate, nitrate, ammonium, and chloride) of non-refractory submicrometer aerosols sprayed from seawaters using a bubble bursting system. The average concentration of chlorophyll-a in seawater in fall was 1.75±0.78μg/l, whereas it significantly increased to 5.11±2.16μg/l in summer. It was found that the fraction of organics in the submicrometer SSA was higher in summer (68%) than fall (49%), and that the organic fraction in the SSA increased as the concentration of chlorophyll-a increased in seawater, suggesting that the high phytoplankton biomass in seawater could lead to the enhancement of organic species in the SSA. PMID:27345708

  6. Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity

    DOE PAGESBeta

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; Nenes, A.; Donahue, N. M.; Pandis, S. N.

    2015-07-24

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OSc), and mass yield. The OA oxidation state generally increased duringmore » photo-oxidation, and the final OA OSc ranged from -0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  7. Aerosol transport of biomass burning to the Bolivian Andean region from remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Perez-Ramirez, Daniel; Whiteman, David; Andrade, Marcos; Gasso, Santiago; Stein, Ariel; Torres, Omar; Eck, Tom; Velarde, Fernando; Aliaga, Diego

    2016-04-01

    This work deals with the analysis of columnar aerosol optical and microphysical properties obtained by the AERONET network in the region of Bolivia and its border with Brazil. Through the long record AERONET measurements we focus in the transport of biomass-burning aerosol from the Amazon basin (stations at Rio Branco, Cuiba, Ji Parana and Santa Cruz) to the Andean Altiplano (altitude above 3000 m a.s.l. at the station in the city of La Paz). Also, measurements from the space-sensors MODIS and OMI are used to understand spatial distribution. The main results is the high impact in the aerosol load during the months of August, September and August with mean values of aerosol optical depth at 500 nm (AOD) at the low lands of ≈ 0.60 ± 0.60 and Angstrom exponent (α(440-870)) of ≈ 1.52 ± 0.38. Satellite measurements also follow very similar patterns. Also, that season is characterized by some extreme events that can reach AOD of up to 6.0. Those events are cloud-screened by MODIS but not by OMI sensor, which is attributed to different pixel resolutions. The biomass-burning is clearly transport to the Andean region where higher values of AOD (~ 0.12 ± 0.06 versus 0.09 ± 0.04 in the no biomass-burning season) and α(440-870) (~ 0.95 ± 0.30 versus 0.84 ± 0.3 in the no biomass-burning season). However, the intensity of the biomass-burning season varies between different years. Analysis of precipitation anomalies using TRNM satellites indicates a strong correlation with AOD, which suggest that on dry years there is less vegetation to burn and so less aerosol load. The opposite is found for positive anomalies of precipitation. In the transport of biomass burning larger values of the effective radius (reff) are observed in La Paz (reff = 0.26 ± 0.10 μm) than in the low lands (reff = 0.63 ± 0.24 μm), which has been explained by aerosol aging processes. Moreover, although the spectral dependence is similar, single scattering albedo (SSA) is larger in the low lands

  8. Monitoring biomass burning and aerosol loading and transport from a geostationary satellite perspective

    SciTech Connect

    Prins, E.M.; Menzel, W.P.

    1996-12-31

    The topic of this paper is the use of geostationary operational environmental satellites (GOES) to monitor trends in biomass burning and aerosol production and transport in South America and through the Western Hemisphere. The GOES Automated Biomass Burning Algorithm (ABBA) was developed to provide diurnal information concerning fires in South America; applications demonstrating the ability to document long-term trends in fire activity are described. Analyses of imagery collected by GOES-8 is described; six biomass burning seasons in South America revealed many examples of large-scale smoke transport extending over several million square kilometers. Four major transport regimes were identified. Case studies throughout South America, Canada, the United States, Mexico, Belize, and Guatemala have successfully demonstrated the improved capability of GOES-8 for fire and smoke monitoring in various ecosystems. Global geostationary fire monitoring will be possible with the launch of new satellites. 12 refs., 4 figs., 1 tab.

  9. Chemical composition and sources of coastal marine aerosol particles during the 2008 VOCALS-REx campaign

    SciTech Connect

    Lee, Y. -N.; Springston, S.; Jayne, J.; Wang, J.; Hubbe, J.; Senum, G.; Kleinman, L.; Daum, P. H.

    2014-01-01

    The chemical composition of aerosol particles (Dp ≤ 1.5 μm) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO42−, followed by Na+, Cl, Org (total organics), NH4+, and NO3, in decreasing order of importance; CH3SO3 (MSA), Ca2+, and K+ rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH4+ to SO42− equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl deficits caused by both HNO3 and H2SO4, but for the most part were externally mixed with particles, mainly SO42−. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH3 is present between 72° W and 76° W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31° S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol

  10. Observations of the Interaction and/or Transport of Aerosols with Cloud or Fog during DRAGON Campaigns from AERONET Ground-Based Remote Sensing

    NASA Astrophysics Data System (ADS)

    Eck, Thomas; Holben, Brent; Schafer, Joel; Giles, David; Kim, Jhoon; Kim, Young; Sano, Itaru; Reid, Jeffrey; Pickering, Kenneth; Crawford, James; Sinyuk, Alexander; Trevino, Nathan

    2014-05-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. AERONET has established Distributed Regional Aerosol Gridded Observation Networks (DRAGON) during field campaigns that are short-term (~2-3 months) relatively dense spatial networks of ~15 to 45 sun and sky scanning photometers. Recent major DRAGON field campaigns in Japan and South Korea (Spring 2012) and California (Winter 2013) have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth signal for these cases of persistent and extensive cloud cover. Additionally, extensive fog that was coincident with aerosol layer height on some days in both Korea and California resulted in large increases in fine mode aerosol radius, with a mode of cloud-processed or residual aerosol of radius ~0.4-0.5 micron sometimes observed. Cloud processed aerosol may occur much more frequently than AERONET data suggest due to inherent difficulty in observing aerosol properties near clouds from remote sensing observations. These biases of aerosols associated with clouds would likely be even greater for satellite remote sensing retrievals of aerosol properties near clouds due to 3-D effects and sub-pixel cloud contamination issues.

  11. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2016-01-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under a China Meteorological Administration (CMA) chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment). Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme - WDM6) and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.

    The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  12. Chemical Nature Of Titan’s Organic Aerosols Constrained from Spectroscopic and Mass Spectrometric Observations

    NASA Astrophysics Data System (ADS)

    Imanaka, Hiroshi; Cruikshank, D. P.

    2012-10-01

    The Cassini-Huygens observations greately extend our knowledge about Titan’s organic aerosols. The Cassini INMS and CAPS observations clearly demonstrate the formation of large organic molecules in the ionosphere [1, 2]. The VIMS and CIRS instruments have revealed spectral features of the haze covering the mid-IR and far-IR wavelengths [3, 4, 5, 6]. This study attempts to speculate the possible chemical nature of Titan’s aerosols by comparing the currently available observations with our laboratory study. We have conducted a series of cold plasma experiment to investigate the mass spectrometric and spectroscopic properties of laboratory aerosol analogs [7, 8]. Titan tholins and C2H2 plasma polymer are generated with cold plasma irradiations of N2/CH4 and C2H2, respectively. Laser desorption mass spectrum of the C2H2 plasma polymer shows a reasonable match with the CAPS positive ion mass spectrum. Furthermore, spectroscopic features of the the C2H2 plasma polymer in mid-IR and far-IR wavelegths qualitatively show reasonable match with the VIMS and CIRS observations. These results support that the C2H2 plasma polymer is a good candidate material for Titan’s aerosol particles at the altitudes sampled by the observations. We acknowledge funding supports from the NASA Cassini Data Analysis Program, NNX10AF08G, and from the NASA Exobiology Program, NNX09AM95G, and the Cassini Project. [1] Waite et al. (2007) Science 316, 870-875. [2] Crary et al. (2009) Planet. Space Sci. 57, 1847-1856. [3] Bellucci et al. (2009) Icarus 201, 198-216. [4] Anderson and Samuelson (2011) Icarus 212, 762-778. [5] Vinatier et al. (2010) Icarus 210, 852-866. [6] Vinatier et al. (2012) Icarus 219, 5-12. [7] Imanaka et al. (2004) Icarus 168, 344-366. [8] Imanaka et al. (2012) Icarus 218, 247-261.

  13. Chemical composition of post-harvest biomass burning aerosols in Gwangju, Korea.

    PubMed

    Ryu, Seong Y; Kim, Jeong E; Zhuanshi, H; Kim, Young J; Kang, Gong U

    2004-09-01

    The main objective of this study was to investigate the chemical characteristics of post-harvest biomass burning aerosols from field burning of barley straw in late spring and rice straw in late fall in rural areas of Korea. A 12-hr integrated intensive sampling of particulate matter (PM) with an aerodynamic diameter less than or equal to 10 microm (PM10) and PM with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) biomass burning aerosols had been conducted continuously in Gwangju, Korea, during two biomass burning periods: June 4--15, 2001, and October 8--November 14, 2002. The fine and coarse particles of biomass burning aerosols were analyzed for mass and ionic, elemental, and carbonaceous species. The average fine and coarse mass concentrations of biomass burning aerosols were, respectively, 129.6 and 24.2 microg/m3 in June 2001 and 47.1 and 33.2 microg/m3 in October--November 2002. An exceptionally high PM2.5 concentration of 157.8 microg/m3 was observed during biomass burning events under stagnant atmospheric conditions. In the fine mode, chlorine and potassium were unusually rich because of the high content of semi-arid vegetation. Both organic carbon (OC) and elemental carbon increased during the biomass burning periods, with the former exhibiting a higher abundance. PM from the open field burning of agricultural waste has an adverse impact on local air quality and regional climate. PMID:15468665

  14. MBAS (Methylene Blue Active Substances) and LAS (Linear Alkylbenzene Sulphonates) in Mediterranean coastal aerosols: Sources and transport processes

    NASA Astrophysics Data System (ADS)

    Becagli, S.; Ghedini, C.; Peeters, S.; Rottiers, A.; Traversi, R.; Udisti, R.; Chiari, M.; Jalba, A.; Despiau, S.; Dayan, U.; Temara, A.

    2011-12-01

    Methylene Blue Active Substances (MBAS) and Linear Alkylbenzene Sulphonates (LAS) concentrations, together with organic carbon and ions were measured in atmospheric coastal aerosols in the NW Mediterranean Basin. Previous studies have suggested that the presence of surfactants in coastal aerosols may result in vegetation damage without specifically detecting or quantifying these surfactants. Coastal aerosols were collected at a remote site (Porquerolles Island-Var, France) and at a more anthropised site (San Rossore National Park-Tuscany, Italy). The chemical data were interpreted according to a comprehensive local meteorological analysis aiming to decipher the airborne source and transport processes of these classes of compounds. The LAS concentration (anthropogenic surfactants) was measured in the samples using LC-MS/MS, a specific analytical method. The values were compared with the MBAS concentration, determined by a non-specific analytical method. At Porquerolles, the MBAS concentration (103 ± 93 ng m -3) in the summer samples was significantly higher than in the winter samples. In contrast, LAS concentrations were rarely greater than in the blank filters. At San Rossore, the mean annual MBAS concentration (887 ± 473 ng m -3 in PM10) contributed about 10% to the total atmospheric particulate organic matter. LAS mean concentration in these same aerosol samples was 11.5 ± 10.5 ng m -3. A similar MBAS (529 ± 454 ng m -3) - LAS (7.1 ± 4.1 ng m -3 LAS) ratio of ˜75 was measured in the fine (PM2.5) aerosol fraction. No linear correlation was found between MBAS and LAS concentrations. At San Rossore site the variation of LAS concentrations was studied on a daily basis over a year. The LAS concentrations in the coarse fraction (PM10-2.5) were higher during strong sea storm conditions, characterized by strong air flow coming from the sea sector. These events, occurring with more intensity in winter, promoted the formation of primary marine aerosols containing LAS

  15. Vertical Structure, Transport, and Mixing of Ozone and Aerosols Observed During NEAQS/ICARTT 2004

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Hardesty, R. M.; Brewer, W. A.; Alvarez, R. J.; Sandberg, S. P.; Tucker, S. C.; Intrieri, J. M.; Marchbanks, R. D.; McCarty, B. J.; Banta, R. M.; Darby, L. S.; White, A. B.

    2005-12-01

    During the 2004 New England Air Quality Study (NEAQS), which was conducted within the framework of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) field experiment, airborne and shipborne lidar remote sensing instruments were deployed to characterize the 3-dimensional structure of ozone, aerosol, and low-level wind fields in the New England region. The 2004 measurements confirmed findings from the smaller-scale NEAQS 2002 experiment: the vertical structure and transport patterns of pollutant plumes from the Boston and New York City urban areas are strongly modified when they are advected over the Gulf of Maine. Because of strong vertical wind shear and a very stable atmosphere over the cold ocean water the plumes tend to get sheared apart and the resulting pieces of the plumes stay confined in layers aloft, isolated from the surface. Most notably, ozone concentrations aloft are very often significantly higher than ozone levels near the ocean surface. These elevated pollution plumes over the Gulf of Maine can affect air quality in coastal New England only when they are transported back over land. This can be accomplished by the large-scale flow or by local circulations such as the sea breeze. Once over land the elevated plumes may impact surface air quality by direct transport to higher terrain (e.g., Cadillac Mountain, ME) or by being fumigated down to the surface. Alternatively, but probably more rarely, an elevated pollution plume over the ocean may be mixed down to the surface by mechanically generated turbulence and then transported back to land within the marine boundary layer. We will use airborne and shipborne lidar remote sensing data to characterize the vertical distribution of ozone and aerosols over coastal New England, in particular the difference in plume structure over land and water. We will also show observational evidence for several of the processes described above that may mix down and transport

  16. Long-term real-time chemical characterization of submicron aerosols at Montsec (Southern Pyrenees, 1570 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Ripoll, A.; Minguillón, M. C.; Pey, J.; Jimenez, J. L.; Day, D. A.; Querol, X.; Alastuey, A.

    2014-11-01

    Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols from a continental background site (Montsec, MSC, 1570 m a.s.l.) in the Western Mediterranean Basin (WMB) were conducted for 10 months (July 2011-April 2012). An Aerosol Chemical Speciation Monitor (ACSM) was co-located with other on-line and off-line PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here, for the first time for this region. Seasonal trends in PM1 components are attributed to variations in: evolution of the planetary boundary layer (PBL) height, air mass origin, and meteorological conditions. In summer, the higher temperature and solar radiation increases convection, enhancing the growth of the PBL and the transport of anthropogenic pollutants towards high altitude sites. Furthermore, the regional recirculation of air masses over the WMB creates a continuous increase in the background concentrations of PM1 components and causes the formation of reserve strata at relatively high altitudes. Sporadically, MSC is affected by air masses from North Africa. The combination of all these atmospheric processes at local, regional and continental scales results in a high variability of PM1 components, with poorly defined daily patterns, except for the organic aerosols (OA). OA was mostly oxygenated organic aerosol (OOA), with two different types: semi-volatile (SV-OOA) and low-volatile (LV-OOA), and both showed marked diurnal cycles regardless of the air mass origin, especially SV-OOA. This different diurnal variation compared to inorganic aerosols suggested that OA components at MSC are not only associated with anthropogenic and long-range-transported secondary OA (SOA), but also with recently-produced biogenic SOA. Very different conditions drive the aerosol phenomenology in winter at MSC. The thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere

  17. Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign

    NASA Astrophysics Data System (ADS)

    Rinaldi, M.; Gilardoni, S.; Paglione, M.; Sandrini, S.; Fuzzi, S.; Massoli, P.; Bonasoni, P.; Cristofanelli, P.; Marinoni, A.; Poluzzi, V.; Decesari, S.

    2015-10-01

    High-resolution aerosol mass spectrometer measurements were performed, for the first time, at the Mt. Cimone Global Atmosphere Watch (GAW) station between June and July 2012, within the EU project PEGASOS and the ARPA-Emilia-Romagna project SUPERSITO. Submicron aerosol was dominated by organics (63 %), with sulfate, ammonium and nitrate contributing the remaining 20, 9 and 7 %, respectively. Organic aerosol (OA) was in general highly oxygenated, consistent with the remote character of the site; our observations suggest that oxidation and secondary organic aerosol (SOA) formation processes occurred during aerosol transport to high altitudes. All of the aerosol component concentrations as well as the OA elemental ratios showed a clear daily trend, driven by the evolution of the planetary boundary layer (PBL) and by the mountain wind regime. Higher loadings and lower OA oxidation levels were observed during the day, when the site was within the PBL, and therefore affected by relatively fresh aerosol transported from lower altitudes. Conversely, lower loadings and higher OA oxidation levels were observed at night, when the top of Mt. Cimone resided in the free troposphere although affected by the transport of residual layers on several days of the campaign. Analysis of the elemental ratios in a Van Krevelen space shows that OA oxidation follows a slope comprised between -0.5 and -1, consistent with addition of carboxylic groups, with or without fragmentation of the parent molecules. The increase of carboxylic groups during OA ageing is confirmed by the increased contribution of organic fragments containing more than one oxygen atom in the free troposphere night-time mass spectra. Finally, positive matrix factorization was able to deconvolve the contributions of relatively fresh OA (OOAa) originating from the PBL, more aged OA (OOAb) present at high altitudes during periods of atmospheric stagnation, and very aged aerosols (OOAc) transported over long distances in the

  18. CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989

    NASA Technical Reports Server (NTRS)

    Mcbride, B.

    1994-01-01

    Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for

  19. Measurements of the chemical, physical, and optical properties of single aerosol particles

    NASA Astrophysics Data System (ADS)

    Moffet, Ryan Christopher

    Knowledge of aerosol physical, chemical, optical properties is essential for judging the effect that particulates have on human health, climate and visibility. The aerosol time-of-flight mass spectrometer (ATOFMS) is capable of measuring, in real-time, the size and chemical composition of atmospheric aerosols. This was exemplified by the recent deployments of the ATOFMS to Mexico City and Riverside. The ATOFMS provided rapid information about the major particle types present in the atmosphere. Industrial sources of particles, such as fine mode particles containing lead, zinc and chloride were detected in Mexico City. The rapid time response of the ATOFMS was also exploited to characterize a coarse particle concentrator used in human health effects studies. The ATOFMS showed the ability to detect changes in particle composition with a time resolution of 15 min during short 2 hour human exposure studies. As a major component of this work, an optical measurement has been added to the ATOFMS. The scattered light intensity was acquired for each sized and chemically analyzed particle. This scattering information together with the particle aerodynamic diameter, enabled the refractive index and density of the aerosol to be retrieved. This method was validated in the laboratory using different test particles such as oils, aqueous salt solutions and black carbon particles. It was found that the nozzle-type inlet does not evaporate aqueous salt particles as has been observed for aerodynamic lens inlets. These new optical and microphysical measurements were integrated into the ATOFMS for field deployment in Riverside and Mexico City. For both cities, the different mixing states were found to have unique refractive indexes and densities. A fraction of the strongly absorbing elemental carbon particles were observed to have a spherical morphology due to heavy mixing with secondary species. In addition to the quantitative refractive index and effective density measurements

  20. Chemical properties and morphology of Marine Aerosol in the Mediterranean atmosphere: a mesocosm study

    NASA Astrophysics Data System (ADS)

    D'Anna, Barbara; Sellegri, Karine; Charrière, Bruno; Sempéré, Richard; Mas, Sébastien; Marchand, Nicolas; George, Christian; Même, Aurèlie; R'mili, Badr; Delmont, Anne; Schwier, Allison; Rose, Clémence; Colomb, Aurèlie; Pey, Jorge; Langley Dewitt, Helen

    2014-05-01

    The Mediterranean Sea is a special marine environment characterized by low biological activity and high anthropogenic pressure. It is often difficult to discriminate the contribution of Primary Sea Salt Aerosol formed at the sea surface from background level of the aerosol. An alternative tool to study the sea-air exchanges in a controlled environment is provided by the mesocosms, which represent an important link between field studies and laboratory experiments. The sea-air transfer of particles and gases was investigated in relation to water chemical composition and biological activity during a mesocosm experiment within the SAM project (Sources of marine Aerosol in the Mediterranean) at the Oceanographic and Marine Station STARESO in Western Corsica (May 2013). Three 2 m mesocosms were filled with screened (<1000 µm) 2260 L of subsurface (1 m) seawater and covered with a transparent Teflon film dome to minimize atmospheric contamination. The mesocosms were equipped with a pack of optical and physicochemical sensors and received different treatments: one was left unchanged as control and two were enriched by addition of nitrates and phosphates respecting Redfield ratio (N:P = 16). The evolution of the three systems was followed for 20 days. The set of sensors in each mesocosm was allowed to monitor, at high frequency (every 10 min), the water temperature, conductivity, pH, incident light, fluorescence of chlorophyll a and dissolved oxygen concentration. The mesocosm seawaters were daily sampled for chemical (colored dissolved organic matter, particulate matter and related polar compounds, transparent polysaccharides and nutrients concentration) and biological (chlorophyll a, virus, phytoplankton and zooplankton) analyses. Both dissolved and gaseous VOCs were also analyzed. In addition, few liters of seawater from each mesocosm were daily and immediately collected and transferred to a bubble-bursting apparatus to simulate nascent sea spray aerosol. On

  1. Modal structure of chemical mass size distribution in the high Arctic aerosol

    NASA Astrophysics Data System (ADS)

    Hillamo, Risto; Kerminen, Veli-Matti; Aurela, Minna; MäKelä, Timo; Maenhaut, Willy; Leek, Caroline

    2001-11-01

    Chemical mass size distributions of aerosol particles were measured in the remote marine boundary layer over the central Arctic Ocean as part of the Atmospheric Research Program on the Arctic Ocean Expedition 1996 (AOE-96). An inertial impaction method was used to classify aerosol particles into different size classes for subsequent chemical analysis. The particle chemical composition was determined by ion chromatography and by the particle-induced X-ray emission technique. Continuous particle size spectra were extracted from the raw data using a data inversion method. Clear and varying modal structures for aerosols consisting of primary sea-salt particles or of secondary particles related to dimethyl sulfide emissions were found. Concentration levels of all modes decreased rapidly when the distance from open sea increased. In the submicrometer size range the major ions found by ion chromatography were sulfate, methane sulfonate, and ammonium. They had most of the time a clear Aitken mode and one or two accumulation modes, with aerodynamic mass median diameters around 0.1 μm, 0.3 μm, and between 0.5-1.0 μm, respectively. The overall submicron size distributions of these three ions were quite similar, suggesting that they were internally mixed over most of this size range. The corresponding modal structure was consistent with the mass size distributions derived from the particle number size distributions measured with a differential mobility particle sizer. The Aitken to accumulation mode mass ratio for nss-sulfate and MSA was substantially higher during clear skies than during cloudy periods. Primary sea-salt particles formed a mode with an aerodynamic mass median diameter around 2 μm. In general, the resulting continuous mass size distributions displayed a clear modal structure consistent with our understanding of the two known major source mechanisms. One is the sea-salt aerosol emerging from seawater by bubble bursting. The other is related to

  2. Characterization of aerosol optical properties, chemical composition and mixing states in the winter season in Shanghai, China.

    PubMed

    Tang, Yong; Huang, Yuanlong; Li, Ling; Chen, Hong; Chen, Jianmin; Yang, Xin; Gao, Song; Gross, Deborah S

    2014-12-01

    Physical and chemical properties of ambient aerosols at the single particle level were studied in Shanghai from December 22 to 28, 2009. A Cavity-Ring-Down Aerosol Extinction Spectrometer (CRD-AES) and a nephelometer were deployed to measure aerosol light extinction and scattering properties, respectively. An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to detect single particle sizes and chemical composition. Seven particle types were detected. Air parcels arrived at the sampling site from the vicinity of Shanghai until mid-day of December 25, when they started to originate from North China. The aerosol extinction, scattering, and absorption coefficients all dropped sharply when this cold, clean air arrived. Aerosol particles changed from a highly aged type before this meteorological shift to a relatively fresh type afterwards. The aerosol optical properties were dependent on the wind direction. Aerosols with high extinction coefficient and scattering Ångström exponent (SAE) were observed when the wind blew from the west and northwest, indicating that they were predominantly fine particles. Nitrate and ammonium correlated most strongly with the change in aerosol optical properties. In the elemental carbon/organic carbon (ECOC) particle type, the diurnal trends of single scattering albedo (SSA) and elemental carbon (EC) signal intensity had a negative correlation. We also found a negative correlation (r=-0.87) between high mass-OC particle number fraction and the SSA in a relatively clean period, suggesting that particulate aromatic components might play an important role in light absorption in urban areas. PMID:25499489

  3. Optical-chemical-microphysical relationships and closure studies for mixed carbonaceous aerosols observed at Jeju Island; 3-laser photoacoustic spectrometer, particle sizing, and filter analysis

    NASA Astrophysics Data System (ADS)

    Flowers, B. A.; Dubey, M. K.; Mazzoleni, C.; Stone, E. A.; Schauer, J. J.; Kim, S.-W.; Yoon, S. C.

    2010-11-01

    Transport of aerosols in pollution plumes from the mainland Asian continent was observed in situ at Jeju, South Korea during the Cheju Asian Brown Cloud Plume-Asian Monsoon Experiment (CAPMEX) field campaign throughout August and September 2008 using a 3-laser photoacoustic spectrometer (PASS-3), chemical filter analysis, and size distributions. The PASS-3 directly measures the effects of morphology (e.g. coatings) on light absorption that traditional filter-based instruments are unable to address. Transport of mixed sulfate, carbonaceous, and nitrate aerosols from various Asian pollution plumes to Jeju accounted for 74% of the deployment days, showing large variations in their measured chemical and optical properties. Analysis of eight distinct episodes, spanning wide ranges of chemical composition, optical properties, and source regions, reveals that episodes with higher organic carbon (OC)/sulfate (SO42-) and nitrate (NO3-)/SO42- composition ratios exhibit lower single scatter albedo at shorter wavelengths (ω405). We infer complex refractive indices (n-ik) as a function of wavelength for the high, intermediate, and low OC/SO42- pollution episodes by using the observed particle size distributions and the measured optical properties. The smallest mean particle diameter corresponds to the high OC/SO42- aerosol episode. The imaginary part of the refractive index (k) is greater for the high OC/SO42- episode at all wavelengths. A distinct, sharp increase in k at short wavelength implies enhanced light absorption by OC, which accounts for 50% of the light absorption at 405 nm, in the high OC/SO42- episode. Idealized analysis indicates increased absorption at 781 nm by factors greater than 3 relative to denuded black carbon in the laboratory. We hypothesize that coatings of black carbon cores are the mechanism of this enhancement. This implies that climate warming and atmospheric heating rates from black carbon particles can be significantly larger than have been

  4. Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kostenidou, E.; Florou, K.; Kaltsonoudis, C.; Tsiflikiotou, M.; Vratolis, S.; Eleftheriadis, K.; Pandis, S. N.

    2015-10-01

    The concentration and chemical composition of non-refractory fine particulate matter (NR-PM1) and black carbon (BC) levels were measured during the summer of 2012 in the suburbs of two Greek cities, Patras and Athens, in an effort to better understand the chemical processing of particles in the high photochemical activity environment of the eastern Mediterranean. The composition of PM1 was surprisingly similar in both areas, demonstrating the importance of regional sources for the corresponding pollution levels. The PM1 average mass concentration was 9-14 μg m-3. The contribution of sulfate was around 38 %, while organic aerosol (OA) contributed approximately 45 % in both cases. PM1 nitrate levels were low (2 %). The oxygen to carbon (O : C) atomic ratio was 0.50 ± 0.08 in Patras and 0.47 ± 0.11 in Athens. In both cases PM1 was acidic. Positive matrix factorization (PMF) was applied to the high-resolution organic aerosol mass spectra obtained by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). For Patras, five OA sources could be identified: 19 % very oxygenated OA (V-OOA), 38 % moderately oxygenated OA (M-OOA), 21 % biogenic oxygenated OA (b-OOA), 7 % hydrocarbon-like OA (HOA-1) associated with traffic sources and 15 % hydrocarbon-like OA (HOA-2) related to other primary emissions (including cooking OA). For Athens, the corresponding source contributions were: V-OOA (35 %), M-OOA (30 %), HOA-1 (18 %) and HOA-2 (17 %). In both cities the major component was OOA, suggesting that under high photochemical conditions most of the OA in the eastern Mediterranean is quite aged. The contribution of the primary sources (HOA-1 and HOA-2) was important (22 % in Patras and 35 % in Athens) but not dominant.

  5. Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kostenidou, E.; Florou, K.; Kaltsonoudis, C.; Tsiflikiotou, M.; Vratolis, S.; Eleftheriadis, K.; Pandis, S. N.

    2015-02-01

    The concentration and chemical composition of the non-refractory fine particulate matter (NR-PM1) and black carbon (BC) levels were measured during the summer of 2012 in the suburbs of two Greek cities, Patras and Athens, in an effort to better understand the chemical processing of particles in the high photochemical activity environment of the Eastern Mediterranean. The composition of PM1 was surprisingly similar in both areas demonstrating the importance of regional sources for the corresponding pollution levels. The PM1 average mass concentration was 9-14 μg m-3. The contribution of sulphate was around 38%, while organic aerosol (OA) contributed approximately 45% in both cases. PM1 nitrate levels were low (2%). The oxygen to carbon (O : C) atomic ratio was 0.50 ± 0.08 in Patras and 0.47 ± 0.11 in Athens. In both cases the PM1 was acidic. Positive matrix factorization (PMF) was applied to the high resolution organic aerosol mass spectra obtained by an Aerodyne High Resolution Aerosol Mass Spectrometer (HR-AMS). For Patras five OA sources could be identified: 19% very oxygenated OA (V-OOA), 38% moderately oxygenated OA (M-OOA), 21% biogenic oxygenated OA (b-OOA), 7% hydrocarbon-like OA (HOA-1) associated with traffic sources and 15% hydrocarbon-like OA (HOA-2) related to other primary emissions (including cooking OA). For Athens the corresponding source contributions were: V-OOA (35%), M-OOA (30%), HOA-1 (18%) and HOA-2 (17%). In both cities the major component was OOA, suggesting that under high photochemical conditions most of the OA in the Eastern Mediterranean is quite aged. The contribution of the primary sources (HOA-1 and HOA-2) was important (22% in Patras and 33% in Athens) but not dominant.

  6. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    NASA Astrophysics Data System (ADS)

    Pratt, K. A.; Murphy, S. M.; Subramanian, R.; Demott, P. J.; Kok, G. L.; Campos, T.; Rogers, D. C.; Prenni, A. J.; Heymsfield, A. J.; Seinfeld, J. H.; Prather, K. A.

    2011-06-01

    Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Cloud Experiment - Layer Clouds (ICE-L) in fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2-4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, 100 % of the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81-88 min and resulted in acidic particles, with both nitric acid and sulfuric acid present. Decr