Science.gov

Sample records for aerosol cloud experiment

  1. Campaign datasets for ARM Cloud Aerosol Precipitation Experiment (ACAPEX)

    SciTech Connect

    Leung, L. Ruby; Mei, Fan; Comstock, Jennifer; DeMott, Paul; Gero, Jonathan; Hubee, John; Matthews, Alyssa; Nalli, Nicholas; Pekour, Mikhail; Prather, Kimberly; Sedlackek, Arthur; Springston, Stephen; Tomlinson, Jason; Chand, Duli

    2015-08-12

    This campaign consisted of the deployment of the DOE ARM Mobile Facility 2 (AMF2) and the ARM Aerial Facility (AAF) G-1 in a field campaign called ARM Cloud Aerosol Precipitation Experiment (ACAPEX), which took place in conjunction with CalWater 2- a NOAA field campaign. The joint CalWater 2/ACAPEX field campaign aimed to improve understanding and modeling of large-scale dynamics and cloud and precipitation processes associated with ARs and aerosol-cloud interactions that influence precipitation variability and extremes in the western U.S. The observational strategy consisted of the use of land and offshore assets to monitor: 1. the evolution and structure of ARs from near their regions of development 2. the long-range transport of aerosols in the eastern North Pacific and potential interactions with ARs 3. how aerosols from long-range transport and local sources influence cloud and precipitation in the U.S. West Coast where ARs make landfall and post-frontal clouds are frequent.

  2. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    SciTech Connect

    Leung, L Ruby

    2016-03-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. The ultimate goal is to reduce uncertainties in weather predictions and climate projections of droughts and floods in California. With the DOE G-1 aircraft and ARM Mobile Facility 2 (AMF2) well equipped for making aerosol and cloud measurements, ACAPEX focuses specifically on understanding how aerosols from local pollution and long-range transport affect the amount and phase of precipitation associated with atmospheric rivers. ACAPEX took place between January 12, 2015 and March 8, 2015 as part of CalWater 2015, which included four aircraft (DOE G-1, National Oceanic and Atmospheric Administration [NOAA] G-IV and P-3, and National Aeronautics and Space Administration [NASA] ER-2), the NOAA research ship Ron Brown, carrying onboard the AMF2, National Science Foundation (NSF)-sponsored aerosol and precipitation measurements at Bodega Bay, and the California Department of Water Resources extreme precipitation network.

  3. Cloud Simulation Warm Cloud Experiments: Droplet Growth and Aerosol Scavenging.

    DTIC Science & Technology

    1988-03-02

    facility, a piston type expansion cloud chamber (Schmitt, 1981). Here the expansion is much faster than in the S- . g A i L 8 8 1 /1 4 / 8 L ~O G I O E E...RESERRC. 0 R WHITE ET AL. UNLSIFIED, 62 NOR N RFOSR-TR-00-0317 AFOSR-65-U71 F/0 4 /2 N I hhhhhhhhhhhhho 1111112-.0 1. 11111, _251120 *~~~ ~ %H .11 . C0...CLASSIFICATION AUTHORITY 3. DISTRIBUTION) AVAILABILITY OF REPORT Zb. DECLASSIFICATION I DOWNGRADING SCHEDULE ,i -. [ - .. "’_ - 4 . PERFORMING

  4. Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment - Part 1: Distributions and variability

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil; Albrecht, Bruce A.; Feingold, Graham; Jonsson, Haflidi H.; Chuang, Patrick; Donaher, Shaunna L.

    2016-07-01

    Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March-April 2010), which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter (TO) research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter), particles that are large enough to be effective giant cloud condensation nuclei (CCN). The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer), Africa (Saharan air layer), and mid-latitudes (continental pollution plumes). Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ˜ 3 km, while most clouds were less than 1 km

  5. The VOCALS Regional Experiment: Aerosol-Cloud-Precipitation Interactions in Marine Boundary Layer Cloud

    NASA Astrophysics Data System (ADS)

    Wood, R.

    2012-12-01

    Robert Wood, C.S. Bretherton, C. R. Mechoso, R. A. Weller, B. J. Huebert, H. Coe, B. A. Albrecht, P. H. Daum, D. Leon, A. Clarke, P. Zuidema, C. W. Fairall, G. Allen, S. deSzoeke, G. Feingold, J. Kazil, S. Yuter, R. George, A. Berner, C. Terai, G. Painter, H. Wang, M. Wyant, D. Mechem The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) is an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific (SEP), a region dominated by strong coastal upwelling, extensive cold SSTs, and home to the largest subtropical stratocumulus deck on Earth. VOCALS-REx took place during October and November 2008 and involved five research aircraft, two ships and two surface sites in northen Chile. A central theme of VOCALS-REx is the improved understanding of links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties. In this presentation, we will present a synthesis of results from VOCALS-REx focusing on the following questions: (a) how are aerosols, clouds and precipitation inter-related in the SEP region? (b) what microphysical-macrophysical interactions are necessary for the formation and maintenance of open cells? (c) how do cloud and MBL properties change across the strong microphysical gradients from the South American coast to the remote ocean?

  6. Influence of Aerosols on the Shortwave Cloud Radiative Forcing from North Pacific Oceanic Clouds: Results from the Cloud Indirect Forcing Experiment (CIFEX)

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Roberts, Greg; Ramanathan, V.

    2007-01-01

    Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53 cm(sup -3) compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 micrometers. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth s Radiant Energy System to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -.9.9 plus or minus 4.3 W m(sup -2) for overcast conditions.

  7. The Influence of Aerosols on the Shortwave Cloud Radiative Forcing from North Pacific Oceanic Clouds: Results from the Cloud Indirect Forcing Experiment (CIFEX)

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Roberts, Greg; Ramanathan, V.

    2006-01-01

    Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53/cu cm compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 microns. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth's Radiant Energy System (CERES) to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -9.9+/-4.3 W/sq m for overcast conditions.

  8. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan

    SciTech Connect

    Leung, L. R.; Prather, K.; Ralph, R.; Rosenfeld, D.; Spackman, R.; DeMott, P.; Fairall, C.; Fan, J.; Hagos, S.; Hughes, M.; Long, C.; Rutledge, S.; Waliser, D.; Wang, H.

    2014-09-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.

  9. Comparison of cloud residual and background aerosol particle composition during the hill cap cloud experiment HCCT 2010 in Central Germany

    NASA Astrophysics Data System (ADS)

    Roth, A.; Mertes, S.; van Pinxteren, D.; Klimach, T.; Herrmann, H.; Schneider, J.; Borrmann, S.

    2013-12-01

    Physical and chemical characterization of cloud residual and background aerosol particles as well as aerosol-cloud interactions were investigated during the Hill Cap Cloud Thuringia (HCCT) experiment in September and October 2010 on the mountain site Schmücke (938m a.s.l.) in Germany. Background aerosol particles were sampled by an interstitial inlet whereas cloud droplets from orographic clouds were collected by a counter flow virtual impactor (CVI). Chemical composition analysis and sizing of the particles was done by single particle mass spectrometry using the bipolar Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA, particle diameter range 150 nm - 900 nm; Brands et al., 2011) and by two Aerodyne Aerosol Mass Spectrometers (C-ToF, HR-ToF). Supplementary, the particle size distribution was measured with an optical particle counter (OPC, size range 0.25 μm - 32 μm). During the field campaign about 21000 positive and negative single particle mass spectra could be obtained from cloud residual particles and about 239000 from background aerosol particles. The data were clustered by means of the fuzzy c-means algorithm. The resulting clusters consisting of mass spectra with similar fragmentation patterns were, dependent on presence and combination of peaks, assigned to certain particle types. For both sampled particle types a large portion is internally mixed with nitrate and/or sulfate. This might be an explanation, why a comparison of the composition shows a higher fraction of soot particles and amine-containing particles among cloud residuals. Furthermore cloud residuals show a decreased fraction of particles being internally mixed only with nitrate (10%) compared to background aerosol particles (19%) of the same air masses, whereas the fraction of particles containing both nitrate and sulfate increases from 39% to 63% indicating cloud processing by uptake and oxidation of SO2 (Harris et al, 2013). Brands, M., Kamphus, M., Böttger, T., Schneider

  10. Elemental composition of aerosols in fourteen experiments of the Cloud Condensation Nuclei Workshop

    NASA Technical Reports Server (NTRS)

    Mach, W. H.; Hucek, R. R.

    1981-01-01

    Aeosols were collected with two Ci impactors and analyzed with proton induced X-ray emission (PIXE) for chemical composition and to detect if contamination was present. One of the impactors sampled the generated aerosols; the other impactor sampled droplets from a diffusion cloud chamber. The purpose of the experiments was to test the feasibility of a study of the transfer of chemical elements from the fine particle sizes to the coarse particle sizes, after CCN are activated and cloud droplets are formed. The data indicated that sulfur-containing aerosols did exhibit the expected transfer.

  11. The CalWater 2 - ARM Cloud Aerosol Precipitation Experiment (ACAPEX)

    NASA Astrophysics Data System (ADS)

    Leung, L. Y.; Prather, K. A.; Ralph, F. M.; Rosenfeld, D.; Spackman, J. R.; Fairall, C. W.; DeMott, P. J.; Fan, J.; Zhao, C.

    2014-12-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. While ARs are responsible for a large fraction of heavy precipitation in the western U.S. during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes. In January - March 2015, the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign will take place in northern California. Joined with CalWater 2, the field campaign aims to improve understanding and modeling of large-scale dynamics and cloud and precipitation processes associated with ARs and aerosol-cloud interactions that influence precipitation variability and extremes in the western U.S. We will implement an observational strategy consisting of the use of land and offshore assets to monitor (1) the evolution and structure of ARs from near their regions of development, (2) long range transport of aerosols in eastern North Pacific and potential interactions with ARs, and (3) how aerosols from long-range transport and local sources influence cloud and precipitation in the U.S. West Coast where ARs make landfall and post-frontal clouds are frequent. This presentation will provide an overview of the science questions and hypotheses to be addressed by CalWater 2/ACAPEX, review key results from prior studies, and discuss recent findings from

  12. The hydrological assessment of aerosol effects by the idealized airborne cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Lee, K.; Lee, B.; Chae, S.; Lee, C.; Choi, Y.

    2012-12-01

    The main source of aerosols over East Asia including the Korean Peninsula is the anthropogenic emission of atmospheric pollutants transported from Chinese industrial areas. For this reason, the researches of aerosol effects are very active in East Asian countries. In case of South Korea, aircraft measurement campaigns and airborne cloud seeding experiments for the meteorological and environmental research have been conducted over the local area of Korean Peninsula since the year of 2010. This project is related with the weather modification research to build up strategies for the regulation or enhancement of precipitation and snowpack for a severe drought in South Korea during a winter season. For this study, the aerosol effect on precipitation by the airborne cloud seeding was simulated using WRF-CHEM model with RADM2/MADE,SORGAM modules. Emission data of 10000μg/(m2s) of unspeciated primary PM2.5 were input at 0.5km altitude for aerosol scenario cases which is the height of airborne cloud seeding experiment. For the control run, the original WRF model with no chemistry/aerosol modules was used. Also, the hydrological model, SWAT (Soil and Water Assessment Tool, USDA/ARS) is incorporated to evaluate this aerosol effects hydrologically for the enhancement of precipitation or snowfall from the results of WRF-CHEM model. The target area is the Andong dam basin (1,584 km2) which is known as one of the important water resources in southern part of South Korea. The date was chosen based on the conditions of airborne cloud seeding experiment (RH>50%, Low Temp.<-3°C, Wind Speeds<5m/s, etc). During the 24 forecasting hour, the aerosol scenario case showed more amounts of accumulated precipitation (about 12%) than those of control run. According to the analysis of SWAT, the enhancement of precipitation in aerosol scenario cases of WRF-CHEM model could influence the increase of about 1.0×106m3 water resources when we assumed the 10% of effective area over the Andong dam

  13. Ganges valley aerosol experiment.

    SciTech Connect

    Kotamarthi, V.R.; Satheesh, S.K.

    2011-08-01

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  14. Aerosol and cloud chemistry of amines from CCS - reactivity experiments and numerical modeling

    NASA Astrophysics Data System (ADS)

    Weller, Christian; Tilgner, Andreas; Herrmann, Hartmut

    2013-04-01

    Capturing CO2 from the exhaust of power plants using amine scrubbing is a common technology. Therefore, amines can be released during the carbon capture process. To investigate the tropospheric chemical fate of amines from CO2 capturing processes and their oxidation products, the impact of aqueous aerosol particles and cloud droplets on the amine chemistry has been considered. Aqueous phase reactivity experiments of NO3 radicals and ozone with relevant amines and their corresponding nitrosamines were performed. Furthermore, nitrosamine formation and nitrosamine photolysis was investigated during laboratory experiments. These experiments implicated that aqueous phase photolysis can be an effective sink for nitrosamines and that ozone is unreactive towards amines and nitrosamines. Multiphase phase oxidation schemes of amines, nitrosamines and amides were developed, coupled to the existing multiphase chemistry mechanism CAPRAM and built into the Lagrangian parcel model SPACCIM using published and newly measured data. As a result, both deliquescent particles and cloud droplets are important compartments for the multiphase processing of amines and their products. Amines can be readily oxidised by OH radicals in the gas and cloud phase during daytime summer conditions. However, amine oxidation is restricted during winter conditions with low photochemical activity leading to long lifetimes of amines. The importance of the gas and aqueous phase depends strongly on the partitioning of the different amines. Furthermore, the simulations revealed that the aqueous formation of nitrosamines in aerosol particles and could droplets is not a relevant process under tropospheric conditions.

  15. Discrimination of water, ice and aerosols by light polarisation in the CLOUD experiment

    NASA Astrophysics Data System (ADS)

    Nichman, L.; Fuchs, C.; Järvinen, E.; Ignatius, K.; Höppel, N. F.; Dias, A.; Heinritzi, M.; Simon, M.; Tröstl, J.; Wagner, A. C.; Wagner, R.; Williamson, C.; Yan, C.; Bianchi, F.; Connolly, P. J.; Dorsey, J. R.; Duplissy, J.; Ehrhart, S.; Frege, C.; Gordon, H.; Hoyle, C. R.; Kristensen, T. B.; Steiner, G.; Donahue, N. M.; Flagan, R.; Gallagher, M. W.; Kirkby, J.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Stratmann, F.; Tomé, A.

    2015-11-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather and General Circulation Models (GCMs). The simultaneous detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud-particle size range below 50 μm, remains challenging in mixed phase, often unstable ice-water phase environments. The Cloud Aerosol Spectrometer with Polarisation (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure their effects on the backscatter polarisation state. Here we operate the versatile Cosmics-Leaving-OUtdoor-Droplets (CLOUD) chamber facility at the European Organisation for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water and ice particles. In this paper, optical property measurements of mixed phase clouds and viscous Secondary Organic Aerosol (SOA) are presented. We report observations of significant liquid - viscous SOA particle polarisation transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarisation ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulphate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentration and mixtures with respect to the CLOUD 8-9 campaigns and its potential contribution to Tropical Troposphere Layer (TTL) analysis.

  16. Aerosol and cloud observations from the Lidar In-space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Winker, D. M.

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) is a backscatter lidar built by NASA Langley Research Center to fly on the Space Shuttle. The purpose of the program was to develop the engineering processes required for space lidar and to demonstrate applications of space lidar to remote sensing of the atmosphere. The instrument was flown on Discovery in September 1994. Global observations of clouds and aerosols were made between the latitudes of 57 deg N and 57 deg S during 10 days of the mission.

  17. The Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment (SALTRACE 2013) - An overview

    NASA Astrophysics Data System (ADS)

    Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Althausen, Dietrich; Chouza, Fernando; Dollner, Maximilian; Farrell, David; Groß, Silke; Heinold, Bernd; Kristensen, Thomas B.; Mayol-Bracero, Olga L.; Omar, Ali; Prospero, Joseph; Sauer, Daniel; Schäfler, Andreas; Toledano, Carlos; Tegen, Ina

    2015-04-01

    Saharan mineral dust is regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the Sahara. During transport, the properties of mineral dust may be modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. To investigate the aging and modification of Saharan mineral dust during long-range transport across the Atlantic Ocean, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE was designed as a closure experiment combining ground-based lidar, in-situ and sun photometer instruments deployed on Cape Verde, Barbados and Puerto Rico, with airborne measurements of the DLR research aircraft Falcon, satellite observations and model simulations. During SALTRACE, mineral dust from five dust outbreaks was studied under different atmospheric conditions and a unique data set on the chemical, microphysical and optical properties of aged mineral dust was gathered. For the first time, Lagrangian sampling of a dust plume in the Cape Verde area on 17 June 2013 which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados was realized. Further highlights of SALTRACE include the formation and evolution of tropical storm Chantal in a dusty environment and the interaction of dust with mixed-phase clouds. In our presentation, we give an overview of the SALTRACE study, discuss the meteorological situation and the dust transport during SALTRACE and highlight selected results from SALTRACE.

  18. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment SALTRACE 2013 - Overview and Early Results (Invited)

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Ansmann, A.; Reitebuch, O.; Freudenthaler, V.; Müller, T.; Kandler, K.; Althausen, D.; Busen, R.; Dollner, M.; Dörnbrack, A.; Farrell, D. A.; Gross, S.; Heimerl, K.; Klepel, A.; Kristensen, T. B.; Mayol-Bracero, O. L.; Minikin, A.; Prescod, D.; Prospero, J. M.; Rahm, S.; Rapp, M.; Sauer, D. N.; Schaefler, A.; Toledano, C.; Vaughan, M.; Wiegner, M.

    2013-12-01

    Mineral dust is an important player in the global climate system. In spite of substantial progress in the past decade, many questions in our understanding of the atmospheric and climate effects of mineral dust remain open such as the change of the dust size distribution during transport across the Atlantic Ocean and the associated impact on the radiation budget, the role of wet and dry dust removal mechanisms during transport, and the complex interaction between mineral dust and clouds. To close gaps in our understanding of mineral dust in the climate system, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE is a German initiative combining ground-based and airborne in-situ and lidar measurements with meteorological data, long-term measurements, satellite remote sensing and modeling. During SALTRACE, the DLR research aircraft Falcon was based on Sal, Cape Verde, between 11 and 17 June, and on Barbados between 18 June and 11 July 2013. The Falcon was equipped with a suite of in-situ instruments for the measurement of microphysical and optical aerosol properties and with a nadir-looking 2-μm wind lidar. Ground-based lidar and in-situ instruments were deployed in Barbados and Puerto Rico. Mineral dust from several dust outbreaks was measured by the Falcon between Senegal and Florida. On the eastern side of the Atlantic, dust plumes extended up to 6 km altitude, while the dust layers in the Caribbean were mainly below 4.5 km. The aerosol optical thickness of the dust outbreaks studied ranged from 0.2 to 0.6 at 500 nm in Barbados. Highlights during SALTRACE included the sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June near Barbados. The event was also captured by the ground-based lidar and in-situ instrumentation. Another highlight was the formation of tropical storm

  19. Aerosol and cloud sensing with the Lidar In-space Technology Experiment (LITE)

    NASA Technical Reports Server (NTRS)

    Winker, D. M.; McCormick, M. P.

    1994-01-01

    The Lidar In-space Technology Experiment (LITE) is a multi-wavelength backscatter lidar developed by NASA Langley Research Center to fly on the Space Shuttle. The LITE instrument is built around a three-wavelength ND:YAG laser and a 1-meter diameter telescope. The laser operates at 10 Hz and produces about 500 mJ per pulse at 1064 nm and 532 nm, and 150 mJ per pulse at 355 nm. The objective of the LITE program is to develop the engineering processes required for space lidar and to demonstrate applications of space-based lidar to remote sensing of the atmosphere. The LITE instrument was designed to study a wide range of cloud and aerosol phenomena. To this end, a comprehensive program of scientific investigations has been planned for the upcoming mission. Simulations of on-orbit performance show the instrument has sufficient sensitivity to detect even thin cirrus on a single-shot basis. Signal averaging provides the capability of measuring the height and structure of the planetary boundary layer, aerosols in the free troposphere, the stratospheric aerosol layer, and density profiles to an altitude of 40 km. The instrument has successfully completed a ground-test phase and is scheduled to fly on the Space Shuttle Discovery for a 9-day mission in September 1994.

  20. Aerosol and nucleation research in support of NASA cloud physics experiments in space. [ice nuclei generator for the atmospheric cloud physics laboratory on Spacelab

    NASA Technical Reports Server (NTRS)

    Vali, G.; Rogers, D.; Gordon, G.; Saunders, C. P. R.; Reischel, M.; Black, R.

    1978-01-01

    Tasks performed in the development of an ice nucleus generator which, within the facility concept of the ACPL, would provide a test aerosol suitable for a large number and variety of potential experiments are described. The impact of Atmospheric Cloud Physics Laboratory scientific functional requirements on ice nuclei generation and characterization subsystems was established. Potential aerosol generating systems were evaluated with special emphasis on reliability, repeatability and general suitability for application in Spacelab. Possible contamination problems associated with aerosol generation techniques were examined. The ice nucleating abilities of candidate test aerosols were examined and the possible impact of impurities on the nucleating abilities of those aerosols were assessed as well as the relative merits of various methods of aerosol size and number density measurements.

  1. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds

    DTIC Science & Technology

    2013-09-30

    understanding of the effects of aerosol-cloud interactions and drizzle and entrainment processes in boundary layer clouds for the purpose of developing...thickness, cloud turbulence intensity, and aerosols on precipitation production; 4) study the processing of aerosols by cloud processes ; 5) explore mass...drizzle processes to the artificial introduction of CCN and giant nuclei under differing aerosol backgrounds. In addition, a set of aerosol and cloud

  2. Direct Observation of Secondary Organic Aerosol Formation during Cloud Condensation-Evaporation Cycles (SOAaq) in Simulation Chamber Experiments

    NASA Astrophysics Data System (ADS)

    Doussin, J. F.; Bregonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Gratien, A.; Temime-Roussel, B.; Ravier, S.; Pangui, E.; Tapparo, A.; Kalberer, M.; Monod, A.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) undergo many reactions in the atmosphere and form a wide range of oxidised and water-soluble compounds. These compounds can partition into atmospheric water droplets, and react within the aqueous phase producing higher molecular weight and/or less volatile compounds which can remain in the particle phase after water evaporation and thus increase the organic aerosol mass (Ervens et al., 2011; Altieri et al., 2008; Couvidat et al., 2013). While this hypothesis is frequently discussed in the literature, so far, almost no direct observations of such a process have been provided.The aim of the present work is to study SOA formation from isoprene photooxidation during cloud condensation-evaporation cycles.The experiments were performed during the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), in the CESAM simulation chamber located at LISA. CESAM is a 4.2 m3 stainless steel chamber equipped with realistic irradiation sources and temperature and relative humidity (RH) controls (Wang et al., 2011). In each experiment, isoprene was allowed to oxidize during several hours in the presence on nitrogen oxides under dry conditions. Gas phase compounds were analyzed on-line by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS), a Fourier Transform Infrared Spectrometer (FTIR), NOx and O3 analyzers. SOA formation was monitored on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The experimental protocol was optimised to generate cloud events in the simulation chamber, which allowed us to generate clouds lasting for ca. 10 minutes in the presence of light.In all experiments, we observed that during cloud formation, water-soluble gas-phase oxidation products (e.g., methylglyoxal, hydroxyacetone, acetaldehyde, formic acid, acetic acid and glycolaldehyde) readily partitioned into cloud

  3. The Accommodation Coefficient of Water Molecules on Ice: Results from Cirrus Cloud Experiments at the Aerosol Chamber AIDA

    NASA Astrophysics Data System (ADS)

    Skrotzki, J.; Connolly, P.; Niemand, M.; Saathoff, H.; Moehler, O.; Ebert, V.; Leisner, T.

    2010-12-01

    Cirrus clouds are pure ice clouds in the upper troposphere or lower stratosphere. One of the parameters governing the growth of ice crystals in these clouds is the accommodation coefficient of water molecules on ice. However, its magnitude is still uncertain to a large degree, since experimental results vary from below 0.01 up to unity depending on the design of the experiment and the examined ice growth process [1]. For the specific case of ice crystal growth in cirrus clouds, no previous experimental studies regarding the accommodation coefficient exist. Therefore, dedicated experiments were carried out at the cloud simulation chamber AIDA [2], examining the ice crystal growth for deposition nucleation in the temperature range from -75 °C to -40 °C. These experiments were evaluated with two different models, a simple one, which just incorporates kinetic and diffusive theory of ice crystal growth, and the more advanced and extended aerosol-cloud-precipitation interaction model (ACPIM) [3]. The outcome of these two models is compared to absolute in-situ humidity data measured within AIDA using extractive as well as open path diode laser hygrometers (TDLAS) [4]. For every experiment, this is done by varying the value of the accommodation coefficient within each model, in order to get best agreement with experimental data. The values obtained for the accommodation coefficient at different temperatures are presented and the overall uncertainties as well as the consistency between the two different models are discussed. [1] D. R. Heynes, N. J. Tro, and S. M. George, J. Phys. Chem. 1992, 96, 8502-8509 (1992) [2] O. Möhler et al., Atmos. Chem. Phys. 3, 211-223 (2003) [3] P. J. Connolly et al., Atmos. Chem. Phys. 9, 2805-2824 (2009) [4] D. W. Fahey et al., AquaVIT White Paper, avail. at https://aquavit.icg.kfa-juelich.de/AquaVit/AquaVitWiki

  4. Marine Aerosols: Hygroscopocity and Aerosol-Cloud Relationships

    DTIC Science & Technology

    2012-09-30

    MSc) clouds. A CIRPAS Twin Otter field experiment took place in July-August 2011 over the eastern Pacific Ocean off the coast of Monterey, CA...large eddy simulation (LES) and field measurements, the latter including Twin Otter missions such as MASE I and MASE II and those involving other...properties in ship tracks, which have continued to serve as a well-defined example of marine aerosol-cloud perturbations. The Twin Otter payload has

  5. Airborne LIDAR Measurements of Water Vapor, Ozone, Clouds, and Aerosols in the Tropics Near Central America During the TC4 Experiment

    NASA Technical Reports Server (NTRS)

    Kooi, Susan; Fenn, Marta; Ismail, Syed; Ferrare, Richard; Hair, John; Browell, Edward; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Simpson, Steven

    2008-01-01

    Large scale distributions of ozone, water vapor, aerosols, and clouds were measured throughout the troposphere by two NASA Langley lidar systems on board the NASA DC-8 aircraft as part of the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4) over Central and South America and adjacent oceans in the summer of 2007. Special emphasis was placed on the sampling of convective outflow and transport, sub-visible cirrus clouds, boundary layer aerosols, Saharan dust, volcanic emissions, and urban and biomass burning plumes. This paper presents preliminary results from this campaign, and demonstrates the value of coordinated measurements by the two lidar systems.

  6. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events

    NASA Astrophysics Data System (ADS)

    Wang, P.; Tuinder, O. N. E.; Tilstra, L. G.; de Graaf, M.; Stammes, P.

    2012-10-01

    Cloud and aerosol information is needed in trace gas retrievals from satellite measurements. The Fast REtrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm employs reflectance spectra of the O2 A band around 760 nm to derive cloud pressure and effective cloud fraction. In general, clouds contribute more to the O2 A band reflectance than aerosols. Therefore, the FRESCO algorithm does not correct for aerosol effects in the retrievals and attributes the retrieved cloud information entirely to the presence of clouds, and not to aerosols. For events with high aerosol loading, aerosols may have a dominant effect, especially for almost cloud free scenes. We have analysed FRESCO cloud data and Absorbing Aerosol Index (AAI) data from the Global Ozone Monitoring Experiment (GOME-2) instrument on the Metop-A satellite for events with typical absorbing aerosol types, such as volcanic ash, desert dust and smoke. We find that the FRESCO effective cloud fractions are correlated with the AAI data for these absorbing aerosol events and that the FRESCO cloud pressure contains information on aerosol layer pressure. For cloud free scenes, the derived FRESCO cloud pressure is close to the aerosol layer pressure, especially for optically thick aerosol layers. For cloudy scenes, if the strongly absorbing aerosols are located above the clouds, then the retrieved FRESCO cloud pressure may represent the height of the aerosol layer rather than the height of the clouds. Combining FRESCO and AAI data, an estimate for the aerosol layer pressure can be given.

  7. CALIPSO Observations of Aerosol Properties Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas; Yang, Weidong

    2010-01-01

    Clouds are surrounded by a transition zone of rapidly changing aerosol properties. Characterizing this zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects as well as for improving satellite measurements of aerosol properties. We present a statistical analysis of a global dataset of CALIPSO (Cloud-Aerosol Lidar and infrared Pathfinder Satellite Observation) Lidar observations over oceans. The results show that the transition zone extends as far as 15 km away from clouds and it is ubiquitous over all oceans. The use of only high confidence level cloud-aerosol discrimination (CAD) data confirms the findings. However, the results underline the need for caution to avoid biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  8. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect

    SCHWARTZ, S.E.

    2005-09-01

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  9. Separating Cloud Forming Nuclei from Interstitial Aerosol

    SciTech Connect

    Kulkarni, Gourihar R.

    2012-09-12

    It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

  10. Properties of aerosol processed by ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Adler, G.; Moise, T.; Erlick-Haspel, C.

    2012-12-01

    We suggest that highly porous aerosol (HPA) can form in the upper troposphere/lower stratosphere when ice particles encounter sub-saturation leading to ice sublimation similar to freeze drying. This process can occur at the lower layers of cirrus clouds (few km), at anvils of high convective clouds and thunderstorms, in clouds forming in atmospheric gravitational waves, in contrails and in high convective clouds injecting to the stratosphere. A new experimental system that simulates freeze drying of proxies for atmospheric aerosol at atmospheric pressure was constructed and various proxies for atmospheric soluble aerosol were studied. The properties of resulting HPA were characterized by various methods. It was found that the resulting aerosol have larger sizes (extent depends on substance and mixing), lower density (largevoid fraction), lower optical extinction and higher CCN activity and IN activity. Implication of HPA's unique properties and their atmospheric consequences to aerosol processing in ice clouds and to cloud cycles will be discussed.

  11. Representing Cloud Processing of Aerosol in Numerical Models

    SciTech Connect

    Mechem, D.B.; Kogan, Y.L.

    2005-03-18

    The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

  12. Aerosol indirect effect dictated by liquid clouds

    NASA Astrophysics Data System (ADS)

    Christensen, Matthew W.; Chen, Yi-Chun; Stephens, Graeme L.

    2016-12-01

    Anthropogenic aerosols have been shown to enhance the solar reflection from warm liquid clouds and mask part of the warming due to the buildup of greenhouse gases. However, very little is known about the effects of aerosol on mixed-phase stratiform clouds as well as other cloud regimes including cumulus, altocumulus, nimbostratus, deep convection, and anvil cirrus. These additional cloud categories are ubiquitous and typically overlooked in satellite-based assessments of the global aerosol indirect forcing. Here we provide their contribution to the aerosol indirect forcing estimate using satellite data collected from several colocated sensors in the A-train for the period 2006-2010. Cloud type is determined according to the 2B-CLDCLASS-LIDAR CloudSat product, and the observations are matched to the radiative flux measurements from CERES (Clouds and the Earth's Radiant Energy System) and aerosol retrievals from MODIS (MODerate resolution Imaging Spectroradiometer). The oceanic mean aerosol indirect forcing is estimated to be -0.20 ± 0.31 W m-2 with warm low-level cloud largely dictating the strength of the response (-0.36 ± 0.21 W m-2) due to their abundance and strong cloud albedo effect. Contributions from mixed-phase low-level cloud (0.01 ± 0.06 W m-2) and convective cloud (0.15 ± 0.23 W m-2) are positive and buffer the system due to strong aerosol-cloud feedbacks that reduce the cloud albedo effect and/or lead to convective invigoration causing a countering positive longwave warming response. By combining all major cloud categories together, aerosol indirect forcing decreases and now contains positive values in the uncertainty estimate.

  13. The Aerosol/Cloud/Ecosystems Mission (ACE)

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    2008-01-01

    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  14. Improvement of MODIS aerosol retrievals near clouds

    NASA Astrophysics Data System (ADS)

    Wen, Guoyong; Marshak, Alexander; Levy, Robert C.; Remer, Lorraine A.; Loeb, Norman G.; Várnai, Tamás.; Cahalan, Robert F.

    2013-08-01

    retrieval of aerosol properties near clouds from reflected sunlight is challenging. Sunlight reflected from clouds can effectively enhance the reflectance in nearby clear regions. Ignoring cloud 3-D radiative effects can lead to large biases in aerosol retrievals, risking an incorrect interpretation of satellite observations on aerosol-cloud interaction. Earlier, we developed a simple model to compute the cloud-induced clear-sky radiance enhancement that is due to radiative interaction between boundary layer clouds and the molecular layer above. This paper focuses on the application and implementation of the correction algorithm. This is the first time that this method is being applied to a full Moderate Resolution Imaging Spectroradiometer (MODIS) granule. The process of the correction includes converting Clouds and the Earth's Radiant Energy System broadband flux to visible narrowband flux, computing the clear-sky radiance enhancement, and retrieving aerosol properties. We find that the correction leads to smaller values in aerosol optical depth (AOD), Ångström exponent, and the small mode aerosol fraction of the total AOD. It also makes the average aerosol particle size larger near clouds than far away from clouds, which is more realistic than the opposite behavior observed in operational retrievals. We discuss issues in the current correction method as well as our plans to validate the algorithm.

  15. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events

    NASA Astrophysics Data System (ADS)

    Wang, P.; Tuinder, O. N. E.; Tilstra, L. G.; Stammes, P.

    2011-12-01

    Cloud and aerosol information is needed in trace gas retrievals from satellite measurements. The Fast REtrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm employs reflectance spectra of the O2 A band around 760 nm to derive cloud pressure and effective cloud fraction. In general, clouds contribute more to the O2 A band reflectance than aerosols. Therefore, the FRESCO algorithm does not correct for aerosol effects in the retrievals and attributes the retrieved cloud information entirely to the presence of clouds, and not to aerosols. For events with high aerosol loading, aerosols may have a dominant effect, especially for almost cloud-free scenes. We have analysed FRESCO cloud data and Absorbing Aerosol Index (AAI) data from the Global Ozone Monitoring Experiment (GOME-2) instrument on the Metop-A satellite for events with typical absorbing aerosol types, such as volcanic ash, desert dust and smoke. We find that the FRESCO effective cloud fractions are correlated with the AAI data for these absorbing aerosol events and that the FRESCO cloud pressures contain information on aerosol layer pressure. For cloud-free scenes, the derived FRESCO cloud pressures are close to those of the aerosol layer for optically thick aerosols. For cloudy scenes, if the strongly absorbing aerosols are located above the clouds, then the retrieved FRESCO cloud pressures may represent the height of the aerosol layer rather than the height of the clouds. Combining FRESCO cloud data and AAI, an estimate for the aerosol layer pressure can be given, which can be beneficial for aviation safety and operations in case of e.g. volcanic ash plumes.

  16. Global Analysis of Aerosol Properties Above Clouds

    NASA Technical Reports Server (NTRS)

    Waquet, F.; Peers, F.; Ducos, F.; Goloub, P.; Platnick, S. E.; Riedi, J.; Tanre, D.; Thieuleux, F.

    2013-01-01

    The seasonal and spatial varability of Aerosol Above Cloud (AAC) properties are derived from passive satellite data for the year 2008. A significant amount of aerosols are transported above liquid water clouds on the global scale. For particles in the fine mode (i.e., radius smaller than 0.3 m), including both clear sky and AAC retrievals increases the global mean aerosol optical thickness by 25(+/- 6%). The two main regions with man-made AAC are the tropical Southeast Atlantic, for biomass burning aerosols, and the North Pacific, mainly for pollutants. Man-made AAC are also detected over the Arctic during the spring. Mineral dust particles are detected above clouds within the so-called dust belt region (5-40 N). AAC may cause a warming effect and bias the retrieval of the cloud properties. This study will then help to better quantify the impacts of aerosols on clouds and climate.

  17. Impact of Aerosol Processing on Orographic Clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al

  18. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  19. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  20. Constraining the aerosol influence on cloud fraction

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, E.; Quaas, J.; Bellouin, N.

    2016-04-01

    Aerosol-cloud interactions have the potential to modify many different cloud properties. There is significant uncertainty in the strength of these aerosol-cloud interactions in analyses of observational data, partly due to the difficulty in separating aerosol effects on clouds from correlations generated by local meteorology. The relationship between aerosol and cloud fraction (CF) is particularly important to determine, due to the strong correlation of CF to other cloud properties and its large impact on radiation. It has also been one of the hardest to quantify from satellites due to the strong meteorological covariations involved. This work presents a new method to analyze the relationship between aerosol optical depth (AOD) and CF. By including information about the cloud droplet number concentration (CDNC), the impact of the meteorological covariations is significantly reduced. This method shows that much of the AOD-CF correlation is explained by relationships other than that mediated by CDNC. By accounting for these, the strength of the global mean AOD-CF relationship is reduced by around 80%. This suggests that the majority of the AOD-CF relationship is due to meteorological covariations, especially in the shallow cumulus regime. Requiring CDNC to mediate the AOD-CF relationship implies an effective anthropogenic radiative forcing from an aerosol influence on liquid CF of -0.48 W m-2 (-0.1 to -0.64 W m-2), although some uncertainty remains due to possible biases in the CDNC retrievals in broken cloud scenes.

  1. Radiative Importance of Aerosol-Cloud Interaction

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  2. Aerosol-cloud interaction using AATSR

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; Kolmonen, Pekka; Virtanen, Timo H.; Saponaro, Giulia; Kokhanovsky, Alexander; de Leeuw, Gerrit

    2014-05-01

    Aerosols and clouds play an important role in terrestrial atmospheric dynamics, thermodynamics, chemistry, and radiative transfer and are key elements of the water and energy cycles. The interactions between aerosol particles and cloud drops is critical to identifying how much they reflect solar radiation. Accurate evaluation of the effects of aerosols and clouds on climate requires global information on aerosol properties. Such global information can only be provided using satellite remote sensing. Among the satellite instruments used for aerosol and cloud retrieval is the Advanced Along-Track Scanning Radiometer (AATSR) on board the European Space Agency (ESA) satellite ENVISAT. Many instruments and retrieval techniques have been developed and applied to satellite data to derive cloud data products (Kokhanonsky et al., 2009). However, many problems still remain to be solved. They are mostly related to the usage of homogeneous, single-layered cloud model. Further issues exist for studies of thin clouds, where both cloud inhomogeniety, cloud fraction and the underlying surface bi-directional reflectance must be accounted for in the retrieval process. The aerosol retrieval algorithm (dual-view over land and single-view over ocean) was constructed for ATSR-2 data (e.g. Veefkind et al. 1998). The most recent version of ADV (AATSR Dual View) is described in Kolmenen et al. (2013). The ATSR dual-view allows retrieval without prior information about land surface reflectance. A semi-analytical cloud retrieval algorithm using backscattered radiation in 0.4-2.4 μm spectral region has been implemented to ADV for the determination of the optical thickness, the liquid water path, and the effective size of droplets from spectral measurements of the intensity of light reflected from water clouds with large optical thickness. In AacDV (AATSR aerosol and cloud Dual View) aerosol and cloud retrievals are combined. Cloud retrieval starts when cloud tests for aerosol retrieval show

  3. Clouds and aerosols on Venus: an overview

    NASA Astrophysics Data System (ADS)

    Titov, Dmitri; Ignatiev, Nikolay; McGouldrick, Kevin; Wilquet, Valerie; Wilson, Colin

    2015-04-01

    The past decade demonstrated significant progress in understanding of the Venus cloud system. Venus Express observations revealed significant latitudinal variations and temporal changes in the global cloud top morphology. The cloud top altitude varies from ~72 km in the low and middle latitudes to ~64 km in the polar region, correlated with decrease of the aerosol scale height from 4 ± 1.6 km to 1.7 ± 2.4 km marking a vast polar depression. The UV imaging shows the middle latitudes and polar regions in unprecedented detail. The eye of the Southern polar vortex was found to be a strongly variable feature with complex morphology and dynamics. Solar and stellar occultations give access to a vertical profiling of the light absorption by the aerosols in the upper haze. The aerosol loading in the mesosphere of Venus investigated by SPICAV experiment onboard Venus Express between 2006 and 2010 was highly variable on both short and long time scales. The extinction at a given altitude can vary with a factor of 10 for occultations separated by a few Earth days. The extinction at a given altitude is also significantly lower towards the poles (by a factor 10 at least) compared to the values around the equator, while there is apparently no correlation between the extinction and the latitude in the region comprised between ±40° around the equator. Based on the Mie theory and on the observed spectral dependence of light extinction in spectra recorded simultaneously in the UV (SPICAV-UV), in the near IR (SPICAV-IR), and in the short-and mid-wavelength IR (SPICAV-SOIR), the size distribution of aerosols in the upper haze of Venus was retrieved, assuming H2SO4/water composition of the droplets. The optical model includes H2SO4 concentrations from 60% to 85%. A number of results are strikingly new: (1) an increase of the H2SO4 concentration with a decreasing altitude (from 70-75% at about 90 km to 85% at 70 km of altitude) and (2) Many SOIR/SPICAV data cannot be fitted when using

  4. Clouds and aerosols on Venus: an overview

    NASA Astrophysics Data System (ADS)

    Titov, D. V.; Ignatiev, N. I.; McGouldrick, K.; Wilquet, V.; Wilson, C. F.

    2014-04-01

    The past decade demonstrated significant progress in understanding of the Venus cloud system. This paper gives a summary of new observations and modelling efforts that will form the basis for a relevant chapter in the Venus III book. Venus Express observations reveal significant latitudinal variations and temporal changes in the global cloud top morphology [1]. The cloud top altitude varies from ~72 km in the low and middle latitudes to ~64 km in the polar region, correlated with decrease of the aerosol scale height from 4 ± 1.6 km to 1.7 ± 2.4 km marking a vast polar depression [2, 3]. UV imaging shows the middle latitudes and polar regions in unprecedented detail. The eye of the Southern polar vortex was found to be a strongly variable feature with complex morphology and dynamics [4]. Solar and stellar occultations give access to a vertical profiling of the light absorption by the aerosols in the upper haze. The aerosol loading in the mesosphere of Venus investigated by SPICAV experiment onboard Venus Express between 2006 and 2010 was highly variable on both short and long time scales. The extinction at a given altitude can vary with a factor of 10 for occultations separated by a few Earth days. The extinction at a given altitude is also significantly lower towards the poles (by a factor 10 at least) compared to the values around the equator, while there is apparently no correlation between the extinction and the latitude in the region comprised between ±40° around the equator [5]. Based on Mie theory and on the observed spectral dependence of light extinction in spectra recorded simultaneously in the UV (SPICAV-UV), in the near IR (SPICAV-IR), and in the short-and midwavelength IR (SPICAV-SOIR), the size distribution of aerosols in the upper haze of Venus was retrieved, assuming H2SO4/water composition of the droplets [6]. The optical model includes H2SO4 concentrations from 60 to 85%. A number of results are strikingly new: (1) an increase of the H2SO4

  5. The Aerosol, Clouds and Ecosystem (ACE) Mission

    NASA Astrophysics Data System (ADS)

    Schoeberl, M.; Remer, L.; Kahn, R.; Starr, D.; Hildebrand, P.; Colarco, P.; Diner, D.; Vane, D.; Im, E.; Behrenfeld, M.; Stephens, G.; Maring, H.; Bontempi, P.; Martins, J. V.

    2008-12-01

    The Aerosol, Clouds and Ecosystem (ACE) Mission is a second tier Decadal Survey mission designed to characterize the role of aerosols in climate forcing, especially their impact on precipitation and cloud formation. ACE also includes ocean biosphere measurements (chlorophyll and dissolved organic materials) which will be greatly improved by simultaneous measurements of aerosols. The nominal ACE payload includes lidar and multiangle spectropolarimetric polarimetric measurements of aerosols, radar measurements of clouds and multi-band spectrometer for the measurement of ocean ecosystems. An enhancement to ACE payload under consideration includes µ-wave radiometer measurements of cloud ice and water outside the nadir path of the radar/lidar beams. This talk will cover ACE instrument and science options, updates on the science team definition activity and science potential.

  6. An overview of the Ice Nuclei Research Unit Jungfraujoch/Cloud and Aerosol Characterization Experiment 2013 (INUIT-JFJ/CLACE-2013)

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes

    2014-05-01

    Ice formation in mixed phase tropospheric clouds is an essential prerequisite for the formation of precipitation at mid-latitudes. Ice formation at temperatures warmer than -35°C is only possible via heterogeneous ice nucleation, but up to now the exact pathways of heterogeneous ice formation are not sufficiently well understood. The research unit INUIT (Ice NUcleation research unIT), funded by the Deutsche Forschungsgemeinschaft (DFG FOR 1525) has been established in 2012 with the objective to investigate heterogeneous ice nucleation by combination of laboratory studies, model calculation and field experiments. The main field campaign of the INUIT project (INUIT-JFJ) was conducted at the High Alpine Research Station Jungfraujoch (Swiss Alps, 3580 m asl) during January and February 2013, in collaboration with several international partners in the framework of CLACE2013. The instrumentation included a large set of aerosol chemical and physical analysis instruments (particle counters, particle sizers, particle mass spectrometers, cloud condensation nuclei counters, ice nucleus counters etc.), that were operated inside the Sphinx laboratory and sampled in mixed phase clouds through two ice selective inlets (Ice-CVI, ISI) as well as through a total aerosol inlet that was used for out-of-cloud aerosol measurements. Besides the on-line measurements, also samples for off-line analysis (ESEM, STXM) have been taken in and out of clouds. Furthermore, several cloud microphysics instruments were operated outside the Sphinx laboratory. First results indicate that a large fraction of ice residues sampled from mixed phase clouds contain organic material, but also mineral dust. Soot and lead were not found to be enriched in ice residues. The concentration of heterogeneous ice nuclei was found to be variable (ranging between < 1 and > 100 per liter) and to be strongly dependent on the operating conditions of the respective IN counter. The number size distribution of ice residues

  7. Implications of using transmitted vs. reflected light for determining cloud properties, cloud radiative effects and aerosol-cloud-interactions

    NASA Astrophysics Data System (ADS)

    LeBlanc, S. E.; Redemann, J.; Segal-Rosenhaimer, M.; Kacenelenbogen, M. S.; Shinozuka, Y.; Flynn, C. J.; Schmidt, S.; Pilewskie, P.; Song, S.; Woods, S.; Lawson, P.; Nenes, A.; Lin, J. J.; Ziemba, L. D.

    2015-12-01

    Light transmitted through clouds is sensitive to a different cloud volume than reflected light at cloud top. This difference in sampling volumes has implications when calculating the radiative effects of clouds (CRE) and aerosol-cloud-interactions (ACI). We present a comparison of retrieved cloud properties and the corresponding CRE and ACI based on transmitted and reflected light for a cloud sampled during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, 2013) field campaign. Measurements of zenith radiances were obtained from the NASA DC-8 aircraft using the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument. 4STAR was deployed on an airborne platform during SEAC4RS alongside the Solar Spectral Flux Radiometer (SSFR). To retrieve cloud properties from transmitted shortwave radiation, we use a retrieval utilizing spectrally resolved measurements. Spectral features in shortwave radiation transmitted through clouds are sensitive to changes in cloud optical thickness, effective radius, and thermodynamic phase. The spectral features due to absorption and scattering processes by liquid water and ice cloud particles include shifts in spectral slopes, curvatures, maxima, and minima of cloud-transmitted radiance. These spectral features have been quantified by 15 parameters used to retrieve cloud properties from the 4STAR zenith radiances. Retrieved cloud optical thicknesses and effective radii based on transmitted shortwave radiation are compared to their counterparts obtained from reflected shortwave radiation measured above cloud with MODIS and with the enhanced MODIS Airborne Simulator (eMAS), the Research Scanning Polarimeter (RSP), and SSFR operating aboard the NASA ER-2 aircraft. Remotely sensed cloud particle effective radius are combined with in situ measurements of cloud and aerosol particles from the NASA Langley Aerosol Research Group Experiment (LARGE) CCN Counter

  8. Cloud and Aerosol Characterization During CAEsAR 2014

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Tesche, M.; Krejci, R.; Baumgardner, D.; Walther, A.; Rosati, B.; Widequist, U.; Tunved, P.; O'Connor, E.; Ström, J.

    2015-12-01

    The Cloud and Aerosol Experiment at Åre (CAEsAR 2014) campaign took place from June to October 2014 at Mt. Åreskutan, Sweden, a remote mountain site in Northern Sweden. The campaign was designed to study the physical and chemical properties of clouds and aerosols under orographic forcing. A unique and comprehensive set-up allowed an in-situ characterization of both constituents at a mountain top station at 1200 m a.s.l. including instruments to measure cloud droplet size distribution, meteorological parameters, cloud residual properties (using a counterflow virtual impactor inlet), cloud water composition and various aerosol chemical and microphysical properties (e.g. size, optical and hygroscopic properties). At the same time, a remote sensing site was installed below the mountain site at 420 m a.s.l. in the immediate vicinity (< 3 km horizontally), with vertical profiling from an aerosol lidar, winds and turbulence from a scanning Doppler lidar, a Sun photometer measuring aerosol columnar optical properties, and a precipitation sampler taking rain water for chemical analysis. In addition, regular radiosoundings were performed from the valley. Here, we present the results of this intensive campaign which includes approx. 900 hours of in-cloud sampling. Various unique cloud features were frequently observed such as dynamically-driven droplet growth, bimodal droplet distributions, and the activation of particles down to approx. 20 nm in dry particle diameter. During the campaign, a forest fire smoke plume was transported over the site with measureable impacts on the cloud properties. This data will be used to constrain cloud and aerosol models, as well as to validate satellite retrievals. A first comparison to VIIRS and MODIS satellite retrievals will also be shown.

  9. Reformulating Aerosol Thermodynamics and Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Metzger, S.

    2006-12-01

    Modeling aerosol composition and cloud microphysics is rather complex due to the required thermodynamics, even if chemical and thermodynamical equilibrium is assumed. We show, however, that for deliquescent atmospheric aerosols thermodynamics can be considerably simplified, if we reformulate chemical equilibrium to include water purely based on thermodynamic principles. In chemical and thermodynamical equilibrium, the relative humidity (RH) fixes the molality of atmospheric aerosols. Although this fact is in theory well known, it has hardly been utilized in aerosol modeling nor has been the fact that for the same reason also the aerosol activity (including activity coefficients) and water content are fixed (by RH) for a given aerosol concentration and type. The only model that successfully utilizes this fact is the computationally very efficient EQuilibrium Simplified thermodynamic gas/Aerosol partitioning Model, EQSAM (Metzger et al., 2002a), EQSAM2 (Metzger et al., 2006). In both versions the entire gas/liquid/solid aerosol equilibrium partitioning is solved analytically and hence non-iteratively a substantial advantage in aerosol composition modeling. Here we briefly present the theoretical framework of EQSAM2, which differs from EQSAM in a way that the calculation of the water activity of saturated binary or mixed inorganic/organic salt solutions of multi-component aerosols has been generalized by including the Kelvin-term, thus allowing for any solute activity above the deliquescence relative humidity, including supersaturation. With application of our new concept to a numerical whether prediction (NWP) model, we demonstrate its wide implications for the computation of various aerosol and cloud properties, as our new concept allows to consistently and efficiently link the modeling of aerosol thermodynamics and cloud microphysics through the aerosol water mass, which therefore deserves special attention in atmospheric chemistry, air pollution, NWP and climate

  10. On the source of organic acid aerosol layers above clouds.

    PubMed

    Sorooshian, Armin; Lu, Miao-Ling; Brechtel, Fred J; Jonsson, Haflidi; Feingold, Graham; Flagan, Richard C; Seinfeld, John H

    2007-07-01

    During the July 2005 Marine Stratus/Stratocumulus Experiment (MASE) and the August-September 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed aerosols and cumulus clouds in the eastern Pacific Ocean off the coast of northern California and in southeastern Texas, respectively. An on-board particle-into-liquid sampler (PILS) quantified inorganic and organic acid species with < or = 5-min time resolution. Ubiquitous organic aerosol layers above cloud with enhanced organic acid levels were observed in both locations. The data suggest that aqueous-phase reactions to produce organic acids, mainly oxalic acid, followed by droplet evaporation is a source of elevated organic acid aerosol levels above cloud. Oxalic acid is observed to be produced more efficiently relative to sulfate as the cloud liquid water content increases, corresponding to larger and less acidic droplets. As derived from large eddy simulations of stratocumulus underthe conditions of MASE, both Lagrangian trajectory analysis and diurnal cloudtop evolution provide evidence that a significant fraction of the aerosol mass concentration above cloud can be accounted for by evaporated droplet residual particles. Methanesulfonate data suggest that entrainment of free tropospheric aerosol can also be a source of organic acids above boundary layer clouds.

  11. The cloud-aerosol-radiation (CAR) ensemble modeling system

    NASA Astrophysics Data System (ADS)

    Liang, X.-Z.; Zhang, F.

    2013-08-01

    A cloud-aerosol-radiation (CAR) ensemble modeling system has been developed to incorporate the largest choices of alternate parameterizations for cloud properties (cover, water, radius, optics, geometry), aerosol properties (type, profile, optics), radiation transfers (solar, infrared), and their interactions. These schemes form the most comprehensive collection currently available in the literature, including those used by the world's leading general circulation models (GCMs). CAR provides a unique framework to determine (via intercomparison across all schemes), reduce (via optimized ensemble simulations), and attribute specific key factors for (via physical process sensitivity analyses) the model discrepancies and uncertainties in representing greenhouse gas, aerosol, and cloud radiative forcing effects. This study presents a general description of the CAR system and illustrates its capabilities for climate modeling applications, especially in the context of estimating climate sensitivity and uncertainty range caused by cloud-aerosol-radiation interactions. For demonstration purposes, the evaluation is based on several CAR standalone and coupled climate model experiments, each comparing a limited subset of the full system ensemble with up to 896 members. It is shown that the quantification of radiative forcings and climate impacts strongly depends on the choices of the cloud, aerosol, and radiation schemes. The prevailing schemes used in current GCMs are likely insufficient in variety and physically biased in a significant way. There exists large room for improvement by optimally combining radiation transfer with cloud property schemes.

  12. Cloud-Aerosol-Radiation (CAR) ensemble modeling system

    NASA Astrophysics Data System (ADS)

    Liang, X.-Z.; Zhang, F.

    2013-04-01

    A Cloud-Aerosol-Radiation (CAR) ensemble modeling system has been developed to incorporate the largest choices of alternative parameterizations for cloud properties (cover, water, radius, optics, geometry), aerosol properties (type, profile, optics), radiation transfers (solar, infrared), and their interactions. These schemes form the most comprehensive collection currently available in the literature, including those used by the world leading general circulation models (GCMs). The CAR provides a unique framework to determine (via intercomparison across all schemes), reduce (via optimized ensemble simulations), and attribute specific key factors for (via physical process sensitivity analyses) the model discrepancies and uncertainties in representing greenhouse gas, aerosol and cloud radiative forcing effects. This study presents a general description of the CAR system and illustrates its capabilities for climate modeling applications, especially in the context of estimating climate sensitivity and uncertainty range caused by cloud-aerosol-radiation interactions. For demonstration purpose, the evaluation is based on several CAR standalone and coupled climate model experiments, each comparing a limited subset of the full system ensemble with up to 896 members. It is shown that the quantification of radiative forcings and climate impacts strongly depends on the choices of the cloud, aerosol and radiation schemes. The prevailing schemes used in current GCMs are likely insufficient in variety and physically biased in a significant way. There exists large room for improvement by optimally combining radiation transfer with cloud property schemes.

  13. Aerosol and cloud retrieval using AATSR

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; Kolmonen, Pekka; Virtanen, Timo; Saponaro, Giulia; Kokhanovsky, Alexander; de Leeuw, Gerrit

    2013-04-01

    Aerosols and clouds play an important role in terrestrial atmospheric dynamics, thermodynamics, chemistry, and radiative transfer and are key elements of the water and energy cycles. Accurate evaluation of the effects of aerosols and clouds on climate requires global information on aerosol properties. Such global information can only be provided using satellite remote sensing. Among the satellite instruments used for aerosol and cloud retrieval is the Advanced Along-Track Scanning Radiometer (AATSR) on board the European Space Agency (ESA) satellite ENVISAT. Many instruments and retrieval techniques have been developed and applied to satellite data to derive cloud data products (Kokhanonsky et al., 2009). However, many problems still remain to be solved. They are mostly related to the usage of homogeneous, single-layered cloud model. Further issues exist for studies of thin clouds, where both cloud inhomogeniety, cloud fraction and the underlying surface bi-directional reflectance must be accounted for in the retrieval process. The aerosol retrieval algorithm (dual-view over land and single-view over ocean) was constructed for ATSR-2 data (e.g. Veefkind et al. 1998). The most recent version of ADV (AATSR Dual View) is described in Kolmenen et al. (2012). The ATSR dual-view allows retrieval without prior information about land surface reflectance. A semi-analytical cloud retrieval algorithm using backscattered radiation in 0.4-2.4 μm spectral region has recently been implemented to ADV for the determination of the optical thickness, the liquid water path, and the effective size of droplets from spectral measurements of the intensity of light reflected from water clouds with large optical thickness. In AacDV (AATSR aerosol and cloud Dual View) aerosol and cloud retrievals are combined. Cloud retrieval starts when cloud tests for aerosol retrieval show the presence of clouds. The algorithm was early introduced in Kokhanovsky et al. (2003). It works well for thick

  14. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds

    SciTech Connect

    McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Mengistu; Brooks, Sarah D.; Cziczo, Daniel J.; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor J.; Gultepe, Ismail; Hubbe, John M.; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. R.; Liu, Peter S.; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, A. M.; Moffet, Ryan C.; Morrison, H.; Ovchinnikov, Mikhail; Shupe, Matthew D.; Turner, David D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matthew; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmospheric emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.

  15. Explicit numerical study of aerosol-cloud interactions in boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Paunova, Irena T.

    Aerosol-cloud interactions, the mechanisms by which aerosols impact clouds and precipitation and clouds impact aerosols as they are released upon droplet evaporation, are investigated by means of explicit high-resolution (3 km) numerical simulations with the Mesoscale Compressible Community (MC2) model. This model, which is non-hydrostatic and compressible, was extended by including separate continuity equations for dry and activated multi-modal aerosol, and for chemical species. The sources and sinks include: particle activation, solute transfer between drops, generation of extra soluble material in clouds via oxidation of dissolved SO2, and particle regeneration. The cloud processes are represented by an advanced double-moment bulk microphysical parameterization. Three summertime cases have been evaluated: a marine stratus and a cold frontal system over the Bay of Fundy near Nova Scotia, formed on 1 Sep 1995 and extensively sampled as a part of the Radiation, Aerosol, and Cloud Experiment (RACE); and a continental stratocumulus, formed over the southern coast of Lake Erie on 11 July 2001. The marine stratus and the frontal system have been examined for the effects of aerosol on cloud properties and thoroughly evaluated against the available observations. The frontal system and the continental stratocumulus have been evaluated for the effects of cloud processing on the aerosol spectrum. The marine stratus simulations suggest a significant impact of the aerosol on cloud properties. A simulation with mechanistic activation and a uni-modal aerosol showed the best agreement with observations in regards to cloud-base and cloud-top height, droplet concentration, and liquid water content. A simulation with a simple activation parameterization failed to simulate essential bulk cloud properties: droplet concentration was significantly underpredicted and the vertical structure of the cloud was inconsistent with the observations. A simulation with a mechanistic

  16. Putting the clouds back in aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Gettelman, A.

    2015-11-01

    Aerosol-cloud interactions (ACI) are the consequence of perturbed aerosols affecting cloud drop and crystal number, with corresponding microphysical and radiative effects. ACI are sensitive to both cloud microphysical processes (the "C" in ACI) and aerosol emissions and processes (the "A" in ACI). This work highlights the importance of cloud microphysical processes, using idealized and global tests of a cloud microphysics scheme used for global climate prediction. Uncertainties in key cloud microphysical processes examined with sensitivity tests cause uncertainties of nearly -30 to +60 % in ACI, similar to or stronger than uncertainties identified due to natural aerosol emissions (-30 to +30 %). The different dimensions and sensitivities of ACI to microphysical processes identified in previous work are analyzed in detail, showing that precipitation processes are critical for understanding ACI and that uncertain cloud lifetime effects are nearly one-third of simulated ACI. Buffering of different processes is important, as is the mixed phase and coupling of the microphysics to the condensation and turbulence schemes in the model.

  17. Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect

    SciTech Connect

    Wang, J. X.; Lee, Y.- N.; Daum, Peter H.; Jayne, John T.; Alexander, M. L.

    2008-11-03

    Abstract. Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/ Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at 0.2% supersaturation to those predicted based on size distribution and chemical composition using K¨ohler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization.

  18. Meteorological and aerosol effects on marine cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Corrigan, C. E.; Roberts, G. C.; Hawkins, L. N.; Schroder, J. C.; Bertram, A. K.; Zhao, R.; Lee, A. K. Y.; Lin, J. J.; Nenes, A.; Wang, Z.; Wonaschütz, A.; Sorooshian, A.; Noone, K. J.; Jonsson, H.; Toom, D.; Macdonald, A. M.; Leaitch, W. R.; Seinfeld, J. H.

    2016-04-01

    Meteorology and microphysics affect cloud formation, cloud droplet distributions, and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets studies provided measurements in six case studies of cloud thermodynamic properties, initial particle number distribution and composition, and cloud drop distribution. In this study, we use simulations from a chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce observed cloud droplet distributions of the case studies. Four cases had subadiabatic lapse rates, resulting in fewer activated droplets, lower liquid water content, and higher cloud base height than an adiabatic lapse rate. A weighted ensemble of simulations that reflect measured variation in updraft velocity and cloud base height was used to reproduce observed droplet distributions. Simulations show that organic hygroscopicity in internally mixed cases causes small effects on cloud reflectivity (CR) (<0.01), except for cargo ship and smoke plumes, which increased CR by 0.02 and 0.07, respectively, owing to their high organic mass fraction. Organic hygroscopicity had larger effects on droplet concentrations for cases with higher aerosol concentrations near the critical diameter (namely, polluted cases with a modal peak near 0.1 µm). Differences in simulated droplet spectral widths (k) caused larger differences in CR than organic hygroscopicity in cases with organic mass fractions of 60% or less for the cases shown. Finally, simulations from a numerical parameterization of cloud droplet activation suitable for general circulation models compared well with the ACP model, except under high organic mass fraction.

  19. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  20. Biomass Burning Aerosol Impact on Orographic Cloud Formation on Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Wu, Y.; Christopher, S. A.

    2014-12-01

    In addition to large scale climate change impacts, regional climate forcing due to land cover and land use change and biomass burning aerosols may also be relevant in understanding observed changes at Kilimanjaro. Analysis of satellite detected fires conducted for 2007 show substantial biomass burning in the vicinity of Kilimanjaro and maximum mid visible MODIS retrieved aerosol optical depth over Kilimanjaro during the month of July. For selected case days in 2007, numerical simulations were conducted using WRF Chem to assess the impact of biomass burning aerosols on orographic cloud formation on Kilimanjaro. Numerical modeling experiments with and without smoke emissions were conducted. Satellite derived smoke emissions are utilized in numerical model experiments considering biomass burning aerosol effects. Nested grid configuration was used in the experiments to establish a fine grid of 100 km x 100 km domain and 1 km grid spacing over the complex terrain of Kilimanjaro. For case days considered, numerical model simulations show substantial impact of biomass burning aerosols on orographic cloud formation. There is a net increase in cloud liquid water path with maximum increase in excess of 10%. Orographic precipitation also show increase in rainfall of up to 10% at higher elevations. Whereas there is average reduction in downwelling solar radiation 18 Wm-2 up to elevations of 5000m, impacts at the mountain peaks are minimal. Processes leading to the differences in cloud formation and results from numerical simulations are conducted for additional case study days during other seasons and will be discussed

  1. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    SciTech Connect

    Massie, S.T.; Bailey, P.L.; Gille, J.C.; Lee, E.C.; Mergenthaler, J.L.; Roche, A.E.; Kumer, J.B.; Fishbein, E.F.; Waters, J.W.; Lahoz, W.A.

    1994-10-15

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm{sup {minus}1} (10.8, 8.0, and 6.2 {mu}m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculation and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles. 47 refs., 22 figs., 3 tabs.

  2. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.

    1994-01-01

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite (UARS) are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605/cm (10.8, 8.0, and 6.2 micrometers) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheriodal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.

  3. Effect of CALIPSO Cloud Aerosol Discrimination (CAD) Confidence Levels on Observations of Aerosol Properties near Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Liu, Zhaoyan

    2012-01-01

    CALIPSO aerosol backscatter enhancement in the transition zone between clouds and clear sky areas is revisited with particular attention to effects of data selection based on the confidence level of cloud-aerosol discrimination (CAD). The results show that backscatter behavior in the transition zone strongly depends on the CAD confidence level. Higher confidence level data has a flatter backscatter far away from clouds and a much sharper increase near clouds (within 4 km), thus a smaller transition zone. For high confidence level data it is shown that the overall backscatter enhancement is more pronounced for small clear-air segments and horizontally larger clouds. The results suggest that data selection based on CAD reduces the possible effects of cloud contamination when studying aerosol properties in the vicinity of clouds.

  4. Smoke and Pollution Aerosol Effect on Cloud Cover

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Koren, Ilan

    2006-01-01

    Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.

  5. Aerosol-cloud-precipitation interactions in the trade wind boundary layer

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil

    This dissertation includes an overview of aerosol, cloud, and precipitation properties associated with shallow marine cumulus clouds observed during the Barbados Aerosol Cloud Experiment (BACEX, March-April 2010) and a discussion of their interactions. The principal observing platform for the experiment was the Cooperative Institute for Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter (TO) research aircraft that was equipped with aerosol, cloud, and precipitation probes, standard meteorological instruments, and a up-looking cloud radar. The temporal variations and vertical distributions of aerosols observed on the 15 flights show a wide range of aerosol conditions that include the most intense African dust event observed at the Barbados surface site during all of 2010. An average CCN varied from 50 cm-3 to 800 cm -3 at super-saturation of 0.6 %, for example. The 10-day backward trajectories show that three distinctive air masses (originality of air mass as well as the vertical structure) dominate over the Eastern Caribbean (e.g., typical maritime air mass, Saharan Air Layer (SAL), Middle latitude dry air) with characteristic aerosol vertical structures. Many clouds in various phases of growth during BACEX are sampled. The maximum cloud depth observed is about less than 3 km and in most of the clouds is less than 1 km. Two types of precipitation features were observed for the shallow marine cumulus clouds with different impacts on boundary layer. In one, precipitation shafts are observed to emanate from the cloud base with evaporation in the sub-cloud layer (stabilize the sub-cloud layer). In the other, precipitation shafts emanate mainly near the cloud top on the downshear side of the cloud and evaporate in the cloud layer, leading to destabilizing the cloud layer and providing moisture to the layer. Only 42-44 % of clouds sampled were purely non-precipitating throughout the clouds; the remainder of the clouds showed precipitation somewhere in the cloud

  6. Aerosol-cloud closure study using RPAS measurements

    NASA Astrophysics Data System (ADS)

    Calmer, R.; Roberts, G.; Sanchez, K. J.; Nicoll, K.; Preissler, J.; Ovadnevaite, J.; Sciare, J.; Bronz, M.; Hattenberger, G.; Rosenfeld, D.; Lauda, S.; Hashimshoni, E.

    2015-12-01

    Enhancements in Remotely Piloted Aircraft Systems (RPAS) have increased their possible uses in many fields for the past two decades. For atmospheric research, ultra-light RPAS (< 2.5kg) are now able to fly at altitudes greater than 3 km and even in cloud, which opens new opportunities to understand aerosol-cloud interactions. We are deploying the RPAS as part of the European project BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). Field experiments in Cyprus and Ireland have already been conducted to study aerosol-cloud interactions in climatically different environments. The RPAS are being utilized in this study with the purpose of complementing ground-based observations of cloud condensation nuclei (CCN) to conduct aerosol-cloud closure studies Cloud microphysical properties such as cloud drop number concentration and size can be predicted directly from the measured CCN spectrum and the observed updraft, the vertical component of the wind vector [e.g., Conant et al, 2004]. On the RPAS, updraft measurements are obtained from a 5-hole probe synchronized with an Inertial Measurement Unit (IMU). The RPA (remotely piloted aircraft) are programmed to fly at a level leg just below cloud base to measure updraft measurements while a scanning CCN counter is stationed at ground level. Vertical profiles confirm that CCN measurements on the ground are representative to those at cloud base. An aerosol-cloud parcel model is implemented to model the cloud droplet spectra associated with measured updraft velocities. The model represents the particle size domain with internally mixed chemical components, using a fixed-sectional approach [L. M. Russell and Seinfeld, 1998]. The model employs a dual moment (number and mass) algorithm to calculate growth of particles from one section to the next for non-evaporating species. Temperature profiles, cloud base, updraft velocities and aerosol size and composition, all

  7. Observed aerosol effects on marine cloud nucleation and supersaturation

    NASA Astrophysics Data System (ADS)

    Russell, Lynn M.; Sorooshian, Armin; Seinfeld, John H.; Albrecht, Bruce A.; Nenes, Athanasios; Leaitch, W. Richard; Macdonald, Anne Marie; Ahlm, Lars; Chen, Yi-Chun; Coggon, Matthew; Corrigan, Ashley; Craven, Jill S.; Flagan, Richard C.; Frossard, Amanda A.; Hawkins, Lelia N.; Jonsson, Haflidi; Jung, Eunsil; Lin, Jack J.; Metcalf, Andrew R.; Modini, Robin; Mülmenstädt, Johannes; Roberts, Greg C.; Shingler, Taylor; Song, Siwon; Wang, Zhen; Wonaschütz, Anna

    2013-05-01

    Aerosol particles in the marine boundary layer include primary organic and salt particles from sea spray and combustion-derived particles from ships and coastal cities. These particle types serve as nuclei for marine cloud droplet activation, although the particles that activate depend on the particle size and composition as well as the supersaturation that results from cloud updraft velocities. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) 2011 was a targeted aircraft campaign to assess how different particle types nucleate cloud droplets. As part of E-PEACE 2011, we studied the role of marine particles as cloud droplet nuclei and used emitted particle sources to separate particle-induced feedbacks from dynamical variability. The emitted particle sources included shipboard smoke-generated particles with 0.05-1 μm diameters (which produced tracks measured by satellite and had drop composition characteristic of organic smoke) and combustion particles from container ships with 0.05-0.2 μm diameters (which were measured in a variety of conditions with droplets containing both organic and sulfate components) [1]. Three central aspects of the collaborative E-PEACE results are: (1) the size and chemical composition of the emitted smoke particles compared to ship-track-forming cargo ship emissions as well as background marine particles, with particular attention to the role of organic particles, (2) the characteristics of cloud track formation for smoke and cargo ships, as well as the role of multi-layered low clouds, and (3) the implications of these findings for quantifying aerosol indirect effects. For comparison with the E-PEACE results, the preliminary results of the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) 2012 provided evidence of the cloud-nucleating roles of both marine organic particles and coastal urban pollution, with simultaneous measurements of the effective supersaturations of the clouds in the

  8. Cloud Forming Potential of Aminium Carboxylate Aerosols

    NASA Astrophysics Data System (ADS)

    Gomez Hernandez, M. E.; McKeown, M.; Taylor, N.; Collins, D. R.; Lavi, A.; Rudich, Y.; Zhang, R.

    2014-12-01

    Atmospheric aerosols affect visibility, air quality, human health, climate, and in particular the aerosol direct and indirect forcings represent the largest uncertainty in climate projections. In this paper, we present laboratory measurements of the hygroscopic growth factors (HGf) and cloud condensation nuclei (CCN) activity of a series of aminium carboxylate salt aerosols, utilizing a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) coupled to a Condensation Particle Counter (CPC) and a CCN counter. HGf measurements were conducted for size-selected aerosols with diameters ranging from 46 nm to 151 nm and at relative humidity (RH%) values ranging from 10 to 90%. In addition, we have calculated the CCN activation diameters for the aminium carboxylate aerosols and derived the hygroscopicity parameter (k or kappa) values for all species using three methods, i.e., the mixing rule approximation, HGf, and CCN results. Our results show that variations in the ratio of acid to base directly affect the activation diameter, HGf, and (k) values of the aminium carboxylate aerosols. Atmospheric implications of the variations in the chemical composition of aminium carboxylate aerosols on their cloud forming potential will be discussed.

  9. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  10. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  11. Cloud microphysical background for the Israel-4 cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Freud, Eyal; Koussevitzky, Hagai; Goren, Tom; Rosenfeld, Daniel

    2015-05-01

    The modest amount of rainfall in Israel occurs in winter storms that bring convective clouds from the Mediterranean Sea when the cold post frontal air interacts with its relatively warm surface. These clouds were seeded in the Israel-1 and Israel-2 cloud glaciogenic seeding experiments, which have shown statistically significant positive effect of added rainfall of at least 13% in northern Israel, whereas the Israel-3 experiment showed no added rainfall in the south. This was followed by operational seeding in the north since 1975. The lack of physical evidence for the causes of the positive effects in the north caused a lack of confidence in the statistical results and led to the Israel-4 randomized seeding experiment in northern Israel. This experiment started in the winter of 2013/14. The main difference from the previous experiments is the focus on the orographic clouds in the catchment of the Sea of Galilee. The decision to commence the experiment was partially based on evidence supporting the existence of seeding potential, which is reported here. Aircraft and satellite microphysical and dynamic measurements of the clouds document the critical roles of aerosols, especially sea spray, on cloud microstructure and precipitation forming processes. It was found that the convective clouds over sea and coastal areas are naturally seeded hygroscopically by sea spray and develop precipitation efficiently. The diminution of the large sea spray aerosols farther inland along with the increase in aerosol concentrations causes the clouds to develop precipitation more slowly. The short time available for the precipitation forming processes in super-cooled orographic clouds over the Golan Heights farthest inland represents the best glaciogenic seeding potential.

  12. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-01-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented in the regional weather forecast and climate model COSMO. The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snow flakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snow flakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. However, the processes not only impact the total aerosol number and mass, but also the shape of the aerosol size distributions by enhancing the internally mixed/soluble accumulation mode and generating coarse mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice

  13. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  14. The 1997 El Niño impact on clouds, water vapour, aerosols and reactive trace gases in the troposphere, as measured by the Global Ozone Monitoring Experiment

    NASA Astrophysics Data System (ADS)

    Loyola, D.; Valks, P.; Ruppert, T.; Richter, A.; Wagner, T.; Thomas, W.; van der A, R.; Meisner, R.

    2006-03-01

    The El Niño event of 1997/1998 caused dry conditions over the Indonesian area that were followed by large scale forest and savannah fires over Kalimantan, Sumatra, Java, and parts of Irian Jaya. Biomass burning was most intense between August and October 1997, and large amounts of ozone precursors, such as nitrogen oxides, carbon monoxide and hydrocarbons were emitted into the atmosphere. In this work, we use satellite measurements from the Global Ozone Monitoring Experiment (GOME) sensor to study the teleconnections between the El Niño event of 1997 and the Indonesian fires, clouds, water vapour, aerosols and reactive trace gases (nitrogen dioxide, formaldehyde and ozone) in the troposphere.

  15. Airborne In-Situ Measurements of Aerosol and Cloud Microphysical Properties in Mixed-Phase Clouds Under Varying Conditions

    NASA Astrophysics Data System (ADS)

    Comstock, J. M.; Fan, J.; Tomlinson, J. M.; Mei, F.; Hubbe, J. M.; Schmid, B.

    2014-12-01

    Cloud microphysical properties impact the interaction of clouds and radiation in the atmosphere, and can influence atmospheric circulations through changes in cloud phase. Characterizing the conditions that control phase changes and the microphysical properties of mixed-phase clouds is important for improving understanding of physical processes that influence cloud phase. We characterize the aerosol and cloud microphysical properties in relation to the atmospheric dynamic and thermodynamic conditions observed in mixed-phase clouds during several aircraft-based field experiments. The Department of Energy Atmospheric Radiation Measurement program's Gulfstream-1 aircraft was used to sample aerosol and cloud properties in warm and cold clouds during several recent field experiments. We analyze in-situ observations from the CalWater and TCAP field campaigns to examine the variability of cloud properties (phase, hydrometeor size, ice and liquid water content, particle habit) with changes in aerosol, vertical velocity, and temperature. These measurements indicate that in addition to aerosol concentration, vertical velocity strength has important influence on cloud phase in mixed-phase cloud regimes.

  16. Impact of aerosol size representation on modeling aerosol-cloud interactions

    DOE PAGES

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; ...

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  17. Impact of aerosol size representation on modeling aerosol-cloud interactions

    SciTech Connect

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; Abdul-Razzak, H.

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach. The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).

  18. Spatial and Temporal Patterns of Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan

    2014-05-01

    This study determines the spatial and temporal distribution of regions with frequent aerosol-cloud interactions (aci) and identifies their meteorological determinants based on CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and ECMWF (European Centre for Medium-Range Weather Forecasts) data products. Atmospheric aerosols influence the microphysical structure of clouds, while both also respond to meteorological conditions. The potential radiative adjustments to changes in a cloud system associated with aerosol-cloud interactions are grouped and termed as effective radiative forcing due to aerosol-cloud interactions (ERFaci). It is difficult to distinguish, to what extent radiative forcing and precipitation patterns of clouds are a result of cloud feedbacks to aerosols or the existing meteorological conditions. A complete understanding of aerosol-cloud-meteorology interactions is crucial as the uncertainty range of ERFaci in climate change modeling could be significantly reduced. In the present study it is suggested that presence of hydrated aerosols is an implication for aci. Knowledge of their vertical and horizontal distribution and frequency over the globe would be important for understanding ERFaci. To identify regions with aerosol-cloud transitions the CAD score (cloud-aerosol discrimination) of the CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) instrument on the CALIPSO satellite is used. It separates aerosols and clouds according to the probability distribution functions of 5 parameters (attenuated backscatter, total color ratio, volume depolarization ratio, altitude and latitude) and assigns the likelihood of cloud or aerosol presence. This parameter is used to calculate relative frequencies of aci on a global scale from 2006 to 2013.

  19. Dark Targets, Aerosols, Clouds and Toys

    NASA Astrophysics Data System (ADS)

    Remer, L. A.

    2015-12-01

    Today if you use the Thomson-Reuters Science Citations Index to search for "aerosol*", across all scientific disciplines and years, with no constraints, and you sort by number of citations, you will find a 2005 paper published in the Journal of the Atmospheric Sciences in the top 20. This is the "The MODIS Aerosol Algorithm, Products and Validation". Although I am the first author, there are in total 12 co-authors who each made a significant intellectual contribution to the paper or to the algorithm, products and validation described. This paper, that algorithm, those people lie at the heart of a lineage of scientists whose collaborations and linked individual pursuits have made a significant contribution to our understanding of radiative transfer and climate, of aerosol properties and the global aerosol system, of cloud physics and aerosol-cloud interaction, and how to measure these parameters and maximize the science that can be obtained from those measurements. The 'lineage' had its origins across the globe, from Soviet Russia to France, from the U.S. to Israel, from the Himalayas, the Sahel, the metropolises of Sao Paulo, Taipei, and the cities of east and south Asia. It came together in the 1990s and 2000s at the NASA Goddard Space Flight Center, using cultural diversity as a strength to form a common culture of scientific creativity that continues to this day. The original algorithm has spawned daughter algorithms that are being applied to new satellite and airborne sensors. The original MODIS products have been fundamental to analyses as diverse as air quality monitoring and aerosol-cloud forcing. AERONET, designed originally for the need of validation, is now its own thriving institution, and the lineage continues to push forward to provide new technology for the coming generations.

  20. Aerosol/Cloud Measurements Using Coherent Wind Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Boquet, Matthieu; Cariou, Jean-Pierre; Sauvage, Laurent; Parmentier, Rémy

    2016-06-01

    The accurate localization and characterization of aerosol and cloud layers is crucial for climate studies (aerosol indirect effect), meteorology (Planetary Boundary Layer PBL height), site monitoring (industrial emissions, mining,…) and natural hazards (thunderstorms, volcanic eruptions). LEOSPHERE has recently developed aerosol/cloud detection and characterization on WINDCUBE long range Coherent Wind Doppler Lidars (CWDL). These new features combine wind and backscatter intensity informations (Carrier-to-Noise Ratio CNR) in order to detect (aerosol/cloud base and top, PBL height) and to characterize atmospheric structures (attenuated backscatter, depolarization ratio). For each aerosol/cloud functionality the method is described, limitations are discussed and examples are given to illustrate the performances.

  1. Aerosol and Plasma Measurements in Noctilucent Clouds

    NASA Technical Reports Server (NTRS)

    Robertson, Scott

    2000-01-01

    The purpose of this project was to develop rocket-borne probes to detect charged aerosol layers in the mesosphere. These include sporadic E layers, which have their origin in meteoric dust, and noctilucent clouds, which form in the arctic summer and are composed of ice crystals. The probe being developed consists of a charge collecting patch connected to a sensitive electrometer which measures the charge deposited on the patch by impacting aerosols. The ambient electrons and light ions in the mesosphere are prevented from being collected by a magnetic field. The magnetic force causes these lighter particles to turn so that they miss the collecting patch.

  2. Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation

    NASA Astrophysics Data System (ADS)

    Alizadeh-Choobari, O.; Gharaylou, M.

    2017-03-01

    Through modifying the number concentration and size of cloud droplets, aerosols have intricate impacts on radiative and microphysical properties of clouds, which together influence precipitation processes. Aerosol-cloud interactions for a mid-latitude convective cloud system are investigated using a two-moment aerosol-aware bulk microphysical scheme implemented into the Weather Research and Forecasting (WRF) model. Three sensitivity experiments with initial identical dynamic and thermodynamic conditions, but different cloud-nucleating aerosol concentrations were conducted. Increased aerosol number concentration has resulted in more numerous cloud droplets of overall smaller sizes, through which the optical properties of clouds have been changed. While the shortwave cloud forcing is significantly increased in more polluted experiments, changes in the aerosol number concentration have negligible impacts on the longwave cloud forcing. For the first time, it is found that polluted clouds have higher cloud base heights, the feature that is caused by more surface cooling due to a higher shortwave cloud forcing, as well as a drier boundary layer in the polluted experiment compared to the clean. The polluted experiment was also associated with a higher liquid water content (LWC), caused by an increase in the number of condensation of water vapor due to higher concentration of hygroscopic aerosols acting as condensation nuclei. The domain-averaged accumulated precipitation is little changed under both polluted and clean atmosphere. Nevertheless, changes in the rate of precipitation are identified, such that under polluted atmosphere light rain is reduced, while both moderate and heavy rain are intensified, confirming the fact that if an ample influx of water vapor exists, an increment of hygroscopic aerosols can increase the amount of precipitation.

  3. On the role of thermodynamics and cloud-aerosol-precipitation interactions over thunderstorm activity during GoAmazon and ACRIDICON-CHUVA field experiments

    NASA Astrophysics Data System (ADS)

    Albrecht, R. I.; Morales, C. A.; Hoeller, H.; Braga, R. C.; Machado, L.; Wendisch, M.; Andreae, M. O.; Rosenfeld, D.; Poeschl, U.; Biscaro, T.; Lima, W.; Eichholz, C.; Oliveira, R. A. J.; Sperling, V.; Carvalho, I.; Calheiros, A. J. P.; Amaral, L. F.; Cecchin, M.; Saraiva, J.; Saraiva, I.; Schumacher, C.; Funk, A. B.

    2015-12-01

    Based on satellite data, total (intracloud and cloud-to-ground) lightning activity climatological annual cycle over the GoAmazon area of interest (from T0 to T3 sites) shows that lightning activity is moderate (up to 10 flashes per day - fl day-1) throughout the wet (December-March) and dry (April-August) seasons, with T3 always being a little greater than T1 and T0 sites, respectively. During the dry-to-wet transition season (September-October), however, lightning activity peaks up to 25 fl day-1 at T1, followed by T3 (20 fl day-1) and T0 (15 fl day-1). The diurnal cycle reveals that the onset of deep convection during this same season starts one hour and peaks two hours earlier than the wet season. In the Amazon, cloud updrafts are primarily controlled by the local environment thermodynamics. During the dry-to-wet transition season, thermodynamics is significantly changed by land cover land cover where cloud base heights are elevated over deforested areas potentially increasing the strength of updrafts due to a better processing of the convective available potential energy, and therefore also increasing cloud electrification. The total (intracloud and cloud-to-ground) LIghtning NET(LINET - Nowcast) installed in September-October 2014 for GoAmazon IOP2 and ACRIDICON-CHUVA field experiments and the set of weather radars revealed that the thunderstorm enhancement over T1 (Manaus) during the dry-to-wet season is driven by the interaction between river breeze and the main easterly winds over Amazon basin, resulting in a locally forced convergent flow on the east side of Rio Negro which drives deep afternoon convection. In terms of atmospheric pollution, the dry-to-wet season is also marked by increased biomass burning, and the city of Manaus (T1) is a local polluted heat island. We will also present quantified thermodynamical and microphysical differences between the thunderstorms that developed over T0, T1 and T2. Our hypothesis is that cloud charge centers, total

  4. The Effects of Transpacific Transported Aerosol on Clouds in California

    NASA Astrophysics Data System (ADS)

    Suski, K.; Creamean, J.; Rosenfeld, D.; Cazorla, A.; DeMott, P. J.; Sullivan, R. C.; White, A. B.; Ralph, F. M.; Cahill, J.; Tomlinson, J. M.; Chand, D.; Schmid, B.; Prather, K. A.

    2012-12-01

    Atmospheric aerosols are frequently lofted high into the atmosphere and can travel large distances within several days. Long-range transported aerosols can have large impacts on radiative and microphysical cloud properties and can affect precipitation on both regional and global scales. Research flights were conducted out of Sacramento, California onboard the DOE G-1 aircraft during the CalWater 2011 flight campaign, which aimed to understand the effects of aerosols on clouds and precipitation in California. To investigate aerosol effects on clouds, measurements of cloud microphysical properties were coupled with an aircraft aerosol time-of-flight mass spectrometer (A-ATOFMS), which characterized the chemical composition of aerosols and cloud residues. California Central Valley pollution aerosols were hypothesized to have a large impact on orographic clouds in the California Sierra Nevada Mountains; however transpacific transported aerosols were observed in cloud residues on several flights. Our observations indicate that dust from Asia, Africa, and the Middle East initiated ice formation in upper level clouds, while Asian soot from biomass burning served as cloud condensation nuclei in clouds with large concentrations of small liquid droplets. Previous work has linked large concentrations of small droplets to suppression of orographic precipitation, while ice formation has been shown to enhance precipitation. Therefore, the overall impact of these competing effects on precipitation in the Sierra Nevada is highly uncertain. The varying impacts of long-range transported aerosols on clouds and precipitation in California are presented.

  5. Aerosol-Cloud Interactions in the South-East Atlantic

    NASA Astrophysics Data System (ADS)

    Andersen, Hendrik; Cermak, Jan

    2014-05-01

    In this contribution, a satellite-based study on aerosol-cloud interactions (ACI) in the South-East Atlantic with explicit consideration of meteorological conditions is presented. Aerosol-Cloud Interactions remain difficult to quantify and contribute the largest uncertainty to global radiative forcing. These uncertainties make them one of the most important factors for anthropogenic climate perturbations. Interactions are highly complex as microphysical and macrostructural cloud adjustments to aerosol perturbations do not transpire in a black box but are highly dependent on a variety of factors like cloud regime, meteorology and aerosol properties. To gain understanding of the processes that govern ACI in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. This process study uses multiple statistical approaches to untangle the various influences on ACI. Stratocumulus clouds in the South-East Atlantic are investigated over a time span of 10 years using daily Terra MODIS L3 data for aerosol and cloud parameters. Together with ERA-Interim reanalysis data of cloud-relevant meteorological parameters, statistical relationships between aerosol and cloud properties are derived for different weather types on the basis of a kmeans cluster analysis, in addition to bivariate relationships. Also, the influence of aerosol loading on aerosol-cloud relationships is investigated. Relationships between aerosol and cloud microphysical properties are established. Macrostructural cloud adjustments are more ambiguous, as the observed positive relationship between aerosol and cloud liquid water path (LWP) is inconsistent with the Albrecht hypothesis (more cloud water due to drizzle suppression). Adjustments of cloud optical thickness (COT) to aerosol perturbations are negligible as COT is highly dependent on LWP. Strong relationships between aerosol and cloud fraction are identified, but might be spurious and

  6. FIRE Arctic Clouds Experiment

    NASA Technical Reports Server (NTRS)

    Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.; Gerber, H.; Fairall, C. W.; Garrett, T. J.; Hudson, J.; Intrieri, J. M.; Jakob, C.; Jensen, T.; Lawson, P.; Marcotte, D.; Nguyen, L.

    1998-01-01

    An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.

  7. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds

    DTIC Science & Technology

    2012-09-30

    provide a means for evaluating and developing parameterizations for models that predict cloud microphysical processes. Observations of the...observed during BACEX was associated with African dust above the boundary layer. On two days when convection was completely suppressed, an African... dust event associated with record Aerosol Optical Depths (AODs) for Barbados during this time of the year was observed. The vertical structure of the

  8. Global CALIPSO Observations of Aerosol Changes Near Clouds

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2011-01-01

    Several recent studies have found that clouds are surrounded by a transition zone of rapidly changing aerosol optical properties and particle size. Characterizing this transition zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects, and also for improving satellite retrievals of aerosol properties. This letter presents a statistical analysis of a monthlong global data set of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations over oceans. The results show that the transition zone is ubiquitous over all oceans and extends up to 15 km away from clouds. They also show that near-cloud enhancements in backscatter and particle size are strongest at low altitudes, slightly below the top of the nearest clouds. Also, the enhancements are similar near illuminated and shadowy cloud sides, which confirms that the asymmetry of Moderate Resolution Imaging Spectroradiometer reflectances found in an earlier study comes from 3-D radiative processes and not from differences in aerosol properties. Finally, the effects of CALIPSO aerosol detection and cloud identification uncertainties are discussed. The findings underline the importance of accounting for the transition zone to avoid potential biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  9. New spectral methods in cloud and aerosol remote sensing applications

    NASA Astrophysics Data System (ADS)

    Schmidt, K. Sebastian; McBride, Patrick; Pilewskie, Peter; Feingold, Graham; Jiang, Hongli

    2010-05-01

    We present new remote sensing techniques that rely on spectral observations of clouds and aerosols in the solar wavelength range. As a first example, we show how the effects of heterogeneous clouds, aerosols of changing optical properties, and the surface within one pixel can be distinguished by means of their spectral signatures. This example is based on data from the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS, Houston, Texas, 2006), Large Eddy Simulations (LES) of polluted boundary layer clouds, and 3-dimensional radiative transfer calculations. In a second example, we show that the uncertainty of cloud retrievals can be improved considerably by exploiting the spectral information around liquid water absorption features in the near-infrared wavelength range. This is illustrated with spectral transmittance data from the NOAA International Chemistry Experiment in the Arctic LOwer Troposphere (ICEALOT, 2008). In contrast to reflected radiance, transmitted radiance is only weakly sensitive to cloud effective drop radius, and only cloud optical thickness can be obtained from the standard dual-channel technique. We show that effective radius and liquid water path can also be retrieved with the new spectral approach, and validate our results with microwave liquid water path measurements.

  10. Cloud droplet nucleation and its connection to aerosol properties

    SciTech Connect

    Schwartz, S.E.

    1996-04-01

    Anthropogenic aerosols influence the earth`s radiation balance and climate directly, by scattering shortwave (solar) radiation in cloud-free conditions and indirectly, by increasing concentrations of cloud droplets thereby enhancing cloud shortwave reflectivity. These effects are thought to be significant in the context of changes in the earth radiation budget over the industrial period, exerting a radiative forcing that is of comparable magnitude to that of increased concentrations of greenhouse gases over this period but opposite in sign. However the magnitudes of both the direct and indirect aerosol effects are quite uncertain. Much of the uncertainty of the indirect effect arises from incomplete ability to describe changes in cloud properties arising from anthropogenic aerosols. This paper examines recent studies pertaining to the influence of anthropogenic aerosols on loading and properties of aerosols affecting their cloud nucleating properties and indicative of substantial anthropogenic influence on aerosol and cloud properties over the North Atlantic.

  11. One-way visibility using two parallel aerosol clouds.

    PubMed

    Alyones, Sharhabeel; Bruce, Charles W; Granado, Michael; Jelinek, Al V

    2015-01-01

    In this article, we experimentally and theoretically test the range of applicability of a patent that predicts one-way visibility through two successive parallel aerosol clouds, one scattering dominant and the other absorption dominant. A laboratory environment experiment has been designed to determine the ranges of transmissivity and contrast enhancement that might be of interest for military applications. In this study we show that transmissivities in the several percent range and lower are essential for any reasonable contrast enhancement between the two sides of the clouds.

  12. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: An ARM Mobile Facility Deployment

    NASA Technical Reports Server (NTRS)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, J. Christine; Mann, Julian A. L.; O'Connor, Ewan J.; Hogan, Robin J.; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palikonda, Rabindra; Albrecht, Bruce; Luke, Ed; Hannay, Cecile; Lin, Yanluan

    2015-01-01

    Capsule: A 21-month deployment to Graciosa Island in the northeastern Atlantic Ocean is providing an unprecedented record of the clouds, aerosols and meteorology in a poorly-sampled remote marine environment The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21 month (April 2009- December 2010) comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1- 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from at Graciosa are being compared with short-range forecasts made a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a

  13. Aerosol-cloud interactions in the ECHAM6-HAM2 GCM and Aerosol_cci/Cloud_cci satellite products

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Lohmann, Ulrike

    2015-04-01

    The first indirect aerosol effect or cloud albedo effect can be estimated as a radiative forcing. While the sign of this forcing is agreed to be negative, model-based estimates of its magnitude show a large variability. The responses of cloud liquid water content and cloud cover to aerosol increases also referred to as secondary indirect aerosol effects or fast adjustments are uncertain as well. In studies that use the variability in the present day satellite data to infer aerosol-cloud interactions (ACI), or that constrain model parameterizations to better agree with satellite observations a less negative ACI radiative forcing is found. The projects of the Climate Change Initiative (CCI) programme of ESA aim at producing long time series of satellite data of essential climate variables with specific information on errors and uncertainties. The quantification of uncertainty in satellite retrievals provides an opportunity to get insights in the discrepancy between model based and satellite based estimates of ACI. Within the Aerosol_cci project susceptibilities of cloud properties from Cloud_cci to aerosol properties from Aerosol_cci datasets are to be compared to susceptibilities from the aerosol climate model ECHAM6-HAM2. Particularly interesting relationships for the first indirect aerosol effect and the second aerosol indirect effect will be investigated. Satellite studies show a strong effect of aerosol on cloud amount, which could be a methodological artefact such as aerosol swelling or meteorological covariation. The immediate vicinity of clouds needs to be excluded due to these potential cloud contaminations although it would be the most interesting region for associations between aerosol and clouds. As the resolution of the data can have an impact on statistical correlations between cloud and aerosol properties, the assessment will be done on different scales. First results will be presented at the conference.

  14. Meteorological and Aerosol effects on Marine Cloud Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Roberts, G.; Hawkins, L. N.; Schroder, J. C.; Wang, Z.; Lee, A.; Abbatt, J.; Lin, J.; Nenes, A.; Wonaschuetz, A.; Sorooshian, A.; Noone, K.; Jonsson, H.; Albrecht, B. A.; Desiree, T. S.; Macdonald, A. M.; Seinfeld, J.; Zhao, R.

    2015-12-01

    Both meteorology and microphysics affect cloud formation and consequently their droplet distributions and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies provide detailed measurements in 6 case studies of both cloud thermodynamic properties and initial particle number distribution and composition, as well as the resulting cloud drop distribution and composition. This study uses simulations of a detailed chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce the observed cloud droplet distribution and composition. Four of the cases examined had a sub-adiabatic lapse rate, which was shown to have fewer droplets due to decreased maximum supersaturation, lower LWC and higher cloud base height, consistent with previous findings. These detailed case studies provided measured thermodynamics and microphysics that constrained the simulated droplet size distribution sufficiently to match the droplet number within 6% and the size within 19% for 4 of the 6 cases, demonstrating "closure" or consistency of the measured composition with the measured CCN spectra and the inferred and modeled supersaturation. The contribution of organic components to droplet formation shows small effects on the droplet number and size in the 4 marine cases that had background aerosol conditions with varying amounts of coastal, ship or other non-biogenic sources. In contrast, the organic fraction and hygroscopicity increased the droplet number and size in the cases with generated smoke and cargo ship plumes that were freshly emitted and not yet internally mixed with the background particles. The simulation results show organic hygroscopicity causes small effects on cloud reflectivity (<0.7%) with the exception of the cargo ship plume and smoke plume which increased absolute cloud reflectivity fraction by 0

  15. Sulfate aerosol distributions and cloud variations during El Nino anomalies

    SciTech Connect

    Parungo, F. ); Hicks, B. )

    1993-02-20

    The effects of aerosols on cloud characteristics, albedo, rainfall amount, and overall climate changes were investigated by assessing the qualitative associations and quantitative correlations between the relevant variables during El Nino-Southern Oscillation (ENSO) perturbations. Both historical records and data from recent field measurements for the Pacific Ocean region were used for the investigation. The results show that ENSO perturbations could change sulfate aerosol production and distribution over the surveyed regions. Strong correlations were observed between condensation nucleus concentrations and sulfate aerosol concentrations, and between cloud amount and albedo. Weak but significant correlations were also observed between condensation nucleus concentrations and cloud amounts, and between sulfate aerosol concentrations and rainfall amounts. Although sulfate aerosols appeared to have a strong impact on cloud microphysics, the present data confirm that cloud dynamics play the pivotal role in control of cloud types and cloud amount in the studied regions. 31 refs., 5 figs., 3 tabs.

  16. A model for the separation of cloud and aerosol in SAGE II occultation data

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Winker, D. M.; Osborn, M. T.; Skeens, K. M.

    1993-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) II satellite experiment measures the extinction due to aerosols and thin cloud, at wavelengths of 0.525 and 1.02 micrometers, down to an altitude of 6 km. The wavelength dependence of the extinction due to aerosols differs from that of the extinction due to cloud and is used as the basis of a model for separating these two components. The model is presented and its validation using airborne lidar data, obtained coincident with SAGE II observations, is described. This comparison shows that smaller SAGE II cloud extinction values correspond to the presence of subvisible cirrus cloud in the lidar record. Examples of aerosol and cloud data products obtained using this model to interpret SAGE II upper tropospheric and lower stratospheric data are also shown.

  17. Some Technical Aspects of a CALIOP and MODIS Data Analysis that Examines Near-Cloud Aerosol Properties as a Function of Cloud Fraction

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Yang, Weidong; Marshak, Alexander

    2016-01-01

    CALIOP shows stronger near-cloud changes in aerosol properties at higher cloud fractions. Cloud fraction variations explain a third of near-cloud changes in overall aerosol statistics. Cloud fraction and aerosol particle size distribution have a complex relationship.

  18. Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing

    SciTech Connect

    Ghan, Steven J.

    2013-10-09

    Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

  19. CALIPSO observations of near-cloud aerosol properties as a function of cloud fraction

    NASA Astrophysics Data System (ADS)

    Yang, Weidong; Marshak, Alexander; Várnai, Tamás.; Wood, Robert

    2014-12-01

    This paper uses spaceborne lidar data to study how near-cloud aerosol statistics of attenuated backscatter depend on cloud fraction. The results for a large region around the Azores show that (1) far-from-cloud aerosol statistics are dominated by samples from scenes with lower cloud fractions, while near-cloud aerosol statistics are dominated by samples from scenes with higher cloud fractions; (2) near-cloud enhancements of attenuated backscatter occur for any cloud fraction but are most pronounced for higher cloud fractions; (3) the difference in the enhancements for different cloud fractions is most significant within 5 km from clouds; (4) near-cloud enhancements can be well approximated by logarithmic functions of cloud fraction and distance to clouds. These findings demonstrate that if variability in cloud fraction across the scenes used for composite aerosol statistics is not considered, a sampling artifact will affect these statistics calculated as a function of distance to clouds. For the Azores region data set examined here, this artifact occurs mostly within 5 km from clouds and exaggerates the near-cloud enhancements of lidar backscatter and color ratio by about 30%. This shows that for accurate characterization of the changes in aerosol properties with distance to clouds, it is important to account for the impact of changes in cloud fraction.

  20. CALIPSO Observations of Near-Cloud Aerosol Properties as a Function of Cloud Fraction

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Wood, Robert

    2015-01-01

    This paper uses spaceborne lidar data to study how near-cloud aerosol statistics of attenuated backscatter depend on cloud fraction. The results for a large region around the Azores show that: (1) far-from-cloud aerosol statistics are dominated by samples from scenes with lower cloud fractions, while near-cloud aerosol statistics are dominated by samples from scenes with higher cloud fractions; (2) near-cloud enhancements of attenuated backscatter occur for any cloud fraction but are most pronounced for higher cloud fractions; (3) the difference in the enhancements for different cloud fractions is most significant within 5km from clouds; (4) near-cloud enhancements can be well approximated by logarithmic functions of cloud fraction and distance to clouds. These findings demonstrate that if variability in cloud fraction across the scenes used to composite aerosol statistics are not considered, a sampling artifact will affect these statistics calculated as a function of distance to clouds. For the Azores-region dataset examined here, this artifact occurs mostly within 5 km from clouds, and exaggerates the near-cloud enhancements of lidar backscatter and color ratio by about 30. This shows that for accurate characterization of the changes in aerosol properties with distance to clouds, it is important to account for the impact of changes in cloud fraction.

  1. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions.

    PubMed

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A; Yang, Fan

    2016-12-13

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics ([Formula: see text]) for high aerosol concentration, and slow microphysics ([Formula: see text]) for low aerosol concentration; here, [Formula: see text] is the phase-relaxation time and [Formula: see text] is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as [Formula: see text], and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation.

  2. Impact of Anthropogenic Aerosol on the Properties of Shallow Maritime Cumulus Clouds

    NASA Astrophysics Data System (ADS)

    Gao, L.; Wilcox, E. M.; Shan, Y.

    2015-12-01

    The northern Indian Ocean region is frequently covered by cumulus clouds that are responsible for moistening the boundary layer and contribute to tropical deep convection. Because this region is uniquely located close to the highly polluted Indian plateau, air mass with high aerosol concentration can be easily transported to this area. These small cumulus clouds, coupled with the effects of aerosol, have a large potential to affect the regional and global albedo. The aerosol effects on cloud properties and atmospheric structures are examined in this work, using the UAV (Unmanned Aerial Vehicle) data that are observed from CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) and MAC (Maldives Autonomous unmanned aerial vehicle Campaign). On average, the high polluted cases show warmer temperature through the entire atmospheric column and higher relative humidity in boundary layer. The maximum temperature difference between high and low polluted cases can be found around the cloud layer altitude. In addition, the height of sub-cloud mixed layer is higher in low polluted cases. Clouds in high polluted cases are generally becoming narrower and taller than those in low polluted cases, and are associated with greater cloud water content and higher cloud droplet number concentrations, especially in small droplet range (diameters less than 10 micrometers). Meanwhile, the effective radius of cloud droplets decreases as the aerosol concentration increases. These facts indicate that the high polluted clouds are on average brighter with higher albedo.

  3. Arctic aerosol and clouds studied by bistatic lidar technique

    NASA Astrophysics Data System (ADS)

    Olofson, K. Frans G.; Svensson, Erik A.; Witt, Georg; Pettersson, Jan B. C.

    2009-09-01

    Aerosol and cloud studies were carried out with a polarimetric bistatic lidar setup at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) in Andenes (69°N, 16E°), Norway. The measurements were performed from 10 to 23 October 2006 and covered altitudes between 1.5 and 11 km, corresponding to scattering angles between 130 and 170°. The degree of linear polarization, PL, calculated from the experiments was compared with light scattering calculations using Lorenz-Mie theory for spherical particles, the T-matrix approach for nonspherical rotationally symmetric particles, and a geometric optics ray-tracing method. Average PL values between 0.61 and 0.72 were obtained for the background aerosol under cloud-free conditions. The aerosol results may be qualitatively reproduced by standard aerosol types if a suitable combination of coarse- and fine-mode spherical particles is assumed. The PL values obtained for thin and mildly opaque clouds were in the range from 0.21 to 0.38. These results were not well described by spherical particles, and the results for relatively small prolate and oblate particles studied with the T-matrix method tended to be slightly higher than the experimental values. Geometric optics calculations for hexagonal column ice particles with surface roughness were able to reproduce the experimental cloud data. This does not rule out contributions from other types of particles, and particle orientation effects may also have influenced the results. We conclude that the experimental results are consistent with earlier in situ studies of cirrus clouds, and the further development and application of the bistatic lidar technique is discussed.

  4. Global observations of cloud-sensitive aerosol loadings in low-level marine clouds

    NASA Astrophysics Data System (ADS)

    Andersen, H.; Cermak, J.; Fuchs, J.; Schwarz, K.

    2016-11-01

    Aerosol-cloud interaction is a key component of the Earth's radiative budget and hydrological cycle, but many facets of its mechanisms are not yet fully understood. In this study, global satellite-derived aerosol and cloud products are used to identify at what aerosol loading cloud droplet size shows the greatest sensitivity to changes in aerosol loading (ACSmax). While, on average, cloud droplet size is most sensitive at relatively low aerosol loadings, distinct spatial and temporal patterns exist. Possible determinants for these are identified with reanalysis data. The magnitude of ACSmax is found to be constrained by the total columnar water vapor. Seasonal patterns of water vapor are reflected in the seasonal patterns of ACSmax. Also, situations with enhanced turbulent mixing are connected to higher ACSmax, possibly due to intensified aerosol activation. Of the analyzed aerosol species, dust seems to impact ACSmax the most, as dust particles increase the retrieved aerosol loading without substantially increasing the concentration of cloud condensation nuclei.

  5. Applying super-droplets as a compact representation of warm-rain microphysics for aerosol-cloud-aerosol interactions

    NASA Astrophysics Data System (ADS)

    Arabas, S.; Jaruga, A.; Pawlowska, H.; Grabowski, W. W.

    2012-12-01

    Clouds may influence aerosol characteristics of their environment. The relevant processes include wet deposition (rainout or washout) and cloud condensation nuclei (CCN) recycling through evaporation of cloud droplets and drizzle drops. Recycled CCN physicochemical properties may be altered if the evaporated droplets go through collisional growth or irreversible chemical reactions (e.g. SO2 oxidation). The key challenge of representing these processes in a numerical cloud model stems from the need to track properties of activated CCN throughout the cloud lifecycle. Lack of such "memory" characterises the so-called bulk, multi-moment as well as bin representations of cloud microphysics. In this study we apply the particle-based scheme of Shima et al. 2009. Each modelled particle (aka super-droplet) is a numerical proxy for a multiplicity of real-world CCN, cloud, drizzle or rain particles of the same size, nucleus type,and position. Tracking cloud nucleus properties is an inherent feature of the particle-based frameworks, making them suitable for studying aerosol-cloud-aerosol interactions. The super-droplet scheme is furthermore characterized by linear scalability in the number of computational particles, and no numerical diffusion in the condensational and in the Monte-Carlo type collisional growth schemes. The presentation will focus on processing of aerosol by a drizzling stratocumulus deck. The simulations are carried out using a 2D kinematic framework and a VOCALS experiment inspired set-up (see http://www.rap.ucar.edu/~gthompsn/workshop2012/case1/).

  6. Aerosol retrieval experiments in the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; de Leeuw, G.; Griesfeller, J.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-08-01

    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013), algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun photometer

  7. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  8. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    NASA Astrophysics Data System (ADS)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation

  9. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  10. From aerosol-limited to invigoration of warm convective clouds.

    PubMed

    Koren, Ilan; Dagan, Guy; Altaratz, Orit

    2014-06-06

    Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base and cold top. Here, we provide evidence from observations and numerical modeling of a dramatic aerosol effect on warm clouds. We propose that convective-cloud invigoration by aerosols can be viewed as an extension of the concept of aerosol-limited clouds, where cloud development is limited by the availability of cloud-condensation nuclei. A transition from pristine to slightly polluted atmosphere yields estimated negative forcing of ~15 watts per square meter (cooling), suggesting that a substantial part of this anthropogenic forcing over the oceans occurred at the beginning of the industrial era, when the marine atmosphere experienced such transformation.

  11. Approaches to Observe Anthropogenic Aerosol-Cloud Interactions.

    PubMed

    Quaas, Johannes

    Anthropogenic aerosol particles exert an-quantitatively very uncertain-effective radiative forcing due to aerosol-cloud interactions via an immediate altering of cloud albedo on the one hand and via rapid adjustments by alteration of cloud processes and by changes in thermodynamic profiles on the other hand. Large variability in cloud cover and properties and the therefore low signal-to-noise ratio for aerosol-induced perturbations hamper the identification of effects in observations. Six approaches are discussed as a means to isolate the impact of anthropogenic aerosol on clouds from natural cloud variability to estimate or constrain the effective forcing. These are (i) intentional cloud modification, (ii) ship tracks, (iii) differences between the hemispheres, (iv) trace gases, (v) weekly cycles and (vi) trends. Ship track analysis is recommendable for detailed process understanding, and the analysis of weekly cycles and long-term trends is most promising to derive estimates or constraints on the effective radiative forcing.

  12. Aerosol-CAPE-Cloud Interactions over Gangetic Basin

    NASA Astrophysics Data System (ADS)

    Tripathi, S. N.; Sarangi, C.

    2015-12-01

    In the last few decades exponential growth of population and rapid industrialization has resulted in high aerosol loading over Gangetic basin (GB) in Northern India. Gangetic basin is the food basket of India and its agricultural yield is mainly dependent on South Asian summer monsoon. Hence, understanding the aerosol-cloud-rainfall interactions is crucial and demand utmost attention. In this study, we have used more than a decade (2002-2013) of Radiosonde measurements from 5 WMO stations over the GB to illustrate enhancement of CAPE and cloud thickness with increase in AOD under deep cloudy conditions. Enhancement in mean atmospheric temperature below cloud layer at higher aerosol loading was also observed. These observations suggest that increase in aerosols increases the atmospheric temperature below cloud base and causes increase in CAPE, which, in turn, invigorates the cloud dynamics and eventually resultsin deeper cloud systems. Simultaneously, analysis of decade long satellite and in-situ observational datasets provided compelling evidence of aerosol-induced cloud invigoration, from cloud macrophysical as well as microphysical observations, which fostered a net atmospheric cooling nearly twice compared to the aerosol direct effect. Moreover, a striking positive association between aerosol loading and daily surface rainfall during Indian summer monsoon was found. The observed aerosol-induced heating of lower atmosphere, intensification of cloud dynamics, deepening of clouds, intensification of precipitation rate and daily rainfall coherently suggested an increase in surface water with increase in aerosol loading. Hence, this study not only demonstrates the importance of aerosol-induced microphysical perturbations during Indian summer monsoon but also is a major step forward in understanding the impact of aerosols on surface water under continental conditions.

  13. Aerosol-Cloud Interactions Over the North Pacific Ocean: an Integrated Assessment Using Aircraft, Satellites and a Global Model

    NASA Astrophysics Data System (ADS)

    Wilcox, E. M.; Mauger, G.; Lariviere, O.; Roberts, G.; Ramanathan, V.; Ming, Y.

    2004-12-01

    Interactions between aerosols and the cloud systems of the North Pacific Ocean were observed by aircraft during the Cloud Indirect Forcing Experiment (CIFEX) in April 2004. The CIFEX project seeks to determine the impact of aerosol indirect effects on the radiative forcing of highly reflective North Pacific clouds under the influence of aerosols traveling across the ocean basin from Asia. Toward this end, CIFEX aircraft observations from the Northeast Pacific of aerosol and cloud microphysics are blended with coincident satellite observations of cloud properties from MODIS and cloud radiative forcing from CERES. The satellite observations are then compared with global model simulations of aerosol indirect forcing over the entire North Pacific basin. During April 2004 the U. Wyoming King Air research aircraft sampled aerosol and cloud microphysical parameters including aerosol and cloud particle sizes and concentrations, cloud liquid water amounts, and cloud structure using the Wyoming Cloud Radar. A range of clean and polluted conditions were observed by the aircraft during the period, in addition to two major Asian dust storm events. CN concentrations below stratus clouds varied from 25 to 300 cm-3. A variety of cloud systems were sampled as well, ranging from shallow stratus and stratocumulus clouds to mixed-phase precipitating cumulus. Under pristine conditions, many shallow clouds were observed to be drizzling, suggesting that Northern Pacific Ocean cloud systems may be highly susceptible to the influence of aerosols. Clouds in this region are responsible for a large cooling of the ocean surface. The magnitude of shortwave cloud radiative cooling exceeded -80 W m-2 over much of the North Pacific during the experiment. Stratus cloud drop concentrations varied from 25 to 150 cm-3 and are correlated with the concentration of accumulation mode aerosols below cloud base. Mean cloud albedos vary from 0.3 to 0.5 for these same clouds, and MODIS observations of cloud

  14. Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment

    SciTech Connect

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Rémillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, J. Christine; Mann, Julian A. L.; O’Connor, Ewan J.; Hogan, Robin J.; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palikonda, Rabindra; Albrecht, Bruce; Luke, Ed; Hannay, Cecile; Lin, Yanluan

    2015-03-01

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) 38 deployment at Graciosa Island in the Azores generated a 21 month (April 2009-December 2010) 39 comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric 40 Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is 41 to gain improved understanding of the interactions of clouds, aerosols and precipitation in the 42 marine boundary layer. 43 Graciosa Island straddles the boundary between the subtropics and midlatitudes in the 44 Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and 45 cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus 46 occurring regularly. Approximately half of all clouds contained precipitation detectable as radar 47 echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-48 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide 49 range of aerosol conditions was sampled during the deployment consistent with the diversity of 50 sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way 51 interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation 52 and cloud radiative properties while being controlled in part by precipitation scavenging. 53 The data from at Graciosa are being compared with short-range forecasts made a variety 54 of models. A pilot analysis with two climate and two weather forecast models shows that they 55 reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, 56 but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to 57 be a long-term ARM site that became operational in October 2013.

  15. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    SciTech Connect

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, Christine; Mann, Julia; O Connor, Ewan; Hogan, Robin; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palinkonda, Rabindra; Albrecht, Bruce; Hannay, Cecile; Lin, Yanluan

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

  16. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    DOE PAGES

    Wood, Robert; Luke, Ed; Wyant, Matthew; ...

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore » and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less

  17. Space-borne observations of aerosol - cloud relations for cloud systems of different heights

    NASA Astrophysics Data System (ADS)

    Stathopoulos, S.; Georgoulias, A. K.; Kourtidis, K.

    2017-01-01

    Here, we examine the aerosol - cloud relations over three major urban clusters of China, representative of three different climatic regimes, under different water vapor conditions and cloud heights, using Aerosol Optical Depth at 550 nm (AOD), Cloud Fraction (CC), Cloud Optical Depth (COD), Water Vapor (WV) and Cloud Top Pressure (CTP) data from the MODIS instrument. Over all regions and for all seasons, CC is found to increase with increasing AOD, WV and cloud height. Aerosols, at low WV environments and under constant CTP, have less impact on CC than at high WV environments. Furthermore, AOD has a varying influence on COD depending on CTP. Finally, COD is found to increase with height for low and middle height clouds, and with increasing AOD, especially at low AOD. Our results demonstrate that the role of WV in the observed satellite-based aerosol - cloud relations is significant for all cloud heights.

  18. Satellite remote sensing of aerosol and cloud properties over Eurasia

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; Kolmonen, Pekka; Saponaro, Giulia; Virtanen, Timo; Rodriguez, Edith; Sundström, Anu-Maija; Atlaskina, Ksenia; de Leeuw, Gerrit

    2015-04-01

    Satellite remote sensing provides the spatial distribution of aerosol and cloud properties over a wide area. In our studies large data sets are used for statistical studies on aerosol and cloud interaction in an area over Fennoscandia, the Baltic Sea and adjacent regions over the European mainland. This area spans several regimes with different influences on aerosol cloud interaction such as a the transition from relative clean air over Fennoscandia to more anthropogenically polluted air further south, and the influence maritime air over the Baltic and oceanic air advected from the North Atlantic. Anthropogenic pollution occurs in several parts of the study area, and in particular near densely populated areas and megacities, but also in industrialized areas and areas with dense traffic. The aerosol in such areas is quite different from that produced over the boreal forest and has different effects on air quality and climate. Studies have been made on the effects of aerosols on air quality and on the radiation balance in China. The aim of the study is to study the effect of these different regimes on aerosol-cloud interaction using a large aerosol and cloud data set retrieved with the (Advanced) Along Track Scanning Radiometer (A)ATSR Dual View algorithm (ADV) further developed at Finnish Meteorological Institute and aerosol and cloud data provided by MODIS. Retrieval algorithms for aerosol and clouds have been developed for the (A)ATSR, consisting of a series of instruments of which we use the second and third one: ATSR-2 which flew on the ERS-2 satellite (1995-2003) and AATSR which flew on the ENVISAT satellite (2002-2012) (both from the European Space Agency, ESA). The ADV algorithm provides aerosol data on a global scale with a default resolution of 10x10km2 (L2) and an aggregate product on 1x1 degree (L3). Optional, a 1x1 km2 retrieval products is available over smaller areas for specific studies. Since for the retrieval of AOD no prior knowledge is needed on

  19. Fog and Cloud Induced Aerosol Modification Observed by AERONET

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M. A.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Platnick, S. E.; Arnold, G. T.; Krotkov, N. A.; Carn, S. A.; Sinyuk, A.; Dubovik, O.; Arola, A.; Schafer, J. S.; Artaxo, P.; Smirnov, A.; Chen, H.; Goloub, P.

    2011-01-01

    Large fine mode (sub-micron radius) dominated aerosols in size distributions retrieved from AERONET have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low altitude cloud such as stratocumulus or fog. Retrievals with cloud processed aerosol are sometimes bimodal in the accumulation mode with the larger size mode often approx.0.4 - 0.5 microns radius (volume distribution); the smaller mode typically approx.0.12 to aprrox.0.20 microns may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the shoulder of larger size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near cloud environment and therefore greater aerosol direct radiative forcing than typically obtained from remote sensing, due to bias towards sampling at low cloud fraction.

  20. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect

    Tao, Wei-Kuo

    2014-05-19

    /hail. Each type is described by a special size distribution function containing 33 categories (bins). Atmospheric aerosols are also described using number density size-distribution functions (containing 33 bins). Droplet nucleation (activation) is derived from the analytical calculation of super-saturation, which is used to determine the sizes of aerosol particles to be activated and the corresponding sizes of nucleated droplets. Primary nucleation of each type of ice crystal takes place within certain temperature ranges. A detailed description of these explicitly parameterized processes can be found in Khain and Sednev (1996) and Khain et al. (1999, 2001). 2.3 Case Studies Three cases, a tropical oceanic squall system observed during TOGA COARE (Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment, which occurred over the Pacific Ocean warm pool from November 1992 to February 1993), a midlatitude continental squall system observed during PRESTORM (Preliminary Regional Experiment for STORM-Central, which occurred in Kansas and Oklahoma during May-June 1985), and mid-afternoon convection observed during CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cumulus Experiment, which occurred in Florida during July 2002), will be used to examine the impact of aerosols on deep, precipitating systems. 3. SUMMARY of RESULTS • For all three cases, higher CCN produces smaller cloud droplets and a narrower spectrum. Dirty conditions delay rain formation, increase latent heat release above the freezing level, and enhance vertical velocities at higher altitude for all cases. Stronger updrafts, deeper mixed-phase regions, and more ice particles are simulated with higher CCN in good agreement with observations. • In all cases, rain reaches the ground early with lower CCN. Rain suppression is also evident in all three cases with high CCN in good agreement with observations (Rosenfeld, 1999, 2000 and others). Rain

  1. The influence of small aerosol particles on the properties of water and ice clouds.

    PubMed

    Choularton, T W; Bower, K N; Weingartner, E; Crawford, I; Coe, H; Gallagher, M W; Flynn, M; Crosier, J; Connolly, P; Targino, A; Alfarra, M R; Baltensperger, U; Sjogren, S; Verheggen, B; Cozic, J; Gysel, M

    2008-01-01

    In this paper, results are presented of the influence of small organic- and soot-containing particles on the formation of water and ice clouds. There is strong evidence that these particles have grown from nano particle seeds produced by the combustion of oil products. Two series of field experiments are selected to represent the observations made. The first is the CLoud-Aerosol Characterisation Experiment (CLACE) series of experiments performed at a high Alpine site (Jungfraujoch), where cloud was in contact with the ground and the measuring station. Both water and ice clouds were examined at different times of the year. The second series of experiments is the CLOud Processing of regional Air Pollution advecting over land and sea (CLOPAP) series, where ageing pollution aerosol from UK cities was observed, from an airborne platform, to interact with warm stratocumulus cloud in a cloud-capped atmospheric boundary layer. Combining the results it is shown that aged pollution aerosol consists of an internal mixture of organics, sulfate, nitrate and ammonium, the organic component is dominated by highly oxidized secondary material. The relative contributions and absolute loadings of the components vary with location and season. However, these aerosols act as Cloud Condensation Nuclei (CCN) and much of the organic material, along with the other species, is incorporated into cloud droplets. In ice and mixed phase cloud, it is observed that very sharp transitions (extending over just a few metres) are present between highly glaciated regions and regions consisting of supercooled water. This is a unique finding; however, aircraft observations in cumulus suggest that this kind of structure may be found in these cloud types too. It is suggested that this sharp transition is caused by ice nucleation initiated by oxidised organic aerosol coated with sulfate in more polluted regions of cloud, sometimes enhanced by secondary ice particle production in these regions.

  2. Aerosol particles from tropical convective systems: 2. Cloud bases

    NASA Astrophysics Data System (ADS)

    Kojima, Tomoko; Buseck, Peter R.; Reeves, J. Michael

    2005-05-01

    Aerosol particles were collected at the altitudes of cloud bases during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) and analyzed using transmission electron microscopy. The particles consist of ammonium sulfate (45-90% by number), sea salt (5-45%), mineral dust (1-20%), and anthropogenic materials such as soot and fly ash (<3%). Ammonium sulfate particles have rather uniform, submicron sizes (mostly 0.5 μm across). Sea-salt particles are larger, apparently having been deliquesced. However, submicron particles are also common. Many contain Na and mixed cation sulfates in addition to NaCl. Mineral dust consists largely of tabular clay particles. Samples from the 28 July flight contain much mineral dust, probably because of transport from the Saharan Desert. Aggregates of sea salt and mineral dust, ammonium sulfate, and soot particles are common. Such mixed aggregates are especially abundant in in-cloud samples. Cirrus samples from CRYSTAL-FACE contain many H2SO4 droplets (Kojima et al., 2004), but acidic sulfate particles are rare at the altitudes of cloud bases. H2SO4 probably formed at higher altitudes through oxidation of SO2 in cloud droplets. Sea salt and mineral dust have been reported to be abundant in cloud particles collected using a counterflow virtual impactor (Cziczo et al., 2004), suggesting that these particles were incorporated into the convective systems from the cloud bases and akted as ice nuclei while being vertically transported.

  3. Aerosol-Cloud-Precipitation Interactions in the Climate System

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.

    2015-12-01

    Aerosols serve as cloud condensation nuclei (CCN) and thus have a powerful effect on cloud properties. Increased aerosol concentrations resulting from pollution lead to higher cloud droplet concentrations, but smaller droplet sizes. This in turn affects the physical processes inside clouds that lead to the initiation of precipitation. Depending on a number of factors, including aerosol composition, atmospheric stability, and cloud water content, increasing CCN concentrations may either decrease or increase rainfall. In convective clouds, early rain formation is suppressed, which makes more water and energy available to rise higher in the atmosphere and form ice particles. This may invigorate the dynamics of convection, encourage the formation of hail and lightning, and enhance the transport of materials to the upper troposphere. In turn, cloud processing also affects the concentrations, composition, and distribution of atmospheric aerosols. In order to understand and quantify the effects of air pollution on climate, and precipitation in particular, knowledge of natural abundance and characteristics of aerosols is as essential as the observation of perturbed conditions. I will present recent advances in the conceptual understanding of aerosol-precipitation interactions, as well as results of measurements on aerosol and cloud characteristics in pristine and polluted conditions.

  4. Aerosol processing in stratiform clouds in ECHAM6-HAM

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna

    2013-04-01

    Aerosol processing in stratiform clouds by uptake into cloud particles, collision-coalescence, chemical processing inside the cloud particles and release back into the atmosphere has important effects on aerosol concentration, size distribution, chemical composition and mixing state. Aerosol particles can act as cloud condensation nuclei. Cloud droplets can take up further aerosol particles by collisions. Atmospheric gases may also be transferred into the cloud droplets and undergo chemical reactions, e.g. the production of atmospheric sulphate. Aerosol particles are also processed in ice crystals. They may be taken up by homogeneous freezing of cloud droplets below -38° C or by heterogeneous freezing above -38° C. This includes immersion freezing of already immersed aerosol particles in the droplets and contact freezing of particles colliding with a droplet. Many clouds do not form precipitation and also much of the precipitation evaporates before it reaches the ground. The water soluble part of the aerosol particles concentrates in the hydrometeors and together with the insoluble part forms a single, mixed, larger particle, which is released. We have implemented aerosol processing into the current version of the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM (Stier et al., 2005). ECHAM6-HAM solves prognostic equations for the cloud droplet number and ice crystal number concentrations. In the standard version of HAM, seven modes are used to describe the total aerosol. The modes are divided into soluble/mixed and insoluble modes and the number concentrations and masses of different chemical components (sulphate, black carbon, organic carbon, sea salt and mineral dust) are prognostic variables. We extended this by an explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds similar to Hoose et al. (2008a,b). Aerosol particles in cloud droplets are represented by 5 tracers for the

  5. A Simple Model for the Cloud Adjacency Effect and the Apparent Bluing of Aerosols Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Wen, Guoyong; Coakley, James A., Jr.; Remer, Lorraine A.; Loeb,Norman G.; Cahalan, Robert F.

    2008-01-01

    In determining aerosol-cloud interactions, the properties of aerosols must be characterized in the vicinity of clouds. Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. The paper provides a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. The enhancement in Rayleigh scattering is estimated using a stochastic cloud model to obtain the radiative flux reflected by broken clouds and comparing this flux with that obtained with the molecules in the atmosphere causing extinction, but no scattering.

  6. Sources and evolution of cloud-active aerosol in California's Sierra Nevada Mountains

    NASA Astrophysics Data System (ADS)

    Roberts, G. C.; Corrigan, C.; Noblitt, S.; Creamean, J.; Collins, D. B.; Cahill, J. F.; Prather, K. A.; Collett, J. L.; Henry, C.

    2011-12-01

    To assess the sources of cloud-active aerosol and their influence on the hydrological cycle in California, the CalWater Experiment took place in winter 2011 in the foothills of the Sierra Nevada Mountains. During this experiment, we coupled the capabilities of demonstrated miniaturized instrumentation - cloud condensation nuclei (CCN), water condensation nuclei (WCN) and microchip capillary electrophoresis (MCE) - to provide direct chemical measurements of cloud active aerosols. Ion concentrations of CCN droplets attribute the anthropogenic, marine and secondary organic contributions to cloud-active aerosols. Detailed spectra from an Aerosol-Time-of-Flight Mass Spectrometer provide additional information on the sources of aerosol. Storm fronts and changes in atmospheric boundary layer brought aerosol and anions associated with Central Valley pollution to the field site with CCN concentrations reaching several thousand cm-3. Hygroscopicity parameters indicate aging of the organic fraction during aerosol transport from the Central Valley to the mountains. Otherwise, CCN concentrations were low when high pressure systems prevented boundary layer development and intrusion of the Central Valley pollution to the site. MCE results show that nitrates and sulfates comprise most of the fraction of the aerosol anion mass (PM1). During the passage of storm fronts, which transported pollution from the Central Valley upslope, nitrate concentrations peaked at several μ g m-3. Low supersaturation CCN concentrations coincide with increases in aerosol nitrate, which suggests that nitrate has a role in cloud formation of giant CCN and, furthermore, in precipitation processes in the Sierra Nevada. CCN spectra show large variations depending on the aerosol sources and sometimes exhibit bi-modal distributions with minima at 0.3% Sc -- similar to the so-called 'Hoppel minima' associated to number size distributions. During these bi-modal events, sulfate also increases supporting the

  7. Conditional Impact of Aerosol on Cloud and Precipitation Revealed from Observations

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing

    2014-05-01

    Aerosol particles can affect cloud and precipitation via various mechanisms by altering both the thermodynamic state of the atmosphere and cloud micro- and macro-physics. Apparently, different mechanisms lead to different types of impact that may suppress or foster cloud processes and precipitation. Aerosol reduces the amount of solar radiation reaching ground, reducing sensible and latent heat fluxes. For absorbing aerosol, it warms up the atmosphere. Together, they inhibits convection and convective clouds and precipitation. By serving CCN, it reduces cloud droplet size and suppress drizzle but may enhance heavy precipitation due to the invigoration effect. While it is unclear if aerosol changes total rainfall amount, but it surely change the distribution of precipitation. It is an essential but a challenging task to sort out the various effects. To tackle the problem and unravel various complex relations, data from both long-term routine measurements and intensive field experiments have been analyzed, together with some modeling studies. In this talk, I will summarize major findings drawn from several analyses using long-term acquired in US (ARM) and operational meteorological data in US, experiments in China and global satellite data from CloudSat, CALIPSO and MODIS. The key finding is that absorbing aerosol suppresses both light and heavy rains, whereas scattering aerosol of strong hygroscopicity inhibits light rain but enhance heavy rain.

  8. Clouds Aerosols Internal Affaires: Increasing Cloud Fraction and Enhancing the Convection

    NASA Technical Reports Server (NTRS)

    Koren, Ilan; Kaufman, Yoram; Remer, Lorraine; Rosenfeld, Danny; Rudich, Yinon

    2004-01-01

    Clouds developing in a polluted environment have more numerous, smaller cloud droplets that can increase the cloud lifetime and liquid water content. Such changes in the cloud droplet properties may suppress low precipitation allowing development of a stronger convection and higher freezing level. Delaying the washout of the cloud water (and aerosol), and the stronger convection will result in higher clouds with longer life time and larger anvils. We show these effects by using large statistics of the new, 1km resolution data from MODIS on the Terra satellite. We isolate the aerosol effects from meteorology by regression and showing that aerosol microphysical effects increases cloud fraction by average of 30 presents for all cloud types and increases convective cloud top pressure by average of 35mb. We analyze the aerosol cloud interaction separately for high pressure trade wind cloud systems and separately for deep convective cloud systems. The resultant aerosol radiative effect on climate for the high pressure cloud system is: -10 to -13 W/sq m at the top of the atmosphere (TOA) and -11 to -14 W/sq m at the surface. For deeper convective clouds the forcing is: -4 to -5 W/sq m at the TOA and -6 to -7 W/sq m at the surface.

  9. Aerosol Indirect Forcing Dictated by Warm Low-Cloud

    NASA Astrophysics Data System (ADS)

    Christensen, M.; Chen, Y. C.; Stephens, G. L.

    2014-12-01

    Aerosol indirect forcing is one of the largest sources of uncertainty in estimating the extent of global warming. Increased aerosol levels can enhance the solar reflection from warm liquid clouds countering greenhouse gas warming. However, very little is actually known about the strength of the indirect effects for mixed-phase stratiform clouds as well as other cloud types such as cumulus, altocumulus, nimbostratus, deep convection, and cirrus. These mixed-phase cloud types are ubiquitous and typically overlooked in satellite estimates of the indirect forcing. In this study we assess the responses of each major cloud type to changes in aerosol loading and provide an estimate of their contribution to the global mean indirect forcing. Satellite data is collected from several co-located sensors in the A-train for the period starting in January of 2007 - 2010. Cloud layers are classified according to the 2B-CLDCLASS-LIDAR CloudSat product. Radiative fluxes are obtained from CERES (Clouds and the Earth's Radiant Energy System) and examined as a function of the aerosol loading obtained from MODIS (MODerate resolution Imaging Spectroradiometer) data. For low-level cloud regimes (e.g., stratus, stratocumulus, cumulus) we show that the longwave contribution to the net indirect effect is insignificant and dominated by changes in reflected shortwave radiation which also becomes insignificant as cloud top temperature decreases below 0°C. An increase in the aerosol loading in mixed-phase stratocumulus leads to more ice and precipitation that depletes cloud water and limits cloud brightening. For the more convective type clouds (e.g., altocumulus, nimbostratus, deep convection), increased aerosol loading can invigorate deep convection and promote deeper clouds with higher cloud albedo (cooling effect) and cloud tops that emit less longwave radiation to space (warming effect). As a consequence, the shortwave and longwave indirect radiative effects tend to cancel for the

  10. Evaluating aerosol indirect effect through marine stratocumulus clouds

    SciTech Connect

    Kogan, Z.N.; Kogan, Y.L.; Lilly, D.K.

    1996-04-01

    During the last decade much attention has been focused on anthropogenic aerosols and their radiative influence on the global climate. Charlson et al. and Penner et al. have demonstrated that tropospheric aerosols and particularly anthropogenic sulfate aerosols may significantly contribute to the radiative forcing exerting a cooling influence on climate (-1 to -2 W/m{sup 2}) which is comparable in magnitude to greenhouse forcing, but opposite in sign. Aerosol particles affect the earth`s radiative budget either directly by scattering and absorption of solar radiation by themselves or indirectly by altering the cloud radiative properties through changes in cloud microstructure. Marine stratocumulus cloud layers and their possible cooling influence on the atmosphere as a result of pollution are of special interest because of their high reflectivity, durability, and large global cover. We present an estimate of thet aerosol indirect effect, or, forcing due to anthropogenic sulfate aerosols.

  11. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    SciTech Connect

    Phillips, Vaughan T. J.

    2013-10-18

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition

  12. Effects of Aerosol Pollution on Clouds over Megacities

    NASA Astrophysics Data System (ADS)

    Sechrist, B.; Jacobson, M. Z.

    2013-12-01

    The correlation between aerosol optical depth (AOD) and cloud properties - principally cloud fraction and cloud optical depth (COD) - is examined using satellite retrievals from the MODIS satellites over Los Angeles and Beijing. Ten Hoeve et al. (2011, Atmos. Chem. Phys, 11(7), 3021-3036) used satellite data to examine the impact of aerosols on warm clouds around Rondonia, Brazil, during the biomass burning season. They found that the COD-AOD relationship exhibits a 'boomerang' shape in which COD initially increases with increasing AOD but then decreases as AOD continues to increase beyond some critical level. This result is thought to reflect the balance between the microphysical and radiative components of a cloud's response to aerosols. The microphysical process dominates at low AOD, while the radiative process dominates at high AOD. This study is analogous to Ten Hoeve et al., but for aerosols derived primarily from fossil fuel combustion rather than biomass burning. Preliminary results will be presented.

  13. Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei.

    PubMed

    Fridlind, Ann M; Ackerman, Andrew S; Jensen, Eric J; Heymsfield, Andrew J; Poellot, Michael R; Stevens, David E; Wang, Donghai; Miloshevich, Larry M; Baumgardner, Darrel; Lawson, R Paul; Wilson, James C; Flagan, Richard C; Seinfeld, John H; Jonsson, Haflidi H; VanReken, Timothy M; Varutbangkul, Varuntida; Rissman, Tracey A

    2004-04-30

    NASA's recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment focused on anvil cirrus clouds, an important but poorly understood element of our climate system. The data obtained included the first comprehensive measurements of aerosols and cloud particles throughout the atmospheric column during the evolution of multiple deep convective storm systems. Coupling these new measurements with detailed cloud simulations that resolve the size distributions of aerosols and cloud particles, we found several lines of evidence indicating that most anvil crystals form on mid-tropospheric rather than boundary-layer aerosols. This result defies conventional wisdom and suggests that distant pollution sources may have a greater effect on anvil clouds than do local sources.

  14. Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Arola, A.; Ferrare, R. A.; Hostetler, C. A.; Crumeyrolle, S. N.; Berkoff, T. A.; Welton, E. J.; Lolli, S.; Lyapustin, A.; Wang, Y.; Schafer, J. S.; Giles, D. M.; Anderson, B. E.; Thornhill, K. L.; Minnis, P.; Pickering, K. E.; Loughner, C. P.; Smirnov, A.; Sinyuk, A.

    2014-11-01

    During the July 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field experiment in Maryland, significant enhancements in Aerosol Robotic Network (AERONET) sun-sky radiometer measured aerosol optical depth (AOD) were observed in the immediate vicinity of non-precipitating cumulus clouds on some days. Both measured Ångström exponents and aerosol size distribution retrievals made before, during and after cumulus development often suggest little change in fine mode particle size; therefore, implying possible new particle formation in addition to cloud processing and humidification of existing particles. In addition to sun-sky radiometer measurements of large enhancements of fine mode AOD, lidar measurements made from both ground-based and aircraft-based instruments during the experiment also measured large increases in aerosol signal at altitudes associated with the presence of fair weather cumulus clouds. These data show modifications of the aerosol vertical profile as a result of the aerosol enhancements at and below cloud altitudes. The airborne lidar data were utilized to estimate the spatial extent of these aerosol enhancements, finding increased AOD, backscatter and extinction out to 2.5 km distance from the cloud edge. Furthermore, in situ measurements made from aircraft vertical profiles over an AERONET site during the experiment also showed large increases in aerosol scattering and aerosol volume after cloud formation as compared to before. The 15-year AERONET database of AOD measurements at the Goddard Space Flight Center (GSFC), Maryland site, was investigated in order to obtain a climatological perspective of this phenomenon of AOD enhancement. Analysis of the diurnal cycle of AOD in summer showed significant increases in AOD from morning to late afternoon, corresponding to the diurnal cycle of cumulus development.

  15. Using OMI Observations to Measure Aerosol Absorption of Biomass Burning Aerosols Above Clouds

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Jethva, Hiren

    2011-01-01

    The presence of absorbing aerosol layers above clouds is unambiguously detected by the TOMS/OMI UV Aerosol Index (AI) that uses satellite observations at two near-UV channels. A sensitivity study using radiative transfer calculations shows that the AI signal of resulting from the presence of aerosols above clouds is mainly driven by the aerosol absorption optical depth and the optical depth of the underlying cloud. Based on these results, an inversion algorithm has been developed to retrieve the aerosol optical depth (AOD) of aerosol layers above clouds. In this presentation we will discuss the sensitivity analysis, describe the retrieval approach, and present results of applications of the retrieval method to OMI observations over the South Atlantic Ocean. Preliminary error analyses, to be discussed, indicate that the AOD can be underestimated (up to -30%) or overestimated (up to 60%) depending on algorithmic assumptions.

  16. Combined observational and modeling efforts of aerosol-cloud-precipitation interactions over Southeast Asia

    NASA Astrophysics Data System (ADS)

    Loftus, Adrian; Tsay, Si-Chee; Nguyen, Xuan Anh

    2016-04-01

    droplet size and number concentration, but also the spectral width of the cloud droplet size distribution, the 3M scheme is well suited to simulate aerosol-cloud-precipitation interactions within a three-dimensional regional cloud model. Moreover, the additional variability predicted on the hydrometeor distributions provides beneficial input for forward models to link the simulated microphysical processes with observations as well as to assess both ground-based and satellite retrieval methods. In this presentation, we provide an overview of the 7 South East Asian Studies / Biomass-burning Aerosols and Stratocumulus Environment: Lifecycles and Interactions Experiment (7-SEAS/BASELInE) operations during the spring of 2013. Preliminary analyses of pre-monsoon Sc system lifecycles observed during the first-ever deployment of a ground-based cloud radar to northern Vietnam will be also be presented. Initial results from GCE model simulations of these Sc using double-moment and the new 3M bulk microphysics schemes under various aerosol loadings will be used to showcase the 3M scheme as well as provide insight into how the impact of aerosols on cloud and precipitation processes in stratocumulus over land may manifest themselves in simulated remote-sensing signals. Applications and future work involving ongoing 7-SEAS campaigns aimed at improving our understanding of aerosol-cloud-precipitation interactions of will also be discussed.

  17. Role of clouds, aerosols, and aerosol-cloud interaction in 20th century simulations with GISS ModelE2

    NASA Astrophysics Data System (ADS)

    Nazarenko, L.; Rind, D. H.; Bauer, S.; Del Genio, A. D.

    2015-12-01

    Simulations of aerosols, clouds and their interaction contribute to the major source of uncertainty in predicting the changing Earth's energy and in estimating future climate. Anthropogenic contribution of aerosols affects the properties of clouds through aerosol indirect effects. Three different versions of NASA GISS global climate model are presented for simulation of the twentieth century climate change. All versions have fully interactive tracers of aerosols and chemistry in both the troposphere and stratosphere. All chemical species are simulated prognostically consistent with atmospheric physics in the model and the emissions of short-lived precursors [Shindell et al., 2006]. One version does not include the aerosol indirect effect on clouds. The other two versions include a parameterization of the interactive first indirect aerosol effect on clouds following Menon et al. [2010]. One of these two models has the Multiconfiguration Aerosol Tracker of Mixing state (MATRIX) that permits detailed treatment of aerosol mixing state, size, and aerosol-cloud activation. The main purpose of this study is evaluation of aerosol-clouds interactions and feedbacks, as well as cloud and aerosol radiative forcings, for the twentieth century climate under different assumptions and parameterizations for aerosol, clouds and their interactions in the climate models. The change of global surface air temperature based on linear trend ranges from +0.8°C to +1.2°C between 1850 and 2012. Water cloud optical thickness increases with increasing temperature in all versions with the largest increase in models with interactive indirect effect of aerosols on clouds, which leads to the total (shortwave and longwave) cloud radiative cooling trend at the top of the atmosphere. Menon, S., D. Koch, G. Beig, S. Sahu, J. Fasullo, and D. Orlikowski (2010), Black carbon aerosols and the third polar ice cap, Atmos. Chem. Phys., 10,4559-4571, doi:10.5194/acp-10-4559-2010. Shindell, D., G. Faluvegi

  18. Secondary Organic Aerosol Production from Cloud Processing of Glycolaldehyde

    NASA Astrophysics Data System (ADS)

    Perri, M. J.; Seitzinger, S.; Turpin, B. J.

    2008-12-01

    Organic particulate matter (PM) formed in the atmosphere (secondary organic aerosol; SOA) is a substantial yet poorly understood contributor to atmospheric PM. Cloud processing is a newly recognized SOA formation pathway. This study investigates the potential for aqueous glycolaldehyde oxidation to produce low volatility products that are retained in the particle phase upon cloud droplet evaporation, increasing PM concentrations aloft. To our knowledge, this is the first confirmation that aqueous oxidation of glycolaldehyde via the hydroxyl radical forms glyoxal and glycolic acid, as previously assumed. Subsequent reactions form formic acid, glyoxylic acid, and oxalic acid as expected. Unexpected products include malonic acid, succinic acid, and higher molecular weight compounds, including oligomers. Predictions of aerosol yields based on these bulk aqueous experiments are presented. Due to (1) the large source strength of glycolaldehyde from precursors such as isoprene and ethene, (2) its water solubility, and (3) the aqueous formation of low volatility products, we predict that cloud processing of glycolaldehyde is an important source of SOA and that incorporation of this SOA formation pathway in chemical transport models will help explain the current under- prediction of organic PM concentrations.

  19. Mie lidar observations of lower tropospheric aerosols and clouds.

    PubMed

    Veerabuthiran, S; Razdan, A K; Jindal, M K; Dubey, D K; Sharma, R C

    2011-12-15

    Mie lidar system is developed at Laser Science and Technology Centre, Delhi (28.38°N, 77.12°E) by using minimal number of commercially available off-the-shelf components. Neodymium Yttrium Aluminum Garnet (Nd:YAG) laser operating at 1064nm with variable pulse energies between 25 and 400 mJ with 10 Hz repetition rate and 7ns pulse duration is used as a transmitter and off-axis CASSEGRAIN telescope with 100mm diameter as a receiver. Silicon avalanche photodiode (Si-APD) module with built-in preamplifier and front-end optics is used as detector. This system has been developed for the studies of lower tropospheric aerosols and clouds. Some experiments have been conducted using this set up and preliminary results are discussed. The characteristics of backscattered signals for various transmitter pulse energies are also studied. Atmospheric aerosol extinction coefficient values are calculated using Klett lidar inversion algorithm. The extinction coefficient, in general, falls with range in the lower troposphere and the values lie typically in the range 7.5×10(-5) m(-1) to 1.12×10(-4) m(-1) in the absence of any cloud whereas this value shoots maximum up to 1.267×10(-3) m(-1) (peak extinction) in the presence of clouds.

  20. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Yinon; Adler, Gabriela; Koop, Thomas; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven; Haspel, Carynelisa

    2014-05-01

    In cold high altitude cirrus clouds and anvils of high convective clouds in the tropics and mid-latitudes, ice partciles that are exposed to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. In this talk we will describe experiements that simulate the atmospheric freeze-drying cycle of aerosols. We find that aerosols with high organic content can form highly porous particles (HPA) with a larger diameter and a lower density than the initial homogenous aerosol following ice subliation. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure follwoing ice sublimation. We find that the highly porous aerosol scatter solar light less efficiently than non-porous aerosol particles. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  1. Organic Aerosol Nucleation and Growth at the CERN CLOUD chamber

    NASA Astrophysics Data System (ADS)

    Tröstl, Jasmin; Lethipalo, Katrianne; Bianchi, Federico; Sipilä, Mikko; Nieminen, Tuomo; Wagner, Robert; Frege, Carla; Simon, Mario; Weingartner, Ernest; Gysel, Martin; Dommen, Josef; Baltensperger, Urs

    2014-05-01

    It is well known that atmospheric aerosols influence the climate by changing Earth's radiation balance (IPCC 2007 and 2013). Recent models have shown (Merikanto et al. 2009) that aerosol nucleation is one of the biggest sources of low level cloud condensation nuclei. Still, aerosol nucleation and growth are not fully understood. The driving force of nucleation and growth is sulfuric acid. However ambient nucleation and growth rates cannot be explained by solely sulfuric acid as precursor. Recent studies have shown that only traces of precursors like ammonia and dimethylamine enhance the nucleation rates dramatically (Kirkby et al. 2011, Almeida et al., 2013). Thus the role of different aerosol precursor needs to be studied not only in ambient but also in very well controlled chamber experiments. The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment enables conducting experiments very close to atmospheric conditions and with a very low contaminant background. The latest CLOUD experiments focus on the role of organics in aerosol nucleation and growth. For this purpose, numerous experiments with alpha-pinene have been conducted at the CERN CLOUD chamber. Several state-of-the-art instruments were used to cover the whole complexity of the experiment. Chamber conditions were set to 40% relative humidity and 5° C. Atmospheric concentrations of SO2, O3, HONO, H2O and alpha-pinene were injected to the chamber. Different oxidation conditions were used, yielding different levels of oxidized organics: (1) OH radicals, (2) Ozone with the OH scavenger H2 (pure ozonolysis) and (3) both. SO2 was injected to allow for sulfuric acid production. Optical UV fibers were used to enable photochemical reactions. A high field cage (30 kV) can be turned on to remove all charged particles in the chamber to enable completely neutral conditions. Comparing neutral conditions to the beam conditions using CERN's proton synchrotron, the fraction of ion-induced nucleation can be studied. Using

  2. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    NASA Astrophysics Data System (ADS)

    Pistone, K.; Praveen, P. S.; Thomas, R. M.; Ramanathan, V.; Wilcox, E.; Bender, F. A.-M.

    2015-10-01

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood, as changes in atmospheric conditions due to aerosol may change the expected magnitude of indirect effects by altering cloud properties in unexpected ways. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season. In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements of atmospheric precipitable water vapor and the liquid water path (LWP) of trade cumulus clouds were made, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol. Here we present evidence of a positive correlation between aerosol and cloud LWP which becomes clear after the data are filtered to control for the natural meteorological variability in the region. We then use the aircraft and ground observatory measurements to explore the mechanisms behind the observed aerosol-LWP correlation. We determine that increased boundary-layer humidity lowering the cloud base is responsible for the observed increase in cloud liquid water. Large-scale analysis indicates that high pollution cases originate with a highly-polluted boundary layer air mass approaching the observatory from a northwesterly direction. This polluted mass exhibits higher temperatures and humidity than the clean case, the former of which may be attributable to heating due to aerosol absorption of solar radiation over the subcontinent. While high temperature conditions dispersed along with the high-aerosol

  3. Impact of Aerosols on Convective Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong

    2012-01-01

    Aerosols are a critical factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosol effects on clouds could further extend to precipitation, both through the formation of cloud particles and by exerting persistent radiative forcing on the climate system that disturbs dynamics. However, the various mechanisms behind these effects, in particular the ones connected to precipitation, are not yet well understood. The atmospheric and climate communities have long been working to gain a better grasp of these critical effects and hence to reduce the significant uncertainties in climate prediction resulting from such a lack of adequate knowledge. Here we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes from theoretical analysis of microphysics, observational evidence, and a range of numerical model simulations. In addition, the discrepancy between results simulated by models, as well as that between simulations and observations, are presented. Specifically, this paper addresses the following topics: (1) fundamental theories of aerosol effects on microphysics and precipitation processes, (2) observational evidence of the effect of aerosols on precipitation processes, (3) signatures of the aerosol impact on precipitation from largescale analyses, (4) results from cloud-resolving model simulations, and (5) results from large-scale numerical model simulations. Finally, several future research directions for gaining a better understanding of aerosol--cloud-precipitation interactions are suggested.

  4. Models to support active sensing of biological aerosol clouds

    NASA Astrophysics Data System (ADS)

    Brown, Andrea M.; Kalter, Jeffrey M.; Corson, Elizabeth C.; Chaudhry, Zahra; Boggs, Nathan T.; Brown, David M.; Thomas, Michael E.; Carter, Christopher C.

    2013-05-01

    Elastic backscatter LIght Detection And Ranging (LIDAR) is a promising approach for stand-off detection of biological aerosol clouds. Comprehensive models that explain the scattering behavior from the aerosol cloud are needed to understand and predict the scattering signatures of biological aerosols under varying atmospheric conditions and against different aerosol backgrounds. Elastic signatures are dependent on many parameters of the aerosol cloud, with two major components being the size distribution and refractive index of the aerosols. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has been in a unique position to measure the size distributions of released biological simulant clouds using a wide assortment of aerosol characterization systems that are available on the commercial market. In conjunction with the size distribution measurements, JHU/APL has also been making a dedicated effort to properly measure the refractive indices of the released materials using a thin-film absorption technique and laboratory characterization of the released materials. Intimate knowledge of the size distributions and refractive indices of the biological aerosols provides JHU/APL with powerful tools to build elastic scattering models, with the purpose of understanding, and ultimately, predicting the active signatures of biological clouds.

  5. Shortwave and longwave radiative forcings of aerosols depending on the vertical stratification of aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Oikawa, Eiji; Suzuki, Kentaroh; Nakajima, Teruyuki; Nishizawa, Tomoaki

    2017-02-01

    We investigate four scenarios for estimating shortwave (SW) and longwave (LW) direct aerosol radiative forcing (DARF) at the top of atmosphere (TOA) using the global data set of the vertical distributions for aerosols and clouds of CALIPSO and CloudSat Level 2 products. One scenario is clear-sky (cloud-free) condition and three scenarios are cloudy-sky condition: the case that aerosols exists above clouds (AAC case), and the case that aerosols exist below high clouds such as cirrus, but without clouds below the aerosol layers (ABC case), and the case that aerosols are not observed in cloudy-sky condition. In clear-sky and ABC cases, aerosols mainly scatter sunlight and SWDARFs show negative values, except for bright surfaces, such as desert regions and the North and South Poles. In AAC case, aerosols absorb the reflected light from underlying low-level clouds to TOA, so that SWDARF at TOA shows positive value. Mineral dust absorbs the Earth's radiation and LWDARF indicates strong positive over Saharan and Arabian deserts. The global mean values of SW plus LW DARFs are -2.77, -0.77, and -1.40 Wm-2 under clear-sky, cloudy-sky, and all-sky conditions.

  6. Cloud Properties Derived from Visible and Near-infrared Reflectance in the Presence of Aerosols

    NASA Astrophysics Data System (ADS)

    Pilewskie, P.; Hofmann, O.; Kindel, B.; Gore, W.; Russell, P.; Livingston, J.; Redemann, J.; Bergstrom, R.; Platnick, S.; Daniel, J.; Garrett, T.

    2005-12-01

    The New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS-ITCT) experiment conducted in July-August 2004 included objectives on the effects of urban-industrial pollution aerosols on cloud radiative properties, the so-called indirect effect. Measurements of spectral irradiance covering the near-ultraviolet to near-infrared were made from two airborne platforms, the NOAA WP-3D and the Sky Research J-31, using identical Solar Spectral Flux Radiometers (SSFR). The SSFR measured the upwelling and downwelling spectral irradiance between 380-1670 nm from which the spectral albedo (ratio of upwelling to downwelling) and net (difference between downwelling and upwelling) irradiance were derived. Cloud spectral albedo was used to retrieve cloud particle effective radius, optical depth, and liquid water path. The robustness of the optical retrieval method will be examined by comparing the WP-3D SSFR retrievals to in situ measurements made with an FSSP-100 and an OAP 2D-C and to an independent retrieval using Miniaturized Differential Absorption Spectroscopy (MIDAS), also on board the WP-3D. A sunphotometer was also deployed on the J-31, the14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14), providing aerosol optical depths at thirteen discrete wavelengths between 354-2138 nm. J-31 flights on 15, 20, and 31 July were of particular interest because AATS-14 data revealed the presence aerosol layers above clouds. Comparisons between SSFR-derived cloud properties and MODIS cloud retrievals were in close agreement when aerosol optical depth was less than 0.1. Over moderately thick clouds there is evidence that an enhanced aerosol layer, such as that encountered during the 20 July case, may affect the retrieved cloud properties. Such an influence must be distinguished from a true "aerosol indirect effect" in order to accurately quantify the amount by which aerosols modify cloud albedo.

  7. Modeling Aerosol Effects on Clouds and Precipitation: Insights from CalWater 2015

    NASA Astrophysics Data System (ADS)

    Leung, L. R.; Lim, K. S. S.; Fan, J.; Prather, K. A.; DeMott, P. J.; Spackman, J. R.; Ralph, F. M.

    2015-12-01

    The CalWater 2015 field campaign took place in northern California from mid January through early March of 2015. The field campaign, including collaborations between CalWater 2 and ACAPEX, aims to improve understanding and modeling of large-scale dynamics and cloud and precipitation processes associated with atmospheric rivers (ARs) and aerosol-cloud interactions that influence precipitation variability and extremes in the western U.S. An observational strategy was employed using land and offshore assets to monitor (1) the evolution and structure of ARs from near their regions of development, (2) long range transport of aerosols in eastern North Pacific and potential interactions with ARs, and (3) how aerosols from long-range transport and local sources influence cloud and precipitation in the U.S. During the field campaign, an AR developed in the Northeast Pacific Ocean in early February and made landfall in northern California. In-situ aerosol and cloud measurements from the G-1 aircraft; remote sensing data of clouds and aerosols; and meteorological measurements from aircraft, ship, and ground-based instruments collected from February 5 - 8, 2015 are analyzed to characterize the large-scale environment and cloud and precipitation forming processes. Modeling experiments are designed using a regional model for simulations with a cloud resolving limited area domain and quasi-global coarser resolution domain to evaluate the impacts of aerosols on clouds and precipitation, and to explore the relative contributions of long-range transported and regional aerosols that interacted with the clouds before, during, and after AR landfall. Preliminary results will be discussed in the context of the field data as well as a multi-year simulation of the climatological contributions of long-range transported dust during AR landfall in California.

  8. Evidence for Natural Variability in Marine Stratocumulus Cloud Properties Due to Cloud-Aerosol

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce; Sharon, Tarah; Jonsson, Haf; Minnis, Patrick; Minnis, Patrick; Ayers, J. Kirk; Khaiyer, Mandana M.

    2004-01-01

    In this study, aircraft observations from the Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter are used to characterize the variability in drizzle, cloud, and aerosol properties associated with cloud rifts and the surrounding solid clouds observed off the coast of California. A flight made on 16 July 1999 provided measurements directly across an interface between solid and rift cloud conditions. Aircraft instrumentation allowed for measurements of aerosol, cloud droplet, and drizzle spectra. CCN concentrations were measured in addition to standard thermodynamic variables and the winds. A Forward Scatter Spectrometer Probe (FSSP) measured size distribution of cloud-sized droplets. A Cloud Imaging Probe (CIP) was used to measure distributions of drizzle-sized droplets. Aerosol distributions were obtained from a Cloud Aerosol Scatterprobe (CAS). The CAS probe measured aerosols, cloud droplets and drizzle-sized drops; for this study. The CAS probe was used to measure aerosols in the size range of 0.5 micron - 1 micron. Smaller aerosols were characterized using an Ultrafine Condensation Particle Counter (CPC) sensor. The CPC was used to measure particles with diameters greater than 0.003 micron. By subtracting different count concentrations measured with the CPC, this probe was capable of identifying ultrafine particles those falling in the size range of 3 nanometers - 7 nanometers that are believed to be associated with new particle production.

  9. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2008-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al ., 2001]." Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 19991. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005

  10. A modeling study of the effects of aerosols on clouds and precipitation over East Asia

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Xie, Xiaoning; Yin, Zhi-Yong; Liu, Changhai; Gettelman, Andrew

    2011-12-01

    The National Center for Atmospheric Research Community Atmosphere Model (version 3.5) coupled with the Morrison-Gettelman two-moment cloud microphysics scheme is employed to simulate the aerosol effects on clouds and precipitation in two numerical experiments, one representing present-day conditions (year 2000) and the other the pre-industrial conditions (year 1750) over East Asia by considering both direct and indirect aerosol effects. To isolate the aerosol effects, we used the same set of boundary conditions and only altered the aerosol emissions in both experiments. The simulated results show that the cloud microphysical properties are markedly affected by the increase in aerosols, especially for the column cloud droplet number concentration (DNC), liquid water path (LWP), and the cloud droplet effective radius (DER). With increased aerosols, DNC and LWP have been increased by 137% and 28%, respectively, while DER is reduced by 20%. Precipitation rates in East Asia and East China are reduced by 5.8% and 13%, respectively, by both the aerosol's second indirect effect and the radiative forcing that enhanced atmospheric stability associated with the aerosol direct and first indirect effects. The significant reduction in summer precipitation in East Asia is also consistent with the weakening of the East Asian summer monsoon, resulting from the decreasing thermodynamic contrast between the Asian landmass and the surrounding oceans induced by the aerosol's radiative effects. The increase in aerosols reduces the surface net shortwave radiative flux over the East Asia landmass, which leads to the reduction of the land surface temperature. With minimal changes in the sea surface temperature, hence, the weakening of the East Asian summer monsoon further enhances the reduction of summer precipitation over East Asia.

  11. Global estimation of above-cloud aerosols using spaceborne LIDAR

    NASA Astrophysics Data System (ADS)

    Chand, D.; Wood, R.; Anderson, T. L.; Satheesh, S. K.; Leahy, L.

    2008-12-01

    Estimates of global mean direct climate forcing by absorbing aerosols located above boundary layer clouds are large, uncertain, and almost entirely unconstrained by observations. Spaceborne lidar offers a new opportunity of estimating the aerosols at global scale. Here we use two recently available techniques quantifying the above-cloud aerosols using liquid water clouds as lidar targets from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) [Chand et al., 2008]. Both methods can quantify aerosols above clouds and are based on their self-calibrating techniques. We used one year of global data between 70N-70S to show that day time calibration constants are different than night time calibrations constants. A clear latitudinal dependence is observed in the calibrations constants in CALIPSO observations. Using these 'self-calibration' constants, aerosol optical depth (AOD) and angstrom exponent (AE) of 'above- cloud' aerosols are quantified. Biomass burning is a major source of fine mode aerosols in different regions of world. For example, it is observed that June is the onset of the biomass burning fires in Southern Africa, peaking in August and September and then slowly decreasing until November, with a corresponding signature in aerosol optical depth. Layers with aerosol optical depth greater than 0.3 are commonly observed up to several thousand kilometers away from Africa over the Atlantic Ocean. The 'above-cloud' AOD as high as 1.5 is observed in the peak months. Despite of large variations is AOD, mean AE of these aerosols is about 1.6, without any systematic variability away from the source region. The results estimating the aerosols above clouds, including other regions at global scale, will be presented in the AGU meeting. Chand, D., T. L. Anderson, R. Wood, R. J. Charlson, Y. Hu, Z. Liu, and M. Vaughan (2008), Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing, J

  12. EDITORIAL: Aerosol cloud interactions—a challenge for measurements and modeling at the cutting edge of cloud climate interactions

    NASA Astrophysics Data System (ADS)

    Spichtinger, Peter; Cziczo, Daniel J.

    2008-04-01

    Research in aerosol properties and cloud characteristics have historically been considered two separate disciplines within the field of atmospheric science. As such, it has been uncommon for a single researcher, or even research group, to have considerable expertise in both subject areas. The recent attention paid to global climate change has shown that clouds can have a considerable effect on the Earth's climate and that one of the most uncertain aspects in their formation, persistence, and ultimate dissipation is the role played by aerosols. This highlights the need for researchers in both disciplines to interact more closely than they have in the past. This is the vision behind this focus issue of Environmental Research Letters. Certain interactions between aerosols and clouds are relatively well studied and understood. For example, it is known that an increase in the aerosol concentration will increase the number of droplets in warm clouds, decrease their average size, reduce the rate of precipitation, and extend the lifetime. Other effects are not as well known. For example, persistent ice super-saturated conditions are observed in the upper troposphere that appear to exceed our understanding of the conditions required for cirrus cloud formation. Further, the interplay of dynamics versus effects purely attributed to aerosols remains highly uncertain. The purpose of this focus issue is to consider the current state of knowledge of aerosol/cloud interactions, to define the contemporary uncertainties, and to outline research foci as we strive to better understand the Earth's climate system. This focus issue brings together laboratory experiments, field data, and model studies. The authors address issues associated with warm liquid water, cold ice, and intermediate temperature mixed-phase clouds. The topics include the uncertainty associated with the effect of black carbon and organics, aerosol types of anthropogenic interest, on droplet and ice formation. Phases

  13. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    NASA Astrophysics Data System (ADS)

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; Ramanathan, Veerabhadran; Wilcox, Eric M.; Bender, Frida A.-M.

    2016-04-01

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV) and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m-2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol-LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly

  14. Aerosol effects on deep convective clouds: impact of changes in aerosol size distribution and aerosol activation parameterization

    NASA Astrophysics Data System (ADS)

    Ekman, A. M. L.; Engström, A.; Söderberg, A.

    2010-03-01

    A cloud-resolving model including explicit aerosol physics and chemistry is used to study the impact of aerosols on deep convective strength. More specifically, by conducting six sensitivity series we examine how the complexity of the aerosol model, the size of the aerosols and the aerosol activation parameterization influence the aerosol-induced deep convective cloud sensitivity. Only aerosol effects on liquid droplet formation are considered. We find that an increased aerosol concentration generally results in stronger convection, which for the simulated case is in agreement with the conceptual model presented by Rosenfeld et al. (2008). However, there are two sensitivity series that do not display a monotonic increase in updraft velocity with increasing aerosol concentration. These exceptions illustrate the need to: 1) account for changes in evaporation processes and subsequent cooling when assessing aerosol effects on deep convective strength, 2) better understand graupel impaction scavenging of aerosols which may limit the number of CCN at a critical stage of cloud development and thereby dampen the convection, 3) increase our knowledge of aerosol recycling due to evaporation of cloud droplets. Furthermore, we find a significant difference in the aerosol-induced deep convective cloud sensitivity when using different complexities of the aerosol model and different aerosol activation parameterizations. For the simulated case, a 100% increase in aerosol concentration results in a difference in average updraft between the various sensitivity series which is as large as the average updraft increase itself. The model simulations also show that the change in graupel and rain formation is not necessarily directly proportional to the change in updraft velocity. For example, several of the sensitivity series display a decrease of the rain amount at the lowest model level with increasing updraft velocity. Finally, an increased number of aerosols in the Aitken mode (here

  15. Improving aerosol distributions below clouds by assimilating satellite-retrieved cloud droplet number

    PubMed Central

    Saide, Pablo E.; Carmichael, Gregory R.; Spak, Scott N.; Minnis, Patrick; Ayers, J. Kirk

    2012-01-01

    Limitations in current capabilities to constrain aerosols adversely impact atmospheric simulations. Typically, aerosol burdens within models are constrained employing satellite aerosol optical properties, which are not available under cloudy conditions. Here we set the first steps to overcome the long-standing limitation that aerosols cannot be constrained using satellite remote sensing under cloudy conditions. We introduce a unique data assimilation method that uses cloud droplet number (Nd) retrievals to improve predicted below-cloud aerosol mass and number concentrations. The assimilation, which uses an adjoint aerosol activation parameterization, improves agreement with independent Nd observations and with in situ aerosol measurements below shallow cumulus clouds. The impacts of a single assimilation on aerosol and cloud forecasts extend beyond 24 h. Unlike previous methods, this technique can directly improve predictions of near-surface fine mode aerosols responsible for human health impacts and low-cloud radiative forcing. Better constrained aerosol distributions will help improve health effects studies, atmospheric emissions estimates, and air-quality, weather, and climate predictions. PMID:22778436

  16. Improving aerosol distributions below clouds by assimilating satellite-retrieved cloud droplet number.

    PubMed

    Saide, Pablo E; Carmichael, Gregory R; Spak, Scott N; Minnis, Patrick; Ayers, J Kirk

    2012-07-24

    Limitations in current capabilities to constrain aerosols adversely impact atmospheric simulations. Typically, aerosol burdens within models are constrained employing satellite aerosol optical properties, which are not available under cloudy conditions. Here we set the first steps to overcome the long-standing limitation that aerosols cannot be constrained using satellite remote sensing under cloudy conditions. We introduce a unique data assimilation method that uses cloud droplet number (N(d)) retrievals to improve predicted below-cloud aerosol mass and number concentrations. The assimilation, which uses an adjoint aerosol activation parameterization, improves agreement with independent N(d) observations and with in situ aerosol measurements below shallow cumulus clouds. The impacts of a single assimilation on aerosol and cloud forecasts extend beyond 24 h. Unlike previous methods, this technique can directly improve predictions of near-surface fine mode aerosols responsible for human health impacts and low-cloud radiative forcing. Better constrained aerosol distributions will help improve health effects studies, atmospheric emissions estimates, and air-quality, weather, and climate predictions.

  17. Super-droplet method as a versatile numerical approach for representing aerosol-cloud-aerosol interactions.

    NASA Astrophysics Data System (ADS)

    Jaruga, Anna; Arabas, Sylwester; Pawlowska, Hanna

    2013-04-01

    Aerosol interacts with clouds by serving as cloud condensation nuclei (CCN). Its physical and chemical properties are one of the factors defining cloud droplet size distribution. On the other hand, clouds process atmospheric aerosol taking part in its wet deposition and CCN regeneration through evaporation of cloud droplets and drizzle. Physical and chemical properties of the regenerated CCN may be altered if the evaporated droplets go through collisional growth or irreversible chemical reactions. The main challenge of representing these aerosol-cloud interactions in a numerical cloud model stems from the need to track the properties of the drop nuclei throughout the cloud lifecycle. A class of methods allowing such studies is the Lagrangian particle-based simulation technique. In a simulation of cloud, each modeled particle represents a multiplicity of particles of the same nucleus type, position and size. During the simulation particle sizes change in a continuous way from CCN-sized to rain drop particles. Tracking microphysical properties of modeled particles is an inherent feature of the particle-based frameworks, making them suitable for studying aerosol-cloud-aerosol interactions. Super-droplet method is a Lagrangian technique introduced by Shima et al. (2009) featuring an efficient Monte-Carlo type solver for particle coalescence. In this study a new implementation of the super-droplet method, using the kappa-Koehler parametrisation of aerosol composition and an aqueous chemistry module for representing irreversible oxidation, will be presented. Components of the developed model will be discussed using a single-eddy prescribed-flow framework, focusing solely on the microphysical aspects of simulations. Example case will mimic a Stratocumulus cloud and depict cloud-aerosol interactions resolved by the model.

  18. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    SciTech Connect

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A.; Yang, Fan

    2016-11-28

    The influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τc < τt) for high aerosol concentration, and slow microphysics (τc > τt) for low aerosol concentration; here, τc is the phase relaxation time and τt is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τs-1c-1 + τt-1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.

  19. Impact of Aerosols on Convective Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong

    2011-01-01

    Aerosols are a critical factor in the atmospheric hydrological cycle and radiation budget. As a major reason for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosol effects on clouds could further extend to precipitation, both through the formation of cloud particles and by exerting persistent radiative forcing on the climate system that disturbs dynamics. However, the various mechanisms behind these effects, in particular the ones connected to precipitation, are not yet well understood. The atmospheric and climate communities have long been working to gain a better grasp of these critical effects and hence to reduce the significant uncertainties in climate prediction resulting from such a lack of adequate knowledge. The central theme of this paper is to review past efforts and summarize our current understanding of the effect of aerosols on precipitation processes from theoretical analysis of microphysics, observational evidence, and a range of numerical model simulations. In addition, the discrepancy between results simulated by models, as well as that between simulations and observations will be presented. Specifically, this paper will address the following topics: (1) fundamental theories of aerosol effects on microphysics and precipitation processes, (2) observational evidence of the effect of aerosols on precipitation processes, (3) signatures of the aerosol impact on precipitation from large-scale analyses, (4) results from cloud-resolving model simulations, and (5) results from large-scale numerical model simulations. Finally, several future research directions on aerosol - precipitation interactions are suggested.

  20. A Framework for Aerosol-Cloud Interactions Monitoring

    NASA Astrophysics Data System (ADS)

    Russchenberg, H. W. J.; Sarna, K.

    2014-12-01

    A broad range of strategies have been used to study Aerosol-Cloud Interactions (ACI). However, the wide scope of methods and scales used makes it difficult to quantitatively compare result from different studies. In this paper, we propose a method of aerosol-cloud interaction monitoring based on widely available remote sensing instruments and easily applicable at many different observatories. This method provides a way of identifying cases where a change in the aerosol environment causes a change in the cloud. In this scheme we attempt to use (as far as possible) the observed signal from lidar and radar. For an aerosol proxy we use the attenuated backscatter (sensitive to aerosol concentration) and to obtain information about changes in the cloud we use the radar reflectivity factor (sensitive to cloud droplet size and concentration). Assuming a positive dependence between the number concentration of cloud droplets and the number concentration of aerosol we expect that an increase of the attenuated backscatter coefficient will correspond to a small increase of the radar reflectivity factor (due to the increase of cloud droplets concentration). However, the slope of this correlation will vary. A number of factors, such as meteorology or cloud drop microphysical properties, can influence changes in a cloud. For that reason we put a constraint on the liquid water content using liquid water path information from microwave radiometers. This limitation ensures that the variability in the cloud will be primarily due to changes in microphysical properties associated with the variation in aerosols. Further, we limit the cases only to non-precipitating, low-level stratiform and stratocumulus clouds without drizzle. Although this method is based on a synergy of instruments, we use widely available systems for an efficient evaluation of the aerosol influence on the cloud. The main advantages of this scheme are the use of direct observables from widely spread remote sensing

  1. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds

    DTIC Science & Technology

    2012-09-30

    and cloud observations in trade wind cumulus clouds using the CIRPAS aircraft with the cloud radar was designed and carried out. The observational...gradients in cloud properties off the coast. Further from the South Florida area of fair-weather cumulus clouds (Jan. 2008) where clouds with both...marine and continental characteristics were observed. This was followed by a set of observations made in 2010 of cumulus clouds in off of Barbados

  2. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  3. Aerosol cloud interactions in southeast Pacific stratocumulus: satellite observations, in situ data and regional modeling

    NASA Astrophysics Data System (ADS)

    George, Rhea

    The influence of anthropogenic aerosols on cloud radiative properties in the persistent southeast Pacific stratocumulus deck is investigated using MODIS satellite observations, in situ data from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), and WRF-Chem, a regional model with interactive chemistry and aerosols. An albedo proxy is derived based on the fractional coverage of low cloud (a macrophysical field) and the cloud albedo, with the latter broken down into contributions from microphysics (cloud droplet concentration, Nd and macrophysics (liquid water path). Albedo variability is dominated by low cloud fraction variability, except within 10-15° of the South American coast, where cloud albedo variability contributes significantly. Covariance between cloud fraction and cloud albedo also contributes significantly to the variance in albedo, which highlights how complex and inseparable the factors controlling albedo are. N d variability contributes only weakly, which emphasizes that attributing albedo variability to the indirect effects of aerosols against the backdrop of natural meteorological variability is extremely challenging. Specific cases of aerosol changes can have strong impacts on albedo. We identify a pathway for periodic anthropogenic aerosol transport to the unpolluted marine stratocumulus >1000 km offshore, which strongly enhances Nd and albedo in zonally-elongated 'hook'-shaped arc. Hook development occurs with Nd increasing to polluted levels over the remote ocean primarily due to entrainment of a large number of small aerosols from the free troposphere that contribute a relatively small amount of aerosol mass to the marine boundary layer. Strong, deep offshore flow needed to transport continental aerosols to the remote ocean is favored by a trough approaching the South American coast and a southeastward shift of the climatological subtropical high pressure system. DMS significantly influences the aerosol number and

  4. Aerosol Impacts on Microphysical and Radiative Properties of Stratocumulus Clouds in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Toohey, D. W.; Andrejczuk, M.; Anderson, J. R.; Adams, A.; Lytle, M.; George, R.; Wood, R.; Zuidema, P.; Leon, D.

    2011-12-01

    The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, cloud droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties along an E-W track from near the Chilean coast to remote areas offshore. Mean statistics from seven flights were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. The effect extends ~800 to 1000 km from shore. The additional particles are mainly sulfates from anthropogenic sources. Liquid water content and drizzle concentration tended to increase with distance from shore, but exhibited much greater variability. Analysis of the droplet residual measurements showed that not only were there more residual nuclei near shore, but that they tended to be larger than those offshore. Single particle analysis over a broad particle size range was used to reveal types and sources of CCN, which were primarily sulfates near shore. Differences in the size distribution of droplet residual particles and ambient aerosol particles were observed due to the preferential activation of large aerosol particles. By progressively excluding small droplets from the CVI sample, we were able to show that the larger drops, which initiate drizzle, contain the largest aerosol particles. However, the scavenging efficiency is not sharp as expected from a simple parcel activation model. A wide range of

  5. Numerical simulations of stratocumulus cloud response to aerosol perturbation

    NASA Astrophysics Data System (ADS)

    Andrejczuk, Miroslaw; Gadian, Alan; Blyth, Alan

    2010-05-01

    Geoengineering of the Earth clouds is proposed as a one of the methods to offset global warming. Idealized climate model simulations indicate that such an approach may work and stratocumulus cloud seeding may delay global warming by as much as 25 years. However cloud-aerosol interaction is not fully understood yet, and its representation in climate model are very simplified, what may lead to significant uncertainty in climate model predictions. Problem with quantifying aerosol distribution/composition/concentration -> cloud droplet number relation is more general and even higher resolution model models with more sophisticated microphysics have problem with capturing this relation. Stratocumulus clouds are especially difficult to model because these are long living clouds and aerosol can affect these clouds significantly both locally and globally. Before investigating effect of aerosol perturbation on stratocumulus clouds, models should be able to capture observed relation between aerosol and cloud droplets. Although there are indications that cloud seeding may effect cloud albedo based on results from parcel model(1), assumption made in this type of models about homogeneity and neglected effect of dynamics may affect model results. In the presentation new approach to microphysics, which is represented in Lagrangian framework, with two way coupling between Lagrangian parcels and Large Eddy Simulations model dynamics and theromodynamics(2) will be discussed. Results from this model will be presented and validated against observations from VOCALS field campaign. Model response to aerosol perturbation and its effect on cloud albedo will be shown for cases with high and low initial cloud droplet concentration. (1) Bower, K. N., Choularton, T. W., Latham, J., Sahraei, J. and Salter, S. H. (2006), Computational assessment of a proposed technique for global warming mitigation via albedo-enhancement of marine stratocumulus clouds. Atmos. Res. 82, 328-336. (2) M. Andrejczuk

  6. Cloud Regimes as a Tool for Systematic Study of Various Aerosol-Cloud-Precipitation Interactions

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2016-01-01

    Systematic changes of clouds and precipitation are notoriously difficult to ascribe to aerosols. This presentation will showcase yet one more attempt to at least credibly detect the signal of aerosol-cloud-precipitation interactions. We surmise that the concept of cloud regimes (CRs) is appropriate to conduct such an investigation. Previous studies focused on what we call here dynamical CRs, and while we continue to adopt those too for our analysis, we have found that a different way of organizing cloud systems, namely via microphysical regimes is also promising. Our analysis relies on MODIS Collection 6 Level-3 data for clouds and aerosols, and TRMM-TMPA data for precipitation. The regimes are derived by applying clustering analysis on MODIS joint histograms, and once each grid cell is assigned a regime, aerosol and precipitation data can be spatiotemporally matched and composited by regime. The composites of various cloud and precipitation variables for high (upper quartile of distribution) and low (lower quartile) aerosol loadings can then be contrasted. We seek evidence of aerosol effects both in regimes with large fractions of deep ice-rich clouds, as well as regimes where low liquid phase clouds dominate. Signals can be seen, especially when the analysis is broken by land-ocean and when additional filters are applied, but there are of course caveats which will be discussed.

  7. Effect of Carbonaceous Aerosols on Clouds and Precipitation in Asia

    NASA Astrophysics Data System (ADS)

    v, V.; Wang, H.; Ganguly, D.; Minghuai, W.; Rasch, P. J.

    2010-12-01

    Carbonaceous aerosols enhance scattering and absorption of solar radiation (i.e., direct radiative effect) in the atmosphere and also affect clouds and precipitation through indirect effects, thus heating the atmosphere but reducing the amount of solar radiation that reaches the earth’s surface. These effects through dynamic feedbacks can also have remote impact over regions far away from their emission sources and hence demand special scientific attention. Previous modeling studies have revealed that large amount of anthropogenic carbonaceous aerosols over the Asian region can alter monsoon circulation and precipitation patterns and thereby influence its strength by varying degrees spatially. Most of the studies focused on the direct radiative effect of aerosols and their subsequent effect on monsoon precipitation. We evaluate the changes in clouds and precipitation in Asia due to carbonaceous aerosols using the community atmospheric model (CAM5) which accounts for not only aerosol direct effects, but also aerosol indirect effects on warm, mixed-phase and cirrus clouds. This study focuses on the precipitation efficiency with emphasis on aerosol indirect effects. In addition to carbonaceous aerosol emissions over Asia, the effect of emissions from other regions like North America, North Africa and Europe are also investigated for their influence on precipitation in the Asian region. In addition to the focus on the aerosol effect on monsoon, we also study the seasonality in aerosol induced changes to precipitation efficiency. We present the quantitative estimates of changes in precipitation efficiency related to changes in aerosol loading and compare them with those estimated from satellite observations, and further explore the potential role of aerosol indirect effects to changes in precipitation efficiency.

  8. Modeling immersion freezing with aerosol-dependent prognostic ice nuclei in Arctic mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Paukert, M.; Hoose, C.

    2014-07-01

    While recent laboratory experiments have thoroughly quantified the ice nucleation efficiency of different aerosol species, the resulting ice nucleation parameterizations have not yet been extensively evaluated in models on different scales. Here the implementation of an immersion freezing parameterization based on laboratory measurements of the ice nucleation active surface site density of mineral dust and ice nucleation active bacteria, accounting for nucleation scavenging of ice nuclei, into a cloud-resolving model with two-moment cloud microphysics is presented. We simulated an Arctic mixed-phase stratocumulus cloud observed during Flight 31 of the Indirect and Semi-Direct Aerosol Campaign near Barrow, Alaska. Through different feedback cycles, the persistence of the cloud strongly depends on the ice number concentration. It is attempted to bring the observed cloud properties, assumptions on aerosol concentration, and composition and ice formation parameterized as a function of these aerosol properties into agreement. Depending on the aerosol concentration and on the ice crystal properties, the simulated clouds are classified as growing, dissipating, and quasi-stable. In comparison to the default ice nucleation scheme, the new scheme requires higher aerosol concentrations to maintain a quasi-stable cloud. The simulations suggest that in the temperature range of this specific case, mineral dust can only contribute to a minor part of the ice formation. The importance of ice nucleation active bacteria and possibly other ice formation modes than immersion freezing remains poorly constrained in the considered case, since knowledge on local variations in the emissions of ice nucleation active organic aerosols in the Arctic is scarce.

  9. Aerosol and Cloud Microphysical Characteristics of Rifts and Gradients in Maritime Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    Sharon, Tarah M.; Albrecht, Bruce A.; Jonsson, Haflidi H.; Minnis, Patrick; Khaiyer, Mandana M.; Van Reken, Timothy; Seinfeld, John; Flagan, Rick

    2008-01-01

    A cloud rift is characterized as a large-scale, persistent area of broken, low reflectivity stratocumulus clouds usually surrounded by a solid deck of stratocumulus. A rift observed off the coast of Monterey Bay, California on 16 July 1999 was studied to compare the aerosol and cloud microphysical properties in the rift with those of the surrounding solid stratus deck. Variables measured from an instrumented aircraft included temperature, water vapor, and cloud liquid water. These measurements characterized the thermodynamic properties of the solid deck and rift areas. Microphysical measurements made included aerosol, cloud drop and drizzle drop concentrations and cloud condensation nuclei (CCN) concentrations. The microphysical characteristics in a solid stratus deck differ substantially from those of a broken, cellular rift where cloud droplet concentrations are a factor of 2 lower than those in the solid cloud. Further, CCN concentrations were found to be about 3 times greater in the solid cloud area compared with those in the rift and aerosol concentrations showed a similar difference as well. Although drizzle was observed near cloud top in parts of the solid stratus cloud, the largest drizzle rates were associated with the broken clouds within the rift area. In addition to marked differences in particle concentrations, evidence of a mesoscale circulation near the solid cloud rift boundary is presented. This mesoscale circulation provides a mechanism for maintaining a rift, but further study is required to understand the initiation of a rift and the conditions that may cause it to fill.

  10. Eye safe short range standoff aerosol cloud finder.

    SciTech Connect

    Bambha, Ray P.; Schroder, Kevin L.; Reichardt, Thomas A.

    2005-02-01

    Because many solid objects, both stationary and mobile, will be present in an indoor environment, the design of an indoor aerosol cloud finding lidar (light detection and ranging) instrument presents a number of challenges. The cloud finder must be able to discriminate between these solid objects and aerosol clouds as small as 1-meter in depth in order to probe suspect clouds. While a near IR ({approx}1.5-{micro}m) laser is desirable for eye-safety, aerosol scattering cross sections are significantly lower in the near-IR than at visible or W wavelengths. The receiver must deal with a large dynamic range since the backscatter from solid object will be orders of magnitude larger than for aerosol clouds. Fast electronics with significant noise contributions will be required to obtain the necessary temporal resolution. We have developed a laboratory instrument to detect aerosol clouds in the presence of solid objects. In parallel, we have developed a lidar performance model for performing trade studies. Careful attention was paid to component details so that results obtained in this study could be applied towards the development of a practical instrument. The amplitude and temporal shape of the signal return are analyzed for discrimination of aerosol clouds in an indoor environment. We have assessed the feasibility and performance of candidate approaches for a fieldable instrument. With the near-IR PMT and a 1.5-{micro}m laser source providing 20-{micro}J pulses, we estimate a bio-aerosol detection limit of 3000 particles/l.

  11. The NASA Decadal Survey Aerosol, Cloud, Ecosystems Mission

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Bontempi, Paula; Maring, Hal

    2011-01-01

    In 2007, the National Academy of Sciences delivered a Decadal Survey (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond) for NASA, NOAA, and USGS, which is a prioritization of future satellite Earth observations. The recommendations included 15 missions (13 for NASA, two for NOAA), which were prioritized into three groups or tiers. One of the second tier missions is the Aerosol, Cloud, (ocean) Ecosystems (ACE) mission, which focuses on climate forcing, cloud and aerosol properties and interactions, and ocean ecology, carbon cycle science, and fluxes. The baseline instruments recommended for ACE are a cloud radar, an aerosol/cloud lidar, an aerosol/cloud polarimeter, and an ocean radiometer. The instrumental heritage for these measurements are derived from the Cloudsat, CALIPSO, Glory, SeaWiFS and Aqua (MODIS) missions. In 2008, NASA HQ, lead by Hal Maring and Paula Bontempi, organized an interdisciplinary science working group to help formulate the ACE mission by refining the science objectives and approaches, identifying measurement (satellite and field) and mission (e.g., orbit, data processing) requirements, technology requirements, and mission costs. Originally, the disciplines included the cloud, aerosol, and ocean biogeochemistry communities. Subsequently, an ocean-aerosol interaction science working group was formed to ensure the mission addresses the broadest range of science questions possible given the baseline measurements, The ACE mission is a unique opportunity for ocean scientists to work closely with the aerosol and cloud communities. The science working groups are collaborating on science objectives and are defining joint field studies and modeling activities. The presentation will outline the present status of the ACE mission, the science questions each discipline has defined, the measurement requirements identified to date, the current ACE schedule, and future opportunities for broader community

  12. Polar stratospheric cloud sightings by SAM II. [Stratospheric Aerosol Measurement onboard Nimbus 7

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Steele, H. M.; Hamill, P.; Swissler, T. J.

    1982-01-01

    The functions and data gained regarding stratospheric cloud sightings by the stratospheric aerosol measurement (SAM) II experiment on board the Numbus 7 spacecraft are reported. SAM II comprises a single channel sun photometer centered at 1.0 micron wavelength for measuring the solar intensity when the sun descends below an apparent 300 km altitude until the sun is occulted by clouds or the horizon. Readings are also made during sunrise in an opposite fashion. Transmission profiles are developed from the data and used to construct profiles of aerosol extinction with a 1 km resolution. Polar stratospheric clouds have been observed in more than 90% of the cases when the minimum temperature is 185 K or less, and 45% of the time when the temperature is 193 K or less. The clouds were more prevalent in the Antarctic winter than during the Arctic winter, and cloud height was lower than indicated by previous data.

  13. Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations

    NASA Technical Reports Server (NTRS)

    Igel, Adele L.; Van Den Heever, Susan C.; Naud, Catherine M.; Saleeby, Stephen M.; Posselt, Derek J.

    2013-01-01

    An extratropical cyclone that crossed the United States on 9-11 April 2009 was successfully simulated at high resolution (3-km horizontal grid spacing) using the Colorado State University Regional Atmospheric Modeling System. The sensitivity of the associated warm front to increasing pollution levels was then explored by conducting the same experiment with three different background profiles of cloud-nucleating aerosol concentration. To the authors' knowledge, no study has examined the indirect effects of aerosols on warm fronts. The budgets of ice, cloud water, and rain in the simulation with the lowest aerosol concentrations were examined. The ice mass was found to be produced in equal amounts through vapor deposition and riming, and the melting of ice produced approximately 75% of the total rain. Conversion of cloud water to rain accounted for the other 25%. When cloud-nucleating aerosol concentrations were increased, significant changes were seen in the budget terms, but total precipitation remained relatively constant. Vapor deposition onto ice increased, but riming of cloud water decreased such that there was only a small change in the total ice production and hence there was no significant change in melting. These responses can be understood in terms of a buffering effect in which smaller cloud droplets in the mixed-phase region lead to both an enhanced vapor deposition and decreased riming efficiency with increasing aerosol concentrations. Overall, while large changes were seen in the microphysical structure of the frontal cloud, cloud-nucleating aerosols had little impact on the precipitation production of the warm front.

  14. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    DOE PAGES

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; ...

    2016-04-27

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV)more » and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m–2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a

  15. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    SciTech Connect

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; Ramanathan, Veerabhadran; Wilcox, Eric M.; Bender, Frida A.-M.

    2016-04-27

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.

    In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV) and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m–2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.

    We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the

  16. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  17. Aerosols and clouds in chemical transport models and climate models.

    SciTech Connect

    Lohmann,U.; Schwartz, S. E.

    2008-03-02

    Clouds exert major influences on both shortwave and longwave radiation as well as on the hydrological cycle. Accurate representation of clouds in climate models is a major unsolved problem because of high sensitivity of radiation and hydrology to cloud properties and processes, incomplete understanding of these processes, and the wide range of length scales over which these processes occur. Small changes in the amount, altitude, physical thickness, and/or microphysical properties of clouds due to human influences can exert changes in Earth's radiation budget that are comparable to the radiative forcing by anthropogenic greenhouse gases, thus either partly offsetting or enhancing the warming due to these gases. Because clouds form on aerosol particles, changes in the amount and/or composition of aerosols affect clouds in a variety of ways. The forcing of the radiation balance due to aerosol-cloud interactions (indirect aerosol effect) has large uncertainties because a variety of important processes are not well understood precluding their accurate representation in models.

  18. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    SciTech Connect

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Menqistu; Brooks, Sarah D.; Cziczo, Dan; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor; Gultepe, Ismail; Hubbe, John; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. Richard; Liu, Peter; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, Ann -Marie; Moffet, Ryan C.; Morrison, Hugh; Ovchinnikov, Mikhail; Ronfeld, Debbie; Shupe, Matthew D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matt; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41 stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.

  19. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE PAGES

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; ...

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  20. Analysis of Arctic Cloud Thermodynamic Phase Susceptibility to Aerosols.

    NASA Astrophysics Data System (ADS)

    Coopman, Q.; Garrett, T. J.; Riedi, J.; Eckhardt, S.; Stohl, A.

    2014-12-01

    Even if Arctic is remote from industrialized areas, this region is influenced by elevated concentration of aerosols from mid-latitude, especially during winter. This is mainly due to the decrease of wet scavenging and the surface temperature inversion, both acting as a trap for the atmospheric particles. Aerosols play a key role on cloud's microphysics, because they act as Cloud Condensation Nuclei (CCN) or Ice Nuclei (IN). Both nuclei influence directly on cloud's presence and formation, potentially impacting also thermodynamic phase transition through different mechanisms, which in turn affect cloud radiative properties and forcing. In our study we used two sets of data: i) A combination of POLDER-3/PARASOL and MODIS/AQUA satellite measurements to retrieve cloud properties; ii) The numerical transport model FLEXPART which use carbon monoxide tracer to inform on concentration of biomass burning and anthropogenic aerosols. The main advantage of combining these two sets of data is to obtain large statistics about clouds that have been potentially influenced by varied concentrations of aerosol. We report here results of a study in which we analyze potential interaction between clouds and aerosols from biomass burning and anthropogenic sources. We first analyzed the temperature at which thermodynamic phase transition is most likely to occur according to the types and concentrations of aerosols. It is shown a correlation between the temperature of thermodynamic phase transition and aerosols concentrations and type. Unlike we could have expected from previous studies, preliminary analyses suggest that aerosols from anthropogenic sources accelerate the liquid-ice transition whereas aerosols from biomass burning inhibit the transition from water to ice. Different hypotheses can be responsible for this observation and we analyze parameters that can play a role on the transition temperature shift and how aerosols act as an inhibitor or activator of the phase transition, for

  1. Primary marine aerosol-cloud interactions off the coast of California

    NASA Astrophysics Data System (ADS)

    Modini, R. L.; Frossard, A. A.; Ahlm, L.; Russell, L. M.; Corrigan, C. E.; Roberts, G. C.; Hawkins, L. N.; Schroder, J. C.; Bertram, A. K.; Zhao, R.; Lee, A. K. Y.; Abbatt, J. P. D.; Lin, J.; Nenes, A.; Wang, Z.; Wonaschütz, A.; Sorooshian, A.; Noone, K. J.; Jonsson, H.; Seinfeld, J. H.; Toom-Sauntry, D.; MacDonald, A. M.; Leaitch, W. R.

    2015-05-01

    Primary marine aerosol (PMA)-cloud interactions off the coast of California were investigated using observations of marine aerosol, cloud condensation nuclei (CCN), and stratocumulus clouds during the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies. Based on recently reported measurements of PMA size distributions, a constrained lognormal-mode-fitting procedure was devised to isolate PMA number size distributions from total aerosol size distributions and applied to E-PEACE measurements. During the 12 day E-PEACE cruise on the R/V Point Sur, PMA typically contributed less than 15% of total particle concentrations. PMA number concentrations averaged 12 cm-3 during a relatively calmer period (average wind speed 12 m/s1) lasting 8 days, and 71 cm-3 during a period of higher wind speeds (average 16 m/s1) lasting 5 days. On average, PMA contributed less than 10% of total CCN at supersaturations up to 0.9% during the calmer period; however, during the higher wind speed period, PMA comprised 5-63% of CCN (average 16-28%) at supersaturations less than 0.3%. Sea salt was measured directly in the dried residuals of cloud droplets during the SOLEDAD study. The mass fractions of sea salt in the residuals averaged 12 to 24% during three cloud events. Comparing the marine stratocumulus clouds sampled in the two campaigns, measured peak supersaturations were 0.2 ± 0.04% during E-PEACE and 0.05-0.1% during SOLEDAD. The available measurements show that cloud droplet number concentrations increased with >100 nm particles in E-PEACE but decreased in the three SOLEDAD cloud events.

  2. Influence of particle size and chemistry on the cloud nucleating properties of aerosols

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Coffman, D. J.; Covert, D. S.

    2008-02-01

    The ability of an aerosol particle to act as a cloud condensation nuclei (CCN) is a function of the size of the particle, its composition and mixing state, and the supersaturation of the cloud. In-situ data from field studies provide a means to assess the relative importance of these parameters. During the 2006 Texas Air Quality - Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS), the NOAA RV Ronald H. Brown encountered a wide variety of aerosol types ranging from marine near the Florida panhandle to urban and industrial in the Houston-Galveston area. These varied sources provided an opportunity to investigate the role of aerosol sources and chemistry in the potential activation of particles to form cloud droplets. Measurements were made of CCN concentrations, aerosol chemical composition in the size range relevant for particle activation in warm clouds, and aerosol size distributions. Variability in aerosol composition was parameterized by the mass fraction of Hydrocarbon-like Organic Aerosol (HOA) for particle diameters less than 200 nm (vacuum aerodynamic). The HOA mass fraction in this size range was lowest for marine aerosol and highest for aerosol sampled close to anthropogenic sources. Combining all data from the experiment reveals that composition (defined by HOA mass fraction) explains 40% of the variance in the critical diameter for particle activation at the instrumental supersaturation (S) of 0.44%. Correlations between HOA mass fraction and aerosol mean diameter show that these two parameters are essentially independent of one another for this data set. We conclude that, based on the variability of the HOA mass fraction observed during TexAQS-GoMACCS, variability in particle composition played a significant role in determining the fraction of particles that could activate to form cloud droplets. Using a simple model based on Köhler theory and the assumption that HOA is insoluble, we estimate the degree to which calculated CCN

  3. Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report

    SciTech Connect

    Kotamarthi, VR

    2013-12-01

    In general, the Indian Summer Monsoon (ISM) as well as the and the tropical monsoon climate is influenced by a wide range of factors. Under various climate change scenarios, temperatures over land and into the mid troposphere are expected to increase, intensifying the summer pressure gradient differential between land and ocean and thus strengthening the ISM. However, increasing aerosol concentration, air pollution, and deforestation result in changes to surface albedo and insolation, potentially leading to low monsoon rainfall. Clear evidence points to increasing aerosol concentrations over the Indian subcontinent with time, and several hypotheses regarding the effect on monsoons have been offered. The Ganges Valley Aerosol Experiment (GVAX) field study aimed to provide critical data to address these hypotheses and contribute to developing better parameterizations for tropical clouds, convection, and aerosol-cloud interactions. The primary science questions for the mission were as follows:

  4. BAECC Biogenic Aerosols - Effects on Clouds and Climate

    SciTech Connect

    Petäjä, Tuukka; Moisseev, Dmitri; Sinclair, Victoria; O'Connor, Ewan J.; Manninen, Antti J.; Levula, Janne; Väänänen, Riikka; Heikkinen, Liine; Äijälä, Mikko; Aalto, Juho; Bäck, Jaana

    2015-11-01

    “Biogenic Aerosols - Effects on Clouds and Climate (BAECC)”, featured the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program’s 2nd Mobile Facility (AMF2) in Hyytiälä, Finland. It operated for an 8-month intensive measurement campaign from February to September 2014. The main research goal was to understand the role of biogenic aerosols in cloud formation. One of the reasons to perform BAECC study in Hyytiälä was the fact that it hosts SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), which is one of the world’s most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. The BAECC enables combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations and allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. With the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations of AMF2 and SMEAR-II provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes. The BAECC dataset will initiate new opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures.

  5. Aerosol Cloud-Precipitation Interaction: Facts and Fiction

    NASA Astrophysics Data System (ADS)

    Cotton, W. R.; Levin, Z.

    2006-12-01

    In this talk we summarize the major findings and conclusions made in the WMO International Aerosol Precipitation Science Assessment Group (IAPSAG) report on aerosol impacts on precipitation. At the time of writing this abstract external reviews of the report have been received and by the time of the fall AGU meeting the final draft should be completed. The objective of the report is to stress the potential importance to the hydrological cycle of the effects of pollution on clouds and precipitation. We emphasize that once the precipitation cycle is altered in clouds by varying amounts of CCN, GCCN, and IN concentrations, the cloud responses can be vary nonlinear. Thus in some cases precipitation is decreased with increasing aerosols and others it is increased. Examples from modeling studies suggest that increased concentrations of CCN can lead to vertical redistributions in latent heating that can invigorate the updrafts of convective clouds and lead to large heavier raining storm systems. Other modeling studies indicate the opposite response and the indication is that it is due to the complex interplay of cold pools produced by storms and their mesoscale or large-scale environment. Thus it is dangerous to generalize that aerosols will always decrease or increase precipitation as the cloud response is a function of the variable large scale environment and the detailed nature of the cloud systems that form in those environments.

  6. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  7. Assessment of aerosol-cloud interactions during southern African biomass burning activity, employing cloud parameterizations

    NASA Astrophysics Data System (ADS)

    Wiston, Modise; McFiggans, Gordon; Schultz, David

    2015-04-01

    In this study, we perform a simulation of the spatial distributions of particle and gas concentrations from a significantly large source of pollution event during a dry season in southern Africa and their interactions with cloud processes. Specific focus is on the extent to which cloud-aerosol interactions are affected by various inputs (i.e. emissions) and parameterizations and feedback mechanisms in a coupled mesoscale chemistry-meteorology model -herein Weather Research and Forecasting model with chemistry (WRF-Chem). The southern African dry season (May-Sep) is characterised by biomass burning (BB) type of pollution. During this period, BB particles are frequently observed over the subcontinent, at the same time a persistent deck of stratocumulus covers the south West African coast, favouring long-range transport over the Atlantic Ocean of aerosols above clouds. While anthropogenic pollutants tend to spread more over the entire domain, biomass pollutants are concentrated around the burning areas, especially the savannah and tropical rainforest of the Congo Basin. BB is linked to agricultural practice at latitudes south of 10° N. During an intense burning event, there is a clear signal of strong interactions of aerosols and cloud microphysics. These species interfere with the radiative budget, and directly affect the amount of solar radiation reflected and scattered back to space and partly absorbed by the atmosphere. Aerosols also affect cloud microphysics by acting as cloud condensation nuclei (CCN), modifying precipitation pattern and the cloud albedo. Key area is to understand the role of pollution on convective cloud processes and its impacts on cloud dynamics. The hypothesis is that an environment of potentially high pollution enables the probability of interactions between co-located aerosols and cloud layers. To investigate this hypothesis, we outline an approach to integrate three elements: i) focusing on regime(s) where there are strong indications of

  8. NASA's Aerosol Sampling Experiment Summary

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  9. Quantification of Feedbacks in Aerosol-Cloud-Precipitation Interactions of Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    Glassmeier, F.; Herger, N.; Ramelli, F.; Lohmann, U.

    2014-12-01

    The notion of clouds as buffered or resilient systems implies that generalized feedback processes unaccounted for in climate simulations may lead to an overestimation of the effective radiative forcing due to aerosol-cloud interactions, i.e. cloud lifetime effects. In this contribution, we study the importance of microphysical feedback processes in response to anthropogenic aerosols in orographic mixed-phase clouds. Our methods can be extended to other cloud regimes as well as dynamical and thermodynamical feedbacks. For our simulations, we use the regional atmospheric model COSMO-ART-M7 in a 2D setup with an idealized mountain. To capture major processes from aerosol emission to precipitation, the model is coupled to a modal aerosol scheme and includes aerosol activation and heterogeneous freezing as well as two-moment cold and warm cloud microphysics. We perform simulations with aerosol conditions that vary in amount and chemical composition and thus perturb the warm- and ice-phase pathways of precipitation formation and their mixed-phase interactions. Our analysis is based on quantifying the interaction strength between aerosol, cloud and precipitation variables by susceptibilities, i.e. relative sensitivities d ln(Y) / d ln(X), where the change in variable Y is a response to a perturbation in variable X. We describe how to decompose susceptibilities into a direct response expected from the parameterization and a contribution from feedbacks. Resilience features similar magnitudes but opposite signs for those contributions, resulting in an overall small susceptibility. We find considerable contributions from feedbacks, which appear more important for warm-phase than for cold-phase processes. We do not observe, however, a trend for resilience in mixed-phase cloud microphysics. Moreover, feedback contributions seem of secondary importance when compared to the strong dependence of susceptibilities on the microphysical state of the cloud.

  10. Integrated approach towards understanding interactions of mineral dust aerosol with warm clouds

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant

    2011-12-01

    to biases as it generates a bimodal size distribution with a broad range of hygroscopicity. It is found that smaller particles generated in the more hygroscopic peak follow CCN activation by KT, while the larger peak is less hydrophilic with activation similar to dry generated dust that follow FHH-AT. Droplet activation kinetics measurements demonstrate that dry generated mineral aerosol display retarded activation kinetics with an equivalent water vapor uptake coefficient that is 30 - 80% lower relative to ammonium sulfate aerosol. Wet generated mineral aerosols, however, display similar activation kinetics to ammonium sulfate. These results suggest that at least a monolayer of water vapor (the rate-limiting step for adsorption) persists during the timescale of aerosol generation in the experiment, and questions the atmospheric relevance of studies on mineral aerosol generated from wet atomization method. A new parameterization of cloud droplet formation from insoluble dust CCN for regional and global climate models is also developed. The parameterization framework considers cloud droplet formation from dust CCN activating via FHH-AT, and soluble aerosol with activation described through KT. The parameterization is validated against a numerical parcel model, agreeing with predictions to within 10% (R2 ˜ 0.98). The potential role of dust GCCN activating by FHH-AT within warm stratocumulus and convective clouds is also evaluated. It is found that under pristine aerosol conditions, dust GCCN can act as collector drops with implications to dust-cloud-precipitation linkages. Biases introduced from describing dust GCCN activation by KT are also addressed. The results demonstrate that dust particles do not require deliquescent material to act as CCN in the atmosphere. Furthermore, the impact of dust particles as giant CCN on warm cloud and precipitation must be considered. Finally, the new parameterization of cloud droplet formation can be implemented in regional and

  11. A numerical study of aerosol influence on mixed-phase stratiform clouds through modulation of the liquid phase

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Hashino, T.; Tripoli, G. J.; Eloranta, E. W.

    2012-08-01

    Numerical simulations were carried out in a high-resolution two dimensional framework to increase our understanding of aerosol indirect effects in mixed-phase stratiform clouds. Aerosol characteristics explored include insoluble particle type, soluble mass fraction, the influence of aerosol-induced freezing point depression and the influence of aerosol number concentration. These experiments were completed with an emphasis on the liquid phase, with droplet freezing the mechanism for ice production. Of the aerosol properties investigated, aerosol insoluble mass type and its associated freezing efficiency was found to be most relevant to cloud lifetime. Secondary effects from aerosol soluble mass fraction and number concentration also alter cloud characteristics and lifetime. These alterations occur via various mechanisms, including changes to the amount of nucleated ice, influence on liquid phase precipitation and ice riming rates, and changes to liquid droplet growth rates. Simulation of the same environment leads to large variability of cloud thickness and lifetime, ranging from rapid and complete glaciation of the cloud to the production of a long-lived, thick stratiform mixed-phase cloud. In the end, these processes are summarized into a diagram that includes internal feedback loops that act within the cloud system.

  12. Effect of aerosol subgrid variability on aerosol optical depth and cloud condensation nuclei: implications for global aerosol modelling

    NASA Astrophysics Data System (ADS)

    Weigum, Natalie; Schutgens, Nick; Stier, Philip

    2016-11-01

    A fundamental limitation of grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid boxes, which can lead to discrepancies in simulated aerosol climate effects between high- and low-resolution models. This study investigates the impact of neglecting subgrid variability in present-day global microphysical aerosol models on aerosol optical depth (AOD) and cloud condensation nuclei (CCN). We introduce a novel technique to isolate the effect of aerosol variability from other sources of model variability by varying the resolution of aerosol and trace gas fields while maintaining a constant resolution in the rest of the model. We compare WRF-Chem (Weather and Research Forecast model) runs in which aerosol and gases are simulated at 80 km and again at 10 km resolutions; in both simulations the other model components, such as meteorology and dynamics, are kept at the 10 km baseline resolution. We find that AOD is underestimated by 13 % and CCN is overestimated by 27 % when aerosol and gases are simulated at 80 km resolution compared to 10 km. The processes most affected by neglecting aerosol subgrid variability are gas-phase chemistry and aerosol uptake of water through aerosol-gas equilibrium reactions. The inherent non-linearities in these processes result in large changes in aerosol properties when aerosol and gaseous species are artificially mixed over large spatial scales. These changes in aerosol and gas concentrations are exaggerated by convective transport, which transports these altered concentrations to altitudes where their effect is more pronounced. These results demonstrate that aerosol variability can have a large impact on simulating aerosol climate effects, even when meteorology and dynamics are held constant. Future aerosol model development should focus on accounting for the effect of subgrid variability on these

  13. Role of Clouds, Aerosols, and Aerosol-Cloud Interaction in 20th Century Simulations with GISS ModelE2

    NASA Technical Reports Server (NTRS)

    Nazarenko, Larissa; Rind, David; Bauer, Susanne; Del Genio, Anthony

    2015-01-01

    We use the new version of NASA Goddard Institute for Space Studies (GISS) climate model, modelE2 with 2º by 2.5º horizontal resolution and 40 vertical layers, with the model top at 0.1 hPa [Schmidt et al., 2014]. We use two different treatments of the atmospheric composition and aerosol indirect effect: (1) TCAD(I) version has fully interactive Tracers of Aerosols and Chemistry in both the troposphere and stratosphere. This model predicts total aerosol number and mass concentrations [Shindell et al., 2013]; (2) TCAM is the aerosol microphysics and chemistry model based on the quadrature methods of moments [Bauer et al., 2008]. Both TCADI and TCAM models include the first indirect effect of aerosols on clouds [Menon et al., 2010]; the TCAD model includes only the direct aerosol effect. We consider the results of the TCAD, TCADI and TCAM models coupled to "Russell ocean model" [Russell et al., 1995], E2-R. We examine the climate response for the "historical period" that include the natural and anthropogenic forcings for 1850 to 2012. The effect of clouds, their feedbacks, as well as the aerosol-cloud interactions are assessed for the transient climate change.

  14. Impact of volcanic ash plume aerosol on cloud microphysics

    NASA Astrophysics Data System (ADS)

    Martucci, G.; Ovadnevaite, J.; Ceburnis, D.; Berresheim, H.; Varghese, S.; Martin, D.; Flanagan, R.; O'Dowd, C. D.

    2012-03-01

    This study focuses on the dispersion of the Eyjafjallajökull volcanic ash plume over the west of Ireland, at the Mace Head Supersite, and its influence on cloud formation and microphysics during one significant event spanning May 16th and May 17th, 2010. Ground-based remote sensing of cloud microphysics was performed using a K a-band Doppler cloud RADAR, a LIDAR-ceilometer and a multi-channel microwave-radiometer combined with the synergistic analysis scheme SYRSOC ( Synergistic Remote Sensing Of Cloud). For this case study of volcanic aerosol interaction with clouds, cloud droplet number concentration (CDNC), liquid water content (LWC), and droplet effective radius ( reff) and the relative dispersion were retrieved. A unique cloud type formed over Mace Head characterized by layer-averaged maximum, mean and standard deviation values of the CDNC, reff and LWC: Nmax = 948 cm -3, N¯=297cm, σ=250cm, reff max = 35.5 μm, r¯=4.8μm, σ=4.4μm, LWC=0.23gm, LWC¯=0.055gm, σ=0.054gm, respectively. The high CDNC, for marine clean air, were associated with large accumulation mode diameter (395 nm) and a hygroscopic growth factor consistent with sulphuric acid aerosol, despite being almost exclusively internally mixed in submicron sizes. Additionally, the Condensation Nuclei (CN, d > 10 nm) to Cloud Condensation Nuclei (CCN) ratio, CCN:CN ˜1 at the moderately low supersaturation of 0.25%. This case study illustrates the influence of volcanic aerosols on cloud formation and microphysics and shows that volcanic aerosol can be an efficient CCN.

  15. Characteristics of Interstitial Aerosol in Cold and Warm Clouds during the Ice-T Campaign

    NASA Astrophysics Data System (ADS)

    Dhaniyala, S.; He, M.; Moharreri, A.; Craig, L.

    2012-12-01

    Accurate calculation of the contribution of aerosols to the radiative forcing budget requires an understanding of the aerosol role in cloud formation. From a global climate perspective, aerosol-cloud processes must be represented by simple parametric models that can relate aerosol properties to the characteristics of the clouds formed. The development and testing of such simple models requires aerosol-cloud data from a large number of clouds systems. While reasonably accurate cloud data is currently available from a large number of well-established cloud probes, information about aerosol particles in clouds is largely unavailable because of the problem of artifacts in aerosol measurements from the shatter of cloud droplets. During the recent ICE-T campaign (Summer 2011), several different interstitial aerosol inlets were deployed and aerosol measurements were made in a variety of tropical convective clouds, focused particularly on conditions that permit the formation of ice within these systems. The flight operations were based in St. Croix, U.S. Virgin Islands and sampling was largely conducted within ~ 600 miles of this location. The use of new samplers that permit shatter-free sampling of aerosol particles in cold and clouds has allowed for the collection of significant data on interstitial aerosol in tropical convective clouds. Of particular interest are measurements of aerosol size distributions inside and outside clouds made with a fast mobility spectrometer. Size distributions were obtained at 20-30 second resolution, permitting direct measurements of the scavenged aerosol population in clouds and the differences in the scavenged fraction as a function of cloud properties. As part of this presentation, the characteristics of interstitial aerosol in various cloud conditions will be presented and the transformation of aerosol population during cloud processing will be discussed.

  16. Clouds, aerosols, and photochemistry in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    West, R. A.; Strobel, D. F.; Tomasko, M. G.

    1986-01-01

    An assessment is made of the development status of concepts for cloud and aerosol compositions, vertical and horizontal distributions, and microphysical properties, in the Jovian upper troposphere and stratosphere. Attention is given to several key photochemical species' relationships to aerosol formation as well as their transport process implications, treating photochemistry in the context of comparative planetology and noting differences and similarities among the outer planet atmospheres; since this approach emphasizes observational data, a variegated assortment of ground-based and spacecraft observations is assembled. Current views on the tropospheric distribution of clouds are challenged, and a rationale is presented for alternative accounts.

  17. Clouds, aerosols, and photochemistry in the Jovian atmosphere

    NASA Astrophysics Data System (ADS)

    West, R. A.; Strobel, D. F.; Tomasko, M. G.

    1986-03-01

    An assessment is made of the development status of concepts for cloud and aerosol compositions, vertical and horizontal distributions, and microphysical properties, in the Jovian upper troposphere and stratosphere. Attention is given to several key photochemical species' relationships to aerosol formation as well as their transport process implications, treating photochemistry in the context of comparative planetology and noting differences and similarities among the outer planet atmospheres; since this approach emphasizes observational data, a variegated assortment of ground-based and spacecraft observations is assembled. Current views on the tropospheric distribution of clouds are challenged, and a rationale is presented for alternative accounts.

  18. Cloud/climate sensitivity experiments

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.; Remer, L.

    1982-01-01

    A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.

  19. Explicit Simulation of Aerosol Physics in a Cloud-Resolving Model: Aerosol Transport and Processing in the Free Troposphere.

    NASA Astrophysics Data System (ADS)

    Ekman, Annica M. L.; Wang, Chien; Ström, Johan; Krejci, Radovan

    2006-02-01

    Large concentrations of small aerosols have been previously observed in the vicinity of anvils of convective clouds. A 3D cloud-resolving model (CRM) including an explicit size-resolving aerosol module has been used to examine the origin of these aerosols. Five different types of aerosols are considered: nucleation mode sulfate aerosols (here defined by 0 d 5.84 nm), Aitken mode sulfate aerosols (here defined by 5.84 nm d 31.0 nm), accumulation mode sulfate aerosols (here defined by d 31.0 nm), mixed aerosols, and black carbon aerosols.The model results suggest that approximately 10% of the initial boundary layer number concentration of Aitken mode aerosols and black carbon aerosols are present at the top of the convective cloud as the cloud reaches its decaying state. The simulated average number concentration of Aitken mode aerosols in the cloud anvil (1.6 × 104 cm-3) is in the same order of magnitude as observations. Thus, the model results strongly suggest that vertical convective transport, particularly during the active period of the convection, is responsible for a major part of the appearance of high concentrations of small aerosols (corresponding to the Aitken mode in the model) observed in the vicinity of cloud anvils.There is some formation of new aerosols within the cloud, but the formation is small. Nucleation mode aerosols are also efficiently scavenged through impaction scavenging by precipitation. Accumulation mode and mixed mode aerosols are efficiently scavenged through nucleation scavenging and their concentrations in the cloud anvil are either very low (mixed mode) or practically zero (accumulation mode).In addition to the 3D CRM, a box model, including important features of the aerosol module of the 3D model, has been used to study the formation of new aerosols after the cloud has evaporated. The possibility of these aerosols to grow to suitable cloud condensation or ice nuclei size is also examined. Concentrations of nucleation mode aerosols

  20. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    DOE PAGES

    Meskhidze, Nicholas; Nenes, Athanasios

    2010-01-01

    Using smore » atellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between − 0.2 and − 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less

  1. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.

    2005-01-01

    Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds, Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.

  2. An Observational Study of the Relationship between Cloud, Aerosol and Meteorology in Broken Low-Level Cloud Conditions

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.; Schuster, Gregory L.

    2008-01-01

    Global satellite analyses showing strong correlations between aerosol optical depth and 3 cloud cover have stirred much debate recently. While it is tempting to interpret the results as evidence of aerosol enhancement of cloud cover, other factors such as the influence of meteorology on both the aerosol and cloud distributions can also play a role, as both aerosols and clouds depend upon local meteorology. This study uses satellite observations to examine aerosol-cloud relationships for broken low-level cloud regions off the coast of Africa. The analysis approach minimizes the influence of large-scale meteorology by restricting the spatial and temporal domains in which the aerosol and cloud properties are compared. While distributions of several meteorological variables within 5deg 5deg latitude-longitude regions are nearly identical under low and high aerosol optical depth, the corresponding distributions of single-layer low cloud properties and top-of-atmosphere radiative fluxes differ markedly, consistent with earlier studies showing increased cloud cover with aerosol optical depth. Furthermore, fine-mode fraction and Angstrom Exponent are also larger in conditions of higher aerosol optical depth, even though no evidence of systematic latitudinal or longitudinal gradients between the low and high aerosol optical depth populations are observed. When the analysis is repeated for all 5deg 5deg latitude-longitude regions over the global oceans (after removing cases in which significant meteorological differences are found between the low and high aerosol populations), results are qualitatively similar to those off the coast of Africa.

  3. Enhanced shortwave cloud radiative forcing due to anthropogenic aerosols

    SciTech Connect

    Schwartz, S.E.; Slingo, A.

    1995-05-01

    It has been suggested that anthropogenic aerosols in the troposphere can influence the microphysical properties of clouds and in turn their reflectivity, thereby exerting a radiative influence on climate. This article presents the theoretical basis for of this so-called indirect forcing and reviews pertinent observational evidence and climate model calculations of its magnitude and geographical distribution. We restrict consideration to liquid-water clouds.

  4. Aerosol-Cloud-Radiation Interactions in Atmospheric Forecast Models

    DTIC Science & Technology

    2007-09-30

    combustion, biomass burning, and biogenic activity are sources of particulate oxalic acid ; photooxidation of volatile organic compounds (VOCs...acids are likely particle-phase compounds formed by cloud and fog processing. Oxalic acid , which has also been shown to be formed by aqueous-phase...chemistry in cloud droplets, remains in the aerosol phase after subsequent droplet evaporation. In the aqueous phase, oxalic acid is formed by oxidation

  5. Modeling aerosol-cloud interactions with a self-consistent cloud scheme in a general circulation model

    SciTech Connect

    Ming, Y; Ramaswamy, V; Donner, L J; Phillips, V T; Klein, S A; Ginoux, P A; Horowitz, L H

    2005-05-02

    This paper describes a self-consistent prognostic cloud scheme that is able to predict cloud liquid water, amount and droplet number (N{sub d}) from the same updraft velocity field, and is suitable for modeling aerosol-cloud interactions in general circulation models (GCMs). In the scheme, the evolution of droplets fully interacts with the model meteorology. An explicit treatment of cloud condensation nuclei (CCN) activation allows the scheme to take into account the contributions to N{sub d} of multiple types of aerosol (i.e., sulfate, organic and sea-salt aerosols) and kinetic limitations of the activation process. An implementation of the prognostic scheme in the Geophysical Fluid Dynamics Laboratory (GFDL) AM2 GCM yields a vertical distribution of N{sub d} characteristic of maxima in the lower troposphere differing from that obtained through diagnosing N{sub d} empirically from sulfate mass concentrations. As a result, the agreement of model-predicted present-day cloud parameters with satellite measurements is improved compared to using diagnosed N{sub d}. The simulations with pre-industrial and present-day aerosols show that the combined first and second indirect effects of anthropogenic sulfate and organic aerosols give rise to a global annual mean flux change of -1.8 W m{sup -2} consisting of -2.0 W m{sup -2} in shortwave and 0.2 W m{sup -2} in longwave, as model response alters cloud field, and subsequently longwave radiation. Liquid water path (LWP) and total cloud amount increase by 19% and 0.6%, respectively. Largely owing to high sulfate concentrations from fossil fuel burning, the Northern Hemisphere mid-latitude land and oceans experience strong cooling. So does the tropical land which is dominated by biomass burning organic aerosol. The Northern/Southern Hemisphere and land/ocean ratios are 3.1 and 1.4, respectively. The calculated annual zonal mean flux changes are determined to be statistically significant, exceeding the model's natural variations

  6. Cloud water measurements of glyoxal and methylglyoxal during the Whistler Aerosol and Cloud Study (WACS)

    NASA Astrophysics Data System (ADS)

    Herckes, P.; Ervens, B.; Wang, Y.; Eagar, J.; Leaitch, R.; Macdonald, A.; Sjostedt, S.; Abbatt, J.

    2011-12-01

    Glyoxal and methylglyoxal are produced in high yields from both anthropogenic (aromatics) and biogenic (isoprene) precursors. The role of glyoxal and methylglyoxal in secondary organic aerosol (SOA) formation in the aqueous phase of cloud water and aerosols has received great attention over the past years. In addition, gas phase oxidation and photolysis of these compounds yield radicals and, thus, impact the oxidant budgets. While the reactivity of methylglyoxal and glyoxal in both the gas and aqueous phases is nearly identical, the much higher solubility of glyoxal leads to its more efficient removal in the presence of clouds. Thus, the amount of cloud water (liquid water content, LWC) and cloud processing time will affect the concentration ratios and thus the reaction rates of oxidation processes in the gas and aqueous phase, respectively. The Whistler Aerosol and Cloud Study (WACS) investigated the interactions between clouds and biogenic aerosol in summer 2010 in Whistler (Canada). During this study, cloud samples were collected at two locations, Whistler peak and a mid mountain station Raven's Nest. Cloud samples were extensively chemically characterized including the measurements of glyoxal and methylglyoxal using liquid chromatography coupled to UV and mass spectrometric detection after derivatization. Concentrations were variable on the order of micromoles, accounting for 1% of the dissolved organic matter in clouds. Glyoxal and methylglyoxal concentrations at both locations are predicted by means of model studies using VOC measurements and liquid water contents as input data. These concentrations and their ratios are compared to those in different regions. It will be discussed how cloud liquid water content, cloud processing time and amount and mixture of precursors (emissions) affect these concentration ratios. Finally, the role of different emission scenarios and the presence of clouds for SOA formation and radical budgets will be briefly assessed.

  7. Aerosol and Cloud-Nucleating Particle Observations during an Atmospheric River Event

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; McCluskey, C. S.; Petters, M.; Suski, K. J.; Levin, E. J.; Hill, T. C. J.; Atwood, S. A.; Schill, G. P.; Rocci, K.; Boose, Y.; Martin, A.; Cornwell, G.; Al-Mashat, H.; Moore, K.; Prather, K. A.; Rothfuss, N.; Taylor, H.; Leung, L. R.; Tomlinson, J. M.; Mei, F.; Hubbe, J. M.; Rosenfeld, D.; Spackman, J. R.; Fairall, C. W.; Creamean, J.; White, A. B.; Kreidenweis, S. M.

    2015-12-01

    The multi-agency CalWater 2015 project occurred over North Central CA and the Eastern Pacific during January to March 2015 (Spackman et al., this session). The goals of the campaign were to document the structure of atmospheric rivers (ARs) that deliver much of the water vapor associated with major winter storms along the U.S. West Coast and to investigate the modulating effect of aerosols on precipitation. Aerosol sources that may influence orographic cloud properties for air lifted over the mountains in California in winter include pollution, biomass burning, soil dusts and marine aerosols, but their roles will also be influenced by transport, vertical stratification, and scavenging processes. We present results from a comprehensive study of aerosol distributions, compositions, and cloud nucleating properties during an intense winter storm during February 2015, including data from an NSF-supported measurement site at Bodega Bay, from the DOE-ARM Cloud Aerosol Precipitation Experiment that included sampling on the NOAA RV Ron Brown offshore and the G-1 aircraft over ocean and land, and with context provided by other NOAA aircraft and remote sensing facilities. With a special focus on the coastal site, we discuss changes in aerosol distributions, aerosol hygroscopicity, and number concentrations of fluorescent particles, cloud condensation nuclei (CCN), and ice nucleating particles (INPs) during the AR event. We compare with periods preceding and following the event. For example, total aerosol number and surface area concentrations at below 0.5 μm diameter decreased from typical values of a few thousand cm-3 and 100 μm2 cm-3, respectively, to a few hundred cm-3 and 10 μm2cm-3 at Bodega Bay during the AR event. CCN concentrations were similarly lower, but hygroscopicity parameter (kappa) increased from typical values of 0.2 to values > 0.5 during the AR.INP and fluorescent particle number concentrations were generally lower during the AR event than at any other

  8. Regime-based analysis of aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, Edward; Stier, Philip

    2012-11-01

    Previous global satellite studies into the indirect aerosol effect have relied on determining the sensitivity of derived Cloud Droplet Number Concentration (Nd) to co-located Aerosol Optical Depth (AOD). These studies generally find a positive Nd sensitivity to AOD changes over ocean, but some find a negative sensitivity over land, in contrast to that predicted by models and theory. Here we investigate the Nd sensitivity to AOD in different cloud regimes, determined using a k-means clustering process on retrieved cloud properties. We find the strongest positive Nd sensitivity in the stratiform regimes over both land and ocean, providing the majority of the total sensitivity. The negative sensitivity previously observed over land is generated by the low cloud fraction regimes, suggesting that it is due to the difficulty of retrieving Nd at low cloud fractions. When considering a mean sensitivity, weighted by liquid cloud fraction to account for sampling biases, we find an increased sensitivity over land, in some regions becoming positive. This highlights the importance of regime based analysis when studying aerosol indirect effects.

  9. Impact of Aerosols on Convective Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong; Li, Xiaowen

    2012-01-01

    Aerosols are a critical.factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosols have a major impact on the dynamics, microphysics, and electrification properties of continental mixed-phase convective clouds. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing a significant source of cloud condensation nuclei (CCN). Such pollution . effects on precipitation potentially have enormous climatic consequences both in terms of feedbacks involving the land surface via rainfall as well as the surface energy budget and changes in latent heat input to the atmosphere. Basically, aerosol concentrations can influence cloud droplet size distributions, the warm-rain process, the cold-rain process, cloud-top heights, the depth of the mixed-phase region, and the occurrence of lightning. Recently, many cloud resolution models (CRMs) have been used to examine the role of aerosols on mixed-phase convective clouds. These modeling studies have many differences in terms of model configuration (two- or three-dimensional), domain size, grid spacing (150-3000 m), microphysics (two-moment bulk, simple or sophisticated spectral-bin), turbulence (1st or 1.5 order turbulent kinetic energy (TKE)), radiation, lateral boundary conditions (i.e., closed, radiative open or cyclic), cases (isolated convection, tropical or midlatitude squall lines) and model integration time (e.g., 2.5 to 48 hours). Among these modeling studies, the most striking difference is that cumulative precipitation can either increase or decrease in response to higher concentrations of CCN. In this presentation, we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes. Specifically, this paper addresses the following topics

  10. A numerical study of aerosol effects on the dynamics and microphysics of a deep convective cloud in a continental environment

    NASA Astrophysics Data System (ADS)

    Cui, Zhiqiang; Carslaw, Kenneth S.; Yin, Yan; Davies, Stewart

    2006-03-01

    The effects of aerosols on a deep convective cloud in a midlatitude continental environment are studied using an axisymmetric cloud model with a sectional treatment of aerosol and hydrometeor microphysical processes. Simulations are conducted using observations from the Cooperative Convective Precipitation Experiments (CCOPE). The isolated cloud occurred in an environment with low wind shear and with relatively dry air in the midtroposphere and upper troposphere. By varying the concentration of aerosol particles in the accumulation mode within realistic limits for a continental environment, the simulated cloud exhibited different properties. The overall impact as the aerosol concentration increased is that (1) the cloud development was inhibited; (2) the precipitation was suppressed; (3) the maximum values of liquid water content decreased, but the maximum values of droplet number concentration increased before the dissipating stage; (4) a clear tendency was found for ice crystals to be larger and less numerous in the anvil cloud; and (5) there was a significant reduction of the inflow in the lower 2 km of the atmosphere. In the relatively dry environment in the midtroposphere, the latent heat changes associated with the Wegener-Bergeron-Findeisen mechanism played an important role in the upper part of the cloud at altitudes below the homogeneous freezing level. In particular, immersion freezing and latent heat release were much more rapid in the base simulation than in the increased aerosol simulation. Less latent heat release and insufficient inflow together impeded the development of the cloud with the higher aerosol loading. Our simulations suggest that continental clouds existing below the homogeneous freezing level could show an opposite response of cloud top height and anvil crystal concentrations to changes in aerosol to what has previously been reported for clouds ascending to higher levels.

  11. New capabilities for space-based cloud and aerosols measurements: The Cloud-Aerosol Transport System (CATS)

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Hlavka, D. L.; Palm, S. P.; Hart, W. D.; Nowottnick, E. P.; Vaughan, M.; Rodier, S. D.; Colarco, P. R.; da Silva, A.; Buchard-Marchant, V.

    2013-12-01

    Current uncertainties in cloud and aerosol properties limit our ability to accurately model the Earth's climate system and predict climate change. These limitations are due primarily to difficulties in adequately measuring aerosols and clouds on a global scale. NASA's A-Train satellites provide an unprecedented opportunity to address these uncertainties. In particular, the Cloud-Aerosol Lidar Infrared Pathfinder Spaceborne Observations (CALIPSO) satellite provides vertical profiles of cloud and aerosol properties. The CALIOP lidar onboard CALIPSO has reached its seventh year of operation, well past its expected lifetime. The ATLID lidar on EarthCARE is not expected to launch until 2016 or later. If the CALIOP lidar fails before a new mission is operational, there will be a gap in global lidar measurements. The Cloud-Aerosol Transport System (CATS), built at NASA Goddard Space Flight Center as a payload for the International Space Station (ISS), is set to launch in the summer of 2014. CATS is an elastic backscatter lidar with three wavelengths (1064, 532, 355 nm) and HSRL capability at 532 nm. Depolarization measurements will be made at all three wavelengths. The ISS orbit is a 51 degree inclination orbit at an altitude of about 405 km. This orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three day repeat cycle. Thus, science applications of CATS include cloud and aerosol climate studies, air quality monitoring, and smoke/volcanic plume tracking. The primary science objectives of CATS include: continuing the CALIPSO aerosol and cloud vertical profile data record, providing near real time data to support operational applications such as air quality modeling, and advancing technology in support of future mission development using the HSRL channel. Furthermore, the vertical profiles of cloud and aerosol properties provided by CATS will complement current and future passive satellite

  12. Distinct Impacts of Aerosols on an Evolving Continental Cloud System during the RACORO Field Campaign

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wang, Y.; Zhang, R.; Liu, Y.

    2015-12-01

    Aerosol-cloud interactions have been investigated extensively but still remain high uncertainty due to the complexity of cloud microphysical processes under various dynamic and thermodynamic environments. Cloud-resolving Weather Research and Forecast (CR-WRF) model implemented with a two-moment bulk microphysics and a modified Goddard radiation scheme is employed to investigate aerosol effects on different cloud regimes and their transitions associated with a continental cloud system occurring from 25 May to 27 May, 2009 during the Department of Energy Atmospheric Radiation Measurement Routine AAF Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. The simulated cloud properties and precipitation for the three different cloud regimes, including shallow cumuli, a deep convective cloud (DCC), and a stratus exhibit overall agreements with airborne and ground-based observations. Sensitivity studies with different aerosol scenarios reveal that the responses of cloud micro- and macrophysics to aerosol loading depend on the cloud regimes with monotonic or non-monotonic trend. Aerosol radiative effects modify the atmospheric thermodynamic condition and change the atmospheric stability, which induce different response from aerosol indirect effects. Our results also indicate that the overall aerosol effects on a cloud complex are distinct from those of the individual cloud types. The aerosol-cloud interaction for the different cloud regimes should be evaluated to assess the aerosol direct and indirect radiative forcings on regional and global climate.

  13. Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D. N.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-06-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.

  14. Aerosol-Cloud-Precipitation Interactions over Indo-Gangetic Basin

    NASA Technical Reports Server (NTRS)

    Tsay, S.-C.; Lau, K. .; Holben, B. N.; Hsu, N. C.; Bhartia, P. K.

    2005-01-01

    About 60% of world population reside in Asia, in term of which sheer population density presents a major environmental stress. Economic expansion in this region is, in fact, accompanied by increases in bio-fuel burning, industrial pollution, and land cover and land use changes. With a growth rate of approx. 8%/yr for Indian economy, more than 600 million people from Lahore, Pakistan to Calcutta, India over the Indo-Gangetic Basin have particularly witnessed increased frequencies of floods and droughts as well as a dramatic increase in atmospheric loading of aerosols (i.e., anthropogenic and natural aerosol) in recent decades. This regional change (e.g., aerosol, cloud, precipitation, etc.) will constitute a vital part of the global change in the 21st century. Better understanding of the impacts of aerosols in affecting monsoon climate and water cycles is crucial in providing the physical basis to improve monsoon climate prediction and for disaster mitigation. Based on climate model simulations, absorbing aerosols (dust and black carbon) play a critical role in affecting interannual and intraseasonal variability of the Indian monsoon. An initiative on the integrated (aerosols, clouds, and precipitation) measurements approach over the Indo-Gangetic Basin will be discussed. An array of ground-based (e.g., AERONET, MPLNET, SMART-COMMIT, etc.) and satellite (e.g., Terra, A-Train, etc.) sensors will be utilized to acquire aerosol characteristics, sources/sinks, and transport processes during the pre-monsoon (April-May, aerosol forcing) season, and to obtain cloud and precipitation properties during the monsoon (May-June, water cycle response) season. Close collaboration with other international programs, such as ABC, CLIVAR, GEWEX, and CEOP in the region is anticipated.

  15. Cloud-Aerosol Interactions: Retrieving Aerosol Ångström Exponents from Calipso Measurements of Opaque Water Clouds

    NASA Astrophysics Data System (ADS)

    Vaughan, Mark; Liu, Zhaoyan; Hu, Yong-Xiang; Powell, Kathleen; Omar, Ali; Rodier, Sharon; Hunt, William; Kar, Jayanta; Tackett, Jason; Getzewich, Brian; Lee, Kam-Pui

    2016-06-01

    Backscatter and extinction from water clouds are well-understood, both theoretically and experimentally, and thus changes to the expected measurement of layer-integrated attenuated backscatter can be used to infer the optical properties of overlying layers. In this paper we offer a first look at a new retrieval technique that uses CALIPSO measurements of opaque water clouds to derive optical depths and Ångström exponents for overlying aerosol layers.

  16. Long-term impacts of aerosols on vertical development of cloud and precipitation

    SciTech Connect

    Li Z.; Liu Y.; Niu, F.; Fan, J.; Rosenfeld, D.; Ding, Y.

    2011-11-13

    Aerosols alter cloud density and the radiative balance of the atmosphere. This leads to changes in cloud microphysics and atmospheric stability, which can either suppress or foster the development of clouds and precipitation. The net effect is largely unknown, but depends on meteorological conditions and aerosol properties. Here, we examine the long-term impact of aerosols on the vertical development of clouds and rainfall frequencies, using a 10-year dataset of aerosol, cloud and meteorological variables collected in the Southern Great Plains in the United States. We show that cloud-top height and thickness increase with aerosol concentration measured near the ground in mixed-phase clouds-which contain both liquid water and ice-that have a warm, low base. We attribute the effect, which is most significant in summer, to an aerosol-induced invigoration of upward winds. In contrast, we find no change in cloud-top height and precipitation with aerosol concentration in clouds with no ice or cool bases. We further show that precipitation frequency and rain rate are altered by aerosols. Rain increases with aerosol concentration in deep clouds that have a high liquid-water content, but declines in clouds that have a low liquid-water content. Simulations using a cloud-resolving model confirm these observations. Our findings provide unprecedented insights of the long-term net impacts of aerosols on clouds and precipitation.

  17. Modeling Electrical Structure of the Artificial Charged Aerosol Cloud

    NASA Astrophysics Data System (ADS)

    Davydenko, S.; Iudin, D.; Klimashov, V.; Kostinskiy, A. J.; Syssoev, V.

    2014-12-01

    The electric structure of the unipolar charged aerosol cloud is considered. The cloud of the volume about 30 cubic meters is generated in the open atmosphere by the original aeroelectrical facility consisting of the source of the aquated ions and the high-voltage discharger. Representing the charge density distribution as a superposition of regular and irregular parts, a model of the electrical structure of the cloud is developed. The regular part is calculated under the stationary current approximation taking into account the source current structure, the shape of the cloud, and results of the multi-point measurements of the electric field and conductivity in the vicinity of the cloud. The irregular part describes random spatiotemporal fluctuations of the charge density which are assumed to be proportional to the aerosol number density. It is shown that a quasi-electrostatic field of the charged aerosol is characterized by significant spatial fluctuations showing the scale invariance. The mean-square fluctuations of the voltage between different parts of the cloud are proportional to the square root of its linear dimensions and may reach significant values even in the absence of the regular field. The basic parameters of the fluctuating spatial structure of the electric field inside the charged aerosol cloud are estimated. It is shown that the charge density fluctuations could lead to a significant (up to 2,5 times) local enhancement of the electric field as compared to the field of the regular part of the charge density. The above effect could serve as one of the important mechanisms of the spark initiation.

  18. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO)

    NASA Technical Reports Server (NTRS)

    McCormick, M. Patrick; Winker, David M.

    1998-01-01

    This paper will describe the planned 3-year Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission, its instrumentation and implementation. It will use LITE and other data, plus analyses, to show the feasibility of such a mission. PICASSO is being proposed for NASA's Earth System Science Pathfinder (ESSP) program with launch predicted in 2003.

  19. Biological aerosol effects on clouds and precipitation

    NASA Astrophysics Data System (ADS)

    Hallar, A. Gannet; Huffman, J. Alex; Fridlind, Ann

    2012-12-01

    Bioaerosol Effects on Clouds Workshop;Steamboat Springs, Colorado, 5-6August 2012 Bioaerosols such as bacteria have been proposed as significant contributors to cloud ice nucleation, but too little is known about the properties and impacts of bioaerosol and other ice nuclei to make reliable conclusions about their wide-scale impact on clouds and precipitation. During late summer an international group of 40 participants met at a Steamboat Springs ski resort to share perspectives on bioaerosol sources, activity, and influence on clouds. Participants who were invited collectively spanned a broad range of expertise, including atmospheric chemistry, microbiology, micrometeorology, and cloud physics, as well as a broad range of research approaches, including laboratory measurement, field measurement, and modeling. Tours of Storm Peak Laboratory (http://www.stormpeak.dri.edu) were offered before and after the workshop.

  20. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  1. Clouds and aerosols in Puerto Rico - a new evaluation

    NASA Astrophysics Data System (ADS)

    Allan, J. D.; Baumgardner, D.; Raga, G. B.; Mayol-Bracero, O. L.; Morales-García, F.; García-García, F.; Montero-Martínez, G.; Borrmann, S.; Schneider, J.; Mertes, S.; Walter, S.; Gysel, M.; Dusek, U.; Frank, G. P.; Krämer, M.

    2008-03-01

    The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and behaviour of clouds and their influence on climate. In an attempt to better understand warm cloud formation in a tropical marine environment, a period of intensive measurements took place in December 2004 in Puerto Rico, using some of the latest developments in online instrumentation such as aerosol mass spectrometers, cloud condensation nuclei counters and a hygroscopicity tandem differential mobility analyser. Simultaneous online measurements of aerosol size distributions, composition, hygroscopicity and optical properties were made near the lighthouse of Cape San Juan in the north-eastern corner of the island and at the top of East Peak mountain (1040 m a.s.l.), the two sites separated by 17 km. Additional measurements of the cloud droplet residual and interstitial aerosol properties were made at the mountain site, accompanied by measurements of cloud droplet size distributions, liquid water content and the chemical composition of cloud and rain water samples. Both aerosol composition and cloud properties were found to be sensitive to wind sector. Air from the east-northeast (ENE) was mostly free of anthropogenic influences, the submicron fraction being mainly composed of non-sea salt sulphate, while that from the east-southeast (ESE) was found to be moderately influenced by populated islands upwind, adding smaller (<100 nm), externally mixed, carbonaceous particles to the aerosol that increased the number concentrations by over a factor of 3. This change in composition was also accompanied with a reduction in the measured hygroscopicity and fractional cloud activation potential of the aerosol. At the mountain site, the average cloud droplet concentrations increased from 193 to 519 cm-3, median volume diameter decreased from 20 to 14 μm and the liquid water content increased from 0.24 to 0.31 g m-3 when the winds shifted from the ENE

  2. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    SciTech Connect

    Kleinman L. I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek III, A. J.; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2012-01-04

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (D{sub p} > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25 % of aerosol with D{sub p} > 100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the

  3. Detrainment and aerosol redistribution in shallow convective clouds (Invited)

    NASA Astrophysics Data System (ADS)

    Chuang, P. Y.; Norgren, M.; Wonaschuetz, A.; Small, J. D.; Sorooshian, A.; Jonsson, H. H.; Feingold, G.; Ervens, B.; Murphy, S. M.

    2013-12-01

    Vertical transport associated with cumulus clouds is important to the redistribution of aerosol particles, gases and energy, with subsequent consequences for many aspects of the climate system. Previous studies have suggested that detrainment from clouds can be comparable to the updraft mass flux, and thus contribute to vertical transport. In this study, we describe a new method to deduce the amounts of gross detrainment and entrainment experienced by non-precipitating cumulus clouds using aircraft observations. The method is applied to aircraft observations from the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) which took place in the Houston, Texas region during which 176 small, non-precipitating cumulus were sampled. Our analysis suggests that, on average, these clouds were comprised of 30 to 70% mixed-layer air, with entrained air comprising most of the remainder. The mass fraction of detrained air was less than 2% for a majority of the clouds, although 15% of them did exhibit detrained air fractions larger than 10%. Entrained and detrained air mass fractions both increased with altitude, and the largest detrainment events were almost all associated with air that was at their level of neutral buoyancy, findings that are all consistent with previous studies. To address aerosol redistribution more specifically, aerosol size distributions on clear and cloudy days are compared, with substantial enhancements at higher altitudes found for cloudy days due to a combination of vertical transport and in situ sulfate and organic chemistry.

  4. Multistatic aerosol-cloud lidar in space: A theoretical perspective

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Alexandrov, Mikhail D.; Cairns, Brian; Travis, Larry D.

    2016-11-01

    Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; help relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170° can dramatically increase the information content of the

  5. Measurements of regional-scale aerosol impacts on cloud microphysics over the East China Sea: Possible influences of warm sea surface temperature over the Kuroshio ocean current

    NASA Astrophysics Data System (ADS)

    Koike, M.; Takegawa, N.; Moteki, N.; Kondo, Y.; Nakamura, H.; Kita, K.; Matsui, H.; Oshima, N.; Kajino, M.; Nakajima, T. Y.

    2012-09-01

    Cloud microphysical properties and aerosol concentrations were measured aboard an aircraft over the East China Sea and Yellow Sea in April 2009 during the Aerosol Radiative Forcing in East Asia (A-FORCE) experiment. We sampled stratocumulus and shallow cumulus clouds over the ocean in 9 cases during 7 flights 500-900 km off the east coast of Mainland China. In this study we report aerosol impacts on cloud microphysical properties by focusing on regional characteristics of two key parameters, namely updraft velocity and aerosol size distribution. First, we show that the cloud droplet number concentration (highest 5%, Nc_max) correlates well with the accumulation-mode aerosol number concentration (Na) below the clouds. We then show that Nc_maxcorrelates partly with near-surface stratification evaluated as the difference between the sea surface temperature (SST) and 950-hPa temperature (SST - T950). Cold air advection from China to the East China Sea was found to bring not only a large number of aerosols but also a dry and cold air mass that destabilized the atmospheric boundary layer, especially over the warm Kuroshio ocean current. Over this high-SST region, greater updraft velocities and hence greater Nc_maxlikely resulted. We hypothesize that the low-level static stability determined by SST and regional-scale airflow modulates both the cloud microphysics (aerosol impact on clouds) and macro-structure of clouds (cloud base and top altitudes, hence cloud liquid water path). Second, we show that not only higher aerosol loading in terms of total aerosol number concentration (NCN, D > 10 nm) but also larger aerosol mode diameters likely contributed to high Ncduring A-FORCE. The mean Nc of 650 ± 240 cm-3was more than a factor of 2 larger than the global average for clouds influenced by continental sources. A crude estimate of the aerosol-induced cloud albedo radiative forcing is also given.

  6. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    NASA Technical Reports Server (NTRS)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case

  7. Arctic Aerosol-­Cloud Interactions during ASCOS

    NASA Astrophysics Data System (ADS)

    Stevens, R.; Hill, A. A.; Shipway, B. J.; Field, P.; Carslaw, K. S.

    2015-12-01

    A decrease in Arctic sea ice extent and thickness has been observed within recent decades. Further decreases are expected to increase the fluxes aerosol and precursor gases from the open ocean surface within the Arctic. The resulting increase in cloud condensation nuclei (CCN) concentrations would be expected to result in increased cloud albedo (Struthers et al, 2011), leading to potentially large changes in radiative forcings.However, Browse et al. (2014) have shown that these increases in condensable material could also result in the growth of existing particles to sizes where they are more efficiently removed by wet deposition in drizzling stratocumulus clouds, ultimately decreasing CCN concentrations in the high Arctic. The study of Browse et al (2014) was limited in that it did not simulate alterations of dynamics or cloud properties due to either changes in heat and moisture fluxes following sea­-ice loss or changing aerosol concentrations.Taken together, the results of Struthers et al (2011) and Browse et al (2014) show that significant uncertainties remain in trying to quantify aerosol­-cloud processes in the poorly understood Arctic system. It is likely that the CCN response to sea-­ice loss is controlled by many interrelated processes and unlikely that the current representation of these processes in global climate models include is sufficient to realistically simulate long­-term changes.Using the Met Office Unified Model (UM) including Cloud AeroSol Interactions Microphysics (CASIM), we perform a case study of summertime high Arctic (>80N) clouds in order to better understand the processes currently governing Arctic clouds, and how they may change in the future. We compare our results with observations obtained during the 2008 ASCOS campaign. We then perform sensitivity studies to assess the changes in cloud properties to reductions in sea­-ice, through either changes in fluxes of surface heat and moisture or changes in fluxes of aerosol and

  8. MODIS cloud and aerosol retrieval simulator and its applications

    NASA Astrophysics Data System (ADS)

    Wind, Galina

    Executing a cloud or aerosol physical properties retrieval algorithm from controlled synthetic data is an important step in retrieval algorithm development. Synthetic data can help answer questions about the sensitivity and performance of the algorithm or aid in determining how an existing retrieval algorithm may perform with a planned sensor. Synthetic data can also help in solving issues that may have surfaced in the retrieval results. Synthetic data become very important when other validation methods, such as field campaigns,are of limited scope. These tend to be of relatively short duration and often are costly. Ground stations have limited spatial coverage whilesynthetic data can cover large spatial and temporal scales and a wide variety of conditions at a low cost. In this work I develop an advanced cloud and aerosol retrieval simulator for the MODIS instrument, also known as Multi-sensor Cloud and Aerosol Retrieval Simulator (MCARS). In a close collaboration with the modeling community I have seamlessly combined the GEOS-5 global climate model with the DISORT radiative transfer code, widely used by the remote sensing community, with the observations from the MODIS instrument to create the simulator. With the MCARS simulator it was then possible to solve the long standing issue with the MODIS aerosol optical depth retrievals that had a low bias for smoke aerosols. MODIS aerosol retrieval did not account for effects of humidity on smoke aerosols. The MCARS simulator also revealed an issue that has not been recognized previously, namely,the value of fine mode fraction could create a linear dependence between retrieved aerosol optical depth and land surface reflectance. MCARS provided the ability to examine aerosol retrievals against "ground truth" for hundreds of thousands of simultaneous samples for an area covered by only three AERONET ground stations. Findings from MCARS are already being used to improve the performance of operational MODIS aerosol

  9. Campaign datasets for Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HISCALE)

    SciTech Connect

    Fast,Jerome; Mei,Fan; Hubbe,John; Kalukin,Andrew; Long,Chuck; Matthews,Alyssa; Pekour, Mikhail; Schobesberger,Siegfried; Shilling,John; Springston,Stephen; Tomlinson,Jason; Wang,Jian; Zelenyuk-Imre,Alla

    2016-11-21

    Most of the instruments were deployed on the ARM Aerial Facility (AAF) Gulfstream-159 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei concentrations. Aerosol microphysical property measurements supplemented routine ARM aerosol measurements made at the surface. The G-1 completed transects over the SGP Central Facility at multiple altitudes within the boundary layer, and within and above clouds.

  10. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    NASA Astrophysics Data System (ADS)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (<1%) observed could not explain observational concentrations

  11. Aerosol-cloud interactions in ship tracks using Terra MODIS/MISR

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun; Christensen, Matthew W.; Diner, David J.; Garay, Michael J.

    2015-04-01

    Simultaneous ship track observations from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) have been compiled to investigate how ship-injected aerosols affect marine warm boundary layer clouds for different cloud types and environmental conditions. By taking advantage of the high spatial resolution multiangle observations available from MISR, we utilized the retrieved cloud albedo, cloud top height, and cloud motion vectors to examine cloud property responses in ship-polluted and nearby unpolluted clouds. The strength of the cloud albedo response to increased aerosol level is primarily dependent on cloud cell structure, dryness of the free troposphere, and boundary layer depth, corroborating a previous study by Chen et al. (2012) where A-Train satellite data were utilized. Under open cell cloud structure the cloud properties are more susceptible to aerosol perturbations as compared to closed cells. Aerosol plumes caused an increase in liquid water amount (+38%), cloud top height (+13%), and cloud albedo (+49%) for open cell clouds, whereas for closed cell clouds, little change in cloud properties was observed. Further capitalizing on MISR's unique capabilities, the MISR cross-track cloud speed was used to derive cloud top divergence. Statistically averaging the results from the identified plume segments to reduce random noise, we found evidence of cloud top divergence in the ship-polluted clouds, whereas the nearby unpolluted clouds showed cloud top convergence, providing observational evidence of a change in local mesoscale circulation associated with enhanced aerosols. Furthermore, open cell polluted clouds revealed stronger cloud top divergence as compared to closed cell clouds, consistent with different dynamical mechanisms driving their responses. These results suggest that detailed cloud responses, classified by cloud type and environmental conditions, must be accounted for in global climate modeling

  12. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    SciTech Connect

    Kleinman, L.I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek III, A. J.; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2011-06-21

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO{sub 2} from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25% of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50% of aerosol with D{sub p} > 110 nm were not activated, the difference between the two

  13. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    NASA Astrophysics Data System (ADS)

    Kleinman, L. I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek, A. J., III; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2011-06-01

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O3 and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO2 from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 °C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of ~150 cm-3, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that ~25 % of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50 % of aerosol with Dp > 110 nm were not activated, the difference between the two approaches possibly representing

  14. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Anderson, J. R.; Toohey, D. W.; Andrejczuk, M.; Adams, A.; Lytle, M.; George, R. C.; Wood, R.; Saide, P.; Spak, S.; Zuidema, P.; Leon, D.

    2013-03-01

    The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics, including their significance, from eight flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number that influence droplet concentration. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution. Cloud droplets were smaller in regions of enhanced particles near shore. However, physically thinner clouds, and not just higher droplet number concentrations from pollution, both contributed to the smaller droplets. Satellite measurements were used to show that cloud albedo was highest 500-1000 km offshore, and actually slightly lower closer to shore due to the generally thinner clouds and lower liquid water paths

  15. The Cloud-Aerosol Transport System (CATS): a New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2011-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064, 532, 355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time data capability of the ISS will enable CATS to support operational applications such as air quality and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science

  16. Clouds and aerosols in Puerto Rico - a new evaluation

    NASA Astrophysics Data System (ADS)

    Allan, J. D.; Baumgardner, D.; Raga, G. B.; Mayol-Bracero, O. L.; Morales-García, F.; García-García, F.; Montero-Martínez, G.; Borrmann, S.; Schneider, J.; Mertes, S.; Walter, S.; Gysel, M.; Dusek, U.; Frank, G. P.; Krämer, M.

    2007-08-01

    The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and behaviour of clouds and their influence on climate. In an attempt to better understand warm cloud formation in a tropical marine environment, a period of intensive measurements using some of the latest developments in online instrumentation took place in December 2004 in Puerto Rico. Simultaneous online measurements of aerosol size distributions, composition, hygroscopicity and optical properties were made near the lighthouse of Cape San Juan in the north-eastern corner of the island and at the top of East Peak mountain (1040 m a.s.l.), the two sites separated by 17 km. Additional measurements of the cloud droplet residual and interstitial aerosol properties were made at the mountain site, accompanied by measurements of cloud droplet size distributions, liquid water content and the chemical composition of cloud and rain water samples. Both aerosol composition and cloud properties were found to be sensitive to wind sector. Air from the east-northeast (ENE) was mostly free of anthropogenic influences, the submircron fraction being mainly composed of non-sea salt sulphate, while that from the east-southeast (ESE) was found to be moderately influenced by populated islands upwind, adding smaller (<100 nm), externally mixed, carbonaceous particles to the aerosol that increased the number concentrations by over a factor of 3. This change in composition was also accompanied with a reduction in the measured hygroscopicity and fractional cloud activation potential of the aerosol. At the mountain site, the average cloud droplet concentrations increased from 193 to 519 cm-3, median volume diameter decreased from 20 to 14 μm and the liquid water content increased from 0.24 to 0.31 g m-3 when the winds shifted from the ENE to ESE. Larger numbers of interstitial particles were recorded, most notably at sizes greater than 100 nm, which were absent

  17. Use of Probability Distribution Functions for Discriminating Between Cloud and Aerosol in Lidar Backscatter Data

    NASA Technical Reports Server (NTRS)

    Liu, Zhaoyan; Vaughan, Mark A.; Winker, Davd M.; Hostetler, Chris A.; Poole, Lamont R.; Hlavka, Dennis; Hart, William; McGill, Mathew

    2004-01-01

    In this paper we describe the algorithm hat will be used during the upcoming Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission for discriminating between clouds and aerosols detected in two wavelength backscatter lidar profiles. We first analyze single-test and multiple-test classification approaches based on one-dimensional and multiple-dimensional probability density functions (PDFs) in the context of a two-class feature identification scheme. From these studies we derive an operational algorithm based on a set of 3-dimensional probability distribution functions characteristic of clouds and aerosols. A dataset acquired by the Cloud Physics Lidar (CPL) is used to test the algorithm. Comparisons are conducted between the CALIPSO algorithm results and the CPL data product. The results obtained show generally good agreement between the two methods. However, of a total of 228,264 layers analyzed, approximately 5.7% are classified as different types by the CALIPSO and CPL algorithm. This disparity is shown to be due largely to the misclassification of clouds as aerosols by the CPL algorithm. The use of 3-dimensional PDFs in the CALIPSO algorithm is found to significantly reduce this type of error. Dust presents a special case. Because the intrinsic scattering properties of dust layers can be very similar to those of clouds, additional algorithm testing was performed using an optically dense layer of Saharan dust measured during the Lidar In-space Technology Experiment (LITE). In general, the method is shown to distinguish reliably between dust layers and clouds. The relatively few erroneous classifications occurred most often in the LITE data, in those regions of the Saharan dust layer where the optical thickness was the highest.

  18. Aerosol cloud processing with the global model ECHAM5-HAM-SALSA

    NASA Astrophysics Data System (ADS)

    Bergman, T.; Korhonen, H.; Zubair, M.; Romakkaniemi, S.; Lehtinen, K.; Kokkola, H.

    2012-04-01

    Atmospheric aerosols and their interactions with clouds constitute the largest uncertainty in the radiative forcing of the Earth's atmosphere. Increasing aerosol number concentrations increases the cloud droplet concentration and droplet surface and hence the cloud albedo. This mechanism is called the aerosol indirect effect on climate. Understanding the changes in cloud droplet number concentrations and size by anthropogenic aerosols are the key factors in the study of future climate change. Therefore the aerosols' formation and growth from nanoparticles to cloud condensation nuclei (CCN) must be described accurately. The formation and growth of aerosols are shown to be described more accurately with sectional representations than with bulk (total aerosol mass only), modal (lognormal modes describing mass and number size distribution) or moment (processes tied to different moments of particle number size distribution) approaches. Recently the sectional aerosol models have been implemented to global climate models. However, the resolution of sectional models must be optimised to reduce the computational cost. We have implemented the sectional aerosol model SALSA in ECHAM5-HAM. SALSA describes the aerosol population with 20 size sections. The dynamics are optimised for large scale applications and the model includes an improved moving center sectional method. The particulate mass consists of five compounds: sulphate, organic carbon, black carbon, sea salt and dust. The aerosol processing has been studied extensively and there are many numerical models used to predict CCN number concentrations. However, due to computational limitations many of them are not suitable for utilisation in global climate models. Therefore in most global climate studies on aerosol activation to CCN is examined using cloud activation parameterisations. We study the aerosol cloud processing and its affect on transport of aerosols using Abdul-Razzak-Ghan aerosol cloud activation

  19. Effects of aerosol on evaporation, freezing and precipitation in a multiple cloud system

    NASA Astrophysics Data System (ADS)

    Lee, Seoung Soo; Kim, Byung-Gon; Yum, Seong Soo; Seo, Kyong-Hwan; Jung, Chang-Hoon; Um, Jun Shik; Li, Zhanqing; Hong, JinKyu; Chang, Ki-Ho; Jeong, Jin-Yim

    2017-02-01

    Aerosol effects on clouds and precipitation account for a large portion of uncertainties in the prediction of the future course of global hydrologic circulations and climate. As a process of a better understanding of interactions between aerosol, clouds and precipitation, simulations are performed for a mixed-phase convective multiple-cloud system over the tropics. Studies on single-cloud systems have shown that aerosol-induced increases in freezing, associated increases in parcel buoyancy and thus the intensity of clouds (or updrafts) are a main mechanism which controls aerosol-cloud-precipitation interactions in convective clouds. However, in the multiple-cloud system that plays much more important roles in global hydrologic circulations and thus climate than single-cloud systems, aerosol effects on condensation play the most important role in aerosol-induced changes in the intensity of clouds and the effects on freezing play a negligible role in those changes. Aerosol-induced enhancement in evaporation intensifies gust fronts and increases the number of subsequently developing clouds, which leads to the substantial increases in condensation and associated intensity of convection. Although aerosol-induced enhancement in freezing takes part in the increases in condensation by inducing stronger convergence around cloud bottom, the increases in condensation are one order of magnitude larger than those in freezing. It is found that while aerosol-induced increases in freezing create intermittent extremely heavy precipitation, aerosol-induced increases in evaporation enhance light and medium precipitation in the multiple-cloud system here. This increase in light and medium precipitation makes it possible that cumulative precipitation increases with increasing aerosol concentration, although the increase is small. It is interesting that the altitude of the maximum of the time- and domain-averaged hydrometeor mass densities is quite robust to increases in aerosol

  20. Sensitivity of PARASOL multi-angle photo-polarimetric aerosol retrievals to cloud contamination

    NASA Astrophysics Data System (ADS)

    Stap, F. A.; Hasekamp, O.; Röckmann, T.

    2014-10-01

    An important problem in satellite remote sensing of aerosols is related to the need to perform an adequate cloud screening. If a cloud screening is applied that is not strict enough, the ground scene has the probability of residual cloud cover which causes large errors on the retrieved aerosol parameters. On the other hand, if the cloud screening procedure is too strict, too many clear sky cases, especially near-cloud scenes, will falsely be flagged cloudy. The detrimental effects of cloud contamination as well as the importance of aerosol cloud interactions that can be studied in these near-cloud scenes call for new approaches to cloud screening. Multi-angle, multi-wavelength photo-polarimetric measurements have a unique capability to distinguish between scattering by (liquid) cloud droplets and aerosol particles. In this paper the sensitivity of aerosol retrievals from multi-angle, photo-polarimetric measurements to cloud contamination is investigated and the ability to intrinsically filter the cloud contaminated scenes based on a goodness-of-fit criteria is evaluated. Hereto, an aerosol retrieval algorithm is applied to a partially clouded, synthetic data-set including partial cloud cover as well as non-cloud screened POLDER-3/PARASOL observations It is found that a goodness-of-fit filter, together with a filter on the coarse mode refractive index (mrcoarse > 1.335) and a cirrus screening adequately reject the cloud contaminated scenes. No bias nor larger SD are found in the retrieved parameters for this intrinsic cloud filter compared to the parameters retrieved in a priori cloud screened data-set (using MODIS/AQUA cloud masks) of PARASOL observations. Moreover, less high aerosol load scenes are misinterpreted as cloud contaminated. The retrieved aerosol optical thickness, single scattering albedo and Ångström exponent show good agreement with AERONET observations. Furthermore, the synthetic retrievals give confidence in the ability of the algorithm to

  1. A study of the indirect aerosol effect on subarctic marine liquid low-level clouds using MODIS cloud data and ground-based aerosol measurements

    NASA Astrophysics Data System (ADS)

    Sporre, Moa K.; Glantz, Paul; Tunved, Peter; Swietlicki, Erik; Kulmala, Markku; Lihavainen, Heikki

    2012-10-01

    Cloud microphysics is substantially affected by aerosol loading and the resulting changes in the reflective properties of the clouds can significantly affect the global radiation budget. A study of how marine low-level clouds over Barents Sea and the northern parts of the Norwegian Sea are affected by air mass origin has been performed by combining ground-based aerosol measurements with satellite cloud retrievals. Aerosol number size distributions have been obtained from measurement stations in northern Finland, and a trajectory model has been used to estimate the movement of the air masses. To identify anthropogenic influences on the clouds, the dataset has been divided according to aerosol loading. The clean air masses arrived to the investigation area from the north and the polluted air masses arrived from the south. Satellite derived microphysical and optical cloud parameters from the Moderate Resolution Imaging Spectrometer (MODIS) have then been analyzed for days when the trajectories coincided with marine low-level clouds over the investigated area. The cloud optical thickness (τ), cloud depth (H) and droplet number concentration (Nd) were significantly higher for the polluted days compared to the clean conditions, while the opposite was found for the cloud droplet effective radius (re). The H and Nd were derived from the satellite retrievals of τ and re. Furthermore, calculations of the aerosol cloud interaction relationship (ACI), relating Nd to boundary layer aerosol concentrations, resulted in a value of 0.17, which is in line with previous remote sensing studies. The results demonstrate that ground-based aerosol measurements can be combined with satellite cloud observations to study the indirect aerosol effect, and that the microphysics of marine sub-polar clouds can be considerably affected by continental aerosols.

  2. Cloud condensation nuclei activity of isoprene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Engelhart, Gabriella J.; Moore, Richard H.; Nenes, Athanasios; Pandis, Spyros N.

    2011-01-01

    This work explores the cloud condensation nuclei (CCN) activity of isoprene secondary organic aerosol (SOA), likely a significant source of global organic particulate matter and CCN, produced from the oxidation with OH from HONO/HOOH photolysis in a temperature-controlled SOA chamber. CCN concentrations, activation diameter, and droplet growth kinetic information were monitored as a function of supersaturation (from 0.3% to 1.5%) for several hours using a cylindrical continuous-flow streamwise thermal gradient CCN counter connected to a scanning mobility particle sizer. The initial SOA concentrations ranged from 2 to 30 μg m-3 and presented CCN activity similar to monoterpene SOA with an activation diameter of 35 nm for 1.5% supersaturation and 72 nm for 0.6% supersaturation. The CCN activity improved slightly in some experiments as the SOA aged chemically and did not depend significantly on the level of NOx during the SOA production. The measured activation diameters correspond to a hygroscopicity parameter κ value of 0.12, similar to κ values of 0.1 ± 0.04 reported for monoterpene SOA. Analysis of the water-soluble carbon extracted from filter samples of the SOA suggest that it has a κ of 0.2-0.3 implying an average molar mass between 90 and 150 g mol-1 (assuming a zero and 5% surface tension reduction with respect to water, respectively). These findings are consistent with known oxidation products of isoprene. Using threshold droplet growth analysis, the CCN activation kinetics of isoprene SOA was determined to be similar to pure ammonium sulfate aerosol.

  3. Sensitivity of PARASOL multi-angle photopolarimetric aerosol retrievals to cloud contamination

    NASA Astrophysics Data System (ADS)

    Stap, F. A.; Hasekamp, O. P.; Röckmann, T.

    2015-03-01

    An important problem in satellite remote sensing of aerosols is related to the need to perform an adequate cloud screening. If a cloud screening is applied that is not strict enough, the ground scene has the probability of residual cloud cover which causes large errors on the retrieved aerosol parameters. On the other hand, if the cloud-screening procedure is too strict, too many clear sky cases, especially near-cloud scenes, will falsely be flagged cloudy. The detrimental effects of cloud contamination as well as the importance of aerosol cloud interactions that can be studied in these near-cloud scenes call for new approaches to cloud screening. Multi-angle multi-wavelength photopolarimetric measurements have a unique capability to distinguish between scattering by (liquid) cloud droplets and aerosol particles. In this paper the sensitivity of aerosol retrievals from multi-angle photopolarimetric measurements to cloud contamination is investigated and the ability to intrinsically filter the cloud-contaminated scenes based on a goodness-of-fit criteria is evaluated. Hereto, an aerosol retrieval algorithm is applied to a partially clouded over-ocean synthetic data set as well as non-cloud-screened over-ocean POLDER-3/PARASOL observations. It is found that a goodness-of-fit filter, together with a filter on the coarse mode refractive index (mrcoarse > 1.335) and a cirrus screening, adequately rejects the cloud-contaminated scenes. No bias or larger SD are found in the retrieved parameters for this intrinsic cloud filter compared to the parameters retrieved in a priori cloud-screened data set (using MODIS/AQUA cloud masks) of PARASOL observations. Moreover, less high-aerosol load scenes are misinterpreted as cloud contaminated. The retrieved aerosol optical thickness, single scattering albedo and Ångström exponent show good agreement with AERONET observations. Furthermore, the synthetic retrievals give confidence in the ability of the algorithm to correctly

  4. Laser Remote Sensing from ISS: the CATS-CALIPSO Cloud and Aerosol Data Products

    NASA Astrophysics Data System (ADS)

    Rodier, S. D.; Palm, S. P.; Jensen, M. H.; Yorks, J. E.; McGill, M. J.; Vaughan, M.; Trepte, C. R.

    2014-12-01

    The NASA Cloud Aerosol Transport System (CATS) is a dual-beam, multi-wavelength (1064, 532 and 355 nm), polarization sensitive (1064 and 532 nm) lidar developed at NASA's Goddard Space Flight Center (GSFC) for deployment to the International Space Station (ISS) in late 2014. CATS will be mounted on the Japanese Experiment Module's Exposed Facility and will provide near-continuous, altitude-resolved measurements of clouds and aerosols in the Earth's atmosphere. The ISS orbit path provides a unique opportunity to capture the full diurnal cycle of cloud and aerosol development and transport, allowing for studies that are not possible with the lidar aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, which flies in the sun-synchronous A-Train orbit. One of the primary objectives of CATS is to continue the CALIPSO data record to provide continuity of aerosol and cloud lidar observations during the transition from CALIPSO to EarthCARE. To accomplish this, the CATS project at GSFC and the CALIPSO project at NASA's Langley Research Center are closely collaborating to develop and deliver a full suite of CALIPSO-like level 2 data products generated from the newly acquired CATS level 1B data. Now in its eighth year of on-orbit operations, the CALIPSO project has developed a robust set of mature and well-validated science algorithms to retrieve the spatial and optical properties of clouds and aerosols from multi-wavelength lidar backscatter signal. By leveraging both new and existing NASA technical resources, this joint effort by the CATS-CALIPSO team will enable rapid delivery of high-quality lidar data sets to the user community at the earliest possible opportunity. In this work we outline the development of the CALIPSO- CATS level 2 software and data products and describe the modifications made to the input CATS data stream and the CALIPSO processing algorithms in order to successfully interface two disparate data processing

  5. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  6. Impact of aerosols on precipitation from deep convective clouds in eastern China

    NASA Astrophysics Data System (ADS)

    Jiang, Mengjiao; Li, Zhanqing; Wan, Bingcheng; Cribb, Maureen

    2016-08-01

    We analyzed the impact of aerosols on precipitation based on 3 years of 3-hourly observations made in heavily polluted eastern China. The probability of precipitation from different cloud types was calculated using International Satellite Cloud Climatology Project cloud data and gauge-based hourly precipitation data. Because deep convective clouds have the largest precipitation probability, the influence of aerosols on the precipitation from such clouds was studied in particular. Aerosol properties were taken from the Modern-Era Retrospective Analysis for Research and Applications Aerosol Reanalysis data set. As aerosol optical depth increased, rainfall amounts from deep convective clouds increased at first and then decreased. The descending part of the trend is likely due to the aerosol radiative effect. Downwelling solar radiative fluxes at the surface decreased as aerosol optical depth increased. The decrease in solar radiation led to a decrease in ground heat fluxes and convective available potential energy, which is unfavorable for development of convective clouds and precipitation. The tendencies for lower cloud top temperatures, lower cloud top pressures, and higher cloud optical depths as a response to larger aerosol optical depths suggest the invigoration effect. Vertical velocity, relative humidity, and air temperature from the National Centers for Environmental Prediction Climate Forecast System Reanalysis were sorted to help investigate if the trends are dependent on any environmental conditions. How dynamic and microphysical factors strengthen or mitigate the impact of aerosols on clouds and precipitation and more details about their interplay should be studied further using more observations and model simulations.

  7. Coupling Between Oceanic Upwelling and Cloud-aerosol Properties at the AMF Point Reyes Site

    SciTech Connect

    Dunn, M.; Jensen, M.; Miller, M.; Kollias, P.; Bartholomew, M. J.; Turner, D.; Andrews, E.; Jefferson, A.; Daum, P.

    2008-03-10

    Cloud microphysical properties measured at the ARM Mobile Facility site located on the northern coast of California near Point Reyes, during the 2005 Marine Stratus Radiation, Aerosol and Drizzle experiment, were analyzed to determine their relationship to the coastal sea surface temperature (SST) which was characterized using measurements acquired from a National Oceanic and Atmospheric Administration offshore buoy. An increase in SST resulting from a relaxation of upwelling, occurring in the eastern Pacific Ocean off the coast of California in summer is observed to strongly correlate with nearby ground measured cloud microphysical properties and cloud condensation nuclei (CCN) concentrations. Correlations between these atmospheric and oceanic features provide insight into the interplay between the ocean and cloud radiative properties. We present evidence of this robust correlation and examine the factors controlling these features. The marine boundary layer is in direct contact with the sea surface and is strongly influenced by SST. Moisture and vertical motion are crucial ingredients for cloud development and so we examine the role of SST in providing these key components to the atmosphere. Although upwelling of cold subsurface waters is conventionally thought to increase aerosols in the region, thus increasing clouds, here we observed a relaxation of upwelling associated with changes in the structure of marine stratus clouds. As upwelling relaxes, the SST get warmer, thick clouds with high liquid water paths are observed and persist for a few days. This cycle is repeated throughout the summer upwelling season. A concomitant cyclic increase and decrease of CCN concentration is also observed. Forcing mechanisms and large-scale atmospheric features are discussed. Marine stratocumulus clouds are a critical component of the earth's radiation budget and this site provides an excellent opportunity to study the influence of SST on these clouds.

  8. Quantifying Above-Cloud Aerosols through Integrating Multi-Sensor Measurements from A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Zhang, Yan

    2012-01-01

    Quantifying above-cloud aerosols can help improve the assessment of aerosol intercontinental transport and climate impacts. Large-scale measurements of aerosol above low-level clouds had been generally unexplored until very recently when CALIPSO lidar started to acquire aerosol and cloud profiles in June 2006. Despite CALIPSO s unique capability of measuring above-cloud aerosol optical depth (AOD), such observations are substantially limited in spatial coverage because of the lidar s near-zero swath. We developed an approach that integrates measurements from A-Train satellite sensors (including CALIPSO lidar, OMI, and MODIS) to extend CALIPSO above-cloud AOD observations to substantially larger areas. We first examine relationships between collocated CALIPSO above-cloud AOD and OMI absorbing aerosol index (AI, a qualitative measure of AOD for elevated dust and smoke aerosol) as a function of MODIS cloud optical depth (COD) by using 8-month data in the Saharan dust outflow and southwest African smoke outflow regions. The analysis shows that for a given cloud albedo, above-cloud AOD correlates positively with AI in a linear manner. We then apply the derived relationships with MODIS COD and OMI AI measurements to derive above-cloud AOD over the whole outflow regions. In this talk, we will present spatial and day-to-day variations of the above-cloud AOD and the estimated direct radiative forcing by the above-cloud aerosols.

  9. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  10. Aerosols and Clouds: In Cahoots to Change Climate

    ScienceCinema

    Berg, Larry

    2016-07-12

    Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

  11. Aerosols and Clouds: In Cahoots to Change Climate

    SciTech Connect

    Berg, Larry

    2014-03-29

    Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

  12. The Deep South Clouds & Aerosols project: Improving the modelling of clouds in the Southern Ocean region

    NASA Astrophysics Data System (ADS)

    Morgenstern, Olaf; McDonald, Adrian; Harvey, Mike; Davies, Roger; Katurji, Marwan; Varma, Vidya; Williams, Jonny

    2016-04-01

    Southern-Hemisphere climate projections are subject to persistent climate model biases affecting the large majority of contemporary climate models, which degrade the reliability of these projections, particularly at the regional scale. Southern-Hemisphere specific problems include the fact that satellite-based observations comparisons with model output indicate that cloud occurrence above the Southern Ocean is substantially underestimated, with consequences for the radiation balance, sea surface temperatures, sea ice, and the position of storm tracks. The Southern-Ocean and Antarctic region is generally characterized by an acute paucity of surface-based and airborne observations, further complicating the situation. In recognition of this and other Southern-Hemisphere specific problems with climate modelling, the New Zealand Government has launched the Deep South National Science Challenge, whose purpose is to develop a new Earth System Model which reduces these very large radiative forcing problems associated with erroneous clouds. The plan is to conduct a campaign of targeted observations in the Southern Ocean region, leveraging off international measurement campaigns in this area, and using these and existing measurements of cloud and aerosol properties to improve the representation of clouds in the nascent New Zealand Earth System Model. Observations and model development will target aerosol physics and chemistry, particularly sulphate, sea salt, and non-sulphate organic aerosol, its interactions with clouds, and cloud microphysics. The hypothesis is that the cloud schemes in most GCMs are trained on Northern-Hemisphere data characterized by substantial anthropogenic or terrestrial aerosol-related influences which are almost completely absent in the Deep South.

  13. Model simulations of the first aerosol indirect effect and comparison of cloud susceptibility fo satellite measurements

    SciTech Connect

    Chuang, C; Penner, J E; Kawamoto, K

    2002-03-08

    Present-day global anthropogenic emissions contribute more than half of the mass in submicron particles primarily due to sulfate and carbonaceous aerosol components derived from fossil fuel combustion and biomass burning. These anthropogenic aerosols modify the microphysics of clouds by serving as cloud condensation nuclei (CCN) and enhance the reflectivity of low-level water clouds, leading to a cooling effect on climate (the Twomey effect or first indirect effect). The magnitude of the first aerosol indirect effect is associated with cloud frequency as well as a quantity representing the sensitivity of cloud albedo to changes in cloud drop number concentration. This quantity is referred to as cloud susceptibility [Twomey, 1991]. Analysis of satellite measurements demonstrates that marine stratus clouds are likely to be of higher susceptibility than continental clouds because of their lower number concentrations of cloud drops [Platnick and Twomey, 1994]. Here, we use an improved version of the fully coupled climate/chemistry model [Chuang et al., 1997] to calculate the global concentrations Of sulfate, dust, sea salt, and carbonaceous aerosols (biomass smoke and fossil fuel organic matter and black carbon). We investigated the impact of anthropogenic aerosols on cloud susceptibility and calculated the associated changes of shortwave radiative fluxes at the top of the atmosphere. We also examined the correspondence between the model simulation of cloud susceptibility and that inferred from satellite measurements to test whether our simulated aerosol concentrations and aerosol/cloud interactions give a faithful representation of these features.

  14. On COBACC (COntinental Biosphere-Aerosol-Cloud-Climate) feedback

    NASA Astrophysics Data System (ADS)

    Kulmala, Markku

    2016-04-01

    Anthropogenic emissions of GHGs have increased substantially during the past century. Elevated concentrations of CO2 and methane are the most important forcing agents causing global warming. However, it is not straightforward to attribute or predict the climate change in detail, as the internal variability of climate is only partially understood, aerosol forcings are still highly uncertain, and there are many feedback mechanisms that are difficult to quantify. It has been recognized for decades that the biosphere plays an important role in climate. For example, Kulmala et al. (2004) suggested a negative climate feedback mechanism whereby higher temperatures and CO2-levels boost continental biomass production, leading to increased biogenic secondary organic aerosol (BSOA) and cloud condensation nuclei (CCN) concentrations, tending to cause cooling. This COBACC (COntinental Biosphere-Aerosol-Cloud-Climate) feedback is similar to the so-called CLAW-hypothesis by Charlson et al. (1987) which connects the ocean biochemistry and climate via a negative feedback loop involving CCN production due to sulphur emissions from plankton. The first quantification of the COBACC feedback loop (Kulmala et al. 2014) was based on continuous comprehensive observations at SMEAR II (Station for Measuring Forest Ecosystem-Atmosphere Relations) station in Hyytiälä, Finland, and showed that a 10 ppm increase in atmospheric CO2 concentration leads to a significant (several percent) increase in both carbon sink and aerosol source. These effects operate through changes in gross primary production, volatile organic compound (VOC) emissions and secondary aerosol formation associated with atmospheric oxidation of VOCs. Here we will describe the present knowledge from processes level understanding to whole COBACC feedback including some hints on biogenic and anthropogenic contributions to global aerosol number load. References: Charlson, R. J. et al. Nature 326, 655 1987 Kulmala, M. et al. Atmos

  15. multi-dimensional Cloud-aERosol Exploratory Study using RPAS (mCERES): Bottom-up and top-down closure of aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Roberts, Greg; Calmer, Radiance; Sanchez, Kevin; Cayez, Grégoire; Nicoll, Kerianne; Hashimshoni, Eyal; Rosenfeld, Daniel; Ansmann, Albert; Sciare, Jean; Ovadneite, Jurgita; Bronz, Murat; Hattenberger, Gautier; Preissler, Jana; Buehl, Johannes; Ceburnis, Darius; O'Dowd, Colin

    2016-04-01

    Clouds are omnipresent in earth's atmosphere and constitute an important role in regulating the radiative budget of the planet. However, the response of clouds to climate change remains uncertain, in particular, with respect to aerosol-cloud interactions and feedback mechanisms between the biosphere and atmosphere. Aerosol-cloud interactions and their feedbacks are the main themes of the European project FP7 BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). The National Center for Meteorological Research (CNRM-GAME, Toulouse, France) conducted airborne experiments in Cyprus and Ireland in March and August 2015 respectively to link ground-based and satellite observations. Multiple RPAS (remotely piloted aircraft systems) were instrumented for a specific scientific focus to characterize the vertical distribution of aerosol, cloud microphysical properties, radiative fluxes, 3D wind vectors and meteorological state parameters. Flights below and within clouds were coordinated with satellite overpasses to perform 'top-down' closure of cloud micro-physical properties. Measurements of cloud condensation nuclei spectra at the ground-based site have been used to determine cloud microphyical properties using wind vectors and meteorological parameters measured by the RPAS at cloud base. These derived cloud properties have been validated by in-situ RPAS measurements in the cloud and compared to those derived by the Suomi-NPP satellite. In addition, RPAS profiles in Cyprus observed the layers of dust originating from the Arabian Peninsula and the Sahara Desert. These profiles generally show a well-mixed boundary layer and compare well with ground-based LIDAR observations.

  16. Towards Bottom-up and Top-down Closures of Aerosol-cloud Interactions: multi-dimensional Cloud-aERosol Exploratory Study using RPAS

    NASA Astrophysics Data System (ADS)

    Roberts, G. C.; Calmer, R.; Sanchez, K. J.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ansmann, A.; Sciare, J.; Ovadnevaite, J.; Bronz, M.; Hattenberger, G.; Preissler, J.; Buehl, J.; Ceburnis, D.; O'Dowd, C. D. D.

    2015-12-01

    Clouds are omnipresent in earth's atmosphere and constitute an important role in regulating the radiative budget of the planet. However, the response of clouds to climate change remains uncertain, in particular, with respect to aerosol-cloud interactions and feedback mechanisms between the biosphere and atmosphere. Aerosol-cloud interactions and their feedbacks are the main themes of the European project FP7 BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). The National Center for Meteorological Research (CNRM-GAME, Toulouse, France) conducted airborne experiments in Cyprus and Ireland in March and August 2015 respectively to link ground-based and satellite observations. Multiple RPAS (remotely piloted aircraft systems) were instrumented for a specific scientific focus to characterize the vertical distribution of aerosol, cloud microphysical properties, radiative fluxes, 3D wind vectors and meteorological state parameters. Flights below and within clouds were coordinated with satellite overpasses to perform 'top-down' closure of cloud micro-physical properties. Measurements of cloud condensation nuclei spectra at the ground-based site have been used to determine cloud microphyical properties using wind vectors and meteorological parameters mesured by the RPAS at cloud base. These derived cloud properties have been validated by in-situ RPAS measurements in the cloud and compared to those derived by the Suomi-NPP satellite. In addition, RPAS profiles in Cyprus observed the layers of dust originating from the Arabian Peninsula and the Sahara Desert. These profiles generally show a well-mixed boundary layer and compare well with ground-based LIDAR observations.

  17. Aerosol Indirect Effect on Warm Clouds over Eastern China Using Combined CALIOP and MODIS Observations

    NASA Astrophysics Data System (ADS)

    Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen

    2015-04-01

    Aerosol, one of key components of the climate system, is highly variable, both temporally and spatially. It often exerts great influences on the cloud-precipitation chain processes by serving as CCN/IN, altering cloud microphysics and its life cycle. Yet, the aerosol indirect effect on clouds remains largely unknown, because the initial changes in clouds due to aerosols may be enhanced or dampened by such feedback processes as modified cloud dynamics, or evaporation of the smaller droplets due to the competition for water vapor. In this study, we attempted to quantify the aerosol effects on warm cloud over eastern China, based on near-simultaneous retrievals from MODIS/AQUA, CALIOP/CALIPSO and CPR/CLOUDSAT during the period 2006 to 2010. The seasonality of aerosol from ground-based PM10 is quite different from that estimated from MODIS AOD. This result is corroborated by lower level profile of aerosol occurrence frequency from CALIOP, indicating the significant role CALIOP could play in aerosol-cloud interaction. The combined use of CALIOP and CPR facilitate the process to exactly determine the (vertical) position of warm cloud relative to aerosol, out of six scenarios in terms of aerosol-cloud mixing status in terms of aerosol-cloud mixing status, which shows as follows: AO (Aerosol only), CO (Cloud only), SASC (Single aerosol-single cloud), SADC (single aerosol-double cloud), DASC (double aerosol-single cloud), and others. Results shows that about 54% of all the cases belong to mixed status, among all the collocated aerosol-cloud cases. Under mixed condition, a boomerang shape is observed, i.e., reduced cloud droplet radius (CDR) is associated with increasing aerosol at moderate aerosol pollution (AOD<0.4), becoming saturated at AOD of 0.5, followed by an increase in CDR with aerosol. In contrast, there is no such boomerang shape found for (aerosol-cloud) separated cases. We categorize dataset into warm-season and cold-season subsets to figure out how the

  18. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    SciTech Connect

    McFarquhar, Greg

    2015-12-28

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.

  19. Aerosol-Cloud Interactions in Ship Tracks Using Terra MODIS/MISR

    NASA Astrophysics Data System (ADS)

    Chen, Y. C.; Christensen, M.; Diner, D. J.; Garay, M. J.; Nelson, D. L.

    2014-12-01

    Simultaneous ship track observations from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR) have been compiled to investigate how ship-injected aerosols affect marine warm boundary layer clouds under different cloud types and environmental conditions. Taking advantage of the high spatial resolution multiangle observations uniquely available from MISR, we utilized the retrieved cloud albedo, cloud top height, and cloud motion vectors to examine the cloud property responses in ship-polluted and nearby unpolluted clouds. The strength of cloud albedo response to increased aerosol level is primarily dependent on cloud cell structure, dryness of the free troposphere, and boundary layer depth, corroborating a previous study by Chen et al. (2012) where A-Train satellite data were applied. Under open cell cloud structure, the cloud properties are more susceptible to aerosol perturbations as compared to closed cells. Aerosol plumes caused an increase in liquid water amount (+27%), cloud top height (+11%), and cloud albedo (+40%) for open cell clouds, whereas under closed cell clouds, little changes in cloud properties were observed. Further capitalizing on MISR's unique capabilities, the MISR cross-track cloud speed has been used to derive cloud top divergence. Statistically averaging the results from many plume segments to reduce random noise, we have found that in ship-polluted clouds there is stronger cloud top divergence, and in nearby unpolluted clouds, convergence occurs and leads to downdrafts, providing observational evidence for cloud top entrainment feedback. These results suggest that detailed cloud responses, classified by cloud type and environmental conditions, must be accounted for in global climate modeling studies to reduce uncertainties of aerosol indirect forcing. Reference: Chen, Y.-C. et al. Occurrence of lower cloud albedo in ship tracks, Atmos. Chem. Phys., 12, 8223-8235, doi:10.5194/acp-12

  20. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.; Johnson, D.; Remer, L.

    2004-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and in the mid-latitude continent with different concentrations of CCN: a low "c1ean"concentration and a high "dirty" concentration. In addition, differences and similarities between bulk microphysics and spectral-bin microphysical schemes will be examined and discussed.

  1. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.; Johnson, D.; Remer, L.

    2004-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, r d a U production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembe1 (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and platelike), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and in the mid-latitude continent with different concentrations of CCN: a low "c1ean"concentration and a high "dirty" concentration. In addition, differences and similarities between bulk microphysics and spectral-bin microphysical schemes will be examined and discussed.

  2. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.

    2004-01-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles (i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail). Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, in the sub-tropics (Florida) and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low 'clean' concentration and a high 'dirty' concentration.

  3. Extending 'Deep Blue' aerosol retrieval coverage to cases of absorbing aerosols above clouds: sensitivity analysis and first case studies

    SciTech Connect

    Sayer, Andrew M.; Hsu, C.; Bettenhausen, Corey; Lee, Jae N.; Redemann, Jens; Schmid, Beat; Shinozuka, Yohei

    2016-05-07

    Cases of absorbing aerosols above clouds (AAC), such as smoke or mineral dust, are omitted from most routinely-processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar

  4. Determination of cloud and aerosol layers using CALIPSO and image processing

    NASA Astrophysics Data System (ADS)

    Alias, A. N.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.; Saleh, N. Mohd.

    2008-10-01

    The height of cloud and aerosol layers in the atmosphere is believed to affect climate change and air pollution because both of them have important direct effects on the radiation balance of the earth. In this paper, we study the ability of Cloud Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) data to detect, locate and distinguish between cloud and aerosol layers in the atmosphere over Peninsula Malaysia. We also used image processing technique to differentiate between cloud and aerosol layers from the CALIPSO images. The cloud and aerosol layers mostly are seen at troposphere (>10 km) and lower stratosphere (>15km). The results shows that CALIPSO can be used to determine cloud and aerosol layers and image processing technique has successfully distinguished them in the atmosphere.

  5. Cloud/Aerosol Parameterizations: Application and Improvement of General Circulation Models

    SciTech Connect

    Penner, Joyce

    2012-06-30

    One of the biggest uncertainties associated with climate models and climate forcing is the treatment of aerosols and their effects on clouds. The effect of aerosols on clouds can be divided into two components: The first indirect effect is the forcing associated with increases in droplet concentrations; the second indirect effect is the forcing associated with changes in liquid water path, cloud morphology, and cloud lifetime. Both are highly uncertain. This project applied a cloud-resolving model to understand the response of clouds under a variety of conditions to changes in aerosols. These responses are categorized according to the large-scale meteorological conditions that lead to the response. Meteorological conditions were sampled from various fields, which, together with a global aerosol model determination of the change in aerosols from present day to pre-industrial conditions, was used to determine a first order estimate of the response of global cloud fields to changes in aerosols. The response of the clouds in the NCAR CAM3 GCM coupled to our global aerosol model were tested by examining whether the response is similar to that of the cloud resolving model and methods for improving the representation of clouds and cloud/aerosol interactions were examined.

  6. The Cloud-Aerosol Transport System (CATS): A New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2012-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a

  7. A full spectral cumulus cloud parameterisation including aerosol effects: The Convective Cloud Field Model (CCFM)

    NASA Astrophysics Data System (ADS)

    Wagner, T. M.; Graf, H. F.; Yano, J. I.

    2009-04-01

    The convective cloud field model is a convection parameterisation based on the representation of a full cumulus cloud spectrum using a dynamical quasi-equilibrium closure. It employs a one dimensional entraining parcel model whose properties are simulated on a refined vertical resolution (~100 m) in order to capture the complex cloud microphysical processes in convective clouds. We introduced an enhanced microphysics compared to those currently used in convection parameterisations, containing warm and mixed phase cloud microphysics processes and incorporates aerosol effects by linking the cloud droplet number concentration to the aerosol amount. Similar to the Arakawa and Schubert (1974) quasi-equilibrium closure we allow for the mutual influence of clouds via the environment. Instead of assuming instantaneous stabilisation of the environment though, the clouds are dynamically interacting for the length of the large scale model time step without necessarily adopting an equilibrium situation. The model is evaluated in single column mode (SCM) for continental and tropical convection using the ARM SGP and TWP-ICE cases. Moreover it is evaluated in global mode using the global atmospheric circulation model ECHAM5. For the SCM cases the precipitation, heating and moistening rates for the simulated period is better represented than with the Tiedtke massflux scheme which is the usual convection parameterisation within ECHAM5. Moreover, we find a clear response to an enhanced aerosol loading which generally leads to a reduction of convective precipitation. Globally, the CCFM produces slightly higher convective precipitation rates and especially responds better to convective instability over lower latitudes and the storm track regions.

  8. Arctic aerosol and cloud measurements performed during IAOOS 2014

    NASA Astrophysics Data System (ADS)

    Mariage, Vincent; Pelon, Jacques; Blouzon, Frédéric; Geyskens, Nicolas; Amarouche, Nadir; Drezen, Christine; Calzas, Michel; Victori, Stéphane; Garracio, Magali; Desautez, Alain; Pascal, Nicolas; Foujols, Thomas; Sarkissian, Alain; Pommereau, Jean-Pierre; Sennechael, Nathalie; Provost, Christine

    2015-04-01

    Better understanding of atmosphere-ice-ocean interactions and in particular of the role of aerosols and clouds in this Earth system is of prime importance in the Arctic. In the frame of the French IAOOS Equipex project, a new observational network is planned to be developed for ocean-ice-atmosphere climate survey over the Arctic, starting in 2015, to complement satellite observations. Eye-safe lidar measurements will allow us to profile aerosols and clouds for the atmospheric part, with the objective to perform regular measurements and characterize the vertical structure and optical properties. Radiation and meteorological parameters will be measured at the surface. A first buoy has been prototyped and deployed in April 2014 at the Barneo site set by the Russian teams at the North Pole. Measurements with the first autonomous backscatter lidar ever deployed in the arctic have been taken from April to end of November 2014 before the buoy was lost. Four profiles a day have been performed allowing a good sampling of cloud variability. Observations have shown that the occurrence of low level clouds was higher than 90% during summer. The project is presented, instrument performance is described and first results are discussed.

  9. Airborne polarimeter intercomparison for the NASA Aerosol-Cloud-Ecosystem (ACE) mission

    NASA Astrophysics Data System (ADS)

    Knobelspiesse, K. D.; Redemann, J.

    2014-12-01

    The Aerosol-Cloud-Ecosystem (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeter prototypes, including the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  10. Progress in Airborne Polarimeter Inter Comparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Redemann, Jens

    2014-01-01

    The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multiangle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  11. Airborne Polarimeter Intercomparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Redemann, Jens

    2014-01-01

    The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  12. Molecular Clouds: Observation to Experiment

    SciTech Connect

    Kane, J O; Ryutov, D D; Mizuta, A; Remington, B A; Pound, M W

    2004-05-06

    Our ongoing investigation of how 'Pillars' and other structure form in molecular clouds irradiated by ultraviolet (UV) stars has revealed that the Rayleigh-Taylor instability is strongly suppressed by recombination in the photoevaporated outflow, that clumps and filaments may be key, that the evolution of structure is well-modeled by compressible hydrodynamics, and that directionality of the UV radiation may have significant effects. We discuss a generic, flexible set of laboratory experiments that can address these issues.

  13. Evaluation of a newly developed below-cloud scavenging scheme of regional aerosol simulations: its implication for aerosol budget over East Asia

    NASA Astrophysics Data System (ADS)

    Bae, S.; Park, R.; Kim, Y.

    2009-12-01

    Wet scavenging is the most important process for the aerosol removal. It is divided into in-cloud and below-cloud scavenging processes. Although the below-cloud scavenging is less efficient than the in-cloud scavenging, it is important for the removal of coarse and very fine particles from the polluted boundary layer. Important factors determining the efficiency of below-cloud scavenging process by rain droplets are collision efficiency, terminal velocity of a raindrop, raindrop size distributions, and particle size distributions. Complex 3-D models of atmospheric aerosols, however, in general neglect those factors and use a simple parameterization for the below-cloud scavenging in the form of either constant or first-order equations. For example, a Model Inter-Comparison Study for Asia (MICS-Asia) II showed a large range of simulated wet deposition fluxes depending on wet deposition parameterizations of participating models despite of the use of similar meteorological fields. A mechanistic scheme incorporating important factors above to be easily implemented in existing 3-D models is necessary for a better below-cloud scavenging simulation. In this study we test and evaluate a new scheme of the below-cloud scavenging process with Community Multiscale Air Quality (CMAQ) model, accounting for the relationship between the raindrop size distribution and rain intensity along with realistic consideration of other important factors. We conducted regional simulations of CMAQ with the new scheme in East Asia and compared results with other models in MICS-Asia II. We also evaluate the improved CMAQ model by comparing with observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) and the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) aircraft campaigns in spring 2001. Improved wet deposition simulations of aerosols result in a better understanding on aerosol budget and its climatic implication over East Asia.

  14. Effects of aerosol sources and chemical compositions on cloud drop sizes and glaciation temperatures

    NASA Astrophysics Data System (ADS)

    Zipori, Assaf; Rosenfeld, Daniel; Tirosh, Ofir; Teutsch, Nadya; Erel, Yigal

    2015-09-01

    The effect of aerosols on cloud properties, such as its droplet sizes and its glaciation temperatures, depends on their compositions and concentrations. In order to examine these effects, we collected rain samples in northern Israel during five winters (2008-2011 and 2013) and determined their chemical composition, which was later used to identify the aerosols' sources. By combining the chemical data with satellite-retrieved cloud properties, we linked the aerosol types, sources, and concentrations with the cloud glaciation temperatures (Tg). The presence of dust increased Tg from -26°C to -12°C already at relatively low dust concentrations. This result is in agreement with the conventional wisdom that desert dust serves as good ice nuclei (INs). With higher dust concentrations, Tg saturated at -12°C, even though cloud droplet sizes decreased as a result of the cloud condensation nucleating (CCN) activity of the dust. Marine air masses also encouraged freezing, but in this case, freezing was enhanced by the larger cloud droplet sizes in the air masses (caused by low CCN concentrations) and not by IN concentrations or by aerosol type. An increased fraction of anthropogenic aerosols in marine air masses caused a decrease in Tg, indicating that these aerosols served as poor IN. Anthropogenic aerosols reduced cloud droplet sizes, which further decreased Tg. Our results could be useful in climate models for aerosol-cloud interactions, as we investigated the effects of aerosols of different sources on cloud properties. Such parameterization can simplify these models substantially.

  15. Quantifying compositional impacts of ambient aerosol on cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Lance, Sara

    It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. In Chapter 1, we analyze the sensitivity of cloud droplet number density, to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model in three important environmental cases (continental, polluted and remote marine). The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condensation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. In Chapter 2, we modeled and experimentally characterized the heat transfer properties and droplet growth within the CCNc. Chapter 3 describes results from the MIRAGE field campaign, in which the CCNc and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) were deployed at a ground-based site during March, 2006. Size-resolved CCN activation spectra and growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN in addition to the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. The pollution outflow from Mexico City was shown to have CCN with an even lower fraction of soluble material. "Chemical Closure" was attained for the CCN, by comparing the inferred solute volume fraction with that from direct chemical measurements. A clear diurnal pattern was observed for the CCN solute

  16. Simultaneous observations of aerosol-cloud-albedo interactions with three stacked unmanned aerial vehicles.

    PubMed

    Roberts, G C; Ramana, M V; Corrigan, C; Kim, D; Ramanathan, V

    2008-05-27

    Aerosol impacts on climate change are still poorly understood, in part, because the few observations and methods for detecting their effects are not well established. For the first time, the enhancement in cloud albedo is directly measured on a cloud-by-cloud basis and linked to increasing aerosol concentrations by using multiple autonomous unmanned aerial vehicles to simultaneously observe the cloud microphysics, vertical aerosol distribution, and associated solar radiative fluxes. In the presence of long-range transport of dust and anthropogenic pollution, the trade cumuli have higher droplet concentrations and are on average brighter. Our observations suggest a higher sensitivity of radiative forcing by trade cumuli to increases in cloud droplet concentrations than previously reported owing to a constrained droplet radius such that increases in droplet concentrations also increase cloud liquid water content. This aerosol-cloud forcing efficiency is as much as -60 W m(-2) per 100% percent cloud fraction for a doubling of droplet concentrations and associated increase of liquid water content. Finally, we develop a strategy for detecting aerosol-cloud interactions based on a nondimensional scaling analysis that relates the contribution of single clouds to albedo measurements and illustrates the significance of characterizing cloud morphology in resolving radiometric measurements. This study demonstrates that aerosol-cloud-albedo interactions can be directly observed by simultaneous observations below, in, and above the clouds.

  17. In-cloud measurements highlight the role of aerosol hygroscopicity in cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Väisänen, Olli; Ruuskanen, Antti; Ylisirniö, Arttu; Miettinen, Pasi; Portin, Harri; Hao, Liqing; Leskinen, Ari; Komppula, Mika; Romakkaniemi, Sami; Lehtinen, Kari E. J.; Virtanen, Annele

    2016-08-01

    The relationship between aerosol hygroscopicity and cloud droplet activation was studied at the Puijo measurement station in Kuopio, Finland, during the autumn 2014. The hygroscopic growth of 80, 120 and 150 nm particles was measured at 90 % relative humidity with a hygroscopic tandem differential mobility analyzer. Typically, the growth factor (GF) distributions appeared bimodal with clearly distinguishable peaks around 1.0-1.1 and 1.4-1.6. However, the relative contribution of the two modes appeared highly variable reflecting the probable presence of fresh anthropogenic particle emissions. The hygroscopicity-dependent activation properties were estimated in a case study comprising four separate cloud events with varying characteristics. At 120 and 150 nm, the activation efficiencies within the low- and high-GF modes varied between 0-34 and 57-83 %, respectively, indicating that the less hygroscopic particles remained mostly non-activated, whereas the more hygroscopic mode was predominantly scavenged into cloud droplets. By modifying the measured GF distributions, it was estimated how the cloud droplet concentrations would change if all the particles belonged to the more hygroscopic group. According to κ-Köhler simulations, the cloud droplet concentrations increased up to 70 % when the possible feedback effects on effective peak supersaturation (between 0.16 and 0.29 %) were assumed negligible. This is an indirect but clear illustration of the sensitivity of cloud formation to aerosol chemical composition.

  18. Comparative Study of Aerosol and Cloud Detected by CALIPSO and OMI

    NASA Technical Reports Server (NTRS)

    Chen, Zhong; Torres, Omar; McCormick, M. Patrick; Smith, William; Ahn, Changwoo

    2012-01-01

    The Ozone Monitoring Instrument (OMI) on the Aura Satellite detects the presence of desert dust and smoke particles (also known as aerosols) in terms of a parameter known as the UV Aerosol Index (UV AI). The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission measures the vertical distribution of aerosols and clouds. Aerosols and clouds play important roles in the atmosphere and climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a very important task. This paper presents a comparative analysis of the CALIPSO Version 2 Vertical Feature Mask (VFM) product with the (OMI) UV Aerosol Index (UV AI) and reflectivity datasets for a full year of 2007. The comparison is done at regional and global scales. Based on CALIPSO arid OMI observations, the vertical and horizontal extent of clouds and aerosols are determined and the effects of aerosol type selection, load, cloud fraction on aerosol identification are discussed. It was found that the spatial-temporal correlation found between CALIPSO and OMI observations, is strongly dependent on aerosol types and cloud contamination. CALIPSO is more sensitivity to cloud and often misidentifies desert dust aerosols as cloud, while some small scale aerosol layers as well as some pollution aerosols are unidentified by OMI UV AI. Large differences in aerosol distribution patterns between CALIPSO and OMI are observed, especially for the smoke and pollution aerosol dominated areas. In addition, the results found a significant correlation between CALIPSO lidar 1064 nm backscatter and the OMI UV AI over the study regions.

  19. Dust aerosol effects on cirrus and altocumulus clouds in Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Wencai; Sheng, Lifang; Jin, Hongchun; Han, Yongqing

    2015-10-01

    Dust aerosol effects on the properties of cirrus and altocumulus cloud in Northwest China were studied for the period March-May 2007 by using the satellite data of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Aqua, and CloudSat. Dusty clouds were defined as those mixed with dust aerosols or existing in dust aerosol conditions, while pure clouds were those in a dust-free environment. For dusty altocumulus clouds, the mean values of cloud optical depth (OPD), cloud liquid water path (LWP), cloud ice water path (IWP), cloud effective particle radius (Re), and cloud effective particle diameter ( D e) were 6.40, 40.23 g m-2, 100.70 g m-2, 8.76 μm, and 40.72 μm, respectively. For pure altocumulus clouds, the corresponding mean values were 9.28, 76.70 g m-2, 128.75 g m-2, 14.03 μm, and 48.92 μm, respectively. These results show a significant decrease of OPD, LWP, IWP, R e, and D e of approximately 31%, 48%, 22%, 38%, and 17% because of the effects of dust aerosols. Moreover, the effects of dust aerosols on liquid-phase altocumulus clouds were greater than on ice-phase altocumulus clouds. Regarding dusty cirrus clouds, the mean values of OPD, IWP, and D e were 5.11, 137.53 g m-2, and 60.44 μm, respectively. In contrast, the mean values were 6.69, 156.17 g m-2, and 66.63 μm, respectively, for pure cirrus clouds, with a 24% decrease in OPD, a 12% decrease in IWP, and a 9% decrease in D e. These results indicate that dust aerosols can significantly change cloud properties, leading to a reduction of OPD, LWP, and effective particle size for both altocumulus and cirrus clouds in Northwest China.

  20. Using High-Resolution Airborne Remote Sensing to Study Aerosol Near Clouds

    NASA Technical Reports Server (NTRS)

    Levy, Robert; Munchak, Leigh; Mattoo, Shana; Marshak, Alexander; Wilcox, Eric; Gao, Lan; Yorks, John; Platnick, Steven

    2016-01-01

    The horizontal space in between clear and cloudy air is very complex. This so-called twilight zone includes activated aerosols that are not quite clouds, thin cloud fragments that are not easily observable, and dying clouds that have not quite disappeared. This is a huge challenge for satellite remote sensing, specifically for retrieval of aerosol properties. Identifying what is cloud versus what is not cloud is critically important for attributing radiative effects and forcings to aerosols. At the same time, the radiative interactions between clouds and the surrounding media (molecules, surface and aerosols themselves) will contaminate retrieval of aerosol properties, even in clear skies. Most studies on aerosol cloud interactions are relevant to moderate resolution imagery (e.g. 500 m) from sensors such as MODIS. Since standard aerosol retrieval algorithms tend to keep a distance (e.g. 1 km) from the nearest detected cloud, it is impossible to evaluate what happens closer to the cloud. During Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), the NASA ER-2 flew with the enhanced MODIS Airborne Simulator (eMAS), providing MODIS-like spectral observations at high (50 m) spatial resolution. We have applied MODIS-like aerosol retrieval for the eMAS data, providing new detail to characterization of aerosol near clouds. Interpretation and evaluation of these eMAS aerosol retrievals is aided by independent MODIS-like cloud retrievals, as well as profiles from the co-flying Cloud Physics Lidar (CPL). Understanding aerosolcloud retrieval at high resolution will lead to better characterization and interpretation of long-term, global products from lower resolution (e.g.MODIS) satellite retrievals.

  1. The role of aerosols in cloud drop parameterizations and its applications in global climate models

    SciTech Connect

    Chuang, C.C.; Penner, J.E.

    1996-04-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by aerosols that serve as cloud condensation nuclei and the updraft velocity. We have developed parameterizations relating cloud drop number concentration to aerosol number and sulfate mass concentrations and used them in a coupled global aerosol/general circulation model (GCM) to estimate the indirect aerosol forcing. The global aerosol model made use of our detailed emissions inventories for the amount of particulate matter from biomass burning sources and from fossil fuel sources as well as emissions inventories of the gas-phase anthropogenic SO{sub 2}. This work is aimed at validating the coupled model with the Atmospheric Radiation Measurement (ARM) Program measurements and assessing the possible magnitude of the aerosol-induced cloud effects on climate.

  2. Role of updrafts in aerosol-cloud interactions: lidar observations of layered warm clouds over central Europe

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; Ansmann, A.; Bühl, J.; Wandinger, U.

    2014-12-01

    Twenty nine cases of layered liquid-water cloud systems were observed with dual-field-of-view (dual-FOV) Raman lidar over the polluted central European site of Leipzig, Germany, between September 2010 and September 2012. For the first time, a detailed lidar-based study of aerosol-cloud-dynamics relationship was conducted. A collocated Doppler lidar provided information on vertical velocity and thus on updraft and downdraft occurrence. The novel dual-FOV lidar permits the retrieval of the particle extinction coefficient (used as aerosol proxy just below cloud base) and cloud properties such as droplet effective radius and cloud droplet number concentration in the lower part of optically thin cloud layers. Here, we present the key results of our statistical analysis of the 2010-2012 observations. Besides a clear aerosol effect on cloud droplet number concentration in the lower part of the convectively weak cloud layers during updraft periods, meteorological effects (turbulent mixing, entrainment of dry air) were found to diminish the observable aerosol effect higher up in the clouds. The corresponding aerosol-cloud interaction (ACI) parameter based on changes in cloud droplet number concentration with aerosol loading was found to be close to 0.8 at 30-70 m above cloud base during updraft periods which points to values around 1 at cloud base (0-30 m above cloud base). Our findings are extensively compared with literature values and agree well with airborne observations. As a conclusion, ACI studies over continental sites should include vertical wind observations to avoid a~bias (too low values) in the obtained ACI results.

  3. Modeling aerosol growth by aqueous chemistry in nonprecipitating stratiform cloud

    SciTech Connect

    Ovchinnikov, Mikhail; Easter, Richard C.

    2010-07-29

    A new microphysics module based on a two-dimensional (2D) joint size distribution function representing both interstitial and cloud particles is developed and applied to studying aerosol processing in non-precipitating stratocumulus clouds. The module is implemented in a three-dimensional dynamical framework of a large-eddy simulation (LES) model and in a trajectory ensemble model (TEM). Both models are used to study the modification of sulfate aerosol by the activation - aqueous chemistry - resuspension cycle in shallow marine stratocumulus clouds. The effect of particle mixing and different size-distribution representations on modeled aerosol processing are studied in a comparison of the LES and TEM simulations with the identical microphysics treatment exposes and a comparison of TEM simulations with a 2D fixed and moving bin microphysics. Particle mixing which is represented in LES and neglected in the TEM leads to the mean relative per particle dry mass change in the TEM simulations being about 30% lower than in analogous subsample of LES domain. Particles in the final LES spectrum are mixed in from different “parcels”, some of which have experienced longer in-cloud residence times than the TEM parcels, all of which originated in the subcloud layer, have. The mean relative per particle dry mass change differs by 14% between TEM simulations with fixed and moving bin microphysics. Finally, the TEM model with the moving bin microphysics is used to evaluate assumptions about liquid water mass partitioning among activated cloud condensation nuclei (CCN) of different dry sizes. These assumptions are used in large-scale models to map the bulk aqueous chemistry sulfate production, which is largely proportional to the liquid water mass, to the changes in aerosol size distribution. It is shown that the commonly used assumptions that the droplet mass is independent of CCN size or that the droplet mass is proportional to the CCN size to the third power do not perform

  4. Dust aerosol impact on the retrieval of cloud top height from satellite observations of CALIPSO, CloudSat and MODIS

    NASA Astrophysics Data System (ADS)

    Wang, Wencai; Sheng, Lifang; Dong, Xu; Qu, Wenjun; Sun, Jilin; Jin, Hongchun; Logan, Timothy

    2017-02-01

    Dust aerosol effect on the retrievals of dusty cloud top height (DCTH) are analyzed over Northwest China using cloud products from MODerate Resolution Imaging Spectroradiometer (MODIS) on Aqua, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat for the Spring season of March-May over the years 2007-2011. An excellent agreement is found between CloudSat and CALIPSO derived DCTHs for all cloud types, suggesting that the effect of dust aerosols plays a small role in DCTHs determination for lidar and radar measurements. However, the presence of dust aerosols greatly affects the retrievals of DCTHs for MODIS compared with pure clouds and the active sensors derived results. The differences of DCTHs retrieving from CloudSat and MODIS range from -2.30 to 6.8 km. Likewise, the differences of DCTHs retrieving from CALIPSO and MODIS range from -2.66 to 6.78 km. In addition, the results show that the differences in DCTHs for active and passive sensors are dependent on cloud type. On the whole, dust aerosols have the largest effect on cloud top heights (CTH) retrieved of nimbostratus (Ns), followed by altocumulus (Ac) and altostratus (As), the last is cirrus (Ci) over Northwest China. Our results also indicate that the accuracy of MODIS-derived retrievals reduces accompanied with a decrease of height.

  5. Use of Lidar Derived Optical Extinction and Backscattering Coefficients Near Cloud Base to Explore Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonhgua; Gross, Barry; Moshary, Fred

    2016-06-01

    Combination of microwave radiometer (MWR) and mutlifilter rotating shadowband radiometer (MFRSR) measurement data together with SBDART radiative transfer model to compute cloud optical depth (COD) and cloud droplet effective radius (Reff). Quantify the first aerosol indirect effect using calculated Reff and aerosol extinction from Raman lidar measurement in urban coastal region. Illustrate comparison between ground-based and satellite retrievals. Demonstrate relationship between surface aerosol (PM2.5) loading and Reff. We also explain the sensitivity of aerosol-cloud-index (ACI) depend on the aerosol layer from cloud base height. Potential used of less noisy elastic backscattering to calculate the ACI instead of using Raman extinction. We also present comparison of elastic backscattering and Raman extinction correlation to Reff.

  6. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the Southeast Pacific ocean

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Anderson, J. R.; Toohey, D. W.; Andrejczuk, M.; Adams, A.; Lytle, M.; George, R. C.; Wood, R.; Saide, P.; Spak, S.; Zuidema, P.; Leon, D.

    2012-08-01

    The Southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles such as power plants, urban pollution and smelters on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics from seven flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution. Cloud droplets were more numerous and smaller near shore, and there was less drizzle. Higher droplet number concentration and physically thinner clouds both contributed to the smaller droplets near shore. Satellite measurements were used to show that cloud albedo was highest 500-1000 km offshore, and actually lower closer to shore due to the generally thinner clouds and lower liquid water paths there. Differences in the size

  7. Extending MODIS Deep Blue Aerosol Retrieval Coverage to Cases of Absorbing Aerosols Above Clouds: First Results

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Shinozuka, Y.; Schmid, B.

    2015-01-01

    Absorbing smoke or mineral dust aerosols above clouds (AAC) are a frequent occurrence in certain regions and seasons. Operational aerosol retrievals from sensors like MODIS omit AAC because they are designed to work only over cloud-free scenes. However, AAC can in principle be quantified by these sensors in some situations (e.g. Jethva et al., 2013; Meyer et al., 2013). We present a summary of some analyses of the potential of MODIS-like instruments for this purpose, along with two case studies using airborne observations from the Ames Airborne Tracking Sunphotometer (AATS; http://geo.arc.nasa.gov/sgg/AATS-website/) as a validation data source for a preliminary AAC algorithm applied to MODIS measurements. AAC retrievals will eventually be added to the MODIS Deep Blue (Hsu et al., 2013) processing chain.

  8. Impact of Cumulus Cloud Spacing on Landsat Atmospheric Correction and Aerosol Retrieval

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Cahalan, Robert F.; Tsay, Si-Chee; Oreopoulos, Lazaros

    2001-01-01

    A Landsat-7 ETM+ image acquired over the Southern Great Plains DoE/ARM site during the ARESE II experiment is used to study the effect of clouds on reflected radiation in clear patches of a cumulus cloud field. The result shows that the apparent path radiance in the clear patches is enhanced by nearby clouds in both band 1 (blue) and band 3 (red) of ETM+. More importantly, the magnitude of the enhancement depends on the mean cloud-free distance in the clear patches. For cloud-free distance less than 0.5 km, the enhancement of apparent path radiance is more than 0.025 and 0.015 (reflectance units) in band 1 and band 3 respectively, which corresponds to an enhancement of apparent aerosol optical thickness of approximately 0.25 and approximately 0.15. Neglecting of the 3-D cloud effect would lead to underestimates of surface reflectance of approximately 0.025 and approximately 0.015 in the blue and red band respectively, if the true aerosol optical thickness is 0.2 and the surface reflectance is 0.05. The enhancement decreases exponentially with mean cloud-free distance, reaching asymptotic values of 0.09 for band 1 and 0.027 for band 3 at a mean cloud-free distance about 2 km. The asymptotic values are slightly larger than the mean path radiances retrieved from a completely clear region -- 0.086 and 0.024 for the blue and red band respectively.

  9. Accelerating 3D radiative transfer for realistic OCO-2 cloud-aerosol scenes

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Massie, S. T.; Platnick, S. E.; Song, S.

    2014-12-01

    The recently launched NASA OCO-2 satellite is expected to provide important information about the carbon dioxide distribution in the troposphere down to Earth's surface. Among the challenges in accurately retrieving CO2 concentration from the hyperspectral observations in each of the three OCO-2 bands are cloud and aerosol impacts on the observed radiances. Preliminary studies based on idealized cloud fields have shown that they can lead to spectrally dependent radiance perturbations which differ from band to band and may lead to biases in the derived products. Since OCO-2 was inserted into the A-Train, it is only natural to capitalize on sensor synergies with other instruments, in this case on the cloud and aerosol scene context that is provided by MODIS and CALIOP. Our approach is to use cloud imagery (especially for inhomogeneous scenes) for predicting the hyperspectral observations within a collocated OCO-2 footprint and comparing with the observations, which allows a systematic assessment of the causes for biases in the retrievals themselves, and their manifestation in spectral residuals for various different cloud types and distributions. Simulating a large number of cases with line-by-line calculations using a 3D code is computationally prohibitive even on large parallel computers. Therefore, we developed a number of acceleration approaches. In this contribution, we will analyze them in terms of their speed and accuracy, using cloud fields from airborne imagery collected during a recent NASA field experiment (SEAC4RS) as proxy for different types of inhomogeneous cloud fields. The broader goal of this effort is to improve OCO-2 retrievals in the vicinity of cloud fields, and to extend the range of conditions under which the instrument will provide useful results.

  10. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo

    PubMed Central

    McCoy, Daniel T.; Burrows, Susannah M.; Wood, Robert; Grosvenor, Daniel P.; Elliott, Scott M.; Ma, Po-Lun; Rasch, Phillip J.; Hartmann, Dennis L.

    2015-01-01

    Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties—ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration Nd of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations affect not only cloud properties themselves but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. It is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed Nd. Enhanced Nd is spatially correlated with regions of high chlorophyll a, and the spatiotemporal variability in Nd is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35o to 45oS) and by organic matter in sea spray aerosol at higher latitudes (45o to 55oS). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m–2 over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere. PMID:26601216

  11. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo.

    PubMed

    McCoy, Daniel T; Burrows, Susannah M; Wood, Robert; Grosvenor, Daniel P; Elliott, Scott M; Ma, Po-Lun; Rasch, Phillip J; Hartmann, Dennis L

    2015-07-01

    Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties-ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration N d of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations affect not only cloud properties themselves but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. It is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed N d. Enhanced N d is spatially correlated with regions of high chlorophyll a, and the spatiotemporal variability in N d is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35(o) to 45(o)S) and by organic matter in sea spray aerosol at higher latitudes (45(o) to 55(o)S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m(-2) over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere.

  12. Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean Cloud Albedo

    SciTech Connect

    McCoy, Daniel; Burrows, Susannah M.; Wood, R.; Grosvenor, Daniel P.; Elliott, Scott; Ma, Po-Lun; Rasch, Philip J.; Hartmann, Dennis L.

    2015-07-17

    Small particles called aerosols act as nucleation sites for cloud drop formation, affecting clouds and cloud properties – ultimately influencing the cloud dynamics, lifetime, water path and areal extent that determine the reflectivity (albedo) of clouds. The concentration Nd of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations not only affect cloud properties themselves, but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. Here, it is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed Nd. Enhanced Nd over regions of high biological activity is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35-45°S) and by organic matter in sea spray aerosol at higher latitudes (45-55°S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m-2 over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere.

  13. 3D Aerosol-Cloud Radiative Interaction Observed in Collocated MODIS and ASTER Images of Cumulus Cloud Fields

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.

    2007-01-01

    3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.

  14. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  15. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    PubMed

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  16. Study to perform preliminary experiments to evaluate particle generation and characterization techniques for zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Katz, U.

    1982-01-01

    Methods of particle generation and characterization with regard to their applicability for experiments requiring cloud condensation nuclei (CCN) of specified properties were investigated. Since aerosol characterization is a prerequisite to assessing performance of particle generation equipment, techniques for characterizing aerosol were evaluated. Aerosol generation is discussed, and atomizer and photolytic generators including preparation of hydrosols (used with atomizers) and the evaluation of a flight version of an atomizer are studied.

  17. Characterizing the Retrieval of Cloud Optical Thickness and Droplet Effective Radius to Overlying Aerosols Using a General Inverse Theory Approach

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Pilewskie, P.; Schmidt, S.

    2013-12-01

    The upwelling shortwave irradiance measured by the airborne Solar Spectral Flux Radiometer (SSFR) flying above a cloud and aerosol layer is influenced by the properties of the cloud and aerosol particles below, just as would the radiance measured from satellite. Unlike satellite measurements, those from aircraft provide the unique capability to fly a lower-level leg above the cloud, yet below the aerosol layer, to characterize the extinction of the aerosol layer and account for its impact on the measured cloud albedo. Previous work [Coddington et al., 2010] capitalized on this opportunity to test the effects of aerosol particles (or more appropriately, the effects of neglecting aerosols in forward modeling calculations) on cloud retrievals using data obtained during the Intercontinental Chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution (INTEX-A/ITCT) study. This work showed aerosols can cause a systematic bias in the cloud retrieval and that such a bias would need to be distinguished from a true aerosol indirect effect (i.e. the brightening of a cloud due to aerosol effects on cloud microphysics) as theorized by Haywood et al., [2004]. The effects of aerosols on clouds are typically neglected in forward modeling calculations because their pervasiveness, variable microphysical properties, loading, and lifetimes makes forward modeling calculations under all possible combinations completely impractical. Using a general inverse theory technique, which propagates separate contributions from measurement and forward modeling errors into probability distributions of retrieved cloud optical thickness and droplet effective radius, we have demonstrated how the aerosol presence can be introduced as a spectral systematic error in the distributions of the forward modeling solutions. The resultant uncertainty and bias in cloud properties induced by the aerosols is identified by the shape and peak of the posteriori

  18. Measurement of Aerosol and Cloud Particles with PACS and HARP Hyperangular Imaging Polarimeters

    NASA Astrophysics Data System (ADS)

    Martins, J.; Fernandez-Borda, R.; Remer, L. A.; Sparr, L.; Buczkowski, S.; Munchak, L. A.

    2013-12-01

    PACS is new hyper-angular imaging polarimeter for aeorosol and cloud measurerents designed to meet the requirements of the proposed ACE decadal survey mission. The full PACS system consists of three wide field of view (110deg cross track) telescopes covering the UV, VNIR, and SWIR spectral ranges with angular coverage between +55 deg forward to -55deg backwards. The angular density can be selected to cover up to 100 different viewing angles at selected wavelengths. PACS_VNIR is a prototype airborne instrument designed to demonstrate PACS capability by deploying just one of the three wavelength modules of the full PACS. With wavelengths at 470, 550, 675, 760 and 875nm, PACS_VNIR flew for the first time during the PODEX experiment in January/February 2013 aboard the NASA ER-2 aircraft. PACS SWIR (1.64, 1.88, 2.1, and 2.25um) is currently under construction and should be operational in the lab by Fall/2013. PACS_ UV has been fully designed, but is not yet under construction. During the PODEX flights PACS_VNIR collected data for aerosol and clouds over variable surface types including, water, vegetation, urban areas, and snow. The data is currently being calibrated, geolocated and prepared for the inversion of geophysical parameters including water cloud size distribution and aerosol microphysical parameters. The large density of angles in PACS allows for the characterization of cloudbow features in relatively high spatial resolution in a pixel to pixel basis. This avoids the need for assumptions of cloud homogeneity over any distance. The hyperangle capability also allows detailed observation of cloud ice particles, surface characterization, and optimum selection of the number of angles desired for aerosol retrievals. The aerosol and cloud retrieval algorithms under development for the retrieval of particle microphysical properties from the PACS data will be discussed in this presentation. As an extension of the PACS concept we are currently developing the HARP (Hyper

  19. 17 years of aerosol and clouds from the ATSR Series of Instruments

    NASA Astrophysics Data System (ADS)

    Poulsen, C. A.

    2015-12-01

    Aerosols play a significant role in Earth's climate by scattering and absorbing incoming sunlight and affecting the formation and radiative properties of clouds. The extent to which aerosols affect cloud remains one of the largest sources of uncertainty amongst all influences on climate change. Now, a new comprehensive datasets has been developed under the ESA Climate Change Initiative (CCI) programme to quantify how changes in aerosol levels affect these clouds. The unique dataset is constructed from the Optimal Retrieval of Aerosol and Cloud (ORAC) algorithm used in (A)ATSR (Along Track Scanning Radiometer) retrievals of aerosols generated in the Aerosol CCI and the CC4CL ( Community Code for CLimate) for cloud retrieval in the Cloud CCI. The ATSR instrument is a dual viewing instrument with on board visible and infra red calibration systems making it an ideal instrument to study trends of Aerosol and Clouds and their interactions. The data set begins in 1995 and ends in 2012. A new instrument in the series SLSTR(Sea and Land Surface Temperature Radiometer) will be launch in 2015. The Aerosol and Clouds are retreived using similar algorithms to maximise the consistency of the results These state-of-the-art retrievals have been merged together to quantify the susceptibility of cloud properties to changes in aerosol concentration. Aerosol-cloud susceptibilities are calculated from several thousand samples in each 1x1 degree globally gridded region. Two-D histograms of the aerosol and cloud properties are also included to facilitate seamless comparisons between other satellite and modelling data sets. The analysis of these two long term records will be discussed individually and the initial comparisons between these new joint products and models will be presented.

  20. Black carbon mixing state impacts on cloud microphysical properties: effects of aerosol plume and environmental conditions

    SciTech Connect

    Ching, Ping Pui; Riemer, Nicole; West, Matthew

    2016-05-27

    Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study the particle-resolved aerosol model PartMC-MOSAIC was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcel cooling rate ("parcel effect"). It shows that the response of cloud droplet number concentration to changes in BC emissions depends on the BC mixing state. When the aerosol population contains mainly aged BC particles an increase in BC emission results in increasing cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contains mainly fresh BC particles they act as sinks for condensable gaseous species, resulting in a decrease in cloud droplet number concentration as BC emissions are increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state, which is often done in aerosol models. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged black carbon (BC) mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.

  1. New approaches to quantifying aerosol influence on the cloud radiative effect.

    PubMed

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S; Carslaw, Kenneth S; Schmidt, K Sebastian

    2016-05-24

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.

  2. Microphysical Effects Determine Macrophysical Response for Aerosol Impacts on Deep Convective Clouds

    SciTech Connect

    Fan, Jiwen; Leung, Lai-Yung R.; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation and energy and hydrological cycle of our climate system. Anthropogenic and natural aerosol particles can influence DCCs through changes in cloud properties, precipitation regimes, and radiation balance. Modeling studies have reported both invigoration and suppression of DCCs by aerosols, but none has fully quantified aerosol impacts on convection life cycle and radiative forcing. By conducting multiple month-long cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macro- and micro-physical properties of summer convective clouds in the tropics and mid-latitudes, this study provides the first comprehensive look at how aerosols affect cloud cover, cloud top height (CTH), and radiative forcing. Observations validate these simulation results. We find that microphysical aerosol effects contribute predominantly to increased cloud cover and CTH by inducing larger amount of smaller but longer lasting ice particles in the stratiform/anvils of DCCs with dynamical aerosol effects contributing at most ~ 1/4 of the total increase of cloud cover. The overall effect is a radiative warming in the atmosphere (3 to 5 W m-2) with strong surface cooling (-5 to -8 W m-2). Herein we clearly identified mechanisms more important than and additional to the invigoration effects hypothesized previously that explain the consistent signatures of increased cloud tops area and height by aerosols in DCCs revealed by observations.

  3. New approaches to quantifying aerosol influence on the cloud radiative effect

    NASA Astrophysics Data System (ADS)

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S.; Carslaw, Kenneth S.; Schmidt, K. Sebastian

    2016-05-01

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.

  4. New approaches to quantifying aerosol influence on the cloud radiative effect

    DOE PAGES

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; ...

    2016-02-01

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution tomore » represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.« less

  5. First Transmitted Hyperspectral Light Measurements and Cloud Properties from Recent Field Campaign Sampling Clouds Under Biomass Burning Aerosol

    NASA Technical Reports Server (NTRS)

    Leblanc, S.; Redemann, Jens; Shinozuka, Yohei; Flynn, Connor J.; Segal Rozenhaimer, Michal; Kacenelenbogen, Meloe Shenandoah; Pistone, Kristina Marie Myers; Schmidt, Sebastian; Cochrane, Sabrina

    2016-01-01

    We present a first view of data collected during a recent field campaign aimed at measuring biomass burning aerosol above clouds from airborne platforms. The NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign recently concluded its first deployment sampling clouds and overlying aerosol layer from the airborne platform NASA P3. We present results from the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), in conjunction with the Solar Spectral Flux Radiometers (SSFR). During this deployment, 4STAR sampled transmitted solar light either via direct solar beam measurements and scattered light measurements, enabling the measurement of aerosol optical thickness and the retrieval of information on aerosol particles in addition to overlying cloud properties. We focus on the zenith-viewing scattered light measurements, which are used to retrieve cloud optical thickness, effective radius, and thermodynamic phase of clouds under a biomass burning layer. The biomass burning aerosol layer present above the clouds is the cause of potential bias in retrieved cloud optical depth and effective radius from satellites. We contrast the typical reflection based approach used by satellites to the transmission based approach used by 4STAR during ORACLES for retrieving cloud properties. It is suspected that these differing approaches will yield a change in retrieved properties since light transmitted through clouds is sensitive to a different cloud volume than reflected light at cloud top. We offer a preliminary view of the implications of these differences in sampling volumes to the calculation of cloud radiative effects (CRE).

  6. Study of Aerosol/Cloud/Radiation Interactions over the ARM SGP Site

    SciTech Connect

    Chuang, C; Chin, S

    2006-03-14

    While considerable advances in the understanding of atmospheric processes and feedbacks in the climate system have led to a better representation of these mechanisms in general circulation models (GCMs), the greatest uncertainty in predictability of future climate arises from clouds and their interactions with radiation. To explore this uncertainty, cloud resolving model has been evolved as one of the main tools for understanding and testing cloud feedback processes in climate models, whereas the indirect effects of aerosols are closely linked with cloud feedback processes. In this study we incorporated an existing parameterization of cloud drop concentration (Chuang et al., 2002a) together with aerosol prediction from a global chemistry/aerosol model (IMPACT) (Rotman et al., 2004; Chuang et al., 2002b; Chuang et al., 2005) into LLNL cloud resolving model (Chin, 1994; Chin et al., 1995; Chin and Wilhelmson, 1998) to investigate the effects of aerosols on cloud/precipitation properties and the resulting radiation fields over the Southern Great Plains.

  7. Chemical analysis of aerosol in the Venusian cloud layer by reaction gas chromatography on board the Vega landers

    NASA Technical Reports Server (NTRS)

    Gelman, B. G.; Drozdov, Y. V.; Melnikov, V. V.; Rotin, V. A.; Khokhlov, V. N.; Bondarev, V. B.; Dolnikov, G. G.; Dyachkov, A. V.; Nenarokov, D. F.; Mukhin, L. M.

    1986-01-01

    The experiment on sulfuric acid aerosol determination in the Venusian cloud layer on board the Vega landers is described. An average content of sulfuric acid of approximately 1 mg/cu m was found for the samples taken from the atmosphere at heights from 63 to 48 km and analyzed with the SIGMA-3 chromatograph. Sulfur dioxide (SO2) was revealed in the gaseous sample at the height of 48 km. From the experimental results and blank run measurements, a suggestion is made that the Venusian cloud layer aerosol consists of more complicated particles than the sulfuric acid water solution does.

  8. Ship-Track Clouds, Aerosol, and Ship Dynamic Effects; A Climate Perspective from Ship-Based Measurements

    SciTech Connect

    Porch, W.M.

    1998-10-13

    Ship-track clouds are marine boundary layer clouds that form behind ocean ships and are observed from satellites in the visible and near infrared. Ship-track clouds provide a rare opportunity to connect aerosol cloud condensation nuclei (CCN) emissions and observable changes in marine stratiform clouds. A very small change in the reflectivity of these eastern Pacific and Atlantic clouds (about 4%) provides a climate feedback of similar magnitude to doubling CO{sub 2} (increasing cloud reflectivity corresponds to global cooling). The Department of Energy sponsored research from 1991 to 1995 to study ship-track clouds including two ocean-based experiments in the summers of 1991 and 1994. These experiments showed that ship-track cloud properties were often more complex those related to a reduction of droplet size with an increase in number associated with increasing CCN from the ship's plume. The clouds showed evidence of morphological changes more likely to be associated with cloud dynamic effects either initiated by the increased CCN or directly by the ship's heat output or turbulent air wake. The fact that marine stratiform clouds, that are susceptible to ship track formation, are starved for both CCN and convective turbulence complicates the separation of the two effects.

  9. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    SciTech Connect

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; Lin, Yanluan; Morcrette, J. -J.; Mulcahay, Jane; Saide, Pablo; Spak, S. N.; Yang, Qing

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar to observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL

  10. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    DOE PAGES

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; ...

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar tomore » observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds

  11. Ground-based Network and Supersite Measurements for Studying Aerosol Properties and Aerosol-Cloud Interactions

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations contain large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. The development and deployment of AERONET (AErosol RObotic NETwork) sunphotometer network and SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile supersite are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To characterize the regional natural and anthropogenic aerosols, AERONET is an internationally federated network of unique sunphotometry that contains more than 250 permanent sites worldwide. Since 1993, there are more than 480 million aerosol optical depth observations and about 15 sites have continuous records longer than 10 years for annual/seasonal trend analyses. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instrument into three categories: flux radiometer, radiance sensor and in-situ probe. Through participation in many satellite remote-sensing/retrieval and validation projects over eight years, SMART-COMMIT have gradually refine( and been proven vital for field deployment. In this paper, we will demonstrate the

  12. Study of clouds and dust aerosols in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Chen-Chen, H.; Pérez-Hoyos, S.; Sánchez-Lavega, A.

    2017-03-01

    Observation of Mars’ atmosphere has evolved to a state of permanent monitoring of its main components. In this work, we focus on the study of clouds and dust aerosols in the Martian atmosphere by means of spacecraft observations, particularly VMC on-board Mars Express, and surface vehicles, mainly cameras on the MSL rover. Orbiting instrument observations provide a general view of the planet, which allows covering a huge area in a short time. This is very interesting, for example, to study global dust events in Mars. On the other hand, ground-based instruments are better suited to analyse local properties of dust particles from in-situ acquired first hand data.

  13. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2012-01-01

    Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low clean concentration and a high dirty concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.

  14. Air-Sea-Aerosol-Cloud Interactions

    DTIC Science & Technology

    2008-09-30

    and there is no replacement for them in the market. We modified the Campbell Scientific KH2O absorption krypton hygrometer by mounting its source and...modified Krypton hygrometer and the LI-COR 7500 used in a closed path configuration inside the nose section (to avoid wetting of the source and detector...Krypton hygrometer (blue) and the LI-COR 7500 used in closed path mode (green). The data are from the 2008 POST experiment. 5

  15. Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years.

    PubMed

    Patil, Nitin; Dave, Prashant; Venkataraman, Chandra

    2017-03-24

    Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis.

  16. Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years

    NASA Astrophysics Data System (ADS)

    Patil, Nitin; Dave, Prashant; Venkataraman, Chandra

    2017-03-01

    Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis.

  17. Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years

    PubMed Central

    Patil, Nitin; Dave, Prashant; Venkataraman, Chandra

    2017-01-01

    Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis. PMID:28337991

  18. Effect of aerosol number concentration on cloud droplet dispersion: An LES study and implications for aerosol indirect forcing

    NASA Astrophysics Data System (ADS)

    Lu, M.; Seinfeld, J. H.

    2005-12-01

    Through three-dimensional LES simulations of marine stratocumulus we explore the factors that control the cloud spectral relative dispersion (ratio of cloud droplet spectral width to the mean radius of the distribution) as a function of aerosol number concentration and the extent to which the relative dispersion either enhances or mitigates the Twomey effect. We find that relative dispersion decreases with increasing aerosol number concentration (for aerosol number concentrations less than about 1000 cm- 3) because smaller droplets resulting from higher aerosol number concentrations inhibit precipitation and lead to: (1) less spectral broadening by suppressed collision and coalescence processes; and (2) more spectral narrowing by droplet condensational growth at higher updraft velocity, because reduced drizzle latent heating at cloud top results in increased boundary layer turbulent kinetic energy production by buoyancy and thereby stronger turbulence. Increased spectral broadening owing to increased cloud-top entrainment mixing, also as a result of increased boundary layer turbulence, is relatively insignificant compared with (1) and (2). The coefficient k, an important parameter that relates cloud droplet effective radius and volume mean radius in large-scale models, is a function of skewness and relative dispersion of the distribution and is negatively correlated with relative dispersion. Increasing k with increasing aerosol number concentration leads to maximum enhancement of the cloud susceptibility (the change of cloud optical depth due to change of cloud droplet number concentration) over that attributable to the Twomey effect alone by about 4.2% and 39% for simulated FIRE and ASTEX cases, respectively.

  19. Impact of Asian aerosols on air quality over the United States: A perspective from aerosol-cloud-radiation coupling

    NASA Astrophysics Data System (ADS)

    Tao, Z.; Yu, H.; Chin, M.

    2013-12-01

    It has well been established, through satellite/ground observations, that dust and aerosols from various Asian sources can travel across the Pacific and reach North America (NA) at least on episode bases. Once reaching NA, these inflow aerosols would compete with local emissions to influence atmospheric composition and air quality over the United States (US). The previous studies, typically based on one or multiple satellite measurements in combination with global/regional model simulations, suggest that the impact of Asian dust/aerosols on US air quality tend to be small since most inflow aerosols stay aloft. On the other hand, aerosols affect many key meteorological processes that will ultimately channel down to impact air quality. Aerosols absorb and scatter solar radiation that change the atmospheric stability, thus temperature, wind, and planetary boundary layer structure that would directly alter air quality. Aerosols can serve as cloud condensation nuclei and ice nuclei to modify cloud properties and precipitation that would also affect aerosol removal and concentration. This indirect impact of Asian aerosol inflow on US air quality may be substantial and need to be investigated. This study employs the NASA Unified WRF (NU-WRF) to address the question from the aerosol-radiation-cloud interaction perspective. The simulation period was selected from April to June of 2010 during which the Asian dust continuously reached NA based on CALIPSO satellite observation. The preliminary results show that the directly-transported Asian aerosol increases surface PM2.5 concentration by less than 2 μg/m3 over the west coast areas of US, and the aerosol-radiation-cloud feedback has a profound effect on air quality over the central to eastern US. A more detailed analysis links this finding to a series of meteorological conditions modified by aerosol effects.

  20. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean.

    PubMed

    Kaufman, Yoram J; Koren, Ilan; Remer, Lorraine A; Rosenfeld, Daniel; Rudich, Yinon

    2005-08-09

    Clouds developing in a polluted environment tend to have more numerous but smaller droplets. This property may lead to suppression of precipitation and longer cloud lifetime. Absorption of incoming solar radiation by aerosols, however, can reduce the cloud cover. The net aerosol effect on clouds is currently the largest uncertainty in evaluating climate forcing. Using large statistics of 1-km resolution MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data, we study the aerosol effect on shallow water clouds, separately in four regions of the Atlantic Ocean, for June through August 2002: marine aerosol (30 degrees S-20 degrees S), smoke (20 degrees S-5 degrees N), mineral dust (5 degrees N-25 degrees N), and pollution aerosols (30 degrees N- 60 degrees N). All four aerosol types affect the cloud droplet size. We also find that the coverage of shallow clouds increases in all of the cases by 0.2-0.4 from clean to polluted, smoky, or dusty conditions. Covariability analysis with meteorological parameters associates most of this change to aerosol, for each of the four regions and 3 months studied. In our opinion, there is low probability that the net aerosol effect can be explained by coincidental, unresolved, changes in meteorological conditions that also accumulate aerosol, or errors in the data, although further in situ measurements and model developments are needed to fully understand the processes. The radiative effect at the top of the atmosphere incurred by the aerosol effect on the shallow clouds and solar radiation is -11 +/- 3 W/m2 for the 3 months studied; 2/3 of it is due to the aerosol-induced cloud changes, and 1/3 is due to aerosol direct radiative effect.

  1. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean

    PubMed Central

    Kaufman, Yoram J.; Koren, Ilan; Remer, Lorraine A.; Rosenfeld, Daniel; Rudich, Yinon

    2005-01-01

    Clouds developing in a polluted environment tend to have more numerous but smaller droplets. This property may lead to suppression of precipitation and longer cloud lifetime. Absorption of incoming solar radiation by aerosols, however, can reduce the cloud cover. The net aerosol effect on clouds is currently the largest uncertainty in evaluating climate forcing. Using large statistics of 1-km resolution MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data, we study the aerosol effect on shallow water clouds, separately in four regions of the Atlantic Ocean, for June through August 2002: marine aerosol (30°S–20°S), smoke (20°S–5°N), mineral dust (5°N–25°N), and pollution aerosols (30°N– 60°N). All four aerosol types affect the cloud droplet size. We also find that the coverage of shallow clouds increases in all of the cases by 0.2–0.4 from clean to polluted, smoky, or dusty conditions. Covariability analysis with meteorological parameters associates most of this change to aerosol, for each of the four regions and 3 months studied. In our opinion, there is low probability that the net aerosol effect can be explained by coincidental, unresolved, changes in meteorological conditions that also accumulate aerosol, or errors in the data, although further in situ measurements and model developments are needed to fully understand the processes. The radiative effect at the top of the atmosphere incurred by the aerosol effect on the shallow clouds and solar radiation is –11 ± 3 W/m2 for the 3 months studied; 2/3 of it is due to the aerosol-induced cloud changes, and 1/3 is due to aerosol direct radiative effect. PMID:16076949

  2. Simultaneous Retrieval of Aerosol and Cloud Properties During the MILAGRO Field Campaign

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, K.; Cairns, B.; Redemann, J.; Bergstrom, R. W.; Stohl, A.

    2011-01-01

    Estimation of Direct Climate Forcing (DCF) due to aerosols in cloudy areas has historically been a difficult task, mainly because of a lack of appropriate measurements. Recently, passive remote sensing instruments have been developed that have the potential to retrieve both cloud and aerosol properties using polarimetric, multiple view angle, and multi spectral observations, and therefore determine DCF from aerosols above clouds. One such instrument is the Research Scanning Polarimeter (RSP), an airborne prototype of a sensor on the NASA Glory satellite, which unfortunately failed to reach orbit during its launch in March of 2011. In the spring of 2006, the RSP was deployed on an aircraft based in Veracruz, Mexico, as part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign. On 13 March, the RSP over flew an aerosol layer lofted above a low altitude marine stratocumulus cloud close to shore in the Gulf of Mexico. We investigate the feasibility of retrieving aerosol properties over clouds using these data. Our approach is to first determine cloud droplet size distribution using the angular location of the cloud bow and other features in the polarized reflectance. The selected cloud was then used in a multiple scattering radiative transfer model optimization to determine the aerosol optical properties and fine tune the cloud size distribution. In this scene, we were able to retrieve aerosol optical depth, the fine mode aerosol size distribution parameters and the cloud droplet size distribution parameters to a degree of accuracy required for climate modeling. This required assumptions about the aerosol vertical distribution and the optical properties of the coarse aerosol size mode. A sensitivity study was also performed to place this study in the context of future systematic scanning polarimeter observations, which found that the aerosol complex refractive index can also be observed accurately if the aerosol optical depth is

  3. Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data

    NASA Technical Reports Server (NTRS)

    Su, Wenying; Schuster, Gregory L.; Loeb, Norman G.; Rogers, Raymond R.; Ferrare, Richard A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.

    2008-01-01

    Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these limitations do not exist in High Spectral Resolution Lidar (HSRL) observations; for instance, HSRL observations are not a ected by cloud adjacency effects, are less prone to cloud contamination, and offer accurate aerosol property measurements (backscatter coefficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,and aerosol optical depth) at a neospatial resolution (less than 100 m) in the vicinity of clouds. Hence, the HSRL provides an important dataset for studying aerosol and cloud interaction. In this study, we statistically analyze aircraft-based HSRL profiles according to their distance from the nearest cloud, assuring that all profile comparisons are subject to the same large-scale meteorological conditions. Our results indicate that AODs from HSRL are about 17% higher in the proximity of clouds (approximately 100 m) than far away from clouds (4.5 km), which is much smaller than the reported cloud 3D effect on AOD retrievals. The backscatter and extinction coefficients also systematically increase in the vicinity of clouds, which can be explained by aerosol swelling in the high relative humidity (RH) environment and/or aerosol growth through in cloud processing (albeit not conclusively). On the other hand, we do not observe a systematic trend in lidar ratio; we hypothesize that this is caused by the opposite effects of aerosol swelling and aerosol in-cloud processing on the lidar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does not show a consistent trend because of the complicated relationship between BAE and RH. We demonstrate that BAE should not be used as a surrogate for Angstrom

  4. Aerosol-Induced Changes of Convective Cloud Anvils Produce Strong Climate Warming

    NASA Technical Reports Server (NTRS)

    Koren, I.; Remer, L. A.; Altaratz, O.; Martins, J. V.; Davidi, A.

    2010-01-01

    The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(exp-2) . Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvi1 clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (r), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds; increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  5. Efficacy of Aerosol-Cloud Interactions Under Varying Meteorological Conditions: Southern Great Plains Vs. Pt. Reyes

    SciTech Connect

    Dunn, M.; Schwartz, S.; Kim, B.-G.; Miller, M.; Liu, Y.; Min, Q.

    2008-03-10

    Several studies have demonstrated that cloud dynamical processes such as entrainment mixing may be the primary modulator of cloud optical properties in certain situations. For example, entrainment of dry air alters the cloud drop size distribution by enhancing drop evaporation. However, the effect of entrainment mixing and other forms or turbulence is still quite uncertain. Although these factors and aerosol-cloud interactions should be considered together when evaluating the efficacy of aerosol indirect effects, the underlying mechanisms appear to be dependent upon each other. In addition, accounting for them is impossible with the current understanding of aerosol indirect effect. Therefore, careful objective screening and analysis of observations are needed to determine the extent to which mixing related properties affect cloud optical properties, apart from the aerosol first indirect effect. This study addresses the role of aerosol-cloud interactions in the context of varying meteorological conditions based on ARM data obtained at the Southern Great Plains (SGP) site in Oklahoma and at Pt. Reyes, California. Previous analyses of the continental stratiform clouds at the SGP site have shown that the thicker clouds of high liquid water path (LWP) tend to contain sub adiabatic LWPs. These sub adiabatic LWPs, which result from active mixing processes, correspond to a lower susceptibility of the clouds to aerosol-cloud interactions, and, hence, to reduced aerosol indirect effects. In contrast, the consistently steady and thin maritime stratus clouds observed at Pt. Reyes are much closer to adiabatic. These clouds provide an excellent benchmark for the study of the aerosol influence on modified marine clouds relative to continental clouds, since they form in a much more homogeneous meteorological environment than those at the continental site.

  6. Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report

    SciTech Connect

    Wang, J.; Martin, S. T.; Kleinman, L.; Thalman, R. M.

    2016-03-01

    Aerosol indirect effects, which represent the impact of aerosols on climate through influencing the properties of clouds, remain one of the main uncertainties in climate predictions (Stocker et al. 2013). Reducing this large uncertainty requires both improved understanding and representation of aerosol properties and processes in climate models, including the cloud activation properties of aerosols. The Atmospheric System Research (ASR) science program plan of January 2010 states that: “A key requirement for simulating aerosol-cloud interactions is the ability to calculate cloud condensation nuclei and ice nuclei (CCN and IN, respectively) concentrations as a function of supersaturation from the chemical and microphysical properties of the aerosol.” The Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/15) study seeks to understand how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity (Manaus)—in particular, the differences in cloud-aerosol-precipitation interactions between polluted and pristine conditions. One key question of GoAmazon2014/5 is: “What is the influence of the Manaus pollution plume on the cloud condensation nuclei (CCN) activities of the aerosol particles and the secondary organic material in the particles?” To address this question, we measured size-resolved CCN spectra, a critical measurement for GoAmazon2014/5.

  7. Performance of the Lidar Design and Data Algorithms for the GLAS Global Cloud and Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Palm, Stephen P.; Hlavka, Dennis L.; Hart, William D.

    2007-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in early 2003 is the first polar orbiting satellite lidar. The instrument design includes high performance observations of the distribution and optical scattering cross sections of atmospheric clouds and aerosol. The backscatter lidar operates at two wavelengths, 532 and 1064 nm. For the atmospheric cloud and aerosol measurements, the 532 nm channel was designed for ultra high efficiency with solid state photon counting detectors and etalon filtering. Data processing algorithms were developed to calibrate and normalize the signals and produce global scale data products of the height distribution of cloud and aerosol layers and their optical depths and particulate scattering cross sections up to the limit of optical attenuation. The paper will concentrate on the effectiveness and limitations of the lidar channel design and data product algorithms. Both atmospheric receiver channels meet and exceed their design goals. Geiger Mode Avalanche Photodiode modules are used for the 532 nm signal. The operational experience is that some signal artifacts and non-linearity require correction in data processing. As with all photon counting detectors, a pulse-pile-up calibration is an important aspect of the measurement. Additional signal corrections were found to be necessary relating to correction of a saturation signal-run-on effect and also for daytime data, a small range dependent variation in the responsivity. It was possible to correct for these signal errors in data processing and achieve the requirement to accurately profile aerosol and cloud cross section down to 10-7 llm-sr. The analysis procedure employs a precise calibration against molecular scattering in the mid-stratosphere. The 1064 nm channel detection employs a high-speed analog APD for surface and atmospheric measurements where the detection sensitivity is limited by detector noise and is over an order of magnitude less than at 532 nm. A unique feature of

  8. How much does sea spray aerosol organic matter impact clouds and radiation? Sensitivity studies in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Burrows, S. M.; Liu, X.; Elliott, S.; Easter, R. C.; Singh, B.; Rasch, P. J.

    2015-12-01

    Submicron marine aerosol particles are frequently observed to contain substantial fractions of organic material, hypothesized to enter the atmosphere as part of the primary sea spray aerosol formed through bubble bursting. This organic matter in sea spray aerosol may affect cloud condensation nuclei and ice nuclei concentrations in the atmosphere, particularly in remote marine regions. Members of our team have developed a new, mechanistic representation of the enrichment of sea spray aerosol with organic matter, the OCEANFILMS parameterization (Burrows et al., 2014). This new representation uses fields from an ocean biogeochemistry model to predict properties of the emitted aerosol. We have recently implemented the OCEANFILMS representation of sea spray aerosol composition into the Community Atmosphere Model (CAM), and performed sensitivity experiments and comparisons with alternate formulations. Early results from these sensitivity simulations will be shown, including impacts on aerosols, clouds, and radiation. References: Burrows, S. M., Ogunro, O., Frossard, A. A., Russell, L. M., Rasch, P. J., and Elliott, S. M.: A physically based framework for modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria, Atmos. Chem. Phys., 14, 13601-13629, doi:10.5194/acp-14-13601-2014, 2014.

  9. The Dependence of Cloud Particle Size on Non-Aerosol-Loading Related Variables

    SciTech Connect

    Shao, H.; Liu, G.

    2005-03-18

    An enhanced concentration of aerosol may increase the number of cloud drops by providing more cloud condensation nuclei (CCN), which in turn results in a higher cloud albedo at a constant cloud liquid water path. This process is often referred to as the aerosol indirect effect (AIE). Many in situ and remote sensing observations support this hypothesis (Ramanathan et al. 2001). However, satellite observed relations between aerosol concentration and cloud drop size are not always in agreement with the AIE. Based on global analysis of cloud effective radius (r{sub e}) and aerosol number concentration (N{sub a}) derived from satellite data, Sekiguchi et al. (2003) found that the correlations between the two variables can be either negative, or positive, or none, depending on the location of the clouds. They discovered that significantly negative r{sub e} - N{sub a} correlation can only be identified along coastal regions of the continents where abundant continental aerosols inflow from land, whereas Feingold et al. (2001) found that the response of r{sub e} to aerosol loading is the greatest in the region where aerosol optical depth ({tau}{sub a}) is the smallest. The reason for the discrepancy is likely due to the variations in cloud macroscopic properties such as geometrical thickness (Brenguier et al. 2003). Since r{sub e} is modified not only by aerosol but also by cloud geometrical thickness (H), the correlation between re and {tau}{sub a} actually reflects both the aerosol indirect effect and dependence of H. Therefore, discussing AIE based on the r{sub e}-{tau}{sub a} correlation without taking into account variations in cloud geometrical thickness may be misleading. This paper is motivated to extract aerosols' effect from overall effects using the independent measurements of cloud geometrical thickness, {tau}{sub a} and r{sub e}.

  10. The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE

    SciTech Connect

    Jackson, Robert C.; McFarquhar, Greg; Korolev, Alexei; Earle, Michael; Liu, Peter S.; Lawson, R. P.; Brooks, Sarah D.; Wolde, Mengistu; Laskin, Alexander; Freer, Matthew

    2012-08-14

    Cloud and aerosol data acquired by the National Research Council of Canada (NRC) Convair-580 aircraft in, above, and below single-layer arctic stratocumulus cloud during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 were used to test three aerosol indirect effects hypothesized to act in mixed-phase clouds: the riming indirect effect, the glaciation indirect effect, and the cold second indirect effect. The data showed a correlation of R= 0.75 between liquid drop number concentration, Nliq, inside cloud and ambient aerosol number concentration NPCASP below cloud. This, combined with increasing liquid water content LWC with height above cloud base and the nearly constant profile of Nliq, suggested that liquid drops were nucleated from aerosol at cloud base. No strong evidence of a riming indirect effect was observed, but a strong correlation of R = 0.69 between ice crystal number concentration Ni and NPCASP above cloud was noted. Increases in ice nuclei (IN) concentration with NPCASP above cloud combined with the subadiabatic LWC profiles suggest possible mixing of IN from cloud top consistent with the glaciation indirect effect. The higher Nice and lower effective radius rel for the more polluted ISDAC cases compared to data collected in cleaner single-layer stratocumulus conditions during the Mixed-Phase Arctic Cloud Experiment is consistent with the operation of the cold second indirect effect. However, more data in a wider variety of meteorological and surface conditions, with greater variations in aerosol forcing, are required to identify the dominant aerosol forcing mechanisms in mixed-phase arctic clouds.

  11. A State-of-the-Art Experimental Laboratory for Cloud and Cloud-Aerosol Interaction Research

    NASA Technical Reports Server (NTRS)

    Fremaux, Charles M.; Bushnell, Dennis M.

    2011-01-01

    The state of the art for predicting climate changes due to increasing greenhouse gasses in the atmosphere with high accuracy is problematic. Confidence intervals on current long-term predictions (on the order of 100 years) are so large that the ability to make informed decisions with regard to optimum strategies for mitigating both the causes of climate change and its effects is in doubt. There is ample evidence in the literature that large sources of uncertainty in current climate models are various aerosol effects. One approach to furthering discovery as well as modeling, and verification and validation (V&V) for cloud-aerosol interactions is use of a large "cloud chamber" in a complimentary role to in-situ and remote sensing measurement approaches. Reproducing all of the complex interactions is not feasible, but it is suggested that the physics of certain key processes can be established in a laboratory setting so that relevant fluid-dynamic and cloud-aerosol phenomena can be experimentally simulated and studied in a controlled environment. This report presents a high-level argument for significantly improved laboratory capability, and is meant to serve as a starting point for stimulating discussion within the climate science and other interested communities.

  12. Distinct Impacts of Aerosols on an Evolving Continental Cloud Complex during the RACORO Field Campaign

    DOE PAGES

    Lin, Yun; Wang, Yuan; Pan, Bowen; ...

    2016-08-26

    In this study, a continental cloud complex, consisting of shallow cumuli, a deep convective cloud (DCC), and stratus, is simulated by a cloud-resolving Weather Research and Forecasting Model to investigate the aerosol microphysical effect (AME) and aerosol radiative effect (ARE) on the various cloud regimes and their transitions during the Department of Energy Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) campaign. Under an elevated aerosol loading with AME only, a reduced cloudiness for the shallow cumuli and stratus resulted from more droplet evaporation competing with suppressed precipitation, but an enhanced cloudinessmore » for the DCC is attributed to more condensation. With the inclusion of ARE, the shallow cumuli are suppressed owing to the thermodynamic effects of light-absorbing aerosols. The responses of DCC and stratus to aerosols are monotonic with AME only but nonmonotonic with both AME and ARE. The DCC is invigorated because of favorable convection and moisture conditions at night induced by daytime ARE, via the so-called aerosol-enhanced conditional instability mechanism. Finally, the results reveal that the overall aerosol effects on the cloud complex are distinct from the individual cloud types, highlighting that the aerosol–cloud interactions for diverse cloud regimes and their transitions need to be evaluated to assess the regional and global climatic impacts.« less

  13. Distinct Impacts of Aerosols on an Evolving Continental Cloud Complex during the RACORO Field Campaign

    SciTech Connect

    Lin, Yun; Wang, Yuan; Pan, Bowen; Hu, Jiaxi; Liu, Yangang; Zhang, Renyi

    2016-08-26

    In this study, a continental cloud complex, consisting of shallow cumuli, a deep convective cloud (DCC), and stratus, is simulated by a cloud-resolving Weather Research and Forecasting Model to investigate the aerosol microphysical effect (AME) and aerosol radiative effect (ARE) on the various cloud regimes and their transitions during the Department of Energy Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) campaign. Under an elevated aerosol loading with AME only, a reduced cloudiness for the shallow cumuli and stratus resulted from more droplet evaporation competing with suppressed precipitation, but an enhanced cloudiness for the DCC is attributed to more condensation. With the inclusion of ARE, the shallow cumuli are suppressed owing to the thermodynamic effects of light-absorbing aerosols. The responses of DCC and stratus to aerosols are monotonic with AME only but nonmonotonic with both AME and ARE. The DCC is invigorated because of favorable convection and moisture conditions at night induced by daytime ARE, via the so-called aerosol-enhanced conditional instability mechanism. Finally, the results reveal that the overall aerosol effects on the cloud complex are distinct from the individual cloud types, highlighting that the aerosol–cloud interactions for diverse cloud regimes and their transitions need to be evaluated to assess the regional and global climatic impacts.

  14. Cloud droplet activity changes of soot aerosol upon smog chamber ageing

    NASA Astrophysics Data System (ADS)

    Wittbom, C.; Eriksson, A. C.; Rissler, J.; Carlsson, J. E.; Roldin, P.; Nordin, E. Z.; Nilsson, P. T.; Swietlicki, E.; Pagels, J. H.; Svenningsson, B.

    2014-09-01

    Particles containing soot, or black carbon, are generally considered to contribute to global warming. However, large uncertainties remain in the net climate forcing resulting from anthropogenic emissions of black carbon (BC), to a large extent due to the fact that BC is co-emitted with gases and primary particles, both organic and inorganic, and subject to atmospheric ageing processes. In this study, diesel exhaust particles and particles from a flame soot generator spiked with light aromatic secondary organic aerosol (SOA) precursors were processed by UV radiation in a 6 m3 Teflon chamber in the presence of NOx. The time-dependent changes of the soot nanoparticle properties were characterised using a Cloud Condensation Nuclei Counter, an Aerosol Particle Mass Analyzer and a Soot Particle Aerosol Mass Spectrometer. The results show that freshly emitted soot particles do not activate into cloud droplets at supersaturations ≤2%, i.e. the BC core coated with primary organic aerosol (POA) from the exhaust is limited in hygroscopicity. Before the onset of UV radiation it is unlikely that any substantial SOA formation is taking place. An immediate change in cloud-activation properties occurs at the onset of UV exposure. This change in hygroscopicity is likely attributed to SOA formed from intermediate volatility organic compounds (IVOCs) in the diesel engine exhaust. The change of cloud condensation nuclei (CCN) properties at the onset of UV radiation implies that the lifetime of soot particles in the atmosphere is affected by the access to sunlight, which differs between latitudes. The ageing of soot particles progressively enhances their ability to act as cloud condensation nuclei, due to changes in: (I) organic fraction of the particle, (II) chemical properties of this fraction (e.g. primary or secondary organic aerosol), (III) particle size, and (IV) particle morphology. Applying κ-Köhler theory, using a κSOA value of 0.13 (derived from independent input

  15. Aerosol-cloud interactions studied with the chemistry-climate model EMAC

    NASA Astrophysics Data System (ADS)

    Chang, D. Y.; Tost, H.; Steil, B.; Lelieveld, J.

    2014-08-01

    This study uses the EMAC atmospheric chemistry-climate model to simulate cloud properties and estimate cloud radiative effects induced by aerosols. We have tested two prognostic cloud droplet nucleation parameterizations, i.e., the standard STN (osmotic coefficient model) and hybrid (HYB, replacing the osmotic coefficient by the κ hygroscopicity parameter) schemes to calculate aerosol hygroscopicity and critical supersaturation, and consider aerosol-cloud feedbacks with a focus on warm clouds. Both prognostic schemes (STN and HYB) account for aerosol number, size and composition effects on droplet nucleation, and are tested in combination with two different cloud cover parameterizations, i.e., a relative humidity threshold and a statistical cloud cover scheme (RH-CLC and ST-CLC). The use of either STN and HYB leads to very different cloud radiative effects, particularly over the continents. The STN scheme predicts highly effective CCN activation in warm clouds and hazes/fogs near the surface. The enhanced CCN activity increases the cloud albedo effect of aerosols and cools the Earth's surface. The cooler surface enhances the hydrostatic stability of the lower continental troposphere and thereby reduces convection and convective precipitation. In contrast, the HYB simulations calculate lower, more realistic CCN activation and consequent cloud albedo effect, leading to relatively stronger convection and high cloud formation. The enhanced high clouds increase greenhouse warming and moderate the cooling effect of the low clouds. With respect to the cloud radiative effects, the statistical ST-CLC scheme shows much higher sensitivity to aerosol-cloud coupling for all continental regions than the RH-CLC threshold scheme, most pronounced for low clouds but also for high clouds. Simulations of the short wave cloud radiative effect at the top of the atmosphere in ST-CLC are a factor of 2-8 more sensitive to aerosol coupling than the RH-CLC configurations. The long wave

  16. Use of active and passive ground based remote sensors to explore cloud droplet modifications in aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw Thet

    We explore the potential aerosol impact on cloud optical properties which is a strong modifier of climate forcing. Previous studies have shown that increased aerosol loading can affect the cloud optical properties such as cloud optical depth and cloud droplet effective radius in rural areas, particularly at the Atmospheric Radiation Measurement, Southern Great Plain site. In this study, we attempt to observe and quantify aerosol-cloud interaction over New York City, using a combination of passive and active radiometric sensors. In particular, we look for signatures of the Twomey indirect effect which states that the droplet size of water phase clouds will decrease with increasing aerosols. We find that under certain conditions, a strong signature is found between the cloud drop effective radius and extinction and this effect is in part due to vertical wind uptake. In demonstrating the Aerosol Cloud Interaction, we use multiple approaches. For example, we derive the integrated liquid water path using both a multiband neural network and dual channel approach and show general agreement between two methods while the DC approach seems more robust. We also find that these measurements are difficult and sensitive to the position of the aerosols relative to the cloud base. As a corollary, we explore whether near surface aerosol loading can effecting the cloud by using particulate matter (PM2.5) and find that the effects are too variable to be given any statistical weight. Finally, we explore the potential of modifying our approach to remove the noisy and difficult measurement of Raman LIDAR derived extinction with calibrated LIDAR backscatter. The results seem to show a general improvement in correlation and offer the possibility of increasing the number of cases observed.

  17. Impact of Local Pollution Versus Long Range Transported Aerosols on Clouds and Precipitation over California

    NASA Astrophysics Data System (ADS)

    Prather, K. A.

    2015-12-01

    Aerosols form cloud droplets and ice crystals in clouds and can profoundly impact precipitation processes. In-situ aircraft measurements of the composition of individual cloud residuals have been used to study the impact of different aerosol sources including sea spray, dust, soot, and biomass burning on cloud microphysics and precipitation processes. Aircraft studies in 2011 as part of the CalWater project showed that long range transport of dust aerosols from as far away as Africa and biological particles can lead to an increase in the amount of snowfall over California. This presentation will describe results from CalWater-2015 involving aircraft and ground-based measurements at a coastal site. A discussion of the aerosol sources measured in clouds will be presented detailing the relative impacts of local versus long range transported pollution aerosols over California.

  18. VIIRS Aerosol Products During the SEAC4RS Field Experiment

    NASA Astrophysics Data System (ADS)

    Remer, L. A.; Munchak, L. A.; Huang, J.; Martins, J. V.; Espinosa, R.; Orozco, D.

    2014-12-01

    The Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field experiment that took place during August and September 2013 offered an in depth portrait of the aerosol system over much of the continental United States. Heavily instrumented aircraft, including the NASA DC-8 sampled a wide variety of aerosol types including transported Saharan dust, both fresh and aged smoke from western wildfires, urban pollution plumes and also biogenic aerosol produced by the "green volcano" in the vegetated Ozarks. Complementing these aircraft measurements was an enhanced array of AERONET stations sprinkled across the country and also concentrated in a mesoscale array near the home base of Houston Texas. This rich collection of suborbital aerosol information permits a more comprehensive evaluation of the VIIRS aerosol product that includes validation of the products across the mesoscale and choices of case studies in which we can delve deeper into the VIIRS retrieval to test algorithm assumptions. We will compare VIIRS retrievals during SEAC4RS with MODIS retrievals, with AERONET observations and retrievals, and with measurements and retrievals from the Polar Imaging Nephelometer (PI-Neph) that flew aboard the NASA DC-8.

  19. New Directions: Emerging Satellite Observations of Above-cloud Aerosols and Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Zhang, Zhibo

    2013-01-01

    Spaceborne lidar and passive sensors with multi-wavelength and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing.

  20. Examination of the potential impacts of dust and pollution aerosol acting as cloud nucleating aerosol on water resources in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Jha, Vandana

    In this study we examine the cumulative effect of dust acting as cloud nucleating aerosol (cloud condensation nuclei (CCN), giant cloud condensation nuclei (GCCN), and ice nuclei (IN)) along with anthropogenic aerosol pollution acting primarily as CCN, over the entire Colorado Rocky Mountains from the months of October to April in the year 2004-2005; the snow year. This ˜6.5 months analysis provides a range of snowfall totals and variability in dust and anthropogenic aerosol pollution. The specific objectives of this research is to quantify the impacts of both dust and pollution aerosols on wintertime precipitation in the Colorado Mountains using the Regional Atmospheric Modeling System (RAMS). In general, dust enhances precipitation primarily by acting as IN, while aerosol pollution reduces water resources in the CRB via the so-called "spill-over" effect, by enhancing cloud droplet concentrations and reducing riming rates. Dust is more episodic and aerosol pollution is more pervasive throughout the winter season. Combined response to dust and aerosol pollution is a net reduction of water resources in the CRB. The question is by how much are those water resources affected? Our best estimate is that total winter-season precipitation loss for for the CRB the 2004-2005 winter season due to the combined influence of aerosol pollution and dust is 5,380,00 acre-feet of water. Sensitivity studies for different cases have also been run for the specific cases in 2004-2005 winter season to analyze the impact of changing dust and aerosol ratios on precipitation in the Colorado River Basin. The dust is varied from 3 to 10 times in the experiments and the response is found to be non monotonic and depends on various environmental factors. The sensitivity studies show that adding dust in a wet system increases precipitation when IN affects are dominant. For a relatively dry system high concentrations of dust can result in over-seeding the clouds and reductions in precipitation

  1. CALWATER Overview of the G1 aircraft measurements of cloud-aerosol interactions within winter storms

    NASA Astrophysics Data System (ADS)

    Rosenfeld, D.; Prather, K. A.; Comstock, J. M.; DeMott, P. J.; Cazorla, A.; Chemke, R.; Suski, K.; Freud, E.; Leung, L.

    2011-12-01

    A major component of CalWater 2011 was an aircraft campaign with an extensive suite of cloud physics, aerosol, and trace gases instruments. The aircraft flew nearly 70 hours mainly during winter storms over the Sierra Nevada, Central Valley, the Bay area, coastal range and ocean between 1 Feb and 7 Mar 2011. Some of the unique aspects of this campaign that were the basis for the reported initial findings here were: (1) aerosol time-of flight mass spectrometry (ATOFMS) that provided particle by particle chemical composition; (2) Continuous Flow Diffusion Chamber for detecting ice nuclei; (3) Counterflow virtual impactor (CVI) for sampling the residues of evaporated cloud particles or interstitial aerosol; (4) Cloud drop and hydrometeor probes; (5) 3-D winds and thermodynamic parameters. The aircraft was able to document the clouds from the foothills to the crest of the Sierra Nevada at the section between Sacramento and Fresno during several major winter storms and obtain an unprecedented dataset of the cloud dynamics, microphysics and aerosols during fair weather, atmospheric rivers, barrier jet, pre-frontal, frontal and post frontal conditions. Convective clouds are very often triggered at the foothills of the Sierra Nevada by the start of the rising motion. This triggering is often advanced upwind (westward) due to the blocking effect that is typically associated with a barrier jet. When cloud bases are decoupled from the boundary layer they do not ingest the locally generated aerosols, but rather the pristine air that comes from the ocean. With more southerly back trajectories local decoupling can still bring air pollution from the LA basin, for example. Profound differences in aerosol and cloud microstructure were observed between the coupled and decoupled clouds at the Sierra foothills, where, as expected, the decoupled clouds had a more marine nature. In addition to triggering convective clouds at the foothills, the orographic lifting of the air mass creates

  2. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  3. Ganges Valley Aerosol Experiment: Science and Operations Plan

    SciTech Connect

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile

  4. Impacts of Aerosol-Cloud Interactions on Climate Change in East Asia

    NASA Astrophysics Data System (ADS)

    Shim, S.; Jung, Y.; Baek, H.; Cho, C.

    2013-12-01

    Climate impact by anthropogenic drivers gives high concerns in climate change simulation. IPCC AR4 emphasized the role of aerosol on climate besides the GHGs due to its negative significant radiative forcing. We find that climate feedback of anthropogenic aerosols over East Asia through direct and indirect (aerosol-cloud interaction) radiative process using HadGEM2-AO developed by the UK Met office. Due to the industrial revolution and population growth, total anthropogenic aerosol emissions have grown dramatically over East Asia; sulfate aerosol is the dominant component accounting for about 50% of total aerosol optical depth at 550nm (Figure 1). An increased amount of aerosols might increase the CCN number concentration and lead to more, but smaller, cloud droplets for fixed liquid water content. This increases the albedo of the cloud, resulting in enhance reflection and a cooling effect. And smaller drops require longer growth times to reach size at which they easily fall as precipitation. This effect called the cloud lifetime effect may enhance the cloud cover (Figure 2), with a persistent positive correlation between cloud cover and aerosol optical depth. Particularly, aerosols have an influence on the amount of cloud cover (SC, ST, and NS) through the interaction with precipitation efficiency of low level clouds. As a result of perturbations of East Asia aerosols from preindustrial to present day, a net radiative flux at the top of atmosphere is estimated to be -4 W/m2, with a regional mean surface cooling of 1.2 K. More detailed analysis will be shown at the conference. Fig. 1. (a) Total AOD distributions (b) Changes in decadal mean AOD over East Asia. Fig 2. Cloud cover distributions classified by ISCCP cloud types.

  5. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.

    2003-01-01

    Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distribution parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), groupel and frozen drops/hall] Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bim model explicitly calculates and allows for the examination of both the mass and number concentration of cpecies in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low

  6. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.

    2003-01-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e.,pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size categor, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case

  7. Extinction coefficient (1 micrometer) properties of high-altitude clouds from solar occultation measurements (1985-1990): Evidence of volcanic aerosol effect

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Minnis, Patrick; Yue, Glenn K.

    1995-01-01

    The properties of the 1-micrometer volume extinction coefficient of two geographically different high-altitude cloud systems have been examined for the posteruption period (1985-1990) of the April 1982 El Chichon volcanic event with emphasis on the effect of volcanic aerosols on clouds. These two high-altitude cloud systems are the tropical clouds in the tropopause region observed by the Stratospheric Aerosol and Gas Experiment (SAGE) 2 and the polar stratospheric clouds (PSCs) sighted by the Stratospheric Aerosol Measurement (SAM) 2. The results indicate that volcanic aerosols alter the frequency distributions of these high-altitude clouds in such a manner that the occurrence of clouds having high extinction coefficients (6 x 10(exp -3) - 2 x 10(exp -2)/km) is suppressed, while that of clouds having low extinction coefficients (2 x 10(exp -3) - 6 x 10(exp -2)/km) is enhanced. This influence of the volcanic aerosols appears to be opposite to the increase in the extinction coefficient of optically thick clouds observed by the Earth Radiation Budget Experiment (ERBE) during the initial posteruption period of the June 1991 Pinatubo eruption. A plausible explanation of this difference, based on the Mie theory, is presented. As a consequence of the Mie theory, the effective radius of most, if not all, of the high-altitude clouds, measured by the SAGE series of satellite instruments must be less than about 0.8 micrometers. This mean cloud particle size implied by the satellite extinction-coefficient data at a single wavelength (1 micrometer) is further substantiated by the particle size analysis based on cloud extinction coefficient at two wavelengths (0.525 and 1.02 micrometers) obtained by the SAGE 2 observations. Most of the radiation measured by ERBE is reflected by cloud systems comprised of particles having effective radii much greater than 1 micrometer. A reduction in the effective radius of these clouds due to volcanic aerosols is expected to increase their

  8. The Tropical Warm Pool International Cloud Experiment (TWPICE)

    SciTech Connect

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most comprehensive data sets of tropical cloud systems and their environmental setting and impacts ever sampled has been collected during the Tropical Warm Pool International Cloud Experiment in the area around Darwin, Northern Australia in January and February of 2006. The experiment design utilized permanent observational facilities in Darwin which include a polarimetric weather radar operated by the Australia Bureau of Meteorology (BOM) and a suite of cloud remote sensing instruments operated by the DOE Atmospheric Radiation Measurement (ARM) program. A dense network of observations added for the experiment included ocean observations and a dense balloon-borne sounding network. An integral factor in the design was to provide boundary conditions and validation data sets for a range of modelling activities and cloud retrieval development. A fleet of five research aircraft were deployed including two high altitude aircraft for characterizing cloud properties and the atmospheric state, a plane carrying airborne cloud radar and lidar and two aircraft sampling the boundary layer in great detail including fluxes, aerosols and chemistry.

  9. Cloud forming potential of oligomers relevant to secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Guo, Song; Gomez-Hernandez, Mario; Zamora, Misti L.; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Zhang, Annie L.; Collins, Don R.; Zhang, Renyi

    2014-09-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity are measured for surrogates that mimic atmospherically relevant oligomers, including glyoxal trimer dihydrate, methyl glyoxal trimer dihydrate, sucrose, methyl glyoxal mixtures with sulfuric acid and glycolic acid, and 2,4-hexandienal mixtures with sulfuric acid and glycolic acid. For the single-component aerosols, the measured HGF ranges from 1.3 to 1.4 at a relative humidity of 90%, and the hygroscopicity parameter (κ) is in the range of 0.06 to 0.19 on the basis of the measured CCN activity and 0.13 to 0.22 on the basis of the measured HGF, compared to the calculated values of 0.08 to 0.16. Large differences exist in the κ values derived using the measured HGF and CCN data for the multi-component aerosols. Our results reveal that, in contrast to the oxidation process, oligomerization decreases particle hygroscopicity and CCN activity and provides guidance for analyzing the organic species in ambient aerosols.

  10. Aerosol and cloud relations and weekly cycles over Central Europe

    NASA Astrophysics Data System (ADS)

    Kourtidis, K.; Georgoulias, A.; Alexandri, G.

    2012-04-01

    In this work, the aerosol and cloud relationships and weekly cycle patterns over Central Europe are examined using level-2 aerosol data from the TERRA MODIS satellite instrument to compile a decadal (2000-2010) 0.1 x 0.1 degree resolution gridded dataset as well as and total cloud cover (TCC) TERRA MODIS data and coarser resolution ISCCP TCC data. Aerosols and TCC were found to be positively correlated for all seasons, the slope of the correlation being slightly higher for low AOD values. A co-examination of AOD, TCC and NCAR/NCEP sea level pressure shows that the positive AOD-TCC correlation holds separately in all pressure bins, thus indicating that the correlation is not a synoptic artefact. A study of the weekly cycle of AOD shows that the main part of the positive (i.e. with midweek peak) weekly cycle plume extends over the central part of Central Europe, with the weekly cycle index (WCI) levels gradually decreasing until the weekly cycle becomes negative (i.e. with weekend peak) when moving away. No clear connection between the WCI patterns and topography was found while there is an apparent correlation between positive weekly cycles in summer and population density. A clear Monday minimum appears over regions with high positive WCI. Monday shifts to Tuesday when moving to the East, indicating aerosol transport from the dominating westerly wind flow. The WCI values and the average percent departures (APDs) for the day of weekly maximum and minimum were examined for 22 selected stations from previous ground-based weekly cycle studies. The weekly cycle is positive and statistically significant for only a few stations situated in France, Germany, Czech Republic and Belgium. A comparison with 1 x 1 degree level-3 MODIS TERRA data shows that in most cases level-3 data can give an indication of the local aerosol weekly cycle strength and phase. The satellite derived day of the weekly maximum and minimum is, generally, in line with results from ground-based studies

  11. MPL-Net Measurements of Aerosol and Cloud Vertical Distributions at Co-Located AERONET Sites

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Tsay, Si-Chee; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    In the early 1990s, the first small, eye-safe, and autonomous lidar system was developed, the Micropulse Lidar (MPL). The MPL acquires signal profiles of backscattered laser light from aerosols and clouds. The signals are analyzed to yield multiple layer heights, optical depths of each layer, average extinction-to-backscatter ratios for each layer, and profiles of extinction in each layer. In 2000, several MPL sites were organized into a coordinated network, called MPL-Net, by the Cloud and Aerosol Lidar Group at NASA Goddard Space Flight Center (GSFC) using funding provided by the NASA Earth Observing System. tn addition to the funding provided by NASA EOS, the NASA CERES Ground Validation Group supplied four MPL systems to the project, and the NASA TOMS group contributed their MPL for work at GSFC. The Atmospheric Radiation Measurement Program (ARM) also agreed to make their data available to the MPL-Net project for processing. In addition to the initial NASA and ARM operated sites, several other independent research groups have also expressed interest in joining the network using their own instruments. Finally, a limited amount of EOS funding was set aside to participate in various field experiments each year. The NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project also provides funds to deploy their MPL during ocean research cruises. All together, the MPL-Net project has participated in four major field experiments since 2000. Most MPL-Net sites and field experiment locations are also co-located with sunphotometers in the NASA Aerosol Robotic Network. (AERONET). Therefore, at these locations data is collected on both aerosol and cloud vertical structure as well as column optical depth and sky radiance. Real-time data products are now available from most MPL-Net sites. Our real-time products are generated at times of AERONET aerosol optical depth (AOD) measurements. The AERONET AOD is used as input to our

  12. Aerosol and gas re-distribution by shallow cumulus clouds: An investigation using airborne measurements

    NASA Astrophysics Data System (ADS)

    Wonaschuetz, Anna; Sorooshian, Armin; Ervens, Barbara; Chuang, Patrick Y.; Feingold, Graham; Murphy, Shane M.; de Gouw, Joost; Warneke, Carsten; Jonsson, Haflidi H.

    2012-09-01

    Aircraft measurements during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) are used to examine the influence of shallow cumulus clouds on vertical profiles of aerosol chemical composition, size distributions, and secondary aerosol precursor gases. The data show signatures of convective transport of particles, gases and moisture from near the surface to higher altitudes, and of aqueous-phase production of aerosol mass (sulfate and organics) in cloud droplets and aerosol water. In cloudy conditions, the average aerosol volume concentration at an altitude of 2850 m, above typical cloud top levels, was found to be 34% of that at 450 m; for clear conditions, the same ratio was 13%. Both organic and sulfate mass fractions were on average constant with altitude (around 50%); however, the ratio of oxalate to organic mass increased with altitude (from 1% at 450 m to almost 9% at 3450 m), indicative of the influence of in-cloud production on the vertical abundance and characteristics of secondary organic aerosol (SOA) mass. A new metric termed "residual cloud fraction" is introduced as a way of quantifying the "cloud processing history" of an air parcel. Results of a parcel model simulating aqueous phase production of sulfate and organics reproduce observed trends and point at a potentially important role of SOA production, especially oligomers, in deliquesced aerosols. The observations emphasize the importance of shallow cumulus clouds in altering the vertical distribution of aerosol properties that influence both their direct and indirect effect on climate.

  13. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions.

    PubMed

    Che, H C; Zhang, X Y; Wang, Y Q; Zhang, L; Shen, X J; Zhang, Y M; Ma, Q L; Sun, J Y; Zhang, Y W; Wang, T T

    2016-04-14

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate.

  14. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    NASA Astrophysics Data System (ADS)

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-04-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate.

  15. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    PubMed Central

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-01-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate. PMID:27075947

  16. Photolytic processing of secondary organic aerosols dissolved in cloud droplets.

    PubMed

    Bateman, Adam P; Nizkorodov, Sergey A; Laskin, Julia; Laskin, Alexander

    2011-07-14

    The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05-1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300-400 nm radiation for up to 24 h. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly decreased by photolysis relative to the monomeric compounds. Direct pH measurements showed that acidic compounds increased in abundance upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and the formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonyls was further confirmed by the UV/Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n→π* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ∼0.03. The total concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content. Photolysis of dry limonene SOA deposited on substrates was investigated in a separate set of experiments. The observed effects on the average O/C and DBE were similar to the aqueous photolysis, but the extent of chemical change was smaller in dry SOA. Our results suggest

  17. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-09-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re-vitrified in contact

  18. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-04-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosols that have re-vitrified in contact with the

  19. Formation and aging of secondary organic aerosol from isoprene photooxidation during cloud condensation-evaporation cycles

    NASA Astrophysics Data System (ADS)

    Giorio, C.; Siekmann, F.; Bregonzio, L.; Temime-Roussel, B.; Ravier, S.; Tapparo, A.; Kalberer, M.; Doussin, J.; Monod, A.

    2013-12-01

    Biogenic volatile organic compounds (BVOCs) can be oxidized in the gas phase to form more water-soluble compounds which could partition into atmospheric water droplets. Oxidation processes in the liquid phase could produce high molecular weight and less volatile compounds which can partly remain in the particle phase after water evaporation (Ervens et al., 2011). This work investigates the formation and composition of secondary organic aerosol (SOA) from the photooxidation of isoprene (the most abundant BVOC) and methacrolein (its main first-generation oxidation product). The experiments were performed during the CUMULUS (CloUd MULtiphase chemistry of organic compoUndS in the troposphere) campaigns at the 4.2 m3 stainless steel CESAM chamber at LISA, specifically designed to investigate multiphase processes (Wang et al., 2011). In each experiment, 500/1000 ppb of isoprene or methacrolein were injected in the chamber together with HONO before irradiation. Gas phase oxidation products have been analyzed on-line by a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and a Fourier Transform Infrared Spectrometer (FTIR) together with NOx and O3 analyzers. SOA formation and composition has been followed on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-Of-Flight Aerosol Mass Spectrometer (HR-TOF-AMS). Particular attention has been focused on the study of SOA formation and aging during cloud condensation-evaporation cycles simulated in the smog chamber. In all experiments, we noted that water soluble gas-phase oxidation products readily partition into cloud droplets accompanied by a prompt SOA production during cloud formation which partly persists after cloud evaporation. Ervens, B. et al. (2011) Atmos. Chem. Phys. 11, 11069 11102. Wang, J. et al. (2011) Atmos. Measur. Tech. 4, 2465 2494.

  20. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    NASA Astrophysics Data System (ADS)

    Kant Chandrakar, Kamal; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A.; Yang, Fan

    2016-12-01

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τc<τtτc<τt) for high aerosol concentration, and slow microphysics (τc>τtτc>τt) for low aerosol concentration; here, τcτc is the phase-relaxation time and τtτt is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τs1=τc1+τt

  1. Simulating Aerosol Indirect Effects with Improved Aerosol-Cloud- Precipitation Representations in a Coupled Regional Climate Model

    SciTech Connect

    Zhang, Yang; Leung, L. Ruby; Fan, Jiwen

    2016-04-27

    This is a collaborative project among North Carolina State University, Pacific Northwest National Laboratory, and Scripps Institution of Oceanography, University of California at San Diego to address the critical need for an accurate representation of aerosol indirect effect in climate and Earth system models. In this project, we propose to develop and improve parameterizations of aerosol-cloud-precipitation feedbacks in climate models and apply them to study the effect of aerosols and clouds on radiation and hydrologic cycle. Our overall objective is to develop, improve, and evaluate parameterizations to enable more accurate simulations of these feedbacks in high resolution regional and global climate models.

  2. Impact of Clouds and Aerosols on Photochemistry During the TexAQS II Radical and Aerosol Measurement Project

    NASA Astrophysics Data System (ADS)

    Flynn, J. H.; Lefer, B. L.; Rappenglueck, B.; Olson, J. R.; Chen, G.

    2007-12-01

    Photochemistry is responsible for the production of tropospheric ozone, the primary component of smog. In 2006, Houston, Texas experienced 20 days with a 1-hour ozone average in excess of 125 ppbv, and 36 days with an 8-hour average over 85 ppbv. Two models were used to assess the impact of clouds and aerosols on the photochemical production and loss of ozone and radicals in a polluted urban environment. The NASA Langley Research Center (LaRC) 0-D photochemical box model was used to assess the changes in the photochemical budgets due to varying cloud and aerosol conditions. The NCAR Tropospheric Ultraviolet and Visible (TUV) radiative transfer model was used to calculate photolysis frequencies for clear sky conditions with a variety of aerosol profiles. These tools were used to analyze the data set collected during the Texas Air Quality Study II Radical and Aerosol Measurement Project (TRAMP) with respect to ozone and radical budgets. Measurements of trace gasses, aerosols, meteorological parameters, and radiation were collected between mid-August and early October 2006 at the University of Houston. The photochemical model was run using various photolysis rates that reflect a range of atmospheric conditions impacting the actinic flux. Rates from real-time actinic flux measurements include the impact of both the clouds and aerosols that are present. Photolysis rates for clear-sky (cloud-free) conditions, both with and without aerosol profiles were calculated using the TUV radiative transfer model. A comparison of the photochemical ozone and radical budgets resulting from these different rates indicate those sensitivities to the presence of aerosols and clouds. Approximately seven of the 50 days during the campaign were cloud-free and were compared to LaRC-TUV results to show the effects of aerosols. The remaining days show the effects of both aerosols and cloud conditions that varied from partly cloudy to heavy overcast conditions. A cloud camera was used to

  3. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Li, X.; Khain, A.; Mastsui, T.; Lang, S.; Simpson, J.

    2007-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 20011. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. ln this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific. In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection.

  4. A new high spectral resolution lidar technique for direct retrievals of cloud and aerosol extinction

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Hlavka, D. L.

    2014-12-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a Doppler lidar system and high spectral resolution lidar (HSRL) recently developed at NASA Goddard Space Flight Center (GSFC). ACATS passes the returned atmospheric backscatter through a single etalon and divides the transmitted signal into several channels (wavelength intervals), which are measured simultaneously and independently (Figure 1). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particle extinction. The broad Rayleigh-scattered spectrum is imaged as a nearly flat background, illustrated in Figure 1c. The integral of the particulate backscattered spectrum is analogous to the aerosol measurement from the typical absorption filter HSRL technique in that the molecular and particulate backscatter components can be separated (Figure 1c and 1d). The main difference between HSRL systems that use the iodine filter technique and the multichannel etalon technique used in the ACATS instrument is that the latter directly measures the spectral broadening of the particulate backscatter using the etalon to filter out all backscattered light with the exception of a narrow wavelength interval (1.5 picometers for ACATS) that contains the particulate spectrum (grey, Figure 1a). This study outlines the method and retrieval algorithms for ACATS data products, focusing on the HSRL derived cloud and aerosol properties. While previous ground-based multi-channel etalon systems have been built and operated for wind retrievals, there has been no airborne demonstration of the technique and the method has not been used to derive HSRL cloud and aerosol properties. ACATS has flown on the NASA ER-2 during flights over Alaska in July 2014 and as part of the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This study will focus on the HSRL aspect of the ACATS instrument, since the method and retrieval algorithms have direct application

  5. Global aerosol formation and revised radiative forcing based on CERN CLOUD data

    NASA Astrophysics Data System (ADS)

    Gordon, H.; Carslaw, K. S.; Sengupta, K.; Dunne, E. M.; Kirkby, J.

    2015-12-01

    New particle formation in the atmosphere accounts for 40-70% of global cloud condensation nuclei (CCN). It is a complex process involving many precursors: sulphuric acid, ions, ammonia, and a wide range of natural and anthropogenic organic molecules. The CLOUD laboratory chamber experiment at CERN allows the contributions of different compounds to be disentangled in a uniquely well-controlled environment. To date, CLOUD has measured over 500 formation rates (Riccobono 2014, Kirkby 2015, Dunne 2015), under conditions representative of the planetary boundary layer and free troposphere. To understand the sensitivity of the climate to anthropogenic atmospheric aerosols, we must quantify historical aerosol radiative forcing. This requires an understanding of pre-industrial aerosol sources. Here we show pre-industrial nucleation over land usually involves organic molecules in the very first steps of cluster formation. The complexity of the organic vapors is a major challenge for theoretical approaches. Furthermore, with fewer sulphuric acid and ammonia molecules available to stabilize nucleating clusters in the pre-industrial atmosphere, ions from radon or galactic cosmic rays were probably more important than they are today. Parameterizations of particle formation rates determined in CLOUD as a function of precursor concentrations, temperature and ions are being used to refine the GLOMAP aerosol model (Spracklen 2005). The model simulates the growth, transport and loss of particles, translating nucleation rates to CCN concentrations. This allows us to better understand the effects of pre-industrial and present-day particle formation. I will present new results on global CCN based on CLOUD data, including estimates of anthropogenic aerosol radiative forcing, currently the most uncertain driver of climate change (IPCC 2013). References: Riccobono, F. et al, Science 344 717 (2014); Kirkby, J. et al, in review; Dunne, E. et al, in preparation; Spracklen, D. et al, Atmos

  6. Laser Remote Sensing From ISS: CATS Cloud and Aerosol Level 2 Data Products (Heritage Edition)

    NASA Technical Reports Server (NTRS)

    Rodier, Sharon; Vaughan, Mark; Palm, Steve; Jensen, Mike; Yorks, John; McGill, Matt; Trepte, Chip; Murray, Tim; Lee, Kam-Pui

    2015-01-01

    The Cloud-Aerosol Transport System (CATS) instrument was developed at NASA's Goddard Space Flight Center (GSFC) and deployed to the International Space Station (ISS) on 10 January 2015. CATS is mounted on the Japanese Experiment Module's Exposed Facility (JEM_EF) and will provide near-continuous, altitude-resolved measurements of clouds and aerosols in the Earth's atmosphere. The CATS ISS orbit path provides a unique opportunity to capture the full diurnal cycle of cloud and aerosol development and transport, allowing for studies that are not possible with the lidar aboard the CALIPSO platform, which flies in the sun-synchronous A-Train orbit." " One of the primary science objectives of CATS is to continue the CALIPSO aerosol and cloud profile data record to provide continuity of lidar climate observations during the transition from CALIPSO to EarthCARE. To accomplish this, the CATS project at NASA's Goddard Space Flight Center (GSFC) and the CALIPSO project at NASA's Langley Research Center (LaRC) are closely collaborating to develop and deliver a full suite of CALIPSO-like level 2 data products that will be produced using the newly acquired CATS level 1B data whenever CATS is operating in science modes 1. The CALIPSO mission is now well into its ninth year of on-orbit operations, and has developed a robust set of mature and well-validated science algorithms to retrieve the spatial and optical properties of clouds and aerosols from multi-wavelength lidar backscatter signals. By leveraging both new and existing NASA technical resources, this joint effort by the CATS and CALIPSO teams will deliver validated lidar data sets to the user community at the earliest possible opportunity. The science community will have access to two sets of CATS Level 2 data products. The "Operational" data products will be produced by the GSFC CATS team utilizing the new instrument capabilities (e.g., multiple FOVs and 1064 nm depolarization), while the "Heritage" data products created

  7. Boreal forests, aerosols and the impacts on clouds and climate.

    PubMed

    Spracklen, Dominick V; Bonn, Boris; Carslaw, Kenneth S

    2008-12-28

    Previous studies have concluded that boreal forests warm the climate because the cooling from storage of carbon in vegetation and soils is cancelled out by the warming due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored the impacts of forests on atmospheric aerosol. We use a global atmospheric model to show that, through emission of organic vapours and the resulting condensational growth of newly formed particles, boreal forests double regional cloud condensation nuclei concentrations (from approx. 100 to approx. 200 cm(-3)). Using a simple radiative model, we estimate that the resulting change in cloud albedo causes a radiative forcing of between -1.8 and -6.7 W m(-2) of forest. This forcing may be sufficiently large to result in boreal forests having an overall cooling impact on climate. We propose that the combination of climate forcings related to boreal forests may result in an important global homeostasis. In cold climatic conditions, the snow-vegetation albedo effect dominates and boreal forests warm the climate, whereas in warmer climates they may emit sufficiently large amounts of organic vapour modifying cloud albedo and acting to cool climate.

  8. Scanning Backscatter Lidar Observations for Characterizing 4-D Cloud and Aerosol Fields to Improve Radiative Transfer Parameterizations

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.

    2005-01-01

    Clouds have a powerful influence on atmospheric radiative transfer and hence are crucial to understanding and interpreting the exchange of radiation between the Earth's surface, the atmosphere, and space. Because clouds are highly variable in space, time and physical makeup, it is important to be able to observe them in three dimensions (3-D) with sufficient resolution that the data can be used to generate and validate parameterizations of cloud fields at the resolution scale of global climate models (GCMs). Simulation of photon transport in three dimensionally inhomogeneous cloud fields show that spatial inhomogeneities tend to decrease cloud reflection and absorption and increase direct and diffuse transmission, Therefore it is an important task to characterize cloud spatial structures in three dimensions on the scale of GCM grid elements. In order to validate cloud parameterizations that represent the ensemble, or mean and variance of cloud properties within a GCM grid element, measurements of the parameters must be obtained on a much finer scale so that the statistics on those measurements are truly representative. High spatial sampling resolution is required, on the order of 1 km or less. Since the radiation fields respond almost instantaneously to changes in the cloud field, and clouds changes occur on scales of seconds and less when viewed on scales of approximately 100m, the temporal resolution of cloud properties should be measured and characterized on second time scales. GCM time steps are typically on the order of an hour, but in order to obtain sufficient statistical representations of cloud properties in the parameterizations that are used as model inputs, averaged values of cloud properties should be calculated on time scales on the order of 10-100 s. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) provides exceptional temporal (100 ms) and spatial (30 m) resolution measurements of aerosol and cloud backscatter in three

  9. Cloud and aerosol classification for 2.5 years of MAX-DOAS observations in Wuxi (China) and comparison to independent data sets

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Penning de Vries, M.; Xie, P. H.; Beirle, S.; Dörner, S.; Remmers, J.; Li, A.; Wagner, T.

    2015-12-01

    Multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations of trace gases can be strongly influenced by clouds and aerosols. Thus it is important to identify clouds and characterize their properties. In a recent study Wagner et al. (2014) developed a cloud classification scheme based on the MAX-DOAS measurements themselves with which different "sky conditions" (e.g., clear sky, continuous clouds, broken clouds) can be distinguished. Here we apply this scheme to long-term MAX-DOAS measurements from 2011 to 2013 in Wuxi, China (31.57° N, 120.31° E). The original algorithm has been adapted to the characteristics of the Wuxi instrument, and extended towards smaller solar zenith angles (SZA). Moreover, a method for the determination and correction of instrumental degradation is developed to avoid artificial trends of the cloud classification results. We compared the results of the MAX-DOAS cloud classification scheme to several independent measurements: aerosol optical depth from a nearby Aerosol Robotic Network (AERONET) station and from two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, visibility derived from a visibility meter and various cloud parameters from different satellite instruments (MODIS, the Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment (GOME-2)). Here it should be noted that no quantitative comparison between the MAX-DOAS results and the independent data sets is possible, because (a) not exactly the same quantities are measured, and (b) the spatial and temporal sampling is quite different. Thus our comparison is performed in a semi-quantitative way: the MAX-DOAS cloud classification results are studied as a function of the external quantities. The most important findings from these comparisons are as follows: (1) most cases characterized as clear sky with low or high aerosol load were associated with the respective aerosol optical depth (AOD) ranges obtained by AERONET and MODIS

  10. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schnaiter, Martin; Järvinen, Emma; Vochezer, Paul; Abdelmonem, Ahmed; Wagner, Robert; Jourdan, Olivier; Mioche, Guillaume; Shcherbakov, Valery N.; Schmitt, Carl G.; Tricoli, Ugo; Ulanowski, Zbigniew; Heymsfield, Andrew J.

    2016-04-01

    This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN) probe of Laboratoire de Métérologie et Physique (LaMP) and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  11. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schnaiter, M.; Järvinen, E.; Vochezer, P.; Abdelmonem, A.; Wagner, R.; Jourdan, O.; Mioche, G.; Shcherbakov, V. N.; Schmitt, C. G.; Tricoli, U.; Ulanowski, Z.; Heymsfield, A. J.

    2015-11-01

    This study reports on the origin of ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high ice crystal complexity is dominating the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapour during the crystal growth. Indications were found that the crystal complexity is influenced by unfrozen H2SO4/H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers; the Polar Nephelometer (PN) probe of LaMP and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side- and backward scattering directions resulting in low asymmetry parameters g around 0.78. It was found that these functions have a rather low sensitivity to the crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  12. Cloud droplet activity changes of soot aerosol upon smog chamber ageing

    NASA Astrophysics Data System (ADS)

    Wittbom, C.; Pagels, J. H.; Rissler, J.; Eriksson, A. C.; Carlsson, J. E.; Roldin, P.; Nordin, E. Z.; Nilsson, P. T.; Swietlicki, E.; Svenningsson, B.

    2014-04-01

    Particles containing soot, or black carbon, are generally considered to contribute to global warming. However, large uncertainties remain in the net climate forcing resulting from anthropogenic emissions of black carbon (BC), to a large extent due to the fact that BC is co-emitted with gases and primary particles, both organic and inorganic, and subject to atmospheric ageing processes. In this study, diesel exhaust particles and particles from a flame soot generator spiked with light aromatic secondary organic aerosol (SOA) precursors were processed by UV-radiation in a 6 m3 Teflon chamber in the presence of NOx. The time-dependent changes of the soot nanoparticle properties were characterised using a Cloud Condensation Nuclei Counter, an Aerosol Particle Mass Analyzer and a Soot Particle Aerosol Mass Spectrometer. The results show that freshly emitted soot particles do not activate into cloud droplets at supersaturations ≤ 2%, i.e. the black carbon core coated with primary organic aerosol (POA) from the exhaust is limited in hygroscopicity. Before the onset of UV radiation it is unlikely that any substantial SOA formation is taking place. An immediate change in cloud-activation properties occurs at the onset of UV exposure. This change in hygroscopicity is likely attributed to SOA formed from intermediate volatile organic compounds (IVOC) in the diesel engine exhaust. The change of cloud condensation nuclei (CCN) properties at the onset of UV radiation implies that the lifetime of soot particles in the atmosphere is affected by the access to sunlight, which differs between latitudes. The ageing of soot particles progressively enhances their ability to act as cloud condensation nuclei, due to changes in: (I) organic fraction of the particle, (II) chemical properties of this fraction (POA or SOA), (III) particle size, and (IV) particle morphology. Applying κ-Köhler theory, using a κSOA value of 0.13 (derived from independent input parameters describing the

  13. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    SciTech Connect

    Rosenfeld, Daniel

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  14. Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Bréon, François-Marie

    2013-04-01

    In this study, we provide a comprehensive analysis of aerosol interaction with warm boundary layer clouds over the South-East Atlantic. We use aerosol and cloud parameters derived from MODIS observations, together with co-located CALIPSO estimates of the layer altitudes, to derive statistical relationships between aerosol concentration and cloud properties. The CALIPSO products are used to differentiate between cases of mixed cloud-aerosol layers from cases where the aerosol is located well-above the cloud top. This technique allows us to obtain more reliable estimates of the aerosol indirect effect than from simple relationships based on vertically integrated measurements of aerosol and cloud properties. Indeed, it permits us to somewhat distinguish the effects of aerosol and meteorology on the clouds, although it is not possible to fully ascertain the relative contribution of each on the derived statistics. Consistently with the results from previous studies, our statistics clearly show that aerosol affects cloud microphysics, decreasing the Cloud Droplet Radius (CDR). The same data indicate a concomitant strong decrease in cloud Liquid Water Path (LWP), which is inconsistent with the hypothesis of aerosol inhibition of precipitation (Albrecht, 1989). We hypothesise that the observed reduction in LWP is the consequence of dry air entrainment at cloud top. The combined effect of CDR decrease and LWP decrease leads to rather small sensitivity of the Cloud Optical Thickness (COT) to an increase in aerosol concentration. The analysis of MODIS-CALIPSO coincidences also evidences an aerosol enhancement of low cloud cover. Surprisingly, the Cloud Fraction (CLF) response to aerosol invigoration is much stronger when (absorbing) particles are located above cloud top than in cases of physical interaction. This result suggests a relevant aerosol radiative effect on low cloud occurrence: absorbing particles above the cloud top may heat the corresponding atmosphere layer

  15. Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Costantino, L.; Bréon, F.-M.

    2013-01-01

    In this study, we provide a comprehensive analysis of aerosol interaction with warm boundary layer clouds over the South-East Atlantic. We use aerosol and cloud parameters derived from MODIS observations, together with co-located CALIPSO estimates of the layer altitudes, to derive statistical relationships between aerosol concentration and cloud properties. The CALIPSO products are used to differentiate between cases of mixed cloud-aerosol layers from cases where the aerosol is located well-above the cloud top. This technique allows us to obtain more reliable estimates of the aerosol indirect effect than from simple relationships based on vertically integrated measurements of aerosol and cloud properties. Indeed, it permits us to somewhat distinguish the effects of aerosol and meteorology on the clouds, although it is not possible to fully ascertain the relative contribution of each on the derived statistics. Consistently with the results from previous studies, our statistics clearly show that aerosol affects cloud microphysics, decreasing the Cloud Droplet Radius (CDR). The same data indicate a concomitant strong decrease in cloud Liquid Water Path (LWP), which is inconsistent with the hypothesis of aerosol inhibition of precipitation (Albrecht, 1989). We hypothesise that the observed reduction in LWP is the consequence of dry air entrainment at cloud top. The combined effect of CDR decrease and LWP decrease leads to rather small sensitivity of the Cloud Optical Thickness (COT) to an increase in aerosol concentration. The analysis of MODIS-CALIPSO coincidences also evidences an aerosol enhancement of low cloud cover. Surprisingly, the Cloud Fraction (CLF) response to aerosol invigoration is much stronger when (absorbing) particles are located above cloud top than in cases of physical interaction. This result suggests a relevant aerosol radiative effect on low cloud occurrence: absorbing particles above the cloud top may heat the corresponding atmosphere layer

  16. Cloud residues and interstitial aerosols from non-precipitating clouds over an industrial and urban area in northern China

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Li, Peiren; Sun, Guode; Zhou, Shengzhen; Yuan, Qi; Wang, Wenxing

    2011-05-01

    Most studies of aerosol-cloud interactions have been conducted in remote locations; few have investigated the characterization of cloud condensation nuclei (CCN) over highly polluted urban and industrial areas. The present work, based on samples collected at Mt. Tai, a site in northern China affected by nearby urban and industrial air pollutant emissions, illuminates CCN properties in a polluted atmosphere. High-resolution transmission electron microscopy (TEM) was used to obtain the size, composition, and mixing state of individual cloud residues and interstitial aerosols. Most of the cloud residues displayed distinct rims which were found to consist of soluble organic matter (OM). Nearly all (91.7%) cloud residues were attributed to sulfate-related salts (the remainder was mostly coarse crustal dust particles with nitrate coatings). Half the salt particles were internally mixed with two or more refractory particles (e.g., soot, fly ash, crustal dust, CaSO 4, and OM). A comparison between cloud residues and interstitial particles shows that the former contained more salts and were of larger particle size than the latter. In addition, a somewhat high number scavenging ratio of 0.54 was observed during cloud formation. Therefore, the mixtures of salts with OMs account for most of the cloud-nucleating ability of the entire aerosol population in the polluted air of northern China. We advocate that both size and composition - the two influential, controlling factors for aerosol activation - should be built into all regional climate models of China.

  17. Constraining cloud lifetime effects of aerosols using A-Train satellite observations

    NASA Astrophysics Data System (ADS)

    Wang, Minghuai; Ghan, Steven; Liu, Xiaohong; L'Ecuyer, Tristan S.; Zhang, Kai; Morrison, Hugh; Ovchinnikov, Mikhail; Easter, Richard; Marchand, Roger; Chand, Duli; Qian, Yun; Penner, Joyce E.

    2012-08-01

    Aerosol indirect effects have remained the largest uncertainty in estimates of the radiative forcing of past and future climate change. Observational constraints on cloud lifetime effects are particularly challenging since it is difficult to separate aerosol effects from meteorological influences. Here we use three global climate models, including a multi-scale aerosol-climate model PNNL-MMF, to show that the dependence of the probability of precipitation on aerosol loading, termed the precipitation frequency susceptibility (Spop), is a good measure of the liquid water path response to aerosol perturbation (λ), as both Spop and λ strongly depend on the magnitude of autoconversion, a model representation of precipitation formation via collisions among cloud droplets. This provides a method to use satellite observations to constrain cloud lifetime effects in global climate models. Spop in marine clouds estimated from CloudSat, MODIS and AMSR-E observations is substantially lower than that from global climate models and suggests a liquid water path increase of less than 5% from doubled cloud condensation nuclei concentrations. This implies a substantially smaller impact on shortwave cloud radiative forcing over ocean due to aerosol indirect effects than simulated by current global climate models (a reduction by one-third for one of the conventional aerosol-climate models). Further work is needed to quantify the uncertainties in satellite-derived estimates of Spop and to examine Spop in high-resolution models.

  18. Development and testing of an aerosol-stratus cloud parameterization scheme for middle and high latitudes

    SciTech Connect

    Olsson, P.Q.; Meyers, M.P.; Kreidenweis, S.; Cotton, W.R.

    1996-04-01

    The aim of this new project is to develop an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary layer clouds. Our approach is to create, test, and implement a