Science.gov

Sample records for aerosol coating product

  1. 40 CFR 59.507 - What are the labeling requirements for aerosol coatings?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aerosol coatings? 59.507 Section 59.507 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.507 What are the labeling requirements for aerosol coatings? (a) The labels of all aerosol...

  2. 40 CFR 59.507 - What are the labeling requirements for aerosol coatings?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aerosol coatings? 59.507 Section 59.507 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.507 What are the labeling requirements for aerosol coatings? (a) The labels of all aerosol...

  3. 40 CFR 59.507 - What are the labeling requirements for aerosol coatings?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.507...

  4. 40 CFR 59.507 - What are the labeling requirements for aerosol coatings?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.507...

  5. 40 CFR 59.507 - What are the labeling requirements for aerosol coatings?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.507...

  6. Design of Aerosol Coating Reactors: Precursor Injection

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Particles are coated with thin shells to facilitate their processing and incorporation into liquid or solid matrixes without altering core particle properties (coloristic, magnetic, etc.). Here, computational fluid and particle dynamics are combined to investigate the geometry of an aerosol reactor for continuous coating of freshly-made titanium dioxide core nanoparticles with nanothin silica shells by injection of hexamethyldisiloxane (HMDSO) vapor downstream of TiO2 particle formation. The focus is on the influence of HMDSO vapor jet number and direction in terms of azimuth and inclination jet angles on process temperature and coated particle characteristics (shell thickness and fraction of uncoated particles). Rapid and homogeneous mixing of core particle aerosol and coating precursor vapor facilitates synthesis of core-shell nanoparticles with uniform shell thickness and high coating efficiency (minimal uncoated core and free coating particles). PMID:23658471

  7. 40 CFR Table 1 to Subpart E of... - Product-Weighted Reactivity Limits by Coating Category

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Coating Category 1 Table 1 to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL PROTECTION... CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings... Coating Category Coating category Category code a Reactivity limit Clear Coatings CCP 1.50 Flat...

  8. The MODIS Aerosol Algorithm, Products and Validation

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Mattoo, S.; Chu, D. A.; Martins, J. V.; Li, R.-R.; Ichoku, C.; Levy, R. C.; Kleidman, R. G.

    2003-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range. These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickness at three visible wavelengths, a measure of the fraction of aerosol optical thickness attributed to the fine mode and several derived parameters including reflected spectral solar flux at top of atmosphere. Over ocean, the aerosol optical thickness is provided in seven wavelengths from 0.47 microns to 2.13 microns. In addition, quantitative aerosol size information includes effective radius of the aerosol and quantitative fraction of optical thickness attributed to the fine mode. Spectral aerosol flux, mass concentration and number of cloud condensation nuclei round out the list of available aerosol products over the ocean. The spectral optical thickness and effective radius of the aerosol over the ocean are validated by comparison with two years of AERONET data gleaned from 133 AERONET stations. 8000 MODIS aerosol retrievals colocated with AERONET measurements confirm that one-standard deviation of MODIS optical thickness retrievals fall within the predicted uncertainty of delta tauapproximately equal to plus or minus 0.03 plus or minus 0.05 tau over ocean and delta tay equal to plus or minus 0.05 plus or minus 0.15 tau over land. 271 MODIS aerosol retrievals co-located with AERONET inversions at island and coastal sites suggest that one-standard deviation of MODIS effective radius retrievals falls within delta r_eff approximately equal to 0.11 microns. The accuracy of the MODIS retrievals suggests that the product can be used to help narrow the uncertainties associated with aerosol radiative forcing of global climate.

  9. Multi-Sensor Aerosol Products Sampling System

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  10. Characterisation of coated aerosols using optical tweezers and neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Jones, S. H.; Ward, A.; King, M. D.

    2013-12-01

    Thin organic films are believed to form naturally on the surface of aerosols [1,2] and influence aerosol properties. Cloud condensation nuclei formation and chemical reactions such as aerosol oxidation are effected by the presence of thin films [3]. There is a requirement to characterise the physical properties of both the core aerosol and its organic film in order to fully understand the contribution of coated aerosols to the indirect effect. Two complementary techniques have been used to study the oxidation of thin organic films on the surface of aerosols; laser optical tweezers and neutron reflectometry. Micron sized polystyrene beads coated in oleic acid have been trapped in air using two counter propagating laser beams. Polystyrene beads are used as a proxy for solid aerosol. The trapped aerosol is illuminated with a white LED over a broadband wavelength range and the scattered light collected to produce a Mie spectrum [4]. Analysis of the Mie spectrum results in determination of the core polystyrene bead radius, the oleic acid film thickness and refractive index dispersion of the core and shell [5]. A flow of ozone gas can then be introduced into the aerosol environment to oxidise the thin film of oleic acid and the reaction followed by monitoring the changes in the Mie spectrum. The results demonstrate complete removal of the oleic acid film. We conclude that the use of a counter propagating optical trap combined with white light Mie spectroscopy can be used to study a range of organic films on different types of aerosols and their oxidation reactions. Neutron reflectometry has been used as a complementary technique to study the oxidation of monolayer films at the air-water interface in order to gain information on reaction kinetics. The oxidation of an oleic acid film at the air-water interface by the common tropospheric oxidant ozone has been studied using a Langmuir trough. Results indicate complete removal of the oleic acid film with ozone in agreement

  11. Soot aggregate restructuring due to coatings of secondary organic aerosol derived from aromatic precursors.

    PubMed

    Schnitzler, Elijah G; Dutt, Ashneil; Charbonneau, André M; Olfert, Jason S; Jäger, Wolfgang

    2014-12-16

    Restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) derived from hydroxyl radical-initiated oxidation of toluene, p-xylene, ethylbenzene, and benzene was investigated in a series of photo-oxidation (smog) chamber experiments. Soot aggregates were generated by combustion of ethylene using a McKenna burner, treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to low vapor pressure products of aromatic hydrocarbon oxidation, which formed SOA coatings. Aggregate restructuring began once a threshold coating mass was reached, and the degree of the subsequent restructuring increased with mass growth factor. Although significantly compacted, fully processed aggregates were not spherical, with a mass-mobility exponent of 2.78, so additional SOA was required to fill indentations between collapsed branches of the restructured aggregates before the dynamic shape factor of coated particles approached 1. Trends in diameter growth factor, effective density, and dynamic shape factor with increasing mass growth factor indicate distinct stages in soot aggregate processing by SOA coatings. The final degree and coating mass dependence of soot restructuring were found to be the same for SOA coatings from all four aromatic precursors, indicating that the surface tensions of the SOA coatings are similar.

  12. Aerosol Best Estimate Value-Added Product

    SciTech Connect

    Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

    2012-07-19

    The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

  13. Silicon production in an aerosol reactor

    NASA Technical Reports Server (NTRS)

    Wu, J. J.; Flagan, R. C.

    1986-01-01

    An aerosol reactor system was developed in which large particles of silicon can be grown by silane pyrolysis. To grow particles to sizes larger than one micron, vapor deposition must be used to grow a relatively small number of seed particles. Suppression of nucleation is achieved by limiting the rate of gas phase chemical reactions such that the condensible products of the gas phase chemical reactions diffuse to the surface of the seed particles as rapidly as they are produced. This prevents high degrees of supersaturation and runaway nucleation during the growth process. Particles on the order of 10 microns were grown repeatedly with the present aersol reactor. The nucleation controlled aerosol reactor is, therefore, a suitable system for the production of powders that can readily be separated from the gas by aerodynamic means.

  14. 77 FR 14279 - National Volatile Organic Compound Emission Standards for Aerosol Coatings-Addition of Dimethyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... aerosol coatings category (aerosol spray paints) under the Clean Air Act, published elsewhere in the... Primers, Surfacers or Undercoaters........ PCS 1.05 Pleasure Craft Topcoats PCT 0.60 Polyolefin Adhesion....35 Benzene 71-43-2 0.81 1,1,1-Trichloroethane 71-55-6 0.00 Propane 74-98-6 0.56 Vinyl Chloride...

  15. Defense mechanisms of the respiratory system and aerosol production systems.

    PubMed

    Zarogoulidis, Paul; Darwiche, Kaid; Yarmus, Lonny; Spyratos, Dionysios; Secen, Nevena; Hohenforst-Schmidt, Wolfgang; Katsikogiannis, Nikolaos; Huang, Haidong; Gschwendtner, Andreas; Zarogoulidis, Konstantinos

    2014-03-01

    Aerosolized therapies have been used in everyday clinical practice for decades. Experimentation with different delivery systems have led to the creation of aerosolized insulin, antibiotics, gene therapy and chemotherapy. Several of these therapies are already clinically available while others are being investigated in active clinical trials. The main factors affecting the efficiency and safety of the aerosolized therapies are the production of the aerosol, distribution/deposition of the aerosol throughout the lung parenchyma, respiratory defense mechanisms and tissue/pharmaceutical molecule interactions. Current methods of aerosol production and distribution will be presented along with an overview of the respiratory defense mechanisms. In addition, methods of aerosol evaluation in conjunction with a future perspective of the potential development of aerosol therapies will be presented.

  16. Coherent Evaluation of Aerosol Data Products from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2011-01-01

    Aerosol retrieval from satellite has practically become routine, especially during the last decade. However, there is often disagreement between similar aerosol parameters retrieved from different sensors, thereby leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus, and the inconsistencies are not well characterized and understood, there will be no way of developing reliable model inputs and climate data records from satellite aerosol measurements. Fortunately, the Aerosol Robotic Network (AERONET) is providing well-calibrated globally representative ground-based aerosol measurements corresponding to the satellite-retrieved products. Through a recently developed web-based Multi-sensor Aerosol Products Sampling System (MAPSS), we are utilizing the advantages offered by collocated AERONET and satellite products to characterize and evaluate aerosol retrieval from multiple sensors. Indeed, MAPSS and its companion statistical tool AeroStat are facilitating detailed comparative uncertainty analysis of satellite aerosol measurements from Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.

  17. Production flux of sea spray aerosol

    NASA Astrophysics Data System (ADS)

    de Leeuw, Gerrit; Andreas, Edgar L.; Anguelova, Magdalena D.; Fairall, C. W.; Lewis, Ernie R.; O'Dowd, Colin; Schulz, Michael; Schwartz, Stephen E.

    2011-05-01

    Knowledge of the size- and composition-dependent production flux of primary sea spray aerosol (SSA) particles and its dependence on environmental variables is required for modeling cloud microphysical properties and aerosol radiative influences, interpreting measurements of particulate matter in coastal areas and its relation to air quality, and evaluating rates of uptake and reactions of gases in sea spray drops. This review examines recent research pertinent to SSA production flux, which deals mainly with production of particles with r80 (equilibrium radius at 80% relative humidity) less than 1 μm and as small as 0.01 μm. Production of sea spray particles and its dependence on controlling factors has been investigated in laboratory studies that have examined the dependences on water temperature, salinity, and the presence of organics and in field measurements with micrometeorological techniques that use newly developed fast optical particle sizers. Extensive measurements show that water-insoluble organic matter contributes substantially to the composition of SSA particles with r80 < 0.25 μm and, in locations with high biological activity, can be the dominant constituent. Order-of-magnitude variation remains in estimates of the size-dependent production flux per white area, the quantity central to formulations of the production flux based on the whitecap method. This variation indicates that the production flux may depend on quantities such as the volume flux of air bubbles to the surface that are not accounted for in current models. Variation in estimates of the whitecap fraction as a function of wind speed contributes additional, comparable uncertainty to production flux estimates.

  18. Production Flux of Sea-Spray Aerosol

    NASA Astrophysics Data System (ADS)

    de Leeuw, G.; Andreas, E. L.; Anguelova, M. D.; Fairall, C. W.; Lewis, E. R.; O'Dowd, C.; Schulz, M.; Schwartz, S. E.

    2010-12-01

    Knowledge of the size- and composition-dependent production flux of primary sea-spray aerosol (SSA) particles and its dependence on environmental variables is required for modeling cloud microphysical properties and aerosol radiative influences, interpreting measurements of particulate matter in coastal areas and its relation to air quality, and evaluating rates of uptake and reactions of gases in sea-spray drops. This review examines recent research pertinent to SSA production flux with emphasis on particles with r80 (equilibrium radius at 80% relative humidity) less than 1 µm and as small as 0.01 µm. Production of sea-spray particles and its dependence on controlling factors has been investigated in laboratory studies that have examined the dependences on water temperature, salinity, and the presence of organics, and in field measurements with micrometeorological techniques that use newly developed fast optical particle sizers. Extensive measurements show that water-insoluble organic matter contributes substantially to the composition of SSA particles with r80 < 0.25 µm and in locations with high biological activity can be the dominant constituent. Order-of-magnitude variation remains in estimates of the size-dependent production flux per white area, the quantity central to formulations of the production flux based on the whitecap method. This variation indicates that the production flux may depend on quantities, such as the volume flux of air bubbles to the surface, that are not accounted for in current models. Variation in estimates of the whitecap fraction as a function of wind speed contributes additional, comparable uncertainty to production flux estimates.

  19. Aerosol Production from the Great Lakes Surface

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Mwaniki, G.; Bertman, S. B.; Vanreken, T. M.; Shepson, P. B.

    2009-12-01

    It is well understood that oceans generate airborne particulate matter from mechanical processes such as sea spray and bubble bursting. These particles are primarily composed of salts and other nonvolatile inorganic material; however, the organic mass fraction can vary by location and the extent of biological activity. The size distributions of aerosols in these environments depend greatly on relative humidity with diameters ranging from typically several hundred nanometers to several micrometers. There has been much less discussion of particle formation from fresh water ecosystems, a hub for organic activity, and thus a more likely medium for organic aerosol production. We investigated particle formation over the Great Lakes during the summer of 2009 as a part of the Community Atmosphere-Biosphere Interactions Experiments (CABINEX) at the University of Michigan Biological Station (UMBS) in Pellston, MI. With a scanning mobility particle sizer (SMPS) aboard Purdue University’s Airborne Laboratory for Atmospheric Research (ALAR) for size-distribution analysis of accumulation-mode aerosol, we conducted vertical profiles above Lake Michigan and the UMBS deciduous forest, and transects across the peninsula between Lakes Michigan and Huron to study particle formation, transport, and deposition. Preliminary results reveal a well-mixed troposphere above the forest with a mode ~0.1 μm, while in several cases, the total particle concentration over Lake Michigan is an order of magnitude greater than over the forest. There is a consistent bimodal distribution of particle sizes over Lake Michigan the lowest of which is centered at ~0.025 μm, suggesting the possibility of new particle formation. This mode is consistent with the presence of breaking waves on the lake’s surface, and this mode and the vertical structure depend greatly on wind speed. We present here evidence for new particle production from breaking waves on fresh water lakes, and discuss the results

  20. The MODIS Aerosol Algorithm, Products, Validation and Applications

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.; Tanre, D.

    2003-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) currently aboard both the Terra and Aqua satellites produces a suite of products designed to characterize global aerosol distribution, optical thickness and particle size. Never before has a space-borne instrument been able to provide such detailed information, complementing field and modeling efforts to produce a comprehensive picture of aerosol characteristics. The three years of Terra-MODIS data have been validated by comparing with co-located AERONET observations of aerosol optical thickness and derivations of aerosol size parameters. Some 8000 comparison points located at 133 AERONET sites around the globe show that the MODIS aerosol optical thickness retrievals are accurate to within the pre-launch expectations. MODIS-derived size parameters are also compared with AERONET retrievals and found to agree well for fine-mode dominated aerosol regimes. Aerosol regimes dominated by dust aerosol are less accurate, attributed to what is thought to be nonsphericity. Errors due to nonsphericity will be reduced by introducing a new set of empirical phase functions, derived without any assumptions of particle shape. The major innovation that MODIS bring to the field of remote sensing of aerosol is the measure of particle size and the separation of finemode and coarsemode dominated aerosol regimes. Particle size can separate finemode man-made aerosols created during combustion, from larger natural aerosols originating from salt spray or wind erosion. This separation allows for the calculation of aerosol radiative effect and the estimation of the man-made aerosol radiative forcing. MODIS can also be used in regional studies of aerosol-cloud interaction that affect the global radiative and hydrological cycles.

  1. Improving aerosolization of drug powders by reducing powder intrinsic cohesion via a mechanical dry coating approach.

    PubMed

    Zhou, Qi Tony; Qu, Li; Larson, Ian; Stewart, Peter J; Morton, David A V

    2010-07-15

    The aim of this study was to investigate the effect of coating on the aerosolization of three model micronized powders. Three model powder materials (salbutamol sulphate, salmeterol xinafoate, triamcinolone acetonide) were chosen not only for their different chemical properties but also for their different physical properties such as shape and size distribution. Each powder was coated with 5% (w/w) magnesium stearate using two different dry mechanofusion approaches. After mechanofusion, both poured and tapped densities for all three model drug powders significantly increased. There were significant improvements in aerosolization behavior from an inhaler device for all model powders after mechanofusion. Such improvements in aerosolization were attributed to the reduction in agglomerate strength caused by decreasing powder intrinsic cohesion via surface modification. The work also indicated that the effect of the coating was dependant on the initial particle properties.

  2. MODIS 3km Aerosol Product: Algorithm and Global Perspective

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Mattoo, S.; Levy, R. C.; Munchak, L.

    2013-01-01

    After more than a decade of producing a nominal 10 km aerosol product based on the dark target method, the MODIS aerosol team will be releasing a nominal 3 km product as part of their Collection 6 release. The new product differs from the original 10 km product only in the manner in which reflectance pixels are ingested, organized and selected by the aerosol algorithm. Overall, the 3 km product closely mirrors the 10 km product. However, the finer resolution product is able to retrieve over ocean closer to islands and coastlines, and is better able to resolve fine aerosol features such as smoke plumes over both ocean and land. In some situations, it provides retrievals over entire regions that the 10 km product barely samples. In situations traditionally difficult for the dark target algorithm, such as over bright or urban surfaces the 3 km product introduces isolated spikes of artificially high aerosol optical depth (AOD) that the 10 km algorithm avoids. Over land, globally, the 3 km product appears to be 0.01 to 0.02 higher than the 10 km product, while over ocean, the 3 km algorithm is retrieving a proportionally greater number of very low aerosol loading situations. Based on collocations with ground-based observations for only six months, expected errors associated with the 3 km land product are determined to be greater than for the 10 km product: 0.05 0.25 AOD. Over ocean, the suggestion is for expected errors to be the same as the 10 km product: 0.03 0.05 AOD. The advantage of the product is on the local scale, which will require continued evaluation not addressed here. Nevertheless, the new 3 km product is expected to provide important information complementary to existing satellite-derived products and become an important tool for the aerosol community.

  3. Recent Improvements to CALIOP Level 3 Aerosol Profile Product for Global 3-D Aerosol Extinction Characterization

    NASA Astrophysics Data System (ADS)

    Tackett, J. L.; Getzewich, B. J.; Winker, D. M.; Vaughan, M. A.

    2015-12-01

    With nine years of retrievals, the CALIOP level 3 aerosol profile product provides an unprecedented synopsis of aerosol extinction in three dimensions and the potential to quantify changes in aerosol distributions over time. The CALIOP level 3 aerosol profile product, initially released as a beta product in 2011, reports monthly averages of quality-screened aerosol extinction profiles on a uniform latitude/longitude grid for different cloud-cover scenarios, called "sky conditions". This presentation demonstrates improvements to the second version of the product which will be released in September 2015. The largest improvements are the new sky condition definitions which parse the atmosphere into "cloud-free" views accessible to passive remote sensors, "all-sky" views accessible to active remote sensors and "cloudy-sky" views for opaque and transparent clouds which were previously inaccessible to passive remote sensors. Taken together, the new sky conditions comprehensively summarize CALIOP aerosol extinction profiles for a broad range of scientific queries. In addition to dust-only extinction profiles, the new version will include polluted-dust and smoke-only extinction averages. A new method is adopted for averaging dust-only extinction profiles to reduce high biases which exist in the beta version of the level 3 aerosol profile product. This presentation justifies the new averaging methodology and demonstrates vertical profiles of dust and smoke extinction over Africa during the biomass burning season. Another crucial advancement demonstrated in this presentation is a new approach for computing monthly mean aerosol optical depth which removes low biases reported in the beta version - a scenario unique to lidar datasets.

  4. Toxicity of aerosols of sodium reaction products.

    PubMed

    Zwicker, G M; Allen, M D; Stevens, D L

    1979-01-01

    Sodium is used as the heat transfer medium in several new energy technologies such as liquid-metal fast-breeder reactors and solar-thermal collection systems. Because sodium burns in air and reacts violently with water, the potential exists for an airborne release of sodium combustion products and subsequent human exposure. To help evaluate the potential short-term hazard from an accidental sodium fire, male juvenile or adult Wistar rats were exposed to sodium aerosols for 2 hours to determine the dose at which 50 percent of the animals were affected (ED50) for each age group. The estimated ED50 of 510 microgram/l for adults was not significantly different from the estimated ED50 of 489 microgram/l for juveniles. The incidence of acute laryngitis, attributed to exposure, was three times higher for juvenile rats than for adults, and the degree of severity of this lesion was significantly (P less than 0.05) higher for juveniles.

  5. Silicon production in an aerosol reactor

    NASA Technical Reports Server (NTRS)

    Wu, J. J.; Alam, M. K.; Johnson, B. E.; Flagan, R. C.

    1984-01-01

    An aerosol reactor for the growth of large silicon particles by silane pyrolysis was shown to demonstrate the following properties: (1) generate seed particles by pyrolysis of a small amount of silane; (2) mix seed aerosol with primary silane flow, limiting number concentration such that the amount of silane is sufficient to grow the desired size of particles from the seed; and (3) react the silane at a rate which is controlled such that the seed particles scavenge the condensible vapors rapidly enough to inhibit further nucleation.

  6. Organic Aerosol Component (OACOMP) Value-Added Product Report

    SciTech Connect

    Fast, J; Zhang, Q; Tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.

  7. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger

    PubMed Central

    Golshahi, Laleh; Longest, P. Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-01-01

    Purpose Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Methods Variables of interest included combinations of model drug (i.e. albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1–5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. Results At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~ 0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1 % w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. Conclusions The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs. PMID:25823649

  8. Individual particle morphology, coatings, and impurities of black carbon aerosols in Antarctic ice and tropical rainfall

    NASA Astrophysics Data System (ADS)

    Ellis, Aja; Edwards, Ross; Saunders, Martin; Chakrabarty, Rajan K.; Subramanian, R.; Timms, Nicholas E.; Riessen, Arie; Smith, Andrew M.; Lambrinidis, Dionisia; Nunes, Laurie J.; Vallelonga, Paul; Goodwin, Ian D.; Moy, Andrew D.; Curran, Mark A. J.; Ommen, Tas D.

    2016-11-01

    Black carbon (BC) aerosols are a large source of climate warming, impact atmospheric chemistry, and are implicated in large-scale changes in atmospheric circulation. Inventories of BC emissions suggest significant changes in the global BC aerosol distribution due to human activity. However, little is known regarding BC's atmospheric distribution or aged particle characteristics before the twentieth century. Here we investigate the prevalence and structural properties of BC particles in Antarctic ice cores from 1759, 1838, and 1930 Common Era (C.E.) using transmission electron microscopy and energy-dispersive X-ray spectroscopy. The study revealed an unexpected diversity in particle morphology, insoluble coatings, and association with metals. In addition to conventionally occurring BC aggregates, we observed single BC monomers, complex aggregates with internally, and externally mixed metal and mineral impurities, tar balls, and organonitrogen coatings. The results of the study show BC particles in the remote Antarctic atmosphere exhibit complexity that is unaccounted for in atmospheric models of BC.

  9. MISR Aerosol Product Attributes and Statistical Comparisons with MODIS

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Nelson, David L.; Garay, Michael J.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Paradise, Susan R.; Hansen, Earl G.; Remer, Lorraine A.

    2009-01-01

    In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.

  10. A New Stratospheric Aerosol Product from CALIPSO Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Kar, J.; Vaughan, M.; Trepte, C. R.; Winker, D. M.; Vernier, J. P.; Pitts, M. C.; Young, S. A.; Liu, Z.; Lucker, P.; Tackett, J. L.; Omar, A. H.

    2014-12-01

    Stratospheric aerosols are derived from precursor SO2 and OCS gases transported from the lower troposphere. Volcanic injections can also enhance aerosol loadings far above background levels. The latter can exert a significant influence on the Earth's radiation budget for major and even minor eruptions. Careful measurements are needed, therefore, to monitor the distribution and evolution of stratospheric aerosols for climate related studies. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been acquiring profile measurements of clouds and aerosols since 2006, leading to major advances in our understanding of tropospheric aerosol and cloud properties and the processes that control them. The CALIPSO products have also enabled new insights into polar stratospheric clouds and stratospheric aerosols. Vernier et al (2009,JGR,114,D00H10) reported on the construction of a modified CALIPSO lidar product that corrected minor artifacts with the original lidar calibration that affected stratospheric aerosol investigations. A significantly improved CALIPSO Lidar Version 4 Level 1 product has been recently released addressing these calibration issues and has resulted in enhanced signal levels and a highly stable record over the span of the mission. Based on this product, a new 3D gridded stratospheric CALIPSO data product is under development and being targeted for release in 2015. A key emphasis of this new product is to bridge the measurement gap between the SAGE II and SAGE III data record (1984-2005) and the start of measurements from the new SAGE III instrument to be deployed on the International Space Station in 2016. The primary parameters delivered in the CALIPSO stratospheric data products will be attenuated scattering ratio and aerosol extinction profiles, both averaged over one month intervals and binned into an equal angle grid of constant latitude and longitude with a vertical resolution of 900m. We will present the overall

  11. Susceptibility of stored-product psocids to aerosol insecticides.

    PubMed

    Opit, George P; Arthur, Frank H; Throne, James E; Payton, Mark E

    2012-01-01

    The efficacies of commercial methoprene and esfenvalerate aerosols for control of stored-product psocid pests were evaluated in simulated field studies. The efficacies of methoprene, esfenvalerate EC, the carrier Isopar-M™, and a combination of methoprene and esfenvalerate aerosols for control of Liposcelis decolor (Pearman) (Psocoptera: Liposcelididae) and Liposcelis entomophila (Enderlein) nymphs were assessed, and the effects of direct and indirect exposure of Liposcelis bostrychophila Badonnel, L. decolor, and Liposcelis paeta Pearman adults to esfenvalerate EC aerosol were evaluated. The greatest nymphal mortality attained was 76%, indicating that the four aerosols tested were ineffective against L. decolor and L. entomophila nymphs. In the direct and indirect exposure studies, the greatest adult mortalities attained for the three psocid species were 62 and 32%, respectively. Based on these data, esfenvalerate aerosol is ineffective for control of L. bostrychophila, L. decolor, L. entomophila, and L. paeta psocid species. This study shows that methoprene, esfenvalerate EC, and a combination of methoprene and esfenvalerate aerosols were ineffective against the four psocid species tested when applied at rates that are usually effective against other stored-product insect pests.

  12. Susceptibility of Stored-Product Psocids to Aerosol Insecticides

    PubMed Central

    Opit, George P.; Arthur, Frank H.; Throne, James E.; Payton, Mark E.

    2012-01-01

    The efficacies of commercial methoprene and esfenvalerate aerosols for control of stored-product psocid pests were evaluated in simulated field studies. The efficacies of methoprene, esfenvalerate EC, the carrier Isopar-M™, and a combination of methoprene and esfenvalerate aerosols for control of Liposcelis decolor (Pearman) (Psocoptera: Liposcelididae) and Liposcelis entomophila (Enderlein) nymphs were assessed, and the effects of direct and indirect exposure of Liposcelis bostrychophila Badonnel, L. decolor, and Liposcelis paeta Pearman adults to esfenvalerate EC aerosol were evaluated. The greatest nymphal mortality attained was 76%, indicating that the four aerosols tested were ineffective against L. decolor and L. entomophila nymphs. In the direct and indirect exposure studies, the greatest adult mortalities attained for the three psocid species were 62 and 32%, respectively. Based on these data, esfenvalerate aerosol is ineffective for control of L. bostrychophila, L. decolor, L. entomophila, and L. paeta psocid species. This study shows that methoprene, esfenvalerate EC, and a combination of methoprene and esfenvalerate aerosols were ineffective against the four psocid species tested when applied at rates that are usually effective against other stored-product insect pests. PMID:23463916

  13. Organic Aerosol Component (OACOMP) Value-Added Product

    SciTech Connect

    Fast, J; Zhang, Q; tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Organic aerosol (OA, i.e., the organic fraction of particles) accounts for 10–90% of the fine aerosol mass globally and is a key determinant of aerosol radiative forcing. But atmospheric OA is poorly characterized and its life cycle insufficiently represented in models. As a result, current models are unable to simulate OA concentrations and properties accurately. This deficiency represents a large source of uncertainty in quantification of aerosol effects and prediction of future climate change. Evaluation and development of aerosol models require data products generated from field observations. Real-time, quantitative data acquired with aerosol mass spectrometers (AMS) (Canagaratna et al. 2007) are critical to this need. The AMS determines size-resolved concentrations of non-refractory (NR) species in submicrometer particles (PM1) with fast time resolution suitable for both ground-based and aircraft deployments. The high-resolution AMS (HR-AMS), which is equipped with a high mass resolution time-of-flight mass spectrometer, can be used to determine the elemental composition and oxidation degrees of OA (DeCarlo et al. 2006).

  14. VIIRS Aerosol Products During the SEAC4RS Field Experiment

    NASA Astrophysics Data System (ADS)

    Remer, L. A.; Munchak, L. A.; Huang, J.; Martins, J. V.; Espinosa, R.; Orozco, D.

    2014-12-01

    The Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field experiment that took place during August and September 2013 offered an in depth portrait of the aerosol system over much of the continental United States. Heavily instrumented aircraft, including the NASA DC-8 sampled a wide variety of aerosol types including transported Saharan dust, both fresh and aged smoke from western wildfires, urban pollution plumes and also biogenic aerosol produced by the "green volcano" in the vegetated Ozarks. Complementing these aircraft measurements was an enhanced array of AERONET stations sprinkled across the country and also concentrated in a mesoscale array near the home base of Houston Texas. This rich collection of suborbital aerosol information permits a more comprehensive evaluation of the VIIRS aerosol product that includes validation of the products across the mesoscale and choices of case studies in which we can delve deeper into the VIIRS retrieval to test algorithm assumptions. We will compare VIIRS retrievals during SEAC4RS with MODIS retrievals, with AERONET observations and retrievals, and with measurements and retrievals from the Polar Imaging Nephelometer (PI-Neph) that flew aboard the NASA DC-8.

  15. Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-10-01

    Light absorption enhancement of aged soot aerosols is highly sensitive to the morphologies and mixing states of soot aggregates and their non-absorbing coatings, such as organic materials. The quantification of these effects on the optical properties of thinly coated soot aerosols is simulated using an effective model with fixed volume fractions. Fractal aggregated soot was simulated using the diffusion limited aggregation (DLA) algorithm and discretized into soot dipoles. The dipoles of non-absorbing aerosols, whose number was fixed by the volume fraction, were further generated from the neighboring random edge dipoles. Their optical properties were calculated using the discrete dipole approximation (DDA) method and were compared with other commonly used models. The optical properties of thinly coated soot calculated using the fixed volume fraction model are close to (less than ~10% difference) the results of the fixed coating thickness model, except their asymmetry parameters (up to ~25% difference). In the optical simulations of thinly coated soot aerosols, this relative difference of asymmetry parameters and phase functions between these realistic models may be notable. The realizations of the fixed volume fraction model may introduce smaller variation of optical results than those of the fixed coating thickness model. Moreover, the core-shell monomers model and homogeneous aggregated spheres model with the Maxwell-Garnett (MG) theory may underestimate (up to ~20%) the cross sections of thinly coated soot aggregates. The single core-shell sphere model may largely overestimate (up to ~150%) the cross sections and single scattering albedo of thinly coated soot aggregates, and it underestimated (up to ~60%) their asymmetry parameters. It is suggested that the widely used single core-shell sphere approximation may not be suitable for the single scattering calculations of thinly coated soot aerosols.

  16. Snow and Ice Mask for the MODIS Aerosol Products

    NASA Technical Reports Server (NTRS)

    Li, Rong-Rong; Remer, Lorraine; Kaufman, Yoram J.; Mattoo, Shana; Gao, Bo-Cai; Vermote, Eric

    2005-01-01

    The atmospheric products have been derived operationally from multichannel imaging data collected with the Moderate Resolution Imaging SpectroRadiometers (MODIS) on board the NASA Terra and Aqua spacecrafts. Preliminary validations of the products were previously reported. Through analysis of more extensive time-series of MODIS aerosol products (Collection 4), we have found that the aerosol products over land areas are slightly contaminated by snow and ice during the springtime snow-melting season. We have developed an empirical technique using MODIS near-IR channels centered near 0.86 and 1.24 pm and a thermal emission channel near 11 pm to mask out these snow-contaminated pixels over land. Improved aerosol retrievals over land have been obtained. Sample results from application of the technique to MODIS data acquired over North America, northern Europe, and northeastern Asia are presented. The technique has been implemented into the MODIS Collection 5 operational algorithm for retrieving aerosols over land from MODIS data.

  17. Effect of Organic Coatings, Humidity and Aerosol Acidity on Multiphase Chemistry of Isoprene Epoxydiols

    SciTech Connect

    Riva, Matthieu; Bell, David M.; Hansen, Anne-Maria Kaldal; Drozd, Greg T.; Zhang, Zhenfa; Gold, Avram; Imre, Dan; Surratt, Jason D.; Glasius, Marianne; Zelenyuk, Alla

    2016-06-07

    Multiphase chemistry of isomeric isoprene epoxydiols (IEPOX) has been shown to be the dominant source of isoprene-derived secondary organic aerosol (SOA). Recent studies have reported particles composed of ammonium bisulfate (ABS) mixed with model organics exhibit slower rates of IEPOX uptake. In the present study, we investigate the effect of atmospherically-relevant organic coatings of α-pinene (AP) SOA on the reactive uptake of trans-β-IEPOX onto ABS particles under different conditions and coating thicknesses. Single particle mass spectrometry was used to characterize in real-time particle size, shape, density, and quantitative composition before and after reaction with IEPOX. We find that IEPOX uptake by pure sulfate particles is a volume-controlled process, which results in particles with uniform concentration of IEPOX-derived SOA across a wide range of sizes. Aerosol acidity was shown to enhance IEPOX-derived SOA formation, consistent with recent studies. The presence of water has a weaker impact on IEPOX-derived SOA yield, but significantly enhanced formation of 2-methyltetrols, consistent with offline filter analysis. In contrast, IEPOX uptake by ABS particles coated by AP-derived SOA is strongly dependent on particle size and composition. IEPOX uptake occurred only when weight fraction of AP-derived SOA dropped below 50 %, effectively limiting IEPOX uptake to larger particles.

  18. Characterization of Fe–Cr alloy metallic interconnects coated with LSMO using the aerosol deposition process

    SciTech Connect

    Huang, Jian-Jia; Fu, Yen-Pei; Wang, Jian-Yih; Cheng, Yung-Neng; Lee, Shyong; Hsu, Jin-Cherng

    2014-03-01

    Graphical abstract: - Highlights: • Lanthanum strontium manganite (LSMO) as the protective layer for metallic interconnects was successfully prepared by aerosol deposition method (AD). • The microstructure, electrical resistance and composition for LSMO-coated Fe–Cr alloys undergoing high temperature, long-hour oxidation were investigated. • The denser protective layer prepared by AD might effectively prohibit the growth of oxidized scale after long time running at 800 °C in air. - Abstract: A Fe–Cr alloy, used for metallic interconnects, was coated with a protective layer of lanthanum strontium manganite (LSMO) using the aerosol deposition method (AD). The effects of the LSMO protective layer, which was coated on the Fe–Cr interconnects using AD, on the area specific resistance (ASR) during high temperature oxidation and the Cr evaporation behaviors were systematically investigated in this paper. The microstructures, morphologies, and compositions of the oxidized scales that appeared on the LSMO-coated Fe–Cr alloy after annealing at 800 °C for 750 h in air were examined using SEM equipped with EDS. The EPMA mapping of the LSMO-coated Fe–Cr interconnects undergoing long term, high-temperature oxidation was used to explain the formation layers of the oxidized scale, which consists of (Mn,Cr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} layers. Moreover, the experimental results revealed that the AD process is a potential method for preparing denser protective layers with highly desirable electrical properties for metallic interconnects.

  19. Aerosol optical depth over complex topography: comparison of AVHRR, MERIS and MODIS aerosol products

    NASA Astrophysics Data System (ADS)

    Riffler, Michael; Popp, Christoph; Hauser, Adrian; Wunderle, Stefan

    Aerosols are a key component in the Earth's atmosphere, influencing the radiation budget due to scattering and absorption of solar and terrestrial radiation and changing cloud physics by serving as cloud condensation nuclei. Furthermore, dispersed particles alter visibility and affect human health. Remote sensing techniques are a common means to monitor aerosol variability on large spatial scales. The accuracy of these retrievals is highest over surfaces with well known spectral properties and low reflectance (e.g. oceans). The retrieval over brighter and heterogeneous land surfaces is more demanding, since temporally unstable surface reflectance and a reduced aerosol signal may result in larger errors. Regions with highly complex topography, like the Alps, can exhibit even larger errors, basically due to directional effects caused by the topography, temporal snow coverage, and usually higher cloud amount. Ground validation of remote sensing aerosol products is generally performed using sun photometer measurements from the AErosol RObotic NETwork (AERONET). However, the lack of such sites in the central parts of the Alps renders validation difficult. To study the potential of aerosol remote sensing in regions with complex topography, namely in the Alps, we make use of an unusual situation on one of the major trans-alpine traffic routes in June 2006: A fatal rock fall caused the nearly one month closure of the Gotthard route in the Central Swiss Reuss Valley. Large parts of the traffic were redirected to the San Bernardino route (eastern Switzerland), which had a large impact on the local traffic amount, and thereby on air quality. Herein we compare the performance of three different sensors (AVHRR, MERIS, MODIS) in detecting this obvious change in the aerosol optical depth of the two alpine valleys in summer 2006. First results from AVHRR show a clear reduction (47%) of the aerosol optical depth along the Gotthard route compared to the five year monthly mean (2003

  20. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  1. Chemical compositions of black carbon particle cores and coatings via soot particle aerosol mass spectrometry with photoionization and electron ionization.

    PubMed

    Canagaratna, Manjula R; Massoli, Paola; Browne, Eleanor C; Franklin, Jonathan P; Wilson, Kevin R; Onasch, Timothy B; Kirchstetter, Thomas W; Fortner, Edward C; Kolb, Charles E; Jayne, John T; Kroll, Jesse H; Worsnop, Douglas R

    2015-05-14

    Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores

  2. Changes in the optical properties of benzo[a]pyrene-coated aerosols upon heterogeneous reactions with NO2 and NO3.

    PubMed

    Lu, Jessica W; Flores, J Michel; Lavi, Avi; Abo-Riziq, Ali; Rudich, Yinon

    2011-04-14

    Chemical reactions can alter the chemical, physical, and optical properties of aerosols. It has been postulated that nitration of aerosols can account for atmospheric absorbance over urban areas. To study this potentially important process, the change in optical properties of laboratory-generated benzo[a]pyrene (BaP)-coated aerosols following exposure to NO(2) and NO(3) was investigated at 355 nm and 532 nm by three aerosol analysis techniques. The extinction coefficient was determined at 355 nm and 532 nm from cavity ring-down aerosol spectroscopy (CRD-AS); the absorption coefficient was measured by photoacoustic spectroscopy (PAS) at 532 nm, while an on-line aerosol mass spectrometer (AMS) supplied real-time quantitative information about the chemical composition of aerosols. In this study, 240 nm polystyrene latex (PSL) spheres were thinly coated with BaP to form 300 or 310 nm aerosols that were exposed to high concentrations of NO(2) and NO(3) and measured with CRD-AS, PAS, and the AMS. The extinction efficiencies (Q(ext)) changed after exposure to NO(2) and NO(3) at both wavelengths. Prior to reaction, Q(ext) for the 355 nm and 532 nm wavelengths were 4.36 ± 0.04 and 2.39 ± 0.05, respectively, and Q(ext) increased to 5.26 ± 0.04 and 2.79 ± 0.05 after exposure. The absorption cross-section at 532 nm, determined with PAS, reached σ(abs) = (0.039 ± 0.001) × 10(-8) cm(2), indicating that absorption increased with formation of nitro-BaP, the main reaction product detected by the AMS. The single-scattering albedo (SSA), a measure of particle scattering efficiency, decreased from 1 to 0.85 ± 0.03, showing that changes in the optical properties of BaP-covered aerosols due to nitration may have implications for regional radiation budget and, hence, climate.

  3. A New Coating Process for Production of Coated Magnesium Powders

    DTIC Science & Technology

    2008-04-16

    TGA data for magnesium hydroxide content. TGA analysis of the as-coated powders is a reproducible and accurate method for the determination of... TGA analysis of the as-coated powder, there is approximately 3wt% magnesium hydroxide present in the material due to the process variation compared...11: Magnesium hydroxide content as measured by TGA analysis for the 1-lb batches of as-coated ground powder Figure 12: Nitrometer analysis of

  4. The Collection 6 MODIS aerosol products over land and ocean

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Mattoo, S.; Munchak, L. A.; Remer, L. A.; Sayer, A. M.; Hsu, N. C.

    2013-01-01

    The twin Moderate Imaging resolution Spectroradiometer (MODIS) sensors have been flying on Terra since 2000 and Aqua since 2002, creating an incredible dataset of global Earth observations. Here, we introduce the Collection 6 (C6) algorithm to retrieve aerosol optical depth (AOD) and aerosol size parameters from MODIS-observed spectral reflectance. While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there is significant impact on the products and their interpretation. The C6 algorithm is comprised of three sub-algorithms for retrieving aerosol properties (1) over ocean (dark in visible and near-IR wavelengths), (2) over vegetated/dark-soiled land (dark in the visible) and (3) over desert/arid land (bright in the visible). Here, we focus on the changes to both "dark target" algorithms (#1 and #2; DT-ocean and DT-land). Affecting both DT algorithms, we have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O3, CO2, etc.) absorption corrections, and relaxed the solar zenith angle limit (up to ≤ 84°) to increase pole-ward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season/location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence in the retrieval, updates to logic of QA Confidence flag (QAC) assignment, and additions of important diagnostic information. All together, the changes to the DT algorithms result in reduced global AOD (by 0.02) over ocean and increased AOD (by 0.01) over land, along with some changes in spatial coverage. Preliminary validation shows that compared to surface-based sunphotometer data, the C6 DT-products should compare at least as well as those from C5. However, at the same time as we

  5. The Collection 6 'dark-target' MODIS Aerosol Products

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Mattoo, Shana; Munchak, Leigh A.; Kleidman, Richard G.; Patadia, Falguni; Gupta, Pawan; Remer, Lorraine

    2013-01-01

    Aerosol retrieval algorithms are applied to Moderate resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua, creating two streams of decade-plus aerosol information. Products of aerosol optical depth (AOD) and aerosol size are used for many applications, but the primary concern is that these global products are comprehensive and consistent enough for use in climate studies. One of our major customers is the international modeling comparison study known as AEROCOM, which relies on the MODIS data as a benchmark. In order to keep up with the needs of AEROCOM and other MODIS data users, while utilizing new science and tools, we have improved the algorithms and products. The code, and the associated products, will be known as Collection 6 (C6). While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there are significant impacts to the products and their interpretation. In its entirety, the C6 algorithm is comprised of three sub-algorithms for retrieving aerosol properties over different surfaces: These include the dark-target DT algorithms to retrieve over (1) ocean and (2) vegetated-dark-soiled land, plus the (3) Deep Blue (DB) algorithm, originally developed to retrieve over desert-arid land. Focusing on the two DT algorithms, we have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O3, CO2, etc.) absorption corrections, while relaxing the solar zenith angle limit (up to 84) to increase pole-ward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such as topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence in the retrieval, updates to logic of QA Confidence flag (QAC) assignment, and

  6. The Collection 6 MODIS aerosol products over land and ocean

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Mattoo, S.; Munchak, L. A.; Remer, L. A.; Sayer, A. M.; Patadia, F.; Hsu, N. C.

    2013-11-01

    The twin Moderate resolution Imaging Spectroradiometer (MODIS) sensors have been flying on Terra since 2000 and Aqua since 2002, creating an extensive data set of global Earth observations. Here, we introduce the Collection 6 (C6) algorithm to retrieve aerosol optical depth (AOD) and aerosol size parameters from MODIS-observed spectral reflectance. While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there are significant impacts to the products and their interpretation. The C6 aerosol data set will be created from three separate retrieval algorithms that operate over different surface types. These are the two "Dark Target" (DT) algorithms for retrieving (1) over ocean (dark in visible and longer wavelengths) and (2) over vegetated/dark-soiled land (dark in the visible), plus the "Deep Blue" (DB) algorithm developed originally for retrieving (3) over desert/arid land (bright in the visible). Here, we focus on DT-ocean and DT-land (#1 and #2). We have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O3, CO2, etc.) absorption corrections, while relaxing the solar zenith angle limit (up to ≤ 84°) to increase poleward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season/location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence on the surface reflectance, updates to logic of QA Confidence flag (QAC) assignment, and additions of important diagnostic information. At the same time, we quantified how "upstream" changes to instrument calibration, land/sea masking and cloud masking will also impact the statistics of global AOD, and affect Terra and Aqua differently. For Aqua, all changes will result in reduced

  7. Quality Screening Algorithms Implemented in the New CALIPSO Level 3 Aerosol Profile Product

    NASA Astrophysics Data System (ADS)

    Tackett, J. L.; Winker, D. M.; Getzewich, B. J.; Vaughan, M.

    2012-12-01

    Global observations of aerosol extinction profiles can improve the ability of climate models to properly account for aerosol radiative forcing in Earth's atmosphere. In response to this need, a new CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) level 3 aerosol profile product has been released which for the first time provides monthly, globally gridded and quality-screened aerosol extinction profiles within the troposphere for the entire 6-year mission. Level 3 aerosol extinction profiles are aggregated from CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar extinction retrievals reported in the CALIPSO level 2 aerosol profile product onto an equal-angle grid after quality screening algorithms are applied to reduce occurrences of failed retrievals, misclassified aerosol, surface contamination, and spurious outliers. Implementation of these quality screening algorithms is a substantial value to aerosol modeling groups who desire high confidence datasets without having to independently develop quality screening metrics. Furthermore, quality screening is paramount to understand the scientific content of the resultant CALIPSO level 3 aerosol profile product since classification and retrieval errors in level 2 aerosol data may lead to misinterpretation of the distribution and optical properties of aerosol in the troposphere. This presentation summarizes the averaging and quality screening algorithms implemented in the CALIPSO level 3 aerosol profile product, provides rationale for their implementation, and discusses averaging and filtering differences unique to CALIPSO data compared to level 3 products aggregated from passive satellite measurements. Examples are given that illustrate the benefits of quality screening and the dangers of improper screening CALIPSO level 2 aerosol extinction data. Sensitivity study results are presented to highlight the impact of quality screening on final level 3 statistics. Since overlying cloud

  8. Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol

    NASA Astrophysics Data System (ADS)

    Shrivastava, Manish; Lou, Silja; Zelenyuk, Alla; Easter, Richard C.; Corley, Richard A.; Thrall, Brian D.; Rasch, Philip J.; Fast, Jerome D.; Massey Simonich, Staci L.; Shen, Huizhong; Tao, Shu

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) have toxic impacts on humans and ecosystems. One of the most carcinogenic PAHs, benzo(a)pyrene (BaP), is efficiently bound to and transported with atmospheric particles. Laboratory measurements show that particle-bound BaP degrades in a few hours by heterogeneous reaction with ozone, yet field observations indicate BaP persists much longer in the atmosphere, and some previous chemical transport modeling studies have ignored heterogeneous oxidation of BaP to bring model predictions into better agreement with field observations. We attribute this unexplained discrepancy to the shielding of BaP from oxidation by coatings of viscous organic aerosol (OA). Accounting for this OA viscosity-dependent shielding, which varies with temperature and humidity, in a global climate/chemistry model brings model predictions into much better agreement with BaP measurements, and demonstrates stronger long-range transport, greater deposition fluxes, and substantially elevated lung cancer risk from PAHs. Model results indicate that the OA coating is more effective in shielding BaP in the middle/high latitudes compared with the tropics because of differences in OA properties (semisolid when cool/dry vs. liquid-like when warm/humid). Faster chemical degradation of BaP in the tropics leads to higher concentrations of BaP oxidation products over the tropics compared with higher latitudes. This study has profound implications demonstrating that OA strongly modulates the atmospheric persistence of PAHs and their cancer risks.

  9. Resistance of Aerosolized Bacterial Viruses to Four Germicidal Products

    PubMed Central

    Turgeon, Nathalie; Michel, Kevin; Ha, Thi-Lan; Robine, Enric; Moineau, Sylvain; Duchaine, Caroline

    2016-01-01

    Viral diseases can spread through a variety of routes including aerosols. Yet, limited data are available on the efficacy of aerosolized chemicals to reduce viral loads in the air. Bacteriophages (phages) are often used as surrogates for hazardous viruses in aerosol studies because they are inexpensive, easy to handle, and safe for laboratory workers. Moreover, several of these bacterial viruses display physical characteristics similar to pathogenic human and animal viruses, like morphological size, type of nucleic acids, capsid morphology, and the presence of an envelope. In this study, the efficacy of four chemicals was evaluated on four airborne phages at two different relative humidity levels. Non-tailed bacteriophages MS2 (single-stranded RNA), ϕ6 (double-stranded RNA, enveloped), PR772 (double-stranded DNA), and ϕX174 (single-stranded DNA) were first aerosolized in a 55L rotative environmental chamber at 19°C with 25% and 50% relative humidity. Then, hydrogen peroxide, Eugenol (phenylpropene used in commercial perfumes and flavorings), Mist® (automobile disinfectant containing Triethylene glycol), and Pledge® (multisurface disinfectant containing Isopropanol, n-Alkyl Dimethyl Benzyl Amonium Chlorides, and n-Alkyl Dimethyl Ethylbenzyl Ammonium Chloride) were nebulized with the phages using a separate nebulizer. Aerosols were maintained in suspension during 10 minutes, 1 hour, and 2 hours. Viral aerosols were sampled using an SKC BioSampler and samples were analyzed using qPCR and plaque assays. The resistance levels of the four phages varied depending on the relative humidity (RH) and germicidal products tested. Phage MS2 was the most stable airborne virus under the environmental conditions tested while phage PR772 was the least stable. Pledge® and Eugenol reduced the infectivity of all airborne phages tested. At 25% RH, Pledge® and Eugenol were more effective at reducing infectivity of RNA phages ϕ6 and MS2. At 50% RH, Pledge® was the most effective

  10. MISR Global Aerosol Product Assessment by Comparison with AERONET

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Gaitley, Barbara J.; Garay, Michael J.; Diner, David J.; Eck, Thomas F.; Smirnov, Alexander; Holben, Brent N.

    2010-01-01

    A statistical approach is used to assess the quality of the MISR Version 22 (V22) aerosol products. Aerosol Optical Depth (AOD) retrieval results are improved relative to the early post- launch values reported by Kahn et al. [2005a], varying with particle type category. Overall, about 70% to 75% of MISR AOD retrievals fall within 0.05 or 20% AOD of the paired validation data, and about 50% to 55% are within 0.03 or 10% AOD, except at sites where dust, or mixed dust and smoke, are commonly found. Retrieved particle microphysical properties amount to categorical values, such as three groupings in size: "small," "medium," and "large." For particle size, ground-based AERONET sun photometer Angstrom Exponents are used to assess statistically the corresponding MISR values, which are interpreted in terms of retrieved size categories. Coincident Single-Scattering Albedo (SSA) and fraction AOD spherical data are too limited for statistical validation. V22 distinguishes two or three size bins, depending on aerosol type, and about two bins in SSA (absorbing vs. non-absorbing), as well as spherical vs. non-spherical particles, under good retrieval conditions. Particle type sensitivity varies considerably with conditions, and is diminished for mid-visible AOD below about 0.15 or 0.2. Based on these results, specific algorithm upgrades are proposed, and are being investigated by the MISR team for possible implementation in future versions of the product.

  11. A merged aerosol dataset based on MODIS and MISR Aerosol Optical Depth products

    NASA Astrophysics Data System (ADS)

    Singh, Manoj K.; Gautam, Ritesh; Venkatachalam, Parvatham

    2016-05-01

    Aerosol Optical Depth (AOD) products available from MODIS and MISR observations are widely used for aerosol characterization, and global/environmental change studies. These products are based on different retrieval-algorithms, resolutions, sampling, and cloud-screening schemes, which have led to global/regional biases. Thus a merged product is desirable which bridges this gap by utilizing strengths from each of the sensors. In view of this, we have developed a "merged" AOD product based on MODIS and MISR AOD datasets, using Bayesian principles which takes error distributions from ground-based AOD measurements (from AERONET). Our methodology and resulting dataset are especially relevant in the scenario of combining multi-sensor retrievals for satellite-based climate data records; particularly for long-term studies involving AOD. Specifically for MISR AOD product, we also developed a methodology to produce a gap-filled dataset, using geostatistical methods (e.g. Kriging), taking advantage of available MODIS data. Merged and spatially-complete AOD datasets are inter-compared with other satellite products and with AERONET data at three stations- Kanpur, Jaipur and Gandhi College, in the Indo-Gangetic Plains. The RMSE of merged AOD (0.08-0.09) is lower than MISR (0.11-0.20) and MODIS (0.15-0.27). It is found that merged AOD has higher correlation with AERONET data (r within 0.92-0.95), compared to MISR (0.74-0.86) and MODIS (0.69-0.84) data. In terms of Expected Error, the accuracy of valid merged AOD is found to be superior as percent of merged AOD within error envelope are larger (71-92%), compared to MISR (43-61%) and MODIS (50-70%).

  12. Classification of Dust Days by Satellite Remotely Sensed Aerosol Products

    NASA Technical Reports Server (NTRS)

    Sorek-Hammer, M.; Cohen, A.; Levy, Robert C.; Ziv, B.; Broday, D. M.

    2013-01-01

    Considerable progress in satellite remote sensing (SRS) of dust particles has been seen in the last decade. From an environmental health perspective, such an event detection, after linking it to ground particulate matter (PM) concentrations, can proxy acute exposure to respirable particles of certain properties (i.e. size, composition, and toxicity). Being affected considerably by atmospheric dust, previous studies in the Eastern Mediterranean, and in Israel in particular, have focused on mechanistic and synoptic prediction, classification, and characterization of dust events. In particular, a scheme for identifying dust days (DD) in Israel based on ground PM10 (particulate matter of size smaller than 10 nm) measurements has been suggested, which has been validated by compositional analysis. This scheme requires information regarding ground PM10 levels, which is naturally limited in places with sparse ground-monitoring coverage. In such cases, SRS may be an efficient and cost-effective alternative to ground measurements. This work demonstrates a new model for identifying DD and non-DD (NDD) over Israel based on an integration of aerosol products from different satellite platforms (Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI)). Analysis of ground-monitoring data from 2007 to 2008 in southern Israel revealed 67 DD, with more than 88 percent occurring during winter and spring. A Classification and Regression Tree (CART) model that was applied to a database containing ground monitoring (the dependent variable) and SRS aerosol product (the independent variables) records revealed an optimal set of binary variables for the identification of DD. These variables are combinations of the following primary variables: the calendar month, ground-level relative humidity (RH), the aerosol optical depth (AOD) from MODIS, and the aerosol absorbing index (AAI) from OMI. A logistic regression that uses these variables, coded as binary

  13. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition.

    PubMed

    Hahn, Byung-Dong; Lee, Jung-Min; Park, Dong-Soo; Choi, Jong-Jin; Ryu, Jungho; Yoon, Woon-Ha; Lee, Byoung-Kuk; Shin, Du-Sik; Kim, Hyoun-Ee

    2009-10-01

    Hydroxyapatite (HA)-carbon nanotube (CNT) composite coatings on Ti plate, produced by aerosol deposition using HA-CNT powders, were developed for biomedical applications. For the deposition process HA-CNT powder mixtures with CNT contents of 1 and 3 wt.% were used. Dense coatings with a thickness of 5 microm were fabricated, irrespective of the content of CNTs. No pores or microcracks were observed in the coatings. The coatings had good adhesion to the substrate, exhibiting a high adhesion strength, ranging from 27.3 to 29.0 MPa. Microstructural observation using field-emission gun scanning electron microscopy and transmission electron microscopy showed that CNTs with a typical tubular structure were found in the HA-CNT composite coatings. Nanoindentation tests revealed that the mechanical properties, such as the hardness and elastic modulus, were significantly improved by the addition of the CNTs to the HA coating. In addition, the proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 pre-osteoblast cells grown on the HA-CNT composite coatings were higher than those on the bare Ti and pure HA coating. The ALP activity of the composite coatings considerably improved as the CNT content increased. These results suggest that CNTs would be an effective reinforcing agent to enhance both the mechanical and biological performances of HA coatings.

  14. Production, Organic Characterization, and Phase Transformations of Marine Particles Aerosolized from a Laboratory Mesocosm Phytoplankton Bioreactor

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Knopf, D. A.; Aller, J. Y.; Radway, J.; Kilthau, W.

    2012-12-01

    artificial seawater show agreement with previous studies. As the phytoplankton population grows, particle production increases, with particles smaller than 200 nm in diameter primarily contributing to this increase. CCSEM/EDAX and STXM/NEXAFS analysis shows that phytoplankton presence can result in purely organic airborne particles, NaCl particles coated with organic material and organic particles containing phytoplankton frustule fragments. We also have observed that submicrometer particles can efficiently nucleate ice and that the same ice nucleating particles examined with CCSEM/EDAX and STXM/NEXAFS contain significant organic material by mass. These results will aid in understanding the effects of biological activity on the composition and mixing state of ocean derived aerosol particles and their potential impact on cold cloud formation.

  15. Formulation and production of intumescent coating systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J.; Schwartz, H. R.

    1973-01-01

    Methods for manufacturing and producing fire protective intumescent coatings are described. The coatings consist of three reactive parts mixed together at the time of use. The chemical composition of the reactive parts is discussed. The characteristics of the coatings which are obtained by three types of processing are analyzed. Qualification tests of the materials to determine acceptability are reported.

  16. Toward a Coherent Detailed Evaluation of Aerosol Data Products from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory

    2011-01-01

    Atmospheric aerosols represent one of the greatest uncertainties in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood, there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource, an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, TerraMISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MASS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.

  17. The Multi-Sensor Aerosol Products Sampling System (MAPSS) for Integrated Analysis of Satellite Retrieval Uncertainties

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory

    2010-01-01

    Among the known atmospheric constituents, aerosols represent the greatest uncertainty in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood ', there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource,., an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainty analysis of aerosol products from multiple satellite sensors.

  18. Secondary Organic Aerosol Production from Cloud Processing of Glycolaldehyde

    NASA Astrophysics Data System (ADS)

    Perri, M. J.; Seitzinger, S.; Turpin, B. J.

    2008-12-01

    Organic particulate matter (PM) formed in the atmosphere (secondary organic aerosol; SOA) is a substantial yet poorly understood contributor to atmospheric PM. Cloud processing is a newly recognized SOA formation pathway. This study investigates the potential for aqueous glycolaldehyde oxidation to produce low volatility products that are retained in the particle phase upon cloud droplet evaporation, increasing PM concentrations aloft. To our knowledge, this is the first confirmation that aqueous oxidation of glycolaldehyde via the hydroxyl radical forms glyoxal and glycolic acid, as previously assumed. Subsequent reactions form formic acid, glyoxylic acid, and oxalic acid as expected. Unexpected products include malonic acid, succinic acid, and higher molecular weight compounds, including oligomers. Predictions of aerosol yields based on these bulk aqueous experiments are presented. Due to (1) the large source strength of glycolaldehyde from precursors such as isoprene and ethene, (2) its water solubility, and (3) the aqueous formation of low volatility products, we predict that cloud processing of glycolaldehyde is an important source of SOA and that incorporation of this SOA formation pathway in chemical transport models will help explain the current under- prediction of organic PM concentrations.

  19. Kinetics, products, and mechanisms of secondary organic aerosol formation.

    PubMed

    Ziemann, Paul J; Atkinson, Roger

    2012-10-07

    Secondary organic aerosol (SOA) is formed in the atmosphere when volatile organic compounds (VOCs) emitted from anthropogenic and biogenic sources are oxidized by reactions with OH radicals, O(3), NO(3) radicals, or Cl atoms to form less volatile products that subsequently partition into aerosol particles. Once in particles, these organic compounds can undergo heterogenous/multiphase reactions to form more highly oxidized or oligomeric products. SOA comprises a large fraction of atmospheric aerosol mass and can have significant effects on atmospheric chemistry, visibility, human health, and climate. Previous articles have reviewed the kinetics, products, and mechanisms of atmospheric VOC reactions and the general chemistry and physics involved in SOA formation. In this article we present a detailed review of VOC and heterogeneous/multiphase chemistry as they apply to SOA formation, with a focus on the effects of VOC molecular structure on the kinetics of initial reactions with the major atmospheric oxidants, the subsequent reactions of alkyl, alkyl peroxy, and alkoxy radical intermediates, and the composition of the resulting products. Structural features of reactants and products discussed include compound carbon number; linear, branched, and cyclic configurations; the presence of C[double bond, length as m-dash]C bonds and aromatic rings; and functional groups such as carbonyl, hydroxyl, ester, hydroxperoxy, carboxyl, peroxycarboxyl, nitrate, and peroxynitrate. The intention of this review is to provide atmospheric chemists with sufficient information to understand the dominant pathways by which the major classes of atmospheric VOCs react to form SOA products, and the further reactions of these products in particles. This will allow reasonable predictions to be made, based on molecular structure, about the kinetics, products, and mechanisms of VOC and heterogeneous/multiphase reactions, including the effects of important variables such as VOC, oxidant, and NO

  20. Production of satellite-derived aerosol climate data records: current status of the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    de Leeuw, Gerrit; Holzer-Popp, Thomas; Pinnock, Simon

    2015-04-01

    and the Aerosol_cci team Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (Phase 1: 2010 -2014; Phase 2: 2014-2017) intensive work has been conducted to improve algorithms for the retrieval of aerosol information from European sensors ATSR (3 algorithms), PARASOL, MERIS (3 algorithms), synergetic AATSR/SCIAMACHY, OMI and GOMOS. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Ångström coefficient were retrieved from the other sensors. The cooperation between the project partners, including both the retrieval teams and independent validation teams, has resulted in a strong improvement of most algorithms. In particular the AATSR retrieved AOD is qualitatively similar to that from MODIS, usually taken as the standard, MISR and SeaWiFS. This conclusion has been reached form several different ways of validation of the L2 and L3 products, using AERONET sun photometer data as the common ground-truth for the application of both 'traditional' statistical techniques and a 'scoring' technique using spatial and temporal correlations. Quantitatively, the limited AATSR swath width of 500km results in a smaller amount of data. Nevertheless, the assimilation of AATSR-retrieved AOD, together with MODIS data, contributes to improving the in the ECMWF climate model results. In addition to the multi-spectral AOD, and thus the Ångström Exponent, also a per-pixel uncertainty is provided and validated. By the end of Aerosol_cci Phase 1 the ATSR algorithms have been applied to both ATSR-2 and AATSR resulting in an AOD time series of 17 years. In phase 2 this work is continued with a focus on the further improvement of the ATSR algorithms as well as those for the other instruments and algorithms, mentioned above, which in phase 1 were considered less mature. The first efforts are on the further characterization of the uncertainties and on better understanding of the

  1. Oxygenated products of sesquiterpenes in secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    van Eijck, A.; Kampf, C.; Hoffmann, T.

    2012-04-01

    Secondary organic aerosol (SOA) has a huge impact on air quality and climate change. It influences the Earth radiative budget through absorbing, scattering and reflecting radiation as well as the formation of clouds because the particulates can act as cloud condensation nuclei (CCN). Furthermore, it plays an important role for human health. SOA is formed from gaseous precursors which get oxidized by ozone, OH- and NO3-radicals in the atmosphere. Due to their low vapor pressure these degradation products can nucleate to form new particles or they can condense on existing aerosol particles. Despite the major progress in research during the last few years the actual chemical composition as well as the contribution of various volatile organic compounds (VOCs) to the formation of secondary organic aerosol is still partially unknown. Recent studies indicate that sesquiterpenes play an important role in the formation of SOA because of the low volatility of their oxygenated products (Lee et al., 2006). Their emission is estimated to be about 14,8 Tg per year (Henze et al., 2008), however, these emission rates remain highly uncertain due to the lack of quantitative emission rate measurements. In addition, the knowledge about the actual atmospheric degradation mechanism and the main oxidation products of sesquiterpenes is quite limited. β-Caryophyllene, α-humulene, α-farnesene and β-farnesene are the most abundant sequiterpenes in many sesquiterpene emission profiles. But also aromadendren, α-bergamotene and δ-cadinene and germacrene-D can contribute significantly to some emission profiles (Duhl et al., 2008). To determine the major oxygenated products of sesquiterpenes in SOA, reaction chamber experiments with different sesquiterpenes and ozone were performed in a 100 L reaction chamber. To measure the time dependent formation of initial oxidation products, an APCI-IT-MS was directly connected to the reaction chamber. After 2 hours the APCI-IT-MS was replaced by a

  2. Resolution and Content Improvements to MISR Aerosol and Land Surface Products

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Bull, M. A.; Diner, D. J.; Hansen, E. G.; Kalashnikova, O. V.

    2015-12-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing operational Level 2 (swath-based) aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution and atmospherically corrected land surface products at 1.1 km resolution. The performance of the aerosol product has been validated against ground-based Aerosol Robotic Network (AERONET) observations, model comparisons, and climatological assessments. This product has played a major role in studies of the impacts of aerosols on climate and air quality. The surface product has found a variety of uses, particularly at regional scales for assessing vegetation and land surface change. A major development effort has led to the release of an update to the operational (Version 22) MISR Level 2 aerosol and land surface retrieval products, which has been in production since December 2007. The new release is designated Version 23. The resolution of the aerosol product has been increased to 4.4 km, allowing more detailed characterization of aerosol spatial variability, especially near local sources and in urban areas. The product content has been simplified and updated to include more robust measures of retrieval uncertainty and other fields to benefit users. The land surface product has also been updated to incorporate the Version 23 aerosol product as input and to improve spatial coverage, particularly over mountainous terrain and snow/ice-covered surfaces. We will describe the major upgrades incorporated in Version 23 and present validation of the aerosol product against both the standard AERONET historical database, as well as high spatial density AERONET-DRAGON deployments. Comparisons will also be shown relative to the Version 22 aerosol and land surface products. Applications enabled by these product updates will be discussed.

  3. Laboratory Measurements of the Effect of Sulfuric and Organic Acid Coatings on the Optical Properties of Carbon Soot Aerosols

    NASA Astrophysics Data System (ADS)

    Xue, H.; Khalizov, A.; Zhang, R.

    2008-12-01

    Aerosol particles perturb the Earth-atmosphere radiative balance through scattering and absorption of the solar energy. Soot or black carbon, produced during combustion of fossil fuels and biofuels, is the major component responsible for light absorption by aerosol particles. The variation in the reported mass-specific absorption cross-sections (MAC) of fresh soot and increased light absorption by aged soot aerosols internally mixed with non-absorbing materials are the major factors leading to large uncertainties in the evaluation of the aerosol optical effects. We have investigated the optical properties of submicron carbon soot aerosols during simulated atmospheric processing with sulfuric acid and dicarboxylic organic acids. Internally mixed soot particles with known size, morphology, and the mixing state were produced by exposing the size-classified, flame-generated soot to sulfuric acid and organic acid vapor. Light extinction and scattering by fresh and internally mixed soot were measured at 532 nm wavelength using a cavity ring-down spectrometer and an integrating nephelometer, respectively; light absorption was derived as the difference between extinction and scattering. Mass-specific absorption cross-sections for fresh and internally mixed soot aggregates were calculated using the measured effective densities of soot cores. The optical properties of fresh soot were independent of the relative humidity (RH). Internally mixed soot exhibited significant enhancement in light absorption and scattering, increasing with the mass fraction of the coating material and RH. Sulfuric acid was found to cause greater enhancement in soot optical properties than organic acids. The higher absorption and scattering resulted in the increased single scattering albedo of coated soot aerosol. The measurements indicate that the irreversible restructuring of soot aggregates to more compact globules is a major contributor to the enhanced optical properties of internally mixed soot.

  4. Two MODIS Aerosol Products Over Ocean on the Terra and Aqua CERES SSF Datasets

    NASA Technical Reports Server (NTRS)

    Ignatov, Alexander; Minnis, Patrick; Loeb, Norman; Wielicki, Bruce; Miller, Walter; Sun-Mack, Sunny; Tanre, Didier; Remer, Lorraine; Laszlo, Istvan; Geier, Erika

    2004-01-01

    Over ocean, two aerosol products are reported on the Terra and Aqua CERES SSFs. Both are derived from MODIS, but using different sampling and aerosol algorithms. This study briefly summarizes these products, and compares using 2 weeks of global Terra data from 15-21 December 2000, and 1-7 June 2001.

  5. Assessment of 10-Year Global Record of Aerosol Products from the OMI Near-UV Algorithm

    NASA Astrophysics Data System (ADS)

    Ahn, C.; Torres, O.; Jethva, H. T.

    2014-12-01

    Global observations of aerosol properties from space are critical for understanding climate change and air quality applications. The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption and dark surface albedo in the UV spectral region. These unique features enable us to retrieve both aerosol extinction optical depth (AOD) and single scattering albedo (SSA) successfully from radiance measurements at 354 and 388 nm by the OMI near UV aerosol algorithm (OMAERUV). Recent improvements to algorithms in conjunction with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Atmospheric Infrared Sounder (AIRS) carbon monoxide data also reduce uncertainties due to aerosol layer heights and types significantly in retrieved products. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network (AERONET) measured AOD values over multiple stations representing major aerosol episodes and regimes. We also compare the OMI SSA against the inversion made by AERONET as well as an independent network of ground-based radiometer called SKYNET in Japan, China, South-East Asia, India, and Europe. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability. The OMAERUV 10-year global aerosol record is publicly available at the NASA data service center web site (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omaeruv_v003.shtml).

  6. Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Balkanski, Yves; Bopp, Laurent; Aumont, Olivier; Boucher, Olivier; Ciais, Philippe; Gehlen, Marion; Peñuelas, Josep; Ethé, Christian; Hauglustaine, Didier; Li, Bengang; Liu, Junfeng; Zhou, Feng; Tao, Shu

    2015-12-01

    Satellite data and models suggest that oceanic productivity is reduced in response to less nutrient supply under warming. In contrast, anthropogenic aerosols provide nutrients and exert a fertilizing effect, but its contribution to evolution of oceanic productivity is unknown. We simulate the response of oceanic biogeochemistry to anthropogenic aerosols deposition under varying climate from 1850 to 2010. We find a positive response of observed chlorophyll to deposition of anthropogenic aerosols. Our results suggest that anthropogenic aerosols reduce the sensitivity of oceanic productivity to warming from -15.2 ± 1.8 to -13.3 ± 1.6 Pg C yr-1 °C-1 in global stratified oceans during 1948-2007. The reducing percentage over the North Atlantic, North Pacific, and Indian Oceans reaches 40, 24, and 25%, respectively. We hypothesize that inevitable reduction of aerosol emissions in response to higher air quality standards in the future might accelerate the decline of oceanic productivity per unit warming.

  7. Effects of inorganic seed aerosols on the particulate products of aged 1,3,5-trimethylbenzene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Huang, Mingqiang; Hao, Liqing; Cai, Shunyou; Gu, Xuejun; Zhang, Weixiong; Hu, Changjin; Wang, Zhenya; Fang, Li; Zhang, Weijun

    2017-03-01

    Inorganic aerosols such as (NH4)2SO4, NaNO3 and CaCl2 are commonly present in the Chinese urban atmosphere. They could significantly affect the formation and aging of ambient secondary organic aerosols (SOA), but the underlying mechanisms remain unknown. In this work we studied SOA formation from the photooxidation reaction of 1,3,5-trimethylbenzene (135-TMB) with 100 μg/m3 of the above three types of inorganic aerosols as seeds in a laboratory chamber. We focused on the aging products of SOA particles by exposing them to high levels of oxidizing hydroxyl radicals (OH). The particulate products of SOA were measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) and Fuzzy C-Means (FCM) were applied to organic mass spectra for clustering. In the presence of (NH4)2SO4 seeds, 4-methyl-1H-imidazole, 4-methyl-imidazole-2-acetaldehyde and other imidazole derivative compounds formed from reactions of NH4+ with methylglyoxal were detected as new aged products. We also observed aromatic nitrogen-containing organic compounds as the major aged products in the presence of NaNO3 seeds as a consequence of reaction with OH and NO2 radicals, which were generated by UV irradiation of acidic aqueous nitrate, inducing nitration reactions with phenolic compounds. As CaCl2 has the strongest hygroscopic properties of the three salt particles tested, the greater water content on the surface of the aerosol may facilitate the condensing of more gas-phase organic acid products to the hygroscopic CaCl2 seeds, forming H+ ions that catalyze the heterogeneous reaction of aldehydes, products of photooxidation of 135-TMB, and forming high-molecular-weight (HMW) compounds. These results provide new insight into the aromatic SOA aging mechanisms.

  8. Production of porous coating on a prosthesis

    DOEpatents

    Sump, Kenneth R.

    1987-01-01

    Preselected surface areas of a prosthesis are covered by a blend of matching primary metallic particles and expendable particles. The particles are compressed and heated to assure that deformation and metallurgical bonding occurs between them and between the primary particles and the surface boundaries of the prosthesis. Porosity is achieved by removal of the expendable material. The result is a coating including discrete bonded particles separated by a network of interconnected voids presenting a homogeneous porous coating about the substrate. It has strength suitable for bone implant usage without intermediate adhesives, and adequate porosity to promote subsequent bone ingrowth.

  9. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Use of aerosol cosmetic products containing zirconium. 700.16 Section 700.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... in cosmetics and/or cosmetics that are also drugs, as, for example, aerosol antiperspirants....

  10. IRON COATED URANIUM AND ITS PRODUCTION

    DOEpatents

    Gray, A.G.

    1960-03-15

    A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.

  11. What is the "Clim-Likely" aerosol product?

    Atmospheric Science Data Center

    2014-12-08

    ... as an initial step in identifying a range of components and mixtures for the MISR Standard Aerosol Retrieval Algorithm climatology, and as ... (2001). The sensitivity of multi-angle imaging to natural mixtures of aerosols over ocean. J. Geophysical Res. , 106 (D16), ...

  12. Aerosol production and growth in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Russell, Lynn M.; Pandis, Spyros N.; Seinfeld, John H.

    1994-10-01

    The dependence of cloud condensation nuclei (CCN) production on the marine dimethylsulfide (DMS) flux is modeled with a dynamic description of the gas, aerosol, and aqueous phase processes in a closed air parcel. The results support the conclusion reached in previous work with a steady state model that an approximately linear dependence exists between CCN concentration and DMS flux under typical remote marine conditions. This linearity does not hold for low DMS fluxes (the threshold is typically near 2.5 micromol/sq m/day) because the sea-salt particles heterogeneously convert the available SO2 to sulfate inhibiting the creation of new particles. The conditions under which this linear relationship holds are investigated by a series of sensitivity studies, focusing particular attention on the impact of the timing and frequency of cloud events. We consider the regimes of the model's semiempirical parameters, showing that the uncertainty associated with two such parameters, namely, the nucleation rate scaling factor and the sulfuric acid accommodation coefficient, is sufficient to change the predicted CCN production due to DMS from over 300/cu cm/day to none. This sensitivity accounts for most of the range of results predicted by previous models of the DMS-CCN system.

  13. Surface coatings and catalyst production by electrodeposition

    NASA Technical Reports Server (NTRS)

    May, Chester B.; Riley, Clyde; Coble, H. Dwain; Loo, Boon H.

    1987-01-01

    Electrodeposition and electrocodeposition in low gravity are discussed. The goal is to provide a better understanding of the role of convection and buoyancy in the mechanisms of formation of some electrodeposited surfaces, fluid flow in the vicinity of electrodepositing surfaces, the influence of a moving medium upon codeposition, the effect of gravity upon the dispersion (coagulation) of neutral particles that are desired for codeposition and preparation of improved surface coatings and metal catalysts.

  14. MODIS 3 Km Aerosol Product: Applications over Land in an Urban/suburban Region

    NASA Technical Reports Server (NTRS)

    Munchak, L. A.; Levy, R. C.; Mattoo, S.; Remer, L. A.; Holben, B. N.; Schafer, J. S.; Hostetler, C. A.; Ferrare, R. A.

    2013-01-01

    MODerate resolution Imaging Spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites have provided a rich dataset of aerosol information at a 10 km spatial scale. Although originally intended for climate applications, the air quality community quickly became interested in using the MODIS aerosol data. However, 10 km resolution is not sufficient to resolve local scale aerosol features. With this in mind, MODIS Collection 6 is including a global aerosol product with a 3 km resolution. Here, we evaluate the 3 km product over the Baltimore/Washington D.C., USA, corridor during the summer of 2011, by comparing with spatially dense data collected as part of the DISCOVER-AQ campaign these data were measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and a network of 44 sun photometers (SP) spaced approximately 10 km apart. The HSRL instrument shows that AOD can vary by up to 0.2 within a single 10 km MODIS pixel, meaning that higher resolution satellite retrievals may help to characterize aerosol spatial distributions in this region. Different techniques for validating a high-resolution aerosol product against SP measurements are considered. Although the 10 km product is more statistically reliable than the 3 km product, the 3 km product still performs acceptably, with more than two-thirds of MODIS/SP collocations falling within the expected error envelope with high correlation (R > 0.90). The 3 km product can better resolve aerosol gradients and retrieve closer to clouds and shorelines than the 10 km product, but tends to show more significant noise especially in urban areas. This urban degradation is quantified using ancillary land cover data. Overall, we show that the MODIS 3 km product adds new information to the existing set of satellite derived aerosol products and validates well over the region, but due to noise and problems in urban areas, should be treated with some degree of caution.

  15. Aerosols and their influence on radiation partitioning and savanna productivity in northern Australia

    SciTech Connect

    Kanniah, K. D.; Beringer, J.; Tapper, N. J.; Long, Charles N.

    2010-05-01

    We investigated the effect of aerosols and clouds on the Net Ecosystem Productivity (NEP) of savannas in northern Australia using aerosol optical depth, clouds and radiation data from the Atmospheric Radiation Measurement (ARM) site in Darwin and carbon flux data measured from eddy covariance techniques from a site at Howard Springs, 35km southeast of Darwin. Generally we found that the concentration of aerosols in this region was relatively low than observed at other sites, therefore the proportion of diffuse radiation reaching the earths surface was only ~ 30%. As a result, we observed only a modest change in carbon uptake under aerosol laden skies and there was no significant difference for dry season Radiation Use Efficiency (RUE) between clear sky, aerosols or thin clouds. On the other hand thick clouds in the wet season produce much more diffuse radiation than aerosols or thin clouds and therefore the initial canopy quantum efficiency was seen to increase 45 and 2.5 times more than under thin clouds and aerosols respectively. The normalized carbon uptake under thick clouds is 57% and 50% higher than under aerosols and thin clouds respectively even though the total irradiance received under thick clouds was reduced 59% and 50% than under aerosols and thin clouds respectively. However, reduction in total irradiance decreases the mean absolute carbon uptake as much as 22% under heavy cloud cover compared to thin clouds or aerosols. Thus, any increase in aerosol concentration or cloud cover that can enhance the diffuse component may have large impacts on productivity in this region.

  16. High velocity electromagnetic particle launcher for aerosol production studies

    SciTech Connect

    Benson, D.A.; Rader, D.J.

    1986-05-01

    This report describes the development of a new device for study of metal combustion, breakup and production of aerosols in a high velocity environment. Metal wires are heated and electromagnetically launched with this device to produce molten metal droplets moving at velocities ranging up to about Mach 1. Such tests are presently intended to simulate the behavior of metal streamers ejected from a high-explosive detonation. A numerical model of the launcher performance in terms of sample properties, sample geometry and pulser electrical parameters is presented which can be used as a tool for design of specific test conditions. Results from several tests showing the range of sample velocities accessible with this device are described and compared with the model. Photographic measurements showing the behavior of tungsten and zirconium metal droplets are presented. Estimates of the Weber breakup and drag on the droplets, as well as calculations of the droplet trajectories, are described. Such studies may ultimately be useful in assessing environmental hazards in the handling and storage of devices containing metallic plutonium.

  17. Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products

    NASA Astrophysics Data System (ADS)

    Lorenz, Christiane; Hagendorfer, Harald; von Goetz, Natalie; Kaegi, Ralf; Gehrig, Robert; Ulrich, Andrea; Scheringer, Martin; Hungerbühler, Konrad

    2011-08-01

    Consumer spray products are already on the market in the cosmetics and household sector, which suggest by their label that they contain engineered nanoparticles (ENP). Sprays are considered critical for human health, because the lungs represent a major route for the uptake of ENP into the human body. To contribute to the exposure assessment of ENP in consumer spray products, we analyzed ENP in four commercially available sprays: one antiperspirant, two shoe impregnation sprays, and one plant-strengthening agent. The spray dispersions were analyzed by inductively coupled plasma mass spectrometry (ICPMS) and (scanning-) transmission electron microscopy ((S)TEM). Aerosols were generated by using the original vessels, and analyzed by scanning mobility particle sizer (SMPS) and (S)TEM. On the basis of SMPS results, the nanosized aerosol depositing in the respiratory tract was modeled for female and male consumers. The derived exposure levels reflect a single spray application. We identified ENP in the dispersions of two products (shoe impregnation and plant spray). Nanosized aerosols were observed in three products that contained propellant gas. The aerosol number concentration increased linearly with the sprayed amount, with the highest concentration resulting from the antiperspirant. Modeled aerosol exposure levels were in the range of 1010 nanosized aerosol components per person and application event for the antiperspirant and the impregnation sprays, with the largest fraction of nanosized aerosol depositing in the alveolar region. Negligible exposure from the application of the plant spray (pump spray) was observed.

  18. Method and device for producing and delivering an aerosol for remote sealing and coating

    DOEpatents

    Modera, M.P.; Carrie, F.R.

    1996-06-04

    The invention is a method and device for sealing leaks remotely by means of injecting a previously prepared aerosol into the enclosure being sealed. Specifically the invention is a method and device for preparing, transporting, and depositing and solid phase aerosol to the interior surface of the enclosure. 1 fig.

  19. Controls on aerosol wet deposition from satellite-based (re-)analysis products

    NASA Astrophysics Data System (ADS)

    Chuang, P. Y.

    2015-12-01

    Aerosol wet deposition is the key aerosol loss mechanism globally, yet is not well-understood relative to aerosol sources and transformations. The difficulty in generating appropriate observational data sets is one important barrier to the study of aerosol wet removal. In this study, we combine two independent products based on satellite measurements. Aerosol optical depth (AOD) is obtained from the ECMWF Monitoring Atmospheric Composition and Climate (MACC) project, which is a re-analysis product that assimilates MODIS-retrieved aerosol optical depth. Rainfall is obtained from the Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis version 7 (TMPA-7). The latter product is available only from 50°N to 50°S, which sets our region of study. The data used is from 2011-12, is averaged to 6-hr intervals and has a horizontal resolution of 0.25°x0.25°. Our approach involves constructing a Lagrangian advection scheme that predicts aerosol AOD at the next time step (i.e. 6 hr in the future) based on current time step AOD and winds, and neglecting all aerosol sources and sinks. Predicted AOD is then compared with MACC reanalysis AOD conditioned on Lagrangian parcels that experienced rainfall during that interval, with AOD decreases attributed to wet deposition. Aerosol wet deposition is often parameterized in models as a function of rainfall rate using a power law. We evaluate the validity of such a power law relationship, and, when valid, compute the power law exponent globally, and by region (including continental and maritime locations) to reveal seasonal and geographic variability. Assuming precipitation is modulated by aerosol, at least in some regimes, then it follows that wet deposition also depends on AOD, and we quantify the strength of this coupling. This same approach could be used to study wet deposition of trace gases such as CO and ozone, as these are also available from the MACC re-analysis.

  20. Characterization of particulate products for aging of ethylbenzene secondary organic aerosol in the presence of ammonium sulfate seed aerosol.

    PubMed

    Huang, Mingqiang; Zhang, Jiahui; Cai, Shunyou; Liao, Yingmin; Zhao, Weixiong; Hu, Changjin; Gu, Xuejun; Fang, Li; Zhang, Weijun

    2016-09-01

    Aging of secondary organic aerosol (SOA) particles formed from OH- initiated oxidation of ethylbenzene in the presence of high mass (100-300μg/m(3)) concentrations of (NH4)2SO4 seed aerosol was investigated in a home-made smog chamber in this study. The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with a Fuzzy C-Means (FCM) clustering algorithm. Experimental results showed that nitrophenol, ethyl-nitrophenol, 2,4-dinitrophenol, methyl glyoxylic acid, 5-ethyl-6-oxo-2,4-hexadienoic acid, 2-ethyl-2,4-hexadiendioic acid, 2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid, 1H-imidazole, hydrated N-glyoxal substituted 1H-imidazole, hydrated glyoxal dimer substituted imidazole, 1H-imidazole-2-carbaldehyde, N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight (HMW) components were the predominant products in the aged particles. Compared to the previous aromatic SOA aging studies, imidazole compounds, which can absorb solar radiation effectively, were newly detected in aged ethylbenzene SOA in the presence of high concentrations of (NH4)2SO4 seed aerosol. These findings provide new information for discussing aromatic SOA aging mechanisms.

  1. Aerosol Optical Depth Value-Added Product Report

    SciTech Connect

    Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

    2013-03-17

    This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

  2. Air Quality Monitoring and Forecasting Applications of Suomi NPP VIIRS Aerosol Products

    NASA Astrophysics Data System (ADS)

    Kondragunta, Shobha

    The Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched on October 28, 2011. It provides Aerosol Optical Thickness (AOT) at two different spatial resolutions: a pixel level (~750 m at nadir) product called the Intermediate Product (IP) and an aggregated (~6 km at nadir) product called the Environmental Data Record (EDR), and a Suspended Matter (SM) EDR that provides aerosol type (dust, smoke, sea salt, and volcanic ash) information. An extensive validation of VIIRS best quality aerosol products with ground based L1.5 Aerosol Robotic NETwork (AERONET) data shows that the AOT EDR product has an accuracy/precision of -0.01/0.11 and 0.01/0.08 over land and ocean respectively. Globally, VIIRS mean AOT EDR (0.20) is similar to Aqua MODIS (0.16) with some important regional and seasonal differences. The accuracy of the SM product, however, is found to be very low (20 percent) when compared to Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and AERONET. Several algorithm updates which include a better approach to retrieve surface reflectance have been developed for AOT retrieval. For dust aerosol type retrieval, a new approach that takes advantage of spectral dependence of Rayleigh scattering, surface reflectance, dust absorption in the deep blue (412 nm), blue (440 nm), and mid-IR (2.2 um) has been developed that detects dust with an accuracy of ~80 percent. For smoke plume identification, a source apportionment algorithm that combines fire hot spots with AOT imagery has been developed that provides smoke plume extent with an accuracy of ~70 percent. The VIIRS aerosol products will provide continuity to the current operational use of aerosol products from Aqua and Terra MODIS. These include aerosol data assimilation in Naval Research Laboratory (NRL) global aerosol model, verification of National Weather Service (NWS) dust and smoke forecasts, exceptional events monitoring by different states

  3. Fission product partitioning in aerosol release from simulated spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Di Lemma, F. G.; Colle, J. Y.; Rasmussen, G.; Konings, R. J. M.

    2015-10-01

    Aerosols created by the vaporization of simulated spent nuclear fuel (simfuel) were produced by laser heating techniques and characterised by a wide range of post-analyses. In particular attention has been focused on determining the fission product behaviour in the aerosols, in order to improve the evaluation of the source term and consequently the risk associated with release from spent fuel sabotage or accidents. Different simulated spent fuels were tested with burn-up up to 8 at. %. The results from the aerosol characterisation were compared with studies of the vaporization process by Knudsen Effusion Mass Spectrometry and thermochemical equilibrium calculations. These studies permit an understanding of the aerosol gaseous precursors and the gaseous reactions taking place during the aerosol formation process.

  4. The Remote Sensing of Mineral Aerosols and their Impact on Phytoplankton Productivity

    NASA Technical Reports Server (NTRS)

    Tindale, Neil W.

    1997-01-01

    The overall objective of this experiment was to test the iron hypothesis does the addition of iron to nutrient rich surface waters enhance productivity? Our specific objectives in this experiment included sampling and studying the marine aerosol size and type (which are related to chemical reactivity) during the PlumEx cruise to determine the importance of local (Galapagos Islands) versus long-range sources of atmospheric material. Detailed results of single particle analysis of our samples are being prepared for publication in two papers. We collect aerosol samples and they have been analyzed for trace metals and other elements. We are mapped aerosol distribution and the desert source areas around the Arabian Sea region. We did record a clear relationship between the aerosol radiance and synoptic weather patterns with distinct signals over the ocean northwest and southwest of Australia. While the interpretation was limited an aerosol climatology pattern was presented.

  5. The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles

    NASA Astrophysics Data System (ADS)

    Drinovec, Luka; Gregorič, Asta; Zotter, Peter; Wolf, Robert; Bruns, Emily Anne; Prévôt, André S. H.; Petit, Jean-Eudes; Favez, Olivier; Sciare, Jean; Arnold, Ian J.; Chakrabarty, Rajan K.; Moosmüller, Hans; Filep, Agnes; Močnik, Griša

    2017-03-01

    Black carbon is a primary aerosol tracer for high-temperature combustion emissions and can be used to characterize the time evolution of its sources. It is correlated with a decrease in public health and contributes to atmospheric warming. Black carbon measurements are usually conducted with absorption filter photometers, which are prone to several artifacts, including the filter-loading effect - a saturation of the instrumental response due to the accumulation of the sample in the filter matrix. In this paper, we investigate the hypothesis that this filter-loading effect depends on the optical properties of particles present in the filter matrix, especially on the black carbon particle coating. We conducted field campaigns in contrasting environments to determine the influence of source characteristics, particle age and coating on the magnitude of the filter-loading effect. High-time-resolution measurements of the filter-loading parameter in filter absorption photometers show daily and seasonal variations of the effect. The variation is most pronounced in the near-infrared region, where the black carbon mass concentration is determined. During winter, the filter-loading parameter value increases with the absorption Ångström exponent. It is suggested that this effect is related to the size of the black carbon particle core as the wood burning (with higher values of the absorption Ångström exponent) produces soot particles with larger diameters. A reduction of the filter-loading effect is correlated with the availability of the coating material. As the coating of ambient aerosols is reduced or removed, the filter-loading parameter increases. Coatings composed of ammonium sulfate and secondary organics seem to be responsible for the variation of the loading effect. The potential source contribution function analysis shows that high values of the filter-loading parameter in the infrared are indicative of local pollution, whereas low values of the filter

  6. A production parylene coating process for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Kale, V. S.; Riley, T. J.

    1977-01-01

    The real impetus for developing a production parylene coating process for internal hybrid passivation came as a result of the possibility of loose conductive particles in hybrid microelectronic circuits, causing intermittent and sometimes permanent failures. Because of the excellent mechanical properties of parylene, it is capable of securing the loose particles in place and prevent such failures. The process of coating described consists of (1) vaporizing the initial charge, which is in the form of a dimer; (2) conversion of the dimer into a reactive monomer; and (3) deposition and subsequent polymerization of the monomer in the deposition chamber which forms a uniform parylene film over all the cold surfaces in contact. Experimental results are discussed in terms of wire bond reliability, resistor drift, high-temperature storage characteristics of parylene, and coating acceptance standards. It is concluded that internal cavities of microelectronic circuits can be successfully coated with parylene provided appropriate tooling is used to protect external leads from the parylene monomer.

  7. Development and Applications of a New, High-Resolution, Operational MISR Aerosol Product

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Diner, D. J.; Kalashnikova, O.

    2014-12-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution. Capitalizing on the capabilities provided by multi-angle viewing, the operational MISR algorithm performs well, with about 75% of MISR AOD retrievals falling within 0.05 or 20% × AOD of the paired validation data from the ground-based Aerosol Robotic Network (AERONET), and is able to distinguish aerosol particles by size and sphericity, over both land and water. These attributes enable a variety of applications, including aerosol transport model validation and global air quality assessment. Motivated by the adverse impacts of aerosols on human health at the local level, and taking advantage of computational speed advances that have occurred since the launch of Terra, we have implemented an operational MISR aerosol product with 4.4 km spatial resolution that maintains, and sometimes improves upon, the quality of the 17.6 km resolution product. We will describe the performance of this product relative to the heritage 17.6 km product, the global AERONET validation network, and high spatial density AERONET-DRAGON sites. Other changes that simplify product content, and make working with the data much easier for users, will also be discussed. Examples of how the new product demonstrates finer spatial variability of aerosol fields than previously retrieved, and ways this new dataset can be used for studies of local aerosol effects, will be shown.

  8. Evidence for surface nucleation: efflorescence of ammonium sulfate and coated ammonium sulfate aerosol particles

    NASA Astrophysics Data System (ADS)

    Ciobanu, V. Gabriela; Marcolli, Claudia; Krieger, Ulrich K.; Zuend, Andreas; Peter, Thomas

    2010-05-01

    Aerosol particles are ubiquitous in the atmosphere and can undergo different phase transitions, such as deliquescence and efflorescence. Using optical microscopy, we investigated the efflorescence of ammonium sulfate (AS) in supersaturated AS and 1:1 and 8:1 (by weight) poly(ethylene glycol)-400 (PEG-400)/AS particles, which were deposited as droplets with diameters in the 16 - 35 μm range on a hydrophobically coated slide. The PEG-400/AS particles that are exposed to decreasing relative humidity (RH) exhibit a liquid-liquid phase separation below 90 % RH with the PEG-400 phase surrounding the aqueous AS inner phase (Marcolli and Krieger, 2006; Ciobanu et al., 2009). Pure AS particles effloresced in the RH range from 36.3 to 43.7 % RH, in agreement with literature data (31 - 48 % RH). In contrast, 1:1 PEG-400/AS particles with diameters of the AS phase from 7.2 - 19.2 μm effloresced between 26.8 - 33.9 % RH and 8:1 PEG-400/AS particles with diameters of the AS phase from 1.8 - 7.3 μm between 24.3 - 29.3 % RH. Such low efflorescence relative humidity (ERH) values have never been reached before for AS particles of this size range. We show that neither a potential inhibition of water evaporation via anomalously slow diffusion through the PEG coating, nor the presence of low amounts of PEG-400 in the AS phase, nor different timescales between various experimental techniques could possibly explain the low AS ERH values of PEG-400/AS particles in our setup. High-speed photography of the efflorescence process allowed to monitor the proceeding of the AS crystallization fronts within the particles with millisecond time resolution. The nucleation locations were deduced based on the initial crystals growth locations. Statistical analysis of 31 and 19 efflorescence events for pure AS and 1:1 PEG-400/AS particles, respectively, identified the air/droplet/substrate contact line and the air/droplet interface as preferred nucleation locations in the case of pure AS particles

  9. Aerosol Production from Charbroiled and Wet-Fried Meats

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Blanc, L. E.

    2012-12-01

    Previous work in our laboratory focused on the chemical and optical characterization of aerosols produced during the dry-frying of different meat samples. This method yielded a complex ensemble of particles composed of water and long-chain fatty acids with the latter dominated by oleic, stearic, and palmitic acids. The present study examines how wet-frying and charbroiling cooking methods affect the physical and chemical properties of their derived aerosols. Samples of ground beef, salmon, chicken, and pork were subject to both cooking methods in the laboratory, with their respective aerosols swept into a laminar flow cell where they were optically analyzed in the mid-infrared and collected through a gas chromatography probe for chemical characterization. This presentation will compare and contrast the nature of the aerosols generated in each cooking method, particularly those produced during charbroiling which exposes the samples, and their drippings, to significantly higher temperatures. Characterization of such cooking-related aerosols is important because of the potential impact of these particles on air quality, particularly in urban areas.

  10. Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012

    SciTech Connect

    Meskhidze, Nicholas

    2013-10-21

    The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

  11. Application of Earth Sciences Products for use in Next Generation Numerical Aerosol Prediction Models

    DTIC Science & Technology

    2008-09-30

    J. S. Reid, D. W. Breed, A. L. Walker, A. Al Mandoos (2008), Haboob dust storms of the southern Arabian Peninsula, J. Geophys. Res., 113, D01202...fields from the NRL Aerosol Analysis and Prediction System (NAAPS) and Coupled Ocean Atmosphere Mesoscale Prediction System ( COAMPS ®) with near real time...Mesoscale Prediction System ( COAMPS ?) with near real time satellite surface and aerosol products via a high resolution radiative transfer model, angular

  12. Uncertainty in Cloud Aerosol Transport System (CATS) Doppler Lidar Products and Measurements

    NASA Astrophysics Data System (ADS)

    Selmer, P. A.

    2010-12-01

    The Cloud Aerosol Transport System (CATS) is both a high spectral resolution lidar and Doppler lidar currently being developed at NASA Goddard Space Flight Center for use as a demonstrator instrument for NASA’s Aerosol Cloud Ecosystem (ACE) Mission. CATS is intended to fly on NASA’s high-altitude ER-2 aircraft. CATS will be capable of measuring both aerosol properties and horizontal wind velocity as a function of altitude. The accuracy of these measurements is important to the success of the instrument and the ACE mission. Uncertainty equations for both the aerosol and wind products are derived. Initially the only sources of error are assumed to be instrument error in the spectral measurements. Using simulated CATS spectral measurements from simulated atmospheric profiles (an atmosphere with only a cirrus layer, an atmosphere with only a cumulus layer, an atmosphere with only an aerosol layer, and an atmosphere with no clouds or aerosols), the uncertainty in the aerosol and wind products are calculated. These calculated uncertainties are found to be within reason. Also worthy of consideration is the effect of aircraft motion on CATS’ wind measurements and products. An equation for the the nadir angle (assumed to be about 45 degrees for CATS), as well as the uncertainty in this angle, in terms of aircraft pitch and roll is derived. The effect of uncertainty in this angle on the uncertainty in CATS aerosol and wind products is calculated using the same simulated data previously mentioned, which is found to be insignificant for normal, steady flight.

  13. Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols.

    PubMed

    Flora, Jason W; Meruva, Naren; Huang, Chorng B; Wilkinson, Celeste T; Ballentine, Regina; Smith, Donna C; Werley, Michael S; McKinney, Willie J

    2016-02-01

    E-cigarettes are gaining popularity in the U.S. as well as in other global markets. Currently, limited published analytical data characterizing e-cigarette formulations (e-liquids) and aerosols exist. While FDA has not published a harmful and potentially harmful constituent (HPHC) list for e-cigarettes, the HPHC list for currently regulated tobacco products may be useful to analytically characterize e-cigarette aerosols. For example, most e-cigarette formulations contain propylene glycol and glycerin, which may produce aldehydes when heated. In addition, nicotine-related chemicals have been previously reported as potential e-cigarette formulation impurities. This study determined e-liquid formulation impurities and potentially harmful chemicals in aerosols of select commercial MarkTen(®) e-cigarettes manufactured by NuMark LLC. The potential hazard of the identified formulation impurities and aerosol chemicals was also estimated. E-cigarettes were machine puffed (4-s duration, 55-mL volume, 30-s intervals) to battery exhaustion to maximize aerosol collection. Aerosols analyzed for carbonyls were collected in 20-puff increments to account for analyte instability. Tobacco specific nitrosamines were measured at levels observed in pharmaceutical grade nicotine. Nicotine-related impurities in the e-cigarette formulations were below the identification and qualification thresholds proposed in ICH Guideline Q3B(R2). Levels of potentially harmful chemicals detected in the aerosols were determined to be below published occupational exposure limits.

  14. If the MODIS Aerosol Product is so Infested with Cloud Contamination, Why Does Everybody Use the Product?

    NASA Technical Reports Server (NTRS)

    Remeer, Lorraine A.

    2011-01-01

    The MODIS aerosol cloud mask is based on a spatial variability test, using the assumption that aerosols are more homogeneous than clouds. On top of this first line of defense are a series of additional tests based on threshold values and ratios of various MODIS channels. The goal is to eliminate clouds and keep the aerosol. How well have we succeeded? There have been several studies showing cloud contamination in the MODIS aerosol product and several alternative cloud masks proposed. There are even "competing" MODIS aerosol products that offer an alternative "cloud free" world. Are these alternative products an improvement to the old standard product? We find there is a trade-off between retrieval availability and cloud contamination, and for many applications it is better to have a little bit of cloud in the product than to not have enough product. I will review the decisions that led us to the present MODIS cloud mask, and show how it is simultaneously too liberal and too conservative, some ideas on how to make it better and why in the end it doesn't matter. I hope to inspire a spirited discussion and will be very willing to take your complaints and suggestions.

  15. The Impact of Organic Surfactants and Coatings in Regulating Heterogeneous N2O5 Reaction Kinetics on Nascent Marine Aerosol

    NASA Astrophysics Data System (ADS)

    Ryder, O. S.; Campbell, N.; Schill, S.; Pöhlker, C.; Andreae, M. O.; Bertram, T. H.

    2013-12-01

    The heterogeneous reaction of N2O5 on aerosol particles impacts both the lifetime of nitrogen oxides, and the production rate of chlorine radicals following the activation of particulate chloride to nitryl chloride in both coastal and continental regions. The extent to which N2O5 reactivity impacts oxidant loadings depends on the heterogeneous reaction rate, which is directly influenced by aerosol chemical composition, morphology, and physical phase state. In the marine environment, the chemical composition of aerosol particles produced via wave induced bubble bursting mechanisms varies greatly and is influenced by the composition of the sea surface microlayer . Here, we present direct measurements of N2O5 reaction kinetics determined using model sea-spray particles generated in a novel Marine Aerosol Reference Tank (MART), capable of generating accurate mimics of ambient sea spray particles, in a lab environment. Here, a synthetic sea salt ocean was sequentially doped with organic molecules chosen to mimic organic species present in natural sea water over the course of a phytoplankton bloom in the open ocean. These included sterol, galactose, lippolysaccharide, BSA protein, and 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA). These observations permit discussion of the role of marine organics in regulating heterogeneous reaction kinetics, as well a re-evaluation of potential organic lab proxies for marine organics.

  16. Role of Organic Coatings in Regulating N2O5 Reactive Uptake to Sea Spray Aerosol.

    PubMed

    Ryder, Olivia S; Campbell, Nicole R; Morris, Holly; Forestieri, Sara; Ruppel, Matthew J; Cappa, Christopher; Tivanski, Alexei; Prather, Kimberly; Bertram, Timothy H

    2015-12-03

    Previous laboratory measurements and field observations have suggested that the reactive uptake of N2O5 to sea spray aerosol particles is a complex function of particle chemical composition and phase, where surface active organics can suppress the reactive uptake by up to a factor of 60. To date, there are no direct studies of the reactive uptake of N2O5 to nascent sea spray aerosol that permit assessment of the role that organic molecules present in sea spray aerosol (SSA) may play in suppressing or enhancing N2O5 uptake kinetics. In this study, SSA was generated from ambient seawater and artificial seawater matrices using a Marine Aerosol Reference Tank (MART), capable of producing nascent SSA representative of ambient conditions. The reactive uptake coefficient of N2O5 (γ(N2O5)) on nascent SSA was determined using an entrained aerosol flow reactor coupled to a chemical ionization mass spectrometer for measurement of surface area dependent heterogeneous loss rates. Population averaged measurements of γ(N2O5) for SSA generated from salt water sequentially doped with representative organic molecular mimics, or from ambient seawater, do not deviate statistically from that observed for sodium chloride (γ(N2O5)NaCl = 0.01-0.03) for relative humidity (RH) ranging between 50 and 65%. The results are consistent with measurements made under clean marine conditions at the Scripps Institution of Oceanography Pier and those conducted on nascent SSA generated in the marine aerosol reference tank. The results presented here suggest that organic films present on nascent SSA (at RH greater than 50%) likely do not significantly limit N2O5 reactive uptake.

  17. ALTERNATIVE FORMULATIONS TO REDUCE CFC USE IN U.S. EXEMPTED AND EXCLUDED AEROSOL PRODUCTS

    EPA Science Inventory

    The report examines products exempted and excluded from those affected by the 1978 ban on the use of chlorofluorocarbons (CFCs) as aerosol propellants, the present consumption of CFCs still utilized for these products in the U.S., and alternative formulations which may be used to...

  18. Laboratory studies of oxidation of primary emissions: Oxidation of organic molecular markers and secondary organic aerosol production

    NASA Astrophysics Data System (ADS)

    Weitkamp, Emily A.

    Particulate matter (PM) is solid particles and liquid droplets of complex composition suspended in the atmosphere. In 1997, the National Ambient Air Quality Standards (NAAQS) for PM was modified to include new standards for fine particulate (particles smaller than 2.5mum, PM2.5) because of their association with adverse health effects, mortality and visibility reduction. Fine PM may also have large impacts on the global climate. Chemically, fine particulate is a complex mixture of organic and inorganic material, from both natural and anthropogenic sources. A large fraction of PM2.5 is organic. The first objective was to investigate heterogeneous oxidation of condensed-phase molecular markers for two major organic source categories, meat-cooking emissions and motor vehicle exhaust. Effective reaction rate constants of key molecular markers were measured over a range of atmospherically relevant experimental conditions, including a range of concentrations and relative humidities, and with SOA condensed on the particles. Aerosolized meat grease was reacted with ozone to investigate the oxidation of molecular markers for meat-cooking emissions. Aerosolized motor oil, which is chemically similar to vehicle exhaust aerosol and contains the molecular markers used in source apportionment, was reacted with the hydroxyl radical (OH) to investigate oxidation of motor vehicle molecular markers. All molecular markers of interest - oleic acid, palmitoleic acid, and cholesterol for meat-cooking emissions, and hopanes and steranes for vehicle exhaust - reacted at rates that are significant for time scales on the order of days assuming typical summertime oxidant concentrations. Experimental conditions influenced the reaction rate constants. For both systems, experiments conducted at high relative humidity (RH) had smaller reaction rate constants than those at low RH. SOA coating slowed the reaction rate constants for meat-cooking markers, but had no effect on the oxidation of

  19. Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming

    PubMed Central

    Balkanski, Yves; Bopp, Laurent; Aumont, Olivier; Boucher, Olivier; Ciais, Philippe; Gehlen, Marion; Peñuelas, Josep; Ethé, Christian; Hauglustaine, Didier; Li, Bengang; Liu, Junfeng; Zhou, Feng; Tao, Shu

    2015-01-01

    Abstract Satellite data and models suggest that oceanic productivity is reduced in response to less nutrient supply under warming. In contrast, anthropogenic aerosols provide nutrients and exert a fertilizing effect, but its contribution to evolution of oceanic productivity is unknown. We simulate the response of oceanic biogeochemistry to anthropogenic aerosols deposition under varying climate from 1850 to 2010. We find a positive response of observed chlorophyll to deposition of anthropogenic aerosols. Our results suggest that anthropogenic aerosols reduce the sensitivity of oceanic productivity to warming from −15.2 ± 1.8 to −13.3 ± 1.6 Pg C yr−1 °C−1 in global stratified oceans during 1948–2007. The reducing percentage over the North Atlantic, North Pacific, and Indian Oceans reaches 40, 24, and 25%, respectively. We hypothesize that inevitable reduction of aerosol emissions in response to higher air quality standards in the future might accelerate the decline of oceanic productivity per unit warming. PMID:27867233

  20. Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming.

    PubMed

    Wang, Rong; Balkanski, Yves; Bopp, Laurent; Aumont, Olivier; Boucher, Olivier; Ciais, Philippe; Gehlen, Marion; Peñuelas, Josep; Ethé, Christian; Hauglustaine, Didier; Li, Bengang; Liu, Junfeng; Zhou, Feng; Tao, Shu

    2015-12-28

    Satellite data and models suggest that oceanic productivity is reduced in response to less nutrient supply under warming. In contrast, anthropogenic aerosols provide nutrients and exert a fertilizing effect, but its contribution to evolution of oceanic productivity is unknown. We simulate the response of oceanic biogeochemistry to anthropogenic aerosols deposition under varying climate from 1850 to 2010. We find a positive response of observed chlorophyll to deposition of anthropogenic aerosols. Our results suggest that anthropogenic aerosols reduce the sensitivity of oceanic productivity to warming from -15.2 ± 1.8 to -13.3 ± 1.6 Pg C yr(-1) °C(-1) in global stratified oceans during 1948-2007. The reducing percentage over the North Atlantic, North Pacific, and Indian Oceans reaches 40, 24, and 25%, respectively. We hypothesize that inevitable reduction of aerosol emissions in response to higher air quality standards in the future might accelerate the decline of oceanic productivity per unit warming.

  1. Aerosol Products from The Future Space Lidar AEOLUS

    NASA Astrophysics Data System (ADS)

    Martinet, Pauline; Dabas, Alain; Lever, Vincent; Flamant, Pierre; Huber, Dorit

    2016-06-01

    Ready for launch by the end of 2016, the Doppler lidar mission AEOLUS from the European Space Agency (ESA) will be the first High-Spectral Resolution Lidar (HSRL) in space. Operating in the UV, it implements two detection channels for aerosol and molecular backscatter. The system is primarily designed for the measurement of winds, but the HSRL capability enables the measurement of the particulate backscatter and extinction coefficients without any a priori assumption on the aerosol type. The level-2A (L2A) processor has been developed for these measurements and tested with synthetic data. The results show good aerosol backscatter profiles can be retrieved. Extinction coefficients are reasonable but do not reach the quality of backscatter coefficients. A precise, full, radiometric calibration of the lidar is required. A major limitation of the system is a single polarization component of the light is detected leading to an underestimation of backscatter coefficients when the atmospheric particles are depolarizing. The vertical resolution goes from 250 meters in the lowest part of the atmosphere, to 2 km in the lower stratosphere. The maximum altitude can reach above 20km. The basic horizontal averaging is 90km. Averaging on shorter distances (down to a few km) are possible but require a sufficient signal to noise ratio.

  2. Analysis of reversibility and reaction products of glyoxal uptake onto ammonium sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Chhabra, P. S.; Chan, A. W.; Surratt, J. D.; Kwan, A. J.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.; Keutsch, F. N.

    2009-04-01

    Glyoxal, the smallest alpha-dicarbonyl, is an oxidation product of both biogenic and anthropogenic volatile organic compounds (Fu et al. JGR 113, D15303, 2008). Despite its low molecular weight, its role in secondary organic aerosol (SOA) formation has gained interest and a recent study suggested that it accounts for more than 15% of SOA in Mexico City (Volkamer et al. GRL 34, L19807, 2007). Despite numerous previous studies, questions remain regarding the processes controlling glyoxal uptake onto aerosol, including the role of acid catalysis, degree of reversibility, and identity of aerosol phase reaction products. We present results of chamber aerosol studies (Galloway et al. ACPD 8, 20799, 2008) and laboratory studies of bulk samples aimed at improving the understanding of these processes, in particular formation of oligomers and organosulfates of glyoxal, as well as the formation of imidazoles (carbon-nitrogen containing heterocyclic aromatic compounds) under dark and irradiated conditions. The relevance of these classes of reaction products extends beyond glyoxal, as evidence of oligomers and organosulfates other than those of glyoxal have been found in ambient aerosol (Surratt et al. JPCA 112, 8345, 2008; Denkenberger et al. Environ. Sci. Technol. 41, 5439, 2007). Experiments in which a chamber air mass was diluted after equilibration of glyoxal uptake onto ammonium sulfate seed aerosol (relative humidity 60% and glyoxal mixing ratios of 25-200 ppbv) shows that under these conditions uptake is reversible. The most important condensed phase products are hydrated oligomers of glyoxal, which are also formed reversibly under these conditions. Our studies show that organosulfates were not formed under dark conditions for neutral or acidified aerosol; similarly, Minerath et al. have recently shown that formation of a different class of organosulfates (alkyl sulfates) also proceeds very slowly even under acidic conditions (Environ. Sci. Technol. 42, 4410, 2008). The

  3. Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis

    NASA Astrophysics Data System (ADS)

    Deboudt, Karine; Flament, Pascal; ChoëL, Marie; Gloter, Alexandre; Sobanska, Sophie; Colliex, Christian

    2010-12-01

    The mixing state of aerosols collected at M'Bour, Senegal, during the Special Observing Period conducted in January-February 2006 (SOP-0) of the African Monsoon Multidisciplinary Analysis project (AMMA), was studied by individual particle analysis. The sampling location on the Atlantic coast is particularly adapted for studying the mixing state of tropospheric aerosols since it is (1) located on the path of Saharan dust plumes transported westward over the northern tropical Atlantic, (2) influenced by biomass burning events particularly frequent from December to March, and (3) strongly influenced by anthropogenic emissions from polluted African cities. Particle size, morphology, and chemical composition were determined for 12,672 particles using scanning electron microscopy (automated SEM-EDX). Complementary analyses were performed using transmission electron microscopy combined with electron energy loss spectrometry (TEM-EELS) and Raman microspectrometry. Mineral dust and carbonaceous and marine compounds were predominantly found externally mixed, i.e., not present together in the same particles. Binary internally mixed particles, i.e., dust/carbonaceous, carbonaceous/marine, and dust/marine mixtures, accounted for a significant fraction of analyzed particles (from 10.5% to 46.5%). Western Sahara was identified as the main source of mineral dust. Two major types of carbonaceous particles were identified: "tar balls" probably coming from biomass burning emissions and soot from anthropogenic emissions. Regarding binary internally mixed particles, marine and carbonaceous compounds generally formed a coating on mineral dust particles. The carbonaceous coating observed at the particle scale on African dust was evidenced by the combined use of elemental and molecular microanalysis techniques, with the identification of an amorphous rather than crystallized carbon structure.

  4. Forecasting Plant Productivity and Health Using Diffuse-to-Global Irradiance Ratios Extracted from the OMI Aerosol Product

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly; Andrews, Jane C.; Ryan, Robert E.

    2007-01-01

    Atmospheric aerosols are a major contributor to diffuse irradiance. This Candidate Solution suggests using the OMI (Ozone Monitoring Instrument) aerosol product as input into a radiative transfer model, which would calculate the ratio of diffuse to global irradiance at the Earth s surface. This ratio can significantly influence the rate of photosynthesis in plants; increasing the ratio of diffuse to global irradiance can accelerate photosynthesis, resulting in greater plant productivity. Accurate values of this ratio could be useful in predicting crop productivity, thereby improving forecasts of regional food resources. However, disagreements exist between diffuse-to-global irradiance values measured by different satellites and ground sensors. OMI, with its unique combination of spectral bands, high resolution, and daily global coverage, may be able to provide more accurate aerosol measurements than other comparable sensors.

  5. Near-Cloud Aerosol Properties from the 1 Km Resolution MODIS Ocean Product

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2014-01-01

    This study examines aerosol properties in the vicinity of clouds by analyzing high-resolution atmospheric correction parameters provided in the MODIS (Moderate Resolution Imaging Spectroradiometer) ocean color product. The study analyzes data from a 2 week long period of September in 10 years, covering a large area in the northeast Atlantic Ocean. The results indicate that on the one hand, the Quality Assessment (QA) flags of the ocean color product successfully eliminate cloud-related uncertainties in ocean parameters such as chlorophyll content, but on the other hand, using the flags introduces a sampling bias in atmospheric products such as aerosol optical thickness (AOT) and Angstrom exponent. Therefore, researchers need to select QA flags by balancing the risks of increased retrieval uncertainties and sampling biases. Using an optimal set of QA flags, the results reveal substantial increases in optical thickness near clouds-on average the increase is 50% for the roughly half of pixels within 5 km from clouds and is accompanied by a roughly matching increase in particle size. Theoretical simulations show that the 50% increase in 550nm AOT changes instantaneous direct aerosol radiative forcing by up to 8W/m2 and that the radiative impact is significantly larger if observed near-cloud changes are attributed to aerosol particles as opposed to undetected cloud particles. These results underline that accounting for near-cloud areas and understanding the causes of near-cloud particle changes are critical for accurate calculations of direct aerosol radiative forcing.

  6. Near-cloud aerosol properties from the 1 km resolution MODIS ocean product

    NASA Astrophysics Data System (ADS)

    Várnai, Tamás.; Marshak, Alexander

    2014-02-01

    This study examines aerosol properties in the vicinity of clouds by analyzing high-resolution atmospheric correction parameters provided in the MODIS (Moderate Resolution Imaging Spectroradiometer) ocean color product. The study analyzes data from a 2 week long period of September in 10 years, covering a large area in the northeast Atlantic Ocean. The results indicate that on the one hand, the Quality Assessment (QA) flags of the ocean color product successfully eliminate cloud-related uncertainties in ocean parameters such as chlorophyll content, but on the other hand, using the flags introduces a sampling bias in atmospheric products such as aerosol optical thickness (AOT) and Angstrom exponent. Therefore, researchers need to select QA flags by balancing the risks of increased retrieval uncertainties and sampling biases. Using an optimal set of QA flags, the results reveal substantial increases in optical thickness near clouds—on average the increase is 50% for the roughly half of pixels within 5 km from clouds and is accompanied by a roughly matching increase in particle size. Theoretical simulations show that the 50% increase in 550 nm AOT changes instantaneous direct aerosol radiative forcing by up to 8 W/m2 and that the radiative impact is significantly larger if observed near-cloud changes are attributed to aerosol particles as opposed to undetected cloud particles. These results underline that accounting for near-cloud areas and understanding the causes of near-cloud particle changes are critical for accurate calculations of direct aerosol radiative forcing.

  7. Contribution of airborne microbes to bacterial production and N2 fixation in seawater upon aerosol deposition

    NASA Astrophysics Data System (ADS)

    Rahav, Eyal; Ovadia, Galit; Paytan, Adina; Herut, Barak

    2016-01-01

    Aerosol deposition may supply a high diversity of airborne microbes, which can affect surface microbial composition and biological production. This study reports a diverse microbial community associated with dust and other aerosol particles, which differed significantly according to their geographical air mass origin. Microcosm bioassay experiments, in which aerosols were added to sterile (0.2 µm filtered and autoclaved) SE Mediterranean Sea (SEMS) water, were performed to assess the potential impact of airborne bacteria on bacterial abundance, production, and N2 fixation. Significant increase was observed in all parameters within a few hours, and calculations suggest that airborne microbes can account for one third in bacterial abundance and 50-100% in bacterial production and N2-fixation rates following dust/aerosol amendments in the surface SEMS. We show that dust/aerosol deposition can be a potential source of a wide array of microorganisms, which may impact microbial composition and food web dynamics in oligotrophic marine systems such as the SEMS.

  8. Laser Remote Sensing from ISS: CATS Cloud and Aerosol Level 2 Data Products (Heritage Edition)

    NASA Astrophysics Data System (ADS)

    Rodier, Sharon; Palm, Steve; Vaughan, Mark; Yorks, John; McGill, Matt; Jensen, Mike; Murray, Tim; Trepte, Chip

    2016-06-01

    With the recent launch of the Cloud-Aerosol Transport System (CATS) we have the opportunity to acquire a continuous record of space based lidar measurements spanning from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) era to the start of the EarthCARE mission. Utilizing existing well-validated science algorithms from the CALIPSO mission, we will ingest the CATS data stream and deliver high-quality lidar data sets to the user community at the earliest possible opportunity. In this paper we present an overview of procedures necessary to generate CALIPSO-like lidar level 2 data products from the CATS level 1 data products.

  9. 21 CFR 700.14 - Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... propellant of cosmetic aerosol products. 700.14 Section 700.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.14 Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol...

  10. 21 CFR 700.14 - Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... propellant of cosmetic aerosol products. 700.14 Section 700.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.14 Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol...

  11. 21 CFR 700.14 - Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... propellant of cosmetic aerosol products. 700.14 Section 700.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.14 Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol...

  12. 21 CFR 700.14 - Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... propellant of cosmetic aerosol products. 700.14 Section 700.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.14 Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol...

  13. Uncertainty Analysis And Synergy Of Aerosol Products From Multiple Satellite Sensors For Advanced Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Petrenko, M.

    2013-05-01

    Aerosols are tiny particles suspended in the air, and can be made up of wind-blown dust, smoke from fires, and particulate emissions from automobiles, industries, and other natural and man-made sources. Aerosols can have significant impacts on the air quality, and can interact with clouds and solar radiation in such a way as to affect the water cycle and climate. However, the extent and scale of these impacts are still poorly understood, and this represents one of the greatest uncertainties in climate research to date. To fill this gap in our knowledge, the global and local properties of atmospheric aerosols are being extensively observed and measured, especially during the last decade, using both satellite and ground-based instruments, including such spaceborne sensors as MODIS on the Terra and Aqua satellites, MISR on Terra, OMI on Aura, POLDER on PARASOL, CALIOP on CALIPSO, SeaWiFS on SeaStar, and the ground-based Aerosol Robotic Network (AERONET) of sunphotometers. The aerosol measurements collected by these instruments over the last decade contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. Still, to be able to utilize these measurements synergistically, they have to be carefully and uniformly analyzed and inter-compared, in order to understand the uncertainties and limitations of the products - a process that is greatly complicated by the diversity of differences that exist among them. In this presentation, we will show results of a coherent comparative uncertainty analysis of aerosol measurements from the above-named satellite sensors relative to AERONET. We use these results to demonstrate how these sensors perform in different parts of the world over different landcover types as well as their performance relative to one another, thereby facilitating product selection and integration for specific research and applications needs.

  14. SeaWiFS Aerosol Product Compared to Coastal and Island in situ Measurements

    NASA Astrophysics Data System (ADS)

    Bailey, S.; Pietras, C.; Knobelspiesse, K.; Fargion, G.; McClain, C.

    2002-05-01

    The Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS, http://simbios.gsfc.nasa.gov) Project is assisting the ocean color community to cross calibrate and merge data products from multiple ocean color missions. The atmospheric contribution plays an essential role in the analysis of the ocean color imagery. The correction of the atmospheric contribution is a crucial procedure that requires in situ measurements of atmospheric and bio-optical components to compare and validate satellite measurements. The SIMBIOS Project is using in situ atmospheric data for several purposes including validation of the SeaWiFS and other ocean color missions aerosol optical product, evaluation of the aerosol models currently used for atmospheric correction, and development of vicarious sensor calibration methodologies. The principal source of in situ aerosol observations is the Aerosol Robotic Network (AERONET) that provides globally distributed, near-real time, observations of spectral aerosol optical depths, aerosol size distributions and precipitable water. Since 1997 the SIMBIOS Project has augmented the AERONET network with 12 additional island and coastal sites, including the Hawaiian Islands (Lanai and Oahu), Ascension Island, Bahrain, Tahiti, Wallops Island (US East Coast), South Korea, Turkey, Argentina, Azores, and Australia and more recently Morocco. The AERONET and SIMBIOS Projects have invested considerable effort to deploy and maintain the instruments to ensure the quality of the data for more than 4 years. Match-ups between aerosol optical thickness obtained for various sites from in situ and satellite-derived observations are presented and discussed. Match-up analysis methods and uncertainties are also discussed.

  15. Effect of fatty acid coatings on ozone uptake to deliquesced KI/NaCl aerosol particles

    NASA Astrophysics Data System (ADS)

    Ammann, M.; Rouvière, A.

    2009-12-01

    Phase transfer kinetics of gas phase oxidants may limit oxidative aging of aerosol particles. The aim of this work is to study the role of amphiphilic organic aerosol constituents on the kinetics of phase transfer of gaseous species to the bulk aqueous phase. The effect of (C9-C20) fatty acid surfactants on the phase transfer of ozone to deliquesced potassium iodide and sodium chloride have been investigated. Some other experiments of ozone uptake have been performed with different mixtures and proportions of fatty acids. The kinetic experiments were performed in an aerosol flow tube at room temperature and atmospheric pressure. To obtain deliquesced inorganic particles, the relative humidity was adjusted in the range of 75% to 80%. It is shown that the fatty acids in monolayer quantities may substantially inhibit the phase transfer of ozone to deliquesced particles. The results showed that especially the C15-C20 limit the mass transfer of ozone to the aqueous phase, whereby the magnitude of this effect was following the monolayer properties of the fatty acids. It was also possible to determine a resistance of such films to the transfer of ozone to the bulk phase.

  16. Evaluation of Ag nanoparticle coated air filter against aerosolized virus: Anti-viral efficiency with dust loading.

    PubMed

    Joe, Yun Haeng; Park, Dae Hoon; Hwang, Jungho

    2016-01-15

    In this study, the effect of dust loading on the anti-viral ability of an anti-viral air filter was investigated. Silver nanoparticles approximately 11 nm in diameter were synthesized via a spark discharge generation system and were used as anti-viral agents coated onto a medium air filter. The pressure drop, filtration efficiency, and anti-viral ability of the filter against aerosolized bacteriophage MS2 virus particles were tested with dust loading. The filtration efficiency and pressure drop increased with dust loading, while the anti-viral ability decreased. Theoretical analysis of anti-viral ability with dust loading was carried out using a mathematical model based on that presented by Joe et al. (J. Hazard. Mater.; 280: 356-363, 2014). Our model can be used to compare anti-viral abilities of various anti-viral agents, determine appropriate coating areal density of anti-viral agent on a filter, and predict the life cycle of an anti-viral filter.

  17. Aerus-GEO: newly available satellite-derived aerosol optical depth product over Europe and Africa

    NASA Astrophysics Data System (ADS)

    Carrer, D.; Roujean, J. L.; Ceamanos, X.; Six, B.; Suman, S.

    2015-12-01

    The major difficulty in detecting the aerosol signal from visible and near-infrared remote sensing observations is to reach the proper separation of the components related to the atmosphere and the surface. A method is proposed to circumvent this issue by exploiting the directional and temporal dimensions of the satellite signal through the use of a semi-empirical kernel-driven model for the surface/atmosphere coupled system. This algorithm was implemented by the ICARE Data Center (http://www.icare.univ-lille1.fr), which operationally disseminates a daily AOD product at 670 nm over the MSG disk since 2014. The proposed method referred to as AERUS-GEO (Aerosol and surface albEdo Retrieval Using a directional Splitting method - application to GEO data) is applied to three spectral bands (0.6 mm, 0.8 mm, and 1.6 mm) of MSG (Meteosat Second Generation) observations, which scan Europe, Africa, and the Eastern part of South America every 15 minutes. The daily AOD estimates at 0.63μm has been extensively validated. In contrast, the Angstrom coefficient is still going through validation and we will show the differences between the MSG derived Angstrom exponent with that of CAMS (Copernicus Atmosphere Monitoring Service) near-real time aerosol product. The impact of aerosol type on the aerosol radiative forcing will be presented as a part of future development plan.

  18. Experimental Protocol to Investigate Particle Aerosolization of a Product Under Abrasion and Under Environmental Weathering.

    PubMed

    Shandilya, Neeraj; Le Bihan, Olivier Louis; Bressot, Christophe; Morgeneyer, Martin

    2016-09-16

    The present article presents an experimental protocol to investigate particle aerosolization of a product under abrasion and under environmental weathering, which is a fundamental element to the approach of nanosafety-by-design of nanostructured products for their durable development. This approach is basically a preemptive one in which the focus is put on minimizing the emission of engineered nanomaterials' aerosols during the usage phase of the product's life cycle. This can be attained by altering its material properties during its design phase without compromising with any of its added benefits. In this article, an experimental protocol is presented to investigate the nanosafety-by-design of three commercial nanostructured products with respect to their mechanical solicitation and environmental weathering. The means chosen for applying the mechanical solicitation is an abrasion process and for the environmental weathering, it is an accelerated UV exposure in the presence of humidity and heat. The eventual emission of engineered nanomaterials is studied in terms of their number concentration, size distribution, morphology and chemical composition. The purpose of the protocol is to study the emission for test samples and experimental conditions which are corresponding to real life situations. It was found that the application of the mechanical stresses alone emits the engineered nanomaterials' aerosols in which the engineered nanomaterial is always embedded inside the product matrix, thus, a representative product element. In such a case, the emitted aerosols comprise of both nanoparticles as well as microparticles. But if the mechanical stresses are coupled with the environmental weathering, the experimental protocol reveals then the eventual deterioration of the product, after a certain weathering duration, may lead to the emission of the free engineered nanomaterial aerosols too.

  19. A new method of satellite-based haze aerosol monitoring over the North China Plain and a comparison with MODIS Collection 6 aerosol products

    NASA Astrophysics Data System (ADS)

    Yan, Xing; Shi, Wenzhong; Luo, Nana; Zhao, Wenji

    2016-05-01

    With worldwide urbanization, hazy weather has been increasingly frequent, especially in the North China Plain. However, haze aerosol monitoring remains a challenge. In this paper, MODerate resolution Imaging Spectroradiometer (MODIS) measurements were used to develop an enhanced haze aerosol retrieval algorithm (EHARA). This method can work not only on hazy days but also on normal weather days. Based on 12-year (2002-2014) Aerosol Robotic Network (AERONET) aerosol property data, empirical single scattering albedo (SSA) and asymmetry factor (AF) values were chosen to assist haze aerosol retrieval. For validation, EHARA aerosol optical thickness (AOT) values, along with MODIS Collection 6 (C6) dark-pixel and deep blue aerosol products, were compared with AERONET data. The results show that the EHARA can achieve greater AOT spatial coverage under hazy conditions with a high accuracy (73% within error range) and work a higher resolution (1-km). Additionally, this paper presents a comprehensive discussion of the differences between and limitations of the EHARA and the MODIS C6 DT land algorithms.

  20. Long-Term Global Aerosol Products from NASA Reanalysis MERRA-2 Available at GES DISC

    NASA Astrophysics Data System (ADS)

    Shen, S.; Ostrenga, D.; Vollmer, B.

    2015-12-01

    Over 35 years of model simulated global aerosol products from NASA atmospheric reanalysis, second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) are published in summer 2015 at NASA Goddard Earth Science Data and Information Services Center (GES DISC). The MERRA-2 covers the period 1980-present, continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated by using the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which interact directly with the radiation parameterization, and radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). The data have been grouped into five datasets, including variables such as: dust column mass density, dust column mass density - PM 2.5, dust deposition, SO2 column mass density, aerosol optical depth analysis, total aerosol extinction AOT 550nm, black carbon emission etc. The data are available at hourly or 3-hourly and monthly at horizontal spatial resolution of 0.5x0.625 degrees (latitude x longitude) and 72 eta coordinate levels extending to 0.01 hPa for 3-dimensional variables. This presentation will document data access services at GES DISC and how to explore the data through the online visualization tool (Giovanni). As use cases, aerosol transportation of selected events will be demonstrated: a) SO2 column mass density from volcano Sierra Negra (Oct 2005), stayed in the tropical atmosphere for about 20 days; b) dust column mass density from a Asian dust storm in April 2001, transported dust from Asia across Pacific to North America in about one week; and c) black carbon column mass density from a wildfire late July to early September 2010 in Russia.

  1. On the Physics of Fizziness: How liquid properties control bursting bubble aerosol production?

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Josserand, Christophe; Seon, Thomas

    2014-11-01

    Either in a champagne glass or at the oceanic scales, the tiny capillary bubbles rising at the surface burst in ejecting myriads of droplets. Focusing on the ejected droplets produced by a single bubble, we investigate experimentally how liquid properties and bubble size affect their characteristics: number, ejection velocities, sizes and ejection heights. These results allow us to finely tune the bursting bubble aerosol production. In the context of champagne industry, aerosols play a major role by spreading wine aroma above the glass. We demonstrate that this champagne fizz can be enhanced by selecting the wine viscosity and the bubble size, thanks to specially designed glass.

  2. PRN 93-4: Ban on Aerosol Products Containing CFCs and HCFCs under the Clean Air Act

    EPA Pesticide Factsheets

    This notice alerts pesticide registrants to a rule under the Clean Air Act banning distribution and sale of aerosol and pressurized products, including pesticide products, that contain chlorofluorocarbons (CFCs).

  3. Aerosol-cloud interactions in the ECHAM6-HAM2 GCM and Aerosol_cci/Cloud_cci satellite products

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Lohmann, Ulrike

    2015-04-01

    The first indirect aerosol effect or cloud albedo effect can be estimated as a radiative forcing. While the sign of this forcing is agreed to be negative, model-based estimates of its magnitude show a large variability. The responses of cloud liquid water content and cloud cover to aerosol increases also referred to as secondary indirect aerosol effects or fast adjustments are uncertain as well. In studies that use the variability in the present day satellite data to infer aerosol-cloud interactions (ACI), or that constrain model parameterizations to better agree with satellite observations a less negative ACI radiative forcing is found. The projects of the Climate Change Initiative (CCI) programme of ESA aim at producing long time series of satellite data of essential climate variables with specific information on errors and uncertainties. The quantification of uncertainty in satellite retrievals provides an opportunity to get insights in the discrepancy between model based and satellite based estimates of ACI. Within the Aerosol_cci project susceptibilities of cloud properties from Cloud_cci to aerosol properties from Aerosol_cci datasets are to be compared to susceptibilities from the aerosol climate model ECHAM6-HAM2. Particularly interesting relationships for the first indirect aerosol effect and the second aerosol indirect effect will be investigated. Satellite studies show a strong effect of aerosol on cloud amount, which could be a methodological artefact such as aerosol swelling or meteorological covariation. The immediate vicinity of clouds needs to be excluded due to these potential cloud contaminations although it would be the most interesting region for associations between aerosol and clouds. As the resolution of the data can have an impact on statistical correlations between cloud and aerosol properties, the assessment will be done on different scales. First results will be presented at the conference.

  4. Production of aerosols by optical catapulting: Imaging, performance parameters and laser-induced plasma sampling rate

    NASA Astrophysics Data System (ADS)

    Abdelhamid, M.; Fortes, F. J.; Fernández-Bravo, A.; Harith, M. A.; Laserna, J. J.

    2013-11-01

    Optical catapulting (OC) is a sampling and manipulation method that has been extensively studied in applications ranging from single cells in heterogeneous tissue samples to analysis of explosive residues in human fingerprints. Specifically, analysis of the catapulted material by means of laser-induced breakdown spectroscopy (LIBS) offers a promising approach for the inspection of solid particulate matter. In this work, we focus our attention in the experimental parameters to be optimized for a proper aerosol generation while increasing the particle density in the focal region sampled by LIBS. For this purpose we use shadowgraphy visualization as a diagnostic tool. Shadowgraphic images were acquired for studying the evolution and dynamics of solid aerosols produced by OC. Aluminum silicate particles (0.2-8 μm) were ejected from the substrate using a Q-switched Nd:YAG laser at 1064 nm, while time-resolved images recorded the propagation of the generated aerosol. For LIBS analysis and shadowgraphy visualization, a Q-switched Nd:YAG laser at 1064 nm and 532 nm was employed, respectively. Several parameters such as the time delay between pulses and the effect of laser fluence on the aerosol production have been also investigated. After optimization, the particle density in the sampling focal volume increases while improving the aerosol sampling rate till ca. 90%.

  5. Observed aerosol-induced radiative effect on plant productivity in the eastern United States

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.; Yue, X.

    2015-12-01

    We apply satellite observations of aerosol optical depth (AOD) in conjunction with flux tower-derived estimates of gross primary productivity (GPP) to probe the relationship between atmospheric aerosol loading and carbon uptake rate at 10 select sites (4 deciduous broadleaf, 3 cropland, 1 evergreen needle leaf, 1 mixed forest and 1 grassland) on hourly time scales in the growing season in the eastern United States. For deciduous and mixed forests, the aerosol light scattering increases GPP with a maximum effect observed under polluted conditions (AOD >0.6), when diffuse radiation is 40-60%. During midday hours, high AOD conditions (>0.4) enhance plant productivity by ∼13% in deciduous forests. In contrast, we find that high diffuse light fraction does not increase the carbon uptake rate in croplands and grasslands; for these ecosystems, we estimate that high AOD conditions reduce GPP by ∼17% during midday hours. Our findings are consistent with previous studies that have attributed these contrasting response sensitivities to the complex and closed canopy architecture of forests versus crops and grasslands. C4 but not C3 crops may benefit from pollution-induced changes in diffuse and direct light. Further research is needed to investigate the role of local meteorology as a possible confounder in the connection between atmospheric aerosols and plant productivity.

  6. Hygroscopicity of dicarbonyl-amine secondary organic aerosol products investigated with HTDMA

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; de Haan, D. O.

    2010-12-01

    Recent studies have shown the importance of amine-dicarbonyl chemistry as a secondary organic aerosol (SOA) formation pathway, producing imines, imidazoles, and N-containing oligomers. Preliminary work in our group has suggested that some of these products may be surface active. Therefore, the presence of these products may result in important changes to submicron particle hygroscopicity that affect aerosol scattering and cloud condensation nuclei (CCN) activity, especially in regions with significant amine-containing particles. To investigate their hygroscopicity, we have designed a hygroscopicity tandem differential mobility analyzer (HTDMA) system around a 300 L Teflon chamber that allows for longer humidification times needed for some organic aerosol components that are only slightly hygroscopic. This modification provides a range of residence times from 2.5 minutes up to 1 hour, unlike previously published systems that vary from 2-30 seconds. Using the modified hygroscopicity tandem differential mobility analyzer (HTDMA), we have measured the hygroscopic growth factor (HGF) of SOA formed from reactions of glyoxal (and methylglyoxal) with methylamine, ammonium sulfate, and several amino acids. Changes to inorganic aerosol HGF in response to the presence of SOA products are also investigated.

  7. Acid and organic aerosol coatings on magnetic nanoparticles increase iron concentrations in human airway epithelial cells.

    PubMed

    Ghio, Andrew J; Dailey, Lisa A; Richards, Judy H; Jang, Myoseon

    2009-07-01

    Numerous industrial applications for man-made nanoparticles have been proposed. Interactions of nanoparticles with agents in the atmosphere may impact human health. We tested the postulate that in vitro exposures of respiratory epithelial cells to airborne magnetic nanoparticles (MNP; Fe(3)O(4)) with and without a secondary organic aerosol (SOA) and an inorganic acid could affect iron homeostasis, oxidative stress, and interleukin (IL)-8 release. Cell iron concentrations were increased after exposures to MNP and values were further elevated with co-exposures to either SOA or inorganic acid. Increased expression of ferritin and elevated levels of RNA for DMT1, proteins for iron storage and transport respectively, followed MNP exposures, but values were significant for only those with co-exposures to inorganic acid and organic aerosols. Cell iron concentration corresponded to a measure of oxidative stress in the airway epithelial cells; MNP with co-exposures to SOA and inorganic acid increased both available metal and indices of oxidant generation. Finally, the release of a proinflammatory cytokine (i.e. IL-8) by the exposed cells similarly increased with cell iron concentration. We conclude that MNP can interact with a SOA and an inorganic acid to present metal in a catalytically reactive state to cultured respiratory cells. This produces an oxidative stress to affect a release of IL-8.

  8. Enteric coating of soft gelatin capsules by spouted bed: effect of operating conditions on coating efficiency and on product quality.

    PubMed

    Pissinati, Rafael; Oliveira, Wanderley Pereira

    2003-05-01

    The present study was conducted in order to analyze the viability of the spouted bed process for application of a gastric-resistant coating to soft gelatin capsules. The variables investigated were: included angle of conical base, (gamma), the relation between the feed mass flow rate of the coating suspension and the feed mass flow rate of spouting gas (W(s)/W(g)); the ratio between the flow rate of the spouting gas and the flow rate at minimum spouting condition (Q/Q(ms)); the mass of capsules in the bed (M(0)), and the capsule's size. The product quality was measured by disintegration tests, traction x deformation tests, image analysis and by the evaluation of the coating mass distribution and shape factor variation during the coating operation. The experiments were performed in a spouted bed with a column diameter of 200 mm and included a conical base angle of 40 degrees. The best coating efficiency values were obtained for M(0)=300 g. Coating efficiency tended to increase with increasing W(s)/W(g) ratio. Disintegration tests showed that the gastric-resistant effect was obtained with a coating mass of 3.86 mg/cm(2). The shape factor increase during the coating operation. The capsule's coating mass distribution tended to maintain the original distribution.

  9. Repellency of aerosol and cream products containing fennel oil to mosquitoes under laboratory and field conditions.

    PubMed

    Kim, Soon-Il; Chang, Kyu-Sik; Yang, Young-Cheol; Kim, Byung-Seok; Ahn, Young-Joon

    2004-11-01

    The repellency of fennel (Foeniculum vulgare Miller)-containing products (5% aerosol and 8% cream) against mosquitoes was compared with those of citronella oil, geranium oil and deet, as well as three commercial repellents, Baby Keeper cream containing IR3535, MeiMei cream containing citronella and geranium oils, and Repellan S aerosol containing 19% N,N-diethyl-m-toluamide (deet) under laboratory and field conditions. In a laboratory study with female Aedes aegypti (L), fennel oil exhibited good repellency in a release-in-cage test and repellency in skin and patch tests of the oil was comparable with those of citronella and geranium oils. In paddy field tests with five human volunteers, 5% and 8% fennel oil-containing aerosol and cream produced 84% and 70% repellency, respectively, at 90 min after exposure, whereas Baby Keeper cream and MeiMei cream gave 71% and 57% repellency at 90 min after exposure, respectively, and Repellan S aerosol gave 89% repellency at 210 min. The species and ratio of mosquitoes collected were the genera Culex (44.1%), Anopheles (42.2%), Aedes (7.8%) and Armigeres (5.9%). Fennel oil-containing products could be useful for protection from humans and domestic animals from vector-borne diseases and nuisance caused by mosquitoes.

  10. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries

    PubMed Central

    Waser, Oliver; Büchel, Robert; Hintennach, Andreas; Novák, Petr; Pratsinis, Sotiris E.

    2013-01-01

    Core-shell, nanosized LiFePO4-carbon particles were made in one step by scalable flame aerosol technology at 7 g/h. Core LiFePO4 particles were made in an enclosed flame spray pyrolysis (FSP) unit and were coated in-situ downstream by auto thermal carbonization (pyrolysis) of swirl-fed C2H2 in an O2-controlled atmosphere. The formation of acetylene carbon black (ACB) shell was investigated as a function of the process fuel-oxidant equivalence ratio (EQR). The core-shell morphology was obtained at slightly fuel-rich conditions (1.0 < EQR < 1.07) whereas segregated ACB and LiFePO4 particles were formed at fuel-lean conditions (0.8 < EQR < 1). Post-annealing of core-shell particles in reducing environment (5 vol% H2 in argon) at 700 °C for up to 4 hours established phase pure, monocrystalline LiFePO4 with a crystal size of 65 nm and 30 wt% ACB content. Uncoated LiFePO4 or segregated LiFePO4-ACB grew to 250 nm at these conditions. Annealing at 800 °C induced carbothermal reduction of LiFePO4 to Fe2P by ACB shell consumption that resulted in cavities between carbon shell and core LiFePO4 and even slight LiFePO4 crystal growth but better electrochemical performance. The present carbon-coated LiFePO4 showed superior cycle stability and higher rate capability than the benchmark, commercially available LiFePO4. PMID:23407817

  11. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO(4) for Li-ion batteries.

    PubMed

    Waser, Oliver; Büchel, Robert; Hintennach, Andreas; Novák, Petr; Pratsinis, Sotiris E

    2011-10-01

    Core-shell, nano-sized LiFePO(4)-carbon particles were made in one step by scalable flame aerosol technology at 7 g/h. Core LiFePO(4) particles were made in an enclosed flame spray pyrolysis (FSP) unit and were coated in-situ downstream by auto thermal carbonization (pyrolysis) of swirl-fed C(2)H(2) in an O(2)-controlled atmosphere. The formation of acetylene carbon black (ACB) shell was investigated as a function of the process fuel-oxidant equivalence ratio (EQR). The core-shell morphology was obtained at slightly fuel-rich conditions (1.0coated LiFePO(4) showed superior cycle stability and higher rate capability than the benchmark, commercially available LiFePO(4).

  12. Formation and evolution of molecular products in α-pinene secondary organic aerosol.

    PubMed

    Zhang, Xuan; McVay, Renee C; Huang, Dan D; Dalleska, Nathan F; Aumont, Bernard; Flagan, Richard C; Seinfeld, John H

    2015-11-17

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA.

  13. Formation and evolution of molecular products in α-pinene secondary organic aerosol

    PubMed Central

    Zhang, Xuan; McVay, Renee C.; Huang, Dan D.; Dalleska, Nathan F.; Aumont, Bernard; Flagan, Richard C.; Seinfeld, John H.

    2015-01-01

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58–72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA. PMID:26578760

  14. Fluorocarbon nano-coating of polyester fabrics by atmospheric air plasma with aerosol

    NASA Astrophysics Data System (ADS)

    Leroux, F.; Campagne, C.; Perwuelz, A.; Gengembre, L.

    2008-04-01

    A fluorocarbon coating was deposited on polyester (PET) woven fabric using pulse discharge plasma treatment by injecting a fluoropolymer directly into the plasma dielectric barrier discharge. The objective of the treatment was to improve the hydrophobic properties as well as the repellent behaviour of the polyester fabric. Plasma treatment conditions were optimised to obtain optimal hydrophobic properties which were evaluated using water contact angle measurement as well as spray-test method at the polyester fabric surface. The study showed that adhesion of the fluoropolymer to the woven PET was greatly enhanced by the air plasma treatment. X-ray photoemission spectroscopy (XPS) analyses revealed chemical surface modifications occurring after the plasma treatments.

  15. Monoterpene oxidation products and organosulfates in aerosols during BEARPEX 2007 and 2009

    NASA Astrophysics Data System (ADS)

    Glasius, Marianne; Kristensen, Kasper; Worton, David R.; Goldstein, Allen H.

    2010-05-01

    Organosulfate esters of oxidation products of monoterpenes and isoprene have been identified in aerosols from both laboratory and field studies. While the exact route of formation of organosulfates is still ambiguous, these compounds pose an interesting coupling between anthropogenic emissions and biogenic oxidation products in secondary organic aerosols (SOA). We present measurements of monoterpene oxidation products, organosulfates and nitroxy organosulfates in aerosols collected during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) in California during late summer 2007 and summer 2009. The study site was located in a Ponderosa pine plantation affected by regional transport of air pollutants. Particles (PM2.5) were collected as one night-time and two daytime samples per day using a high volume sampler. After extraction of filters, polar organic compounds were analysed by HPLC coupled through an electrospray inlet to a quadrupole time-of-flight mass spectrometer (qTOF-MS). Standards of adipic, cis-pinic and pinonic acids were used for quantification, while camphor sulphonic acid was used as a surrogate standard for organosulfate compounds. Organosulfate esters can be identified from their MS-fragments (HSO4- and SO3-) and the isotopic pattern of sulphur. Concentrations of adipic acid and the terpene oxidation products cis-pinic acid and pinonic acid (from α- and β-pinene) were quantified. The relative concentrations between samples of terpenylic acid, diterpenylic acid and 2-hydroxyterpenylic acid were also investigated. Organosulfate esters and nitroxy organosulfate esters of α-pinene, β-pinene, limonene and isoprene, as well as their oxidation products, were identified based on their molecular mass and fragmentation patterns. Concentrations of some nitroxy organosulfate esters generally increased during night compared to day-time. Their formation thus seems to be related to reactions involving nitrate radicals at night-time.

  16. United role of radon decay products and nano-aerosols in radon dosimetry

    NASA Astrophysics Data System (ADS)

    Smerajec, M.; Vaupotič, J.

    2012-04-01

    The major part of human exposure to natural radiation originates from inhalation of radon (Rn) and radon short-lived decay products (RnDP: 218Po, 214Pb, 214Bi and 214Po). RnDP are formed as a result of α-transformation of radon. In the beginning they are positive ions which neutralize and form clusters with air molecules, and later partly attach to background aerosol particles in indoor air. Eventually, they appear as radioactive nano-aerosols with a bimodal size distribution in ranges of 1-10 nm (unattached RnDP) and of 200-800 nm (attached RnDP). When inhaled, they are deposited in the respiratory tract. Deposition is more efficient for smaller particles. Therefore, the fraction (fun) of the unattached RnDP, which appears to be influenced by the number concentration and size distribution of general (background) aerosols in the ambient air, has a crucial role in radon dosimetry. Radon, radon decay products and general aerosols have been monitored simultaneously in the kitchen of a typical rural house under real living conditions, also comprising four human activities generating particular matter: cooking and baking, as two typical activities in kitchen, and cigarette smoking and candle burning. In periods without any human activity, the total number concentration of general aerosol ranged from 1000 to 3000 cm-3,with the geometric mean of particle diameter in the range of 60-68 nm and with 0.1-1 % of particles smaller than 10 nm. Preparation of coffee changed the concentration to 193,000 cm-3, the geometric mean of diameter to 20 nm and fraction of particles smaller than 10 nm to 11 %. The respective changes were for baking cake: 503,000 cm-3, 17 nm and 19 %, for smoking:423,000 cm-3, 83 nm and 0.4 %, and forcandle burning: 945,000 cm-3, 8 nm and 85 %. While, as expected, a reduction of fun was observed during cooking, baking and smoking, when larger particles were emitted, fun did not increase during candle burning with mostly particles smaller than 10 nm

  17. Laser Remote Sensing from ISS: the CATS-CALIPSO Cloud and Aerosol Data Products

    NASA Astrophysics Data System (ADS)

    Rodier, S. D.; Palm, S. P.; Jensen, M. H.; Yorks, J. E.; McGill, M. J.; Vaughan, M.; Trepte, C. R.

    2014-12-01

    The NASA Cloud Aerosol Transport System (CATS) is a dual-beam, multi-wavelength (1064, 532 and 355 nm), polarization sensitive (1064 and 532 nm) lidar developed at NASA's Goddard Space Flight Center (GSFC) for deployment to the International Space Station (ISS) in late 2014. CATS will be mounted on the Japanese Experiment Module's Exposed Facility and will provide near-continuous, altitude-resolved measurements of clouds and aerosols in the Earth's atmosphere. The ISS orbit path provides a unique opportunity to capture the full diurnal cycle of cloud and aerosol development and transport, allowing for studies that are not possible with the lidar aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, which flies in the sun-synchronous A-Train orbit. One of the primary objectives of CATS is to continue the CALIPSO data record to provide continuity of aerosol and cloud lidar observations during the transition from CALIPSO to EarthCARE. To accomplish this, the CATS project at GSFC and the CALIPSO project at NASA's Langley Research Center are closely collaborating to develop and deliver a full suite of CALIPSO-like level 2 data products generated from the newly acquired CATS level 1B data. Now in its eighth year of on-orbit operations, the CALIPSO project has developed a robust set of mature and well-validated science algorithms to retrieve the spatial and optical properties of clouds and aerosols from multi-wavelength lidar backscatter signal. By leveraging both new and existing NASA technical resources, this joint effort by the CATS-CALIPSO team will enable rapid delivery of high-quality lidar data sets to the user community at the earliest possible opportunity. In this work we outline the development of the CALIPSO- CATS level 2 software and data products and describe the modifications made to the input CATS data stream and the CALIPSO processing algorithms in order to successfully interface two disparate data processing

  18. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  19. A new operational EUMETSAT product for the retrieval of aerosol optical properties over land (PMAp v2)

    NASA Astrophysics Data System (ADS)

    Grzegorski, Michael; Munro, Rosemary; Poli, Gabriele; Holdak, Andriy; Lang, Ruediger

    2016-04-01

    The retrieval of aerosol optical properties is an important task to provide data for industry and climate forecasting. An ideal instrument should include observations with moderate spectral and high spatial resolution for a wide range of wavelengths (from the UV to the TIR), measurements of the polarization state at different wavelengths and measurements of the same scene for different observation geometries. As such an ideal instrument is currently unavailable the usage of different instruments on one satellite platform is an alternative choice. Since February 2014, the Polar Multi sensor Aerosol product (PMAp) has been delivered as an operational GOME product to our customers. The algorithm retrieves aerosol optical properties over ocean (AOD, volcanic ash, aerosol type) using a multi-sensor approach (GOME, AVHRR, IASI). The product is now extended to pixels over land using a new release of the operational PMAp processor (PMAp v2). The pre-operational data dissemination of the new PMAp v2 data to our users is scheduled for March 2016. This presentation gives an overview on the new operational product PMAp v2 with a focus on the validation of the PMAp aerosol optical depth over land. The impact of different error sources on the results (e.g. surface contribution to the TOA reflectance) is discussed. We also show first results of upcoming extensions of our PMAp processor, in particular the improvement of the cloud/aerosol discrimination of thick aerosol events (e.g. volcanic ash plumes, desert dust outbreaks).

  20. DETERMINATION OF SECONDARY ORGANIC AEROSOL PRODUCTS FROM THE PHOTOOXIDATION OF TOLUENE AND THEIR IMPLICATIONS IN AMBIENT PM2.5

    EPA Science Inventory

    Laboratory study was carried out to investigate the secondary organic aerosol products from photooxidation of the aromatic hydrocarbon toluene. The laboratory experiments consisted of irradiating toluene/propylene/NOX/air mixtures in a smog chamber operated in the dynamic mode...

  1. AERUS-GEO: A newly available satellite-derived aerosol optical depth product over Europe and Africa

    NASA Astrophysics Data System (ADS)

    Carrer, D.; Ceamanos, X.; Six, B.; Roujean, J.-L.

    2014-11-01

    This article presents a new aerosol optical depth (AOD) product delivered in near real time by the ICARE Data and Services Center to the scientific community. The AERUS-GEO (Aerosol and surface albEdo Retrieval Using a directional Splitting method-application to GEOstationary data) product is derived from observations from the Meteosat Second Generation (MSG) geostationary satellite covering Europe, Africa, and part of Asia and South America. The retrieval method exploits the directional information contained in the series of 96 MSG observations per day of the Earth's disk to derive a daily averaged AOD. The performances of this product are similar to those of other widely used satellite-derived AOD. This article illustrates the advantages of the spatial (3 km at best) and temporal (daily) resolution of the AERUS-GEO product to monitor particular aerosol activity (e.g., volcanic eruptions) or to study given phenomena (e.g., the impact of topography on aerosol loading).

  2. Secondary organic aerosol production from aqueous photooxidation of glycolaldehyde: Laboratory experiments

    NASA Astrophysics Data System (ADS)

    Perri, Mark J.; Seitzinger, Sybil; Turpin, Barbara J.

    Organic particulate matter (PM) formed in the atmosphere (secondary organic aerosol; SOA) is a substantial yet poorly understood contributor to atmospheric PM. Aqueous photooxidation in clouds, fogs and aerosols is a newly recognized SOA formation pathway. This study investigates the potential for aqueous glycolaldehyde oxidation to produce low volatility products that contribute SOA mass. To our knowledge, this is the first confirmation that aqueous oxidation of glycolaldehyde via the hydroxyl radical forms glyoxal and glycolic acid, as previously assumed. Subsequent reactions form formic acid, glyoxylic acid, and oxalic acid as expected. Unexpected products include malonic acid, succinic acid, and higher molecular weight compounds, including oligomers. Due to (1) the large source strength of glycolaldehyde from precursors such as isoprene and ethene, (2) its water solubility, and (3) the aqueous formation of low volatility products (organic acids and oligomers), we predict that aqueous photooxidation of glycolaldehyde and other aldehydes in cloud, fog, and aerosol water is an important source of SOA and that incorporation of this SOA formation pathway in chemical transport models will help explain the current under-prediction of organic PM concentrations.

  3. The influence of marine microbial activities on aerosol production: A laboratory mesocosm study

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.; Kilthau, Wendy P.; Bothe, Dylan W.; Radway, JoAnn C.; Aller, Josephine Y.; Knopf, Daniel A.

    2015-09-01

    The oceans cover most of the Earth's surface, contain nearly half the total global primary biomass productivity, and are a major source of atmospheric aerosol particles. Here we experimentally investigate links between biological activity in seawater and sea spray aerosol (SSA) flux, a relationship of potential significance for organic aerosol loading and cloud formation over the oceans and thus for climate globally. Bubbles were generated in laboratory mesocosm experiments either by recirculating impinging water jets or glass frits. Experiments were conducted with Atlantic Ocean seawater collected off the eastern end of Long Island, NY, and with artificial seawater containing cultures of bacteria and phytoplankton Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Changes in SSA size distributions occurred during all phases of bacterial and phytoplankton growth, as characterized by cell concentrations, dissolved organic carbon, total particulate carbon, and transparent exopolymer particles (gel-forming polysaccharides representing a major component of biogenic exudate material). Over a 2 week growth period, SSA particle concentrations increased by a factor of less than 2 when only bacteria were present and by a factor of about 3 when bacteria and phytoplankton were present. Production of jet-generated SSA particles of diameter less than 200 nm increased with time, while production of all particle diameters increased with time when frits were used. The implications of a marine biological activity dependent SSA flux are discussed.

  4. [Analysis of phthalates in aromatic and deodorant aerosol products and evaluation of exposure risk].

    PubMed

    Sato, Yoshiki; Sugaya, Naeko; Nakagawa, Tomoo; Morita, Masatoshi

    2015-01-01

    We established an analytical method for the detection of seven phthalates, dimethyl phthalate, diethyl phthalate (DEP), benzyl butyl phthalate, di-i-butyl phthalate, dibutyl phthalate (DBP), diethylhexyl phthalate (DEHP), and di-n-octhyl phthalate, using an ultra high performance liquid chromatograph equipped with a photodiode array detector. This method is quick, with minimal contamination, and was applied to the analysis of aromatic and deodorant aerosol products. Phthalates were detected in 15 of 52 samples purchased from 1999 to 2012 in Yokohama. Three types of phthalate (DEP, DBP, DEHP) were detected, and their concentrations ranged from 0.0085-0.23% DEP in nine samples, 0.012-0.045% DBP in four samples, and 0.012-0.033% DEHP in four samples. No other phthalate esters were detected. Furthermore, we estimated phthalate exposure via breathing in commonly used aromatic and deodorant aerosol products, then evaluated the associated risk. The estimated levels of phthalate exposure were lower than the tolerated daily limit, but the results indicated that aromatic and deodorant aerosol products could be a significant source of phthalate exposure.

  5. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies.

    PubMed

    Grunwald, Ingo; Groth, Esther; Wirth, Ingo; Schumacher, Julian; Maiwald, Marcus; Zoellmer, Volker; Busse, Matthias

    2010-03-01

    The work described in this paper demonstrates that very small protein and DNA structures can be applied to various substrates without denaturation using aerosol printing technology. This technology allows high-resolution deposition of various nanoscaled metal and biological suspensions. Before printing, metal and biological suspensions were formulated and then nebulized to form an aerosol which is aerodynamically focused on the printing module of the system in order to achieve precise structuring of the nanoscale material on a substrate. In this way, it is possible to focus the aerosol stream at a distance of about 5 mm from the printhead to the surface. This technology is useful for printing fluorescence-marked proteins and printing enzymes without affecting their biological activity. Furthermore, higher molecular weight DNA can be printed without shearing. The advantages, such as printing on complex, non-planar 3D structured surfaces, and disadvantages of the aerosol printing technology are also discussed and are compared with other printing technologies. In addition, miniaturized sensor structures with line thicknesses in the range of a few micrometers are fabricated by applying a silver sensor structure to glass. After sintering using an integrated laser or in an oven process, electrical conductivity is achieved within the sensor structure. Finally, we printed BSA in small micrometre-sized areas within the sensor structure using the same deposition system. The aerosol printing technology combined with material development offers great advantages for future-oriented applications involving biological surface functionalization on small areas. This is important for innovative biomedical micro-device development and for production solutions which bridge the disciplines of biology and electronics.

  6. Mechanism for production of secondary organic aerosols and their representation in atmospheric models. Final report

    SciTech Connect

    Seinfeld, J.H.; Flagan, R.C.

    1999-06-07

    This document contains the following: organic aerosol formation from the oxidation of biogenic hydrocarbons; gas/particle partitioning of semivolatile organic compounds to model inorganic, organic, and ambient smog aerosols; and representation of secondary organic aerosol formation in atmospheric models.

  7. Heterogeneous OH Oxidation of Two Structure Isomers of Dimethylsuccinic Acid Aerosol: Reactivity and Oxidation Products

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Cheng, C. T.; Wilson, K. R.

    2014-12-01

    Organic aerosol contribute a significant mass fraction of ambient aerosol carbon and can continuously undergo oxidation by colliding with gas phase OH radicals. Although heterogeneous oxidation plays a significant role in the chemical transformation of organic aerosol, the effect of molecular structure on the reactivity and oxidation products remains unclear. We investigate the effect of branched methyl groups on the reactivity of two dimethylsuccinic acids (2,2-dimethylsuccinic acid (2,2-DMSA) and 2,3-dimethylsuccinic acid (2,3-DMSA)) toward gas phase OH radicals in an atmospheric pressure aerosol flow tube reactor. The oxidation products formed upon oxidation is characterized in real time by the Direct Analysis in Real Time (DART), an ambient soft ionization source. The 2,2-DMSA and 2,3-DMSA are structural isomers with the same oxidation state (OSC = -0.33) and carbon number (NC = 6), but different branching characteristics (2,2-DMSA has one secondary carbon and 2,3-DMSA has two tertiary carbons). The difference in molecular distribution of oxidation products observed in these two structural isomers would allow one to assess the sensitivity of kinetics and chemistry to the position of branched methyl group in the DMSA upon oxidation. We observe that the reactivity of 2,3-DMSA toward OH radicals is about 2 times faster than that of 2,2-DMSA. This difference in OH reactivity may attribute to the stability of the carbon-centered radical generated after hydrogen abstraction because an alkyl radical formed from the hydrogen abstraction on a tertiary carbon in 2,3-DMSA is more stable than on a secondary carbon in 2,2-DMSA. For both 2,2-DMSA and 2,3-DMSA, the molecular distribution and evolution of oxidation products is characterized by a predominance of functionalization products at the early oxidation stages. When the oxidation further proceeds, the fragmentation becomes more favorable and the oxidation mainly leads to the reduction of the carbon chain length through

  8. Development, Application, and Transition of Aerosol and Trace Gas Products Derived from Next-Generation Satellite Observations to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Naeger, Aaron; Zavodsky, Bradley; McGrath, Kevin; LaFontaine, Frank

    2016-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center has a history of successfully transitioning unique observations and research capabilities to the operational weather community to improve short-term forecasts. SPoRTstrives to bridge the gap between research and operations by maintaining interactive partnerships with end users to develop products that match specific forecast challenges, provide training, and assess the products in the operational environment. This presentation focuses on recent product development, application, and transition of aerosol and trace gas products to operations for specific forecasting applications. Recent activities relating to the SPoRT ozone products, aerosol optical depth composite product, sulfur dioxide, and aerosol index products are discussed.

  9. Rabeprazole sodium delayed-release multiparticulates: Effect of enteric coating layers on product performance.

    PubMed

    Tirpude, Rakesh N; Puranik, Prashant K

    2011-07-01

    Rabeprazole sodium is one of the most effective proton pump inhibitors (PPIs) used in antiulcer therapy. Like most other PPIs, owing to its acid-labile nature, the drug is formulated as enteric-coated dosage form. Conventional means of producing delayed release multiparticulate dosage forms of PPIs require large quantities of enteric polymer coatings. In the present study, in order to better evaluate the effect of polymeric coating on product performance, the pellet core structure and composition was kept constant. Four different enteric-coating formulations and designs were evaluated. Enteric-coated drug multiparticulates prepared with single polymeric coatings (acrylic or cellulosic) were compared with two different polymeric layer coatings to evaluate the effectiveness of latter coatings in more effectively producing a better rabeprazole sodium delayed-release pellet product. The pH-dependent, enteric acrylic, and cellulosic polymers were used either alone, in combination, or applied one over the other to impart delayed-release properties to the core drug pellets. It was demonstrated that dual delayed-release coating with two different enteric polymers-an inner acrylic coating followed by an outer cellulosic coating-yields the best product that provides all the desired physicochemical and drug dissolution characteristics.

  10. Impact of climate change on the production and transport of sea salt aerosol on European seas

    NASA Astrophysics Data System (ADS)

    Soares, Joana; Sofiev, Mikhail; Geels, Camilla; Christensen, Jens H.; Andersson, Camilla; Tsyro, Svetlana; Langner, Joakim

    2016-10-01

    The impact of climate change on sea salt aerosol production, dispersion, and fate over Europe is studied using four offline regional chemistry transport models driven by the climate scenario SRES A1B over two periods: 1990-2009 and 2040-2059. This study is focused mainly on European seas: Baltic, Black, North, and Mediterranean. The differences and similarities between the individual models' predictions of the impact on sea salt emission, concentration, and deposition due to changes in wind gusts and seawater temperature are analysed. The results show that the major driver for the sea salt flux changes will be the seawater temperature, as wind speed is projected to stay nearly the same. There are, however, substantial differences between the model predictions and their sensitivity to changing seawater temperature, which demonstrates substantial lack of current understanding of the sea salt flux predictions. Although seawater salinity changes are not evaluated in this study, sensitivity of sea salt aerosol production to salinity is similarly analysed, showing once more the differences between the different models. An assessment of the impact of sea salt aerosol on the radiative balance is presented.

  11. The weather dependence of particle size distribution of indoor radioactive aerosol associated with radon decay products.

    PubMed

    Mostafa, A M A; Tamaki, K; Moriizumi, J; Yamazawa, H; Iida, T

    2011-07-01

    This study was performed to measure the activity size distribution of aerosol particles associated with short-lived radon decay products in indoor air at Nagoya University, Nagoya, Japan. The measurements were performed using a low pressure Andersen cascade impactor under variable meteorological conditions. The results showed that the greatest activity fraction was associated with aerosol particles in the accumulation size range (100-1000 nm) with a small fraction of nucleation mode (10-100 nm). Regarding the influence of the weather conditions, the decrease in the number of accumulation particles was observed clearly after rainfall without significant change in nucleation particles, which may be due to a washout process for the large particles.

  12. Laser Remote Sensing From ISS: CATS Cloud and Aerosol Level 2 Data Products (Heritage Edition)

    NASA Technical Reports Server (NTRS)

    Rodier, Sharon; Vaughan, Mark; Palm, Steve; Jensen, Mike; Yorks, John; McGill, Matt; Trepte, Chip; Murray, Tim; Lee, Kam-Pui

    2015-01-01

    The Cloud-Aerosol Transport System (CATS) instrument was developed at NASA's Goddard Space Flight Center (GSFC) and deployed to the International Space Station (ISS) on 10 January 2015. CATS is mounted on the Japanese Experiment Module's Exposed Facility (JEM_EF) and will provide near-continuous, altitude-resolved measurements of clouds and aerosols in the Earth's atmosphere. The CATS ISS orbit path provides a unique opportunity to capture the full diurnal cycle of cloud and aerosol development and transport, allowing for studies that are not possible with the lidar aboard the CALIPSO platform, which flies in the sun-synchronous A-Train orbit." " One of the primary science objectives of CATS is to continue the CALIPSO aerosol and cloud profile data record to provide continuity of lidar climate observations during the transition from CALIPSO to EarthCARE. To accomplish this, the CATS project at NASA's Goddard Space Flight Center (GSFC) and the CALIPSO project at NASA's Langley Research Center (LaRC) are closely collaborating to develop and deliver a full suite of CALIPSO-like level 2 data products that will be produced using the newly acquired CATS level 1B data whenever CATS is operating in science modes 1. The CALIPSO mission is now well into its ninth year of on-orbit operations, and has developed a robust set of mature and well-validated science algorithms to retrieve the spatial and optical properties of clouds and aerosols from multi-wavelength lidar backscatter signals. By leveraging both new and existing NASA technical resources, this joint effort by the CATS and CALIPSO teams will deliver validated lidar data sets to the user community at the earliest possible opportunity. The science community will have access to two sets of CATS Level 2 data products. The "Operational" data products will be produced by the GSFC CATS team utilizing the new instrument capabilities (e.g., multiple FOVs and 1064 nm depolarization), while the "Heritage" data products created

  13. New Global Deep Blue Aerosol Product over Land and Ocean from VIIRS, and Its comparisons with MODIS

    NASA Astrophysics Data System (ADS)

    Hsu, N. Y. C.; Bettenhausen, C.; Sayer, A. M.; Lee, J.; Tsay, S. C.; Carletta, N.

    2015-12-01

    The impacts of natural and anthropogenic sources of air pollution on climate and human health have continued to gain attention from the scientific community. In order to facilitate these effects, high quality consistent long-term global aerosol data records from satellites are essential. Several EOS-era instruments (e.g., SeaWiFS, MODIS, and MISR) are able to provide such information with a high degree of fidelity. However, with the aging MODIS sensors and the launch of the VIIRS instrument on Suomi NPP in late 2011, the continuation of long-term aerosol data records suitable for climate studies from MODIS to VIIRS is needed urgently. VIIRS was designed to have similar capabilities to MODIS, with similar visible/infrared spectral channels, and spatial/ temporal resolution. However, small but significant differences in several key channels used in aerosol retrievals between MODIS and VIIRS mean that significant effort is required to revise aerosol models and surface reflectance determination modules previously developed using MODIS data. In this study, we will show the global (land and ocean) distribution of aerosols from Version 1 of the VIIRS Deep Blue data set. The preliminary validation results of these new VIIRS Deep Blue aerosol products using data from AERONET sunphotometers over land and ocean will be discussed. We will also compare the monthly averaged Deep Blue aerosol optical thickness (AOT) from VIIRS with the MODIS C6 products to investigate if any systematic biases may exist between MODIS C6 and VIIRS AOT.

  14. A Novel Aerosol Method for the Production of Hydrogel Particles

    PubMed Central

    Guzman-Villanueva, Diana; Smyth, Hugh D. C.; Herrera-Ruiz, Dea; El-Sherbiny, Ibrahim M.

    2012-01-01

    A novel method of generating hydrogel particles for various applications including drug delivery purposes was developed. This method is based on the production of hydrogel particles from sprayed polymeric nano/microdroplets obtained by a nebulization process that is immediately followed by gelation in a crosslinking fluid. In this study, particle synthesis parameters such as type of nebulizer, type of crosslinker, air pressure, and polymer concentration were investigated for their impact on the mean particle size, swelling behavior, and morphology of the developed particles. Spherical alginate-based hydrogel particles with a mean particle size in the range from 842 to 886 nm were obtained. Using statistical analysis of the factorial design of experiment it was found that the main factors influencing the size and swelling values of the particles are the alginate concentration and the air pressure. Thus, it was demonstrated that the method described in the current study is promising for the generation of hydrogel particles and it constitutes a relatively simple and low-cost system. PMID:23687513

  15. Short term inhalation toxicity of a liquid aerosol of glutaraldehyde-coated CdS/Cd(OH)2 core shell quantum dots in rats.

    PubMed

    Ma-Hock, L; Farias, P M A; Hofmann, T; Andrade, A C D S; Silva, J N; Arnaud, T M S; Wohlleben, W; Strauss, V; Treumann, S; Chaves, C R; Gröters, S; Landsiedel, R; van Ravenzwaay, B

    2014-02-10

    Quantum dots exhibit extraordinary optical and mechanical properties, and the number of their applications is increasing. In order to investigate a possible effect of coating on the inhalation toxicity of previously tested non-coated CdS/Cd(OH)2 quantum dots and translocation of these very small particles from the lungs, rats were exposed to coated quantum dots or CdCl2 aerosol (since Cd(2+) was present as impurity), 6h/d for 5 consecutive days. Cd content was determined in organs and excreta after the end of exposure and three weeks thereafter. Toxicity was determined by examination of broncho-alveolar lavage fluid and microscopic evaluation of the entire respiratory tract. There was no evidence for translocation of particles from the respiratory tract. Evidence of a minimal inflammatory process was observed by examination of broncho-alveolar lavage fluid. Microscopically, minimal to mild epithelial alteration was seen in the larynx. The effects observed with coated quantum dots, non-coated quantum dots and CdCl2 were comparable, indicating that quantum dots elicited no significant effects beyond the toxicity of the Cd(2+) ion itself. Compared to other compounds with larger particle size tested at similarly low concentrations, quantum dots caused much less pronounced toxicological effects. Therefore, the present data show that small particle sizes with corresponding high surfaces are not the only factor triggering the toxic response or translocation.

  16. Multiday production of condensing organic aerosol mass in urban and forest outflow

    DOE PAGES

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; ...

    2014-07-03

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for several days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (∼50%) and of shorter duration (1–2 days). The production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products ofmore » both aromatics and alkanes. In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.« less

  17. Multiday production of condensing organic aerosol mass in urban and forest outflow

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2014-07-01

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for several days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (∼50%) and of shorter duration (1-2 days). The production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products of both aromatics and alkanes. In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.

  18. Multiday production of condensing organic aerosol mass in urban and forest outflow

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2015-01-01

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for multiple days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (~50%) and of shorter duration (1-2 days). The multiday production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products of both aromatics and alkanes, especially those with relatively low carbon numbers (C4-15). In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions and different vapor pressure schemes, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.

  19. Indoor/outdoor radon decay products associated aerosol particle-size distributions and their relation to total number concentrations.

    PubMed

    Moriizumi, Jun; Yamada, Shinya; Xu, Yang; Matsuki, Satoru; Hirao, Shigekazu; Yamazawa, Hiromi

    2014-07-01

    The activity size distributions of indoor and outdoor radioactive aerosol associated with short-lived radon decay products were observed at Nagoya, Japan, for some periods from 2010 to 2012, following the indoor observation by Mostafa et al. [Mostafa, A. M. A., Tamaki, K., Moriizumi, J., Yamazawa, H. and Iida, T. The weather dependence of particle size distribution of indoor radioactive aerosol associated with radon decay products. Radiat. Prot. Dosim. 146: (1-3), 19-22 (2011)]. The tendency of smaller indoor activity median aerodynamic diameter (AMAD) after rainfalls showed in the previous study was not consistently obtained, while the consistent tendency of less indoor radioactive particles with diameters in the accumulation mode was observed again after rainfalls. The indoor aerosols showed activity size distributions similar to the outdoor ones. Non-radioactive aerosol particle concentrations measured with a laser particle counter suggested a somewhat liner relationship with AMAD.

  20. Preservation of H 2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures: Preservation of R.palustris latex coatings

    DOE PAGES

    Piskorska, M.; Soule, T.; Gosse, J. L.; ...

    2013-07-21

    To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O2 on preservation of H2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H2 production activity, whereas considerable H2 production was still detected in sucrose- and trehalose-stabilized coatings. We stored the coatings at a relative humidity level which significantly impacts the recovery and subsequent rates ofmore » H2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H2 production activity after 8 weeks of storage. Furthermore, when stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Ultimately, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.« less

  1. Ceramic materials of low-temperature synthesis for dielectric coating applied by 3D aerosol printing used in nano- and microelectronics, lighting engineering, and spacecraft control devices

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Tuev, V. I.; Nisan, A. V.; Potapov, G. N.

    2016-11-01

    A synthesis technique of low-temperature ceramic material based on aluminosilicates of dendrimer morphology capable to contain up to 80 wt % of nitrides and oxides of high-melting compounds as filler has been developed. The synthesis is based on a sol-gel method followed by mechanochemical treatment and ultrasonic dispersing. Dielectric ceramic layers with the layer thickness in the nanometer range and high thermal conductivity have been obtained for the first time by 3D aerosol printing of the synthesized material. The study of the obtained ceramic coating on the metal surface (Al) has proved its use prospects in microelectronics, light engineering, and devices for special purposes.

  2. Gas phase emissions from cooking processes and their secondary aerosol production potential

    NASA Astrophysics Data System (ADS)

    Klein, Felix; Platt, Stephen; Bruns, Emily; Termime-roussel, Brice; Detournay, Anais; Mohr, Claudia; Crippa, Monica; Slowik, Jay; Marchand, Nicolas; Baltensperger, Urs; Prevot, Andre; El Haddad, Imad

    2014-05-01

    Long before the industrial evolution and the era of fossil fuels, high concentrations of aerosol particles were alluded to in heavily populated areas, including ancient Rome and medieval London. Recent radiocarbon measurements (14C) conducted in modern megacities came as a surprise: carbonaceous aerosol (mainly organic aerosol, OA), a predominant fraction of particulate matter (PM), remains overwhelmingly non-fossil despite extensive fossil fuel combustion. Such particles are directly emitted (primary OA, POA) or formed in-situ in the atmosphere (secondary OA, SOA) via photochemical reactions of volatile organic compounds (VOCs). Urban levels of non-fossil OA greatly exceed the levels measured in pristine environments strongly impacted by biogenic emissions, suggesting a contribution from unidentified anthropogenic non-fossil sources to urban OA. Positive matrix factorization (PMF) techniques applied to ambient aerosol mass spectrometer (AMS, Aerodyne) data identify primary cooking emissions (COA) as one of the main sources of primary non-fossil OA in major cities like London (Allan et al., 2010), New York (Sun et al., 2011) and Beijing (Huang et al., 2010). Cooking processes can also emit VOCs that can act as SOA precursors, potentially explaining in part the high levels of oxygenated OA (OOA) identified by the AMS in urban areas. However, at present, the chemical nature of these VOCs and their secondary aerosol production potential (SAPP) remain virtually unknown. The approach adopted here involves laboratory quantification of PM and VOC emission factors from the main primary COA emitting processes and their SAPP. Primary emissions from deep-fat frying, vegetable boiling, vegetable frying and meat cooking for different oils, meats and vegetables were analysed under controlled conditions after ~100 times dilution. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a high resolution proton transfer time-of-flight mass spectrometer (PTR

  3. Multiday production of condensing organic aerosol mass in urban and forest outflow

    DOE PAGES

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; ...

    2015-01-16

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for multiple days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (~50%) and of shorter duration (1–2 days). The multiday production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction productsmore » of both aromatics and alkanes, especially those with relatively low carbon numbers (C4–15). In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions and different vapor pressure schemes, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.« less

  4. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: chemical characterization of the products

    NASA Astrophysics Data System (ADS)

    Grgić, Irena; Kitanovski, Zoran; Kroflič, Ana; Čusak, Alen

    2014-05-01

    One of the largest primary sources of organic aerosol in the atmosphere is biomass burning (BB) (Laskin et al. 2009); in Europe its contribution to annual mean of PM10 is between 3 and 14 % (Maenhaut et al. 2012). During the process of wood burning many different products are formed via thermal degradation of wood lignin. Hardwood burning produces mainly syringol (2,6-dimetoxyphenol) derivatives, while softwood burning exclusively guaiacol (2-methoxyphenol) and its derivatives. Taking into account physical properties of methoxyphenols only, their concentrations in atmospheric waters might be underestimated. So, their aqueous phase reactions can be an additional source of SOA, especially in regions under significant influence of wood combustion. An important class of compounds formed during physical and chemical aging of the primary BBA in the atmosphere is nitrocatechols, known as strong absorbers of UV and Vis light (Claeys et al. 2012). Very recently, methyl-nitrocatechols were proposed as suitable markers for highly oxidized secondary BBA (Iinuma et al. 2010, Kitanovski et al. 2012). In the present work, the formation of SOA through aqueous phase photooxidation and nitration of guaiacol was examined. The key objective was to chemically characterize the main low-volatility products and further to check their possible presence in the urban atmospheric aerosols. The aqueous phase reactions were performed in a thermostated reactor under simulated sunlight in the presence of H2O2 and nitrite. Guaiacol reaction products were first concentrated by solid-phase extraction (SPE) and then subjected to semi-preparative liquid chromatography.The main product compounds were fractionated and isolated as pure solids and their structure was further elucidated by using nuclear magnetic resonance spectroscopy (1H, 13C and 2D NMR) and direct infusion negative ion electro-spray ionization tandem mass spectrometry (( )ESI-MS/MS). The main photonitration products of guaiacol (4

  5. Solar thermal decomposition of zinc oxide in aerosol flow for renewable hydrogen production

    NASA Astrophysics Data System (ADS)

    Perkins, Christopher Michael

    Hydrogen could be a clean replacement for fossil fuels. The Zn/ZnO solar thermochemical water-splitting cycle provides a renewable path to this fuel. Thermodynamic simulations showed that the Zn/ZnO cycle has the lowest temperature of all two-step metal oxide cycles, and the prediction of relatively high efficiency based on its lower temperature and number of steps led to its selection for further study. A rapid aerosol configuration for ZnO decomposition was chosen based on expectation of high reaction rates and small product particle production, and proof-of-concept experiments confirmed this assumption. Thermogravimetric studies of the thermal decomposition kinetics of ZnO showed that the rate followed a 2/3 order L'vov kinetic expression. The activation energy was found to be 353 +/- 25.9 kJ/mol, and a simple electrostatic model was used to describe the reaction mechanism. The pre-exponential factor was found, as expected, to vary inversely with the distance to a product concentration sink. Investigation of the aerosol decomposition of ZnO showed high forward conversion (˜60%) but low net yield (18%) of zinc due to recombination of product oxygen with nucleated zinc particles. Products that were initially converted had high surface area (15.5 +/- 0.13 g/m2), small particle size (5-70 nm), and relatively spherical morphology, properties desirable when considering the hydrolysis step of the water-splitting cycle. Rates in the aerosol reactor were found to be three orders of magnitude greater than those in a stationary configuration. Computational fluid dynamics (CFD) simulations of the aerosol reaction showed rapid particle heating and high forward conversion (>90%) in short residence times (<1.5s). Results could be used to scale a commercial size reactor, and the recommended particle size based on conversion and handling considerations was 1 mum. Reactor materials sensitive to oxidation were shown to be inappropriate for application due to high corrosion rates

  6. Quantifying VOC-Reaction Tracers, Ozone Production, and Continuing Aerosol Production Rates in Urban and Far-Downwind Atmospheres

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert; Ren, X.; Brune, W.; Fried, A.; Schwab, J.

    2008-01-01

    We have found a surprisingly informative decomposition of the complex question of smoggy ozone production (basically, [HO2] in a more locally determined field of [NO]) in the process of linked investigations of modestly smoggy Eastern North America (by NASA aircraft, July 2004) and rather polluted Flushing, NYC (Queens College, July, 2001). In both rural and very polluted situations, we find that a simple contour graph parameterization of the local principal ozone production rate can be estimated using only the variables [NO] and j(sub rads) [HCHO]: Po(O3) = c (j(sub rads) [HCHO])(sup a) [HCHO](sup b). Here j(sub rads) is the photolysis of HCHO to radicals, presumably capturing many harder-UV photolytic processes and the principle ozone production is that due to HO2; mechanisms suggest that ozone production due to RO2 is closely correlated, often suggesting a limited range of different proportionality factors. The method immediately suggests a local interpretation for concepts of VOC limitation and NOx limitation. We believe that the product j(sub rads) [HCHO] guages the oxidation rate of observed VOC mixtures in a way that also provides [HO2] useful for the principle ozone production rate k [HO2] [NO], and indeed, all ozone chemical production. The success of the method suggests that dominant urban primary-HCHO sources may transition to secondary plume-HCHO sources in a convenient way. Are there other, simple, near-terminal oxidized VOC's which help guage ozone production and aerosol particle formation? Regarding particles, we report on, to the extent NASA Research resources allow, on appealing relationships between far-downwind (Atlantic PBL) HCHO and very fine aerosol (including sulfate. Since j(sub rads) [HCHO] provides a time-scale, we may understand distant-plume particle production in a more quantitative manner. Additionally we report on a statistical search in the nearer field for relationships between glyoxals (important near-terminal aromatic and isoprene

  7. Use of edible coatings to preserve quality of lightly (and slightly) processed products.

    PubMed

    Baldwin, E A; Nisperos-Carriedo, M O; Baker, R A

    1995-11-01

    Lightly processed agricultural products present a special problem to the food industry and to scientists involved in postharvest and food technology research. Light or minimal processing includes cutting, slicing, coring, peeling, trimming, or sectioning of agricultural produce. These products have an active metabolism that can result in deteriorative changes, such as increased respiration and ethylene production. If not controlled, these changes can lead to rapid senescence and general deterioration of the product. In addition, the surface water activity of cut fruits and vegetables is generally quite high, inviting microbial attack, which further reduces product stability. Methods for control of these changes are numerous and can include the use of edible coatings. Also mentioned in this review are coating of nut products, and dried, dehydrated, and freeze-dried fruits. Technically, these are not considered to be minimally processed, but many of the problems and benefits of coating these products are similar to coating lightly processed products. Generally, the potential benefits of edible coatings for processed or lightly processed produce is to stabilize the product and thereby extend product shelf life. More specifically, coatings have the potential to reduce moisture loss, restrict oxygen entrance, lower respiration, retard ethylene production, seal in flavor volatiles, and carry additives that retard discoloration and microbial growth.

  8. Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers

    NASA Astrophysics Data System (ADS)

    Ahern, Adam T.; Subramanian, Ramachandran; Saliba, Georges; Lipsky, Eric M.; Donahue, Neil M.; Sullivan, Ryan C.

    2016-12-01

    Biomass burning is a large source of light-absorbing refractory black carbon (rBC) particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV) ablation LAAPTOF and the IR vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA) from α-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC) mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.

  9. Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers

    DOE PAGES

    Ahern, Adam T.; Subramanian, Ramachandran; Saliba, Georges; ...

    2016-12-22

    Biomass burning is a large source of light-absorbing refractory black carbon (rBC) particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV) ablation LAAPTOF and the IRmore » vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA) from α-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC) mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.« less

  10. RESEARCH AND PRODUCT DEVELOPMENT OF LOW-VOC WOOD COATINGS

    EPA Science Inventory

    The report discusses a project, cofunded by the South Coast Air Quality Management District (SCAQMD) and the U.S. EPA, to develop a new, low volatile organic compound (VOC) wood coating. Traditional wood furniture coating technologies contain organic solvents which become air pol...

  11. HCHO Activity Gauges Ozone Production and Aerosol Production Rates in Both Urban and Far-Downwind Atmospheres

    NASA Astrophysics Data System (ADS)

    Chatfield, R. B.; Ren, X.; Brune, W. H.; Fried, A.; Schwab, J.; Shetter, R. E.

    2008-12-01

    We have found a surprisingly informative decomposition of the complex question of smoggy ozone production in a set of of expanding investigations starting from modestly smoggy Eastern North America (by NASA aircraft, INTEX, July 2004) to rather polluted Flushing, NYC (Queens College, CAPTEX, July, 2001). In both rural and very polluted situations, we find that a simple "contour graph" parameterization of the local principal ozone production rate can be estimated using only the variables [NO] and jrads [HCHO]: Po(O3) = c (jrads [HCHO])a [NO]b. The method immediately suggests a local interpretation for concepts of VOC limitation and NOx limitation. We believe that the product jrads [HCHO] gauges the oxidation rate of observed VOC mixtures in a way that also provides [HO2] useful for the principle ozone production rate k [HO2] [NO], Mechanisms suggest that ozone production due to RO2 is proportional to the HO2 process, hence we may capture all ozone chemical production. The success of the method suggests that dominant urban primary-HCHO sources may transition to secondary plume-HCHO sources, so that HCHO is never too far away from an evolving steady state with VOC reactivity. Are there other, simple, near-terminal oxidized VOC's which help gauge ozone production and aerosol particle formation? Regarding particles, we report on suggestive relationships between far-downwind (Atlantic PBL) HCHO and very fine aerosol. Since jrads [HCHO] provides a reactive-flux rate, we may understand distant-plume particle production in a more quantitative manner. Additionally, we report on a statistical search in the nearer field for relationships between glyoxals (important penultimate aromatic and isoprene reaction products) with ozone and aerosol production, looking for VOC's that might be most implicated, e.g., aromatics and biogenics. Note that all three of our variables jrads, [HCHO], and [NO] are relatively easily measured in widespread air pollution networks, and all are

  12. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Lewis, A. C.; Carey, T. J.; Wenger, J. C.; Garcia, E. Borrás. I.; Muñoz, A.

    2009-02-01

    Green leaf volatiles (GLVs) are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA) formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1-5 TgC yr-1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  13. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Lewis, A. C.; Carey, T. J.; Wenger, J. C.; Garcia, E. Borrás. I.; Muñoz, A.

    2009-06-01

    Green leaf volatiles (GLVs) are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA) formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1-5 TgC yr-1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  14. Ion-plasma processes of the production of diffusion aluminide coatings

    NASA Astrophysics Data System (ADS)

    Muboyadzhyan, S. A.

    2010-03-01

    A novel ion-plasma process for ecologically safe formation of diffusion aluminide coatings on a substrate made of a superalloy, which has advantages as compared to the well-known thermodiffusion processes of their production, is described. The ion-plasma process is shown to provide the formation of diffusion aluminide coatings on the surface of a superalloy substrate according to various technologies. Owing to alloying with one or several elements from the series Y, Si, Cr, Hf, B, Co, etc., ion-plasma diffusion coatings have higher protective properties than analogous coatings produced by the traditional methods of powder, slip, and gas-circulating aluminizing.

  15. Production of nano-ceramic coatings on titanium implants

    NASA Astrophysics Data System (ADS)

    Fomin, A. A.; Rodionov, I. V.; Fomina, M. A.; Petrova, N. V.

    2015-03-01

    Composite titania coatings modified with hydroxyapatite nanoparticles were obtained on intraosseous implants fabricated from commercially pure titanium and titanium alloy Ti-2.5Al-5Mo-5V. The present study aims to identify consistency changes of morphological characteristics and physico-mechanical properties of titanium items coatings obtained by oxidation during induction heat treatment and modification with colloidal hydroxyapatite nanoparticles. The influence of temperature between 600 and 1200 °C and duration of thermal modification from 1 to 300 s was studied. It was established that high hardness about 6.7±1.9 GPa for nanocrystalline TiO2 coatings and 19.2±0.6 GPa for nanoceramic "TiO2+HAp" coatings is reached at 1000 °C and 120 s.

  16. Hydrogel-Coated Coils: Product Description and Clinical Applications

    PubMed Central

    Ferral, Hector

    2015-01-01

    Hydrogel-coated coils are truly detachable coils with a platinum core covered with hydrogel. The coils are available in 0.018- and 0.035-in systems. These coils have the ability to expand up to four times their size ∼20 minutes after deployment, thus providing a very effective mechanical vascular occlusion effect. The vessel-occlusive effect of these coils is a volume, space-occupying effect, not a thrombotic effect, as seen in fibered coils. Hydrogel-coated coils were originally developed and designed to treat brain aneurysms; however, their use has expanded to peripheral applications. Hydrogel-coated coils have been used in the management of visceral aneurysms, high-flow vascular arteriovenous fistulae, and endoleaks after endovascular thoracic and abdominal aneurysm repair. The purpose of this article is to describe the hydrogel-coated coil system, the mechanism of action, technical details for optimal deployment, and clinical applications. PMID:26622096

  17. Global Long-Term SeaWiFS Deep Blue Aerosol Products available at NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Shen, S.; Sayer, A. M.; Bettenhausen, C.; Wei, J. C.; Ostrenga, D.; Vollmer, B.; Hsu, N. C.

    2012-12-01

    Long-term climate data records of aerosols are needed in order to study regional air quality and the uncertainty of aerosol radiative forcing with numerical models. Recently, global long-term (over 13 years from 1997 to 2010) SeaWiFS Deep Blue (SWDB) aerosol products have become available. The SWDB aerosol dataset has been produced by the "Consistent Long-Term Aerosol Data Records over Land and Ocean from SeaWIFS" project led by Dr. N. Christina Hsu as part of the Making Earth Science data records for Use in Research for Earth Science (MEaSUREs) program. The latest Deep Blue algorithm retrieves aerosol properties not only over bright desert surfaces, but also vegetated surfaces, oceans, and inland water bodies. Comparisons with AERONET observations have shown that the data are suitable for quantitative scientific use. The resolution of the Level 2 pixels is 13.5x13.5 km2 at the center of the swath. The Level 3 daily and monthly data are composed by using best quality level 2 pixels at resolution of both 0.5x0.5 and 1.0x1.0 degrees. This presentation, focusing over the south Asia region, will show sample higher resolution Level 2 images of dust events and the Level 3 monthly climatology at large scale. The data are compared with the widely-used MODIS (Deep Blue and Dark Target) aerosol dataset. The SWDB aerosol data are available from NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) through a number of data services, such as FTP; the data search system, Mirador; OPeNDAP; and online subsetting services. The global daily and monthly Level 3 products are also available in the innovative online visualization and analysis system, Giovanni. More information about SWBD aerosol products can be found from the project portal: http://disc.gsfc.nasa.gov/dust. Seasonal climatology of SeaWiFS Deep Blue Aerosol Optical Depth at 550nm for the period from 1997.09 to 2010.12.

  18. Effect of Wildfire Aerosols on NO2 Photolysis and Ozone Production at the Mt. Bachelor Observatory

    NASA Astrophysics Data System (ADS)

    Baylon, P.; Jaffe, D. A.; Hall, S. R.; Ullmann, K.; Lefer, B. L.

    2015-12-01

    In this study, we have two goals: to quantify the effect of biomass burning aerosols on jNO2 photolysis and to look at O3 formation in biomass burning plumes as it relates to jNO2 photolysis. Wildfire plumes were observed during the summer of 2015 at the Mt. Bachelor Observatory, a high-elevation (2.8 km a.s.l.) mountaintop site located in central Oregon. These plumes were identified using the following criteria: (1) 5-minute ambient aerosol scattering σsp ≥ 20 Mm-1 for at least two hours, (2) 5-minute CO ≥ 150 ppbv for at least two hours, (3) strong correlation (r2 ≥ 0.70) between σsp and CO, and (4) consistent air mass back trajectories indicating transport over known fire locations. We measure nitrogen oxides using a chemiluminescence detector and jNO2 photolysis using a diode array actinic flux spectroradiometer. We also measure O3 using two techniques: (a) UV method with a cavity ring-down spectrometer and (b) chemiluminescence method with a custom-made instrument. We compare fire event observations between these two procedures to prove consistency. Based on these measurements, we quantify a lower bound for the HO2 and RO2 radical concentrations in wildfire plumes. We then look at plume and non-plume data and examine deviations from the photostationary state. Finally, we use the TUV model v5.2 to simulate clear-sky conditions and therefore quantify the reduction/enhancement in jNO2 values and O3 production due to wildfire aerosols. This gives us insight into the photochemical environment in biomass burning plumes, which until now, remains poorly understood.

  19. Assessing the use of VIIRS Aerosol Intermediate Product for AOD retrieval and PM25 concentrations.

    NASA Astrophysics Data System (ADS)

    Gross, B.; Nazmi, C.; Moshary, F.; Lightstone, S.

    2015-12-01

    In previous work, it was shown that MODIS AOD retreivals over urban areas have overbiases that can be removed if proper account is made of the surface land classification. In fact, both direct methods where improvements to urban model albedos were implemented as well as post processing approaches using Neural Networks (NN's) were shown to be useful in reducing biases and retreival uncertainty. In this paper, we make a preliminary study of these approaches to the VIIRS Intermediate Aerosol Optical Depth Product and demonstrate that VIIRS Biases can also be substantially reduced. Comparisons with MODIS will be made and direct use of the high resolution product will be used to assess potential PM25 estimation.

  20. Surface Coating of Wood Building Products National Emission Standards for Hazardous Air Pollutants (NESHAP) Applicability Flowchart

    EPA Pesticide Factsheets

    This page contains a January 2005 document that has a flow chart to help you determine if this National Emission Standards for Hazardous Air Pollutants (NESHAP) rule for Surface Coating of Wood Building Products applies to your facility.

  1. Secondary Organic Aerosol Formation by Molecular-Weight Building Reactions of Biogenic Oxidation Products

    NASA Astrophysics Data System (ADS)

    Barsanti, K.; Guenther, A.; Matsunaga, S.; Smith, J.

    2006-12-01

    Understanding the chemical composition of atmospheric organic aerosols (OA) remains one of the significant challenges to accurately representing OA in air quality and climate models. Meeting this challenge will require further understanding of secondary organic aerosols (SOA), of which biogenic emissions are thought to be major precursors. Of recent interest is the significance of higher-molecular weight (MW) compounds (i.e., "oligomers"). Theoretical, laboratory, and field study results suggest that relatively volatile oxidation products may contribute to SOA formation through multi-phase MW- building reactions. The significance of such reactions for biogenic SOA formation, including for newly considered precursors such as isoprene, is explored in this work. Theoretical and field studies are employed to: 1) identify MW-building reactions that may contribute to SOA formation in the atmosphere, 2) identify MW-building reaction products in ambient samples, and 3) parameterize atmospheric SOA formation by MW-building reactions of biogenic oxidation products. Likely reactions of biogenic oxidation products include ester, amide, and peroxyhemiacetal formation. Each of the proposed reactions involves known oxidation productions of biogenic precursors (e.g., carboxylic acids and aldehydes) reacting with one another and/or other atmospheric constituents (e.g., sulfuric acid and ammonia) to form higher-MW/lower-volatility products that can condense to form SOA. It has been suggested that products of MW-building reactions can revert to the parent reactants during sampling and analysis. Thus, relatively volatile compounds detected in ambient particle samples in fact may be decomposition products of higher-MW products. The contribution of relatively volatile biogenic oxidation products to SOA via ester, amide, and peroxyhemiacetal formation, as determined by studies based on fundamental thermodynamics and gas/particle partitioning theory, will be discussed; in addition to

  2. A Comparison of Parameterizations of Secondary Organic Aerosol Production: Global Budget and Spatiotemporal Variability

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, Z.; Horowitz, L. W.; Carlton, A. M. G.; Fan, S.; Cheng, Y.; Ervens, B.; Fu, T. M.; He, C.; Tao, S.

    2014-12-01

    Secondary organic aerosols (SOA) have a profound influence on air quality and climate, but large uncertainties exist in modeling SOA on the global scale. In this study, five SOA parameterization schemes, including a two-product model (TPM), volatility basis-set (VBS) and three cloud SOA schemes (Ervens et al. (2008, 2014), Fu et al. (2008) , and He et al. (2013)), are implemented into the global chemical transport model (MOZART-4). For each scheme, model simulations are conducted with identical boundary and initial conditions. The VBS scheme produces the highest global annual SOA production (close to 35 Tg·y-1), followed by three cloud schemes (26-30 Tg·y-1) and TPM (23 Tg·y-1). Though sharing a similar partitioning theory to the TPM scheme, the VBS approach simulates the chemical aging of multiple generations of VOCs oxidation products, resulting in a much larger SOA source, particularly from aromatic species, over Europe, the Middle East and Eastern America. The formation of SOA in VBS, which represents the net partitioning of semi-volatile organic compounds from vapor to condensed phase, is highly sensitivity to the aging and wet removal processes of vapor-phase organic compounds. The production of SOA from cloud processes (SOAcld) is constrained by the coincidence of liquid cloud water and water-soluble organic compounds. Therefore, all cloud schemes resolve a fairly similar spatial pattern over the tropical and the mid-latitude continents. The spatiotemporal diversity among SOA parameterizations is largely driven by differences in precursor inputs. Therefore, a deeper understanding of the evolution, wet removal, and phase partitioning of semi-volatile organic compounds, particularly above remote land and oceanic areas, is critical to better constrain the global-scale distribution and related climate forcing of secondary organic aerosols.

  3. Chemicals: UV-curable coating for aluminum can production

    SciTech Connect

    1999-09-29

    Fact sheet on curing aluminum can coatings written for the NICE3 Program. Coors Brewing Company has been using ultraviolet (UV) light curing technology on its aluminum beverage cans for 25 years. The company is now looking to share its cost-saving technology with other aluminum can producers. Traditional curing methods for creating external decorations on cans rely on convective-heat ovens to cure ink and over-varnish coatings. These thermal-curing methods require large amounts of energy and money, and can have unintended environmental impacts. Coors' technique uses coating materials that cure when exposed to UV light, thereby eliminating the expensive heat treatments used by conventional coating methods. Additionally, the UV-coating process creates much lower emissions and a smaller pollution waste stream than rival thermal processes because it requires much less solvent than thermal processes. This technology can be used not only in the aluminum can industry, but in the automotive, airline, wood, paper, and plastics industries, as well.

  4. Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kristensen, K.; Enggrob, K. L.; King, S. M.; Worton, D. R.; Platt, S. M.; Mortensen, R.; Rosenoern, T.; Surratt, J. D.; Bilde, M.; Goldstein, A. H.; Glasius, M.

    2013-04-01

    The formation of carboxylic acids and dimer esters from α-pinene oxidation was investigated in a smog chamber and in ambient aerosol samples collected during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX). Chamber experiments of α-pinene ozonolysis in dry air and at low NOx concentrations demonstrated formation of two dimer esters, pinyl-diaterpenyl (MW 358) and pinonyl-pinyl dimer ester (MW 368), under both low- and high-temperature conditions. Concentration levels of the pinyl-diaterpenyl dimer ester were lower than the assumed first-generation oxidation products cis-pinic and terpenylic acids, but similar to the second-generation oxidation products 3-methyl-1,2,3-butane tricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). Dimer esters were observed within the first 30 min, indicating rapid production simultaneous to their structural precursors. However, the sampling time resolution precluded conclusive evidence regarding formation from gas- or particle-phase processes. CCN activities of the particles formed in the smog chamber displayed a modest variation during the course of experiments, with κ values in the range 0.06-0.09 (derived at a supersaturation of 0.19%). The pinyl-diaterpenyl dimer ester was also observed in ambient aerosol samples collected above a ponderosa pine forest in the Sierra Nevada Mountains of California during two seasonally distinct field campaigns in September 2007 and July 2009. The pinonyl-pinyl ester was observed for the first time in ambient air during the 2009 campaign, and although present at much lower concentrations, it was correlated with the abundance of the pinyl-diaterpenyl ester, suggesting similarities in their formation. The maximum concentration of the pinyl-diaterpenyl ester was almost 10 times higher during the warmer 2009 campaign relative to 2007, while the concentration of cis-pinic acid was approximately the same during both periods, and lack of correlation with levels of

  5. 40 CFR 63.8055 - How do I comply with a weight percent HAP limit in coating products?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAP limit in coating products? 63.8055 Section 63.8055 Protection of Environment ENVIRONMENTAL...: Miscellaneous Coating Manufacturing Alternative Means of Compliance § 63.8055 How do I comply with a weight percent HAP limit in coating products? (a) As an alternative to complying with the requirements in Table...

  6. 40 CFR 63.8055 - How do I comply with a weight percent HAP limit in coating products?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAP limit in coating products? 63.8055 Section 63.8055 Protection of Environment ENVIRONMENTAL...: Miscellaneous Coating Manufacturing Alternative Means of Compliance § 63.8055 How do I comply with a weight percent HAP limit in coating products? (a) As an alternative to complying with the requirements in Table...

  7. Simulated consumer exposure to propellant HCFC 22 (chlorodifluoromethane) in aerosol personal products.

    PubMed

    Hartop, P J; Adams, M G

    1989-02-01

    Summary The potential human exposure to the aerosol propellant HCFC 22 (chlorodifluoromethane) arising from its use in personal products has been assessed. HCFC 22 concentrations were measured in the 'breathing zone' of an experimental manikin and an 'accompanying child' designed to simulate human use of hairsprays, body sprays and antiperspirants in a closed room. Results were expressed as the 10-min time-weighted average concentration in the air (TWA 10) and as the peak concentration in the 'breathing zone' of the 'user'. Following a 10-s use of hairspray containing approximately 20-40% HCFC 22, TWA10 values for an adult user and child were 64-116 ppm and 44-100 ppm, respectively. Use of an aerosol body spray containing 20-65% HCFC 22 for 5-20 s gave rise to TWA10 values of 32-411 ppm for an adult user and 20-395 ppm for a child. A 4-s use of an antiperspirant containing approximately 20-40% HCFC 22 sprayed at a distance of 10-30 cm from the breathing zone of the adult user generated TWA 10 values in the range of 14-34 ppm for both the adult user and child. Opening the door of the room prior to hairspray and antiperspirant spraying slightly reduced these TWA 10 values. The peak values recorded in these studies for the adult user were 208 ppm for hairspray, 1415 ppm for body sprays and 82 ppm for antiperspirants.

  8. Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential.

    PubMed

    Klein, Felix; Farren, Naomi J; Bozzetti, Carlo; Daellenbach, Kaspar R; Kilic, Dogushan; Kumar, Nivedita K; Pieber, Simone M; Slowik, Jay G; Tuthill, Rosemary N; Hamilton, Jacqueline F; Baltensperger, Urs; Prévôt, André S H; El Haddad, Imad

    2016-11-10

    Cooking is widely recognized as an important source of indoor and outdoor particle and volatile organic compound emissions with potential deleterious effects on human health. Nevertheless, cooking emissions remain poorly characterized. Here the effect of herbs and pepper on cooking emissions was investigated for the first time to the best of our knowledge using state of the art mass spectrometric analysis of particle and gas-phase composition. Further, the secondary organic aerosol production potential of the gas-phase emissions was determined by smog chamber aging experiments. The emissions of frying meat with herbs and pepper include large amounts of mono-, sesqui- and diterpenes as well as various terpenoids and p-cymene. The average total terpene emission rate from the use of herbs and pepper during cooking is estimated to be 46 ± 5 gg(-1)Herbs min(-1). These compounds are highly reactive in the atmosphere and lead to significant amounts of secondary organic aerosol upon aging. In summary we demonstrate that cooking with condiments can constitute an important yet overlooked source of terpenes in indoor air.

  9. Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential

    NASA Astrophysics Data System (ADS)

    Klein, Felix; Farren, Naomi J.; Bozzetti, Carlo; Daellenbach, Kaspar R.; Kilic, Dogushan; Kumar, Nivedita K.; Pieber, Simone M.; Slowik, Jay G.; Tuthill, Rosemary N.; Hamilton, Jacqueline F.; Baltensperger, Urs; Prévôt, André S. H.; El Haddad, Imad

    2016-11-01

    Cooking is widely recognized as an important source of indoor and outdoor particle and volatile organic compound emissions with potential deleterious effects on human health. Nevertheless, cooking emissions remain poorly characterized. Here the effect of herbs and pepper on cooking emissions was investigated for the first time to the best of our knowledge using state of the art mass spectrometric analysis of particle and gas-phase composition. Further, the secondary organic aerosol production potential of the gas-phase emissions was determined by smog chamber aging experiments. The emissions of frying meat with herbs and pepper include large amounts of mono-, sesqui- and diterpenes as well as various terpenoids and p-cymene. The average total terpene emission rate from the use of herbs and pepper during cooking is estimated to be 46 ± 5 gg-1Herbs min-1. These compounds are highly reactive in the atmosphere and lead to significant amounts of secondary organic aerosol upon aging. In summary we demonstrate that cooking with condiments can constitute an important yet overlooked source of terpenes in indoor air.

  10. Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential

    PubMed Central

    Klein, Felix; Farren, Naomi J.; Bozzetti, Carlo; Daellenbach, Kaspar R.; Kilic, Dogushan; Kumar, Nivedita K.; Pieber, Simone M.; Slowik, Jay G.; Tuthill, Rosemary N.; Hamilton, Jacqueline F.; Baltensperger, Urs; Prévôt, André S. H.; El Haddad, Imad

    2016-01-01

    Cooking is widely recognized as an important source of indoor and outdoor particle and volatile organic compound emissions with potential deleterious effects on human health. Nevertheless, cooking emissions remain poorly characterized. Here the effect of herbs and pepper on cooking emissions was investigated for the first time to the best of our knowledge using state of the art mass spectrometric analysis of particle and gas-phase composition. Further, the secondary organic aerosol production potential of the gas-phase emissions was determined by smog chamber aging experiments. The emissions of frying meat with herbs and pepper include large amounts of mono-, sesqui- and diterpenes as well as various terpenoids and p-cymene. The average total terpene emission rate from the use of herbs and pepper during cooking is estimated to be 46 ± 5 gg-1Herbs min-1. These compounds are highly reactive in the atmosphere and lead to significant amounts of secondary organic aerosol upon aging. In summary we demonstrate that cooking with condiments can constitute an important yet overlooked source of terpenes in indoor air. PMID:27830718

  11. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    PubMed

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  12. oVOC production from tropospheric alkyne oxidation and contribution to aerosol formation and growth

    NASA Astrophysics Data System (ADS)

    Goodall, Iain

    2013-04-01

    Ethyne (C2H2) is one of the simplest volatile organic compounds (VOC) and is predominantly emitted via anthropogenic processes and reacts with nitrogen oxides (NOx) in the presence of sunlight to form tropospheric ozone (O3). The dominant oxidation product of ethyne is the dicarbonyl species glyoxal (CHOCHO), which is thought to be a significant contributor to secondary organic aerosol (SOA) formation via irreversible oligomerisation reactions upon the surface of hydrated aerosol particulates and within cloud droplets. A series of chamber experiments were performed at the EUPHORE facility (Valencia, Spain) to study the atmospheric oxidation of ethyne, to determine oxidation product yields and to monitor SOA formation and growth by dicarbonyl oligomerisation. A Proton Transfer Reaction-Time of Flight- Mass Spectrometer (PTR-ToF-MS) was deployed by the University of Leicester to monitor precursor decay and the subsequent evolution of any gas-phase oxidised volatile organic compounds (oVOC). This was further complemented by a Broadband Cavity Enhanced Absorption Spectrometer (BBCEAS) for specific dicarbonyl and NO2 measurements. Aqueous extracts of chamber SOA were taken from filters collected during the experiments and subsequently analysed offline. The work explores the yields of low molecular weight products of ethyne oxidation for light and dark reactions, with varying levels of NOx and OH. Novel experiments were performed under atmospherically relevant conditions utilising natural lighting rather than artificial lighting. Reaction yields have been assessed with the aim of contributing to the ethyne and glyoxal mechanisms in the Master Chemical Mechanism (MCM; http://mcm.leeds.ac.uk/MCM), and have been compared with previously reported values determined from experiments performed under artificial lighting conditions.

  13. PVC-plasticizer DEHP in medical products: do thin coatings really reduce DEHP leaching into blood?

    PubMed

    Hildenbrand, Sibylle L; Lehmann, Hans-Dieter; Wodarz, Roman; Ziemer, Gerhard; Wendel, Hans P

    2005-10-01

    The hemocompatibility of artificial surfaces in extracorporeal blood circulation systems can be improved by coatings. According to the literature, heparin coatings should avoid the leaching of the plasticizer di(2-ethylhexyl) phthalate (DEHP) into the blood from components made from plasticized polyvinyl chloride (PVC). DEHP and its metabolites are known to impair the fertility of male rodents; effects on human fertility are assumed. Three different surface coatings with and without heparin were examined in a Chandler Loop model at 37 degrees C using fresh human blood to evaluate their hemocompatibility and barrier property to plasticizer. The levels of toxic oxidation products of DEHP generated in the blood, particularly, were found as high as in the uncoated tubing. The coatings improved the hemocompatibility, but are not safe protection against the hazardous metabolites of DEHP. For pregnant women, neonates and children, we would recommend using the available surface-coated plasticized PVC tubing sets, but free of DEHP.

  14. 76 FR 60530 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Plastic Aerosol...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Plastic...''), Plastic Aerosol Research Group, L.L.C. (``PARG'') has filed written notifications simultaneously with the... are: Aerofil Technology Inc, Sullivan, MO; Aptar Beauty & Home, Cary, IL; Berry Plastics...

  15. 21 CFR 700.14 - Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol products. 700.14 Section 700.14 Food and Drugs FOOD AND DRUG ADMINISTRATION... inhaled at high concentrations. Studies also demonstrate carcinogenic effects in animals as a result...

  16. Effect of the secondary organic aerosol coatings on black carbon water uptake, cloud condensation nuclei activity, and particle collapse

    EPA Science Inventory

    The ability of black carbon aerosols to absorb water and act as a cloud condensation nuclei (CCN) directly controls their lifetime in the atmosphere as well as their impact on cloud formation, thus impacting the earth’s climate. Black carbon emitted from most combustion pro...

  17. Production of cromolyn sodium microparticles for aerosol delivery by supercritical assisted atomization.

    PubMed

    Reverchon, Ernesto; Adami, Renata; Caputo, Giuseppe

    2007-12-21

    The purpose of this study was to produce cromolyn sodium (CS) micrometric particles with controlled particle size (PS) and PS distribution (PSD) suitable for aerosol delivery, using a supercritical fluids-based process. CS was micronized using the supercritical assisted atomization (SAA) technique at different solute concentrations in water and different precipitation temperatures. Two techniques were used to measure PS and PSD of produced particles: scanning electron microscopy image analysis and laser scattering analysis. The 2 techniques were compared to provide a complete description of the powder obtained. High-performance liquid chromatography analysis was used to verify the absence of degradation of CS after micronization; differential scanning calorimetry, thermogravimetric analysis (TGA), and X-ray analysis were performed to study the effect of operative conditions on the crystalline structure and on the water content of SAA micronized particles. The CS particles obtained were spherical, with a volumetric percentage of particles with a diameter ranging between 1 and 5 microm of 50% to 66%. The precipitation temperature had no significant effect on PSD, but high drying temperatures led to product degradation. Increasing the concentration of CS in water solution produced an increase in PS of the micronized particles. TGA showed that the micronized CS had a different hydration state than the untreated CS did. The micronized product was stable after 12 months of storage, and no modifications in structure, morphology, or crystallinity were detected. In conclusion, SAA is an efficient technique for micronization of CS, and stable spherical amorphous particles suitable for aerosol delivery can be produced.

  18. Dimers and organosulfates derived from biogenic oxidation products in aerosols during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) in California 2007 and 2009 (Invited)

    NASA Astrophysics Data System (ADS)

    Glasius, M.; Worton, D. R.; Kristensen, K.; Nguyen, Q.; Surratt, J.; Enggrob, K. L.; Bouvier-Brown, N. C.; Farmer, D.; Docherty, K. S.; Platt, S.; Bilde, M.; Nøjgaard, J. K.; Seinfeld, J.; Jimenez, J. L.; Goldstein, A.

    2010-12-01

    Oxidation products of biogenic volatile organic compounds, such as monoterpenes and isoprene, contribute to biogenic secondary organic aerosol (BSOA). The organosulfate derivatives of these compounds are formed through heterogeneous reactions involving sulphur compounds, with a considerable contribution from anthropogenic sources. Organosulfate derivatives of biogenic oxidation products thus belong to a new group of anthropogenic enhanced biogenic SOA (ABSOA). The Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) during summers of 2007 and 2009 provided an excellent platform at Blodgett Forest, California (a ponderosa pine plantation) for studying ABSOA. Typically, polluted air masses were transported upslope from the California Central Valley during day, while night conditions were influenced by downslope transport of air masses, low local atmospheric mixing and formation of a shallow boundary layer. We collected particle samples (PM2.5) as one nighttime and two daytime samples per day. After extraction of filters in polar organic solvents (i.e. acetonitrile or methanol), organic aerosol constituents were analyzed by HPLC coupled through an electrospray inlet to a quadrupole time-of-flight mass spectrometer (qTOF-MS). Organosulfates and nitrooxy organosulfates derived from oxidation products of α-pinene, β-pinene, limonene and isoprene were identified based on their molecular mass and MS fragmentation patterns. Measurements by High Resolution Time of Flight Aerosol Mass Spectrometry (HR-ToF-AMS) show high mass loadings of nitrate in the night and morning samples with highest levels of the nitrooxy organosulfates with MW 295 and MW 297. This may indicate that elevated levels of nitrate and nitrooxy organosulfates are formed in the same polluted air mass, probably through nitrate radical reactions. Terpenylic acid, diterpenylic acid acetate, and methylbutane tricarboxylic acid were found at concentrations comparable to pinic acid. A dimer of

  19. Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; Nguyen, N. T.; Robertson, W. H.; Na, K.; Sahay, K. N.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2014-05-01

    Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices, including diesel particulate filters (DPFs), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOCs). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle,~Urban Dynamometer Driving Schedule, and creep + idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photooxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary PM emissions and SOA production from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber - with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after 3 h of oxidation at typical urban VOC / NOx ratios (3 : 1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the nonmethane organic gas emissions that could not be speciated using traditional one-dimensional gas chromatography. The

  20. The Statistical Evolution of Multiple Generations of Oxidation Products in the Photochemical Aging of Chemically Reduced Organic Aerosol

    SciTech Connect

    Wilson, Kevin R.; Smith, Jared D.; Kessler, Sean; Kroll, Jesse H.

    2011-10-03

    The heterogeneous reaction of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reactionproducts evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new(BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during thereaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products.In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could playimportant roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.

  1. Lymphoid Cell-Glioma Cell Interaction Enhances Cell Coat Production by Human Gliomas: Novel Suppressor Mechanism

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.; Macchi, Beatrice; Papazoglou, Savvas; Oldfield, Edward H.; Kornblith, Paul L.; Smith, Barry H.; Gately, Maurice K.

    1983-05-01

    Certain human glioma lines produce mucopolysaccharide coats that impair the generation of cytolytic lymphocytes in response to these lines in vitro. Coat production is substantially enhanced by the interaction of glioma cells with a macromolecular factor released by human peripheral blood mononuclear cells in culture. This interaction thus constitutes an unusual mechanism by which inflammatory cells may nonspecifically suppress the cellular immune response to at least one class of solid tumors in humans.

  2. 40 CFR Table 1 to Subpart E of... - Product-Weighted Reactivity Limits by Coating Category

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PCP 1.20 Ground Traffic/Marking GTM 1.20 Art Fixatives or Sealants AFS 1.80 Auto body primers ABP 1.55 Automotive Bumper and Trim Products ABT 1.75 Aviation or Marine Primers AMP 2.00 Aviation Propellor Coatings... Metallic HMC 1.60 Marine Spar Varnishes MSV 0.90 Photograph Coatings PHC 1.00 Pleasure Craft...

  3. Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, Alma; Kasibhatla, Prasad S.; Jo, Duseong S.; Cappa, Christopher D.; Jimenez, Jose L.; Madronich, Sasha; Park, Rokjin J.

    2016-06-01

    Recent laboratory studies suggest that secondary organic aerosol (SOA) formation rates are higher than assumed in current models. There is also evidence that SOA removal by dry and wet deposition occurs more efficiently than some current models suggest and that photolysis and heterogeneous oxidation may be important (but currently ignored) SOA sinks. Here, we have updated the global GEOS-Chem model to include this new information on formation (i.e., wall-corrected yields and emissions of semi-volatile and intermediate volatility organic compounds) and on removal processes (photolysis and heterogeneous oxidation). We compare simulated SOA from various model configurations against ground, aircraft and satellite measurements to assess the extent to which these improved representations of SOA formation and removal processes are consistent with observed characteristics of the SOA distribution. The updated model presents a more dynamic picture of the life cycle of atmospheric SOA, with production rates 3.9 times higher and sinks a factor of 3.6 more efficient than in the base model. In particular, the updated model predicts larger SOA concentrations in the boundary layer and lower concentrations in the upper troposphere, leading to better agreement with surface and aircraft measurements of organic aerosol compared to the base model. Our analysis thus suggests that the long-standing discrepancy in model predictions of the vertical SOA distribution can now be resolved, at least in part, by a stronger source and stronger sinks leading to a shorter lifetime. The predicted global SOA burden in the updated model is 0.88 Tg and the corresponding direct radiative effect at top of the atmosphere is -0.33 W m-2, which is comparable to recent model estimates constrained by observations. The updated model predicts a population-weighed global mean surface SOA concentration that is a factor of 2 higher than in the base model, suggesting the need for a reanalysis of the contribution of

  4. Progressive Powder Coating: New Infrared Curing Oven at Metal Finishing Plant Increases Production by 50%

    SciTech Connect

    2003-05-01

    Progressive Powder Coating in Mentor, Ohio, is a metal finishing plant that uses a convection oven in its manufacturing process. In an effort to save energy and improve production, the company installed an infrared oven in between the powder coating booth and the convection oven on its production line. This installation allowed the plant to increase its conveyor line speed and increase production by 50 percent. In addition, the plant reduced its natural gas consumption, yielding annual energy savings of approximately $54,000. With a total project cost of $136,000, the simple payback is 2.5 years.

  5. Progressive Powder Coating: New Infrared Curing Oven at Metal Finishing Plant Increases Production by 50%

    SciTech Connect

    Not Available

    2003-05-01

    Progressive Powder Coating in Mentor, Ohio, is a metal finishing plant that uses a convection oven in its manufacturing process. In an effort to save energy and improve production, the company installed an infrared oven in between the powder coating booth and the convection oven on its production line. This installation allowed the plant to increase its conveyor line speed and increase production by 50 percent. In addition, the plant reduced its natural gas consumption, yielding annual energy savings of approximately$54,000. With a total project cost of$136,000, the simple payback is 2.5 years.

  6. Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products

    NASA Astrophysics Data System (ADS)

    Coleman, Beverly K.; Lunden, Melissa M.; Destaillats, Hugo; Nazaroff, William W.

    We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting similar behavior to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established, reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10-400 nm) in every experiment and with an optical particle counter (OPC, 0.1-2.0 μm) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM 1.1) ranged from 10 to >300 μg m -3 and yields ranged from 5% to 37%. Steady-state nucleation rates and SOA mass formation rates were ˜10 cm -3 s -1 and ˜10 μg m -3 min -1, respectively.

  7. Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products

    SciTech Connect

    Coleman, Beverly; Coleman, Beverly K.; Lunden, Melissa M.; Destaillats, Hugo; Nazaroff, William W.

    2008-01-01

    We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting behavior similar to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10 to 400 nm) in every experiment and with an optical particle counter (OPC, 0.1 to 2.0 ?m) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM1.1) ranged from 10 to> 300 mu g m-3 and yields ranged from 5percent to 37percent. Steady-state nucleation rates and SOA mass formation rates were on the order of 10 cm-3 s-1 and 10 mu g m-3 min-1, respectively.

  8. Hydrogen production by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009.

    PubMed

    Gosse, Jimmy L; Engel, Brian J; Rey, Federico E; Harwood, Caroline S; Scriven, L E; Flickinger, Michael C

    2007-01-01

    Nonuniform light distribution is a fundamental limitation to biological hydrogen production by phototrophic bacteria. Numerous light distribution designs and culture conditions have been developed to reduce self-shading and nonuniform reactivity within bioreactors. In this study, highly concentrated (2.0 x 108 CFU/muL formulation) nongrowing Rhodopseudomonas palustris CGA009 were immobilized in thin, nanoporous, latex coatings. The coatings were used to study hydrogen production in an argon atmosphere as a function of coating composition, thickness, and light intensity. These coatings can be generated aerobically or anaerobically and are more reactive than an equivalent number of suspended or settled cells. Rhodopseudomonas palustris latex coatings remained active after hydrated storage for greater than 3 months in the dark and over 1 year when stored at -80 degrees C. The initial hydrogen production rate of the microphotobioreactors containing 6.25 cm2, 58.4 mum thick Rps. palustris latex coatings illuminated by 34.1 PAR mumol photons m-2 s-1 was 6.3 mmol H2 m-2 h-1 and had a final yield of 0.55 mol H2 m-2 in 120 h. A dispersible latex blend has been developed for direct comparison of the specific activity of settled, suspended, and immobilized Rps. palustris.

  9. Ozone, Aerosols and other Atmospheric Products from Version-8 TOMS Algorithm

    NASA Astrophysics Data System (ADS)

    Ahmad, S. P.; Bhartia, P. K.; McPeters, R. D.; Herman, J. R.; Wellemeyer, C. G.; Torres, O.; Krueger, A. J.; Johnson, J. E.

    2003-12-01

    NASA has provided scientists with high resolution daily global maps of total column ozone obtained from a series of Total Ozone Mapping Spectrometer(TOMS) instruments flown on Nimbus-7 in 1978, Meteor-3 in 1991, the Advanced Earth Observing Satellite (ADEOS) and Earth Probe (EP) satellites in 1996. EP-TOMS (launched a few months prior to ADEOS-TOMS), is the currently operating TOMS instrument providing the ozone data continuity and key information on ozone trends. TOMS instruments have also been used for monitoring dust plumes, smoke from biomass burning, and ash and sulfur dioxide from volcanoes. The V8 TOMS algorithm is the most recent version of the buv (backscattered ultraviolet) radiance based total ozone retrieval algorithms. The TOMS algorithm has undergone more than two decades of progressive refinement. It enhances the previous version (V7) ozone retrievals by taking care of several small errors that were discovered by extensive error studies using radiative transfer models and by comparison with ground-based instruments. We estimate that the new TOMS algorithm is capable of producing total ozone with rms error of about 2 percent. This algorithm will also be used for retrieval of total column ozone from the buv measurements of Ozone Monitoring Instrument (OMI) to be flown on the Aura spacecraft (early 2004) that will provide continuity to the long time series of total column ozone retrieved using almost the same algorithm (to be consistent) for the study of ozone trend. The Goddard Earth Sciences Data Active Archive Center(GES DAAC) has been responsible for archiving the high quality ozone and other related products derived from the TOMS UV radiances and making it available to users. Additional products include effective Lambertian surface reflectivity, effective cloud fraction, a sun glint index, aerosol characteristics, an SO2 index, surface spectral UV and erythemal weighted irradiance. This presentation will provide some highlights of the standard

  10. Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; Nguyen, N. T.; Robertson, W. H.; Na, K.; Sahay, K. N.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2013-09-01

    Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices including diesel particulate filters (DPF), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOC). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle, Urban Dynamometer Driving Schedule, and creep+idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photo-oxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary and secondary fine particulate matter from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber - with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after three hours of oxidation at typical urban VOC : NOx ratios (3:1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the non-methane organic gas emissions that could not be speciated using traditional one-dimensional gas

  11. Science verification of operational aerosol and cloud products for TROPOMI on Sentinel-5 precursor

    NASA Astrophysics Data System (ADS)

    Lelli, Luca; Gimeno-Garcia, Sebastian; Sanders, Abram; Sneep, Maarten; Rozanov, Vladimir V.; Kokhanvosky, Alexander A.; Loyola, Diego; Burrows, John P.

    2016-04-01

    With the approaching launch of the Sentinel-5 precursor (S-5P) satellite, scheduled by mid 2016, one preparatory task of the L2 working group (composed by the Institute of Environmental Physics IUP Bremen, the Royal Netherlands Meteorological Institute KNMI De Bilt, and the German Aerospace Center DLR Oberpfaffenhofen) has been the assessment of biases among aerosol and cloud products, that are going to be inferred by the respective algorithms from measurements of the platform's payload TROPOspheric Monitoring Instrument (TROPOMI). The instrument will measure terrestrial radiance with varying moderate spectral resolutions from the ultraviolet throughout the shortwave infrared. Specifically, all the operational and verification algorithms involved in this comparison exploit the sensitivity of molecular oxygen absorption (the A-band, 755-775 nm, with a resolution of 0.54 nm) to changes in optical and geometrical parameters of tropospheric scattering layers. Therefore, aerosol layer height (ALH) and thickness (AOT), cloud top height (CTH), thickness (COT) and albedo (CA) are the targeted properties. First, the verification of these properties has been accomplished upon synchronisation of the respective forward radiative transfer models for a variety of atmospheric scenarios. Then, biases against independent techniques have been evaluated with real measurements of selected GOME-2 orbits. Global seasonal bias assessment has been carried out for CTH, CA and COT, whereas the verification of ALH and AOT is based on the analysis of the ash plume emitted by the icelandic volcanic eruption Eyjafjallajökull in May 2010 and selected dust scenes off the Saharan west coast sensed by SCIAMACHY in year 2009.

  12. Gastro-resistant characteristics of GRAS-grade enteric coatings for pharmaceutical and nutraceutical products.

    PubMed

    Czarnocka, Justyna K; Alhnan, Mohamed A

    2015-01-01

    The use of naturally derived excipients to develop enteric coatings offers significant advantages over conventional synthetic polymers. Unlike synthetic polymers, they are biodegradable, relatively abundant, have no daily intake limits or restrictions on use for dietary and nutraceutical products. However, little information is available on their dissolution properties under different gastrointestinal conditions and in comparison to each other. This work investigated the gastric resistance properties of commercially available GRAS-based coating technologies. Three coating systems were evaluated: ethyl cellulose+carboxymethyl cellulose (EC-CMC), ethyl cellulose+sodium alginate (EC-Alg) and shellac+sodium alginate (Sh-Alg) combinations. The minimum coating levels were optimized to meet USP pharmacopoeial criteria for delayed release formulations (<10% release after 2h in pH 1.2 followed by >80% release after 45 min of pH change). Theophylline 150 mg tablets were coated with 6.5%, 7%, and 2.75% coating levels of formulations EC-CMC, EC-Alg and Sh-Alg, respectively. In vitro dissolution test revealed a fast release in pH 6.8 for ethyl cellulose based coatings: t80% value of 65 and 45 min for EC-CMC and EC-Alg respectively, while a prolonged drug release from Sh-Alg coating was observed in both pH 6.8 and 7.4 phosphate buffers. However, when more biologically relevant bicarbonate buffer was used, all coatings showed slower drug release. Disintegration test, carried out in both simulated gastric and intestinal fluid, confirmed good mechanical resistance of EC-CMC and EC-Alg coating, and revealed poor durability of the thinner Sh-Alg. Under elevated gastric pH conditions (pH 2, 3 and 4), EC-CMC and EC-Alg coatings were broken after 70, 30, 55 min and after 30, 15, 15 min, respectively, while Sh-Alg coated tablets demonstrated gastric resistance at all pH values. In conclusion, none of the GRAS-grade coatings fully complied with the different biological demands of delayed

  13. Investigation of Viability of Pantoea agglomerans (Formerly Erwinia herbicola) After Aerosolization From Media Containing Enriching and Coating Chemicals

    DTIC Science & Technology

    2008-02-01

    issue in aerosol testing of vegetative cells, which might be found in the environment. The viability of this bacterial strain has usually been poor during...the foliage of pear trees, when the powder was sprayed to protect the orchard from fire blight . Costa et al. (2002) tested the effects of spray... bacterial growth conditions and after-growth treatments used in the experiments described in this section were prepared as follows: * Eh in TSB: An Eh

  14. Comparison of Aerosol Optical Depth from GOES Aerosol and Smoke Product (GASP) and MODIS to AERONET AOD and IMPROVE PM2.5 Mass at Bondville, Illinois Stratified by Chemical Composition, RH, Particle Size, and Season

    NASA Astrophysics Data System (ADS)

    Green, M. C.; Kondragunta, S.; Ciren, P.

    2008-05-01

    The USEPA is interested in using satellite remote sensing data to estimate levels of PM2.5. Here we report on comparisons of aerosol optical depth (AOD) from GOES Aerosol and Smoke Product (GASP) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to IMPROVE network PM2.5 mass and AErosol RObotic NETwork (AERONET) ground-based AOD. Before we compare GASP and MODIS AOD to PM2.5, we first evaluate satellite AOD using the ground-based AERONET measurements and how it varies by aerosol chemical composition and size distribution. We focus attention on the Bondville, Illinois site because there is collocated IMPROVE sampling and an AERONET site. GASP provides aerosol optical depth at 0.55 um using top of atmosphere visible channel radiance measured from GOES east and GOES west. Time resolution is typically every 30 minutes during daylight hours. MODIS provides typically once per day AOD for any given location. The IMPROVE sampler provides a 24-hour integrated sample of PM10 mass, and PM2.5 mass and elemental composition on a one day in three schedule. AERONET provides aerosol optical depth at multiple wavelengths and aerosol size distribution as well as other derived parameters such as Angstrom exponent from ground based daytime measurements. We stratified cases by RH group, major chemical component, size distribution, and season. GOES AOD correlated best with PM2.5 mass during periods with mainly small particles, moderate RH, and sulfate dominated aerosol. It correlated poorly when RH is very high or low, aerosol is primarily organic, and when coarse to fine mass ratio is high. GASP AOD also correlated best with AERONET AOD when particles are mainly fine, suggesting the aerosol model assumptions (e.g. size distribution) may need to be varied geographically for GASP to achieve better AOD results.

  15. Production of Inhalable Submicrometer Aerosols from Conventional Mesh Nebulizers for Improved Respiratory Drug Delivery.

    PubMed

    Longest, P Worth; Spence, Benjamin M; Holbrook, Landon T; Mossi, Karla M; Son, Yoen-Ju; Hindle, Michael

    2012-09-01

    Submicrometer and nanoparticle aerosols may significantly improve the delivery efficiency, dissolution characteristics, and bioavailability of inhaled pharmaceuticals. The objective of this study was to explore the formation of submicrometer and nanometer aerosols from mesh nebulizers suitable for respiratory drug delivery using experiments and computational fluid dynamics (CFD) modeling. Mesh nebulizers were coupled with add-on devices to promote aerosol drying and the formation of submicrometer particles, as well as to control the inhaled aerosol temperature and relative humidity. Cascade impaction experiments were used to determine the initial mass median aerodynamic diameters of 0.1% albuterol aerosols produced by the AeroNeb commercial (4.69 μm) and lab (3.90 μm) nebulizers and to validate the CFD model in terms of droplet evaporation. Through an appropriate selection of flow rates, nebulizers, and model drug concentrations, submicrometer and nanometer aerosols could be formed with the three devices considered. Based on CFD simulations, a wire heated design was shown to overheat the airstream producing unsafe conditions for inhalation if the aerosol was not uniformly distributed in the tube cross-section or if the nebulizer stopped producing droplets. In comparison, a counter-flow heated design provided sufficient thermal energy to produce submicrometer particles, but also automatically limited the maximum aerosol outlet temperature based on the physics of heat transfer. With the counter-flow design, submicrometer aerosols were produced at flow rates of 5, 15, and 30 LPM, which may be suitable for various forms of oral and nasal aerosol delivery. Thermodynamic conditions of the aerosol stream exiting the counter-flow design were found be in a range of 21-45 °C with relative humidity greater than 40% in some cases, which was considered safe for direct inhalation and advantageous for condensational growth delivery.

  16. Production of Inhalable Submicrometer Aerosols from Conventional Mesh Nebulizers for Improved Respiratory Drug Delivery

    PubMed Central

    Longest, P. Worth; Spence, Benjamin M.; Holbrook, Landon T.; Mossi, Karla M.; Son, Yoen-Ju; Hindle, Michael

    2012-01-01

    Submicrometer and nanoparticle aerosols may significantly improve the delivery efficiency, dissolution characteristics, and bioavailability of inhaled pharmaceuticals. The objective of this study was to explore the formation of submicrometer and nanometer aerosols from mesh nebulizers suitable for respiratory drug delivery using experiments and computational fluid dynamics (CFD) modeling. Mesh nebulizers were coupled with add-on devices to promote aerosol drying and the formation of submicrometer particles, as well as to control the inhaled aerosol temperature and relative humidity. Cascade impaction experiments were used to determine the initial mass median aerodynamic diameters of 0.1% albuterol aerosols produced by the AeroNeb commercial (4.69 μm) and lab (3.90 μm) nebulizers and to validate the CFD model in terms of droplet evaporation. Through an appropriate selection of flow rates, nebulizers, and model drug concentrations, submicrometer and nanometer aerosols could be formed with the three devices considered. Based on CFD simulations, a wire heated design was shown to overheat the airstream producing unsafe conditions for inhalation if the aerosol was not uniformly distributed in the tube cross-section or if the nebulizer stopped producing droplets. In comparison, a counter-flow heated design provided sufficient thermal energy to produce submicrometer particles, but also automatically limited the maximum aerosol outlet temperature based on the physics of heat transfer. With the counter-flow design, submicrometer aerosols were produced at flow rates of 5, 15, and 30 LPM, which may be suitable for various forms of oral and nasal aerosol delivery. Thermodynamic conditions of the aerosol stream exiting the counter-flow design were found be in a range of 21-45 °C with relative humidity greater than 40% in some cases, which was considered safe for direct inhalation and advantageous for condensational growth delivery. PMID:22707794

  17. HVOF-Sprayed Nylon-11 + Nanodiamond Composite Coatings: Production & Characterization

    NASA Astrophysics Data System (ADS)

    Stravato, A.; Knight, R.; Mochalin, V.; Picardi, S. C.

    2008-12-01

    High velocity oxy-fuel (HVOF) combustion spraying has previously been shown to be a viable method for depositing polymer and polymer/ceramic composite coatings. The addition of hard particulate reinforcing phases to soft polymeric matrices should improve their durability and sliding wear performance. Nanosized diamond is an ideal reinforcing phase, owing to its high hardness, low coefficient of friction, and desirable thermal properties. Composite coatings comprising a Nylon-11 matrix reinforced with nanodiamonds have been successfully produced by HVOF. An important challenge is preserving the structure of the nanoparticles after thermal spray deposition and achieving their uniform dispersion within the polymeric matrix. Raman spectroscopy and x-ray diffraction were used to confirm the presence and retention of nanodiamonds after HVOF deposition. Understanding of the role of process parameters, including the content of reinforcing phase in the matrix and powder preparation route is necessary. Nanoindentation studies demonstrated an improvement in creep behavior and recovery of the HVOF Nylon-11/nanodiamond composites subjected to deformation.

  18. New X-ray testing methods of aerosol products for industrial radiography

    NASA Astrophysics Data System (ADS)

    Bozydar Knyziak, Adrian; Rzodkiewicz, Witold; Kaczorowska, Ewa; Derlacinski, Michal

    2017-02-01

    An amount of product in e.g. an aerosol canister is not difficult to estimate by weighing a filled can and subtracting the tare of packaging. In this way, we can obtain the net weight of the ingredients present in the can. Although, this does not indicate the volumetric content. Therefore, in the paper, the fundamental (the weight method and given by FEICA) and new methods (given by authors) related to the determination of the volumetric content of canister filled with aeorosol products are presented. The new methods are based on direct digital radiography (DR) using X-ray radiation. For the needs of new methods, the X-ray CCD-DR imaging system was built and developed in our Laboratory in Department of Radiation and Vibration at the Central Office of Measures. For comparison purposes, with regard to the volumetric content, a lot of metal cans of capacities 140, 185, 450, 700 ml were inspected. In future, computed tomography (CT) for industrial radiography in our laboratory will be used. Currently, an algorithm for CT is being tested. It will give us possibility for very precise measurements to determine volumetric content of examined canisters.

  19. Effect of heavy haze and aerosol pollution on rice and wheat productions in China

    NASA Astrophysics Data System (ADS)

    Tie, Xuexi; Huang, Ru-Jin; Dai, Wenting; Cao, Junji; Long, Xin; Su, Xiaoli; Zhao, Shuyu; Wang, Qiyuan; Li, Guohui

    2016-07-01

    In China, regional haze pollution is a serious environmental problem. The impact on ecosystem, however, is not clearly understood. This study investigates the effect of regional haze pollution on the yields of rice and wheat in China. The spatial and temporal distributions of aerosol optical depth (AOD) show high particulate pollution in the North China Plain region, Yangtze River Delta region, the central eastern China, and the Si Chuan Basin, coexisted largely with crop growth in time and space. The solar irradiance reaching these regions is estimated to reduce by up to 28–49%, calculated using the AOD distributions and tropospheric ultraviolet-visible (TUV) model. Reduction of solar irradiance in these regions can depress optimal yields of about 45% of rice and 75% of wheat growth in China, leading to 2% reduction in total rice production and 8% reduction in total wheat production in China. However, there are large uncertainties of the estimate related to the diffuse solar radiation. For high diffuse radiation case, the estimate reductions of rice and wheat decrease to 1% and 4.5%, respectively. A further detailed study is needed to clearly understand this effect to meet the growing food demand in the nation in the coming decades.

  20. The influence of cloud droplet heterogeneity on sulfate production mechanisms constrained by isotopic measurements of sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Alexander, B.; Allman, D. J.; Amos, H. M.; Fairlie, T. D.; Dachs, J.; Hegg, D.; Sletten, R. S.

    2011-12-01

    Observations and modeling studies have shown that heterogeneity in fog and cloud drop size and chemical composition can significantly impact in-cloud sulfate production rates due to the strong pH dependence of the ozone oxidation pathway. Averaging cloud water pH tends to underestimate the fraction of S(IV) that is SO32- leading to underestimates of in-cloud sulfate production rates. Large scale models typically do not account for this heterogeneity due to the large computational expense associated with this calculation, and instead employ bulk calculations or assumptions of cloud water pH. Modeling studies have consistently shown that calculated sulfate production rates using bulk cloud pH treatments tend to underestimate in-cloud sulfate production rates compared to more explicit treatment of cloud drop heterogeneity by underestimating the ozone oxidation pathway. Here, we utilize a global chemical transport model (GEOS-Chem) and observations of the oxygen isotopic composition of sulfate aerosol collected during a ship cruise in the subtropical northeast Atlantic Ocean to quantify sulfate formation pathways in the marine boundary layer. The oxygen isotopic composition of sulfate aerosol is particularly sensitive to the importance of the ozone oxidation pathway due to its large isotopic signature. We employ a model parameterization by Yuen et al. (1996) that accounts for the impact of alkaline, coarse-mode sea salt aerosols on in-cloud sulfate production rates. As sulfate formation in cloud droplets formed on alkaline coarse-mode sea salt aerosols is thought to be dominated by the ozone oxidation pathway, observations of the oxygen isotopic composition of sulfate aerosol provide a robust test of this parameterization. Including the Yuen et al. (1996) parameterization of cloud droplet heterogeneity improves the model's agreement with the observed sulfate oxygen isotopes. Accounting for the impact of cloud droplet heterogeneity on in-cloud sulfate production rates

  1. An improved whitecap timescale for sea spray aerosol production flux modeling using the discrete whitecap method

    NASA Astrophysics Data System (ADS)

    Callaghan, Adrian H.

    2013-09-01

    The discrete whitecap method (DWM) to model the sea spray aerosol (SSA) production flux explicitly requires a whitecap timescale, which up to now has only considered a whitecap decay timescale, τdecay. A reevaluation of the DWM suggests that the whitecap timescale should account for the total whitecap lifetime (τwcap), which consists of both the formation timescale (τform) and the decay timescale (timescale definitions are given in the text). Here values of τform for 552 oceanic whitecaps measured at the Martha's Vineyard Coastal Observatory on the east coast of the USA are presented, and added to the corresponding values of τdecay to form 552 whitecap timescales. For the majority of whitecaps, τform makes up about 20-25% of τwcap, but this can be as large as 70% depending on the value of τdecay. Furthermore, an area-weighted mean whitecap timescale for use in the DWM (τDWM) is defined that encompasses the variable nature of individual whitecap lifetimes within a given time period, and is calculated to be 5.3 s for this entire data set. This value is combined with previously published whitecap coverage parameterizations and estimates of SSA particle production per whitecap area to form a size-resolved SSA production flux parameterization (dF(r80)/dlog10r80). This parameterization yields integrated sea-salt mass fluxes that are largely within the range of uncertainty of recent measurements over the size range 0.029 µm < r80 < 0.580 µm. Physical factors controlling whitecap lifetime such as bubble plume lifetime and surfactant stabilization are discussed in the context of SSA production from whitecaps.

  2. Study on particulate matter air pollution in Beijing with MODIS aerosol level 2 products

    NASA Astrophysics Data System (ADS)

    Mao, Jietai; Li, Chengcai; Lau, Alexis K.

    2004-09-01

    In the run-up to the 2008 Olympic Games in Beijing, Chinese government officials at both the central and municipal levels are keenly aware that they must transform Beijing into a world-class city. According to the Beijing Municipal Environmental Protection Bureau (BJEPB) to improve its air quality some actions are adopting, including taking steps to increase the forested area surrounding the city preventing dust storms, reducing the automotive vehicles, moving polluting factories now inside the fourth ring road ringing the inner city to locations outside of the fourth ring road, and switching the fuel of public buses and taxis from diesel to natural gas, etc. Will they eliminate most serious environmental problems in Beijing? MODIS aerosol products are helping us to answer this kind of questions. A long-term validation has been finished by sun-photometer observations, and the results proved the relative error of MODIS level 2 products was slightly larger than the estimation of Chu et al. (2002) from the results in most AERONET sites. However, the comparison between the products and moisture-corrected air pollution index (API) data, which were daily released to public by EPB, showed a high correlation coefficient. An air pollution episode in 2003 was investigated by the usage of satellite products. Our conclusion for the air pollution control strategy in Beijing is that only reducing the pollution sources from inner city can't fully solve the pollution problems in Beijing and the regional transports from the nearby southern provinces are contributing a lot to the pollution situation in Beijing.

  3. Highly efficient photocatalytic TiO2 coatings deposited by open air atmospheric pressure plasma jet with aerosolized TTIP precursor

    NASA Astrophysics Data System (ADS)

    Fakhouri, H.; Ben Salem, D.; Carton, O.; Pulpytel, J.; Arefi-Khonsari, F.

    2014-07-01

    A simple method to deposit photocatalytic TiO2 coatings, at a high rate (20-40 µm s-1), and with a high porosity, is reported in this paper. This method, which allows the treatment of membranes (with an 800 nm pore size), is based on the introduction of a liquid precursor sprayed into an open-air atmospheric pressure plasma jet (APPJ). The photocatalytic activity of the TiO2 thin films prepared by APPJ have been compared with our best N-doped TiO2 thin films, deposited by reactive radio frequency (RF) magnetron sputtering, previously reported in the literature. The morphology, chemical composition, photoelectrochemical, and photocatalytic properties of the coatings have been studied in this paper. Significant control of the porosity and crystallinity was achieved by varying the deposition parameters and the annealing temperature. Under optimized conditions, the TiO2 coatings deposited by APPJ are characterized by a higher photocatalytic activity as compared to the optimized thin films deposited by RF sputtering. This difference can be explained by the higher specific surface of the APPJ coatings. Finally, the most interesting characteristic of this APPJ-liquid spray process is its capacity to treat membranes without blocking the pores, and to produce photocatalytic membranes which can efficiently combine filtration and photocatalysis for water treatment.

  4. High-time resolved measurements of biogenic and anthropogenic secondary organic aerosol precursors and products in urban air

    NASA Astrophysics Data System (ADS)

    Flores, Rosa M.; Doskey, Paul V.

    2016-04-01

    Volatile organic compounds (VOCs), which are present in the atmosphere entirely in the gas phase are directly emitted by biogenic (~1089 Tg yr-1) and anthropogenic sources (~185 Tg yr-1). However, the sources and molecular speciation of intermediate VOCs (IVOCs), which are for the most part also present almost entirely in the gas phase, are not well characterized. The VOCs and IVOCs participate in reactions that form ozone and semivolatile OC (SVOC) that partition into the aerosol phase. Formation and evolution of secondary organic aerosol (SOA) are part of a complex dynamic process that depends on the molecular speciation and concentration of VOCs, IVOCs, primary organic aerosol (POA), and the level of oxidants (NO3, OH, O3). The current lack of understanding of OA properties and their impact on radiative forcing, ecosystems, and human health is partly due to limitations of models to predict SOA production on local, regional, and global scales. More accurate forecasting of SOA production requires high-temporal resolution measurement and molecular characterization of SOA precursors and products. For the subject study, the IVOCs and aerosol-phase organic matter were collected using the high-volume sampling technique and were analyzed by multidimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToFMS). The IVOCs included terpenes, terpenoids, n-alkanes, branched alkanes, isoprenoids, alkylbenzenes, cycloalkylbenzenes, PAH, alkyl PAH, and an unresolved complex mixture (UCM). Diurnal variations of OA species containing multiple oxygenated functionalities and selected SOA tracers of isorprene, α-pinene, toluene, cyclohexene, and n-dodecane oxidation were also quantified. The data for SOA precursor and oxidation products presented here will be useful for evaluating the ability of molecular-specific SOA models to forecast SOA production in and downwind of urban areas.

  5. Comparison Between NPP-VIIRS Aerosol Data Products and the MODIS AQUA Deep Blue Collection 6 Dataset Over Land

    NASA Technical Reports Server (NTRS)

    Sayer, Andrew M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Kondragunta, S.

    2013-01-01

    Aerosols are small particles suspended in the atmosphere and have a variety of natural and man-made sources. Knowledge of aerosol optical depth (AOD), which is a measure of the amount of aerosol in the atmosphere, and its change over time, is important for multiple reasons. These include climate change, air quality (pollution) monitoring, monitoring hazards such as dust storms and volcanic ash, monitoring smoke from biomass burning, determining potential energy yields from solar plants, determining visibility at sea, estimating fertilization of oceans and rainforests by transported mineral dust, understanding changes in weather brought upon by the interaction of aerosols and clouds, and more. The Suomi-NPP satellite was launched late in 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine AOD. This study compares the VIIRS dataset to ground-based measurements of AOD, along with a state-of-the-art satellite AOD dataset (the new version of the Moderate Resolution Imaging Spectrometer Deep Blue algorithm) to assess its reliability. The Suomi-NPP satellite was launched late in 2011, carrying several instruments designed to continue the biogeophysical data records of current and previous satellite sensors. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine aerosol optical depth (AOD), and related activities since launch have been focused towards validating and understanding this new dataset through comparisons with other satellite and ground-based products. The operational VIIRS AOD product is compared over land with AOD derived from Moderate Resolution Imaging Spectrometer (MODIS) observations using the Deep Blue (DB) algorithm from the forthcoming Collection 6 of MODIS data

  6. Molybdate in Rhizobial Seed-Coat Formulations Improves the Production and Nodulation of Alfalfa

    PubMed Central

    Zhou, Jiqiong; Deng, Bo; Zhang, Yingjun; Cobb, Adam B.; Zhang, Zhao

    2017-01-01

    Rhizobia-legume symbiosis is the most well researched biological nitrogen fixation system. Coating legume seeds with rhizobia is now a recognized practical measure for improving the production of legume corp. However, the efficacy of some commercial rhizobia inoculants cannot be guaranteed in China due to the low rate of live rhizobia in these products. A greenhouse experiment was conducted to assess the effects of different rhizobial inoculant formulations on alfalfa productivity and nitrogen fixation. Two rhizobia strains, (ACCC17631 and ACCC17676), that are effective partners with alfalfa variety Zhongmu No. 1 were assessed with different concentrations of ammonium molybdate in seed-coat formulations with two different coating adhesives. Our study showed that the growth, nodulation, and nitrogen fixation ability of the plants inoculated with the ACCC17631 rhizobial strain were greatest when the ammonium molybdate application was0.2% of the formulation. An ammonium molybdate concentration of 0.1% was most beneficial to the growth of the plants inoculated with the ACCC17676 rhizobial strain. The sodium carboxymethyl cellulose and sodium alginate, used as coating adhesives, did not have a significant effect on alfalfa biomass and nitrogen fixation. However, the addition of skimmed milk to the adhesive improved nitrogenase activity. These results demonstrate that a new rhizobial seed-coat formulation benefitted alfalfa nodulation and yield. PMID:28099471

  7. Molybdate in Rhizobial Seed-Coat Formulations Improves the Production and Nodulation of Alfalfa.

    PubMed

    Zhou, Jiqiong; Deng, Bo; Zhang, Yingjun; Cobb, Adam B; Zhang, Zhao

    2017-01-01

    Rhizobia-legume symbiosis is the most well researched biological nitrogen fixation system. Coating legume seeds with rhizobia is now a recognized practical measure for improving the production of legume corp. However, the efficacy of some commercial rhizobia inoculants cannot be guaranteed in China due to the low rate of live rhizobia in these products. A greenhouse experiment was conducted to assess the effects of different rhizobial inoculant formulations on alfalfa productivity and nitrogen fixation. Two rhizobia strains, (ACCC17631 and ACCC17676), that are effective partners with alfalfa variety Zhongmu No. 1 were assessed with different concentrations of ammonium molybdate in seed-coat formulations with two different coating adhesives. Our study showed that the growth, nodulation, and nitrogen fixation ability of the plants inoculated with the ACCC17631 rhizobial strain were greatest when the ammonium molybdate application was0.2% of the formulation. An ammonium molybdate concentration of 0.1% was most beneficial to the growth of the plants inoculated with the ACCC17676 rhizobial strain. The sodium carboxymethyl cellulose and sodium alginate, used as coating adhesives, did not have a significant effect on alfalfa biomass and nitrogen fixation. However, the addition of skimmed milk to the adhesive improved nitrogenase activity. These results demonstrate that a new rhizobial seed-coat formulation benefitted alfalfa nodulation and yield.

  8. The effect of organic aerosol material on aerosol reactivity towards ozone

    NASA Astrophysics Data System (ADS)

    Batenburg, Anneke; Gaston, Cassandra; Thornton, Joel; Virtanen, Annele

    2015-04-01

    After aerosol particles are formed or emitted into the atmosphere, heterogeneous reactions with gaseous oxidants cause them to 'age'. Aging can change aerosol properties, such as the hygroscopicity, which is an important parameter in how the particles scatter radiation and form clouds. Conversely, heterogeneous reactions on aerosol particles play a significant role in the cycles of various atmospheric trace gases. Organic compounds, a large part of the total global aerosol matter, can exist in liquid or amorphous (semi)solid physical phases. Different groups have shown that reactions with ozone (O3) can be limited by bulk diffusion in organic aerosol, particularly in viscous, (semi)solid materials, and that organic coatings alter the surface interactions between gas and aerosol particles. We aim to better understand and quantify how the viscosity and phase of organic aerosol matter affect gas-particle interactions. We have chosen the reaction of O3 with particles composed of a potassium iodide (KI) core and a variable organic coating as a model system. The reaction is studied in an aerosol flow reactor that consists of a laminar flow tube and a movable, axial injector for the injection of O3. The aerosol-containing air is inserted at the tube's top. The interaction length (and therefore time), between the particles and the O3 can be varied by moving the injector. Alternatively, the production of aerosol particles can be modulated. The remaining O3 concentration is monitored from the bottom of the tube and particle concentrations are measured simultaneously, which allows us to calculate the reactive uptake coefficient γ. We performed exploratory experiments with internally mixed KI and polyethylene glycol (PEG) particles at the University of Washington (UW) in a setup with a residence time around 50 s. Aerosol particles were generated in an atomizer from solutions with varying concentrations of KI and PEG and inserted into the flow tube after they were diluted and

  9. Satellite assessment of sea spray aerosol productivity: Southern Ocean case study

    NASA Astrophysics Data System (ADS)

    Witek, Marcin L.; Diner, David J.; Garay, Michael J.

    2016-01-01

    Despite many years of observations by multiple sensors, there is still substantial ambiguity regarding aerosol optical depths (AOD) over remote oceans, in particular, over the pristine Southern Ocean. Passive satellite retrievals (e.g., Multiangle Imaging Spectroradiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS)) and global aerosol transport models show a distinct AOD maximum around the 60°S latitude band. Sun photometer measurements performed by the Maritime Aerosol Network (MAN), on the other hand, indicate no increased AODs over the Southern Ocean. In this study elevated Southern Ocean AODs are examined from the modeling perspective. The primary aerosol component over the Southern Ocean is sea spray aerosol (SSA). Multiple simulations of SSA concentrations and optical depths are carried out using a single modeling framework, the Navy Aerosol Analysis and Prediction System (NAAPS) model. Several SSA emission functions are examined, including recently proposed formulations with sea surface temperature corrections. The differences between NAAPS simulations are primarily due to different SSA emission formulations. The results are compared against satellite-derived AODs from the MISR and MODIS instruments. MISR and MODIS AOD retrievals are further filtered to eliminate retrievals potentially affected by cloud contamination and cloud adjacency effects. The results indicate a very large impact of SSA emission parameterization on the simulated AODs. For some scenarios, the Southern Ocean AOD maximum almost completely disappears. Further MISR and MODIS AOD quality screening substantially improves model/satellite agreement. Based on these comparisons, an optimal SSA emission function for global aerosol transport models is recommended.

  10. A Spatio-Temporal Approach for Global Validation and Analysis of MODIS Aerosol Products

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Chu, D. Allen; Mattoo, Shana; Kaufman, Yoram J.; Remer, Lorraine A.; Tanre, Didier; Slutsker, Ilya; Holben, Brent N.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    With the launch of the MODIS sensor on the Terra spacecraft, new data sets of the global distribution and properties of aerosol are being retrieved, and need to be validated and analyzed. A system has been put in place to generate spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of the MODIS aerosol parameters over more than 100 validation sites spread around the globe. Corresponding statistics are also computed from temporal subsets of AERONET-derived aerosol data. The means and standard deviations of identical parameters from MOMS and AERONET are compared. Although, their means compare favorably, their standard deviations reveal some influence of surface effects on the MODIS aerosol retrievals over land, especially at low aerosol loading. The direction and rate of spatial variation from MODIS are used to study the spatial distribution of aerosols at various locations either individually or comparatively. This paper introduces the methodology for generating and analyzing the data sets used by the two MODIS aerosol validation papers in this issue.

  11. The Remote Sensing of Mineral Aerosols and Their Impact on Phytoplankton Productivity using Sea WiFS

    NASA Technical Reports Server (NTRS)

    Stegmann, Petra M.

    1998-01-01

    The main objective of this proposal was to use SeaWiFs data to study the relationship between aerosols found in aeollan dust and photosynthesis of phytoplankton in open ocean surface waters. This project was a collaborative effort between myself and Dr. Neil Tindale at Texas A&M University and followed on our earlier funded proposal which had been designed as a proof-of-concept study to determine if ocean color sensors such as the Coastal Zone Color Scanner (CZCS) could be used to detect and map large-scale mineral aerosol plumes. Despite the large spatial and temporal gaps inherent in the CZCS data coverage, our results from this initial study indicated that an ocean color sensor could indeed be used to detect aerosols. These encouraging results led us to propose in this proposal the use of SeaWiFS data to study mineral aerosol transport and its impact on phytoplankton production. This proposal orignally intended to make use of SeaWiFS images, but as the launch delay of SeaWiFS dragged on, we had to make do with other satellite data sets. Thus, the focus of this proposal became the CSCS image archive instead. I detail my results and accomplishments with this data set.

  12. Aerosol Radiative Forcing Estimates from South Asian Clay Brick Production Based on Direct Emission Measurements

    NASA Astrophysics Data System (ADS)

    Weyant, C.; Athalye, V.; Ragavan, S.; Rajarathnam, U.; Kr, B.; Lalchandani, D.; Maithel, S.; Malhotra, G.; Bhanware, P.; Thoa, V.; Phuong, N.; Baum, E.; Bond, T. C.

    2012-12-01

    About 150-200 billion clay bricks are produced in India every year. Most of these bricks are fired in small-scale traditional kilns that burn coal or biomass without pollution controls. Reddy and Venkataraman (2001) estimated that 8% of fossil fuel related PM2.5 emissions and 23% of black carbon emissions in India are released from brick production. Few direct emissions measurements have been done in this industry and black carbon emissions, in particular, have not been previously measured. In this study, 9 kilns representing five common brick kiln technologies were tested for aerosol properties and gaseous pollutant emissions, including optical scattering and absorption and thermal-optical OC/EC. Simple relationships are then used to estimate the radiative-forcing impact. Kiln design and fuel quality greatly affect the overall emission profiles and relative climate warming. Batch production kilns, such as the Downdraft kiln, produce the most PM2.5 (0.97 gPM2.5/fired brick) with an OC/EC fraction of 0.3. Vertical Shaft Brick kilns using internally mixed fuels produce the least PM (0.09 gPM2.5/kg fired brick) with the least EC (OC/EC = 16.5), but these kilns are expensive to implement and their use throughout Southern Asia is minimal. The most popular kiln in India, the Bull's Trench kiln, had fewer emissions per brick than the Downdraft kiln, but an even higher EC fraction (OC/EC = 0.05). The Zig-zag kiln is similar in structure to the Bull's Trench kiln, but the emission factors are significantly lower: 50% reduction for CO, 17% for PM2.5 and 60% for black carbon. This difference in emissions suggests that converting traditional Bull's Trench kilns into less polluting Zig-zag kilns would result in reduced atmospheric warming from brick production.

  13. Preliminary results for salt aerosol production intended for marine cloud brightening, using effervescent spray atomization

    PubMed Central

    Cooper, Gary; Foster, Jack; Galbraith, Lee; Jain, Sudhanshu; Neukermans, Armand; Ormond, Bob

    2014-01-01

    The large-scale production of vast numbers of suitable salt nuclei and their upward launch is one of the main technological barriers to the experimental testing of marine cloud brightening (MCB). Very promising, though not definitive, results have been obtained using an adapted version of effervescent spray atomization. The process is simple, robust and inexpensive. This form of effervescent spraying uses only pressurized water and air sprayed from small nozzles to obtain very fine distributions. While it is far from optimized, and may not be the best method if full deployment is ever desired, we believe that even in its present form the process would lend itself well to preliminary field test investigations of MCB. Measurements obtained using standard aerosol instrumentation show approximately lognormal distributions of salt nuclei with median diameters of approximately 65 nm and geometric standard deviations slightly less than 2. However, these measurements are not in agreement with those based on scanning electron microscopy imaging of collected particles, an observation that has not yet been explained. Assuming the above distribution, 1015 particles per second could be made with 21 kW of spray power, using approximately 200 nozzles. It is envisioned that existing snow making equipment can be adapted to launch the nuclei 60–100 m into the air, requiring approximately 20 kW of additional power. PMID:25404673

  14. Preliminary results for salt aerosol production intended for marine cloud brightening, using effervescent spray atomization.

    PubMed

    Cooper, Gary; Foster, Jack; Galbraith, Lee; Jain, Sudhanshu; Neukermans, Armand; Ormond, Bob

    2014-12-28

    The large-scale production of vast numbers of suitable salt nuclei and their upward launch is one of the main technological barriers to the experimental testing of marine cloud brightening (MCB). Very promising, though not definitive, results have been obtained using an adapted version of effervescent spray atomization. The process is simple, robust and inexpensive. This form of effervescent spraying uses only pressurized water and air sprayed from small nozzles to obtain very fine distributions. While it is far from optimized, and may not be the best method if full deployment is ever desired, we believe that even in its present form the process would lend itself well to preliminary field test investigations of MCB. Measurements obtained using standard aerosol instrumentation show approximately lognormal distributions of salt nuclei with median diameters of approximately 65 nm and geometric standard deviations slightly less than 2. However, these measurements are not in agreement with those based on scanning electron microscopy imaging of collected particles, an observation that has not yet been explained. Assuming the above distribution, 10(15) particles per second could be made with 21 kW of spray power, using approximately 200 nozzles. It is envisioned that existing snow making equipment can be adapted to launch the nuclei 60-100 m into the air, requiring approximately 20 kW of additional power.

  15. Aerosol and product yields from NO{sub 3} radical-initiated oxidation o/f selected monoterpenes

    SciTech Connect

    Hallquist, M.; Ljungstroem, E.; Waengberg, I.; Barnes, I.; Becker, K.H.

    1999-02-15

    Atmospheric transformation of monoterpenes gives products that may cause environmental consequences. In this work the NO{sub 3} radical-initiated oxidation of the monoterpenes {alpha}-pinene, {beta}-pinene, {Delta}{sup 3}-carene, and limonene has been investigated. All experiments were conducted in EUPHORE, the EUropean PHOto REactor facility in Valencia, Spain. The aerosol and product yields were measured in experiments with a conversion of the terpenes in the interval from 7 to 400 ppb. The lower end of the concentrations used are close to those measured in ambient pine forest air. Products were measured using long path in situ FTIR. Aerosol yields were obtained using a DMA-CPC system. The aerosol mass yields measured at low concentrations were <1, 10, 15, and 17% for {alpha}-pinene, {beta}-pinene, {Delta}{sup 3}-carene, and limonene, respectively. The total molar alkylnitrate yields were calculated to be 19, 61, 66, and 48%, and molar carbonyl compound yields were estimated to be 71, 14, 29, and 69% for {alpha}-pinene, {beta}-pinene, {Delta}{sup 3}-carene, and limonene, respectively. The aerosol yields were strongly dependent on the amounts of terpene reacted, whereas the nitrate and carbonyl yields do not depend on the amount of terpene converted. The principal carbonyl compound from {alpha}pinene oxidation was pinonaldehyde. In the case of limonene, endolim was tentatively identified and appears to be a major product. The reactions with {beta}-pinene and {Delta}{sup 3}-carene yielded 1--2% of nopinone and 2--3% caronaldehyde, respectively. The results show that it is not possible to use generalized descriptions of terpene chemistry, e.g., in mathematical models.

  16. The generation of aerosols by accidents which may occur during plant-scale production of micro-organisms.

    PubMed Central

    Ashcroft, J.; Pomeroy, N. P.

    1983-01-01

    Experiments have been performed to simulate accidents which may occur during large-scale production of micro-organisms. Four types of accident, which were considered to be the most likely to result in the greatest hazard to health, were simulated using a bacterial model. The accidents were all concerned with faults occurring in the operation of the microbial fermenter. Gross contamination of surfaces occurred in all experiments, but only three types of accident produced a measurable aerosol. PMID:6350448

  17. Preparation and pathogen inactivation of double dose buffy coat platelet products using the INTERCEPT blood system.

    PubMed

    Abedi, Mohammad R; Doverud, Ann-Charlotte

    2012-12-07

    Blood centers are faced with many challenges including maximizing production yield from the blood product donations they receive as well as ensuring the highest possible level of safety for transfusion patients, including protection from transfusion transmitted diseases. This must be accomplished in a fiscally responsible manner which minimizes operating expenses including consumables, equipment, waste, and personnel costs, among others. Several methods are available to produce platelet concentrates for transfusion. One of the most common is the buffy coat method in which a single therapeutic platelet unit (≥ 2.0 x10(11) platelets per unit or per local regulations) is prepared by pooling the buffy coat layer from up to six whole blood donations. A procedure for producing "double dose" whole blood derived platelets has only recently been developed. Presented here is a novel method for preparing double dose whole blood derived platelet concentrates from pools of 7 buffy coats and subsequently treating the double dose units with the INTERCEPT Blood System for pathogen inactivation. INTERCEPT was developed to inactivate viruses, bacteria, parasites, and contaminating donor white cells which may be present in donated blood. Pairing INTERCEPT with the double dose buffy coat method by utilizing the INTERCEPT Processing Set with Dual Storage Containers (the "DS set"), allows blood centers to treat each of their double dose units in a single pathogen inactivation processing set, thereby maximizing patient safety while minimizing costs. The double dose buffy coat method requires fewer buffy coats and reduces the use of consumables by up to 50% (e.g. pooling sets, filter sets, platelet additive solution, and sterile connection wafers) compared to preparation and treatment of single dose buffy coat platelet units. Other cost savings include less waste, less equipment maintenance, lower power requirements, reduced personnel time, and lower collection cost compared to the

  18. Study of a CCP RF Dusty Plasma for the Production of Titan's Aerosols Analogues

    SciTech Connect

    Alcouffe, G.; Cernogora, G.; Ouni, F.; Correia, J. J.; Cavarroc, M.; Boufendi, L.; Szopa, C.

    2008-09-07

    The CCP-RF discharge PAMPRE experiment produces analogues of Titan's aerosols. Here are presented the plasma characteristics as a function of gas mixtures and dust formation. Electronic density, optical emission spectroscopy, and self-bias voltage measurements are presented.

  19. Operational Retrieval of aerosol optical depth over Indian subcontinent and Indian Ocean using INSAT-3D/Imager product validation

    NASA Astrophysics Data System (ADS)

    Mishra, M. K.; Rastogi, G.; Chauhan, P.

    2014-11-01

    Aerosol optical depth (AOD) over Indian subcontinent and Indian Ocean region is derived operationally for the first time from the geostationary earth orbit (GEO) satellite INSAT-3D Imager data at 0.65 μm wavelength. Single visible channel algorithm based on clear sky composites gives larger retrieval error in AOD than other multiple channel algorithms due to errors in estimating surface reflectance and atmospheric property. However, since MIR channel signal is insensitive to the presence of most aerosols, therefore in present study, AOD retrieval algorithm employs both visible (centred at 0.65 μm) and mid-infrared (MIR) band (centred at 3.9 μm) measurements, and allows us to monitor transport of aerosols at higher temporal resolution. Comparisons made between INSAT-3D derived AOD (τI) and MODIS derived AOD (τM) co-located in space (at 1° resolution) and time during January, February and March (JFM) 2014 encompasses 1165, 1052 and 900 pixels, respectively. Good agreement found between τI and τM during JFM 2014 with linear correlation coefficients (R) of 0.87, 0.81 and 0.76, respectively. The extensive validation made during JFM 2014 encompasses 215 co-located AOD in space and time derived by INSAT 3D (τI) and 10 sun-photometers (τA) that includes 9 AERONET (Aerosol Robotic Network) and 1 handheld sun-photometer site. INSAT-3D derived AOD i.e. τI, is found within the retrieval errors of τI = ±0.07 ±0.15τA with linear correlation coefficient (R) of 0.90 and root mean square error equal (RMSE) to 0.06. Present work shows that INSAT-3D aerosol products can be used quantitatively in many applications with caution for possible residual clouds, snow/ice, and water contamination.

  20. Thick tellurium electrodeposition on nickel-coated copper substrate for 124I production.

    PubMed

    Sadeghi, M; Dastan, M; Ensaf, M R; Tehrani, A Abaspour; Tenreiro, C; Avila, M

    2008-10-01

    Tellurium electrodeposition on a nickel-coated copper substrate was investigated for production of iodine-124. The electrodeposition experiments were carried out by the alkali plating baths. The optimum conditions of the electrodeposition of tellurium were as follows: 6 g l(-1) tellurium, pH=10, DC current density of ca. 8.55 mA cm(-2) and room temperature.

  1. Fact Sheet: Final Rule to Reduce Toxic Air Pollutants from Surface Coating of Wood Building Products

    EPA Pesticide Factsheets

    This page contains the February 2003 final rule fact sheet on the NESHAP for Surface Coating of Wood Building Products. This document provides a background for this rule, a summary of the benefits of this rule, who is affected by the rule, and rule costs

  2. A protocol for the production of gliadin-cyanoacrylate nanoparticles for hydrophilic coating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article presents a protocol for the production of protein-based nanoparticles that change the hydrophobic surface to hydrophilic by a simple spray coating. These nanoparticles are produced by the polymerization reaction of alkyl cyanoacrylate on the surface of cereal protein (gliadin) molecules...

  3. Long-term dust aerosol production from natural sources in Iceland.

    PubMed

    Dagsson-Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur

    2017-02-01

    Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland is volcanic sandy deserts. Not only do natural emissions from these sources influenced by strong winds affect regional air quality in Iceland ("Reykjavik haze"), but dust particles are transported over the Atlantic ocean and Arctic Ocean >1000 km at times. The aim of this paper is to place Icelandic dust production area into international perspective, present long-term frequency of dust storm events in northeast Iceland, and estimate dust aerosol concentrations during reported dust events. Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in northeast Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the northeastern erosion area, indicating extreme dust plume activity and erosion within the northeastern deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and Aeolian transport during dust/volcanic ash storms in Iceland, which give some of the most intense wind erosion events ever measured. Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust may contribute to the Arctic air pollution.

  4. Daytime aerosol extinction profiles from the combination of CALIOP profiles and AERONET products

    NASA Astrophysics Data System (ADS)

    Marcos, C.; Pedrós, R.; Gómez-Amo, J. L.; Sicard, M.; Utrillas, M. P.; Muñoz, C.; Comerón, A.; Martinez-Lozano, J. A.

    2013-04-01

    The solar background illumination has a strong effect on CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) measurements, leading to a decrease in the signal-to-noise ratio of the lidar signal. Because of this, CALIOP level 2 data algorithms might be limited in the retrieval of the properties of the aerosols in the atmosphere. In this work, we present a methodology that combines CALIOP level 1 data with AERONET (Aerosol RObotic NETwork) measurements to retrieve aerosol extinction profiles and lidar ratios in daytime conditions. In this way, we fulfill a two-fold objective: first, we obtain more accurate daytime aerosol information; second, we supplement column integrated measurements from AERONET sun photometers with information about the vertical distribution of aerosols. The methodology has been applied to Burjassot (39.30° N, 0.25° W) and Barcelona (41.39° N, 2.11° E) AERONET stations in the Mediterranean coast of Spain in the period from June 2006 to September 2011. We have found good agreement for the extinction profiles in several study cases of ground lidar measurements in Barcelona, coincident with CALIOP overpasses. Finally, the methodology has proved to be useful for the study of special episodes such as Saharan dust outbreaks.

  5. Application of CE with novel dynamic coatings and field-amplified sample injection to the sensitive determination of isomeric benzoic acids in atmospheric aerosols and vehicular emission.

    PubMed

    Dabek-Zlotorzynska, Ewa; Piechowski, Maria

    2007-10-01

    A simple and reliable CE method with direct UV detection has been developed to separate eight isomeric benzoic acids in atmospheric aerosols and vehicular emission without complex sample pretreatment. Optimal electrophoretic conditions, with migration times under 5 min, were obtained by using a 50 mM acetate buffer (pH 4.7) containing a dynamic surface coating EOTrol LN (0.005% w/v). The separations were carried out in a cathode to anode direction (-30 kV) allowing the low cathodal EOF ( approximately 1 x 10(-9) m(2)V(-1)s(-1)) to extend the effective separation by slowing the movement of the studied aromatic acids. Moreover, the sensitivity of the method at 200 nm was enhanced by using a field-amplified sample injection (FASI) with electrokinetic (EK) sample injection (-2 kV, 60 s). Prior to sample injection, a short water plug (3 s at 0.5 psi) was introduced. Under these conditions, the method was capable of detecting the analytes in deionized water with LODs (S/N = 3) as low as 0.1 microg/L for most of the studied acids. In the presence of 10 mg/L of sulphate (added to simulate a sample matrix), LODs ranged from 0.26 to 0.62 microg/L. The validation of the method has proven an excellent separation performance and accuracy for the determination of isomeric benzoic acids in the studied matrices.

  6. Printing versus coating - What will be the future production technology for printed electronics?

    SciTech Connect

    Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank

    2015-02-17

    The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.

  7. Printing versus coating - What will be the future production technology for printed electronics?

    NASA Astrophysics Data System (ADS)

    Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank

    2015-02-01

    The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.

  8. Algae harvesting for biofuel production: influences of UV irradiation and polyethylenimine (PEI) coating on bacterial biocoagulation.

    PubMed

    Agbakpe, Michael; Ge, Shijian; Zhang, Wen; Zhang, Xuezhi; Kobylarz, Patricia

    2014-08-01

    There is a pressing need to develop efficient and sustainable separation technologies to harvest algae for biofuel production. In this work, two bacterial species (Escherichia coli and Rhodococus sp.) were used as biocoagulants to harvest Chlorella zofingiensis and Scenedesmus dimorphus. The influences of UV irradiation and polyethylenimine (PEI)-coating on the algal harvesting efficiency were investigated. Results showed that the UV irradiation could slightly enhance bacteria-algae biocoagulation and algal harvesting efficiency. In contrast, the PEI-coated E. coli cells noticeably increased the harvesting efficiencies from 23% to 83% for S. dimorphus when compared to uncoated E. coli cells. Based on the soft-particle Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, an energy barrier existed between uncoated E. coli cells and algal cells, whereas the PEI coating on E. coli cells eliminated the energy barrier, thereby the biocoagulation was significantly improved. Overall, this work presented groundwork toward the potential use of bacterial biomass for algal harvesting from water.

  9. Validation of radiolabeling of drug formulations for aerosol deposition assessment of orally inhaled products.

    PubMed

    Devadason, Sunalene G; Chan, Hak-Kim; Haeussermann, Sabine; Kietzig, Claudius; Kuehl, Philip J; Newman, Stephen; Sommerer, Knut; Taylor, Glyn

    2012-12-01

    Radiolabeling of inhaler formulations for imaging studies is an indirect method of determining lung deposition and regional distribution of drug in human subjects. Hence, ensuring that the radiotracer and drug exhibit similar aerodynamic characteristics when aerosolized, and that addition of the radiotracer has not significantly altered the characteristics of the formulation, are critical steps in the development of a radiolabeling method. The validation phase should occur during development of the radiolabeling method, prior to commencement of in vivo studies. The validation process involves characterization of the aerodynamic particle size distribution (APSD) of drug in the reference formulation, and of both drug and radiotracer in the radiolabeled formulation, using multistage cascade impaction. We propose the adoption of acceptance criteria similar to those recommended by the EMA and ISAM/IPAC-RS for determination of therapeutic equivalence of orally inhaled products: (a) if only total lung deposition is being quantified, the fine particle fraction ratio of both radiolabeled drug and radiotracer to that of the reference drug should fall between 0.85 and 1.18, and (b) if regional lung deposition (e.g., outer and inner lung regions) is to be quantified, the ratio of both radiolabeled drug and radiotracer to reference drug on each impactor stage or group of stages should fall between 0.85 and 1.18. If impactor stages are grouped together, at least four separate groups should be provided. In addition, while conducting in vivo studies, measurement of the APSD of the inhaler used on each study day is recommended to check its suitability for use in man.

  10. Osteoconductivity and growth factor production by MG63 osteoblastic cells on bioglass-coated orthopedic implants.

    PubMed

    Tan, Fei; Naciri, Mariam; Al-Rubeai, Mohamed

    2011-02-01

    We have produced Bioglass coatings for Orthopedic implants by using a novel coating technique, CoBlast. The two resultant surfaces, designated BG and hydroxyapatite (HA)/BG, were compared with their HA counterpart, OsteoZip in terms of osteoblastic cell attachment, adhesion, proliferation, differentiation, and growth factor production. BG and HA/BG were demonstrated by goniometry to be more hydrophilic than OsteoZip. This corresponded to enhanced protein adsorption, cell attachment, and cell adhesion documented by both quantitative and qualitative assessments. BG and HA/BG surfaces had a significant initial release of Si and Ca ions, and this was consistent with elevated cell proliferation and basic fibroblast growth factor levels. However, OsteoZip, being similar to HA/BG, exhibited better osteogenic differentiation than BG did, shown by augmented differentiation marker activity at both protein and mRNA levels. Sandwich ELISA was used to quantify angiopoietin and inducible nitric oxide synthase which are involved in peri-prosthetic angiogenesis and aseptic loosening of total hip replacement, respectively. Both Bioglass-derived coatings provide superior initial osteoconductivity to OsteoZip, and HA/Bioglass composite coating outruns in long-term osteogenic differentiation and prognostic bioprocesses. The novel coatings discovered in this study have significant potential in providing both orthopedic and therapeutic functions.

  11. Chemical characterization of the main secondary organic aerosol (SOA) products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-04-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e. burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed in the atmospheric gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the low-volatility SOA products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of H2O2 and nitrite. The formed guaiacol reaction products were concentrated by using solid-phase extraction (SPE) and then purified by means of semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state 1H, 13C and 2D nuclear magnetic resonance (NMR) spectroscopy and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of UV and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  12. Structural and mechanical characterization of detonation coatings formed by reaction products of titanium with components of the spraying atmosphere

    NASA Astrophysics Data System (ADS)

    Ulianitsky, Vladimir Yu.; Dudina, Dina V.; Panin, Sergey V.; Vlasov, Ilya V.; Batraev, Igor S.; Bokhonov, Boris B.

    2016-11-01

    Structural characterization of detonation deposits formed by reaction products of titanium with the components of the spraying atmosphere showed that ceramic-based coatings of unique microstructures—consisting of alternating layers of different compositions—can be formed. For the first time, mechanical characteristics of the coatings formed by reaction-accompanied detonation spraying of titanium were evaluated. It was found that high-yield transformation of titanium into oxides and nitrides during spraying can result in the formation of coatings with high fracture resistance and interface fracture toughness. The hardness of the coatings measured along the cross-section of the specimens was higher than that on the surface of the coatings, which indicated mechanical anisotropy of the deposited material. In terms of mechanical properties, coatings formed by the reaction products appear to be more attractive than those specially treated to preserve metallic titanium.

  13. Effect of phytoplankton-released organic matter on the production and properties of the primary marine aerosol (Invited)

    NASA Astrophysics Data System (ADS)

    Fuentes, E.; Coe, H.; Green, D.; de Leeuw, G.; McFiggans, G.

    2010-12-01

    This study investigates the effect of the biogenic matter exuded by marine biota on the production and properties of the submicron primary sea-spray, based on the laboratory simulation of marine aerosol formation from seawater enriched with organic matter released by laboratory-grown algal cultures. Primary aerosol formation by bubble bursting was reproduced by using a plunging water jet generation system. Particle production experiments with seawater enriched in marine exudate <0.2 μm at organic carbon concentrations (OC) representative of biologically active oceanic waters were conducted and compared with blanks performed with artificial seawater devoid of marine organics. An increase in the production of particles <100 nm and a shift of the size distribution toward smaller sizes were observed with increasing amounts of diatomaceous exudate in the source seawater. A novel sub-micrometric size-resolved parameterisation for deriving primary particle fluxes as a function of the seawater diatomaceous OC concentration was inferred from the production experiments. Estimations of the relationship between Chl-a biomass and seawater OC concentration indicated that effects on particle fluxes due to biological activity are likely to occur in diatom blooms with Chl-a diatom biomass >0.35-2 mg/m3 (OC>175 µM), depending on the primary organic production conditions in the algal bloom. Analysis of the hygroscopicity and cloud condensation nuclei (CCN) activity of the organics-enriched primary aerosol indicated both a suppression of the water uptake and the CCN activity with increasing amount of organic exudate in the source seawater. The increase in the CCN number likely to occur in algal bloom areas due to the potential increase in particle production would therefore be counteracted by the reduction of the particle CCN activity induced by the incorporation of organic matter. Calculations of the primary particle composition using a mixing rule yielded organic mass fractions in

  14. NASA's New 'Deep Blue' Aerosol Products From The NPP-VIIRS Sensor

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. Y. C.; Bettenhausen, C.; Lee, J.; Carletta, N.

    2015-12-01

    The Deep Blue algorithm family has been used to determine spectral aerosol optical depth (AOD) from satellite measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and two Moderate Resolution Imaging Spectroradiometers (MODIS), from 1997 onwards. However, these sensors are now either ageing or no longer functional. The Visible Infrared Imaging Radiometer Suite (VIIRS), the first of which was launched on the Suomi-NPP satellite in late 2011, has similar capabilities to these sensors, and so is also suitable for AOD retrieval. This presentation introduces the new NASA VIIRS 'Deep Blue' aerosol data set over land and ocean.

  15. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  16. Development of an improved aerosol product over the Indian subcontinent: Blending model, satellite, and ground-based estimates

    NASA Astrophysics Data System (ADS)

    Singh, Randhir; Singh, Charu; Ojha, Satya P.; Kumar, A. Senthil; Kumar, A. S. Kiran

    2017-01-01

    A comprehensive assessment of the aerosol optical depth (AOD) at 550 nm from European Centre for Medium-Range Weather Forecasts (ECMWF), Moderate Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer (MISR) has been performed with respect to the Aerosol Robotic Network (AERONET) measurements at 35 locations over the Indian subcontinent. For all of the stations, the mean relative errors for the collocated ECMWF, MODIS, and MISR AOD are 46.15%, 41.81%, and 39.98%, respectively. Compared with AERONET, ECMWF estimates suffer from a negative bias, whereas MODIS and MISR estimates suffer from a positive bias. The correlation of ECMWF, MODIS, and MISR AOD with AERONET observation is 0.73, 0.80, and 0.78, respectively. Analysis shows that approximately 52.12% of ECMWF, 60.51% of MODIS, and 62.63% of MISR AOD fall within the error envelopes (± 0.05 ± 0.15AODAERONET) of validation data from AERONET. This analysis indicates that both modeled and space-based AOD measurements have large discrepancies over the Indian subcontinent. Due to the aerosol's significant role in altering the Earth radiation budget, there is an urgent need to develop an AOD product with reduced error. Therefore, a new AOD product at 550 nm has been developed using an optimum interpolation (OI) technique. For this purpose, a model-derived AOD from ECMWF, remotely sensed AOD from MODIS, MISR, and in situ measured AOD from AERONET have been blended using the OI technique. A new product has been generated for 13 years (2003 to 2015) at 0.25° by 0.25° latitude/longitude and daily temporal resolution over the Indian subcontinent. When compared with AERONET observations, the new product has a negligible bias, with a mean relative error of 12.31% and a correlation of 0.99.

  17. Validation of MODIS aerosol product with in-situ AERONET data (a study case in Hermosillo, Sonora, Mexico)

    NASA Astrophysics Data System (ADS)

    Valdes, M.; Leyva-Contreras, A.; Bonifaz, R.; Llamas, R.

    2009-12-01

    The aerosol optical thickness (AOT) is known as blocking particles which avoid the transmission of solar radiation coming from the Sun, and is defined as the integral of the coefficient of extinction over a vertical column of the Atmosphere. This coefficient of extinction is also defined as the limited fraction of the irradiance over the trajectory at a specific wavelength. The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor provides aerosol data products all over the planet. However this data requires constant evaluation and validation using in-situ data such as the provided by the network of photometers managed by AERONET (Aerosol Robotic Network). In this work, the procedure of validation of the MODIS AOT data using AERONET data in the wavelengths of 660 and 675 nm is presented. It is expected that using validate remote sensing data which provides spatial and temporal information about the AOT will help to a better understanding of the behavior of the complex atmospheric conditions which characterize the NW of Mexico and SW of the US such as the Mexican monsoon.

  18. A Critical Examination of Spatial Biases Between MODIS and MISR Aerosol Products - Application for Potential AERONET Deployment

    NASA Technical Reports Server (NTRS)

    Shi, Y.; Zhang, J.; Reid, J. S.; Hyer, E. J.; Eck, T. F.; Holben, B. N.; Kahn, R. A.

    2011-01-01

    AErosol RObotic NETwork (AERONET) data are the primary benchmark for evaluating satellite-retrieved aerosol properties. However, despite its extensive coverage, the representativeness of the AERONET data is rarely discussed. Indeed, many studies have shown that satellite retrieval biases have a significant degree of spatial correlation that may be problematic for higher-level processes or inverse-emissions-modeling studies. To consider these issues and evaluate relative performance in regions of few surface observations, cross-comparisons between the Aerosol Optical Depth (AOD) products of operational MODIS Collection 5.1 Dark Target (DT) and operational MODIS Collection 5.1 Deep Blue (DB) with MISR version 22 were conducted. Through such comparisons, we can observe coherent spatial features of the AOD bias while side-stepping the full analysis required for determining when or where either retrieval is more correct. We identify regions where MODIS to MISR AOD ratios were found to be above 1.4 and below 0.7. Regions where lower boundary condition uncertainty is likely to be a dominant factor include portions of Western North America, the Andes mountains, Saharan Africa, the Arabian Peninsula, and Central Asia. Similarly, microphysical biases may be an issue in South America, and specific parts of Southern Africa, India Asia, East Asia, and Indonesia. These results help identify high-priority locations for possible future deployments of both in situ and ground based remote sensing measurements. The Supplement includes a km1 file.

  19. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    NASA Astrophysics Data System (ADS)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-12-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photo-oxidation under a range of controlled conditions (relative humidity or RH ~65-89%, volatile organic compound-to-NOx or VOC / NOx ~3-9 and NOx ~2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene but low isoprene emitter, and its emissions were observed to produce measurable amounts of secondary organic aerosol (SOA) via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e. in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photo-oxidation products of the minor volatile organic compounds (VOCs) co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally isoprene-emitting landscapes in Southeast

  20. Global Long-Term SeaWiFS Deep Blue Aerosol Products available at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Sayer, A. M.; Bettenhausen, Corey; Wei, Jennifer C.; Ostrenga, Dana M.; Vollmer, Bruce E.; Hsu, Nai-Yung; Kempler, Steven J.

    2012-01-01

    Long-term climate data records about aerosols are needed in order to improve understanding of air quality, radiative forcing, and for many other applications. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) provides a global well-calibrated 13- year (1997-2010) record of top-of-atmosphere radiance, suitable for use in retrieval of atmospheric aerosol optical depth (AOD). Recently, global aerosol products derived from SeaWiFS with Deep Blue algorithm (SWDB) have become available for the entire mission, as part of the NASA Making Earth Science data records for Use in Research for Earth Science (MEaSUREs) program. The latest Deep Blue algorithm retrieves aerosol properties not only over bright desert surfaces, but also vegetated surfaces, oceans, and inland water bodies. Comparisons with AERONET observations have shown that the data are suitable for quantitative scientific use [1],[2]. The resolution of Level 2 pixels is 13.5x13.5 km2 at the center of the swath. Level 3 daily and monthly data are composed by using best quality level 2 pixels at resolution of both 0.5ox0.5o and 1.0ox1.0o. Focusing on the southwest Asia region, this presentation shows seasonal variations of AOD, and the result of comparisons of 5-years (2003- 2007) of AOD from SWDB (Version 3) and MODIS Aqua (Version 5.1) for Dark Target (MYD-DT) and Deep Blue (MYD-DB) algorithms.

  1. Aerosol algorithm evaluation within aerosol-CCI

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Schulz, Michael; Griesfeller, Jan

    Properties of aerosol retrievals from space are difficult. Even data from dedicated satellite sensors face contaminations which limit the accuracy of aerosol retrieval products. Issues are the identification of complete cloud-free scenes, the need to assume aerosol compositional features in an underdetermined solution space and the requirement to characterize the background at high accuracy. Usually the development of aerosol is a slow process, requiring continuous feedback from evaluations. To demonstrate maturity, these evaluations need to cover different regions and seasons and many different aerosol properties, because aerosol composition is quite diverse and highly variable in space and time, as atmospheric aerosol lifetimes are only a few days. Three years ago the ESA Climate Change Initiative started to support aerosol retrieval efforts in order to develop aerosol retrieval products for the climate community from underutilized ESA satellite sensors. The initial focus was on retrievals of AOD (a measure for the atmospheric column amount) and of Angstrom (a proxy for aerosol size) from the ATSR and MERIS sensors on ENVISAT. The goal was to offer retrieval products that are comparable or better in accuracy than commonly used NASA products of MODIS or MISR. Fortunately, accurate reference data of ground based sun-/sky-photometry networks exist. Thus, retrieval assessments could and were conducted independently by different evaluation groups. Here, results of these evaluations for the year 2008 are summarized. The capability of these newly developed retrievals is analyzed and quantified in scores. These scores allowed a ranking of competing efforts and also allow skill comparisons of these new retrievals against existing and commonly used retrievals.

  2. Linking Load, Fuel, and Emission Controls to Photochemical Production of Secondary Organic Aerosol from a Diesel Engine.

    PubMed

    Jathar, Shantanu H; Friedman, Beth; Galang, Abril A; Link, Michael F; Brophy, Patrick; Volckens, John; Eluri, Sailaja; Farmer, Delphine K

    2017-02-07

    Diesel engines are important sources of fine particle pollution in urban environments, but their contribution to the atmospheric formation of secondary organic aerosol (SOA) is not well constrained. We investigated direct emissions of primary organic aerosol (POA) and photochemical production of SOA from a diesel engine using an oxidation flow reactor (OFR). In less than a day of simulated atmospheric aging, SOA production exceeded POA emissions by an order of magnitude or more. Efficient combustion at higher engine loads coupled to the removal of SOA precursors and particle emissions by aftertreatment systems reduced POA emission factors by an order of magnitude and SOA production factors by factors of 2-10. The only exception was that the retrofitted aftertreatment did not reduce SOA production at idle loads where exhaust temperatures were low enough to limit removal of SOA precursors in the oxidation catalyst. Use of biodiesel resulted in nearly identical POA and SOA compared to diesel. The effective SOA yield of diesel exhaust was similar to that of unburned diesel fuel. While OFRs can help study the multiday evolution, at low particle concentrations OFRs may not allow for complete gas/particle partitioning and bias the potential of precursors to form SOA.

  3. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  4. APPLICATION OF POLLUTION PREVENTION TECHNIQUES TO REDUCE INDOOR AIR EMISSONS FROM AEROSOL CONSUMER PRODUCTS

    EPA Science Inventory

    The report gives results of a research project to develop tools and methodologies to measure aerosol chemical and particle dispersion through space. These tools can be used to devise pollution prevention strategies that could reduce occupant chemical exposures and guide manufactu...

  5. Neutron Production from In-situ Heavy Ice Coated Targets at Vulcan

    NASA Astrophysics Data System (ADS)

    Morrison, John; Krygier, A. G.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    Laser based neutron production experiments have been performed utilizing ultra-high intensity laser accelerated ions impinging upon a secondary target. The neutron yield from such experiments may be improved if the accelerated ions were primarily deuterons taking advantage of the d-d cross section. Recent experiments have demonstrated that selective deuteron acceleration from in-situ heavy ice coating of targets can produce ion spectra where deuterons comprise > 99 % of the measured ions. Results will be presented from integrated neutron production experiments from heavy ice targets coated in-situ recently performed on the Vulcan laser at Rutherford Appleton Laboratory. We are grateful for the Staff at RAL and acknowledge funding from the US DoE. AFOSR, European Social Fund, and the Czech Republic.

  6. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    materials determine the range of applicability of each method. A useful microencapsulation method, based on coagulation by inertial force was developed...The generation apparatus, consisting of two aerosol generators in series, was utilized to produce many kinds of microcapsules . A fluid energy mill...was found useful for the production of some microcapsules . The permeability of microcapsule films and the effect of exposure time and humidity were

  7. Influence of the coating level on the heterogeneous ozonolysis kinetics and product yields of chlorpyrifos ethyl adsorbed on sand particles.

    PubMed

    El Masri, Ahmad; Laversin, Hélène; Chakir, Abdelkhaleq; Roth, Estelle

    2016-12-01

    Heterogeneous oxidation of chlorpyrifos ethyl (CLP) coated sand particles by gaseous ozone was studied. Mono-size sand was coated with CLP at different coating levels between 10 and 100 μg g(-1) and exposed to ozone. Results were analyzed thanks to Gas Surface Reaction and Surface Layer Reaction Models. Kinetic parameters derived from these models were analyzed and led to several conclusions. The equilibrium constant of O3 between the gas phase and the CLP-coated sand was independent on the sand contamination level. Ozone seems to have similar affinity for coated or uncoated sand surface. Meanwhile, the kinetic parameters decreased with an increasing coating level. Chlorpyrifos Oxon, (CLPO) has been identified and quantified as an ozonolysis product. The product yield of CLPO remains constant (53 ± 10%) for the different coating level. The key parameter influencing the CLP reactivity towards ozone was the CLP-coating level. This dependence had a great influence on the lifetime of the CLP coated on sand particles, with respect to ozone, which could reach several years at high contamination level.

  8. Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism.

    PubMed

    MacGregor, Dana R; Kendall, Sarah L; Florance, Hannah; Fedi, Fabio; Moore, Karen; Paszkiewicz, Konrad; Smirnoff, Nicholas; Penfield, Steven

    2015-01-01

    Environmental changes during seed production are important drivers of lot-to-lot variation in seed behaviour and enable wild species to time their life history with seasonal cues. Temperature during seed set is the dominant environmental signal determining the depth of primary dormancy, although the mechanisms though which temperature changes impart changes in dormancy state are still only partly understood. We used molecular, genetic and biochemical techniques to examine the mechanism through which temperature variation affects Arabidopsis thaliana seed dormancy. Here we show that, in Arabidopsis, low temperatures during seed maturation result in an increase in phenylpropanoid gene expression in seeds and that this correlates with higher concentrations of seed coat procyanidins. Lower maturation temperatures cause differences in coat permeability to tetrazolium, and mutants with increased seed coat permeability and/or low procyanidin concentrations are less able to enter strongly dormant states after exposure to low temperatures during seed maturation. Our data show that maternal temperature signalling regulates seed coat properties, and this is an important pathway through which the environmental signals control primary dormancy depth.

  9. Preservation of H 2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures: Preservation of R.palustris latex coatings

    SciTech Connect

    Piskorska, M.; Soule, T.; Gosse, J. L.; Milliken, C.; Flickinger, M. C.; Smith, G. W.; Yeager, C. M.

    2013-07-21

    To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O2 on preservation of H2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H2 production activity, whereas considerable H2 production was still detected in sucrose- and trehalose-stabilized coatings. We stored the coatings at a relative humidity level which significantly impacts the recovery and subsequent rates of H2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H2 production activity after 8 weeks of storage. Furthermore, when stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Ultimately, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.

  10. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    NASA Astrophysics Data System (ADS)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-06-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photooxidation under a range of controlled conditions (RH ∼65-89%, VOC/NOx ∼3-9 and NOx ∼2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line, chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene, but low isoprene emitter, and its emissions were observed to produce measureable amounts of SOA via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e., in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photooxidation products of the minor VOCs co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally-isoprene emitting landscapes in Southeast Asia. Moreover, in general the amount of aerosol mass produced from the emissions of the principally

  11. Aldol Condensation Products and Polyacetals in Organic Films Formed from Reactions of Propanal in Sulfuric Acid at Upper Troposphere/Lower Stratosphere (UT/LS) Aerosol Acidities

    NASA Astrophysics Data System (ADS)

    Bui, J. V. H.; Perez-Montano, S.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.; Van Wyngarden, A. L.

    2015-12-01

    Aerosols in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt. %) which is highly reflective towards UV and visible radiation. However, airborne measurements have shown that these particles may also contain a significant amount of organic material. Experiments combining organics (propanal, glyoxal and/or methylglyoxal) with sulfuric acid at concentrations typical of UT/LS aerosols produced highly colored surface films (and solutions) that have the potential to impact chemical, optical and/or cloud-forming properties of aerosols. In order to assess the potential for such films to impact aerosol chemistry or climate properties, experiments were performed to identify the chemical processes responsible for film formation. Surface films were analyzed via Attenuated Total Reflectance-FTIR and Nuclear Magnetic Resonance spectroscopies and are shown to consist primarily of aldol condensation products and cyclic and linear polyacetals, the latter of which are likely responsible for separation from the aqueous phase.

  12. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century.

    PubMed

    O'Sullivan, M; Rap, A; Reddington, C L; Spracklen, D V; Gloor, M; Buermann, W

    2016-08-16

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998-2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.

  13. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    NASA Astrophysics Data System (ADS)

    O'Sullivan, M.; Rap, A.; Reddington, C. L.; Spracklen, D. V.; Gloor, M.; Buermann, W.

    2016-08-01

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998-2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.

  14. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    PubMed Central

    Rap, A.; Reddington, C. L.; Spracklen, D. V.; Gloor, M.; Buermann, W.

    2016-01-01

    Abstract The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen‐carbon interactions. PMID:27773953

  15. Final Rule to Reduce Toxic Air Pollutants from Surface Coating of Plastic Parts and Products Fact Sheet

    EPA Pesticide Factsheets

    This page contains an August 2004 fact sheet with information regarding the final NESHAP for Surface Coating of Plastic Parts and Products. This document provides a summary of the information for the information for this regulation.

  16. Fact Sheet: Final Rule to Reduce Toxic Air Pollutants from Surface Coating of Miscellaneous Metal Parts and Products

    EPA Pesticide Factsheets

    This page contains an August 2003 fact sheet with information regarding the National Emission Standards for Miscellaneous Metal Parts and Products Surface Coating Operations. This document provides a summary of the information for this regulation.

  17. Surface Coating of Wood Building Products National Emission Standards for Hazardous Air Pollutants (NESHAP) Questions and Answers (Q&A's)

    EPA Pesticide Factsheets

    This September 2004 document contains questions and answers on the Surface Coating of Wood Building Products National Emission Standards for Hazardous Air Pollutants (NESHAP) regulation. The questions cover topics such as compliance, and applicability, etc

  18. First look at NASA's 'Deep Blue' aerosol products from the NPP-VIIRS sensor

    NASA Astrophysics Data System (ADS)

    Sayer, Andrew; Hsu, Christina; Lee, Jaehwa; Bettenhausen, Corey; Carletta, Nicholas

    2015-04-01

    The Deep Blue algorithm family has been used to determine spectral aerosol optical depth (AOD) from measurements made by the spaceborne Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and two Moderate Resolution Imaging Spectroradiometers (MODIS), providing a record from 1997 to the present. However, these sensors are now either ageing or no longer functional. The Visible Infrared Imaging Radiometer Suite (VIIRS), the first of which was launched on the Suomi-NPP satellite in late 2011, has similar capabilities to MODIS, and is expected to be able to continue the Deep Blue record. We present first results from the NASA VIIRS Deep Blue land aerosol data set, complemented by an over-ocean data set based on a different algorithm, and anticipate that a beta release of this data set should be available in the near future.

  19. Production Mechanisms, Number Concentration, Size Distribution. Chemical Composition, and Optical Properties of Sea Spray Aerosols

    NASA Technical Reports Server (NTRS)

    Meskhidze, Nicholas; Petters, Markus; Tsigaridis, Kostas; Bates. Tim; O'Dowd, Colin; Reid, Jeff; Lewis, Ernie R.; Gantt, Brett; Anguelova, Magdalena D.; Bhave, Prakash V.; Bird, James; Callaghan, Adrian H.; Ceburnis, Darius; Chang, Rachel; Clark, Antony; deLeeuw, Gerrit; Deane, Grant; DeMott, Paul J.; Elliot, Scott; Facchini, Maria Cristina; Fairall, Chris W.; Hawkins, Lelia; Hu, Yongxiang; Smirnov, Alexander

    2013-01-01

    Over forty scientists from six countries convened in Raleigh, NC on June 4-6 2012 to review the status and prospects of sea spray aerosol research. Participants were researchers from the oceanography and atmospheric science communities, including academia, private industry, and government agencies. The recommendations from the working groups are summarized in a science prioritization matrix that is meant to prioritize the research agenda and identify areas of investigation by the magnitude of their impact on proposed science questions. Str

  20. Auxin production in the endosperm drives seed coat development in Arabidopsis

    PubMed Central

    Figueiredo, Duarte D; Batista, Rita A; Roszak, Pawel J; Hennig, Lars; Köhler, Claudia

    2016-01-01

    In flowering plants, seed development is initiated by the fusion of the maternal egg and central cells with two paternal sperm cells, leading to the formation of embryo and endosperm, respectively. The fertilization products are surrounded by the maternally derived seed coat, whose development prior to fertilization is blocked by epigenetic regulators belonging to the Polycomb Group (PcG) protein family. Here we show that fertilization of the central cell results in the production of auxin and most likely its export to the maternal tissues, which drives seed coat development by removing PcG function. We furthermore show that mutants for the MADS-box transcription factor AGL62 have an impaired transport of auxin from the endosperm to the integuments, which results in seed abortion. We propose that AGL62 regulates auxin transport from the endosperm to the integuments, leading to the removal of the PcG block on seed coat development. DOI: http://dx.doi.org/10.7554/eLife.20542.001 PMID:27848912

  1. PDMAA Hydrogel Coated U-Bend Humidity Sensor Suited for Mass-Production

    PubMed Central

    Kelb, Christian; Körner, Martin; Prucker, Oswald; Rühe, Jürgen; Reithmeier, Eduard; Roth, Bernhard

    2017-01-01

    We present a full-polymer respiratory monitoring device suited for application in environments with strong magnetic fields (e.g., during an MRI measurement). The sensor is based on the well-known evanescent field method and consists of a 1 mm plastic optical fiber with a bent region where the cladding is removed and the fiber is coated with poly-dimethylacrylamide (PDMAA). The combination of materials allows for a mass-production of the device by spray-coating and enables integration in disposable medical devices like oxygen masks, which we demonstrate here. We also present results of the application of an autocorrelation-based algorithm for respiratory frequency determination that is relevant for real applications of the device. PMID:28273849

  2. Decolorization of black liquor from bioethanol G2 production using iron oxide coating sands

    NASA Astrophysics Data System (ADS)

    Barlianti, Vera; Triwahyuni, Eka; Waluyo, Joko; Sari, Ajeng Arum

    2017-01-01

    Bioethanol G2 production using oil palm empty fruit bunch as raw material consists of four steps, namely pretreatment, hydrolysis, fermentation, and purification process. Pretreatment process generates black liquor that causes serious environmental pollution if it is released to the environment. The objective of this research is studying the ability of iron oxide coating sands to adsorb the color of black liquor. The iron oxide coating sands were synthesized from FeCl3.6H2O with quartz sands as support material. This research was conducted on batch mode using black liquor in various pH values. Result obtained that kind of iron oxide on quartz sands's surface was goethite. The result also indicated decreasing of color intensity of black liquor after adsorption process. This research supports local material utilization in environmental technology development to solve some environmental problems.

  3. Changes in chemical composition of frozen coated fish products during deep-frying.

    PubMed

    Pérez-Palacios, Trinidad; Petisca, Catarina; Casal, Susana; Ferreira, Isabel M P L V O

    2014-03-01

    This work evaluates the influence of deep-frying coated fish products on total fat, fatty acid (FA) and amino acid profile, and on the formation of volatile compounds, with special attention on furan and its derivatives due to their potential harmful characteristics. As expected, deep-frying in sunflower oil increased linoleic acid content, but total fat amount increased only by 2% on a dry basis. Eicosapentanoic and docosahexanoic acids were preserved while γ- and α-linoleic acids were oxidised. Deep-frying also induces proteolysis, releasing free AA, and the formation of volatile compounds, particularly aldehydes and ketones arising from polyunsaturated FA. In addition, high quantities of furanic compounds, particularly furan and furfuryl alcohol, are generated during deep-frying coated fish. The breaded crust formed could contribute simultaneously for the low uptake of fat, preservation of long chain n-3 FA, and for the high amounts of furanic compounds formed during the deep-frying process.

  4. NASA GES DISC Level 2 Aerosol Analysis and Visualization Services

    NASA Technical Reports Server (NTRS)

    Wei, Jennifer; Petrenko, Maksym; Ichoku, Charles; Yang, Wenli; Johnson, James; Zhao, Peisheng; Kempler, Steve

    2015-01-01

    Overview of NASA GES DISC Level 2 aerosol analysis and visualization services: DQViz (Data Quality Visualization)MAPSS (Multi-sensor Aerosol Products Sampling System), and MAPSS_Explorer (Multi-sensor Aerosol Products Sampling System Explorer).

  5. Synthesis and Analysis of Putative Terpene Oxidation Products and the Secondary Organic Aerosol Particles that Form from Them

    NASA Astrophysics Data System (ADS)

    Ebben, C. J.; Strick, B. F.; Upshur, M.; Shrestha, M.; Velarde, L.; Lu, Z.; Wang, H.; Xiao, D.; Batista, V. S.; Martin, S. T.; Thomson, R. J.; Geiger, F. M.

    2013-12-01

    The terpenes isoprene and α-pinene are abundant volatile organic compounds (VOCs) that are emitted by trees and oxidized in the atmosphere. However, the chemical processes involved in the formation of secondary organic aerosol (SOA) particles from VOCs are not well understood. In this work, we use a combined synthetic, analytical, and theoretical approach to gain a molecular level understanding of the chemistry involved in the formation of SOA particles from VOC precursors. To this end, we have synthesized putative products of isoprene and α-pinene oxidation and the oligomers that form from them. Specifically, we have focused on the epoxide and 2-methyltetraols that form from isoprene oxidation by hydroxyl radicals, as well as products of α-pinene ozonolysis. In our analysis, we utilize a spectroscopic technique called sum frequency generation (SFG). SFG is a coherent, surface-specific, vibrational spectroscopy that uses infrared and visible laser light fields, overlapped spatially and temporally at a surface, to probe vibrational transitions within molecules. Our use of this technique allows us to assess the chemical identity of aerosol-forming components at their surfaces, where interactions with the gas phase occur. The spectral responses from these compounds are compared to those of synthetic isoprene- and α-pinene-derived aerosol particles, as well as natural aerosol particles collected in tropical and boreal forests to begin to predict the constituents that may be present at the surfaces of these particles. In addition, isotope editing is utilized to gain a better understanding of α-pinene. The rigidity of this molecule makes it difficult to understand spectroscopically. The combination of synthesis with deuterium labeling, theory, and broadband and high-resolution SFG spectroscopy in the C-H and C-D stretching regions allow us to determine the orientation of this important molecule on a surface, which could have implications for its reactivity in the

  6. Application of a production line phosphorescence sensor coating system on a jet engine for surface temperature detection

    NASA Astrophysics Data System (ADS)

    Sollazzo, P. Y.; Feist, J. P.; Berthier, S.; Charnley, B.; Wells, J.; Heyes, A. L.

    2013-09-01

    Thermal Barrier Coatings (TBC) are used to reduce the working temperature of the high pressure turbine blade metal surface and hence permit engines to operate at higher temperatures/ efficiencies. A sensor TBC is an adaptation of existing TBCs to enhance their functionality, such that they become sensors and allow measurement of component temperatures. The sensing capability is introduced by embedding optically active materials into the TBC and by illuminating these coatings with excitation light phosphorescence can be observed. The phosphorescence carries temperature and structural information about the coating. This paper describes the first ever implementation of a sensor coating system on a full-scale jet engine. The system consists of three main components: industrially manufactured coatings, advanced remote detection optics with large stand-off distances and tailored control and readout software. The majority of coatings were based on yttrium stabilized zirconia doped with Dy and Eu, although other coatings were manufactured, too. Coatings were produced on a production line using atmospheric plasma spraying. An advanced optical system was designed, manufactured and operated permitting scanning of coated components using a wide acceptance angle. Successful measurements were taken from the nozzle guide vanes at the inlet to the turbine section and are reported in the paper.

  7. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.).

    PubMed

    Oliveira, Rui S; Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The exploitation of arbuscular mycorrhizal (AM) fungi has become of great interest in agriculture due to their potential roles in reducing the need for agrochemicals, while improving plant growth and nutrition. Nevertheless, the application of AM fungi by dispersing inocula in granular form to open agricultural fields is not feasible because nontargeted spreading of inocula over large surface areas results in high cost per plant. Seed coating has the potential to significantly reduce the amount of inoculum needed, resulting in cost reduction and increased efficiency. The aim of this study was to assess whether seed coating with AM fungal inoculum is a feasible delivery system for production of common wheat (Triticum aestivum L.). Wheat seeds were coated with inoculum of Rhizophagus irregularis BEG140 and grown under different fertilization conditions: (1) none, (2) partial, or (3) complete. Data indicated that mycorrhizal inoculation via seed coating significantly increased the dry weight of shoot and seed spikes of wheat associated with reduced fertilization. Assessment of nutritional status of wheat showed that plants inoculated with R. irregularis via seed coating displayed enhanced stem concentrations of potassium (K), sulfur (S), and zinc (Zn). There were no significant differences in root colonization between plants conventionally inoculated with R. irregularis in soil and those inoculated via seed coating. Seed coating with AM fungi may be as effective as conventional soil inoculation and may contribute to reduce the utilization of chemical fertilizers. The application of AM via seed coating is proposed as an ecotechnological approach for sustainable agricultural wheat production.

  8. Shaken, not Stirred: Mixing Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Donahue, N. M.; Robinson, E.; Trump, E. R.; Saleh, R.

    2013-12-01

    For organic vapors to condense onto or into existing particles in the atmosphere, the compounds must have a positive thermodynamic driving force. Their activity (saturation ratio) in the gas phase must exceed their activity (modified mole fraction) at the particle surface. Organic-aerosol production rates are generally quite small -- a few μg m-3 per hour at most -- and thus gas-phase saturation ratios are correspondingly small. Most experiments are conducted with far higher production rates and thus far higher saturation ratios. Consequently, experiments may or may not constrain whether organics coat particles in the real world. In addition, surface activity is often assumed to equal bulk activity for most species, meaning that particles are well mixed. However, if particles are viscous and coating rates high, diffusion through the bulk of even 100 nm particles may be slow. Again, matching experimental timescales to real-world timescales is important. Here we describe organic particle mixing experiments in which two organic particle populations are prepared separately and then intermingled by transferring the contents of one preparation chamber into another. Constituents of one population are isotopically labeled, making the mass spectra of the two particle types completely orthogonal. Following the intermingling, single-particle mass spectra allow us to track individual particle composition as the populations mix via gas-phase exchange. This allows us to explore the mixing and coating behavior of organic-aerosol populations under conditions much closer to concentrations found in the real world.

  9. An Accuracy Assessment of the CALIOP/CALIPSO Version 2/Version 3 Daytime Aerosol Extinction Product Based on a Detailed Multi-Sensor, Multi-Platform Case Study

    NASA Technical Reports Server (NTRS)

    Kacenelenbogen, M.; Vaughan, M. A.; Redemann, J.; Hoff, R. M.; Rogers, R. R.; Ferrare, R. A.; Russell, P. B.; Hostetler, C. A.; Hair, J. W.; Holben, B. N.

    2011-01-01

    The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP s level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. spaceborne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth s Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP s low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth s surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP s extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case

  10. An accuracy assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol extinction product based on a detailed multi-sensor, multi-platform case study

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M.; Vaughan, M. A.; Redemann, J.; Hoff, R. M.; Rogers, R. R.; Ferrare, R. A.; Russell, P. B.; Hostetler, C. A.; Hair, J. W.; Holben, B. N.

    2011-04-01

    The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP's level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. space-borne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth's Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP's low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth's surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP's extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case

  11. Relationships linking primary production, sea ice melting, and biogenic aerosol in the Arctic

    NASA Astrophysics Data System (ADS)

    Becagli, S.; Lazzara, L.; Marchese, C.; Dayan, U.; Ascanius, S. E.; Cacciani, M.; Caiazzo, L.; Di Biagio, C.; Di Iorio, T.; di Sarra, A.; Eriksen, P.; Fani, F.; Giardi, F.; Meloni, D.; Muscari, G.; Pace, G.; Severi, M.; Traversi, R.; Udisti, R.

    2016-07-01

    This study examines the relationships linking methanesulfonic acid (MSA, arising from the atmospheric oxidation of the biogenic dimethylsulfide, DMS) in atmospheric aerosol, satellite-derived chlorophyll a (Chl-a), and oceanic primary production (PP), also as a function of sea ice melting (SIM) and extension of the ice free area in the marginal ice zone (IF-MIZ) in the Arctic. MSA was determined in PM10 samples collected over the period 2010-2012 at two Arctic sites, Ny Ålesund (78.9°N, 11.9°E), Svalbard islands, and Thule Air Base (76.5°N, 68.8°W), Greenland. PP is calculated by means of a bio-optical, physiologically based, semi-analytical model in the potential source areas located in the surrounding oceanic regions (Barents and Greenland Seas for Ny Ålesund, and Baffin Bay for Thule). Chl-a peaks in May in the Barents sea and in the Baffin Bay, and has maxima in June in the Greenland sea; PP follows the same seasonal pattern of Chl-a, although the differences in absolute values of PP in the three seas during the blooms are less marked than for Chl-a. MSA shows a better correlation with PP than with Chl-a, besides, the source intensity (expressed by PP) is able to explain more than 30% of the MSA variability at the two sites; the other factors explaining the MSA variability are taxonomic differences in the phytoplanktonic assemblages, and transport processes from the DMS source areas to the sampling sites. The taxonomic differences are also evident from the slopes of the correlation plots between MSA and PP: similar slopes (in the range 34.2-36.2 ng m-3of MSA/(gC m-2 d-1)) are found for the correlation between MSA at Ny Ålesund and PP in Barents Sea, and between MSA at Thule and PP in the Baffin Bay; conversely, the slope of the correlation between MSA at Ny Ålesund and PP in the Greenland Sea in summer is smaller (16.7 ng m-3of MSA/(gC m-2 d-1)). This is due to the fact that DMS emission from the Barents Sea and Baffin Bay is mainly related to the MIZ

  12. Comparative systems toxicology analysis of cigarette smoke and aerosol from a candidate modified risk tobacco product in organotypic human gingival epithelial cultures: A 3-day repeated exposure study.

    PubMed

    Zanetti, Filippo; Titz, Bjoern; Sewer, Alain; Lo Sasso, Giuseppe; Scotti, Elena; Schlage, Walter K; Mathis, Carole; Leroy, Patrice; Majeed, Shoaib; Torres, Laura Ortega; Keppler, Brian R; Elamin, Ashraf; Trivedi, Keyur; Guedj, Emmanuel; Martin, Florian; Frentzel, Stefan; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2017-03-01

    Smoking is one of the major lifestyle-related risk factors for periodontal diseases. Modified risk tobacco products (MRTP) offer a promising alternative in the harm reduction strategy for adult smokers unable to quit. Using a systems toxicology approach, we investigated and compared the exposure effects of a reference cigarette (3R4F) and a heat-not-burn technology-based candidate MRTP, the Tobacco Heating System (THS) 2.2. Human gingival epithelial organotypic cultures were repeatedly exposed (3 days) for 28 min at two matching concentrations of cigarette smoke (CS) or THS2.2 aerosol. Results showed only minor histopathological alterations and minimal cytotoxicity upon THS2.2 aerosol exposure compared to CS (1% for THS2.2 aerosol vs. 30% for CS, at the high concentration). Among the 14 proinflammatory mediators analyzed, only 5 exhibited significant alterations with THS2.2 exposure compared with 11 upon CS exposure. Transcriptomic and metabolomic analysis indicated a general reduction of the impact in THS2.2 aerosol-exposed samples with respect to CS (∼79% lower biological impact for the high THS2.2 aerosol concentration compared to CS, and 13 metabolites significantly perturbed for THS2.2 vs. 181 for CS). This study indicates that exposure to THS2.2 aerosol had a lower impact on the pathophysiology of human gingival organotypic cultures than CS.

  13. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    SciTech Connect

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-08-11

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  14. Aerosol Monitoring during Carbon Nanofiber Production: Mobile Direct-Reading Sampling

    PubMed Central

    Evans, Douglas E.; Ku, Bon Ki; Birch, M. Eileen; Dunn, Kevin H.

    2010-01-01

    Detailed investigations were conducted at a facility that manufactures and processes carbon nanofibers (CNFs). Presented research summarizes the direct-reading monitoring aspects of the study. A mobile aerosol sampling platform, equipped with an aerosol instrument array, was used to characterize emissions at different locations within the facility. Particle number, respirable mass, active surface area, and photoelectric response were monitored with a condensation particle counter (CPC), a photometer, a diffusion charger, and a photoelectric aerosol sensor, respectively. CO and CO2 were additionally monitored. Combined simultaneous monitoring of these metrics can be utilized to determine source and relative contribution of airborne particles (CNFs and others) within a workplace. Elevated particle number concentrations, up to 1.15 × 106 cm−3, were found within the facility but were not due to CNFs. Ultrafine particle emissions, released during thermal treatment of CNFs, were primarily responsible. In contrast, transient increases in respirable particle mass concentration, with a maximum of 1.1 mg m−3, were due to CNF release through uncontrolled transfer and bagging. Of the applied metrics, our findings suggest that particle mass was probably the most useful and practical metric for monitoring CNF emissions in this facility. Through chemical means, CNFs may be selectively distinguished from other workplace contaminants (Birch et al., in preparation), and for direct-reading monitoring applications, the photometer was found to provide a reasonable estimate of respirable CNF mass concentration. Particle size distribution measurements were conducted with an electrical low-pressure impactor and a fast particle size spectrometer. Results suggest that the dominant CNF mode by particle number lies between 200 and 250 nm for both aerodynamic and mobility equivalent diameters. Significant emissions of CO were also evident in this facility. Exposure control recommendations

  15. Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling.

    PubMed

    Evans, Douglas E; Ku, Bon Ki; Birch, M Eileen; Dunn, Kevin H

    2010-07-01

    Detailed investigations were conducted at a facility that manufactures and processes carbon nanofibers (CNFs). Presented research summarizes the direct-reading monitoring aspects of the study. A mobile aerosol sampling platform, equipped with an aerosol instrument array, was used to characterize emissions at different locations within the facility. Particle number, respirable mass, active surface area, and photoelectric response were monitored with a condensation particle counter (CPC), a photometer, a diffusion charger, and a photoelectric aerosol sensor, respectively. CO and CO(2) were additionally monitored. Combined simultaneous monitoring of these metrics can be utilized to determine source and relative contribution of airborne particles (CNFs and others) within a workplace. Elevated particle number concentrations, up to 1.15 x 10(6) cm(-3), were found within the facility but were not due to CNFs. Ultrafine particle emissions, released during thermal treatment of CNFs, were primarily responsible. In contrast, transient increases in respirable particle mass concentration, with a maximum of 1.1 mg m(-3), were due to CNF release through uncontrolled transfer and bagging. Of the applied metrics, our findings suggest that particle mass was probably the most useful and practical metric for monitoring CNF emissions in this facility. Through chemical means, CNFs may be selectively distinguished from other workplace contaminants (Birch et al., in preparation), and for direct-reading monitoring applications, the photometer was found to provide a reasonable estimate of respirable CNF mass concentration. Particle size distribution measurements were conducted with an electrical low-pressure impactor and a fast particle size spectrometer. Results suggest that the dominant CNF mode by particle number lies between 200 and 250 nm for both aerodynamic and mobility equivalent diameters. Significant emissions of CO were also evident in this facility. Exposure control

  16. Nitro-PAH formation studied by interacting artificially PAH-coated soot aerosol with NO 2 in the temperature range of 295-523 K

    NASA Astrophysics Data System (ADS)

    Carrara, Matteo; Wolf, Jan-Christoph; Niessner, Reinhard

    2010-10-01

    Diesel particulate matter poses a threat to human health, and in particular nitrated polycyclic aromatic hydrocarbons (NPAHs) found within and on the surface of these particles. Although diesel particulate filters (DPFs) have been designed and implemented to reduce these and other harmful diesel emissions, the particle loaded filters may act as a reaction chamber for the enhanced production of NPAHs from the nitration of PAHs with NO 2. Focus is on the investigation of the heterogeneous reactions that occur on soot particles by exposing laboratory produced pyrene- or benzo(a)pyrene-coated spark discharge soot particles to varying concentrations of NO 2 and temperatures while following the formation of products over time. The sole nitration product that was observed throughout the experiments with pyrene-coated soot was 1-nitropyrene (1-NPYR), which increased linearly with reaction time for all NO 2 concentrations chosen (0.11, 1.0, 2.0, 4.0 ppm, m m -1). Resulting 1-NPYR formation rate increased exponentially with [NO 2]. Throughout the 3-h experiments less than 10% of pyrene has been converted to 1-NPYR and the partial reaction order with regard to [NO 2] was estimated to 1.52. Benzo(a)pyrene (BaP) was more reactive than pyrene. After 3 h reaction time almost 80% of the BaP has been converted to 6-NBaP. Highest 1-NPYR concentrations on particles were detected at 373 K, and at higher temperatures a considerable decrease in particulate 1-NPYR was observed. A similar trend was observed in a DPF simulation system (PM-Kat ®-like) with BaP-coated soot. In this case, highest 6-NBaP concentration on particles was detected at 423 K. Backed by corroborating results from separate gas/solid-phase partition experiments with 1-NPYR and 6-NBaP, it is likely that the newly formed 1-NPYR and 6-NBaP became transferred from particle to gas phase at higher temperatures. Results from this study confirm the presence of 1-NPYR and 6-NBaP in particulate and gas phase under conditions

  17. Dissolution of aerosol particles collected from nuclear facility plutonium production process

    DOE PAGES

    Xu, Ning; Martinez, Alexander; Schappert, Michael Francis; ...

    2015-08-14

    Here, a simple, robust analytical chemistry method has been developed to dissolve plutonium containing particles in a complex matrix. The aerosol particles collected on Marple cascade impactor substrates were shown to be dissolved completely with an acid mixture of 12 M HNO3 and 0.1 M HF. A pressurized closed vessel acid digestion technique was utilized to heat the samples at 130 °C for 16 h to facilitate the digestion. The dissolution efficiency for plutonium particles was 99 %. The resulting particle digestate solution was suitable for trace elemental analysis and isotope composition determination, as well as radiochemistry measurements.

  18. Development of Data-Assimilation-Quality MODIS and MISR Over Ocean Aerosol Products

    DTIC Science & Technology

    2009-08-01

    graduate students in the Atmospheric Sciences Department, especially Prof. David Delene, Aaron Kennedy, Hongchun Jin, and Zhe Feng, for their technical...properties, as well as impact air quality (e.g. Wang and Christopher, 2003) and visibility (e.g. Appel et al., 1985). Studies have found that aerosols...16,988, July 27. 1997. Tong, Y. P., G. L. Zhang, M. G. Tan, W. Wang , J. M. Chen, Y. Hwu, P. C. Fsu, J. H. Je., G. Margaritondo, W. M. Song, R. F

  19. Dissolution of aerosol particles collected from nuclear facility plutonium production process

    SciTech Connect

    Xu, Ning; Martinez, Alexander; Schappert, Michael Francis; Montoya, Dennis Patrick; Martinez, Patrick Thomas; Tandon, Lav

    2015-08-14

    Here, a simple, robust analytical chemistry method has been developed to dissolve plutonium containing particles in a complex matrix. The aerosol particles collected on Marple cascade impactor substrates were shown to be dissolved completely with an acid mixture of 12 M HNO3 and 0.1 M HF. A pressurized closed vessel acid digestion technique was utilized to heat the samples at 130 °C for 16 h to facilitate the digestion. The dissolution efficiency for plutonium particles was 99 %. The resulting particle digestate solution was suitable for trace elemental analysis and isotope composition determination, as well as radiochemistry measurements.

  20. Aerosol flow reactor production of fine Y1Ba2Cu3O7 powder: Fabrication of superconducting ceramics

    NASA Astrophysics Data System (ADS)

    Kodas, T. T.; Engler, E. M.; Lee, V. Y.; Jacowitz, R.; Baum, T. H.; Roche, K.; Parkin, S. S. P.; Young, W. S.; Hughes, S.; Kleder, J.; Auser, W.

    1988-05-01

    An aerosol flow reactor operating at 900-1000 °C is used to prepare high-purity Y1Ba2Cu3O7 powders with a uniform chemical composition and a submicron to micron average particle size by thermally decomposing aerosol droplets of a solution consisting of the nitrate salts of Y, Ba, and Cu in a 1:2:3 ratio. The powders were at least 99% reacted based on thermogravimetric analysis, and the x-ray diffraction pattern is essentially that of Y1Ba2Cu3O7. Magnetic susceptibility measurements showed the powders to be superconducting with a transition at 90 K even for average reactor residence times as short as 20 s. Sintering cold-pressed pellets between 900 and 1000 °C provides dense, fine grained (average size on the order of 1 μm) superconducting ceramics with sharp 90 K transitions. The grain size and shape of a final sintered part could be varied depending on powder production, processing, and sintering conditions.

  1. Volcanic Aerosol Evolution: Model vs. In Situ Sampling

    NASA Astrophysics Data System (ADS)

    Pfeffer, M. A.; Rietmeijer, F. J.; Brearley, A. J.; Fischer, T. P.

    2002-12-01

    Volcanoes are the most significant non-anthropogenic source of tropospheric aerosols. Aerosol samples were collected at different distances from 92°C fumarolic source at Poás Volcano. Aerosols were captured on TEM grids coated by a thin C-film using a specially designed collector. In the sampling, grids were exposed to the plume for 30-second intervals then sealed and frozen to prevent reaction before ATEM analysis to determine aerosol size and chemistry. Gas composition was established using gas chromatography, wet chemistry techniques, AAS and Ion Chromatography on samples collected directly from a fumarolic vent. SO2 flux was measured remotely by COSPEC. A Gaussian plume dispersion model was used to model concentrations of the gases at different distances down-wind. Calculated mixing ratios of air and the initial gas species were used as input to the thermo-chemical model GASWORKS (Symonds and Reed, Am. Jour. Sci., 1993). Modeled products were compared with measured aerosol compositions. Aerosols predicted to precipitate out of the plume one meter above the fumarole are [CaSO4, Fe2.3SO4, H2SO4, MgF2. Na2SO4, silica, water]. Where the plume leaves the confines of the crater, 380 meters distant, the predicted aerosols are the same, excepting FeF3 replacing Fe2.3SO4. Collected aerosols show considerable compositional differences between the sampling locations and are more complex than those predicted. Aerosols from the fumarole consist of [Fe +/- Si,S,Cl], [S +/- O] and [Si +/- O]. Aerosols collected on the crater rim consist of the same plus [O,Na,Mg,Ca], [O,Si,Cl +/- Fe], [Fe,O,F] and [S,O +/- Mg,Ca]. The comparison between results obtained by the equilibrium gas model and the actual aerosol compositions shows that an assumption of chemical and thermal equilibrium evolution is invalid. The complex aerosols collected contrast the simple formulae predicted. These findings show that complex, non-equilibrium chemical reactions take place immediately upon volcanic

  2. Application of the CALIOP Layer Product to Evaluate the Vertical Distribution of Aerosols Estimated by Global Models: AeroCom Phase I Results

    NASA Technical Reports Server (NTRS)

    Koffi, Brigitte; Schulz, Michael; Breon, Francois-Marie; Griesfeller, Jan; Winker, David; Balkanski, Yves; Bauer, Susanne; Berntsen, Terje; Chin, Mian; Collins, William D.; Dentener, Frank; Diehl, Thomas; Easter, Richard; Ghan, Steven; Gimoux, Paul; Gong, Sunling; Horowitz, Larry W.; Iversen, Trond; Kirkevag, Alf; Koch, Dorothy; Krol, Maarten; Myhre, Gunnar; Stier, Philip; Takemura, Toshihiko

    2012-01-01

    The CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) layer product is used for a multimodel evaluation of the vertical distribution of aerosols. Annual and seasonal aerosol extinction profiles are analyzed over 13 sub-continental regions representative of industrial, dust, and biomass burning pollution, from CALIOP 2007-2009 observations and from AeroCom (Aerosol Comparisons between Observations and Models) 2000 simulations. An extinction mean height diagnostic (Z-alpha) is defined to quantitatively assess the models' performance. It is calculated over the 0-6 km and 0-10 km altitude ranges by weighting the altitude of each 100 m altitude layer by its aerosol extinction coefficient. The mean extinction profiles derived from CALIOP layer products provide consistent regional and seasonal specificities and a low inter-annual variability. While the outputs from most models are significantly correlated with the observed Z-alpha climatologies, some do better than others, and 2 of the 12 models perform particularly well in all seasons. Over industrial and maritime regions, most models show higher Z-alpha than observed by CALIOP, whereas over the African and Chinese dust source regions, Z-alpha is underestimated during Northern Hemisphere Spring and Summer. The positive model bias in Z-alpha is mainly due to an overestimate of the extinction above 6 km. Potential CALIOP and model limitations, and methodological factors that might contribute to the differences are discussed.

  3. Application of the CALIOP Layer Product to Evaluate the Vertical Distribution of Aerosols Estimated by Global Models: AeroCom Phase I Results

    SciTech Connect

    Koffi, Brigitte; Schultz, Michael; Breon, Francois-Marie; Griesfeller, Jan; Winker, D.; Balkanski, Y.; Bauer, Susanne E.; Berntsen, T.; Chin, Mian; Collins, William D.; Dentener, Frank; Diehl, Thomas; Easter, Richard C.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Koch, Dorothy; Krol, Maarten; Myhre, G.; Stier, P.; Takemura, T.

    2012-05-19

    The CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) layer product is used for a multimodel evaluation of the vertical distribution of aerosols. Annual and seasonal aerosol extinction profiles are analyzed over 13 sub-continental regions representative of industrial, dust, and biomass burning pollution, from CALIOP 2007-2009 observations and from AeroCom (Aerosol Comparisons between Observations and Models) 2000 simulations. An extinction mean height diagnostic (Z{sub a}) is defined to quantitatively assess the models performance. It is calculated over the 0-6 km and 0-10 km altitude ranges by weighting the altitude of each 100 m altitude layer by its aerosol extinction coefficient. The mean extinction profiles derived from CALIOP layer products provide consistent regional and seasonal specificities and a low inter-annual variability. While the outputs from most models are significantly correlated with the observed Z{sub a} climatologies, some do better than others, and 2 of the 12 models perform particularly well in all seasons. Over industrial and maritime regions, most models show higher Z{sub a} than observed by CALIOP, whereas over the African and Chinese dust source regions, Z{sub a} is underestimated during Northern Hemisphere Spring and Summer. The positive model bias in Z{sub a} is mainly due to an overestimate of the extinction above 6 km. Potential CALIOP and model limitations, and methodological factors that might contribute to the differences are discussed.

  4. Secondary organic aerosol production from aqueous reactions of atmospheric phenols with an organic triplet excited state.

    PubMed

    Smith, Jeremy D; Sio, Vicky; Yu, Lu; Zhang, Qi; Anastasio, Cort

    2014-01-21

    Condensed-phase chemistry plays a significant role in the formation and evolution of atmospheric organic aerosols. Past studies of the aqueous photoformation of secondary organic aerosol (SOA) have largely focused on hydroxyl radical oxidation, but here we show that triplet excited states of organic compounds ((3)C*) can also be important aqueous oxidants. We studied the aqueous photoreactions of three phenols (phenol, guaiacol, and syringol) with the aromatic carbonyl 3,4-dimethoxybenzaldehyde (DMB); all of these species are emitted by biomass burning. Under simulated sunlight, DMB forms a triplet excited state that rapidly oxidizes phenols to form low-volatility SOA. Rate constants for these reactions are fast and increase with decreasing pH and increasing methoxy substitution of the phenols. Mass yields of aqueous SOA are near 100% for all three phenols. For typical ambient conditions in areas with biomass combustion, the aqueous oxidation of phenols by (3)C* is faster than by hydroxyl radical, although rates depend strongly on pH, oxidant concentrations, and the identity of the phenol. Our results suggest that (3)C* can be the dominant aqueous oxidant of phenols in areas impacted by biomass combustion and that this is a significant pathway for forming SOA.

  5. Production and Study of Titan's Aerosols Analogues with A RF Low Pressure Plasma Discharge

    SciTech Connect

    Szopa, C.; Cernogora, G.; Correia, J.J.; Boufendi, L.; Jolly, A.

    2005-10-31

    The atmosphere of Titan, the biggest satellite of Saturn, contains aerosols produced by the organic chemistry induced by the photochemistry of N2 and CH4, the major gaseous atmospheric compounds. In spite of their importance for the properties of the Titan's atmosphere, and for organic chemistry, only few direct information are available about them because of the limitations of the observational techniques, and their processes of formation and growth are not understood. In order to bring answers to these questions, we developed a new type of laboratory simulation to produce analogues of Titan's aerosols (known as tholins) with a low pressure Radio Frequency plasma discharge. The main originality of this experiment (named PAMPRE) comes from its ability to produce particles in volume, as they are maintained in levitation by electrostatic forces compensating gravity, whereas the other experiments produce tholins on the reactors walls or a substrate. We initiated our investigations by a study of the properties of the produced particles as a function of the plasma operating conditions (i.e. amount of CH4 in N2, injected RF power, pressure, and gas flow). We here present the results of this study.

  6. Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during spring

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Glasius, Marianne

    2011-09-01

    Organosulfates of monoterpenes and isoprene, as well as their oxidation products have been identified in biogenic secondary organic aerosols (BSOA) from both laboratory and field studies. Organosulfates provide an interesting coupling between air pollution and formation of low-volatility BSOA. HPLC quadrupole time-of-flight mass spectrometry was used to study polar acidic monoterpene and isoprene oxidation products including pinic acid, pinonic and terpenylic acid along with organosulfates and nitrooxy organosulfates in aerosols from ambient air. The method was first validated by analysis of spiked quartz filters, which showed acceptable recoveries >74% for pinic acid, pinonic acid, camphor sulphonic acid and adipic acid. Acetonitrile was identified as a better solvent than methanol for extraction and analysis of pinonic acid and adipic acid, due to improved analytical sensitivity and prevention of methyl ester formation during sample extraction. PM 1 (i.e, aerosols with an aerodynamic diameter ≤1 μm) were collected during spring 2008 in a forest in Denmark with mixed deciduous and coniferous trees. Average concentrations of the most abundant compounds were: pinic acid: 1.5 ng m -3, pinonic acid: 3.0 ng m -3, terpenylic acid: 0.8 ng m -3 and 3-methyl-1,2,3-butanetricarboxylic acid: 3.0 ng m -3. Organosulfates and nitrooxy organosulfates were identified in a majority of the daily samples and the highest levels were observed during a warm period in late spring. As a first approach, due to the lack of authentic standards, organosulfates and nitrooxy organosulfates were tentatively quantified based on the analytical response of camphor sulphonic acid. Generally the concentrations of organosulfates and nitrooxy organosulfates were lower than first generation oxidation products. The maximum concentration of a total of 10 organosulfates and nitrooxy organosulfates were found to be about three times lower than pinonic acid with a maximum concentration of 8 ng m -3. A

  7. Production and characterization of Ni and Cu composite coatings by electrodeposition reinforced with carbon nanotubes or graphite nanoplatelets

    NASA Astrophysics Data System (ADS)

    Karim, M. R. Abdul; Pavese, M.; Ambrosio, E. P.; Ugues, D.; Lombardi, M.; Biamino, S.; Badini, C.; Fino, P.

    2013-06-01

    Electrodeposition is well-known as a versatile and economical processing technique to produce metal coatings on conductive substrates. Recently, it has been gaining increasing interest also for the production of tailored composite coatings, containing for instance floropolymers or silicon carbide. A more novel approach concerns the use of carbon nanotubes or even graphene, in the form of graphite nano-platelets. The production of Ni- and Cu-based nanocomposites containing carbon nanoreinforcements was carried out by using standard electrodeposition conditions, but with a particular attention to the dispersion of the nanotubes. The obtained coatings were strong and well adherent to the steel substrate, and presented rather well dispersed carbon nanotubes or graphite nanoplatelets, even if some agglomerates could be present in samples obtained from highly concentrated suspensions. In the case of nickel-based composite coatings, the size of nickel grains was reduced, and pin-on-disc tests demonstrated a significant increase in the life of the coating. In the case of copper-based composite coatings, thermal diffusivity measurements demonstrated that the carbon nanomaterial does not reduce the conductivity of the pure copper coating.

  8. PRESERVATION OF H2 PRODUCTION ACTIVITY IN NANOPOROUS LATEX COATINGS OF RHODOPSEUDOMONAS PALUSTRIS CGA009 DURING DRY STORAGE AT AMBIENT TEMPERATURES

    SciTech Connect

    Milliken, C.; Piskorska, M.; Soule, T.; Gosse, J.; Flickinger, M.; Smith, G.; Yeager, C.

    2012-08-27

    To assess the applicability of latex cell coatings as an "off-the-shelf' biocatalyst, the effect of osmoprotectants, temperature, humidity and O{sub 2} on preservation of H{sub 2} production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H{sub 2} production. Beyond 2 weeks of storage, sorbitol- treated coatings lost all H{sub 2} production activity, whereas considerable H{sub 2} production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H{sub 2} production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H{sub 2} (0-0.1% headspace accumulation), whereas those stored at <5% humidity retained 27-53% of their H{sub 2} production activity after 8 weeks of storage. When stored in argon at <5% humidity and room temperature, R. palustris coatings retained full H{sub 2} production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.

  9. Preservation of H2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures

    PubMed Central

    Piskorska, M; Soule, T; Gosse, J L; Milliken, C; Flickinger, M C; Smith, G W; Yeager, C M

    2013-01-01

    Summary To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O2 on preservation of H2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H2 production activity, whereas considerable H2 production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H2 production activity after 8 weeks of storage. When stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state. PMID:23331993

  10. The effect of coatings on retention and permeation in SS 316L APT tritium production tubes

    NASA Astrophysics Data System (ADS)

    Hertz, K. L.; Causey, R. A.; Cowgill, D. F.

    2004-01-01

    The accelerator production of tritium (APT) design calls for thousands of thin-walled tubes to be filled with 3He gas. The reaction of the spallation neutrons with this gas will result in the bombardment of the interior of these tubes with energetic tritons and protons. For APT to be able to meet its tritium production goals, it is necessary that the holdup of the tritium in the tube walls be minimized. To examine the tritium retention characteristics of stainless steel, one of the tube reference materials, accelerator implantation experiments were performed. In these experiments, deuterium was used in place of tritium to eliminate the problem of tritium contamination. Deuterons with energies up to 200 keV and protons with energies up to 600 keV were implanted into stainless steel (SS 316L) samples to fluences as high as 5 × 10 22 D/m 2 and 5 × 10 22 p/m 2. Thermal desorption spectroscopy showed that approximately 3% of the deuterium was retained within the sample. Approximately 0.5% of the deuterium permeated through to the back surface of the sample where a zirconium getter trapped the deuterium. The deuterium trapped in the zirconium layer was measured by nuclear reaction analysis. Eight-micron thick copper and nickel coatings were applied to the implantation side of the stainless steel substrate in an attempt to reduce the retention and permeation of the deuterium. The copper-coated stainless steel was not successful in reducing the retention and permeation, however the nickel coated stainless steel reduced both the retention and permeation substantially.

  11. Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load

    NASA Astrophysics Data System (ADS)

    Kuhn, U.; Ganzeveld, L.; Thielmann, A.; Dindorf, T.; Schebeske, G.; Welling, M.; Sciare, J.; Roberts, G.; Meixner, F. X.; Kesselmeier, J.; Lelieveld, J.; Kolle, O.; Ciccioli, P.; Lloyd, J.; Trentmann, J.; Artaxo, P.; Andreae, M. O.

    2010-10-01

    As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O3, NO, NO2, CO, VOC, CO2, and H2O. Aerosol loads were characterized by concentrations of total aerosol number (CN) and cloud condensation nuclei (CCN), and by light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios within the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h-1. Within the plume core, aerosol concentrations were strongly enhanced, with ΔCN/ΔCO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. ΔCN/ΔCO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16±12%) of the plume particles were CCN

  12. Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load

    NASA Astrophysics Data System (ADS)

    Kuhn, U.; Ganzeveld, L.; Thielmann, A.; Dindorf, T.; Schebeske, G.; Welling, M.; Sciare, J.; Roberts, G.; Meixner, F. X.; Kesselmeier, J.; Lelieveld, J.; Kolle, O.; Ciccioli, P.; Lloyd, J.; Trentmann, J.; Artaxo, P.; Andreae, M. O.

    2010-05-01

    As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O3, NO, NO2, CO, VOC, CO2, and H2O. Aerosol loads were characterized by total aerosol number concentration (CN) and cloud condensation nuclei (CCN) concentrations, and light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios in the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h-1. Within the plume core, aerosol concentrations were strongly enhanced, with ΔCN/ΔCO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. ΔCN/ΔCO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16 ± 12%) of the plume particles were

  13. Antimicrobial Edible Films and Coatings for Meat and Meat Products Preservation

    PubMed Central

    Sánchez-Ortega, Irais; García-Almendárez, Blanca E.; Santos-López, Eva María; Amaro-Reyes, Aldo; Barboza-Corona, J. Eleazar; Regalado, Carlos

    2014-01-01

    Animal origin foods are widely distributed and consumed around the world due to their high nutrients availability but may also provide a suitable environment for growth of pathogenic and spoilage microorganisms. Nowadays consumers demand high quality food with an extended shelf life without chemical additives. Edible films and coatings (EFC) added with natural antimicrobials are a promising preservation technology for raw and processed meats because they provide good barrier against spoilage and pathogenic microorganisms. This review gathers updated research reported over the last ten years related to antimicrobial EFC applied to meat and meat products. In addition, the films gas barrier properties contribute to extended shelf life because physicochemical changes, such as color, texture, and moisture, may be significantly minimized. The effectiveness showed by different types of antimicrobial EFC depends on meat source, polymer used, film barrier properties, target microorganism, antimicrobial substance properties, and storage conditions. The perspective of this technology includes tailoring of coating procedures to meet industry requirements and shelf life increase of meat and meat products to ensure quality and safety without changes in sensory characteristics. PMID:25050387

  14. Effect of MODIS Terra Radiometric Calibration Improvements on Collection 6 Deep Blue Aerosol Products: Validation and Terra/Aqua Consistency

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.; Meister, G.

    2015-01-01

    The Deep Blue (DB) algorithm's primary data product is midvisible aerosol optical depth (AOD). DB applied to Moderate Resolution Imaging Spectroradiometer (MODIS) measurements provides a data record since early 2000 for MODIS Terra and mid-2002 for MODIS Aqua. In the previous data version (Collection 5, C5), DB production from Terra was halted in 2007 due to sensor degradation; the new Collection 6 (C6) has both improved science algorithms and sensor radiometric calibration. This includes additional calibration corrections developed by the Ocean Biology Processing Group to address MODIS Terra's gain, polarization sensitivity, and detector response versus scan angle, meaning DB can now be applied to the whole Terra record. Through validation with Aerosol Robotic Network (AERONET) data, it is shown that the C6 DB Terra AOD quality is stable throughout the mission to date. Compared to the C5 calibration, in recent years the RMS error compared to AERONET is smaller by approximately 0.04 over bright (e.g., desert) and approximately 0.01-0.02 over darker (e.g., vegetated) land surfaces, and the fraction of points in agreement with AERONET within expected retrieval uncertainty higher by approximately 10% and approximately 5%, respectively. Comparisons to the Aqua C6 time series reveal a high level of correspondence between the two MODIS DB data records, with a small positive (Terra-Aqua) average AOD offset <0.01. The analysis demonstrates both the efficacy of the new radiometric calibration efforts and that the C6 MODIS Terra DB AOD data remain stable (to better than 0.01 AOD) throughout the mission to date, suitable for quantitative scientific analyses.

  15. Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.; Meister, G.

    2015-12-01

    The Deep Blue (DB) algorithm's primary data product is midvisible aerosol optical depth (AOD). DB applied to Moderate Resolution Imaging Spectroradiometer (MODIS) measurements provides a data record since early 2000 for MODIS Terra and mid-2002 for MODIS Aqua. In the previous data version (Collection 5, C5), DB production from Terra was halted in 2007 due to sensor degradation; the new Collection 6 (C6) has both improved science algorithms and sensor radiometric calibration. This includes additional calibration corrections developed by the Ocean Biology Processing Group to address MODIS Terra's gain, polarization sensitivity, and detector response versus scan angle, meaning DB can now be applied to the whole Terra record. Through validation with Aerosol Robotic Network (AERONET) data, it is shown that the C6 DB Terra AOD quality is stable throughout the mission to date. Compared to the C5 calibration, in recent years the RMS error compared to AERONET is smaller by ˜0.04 over bright (e.g., desert) and ˜0.01-0.02 over darker (e.g., vegetated) land surfaces, and the fraction of points in agreement with AERONET within expected retrieval uncertainty higher by ˜10% and ˜5%, respectively. Comparisons to the Aqua C6 time series reveal a high level of correspondence between the two MODIS DB data records, with a small positive (Terra-Aqua) average AOD offset <0.01. The analysis demonstrates both the efficacy of the new radiometric calibration efforts and that the C6 MODIS Terra DB AOD data remain stable (to better than 0.01 AOD) throughout the mission to date, suitable for quantitative scientific analyses.

  16. Mixing state of aerosols over the Indo-Gangetic Plain: Radiative forcing and heating rate

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Ramachandran, S.

    2012-12-01

    Aerosols are a major atmospheric variable which perturb the Earth-atmosphere radiation balance by absorbing and scattering the solar and terrestrial radiation. Aerosols are produced by natural and anthropogenic processes. The presence of different types of aerosol over a location and aerosols transported from long-range can give rise to different mixing states because of aging and interaction among the different aerosol species. Knowledge of the mixing state of aerosols is important for an accurate assessment of aerosols in climate forcing, as assumptions regarding the mixing state of aerosol and its effect on optical properties can give rise to uncertainties in modeling their direct and indirect effects [1]. Seasonal variations in mixing states of aerosols over an urban (Kanpur) and a rural location (Gandhi College) in the Indo-Gangetic Plain (IGP) are determined using the measured and modeled aerosol optical properties, and the impact of aerosol mixing state on aerosol radiative forcing are investigated. IGP is one of the most populated and polluted river basins in the world, rich in fertile lands and agricultural production. Kanpur is an urban, industrial and densely populated city, and has several large/small scale industries and vehicles, while Gandhi College in IGP is a rural village, located southeast of Kanpur. Aerosol optical properties obtained from Aerosol Robotic Network sun/sky radiometers [2] over these two environmentally distinct locations in Indo-Gangetic Plain are used in the study, along with aerosol vertical profiles obtained from CALIPSO (Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar observations. Probable mixing state of aerosols is determined utilizing the aerosol optical properties viz., aerosol optical depth, single scattering albedo and asymmetry parameter. The coated-sphere Mie calculation requires the refractive index of core and shell species, and the radius of core and shell particles. Core to shell radius

  17. A kinetic study of the interaction between atomic oxygen and aerosols

    NASA Technical Reports Server (NTRS)

    Akers, F. I.; Wightman, J. P.

    1976-01-01

    This study was concerned with the effects of NH4Cl and (NH4)2SO4 aerosols on the kinetics of disappearance of atomic oxygen. Atomic oxygen was generated by a 2.45-GHz microwave discharge and the kinetics of disappearance measured in a fast flow system using NO2 titration. Values of the recombination coefficient for heterogeneous wall recombination were determined for clean, H2SO4-coated, and (NH4)2SO4-coated Pyrex to be 0.000050, 0.000020, and 0.000019, respectively. A rapid exothermic chemical reaction was found to occur between atomic oxygen and an NH4Cl wall coating; the products were NH3, NO, H2O, and HCl. The NH4Cl aerosol was generated by gas phase reaction of NH3 with HCl. The aerosol particles were approximately spherical and nearly monodisperse with a mean diameter of 1.6 plus or minus 0.2 micron. The rate constant for the disappearance of atomic oxygen in the presence of NH4Cl aerosol was measured. No significant decrease was observed in the rate of disappearance of atomic oxygen in the presence of an (NH4)2SO4 aerosol at a concentration of 285 mg per cu m.

  18. Production of hydrogen sulphide in milkfat-coated microcapsules containing Brevibacterium linens and cysteine.

    PubMed

    Kim, S C; Olson, N F

    1989-01-01

    Milkfat-coated microcapsules containing Brevibacterium linens and cysteine were used to produce hydrogen sulphide, one of Cheddar cheese flavour compounds. Hydrogen sulphide production was substantially reduced and delayed in the encapsulated system as compared with that of the unencapsulated system. Hydrogen sulphide was not produced aerobically whereas substantial amounts of hydrogen sulphide were produced in a nitrogen purged system. The inhibitory effect of the initial aerobic condition disappeared after 8 days of incubation. In spite of the lag in hydrogen sulphide production under aerobic conditions almost the same amount of hydrogen sulphide was produced in oxygen purged samples as in the nitrogen purged samples after 10 days of incubation. Moderate heat treatment (2 min at 58 degrees C) of cell suspension-milkfat-emulsion increased subsequent hydrogen sulphide production. The optimum pH and temperature for hydrogen sulphide production from cysteine by Brevibacterium linens were 6 degrees C and 32 degrees C, respectively. Antioxidants BHT, BHA and ascorbic acid had negligible effects on production of hydrogen sulphide in the encapsulated system.

  19. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  20. AEROSOL INDUSTRY SUCCESS IN REDUCING CFC PROPELLANT USAGE

    EPA Science Inventory

    Part I of this report discusses the U.S. aerosol industry's experience in converting from chlorofluorocarbon (CFC) propellants to alternative aerosol formulations. Detailed examples of non-CFC formulations are provided for 28 categories of aerosol products. ydrocarbon propellants...

  1. Production of carbon nano-tubes via CCVD method and their corrosion protection performance in epoxy based coatings

    NASA Astrophysics Data System (ADS)

    Raza, M. A.; Ghauri, F. A.; Awan, M. S.; Farooq, A.; Ahmad, R.

    2016-08-01

    Good yield of carbon products was obtained by catalytic chemical vapor deposition (CCVD) technique using 100-500mg of ferrocene catalyst at temperature of 900 °C and acetylene flow rate of 150-200cc/min. The effects of amount of ferrocene, temperature and hydrocarbons precursors on the yield of carbon nanomaterial's was calculated and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) andenergy- dispersive X-ray spectroscopy (EDS). Good yield of carbon nanomaterials primarily consisted of carbon nanotubes (CNTs) and carbon nanoparticles was obtained. CNTs obtained after purification were dispersed in epoxy resin to produce composite coatings which were coated on stainless steel 316L. The coated stainless steel samples’ corrosion behavior was studied using open circuit potential (OCP), cyclic polarization and electrochemical impedance spectroscopy (EIS) techniques. Results showed that epoxy coating containing 4 wt. % of CNTs offered improved corrosion resistance to stainless steel.

  2. Production of thick uniform-coating films containing rectorite on nanofibers through the use of an automated coating machine.

    PubMed

    Wu, Yang; Li, Xueyong; Shi, Xiaowen; Zhan, Yingfei; Tu, Hu; Du, Yumin; Deng, Hongbing; Jiang, Linbin

    2017-01-01

    When an efficient automated coating machine is used to process layer-by-layer (LBL) deposited nanofibrous mats, it causes an obvious planar effect on the surface of the mats, which can be eliminated through ultimate immersion. During this process, chitosan (CS) - rectorite (REC) intercalated composite films are built on the surface of cellulose acetate (CA) nanofibrous mats by a coating machine. Then, the immersion process is utilized to allow positively charged CS or CS-REC intercalated composites to uniformly assemble on the surface of negatively charged CA nanofibers. An investigation into the morphology of the resultant scaffolds confirms that the uniquely small pore size, high specific surface area and typically three-dimensional (3D) structure of nanofibrous mats remain present. The results of Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) indicate that it is feasible to assemble nanofibrous mats using a coating machine. The intercalated structure of CS-REC is confirmed by the results of small-angle X-ray diffraction (SAXRD) and wide-angle X-ray diffraction (WAXRD). The results of the cell experiment and antibacterial test demonstrate that the addition of REC not only has little impact on the cytocompatibility of the mats but also enhances their ability to inhibit bacteria.

  3. Aerosol-stable peptide-coated liposome nanoparticles: a proof-of-concept study with opioid fentanyl in enhancing analgesic effects and reducing plasma drug exposure.

    PubMed

    Hoekman, John D; Srivastava, Pramod; Ho, Rodney J Y

    2014-08-01

    Previously, we reported a novel pressurized olfactory drug (POD) delivery device that deposits aerosolized drug preferentially to upper nasal cavity. This POD device provided sustained central nervous system (CNS) levels of soluble morphine analgesic effects. However, analgesic onset of less soluble fentanyl was more rapid but brief, likely because of hydrophobic fentanyl redistribution readily back to blood. To determine whether fentanyl incorporated into an aerosol-stable liposome that binds to nasal epithelial cells will enhance CNS drug exposure and analgesic effects and reduce plasma exposure, we constructed Arg-Gly-Asp (RGD) liposomes anchored with acylated integrin-binding peptides (palmitoyl-Gly-Arg-Gly-Asp-Ser). The RGD liposomes, which assume gel phase membrane structure at 25 °C, were stable under the stress of aerosolization as only 2.2 ± 0.5% calcein leakage was detected. The RGD-mediated integrin binding of liposome is also verified to be unaffected by aerosolization. Rats treated with fentanyl in RGD liposome and POD device exhibited greater analgesic effect, as compared with the free drug counterpart (AUC(effect) = 1387.1% vs. 760.1% MPE*min), whereas approximately 20% reduced plasma drug exposure was noted (AUC(0-120) = 208.2 vs. 284.8 ng min/mL). Collectively, fentanyl incorporated in RGD liposomes is physically and biologically stable under aerosolization, enhanced the overall analgesic effects, and reduced plasma drug exposure for the first 2 h.

  4. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  5. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  6. Understanding polysaccharide production and properties using seed coat mutants: future perspectives for the exploitation of natural variants

    PubMed Central

    North, Helen M.; Berger, Adeline; Saez-Aguayo, Susana; Ralet, Marie-Christine

    2014-01-01

    Background The epidermal cells of the seed coat of certain species accumulate polysaccharides during seed development for cell wall reinforcement or release on imbibition to form mucilage. Seed-coat epidermal cells show natural variation in their structure and mucilage production, which could explain the diverse ecophysiological roles proposed for the latter. Arabidopsis mucilage mutants have proved to be an important tool for the identification of genes involved in the production of seed-coat polysaccharides. Scope This review documents genes that have been characterized as playing a role in the differentiation of the epidermal cells of the arabidopsis seed coat, the natural variability in polysaccharide features of these cells and the physiological roles attributed to seed mucilage. Conclusions Seed-coat epidermal cells are an excellent model for the study of polysaccharide metabolism and properties. Intra- and interspecies natural variation in the differentiation of these epidermal cells is an under-exploited resource for such studies and promises to play an important part in improving our knowledge of polysaccharide production and ecophysiological function. PMID:24607722

  7. Culturability of Bacillus spores on aerosol collection filters exposed to airborne combustion products of Al, Mg, and B·Ti.

    PubMed

    Adhikari, Atin; Yermakov, Michael; Indugula, Reshmi; Reponen, Tiina; Driks, Adam; Grinshpun, Sergey A

    2016-05-01

    Destruction of bioweapon facilities due to explosion or fire could aerosolize highly pathogenic microorganisms. The post-event air quality assessment is conducted through air sampling. A bioaerosol sample (often collected on a filter for further culture-based analysis) also contains combustion products, which may influence the microbial culturability and, thus, impact the outcome. We have examined the interaction between spores deposited on collection filters using two simulants of Bacillus anthracis [B. thuringiensis (Bt) and B. atrophaeus (referred to as BG)] and incoming combustion products of Al as well as Mg and B·Ti (common ingredient of metalized explosives). Spores extracted from Teflon, polycarbonate, mixed cellulose ester (MCE), and gelatin filters (most common filter media for bioaerosol sampling), which were exposed to combustion products during a short-term sampling, were analyzed by cultivation. Surprisingly, we observed that aluminum combustion products enhanced the culturability of Bt (but not BG) spores on Teflon filters increasing the culturable count by more than an order of magnitude. Testing polycarbonate and MCE filter materials also revealed a moderate increase of culturability although gelatin did not. No effect was observed with either of the two species interacting on either filter media with products originated by combustion of Mg and B·Ti. Sample contamination, spore agglomeration, effect of a filter material on the spore survival, changes in the spore wall ultrastructure and germination, as well as other factors were explored to interpret the findings. The study raises a question about the reliability of certain filter materials for collecting airborne bio-threat agents in combustion environments.

  8. The National Shipbuilding Research Program: Productivity Study of Hydroblast Removal of Coatings

    DTIC Science & Technology

    1998-12-01

    procedures and standards for the evaluation of water- jetting. These procedures include surface cleanliness , surface contamination, coating removal rates...Information ÒGeneral InformationÓ data encompassed initial surface cleanliness , coating condition, and contamination levels (measured as chloride and...study. Task 3. Determine test procedures and standards for surface cleanliness , surface contamination, coating removal rates, visual appearance, air

  9. Experimental determination of the partitioning coefficient and volatility of important BVOC oxidation products using the Aerosol Collection Module (ACM) coupled to a PTR-ToF-MS

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G.; Hohaus, T.; Tillmann, R.; Schmitt, S. H.; Yu, Z.; Schlag, P.; Wegener, R.; Kaminski, M.; Kiendler-Scharr, A.

    2015-12-01

    Atmospheric aerosol can alter the Earth's radiative budget and global climate but can also affect human health. A dominant contributor to the submicrometer particulate matter (PM) is organic aerosol (OA). OA can be either directly emitted through e.g. combustion processes (primary OA) or formed through the oxidation of organic gases (secondary organic aerosol, SOA). A detailed understanding of SOA formation is of importance as it constitutes a major contribution to the total OA. The partitioning between the gas and particle phase as well as the volatility of individual components of SOA is yet poorly understood adding uncertainties and thus complicating climate modelling. In this work, a new experimental methodology was used for compound-specific analysis of organic aerosol. The Aerosol Collection Module (ACM) is a newly developed instrument that deploys an aerodynamic lens to separate the gas and particle phase of an aerosol. The particle phase is directed to a cooled sampling surface. After collection particles are thermally desorbed and transferred to a detector for further analysis. In the present work, the ACM was coupled to a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) to detect and quantify organic compounds partitioning between the gas and particle phase. This experimental approach was used in a set of experiments at the atmosphere simulation chamber SAPHIR to investigate SOA formation. Ozone oxidation with subsequent photochemical aging of β-pinene, limonene and real plant emissions from Pinus sylvestris (Scots pine) were studied. Simultaneous measurement of the gas and particle phase using the ACM-PTR-ToF-MS allows to report partitioning coefficients of important BVOC oxidation products. Additionally, volatility trends and changes of the SOA with photochemical aging are investigated and compared for all systems studied.

  10. Intercomparison and assessment of long-term (2004-2013) multiple satellite aerosol products over two contrasting sites in South Africa

    NASA Astrophysics Data System (ADS)

    Adesina, A. Joseph; Kumar, K. Raghavendra; Sivakumar, V.; Piketh, Stuart J.

    2016-10-01

    To build a long-term database and improve the accuracy of the satellite products used for aerosol studies, there is a need to carry out intercomparison and validation of these satellite observations with ground-based measurements. With this objective, we estimated the long-term inter-annual variations and percentage change in trends of aerosol optical depth (AOD) retrieved from MODerate resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectro-Radiometer (MISR) sensors for a 10-year period during 2004-2013 over two distinct sites namely, Skukuza (SKZ; 24.99°S, 31.58°E) and Richards Bay (RBAY; 28.8°S, 21.1°E) in South Africa. The validation performed over SKZ site shows that MISR was better correlated with AErosol RObotic NETwork (AERONET) when compared to Terra and Aqua satellites of MODIS. Later both the MODIS products (Terra and Aqua) were compared on the annual and seasonal basis to derive the relationship between them through scattering plot. The long-term regression analysis performed at these sites shows that the annual trends were decreasing, with the MODIS products underestimating MISR. This is due to difficulties of the MODIS algorithm when dealing with highly complex surface reflectance conditions and aerosol model assumptions. Also, the temporal variations of AOD derived from the two sensors noticed maximum in spring (September/October) and minimum in winter (June). Further, the Ultra-Violet Aerosol Index (UVAI) retrieved from the Ozone Monitoring Instrument (OMI) at the two locations for 9 years (2005-2013) showed a significant increasing trend with a high value of +0.009 yr-1 at SKZ than +0.006 yr-1 at RBAY during the study period, which is due to the transport of dust and smoke particles.

  11. Synthesis and Reactive Properties of Iron Oxide-Coated Nanoaluminum

    NASA Astrophysics Data System (ADS)

    Kaplowitz, Daniel A.; Jian, Guoqiang; Gaskell, Karen; Jacob, Rohit; Zachariah, Michael R.

    2014-04-01

    A homogeneous coating of Fe3O4 on in situ-generated nanoaluminum was accomplished by thermal decomposition of Fe(CO)5 in an aluminum aerosol stream and subsequent oxidation of iron by air bleed. X-ray photoelectron spectroscopy (XPS) investigation revealed that oxygen penetrated through this coating, and Fe3O4 facilitated the formation of an expanded aluminum oxide layer compared to an uncoated aluminum case. Closed cell combustion tests displayed a minor decrease in pressure response for the coated product, which was attributed to the increased aluminum oxide layer. The critical ignition temperature was reduced for the coated product in T-jump fine-wire combustion tests.

  12. Optimization Control of the Color-Coating Production Process for Model Uncertainty.

    PubMed

    He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong

    2016-01-01

    Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results.

  13. Optimization Control of the Color-Coating Production Process for Model Uncertainty

    PubMed Central

    He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong

    2016-01-01

    Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results. PMID:27247563

  14. Emission of reactive compounds and secondary products from wood-based furniture coatings

    NASA Astrophysics Data System (ADS)

    Salthammer, T.; Schwarz, A.; Fuhrmann, F.

    Emissions of organic fragmentation products, so-called "secondary emission products" and reactive species from wood-based furniture coatings have been studied in 1 m 3 test chambers. the climatic conditions were representative of indoor environments. Relevant compounds and compound groups were the wetting agent 2,4,7,9-tetramethyl-5-dicyne-4,7-diol (T4MDD), the plasticiser di-2-ethyl-hexyl-phthalate (DEHP), aliphatic aldehydes, monoterpenes, photoinitiator fragments, acrylic monomers/reactive solvents and diisocyanate monomers. Such substances may affect human health in several ways. Aliphatic aldehydes and some photoinitiator fragments are of strong odour, while acrylates and diisocyanates cause irritation of skin, eyes and upper airways. Terpenes and reactive solvents like styrene undergo indoor chemistry in the presence of ozone, nitrogen oxides or hydroxy radicals. Secondary emission products and reactive species can achieve significant indoor concentrations. On the other hand, it has been reported that even small quantities can cause health effects. In the cases of indoor studies with special regard to emissions from furniture, chemical analysis should always include these compounds.

  15. Seasonal monitoring and estimation of regional aerosol distribution over Po valley, northern Italy, using a high-resolution MAIAC product

    NASA Astrophysics Data System (ADS)

    Arvani, Barbara; Pierce, R. Bradley; Lyapustin, Alexei I.; Wang, Yujie; Ghermandi, Grazia; Teggi, Sergio

    2016-09-01

    In this work, the new 1 km-resolved Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is employed to characterize seasonal PM10 - AOD correlations over northern Italy. The accuracy of the new dataset is assessed compared to the widely used Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Aerosol Optical Depth (AOD) data, retrieved at 0.55 μm with spatial resolution of 10 km (MYD04_L2). We focused on evaluating the ability of these two products to characterize both temporal and spatial distributions of aerosols within urban and suburban areas. Ground PM10 measurements were obtained from 73 of the Italian Regional Agency for Environmental Protection (ARPA) monitoring stations, spread across northern Italy, during a three-year period from 2010 to 2012. The Po Valley area (northern Italy) was chosen as the study domain because of its severe urban air pollution, resulting from it having the highest population and industrial manufacturing density in the country, being located in a valley where two surrounding mountain chains favor the stagnation of pollutants. We found that the global correlations between the bin-averaged PM10 and AOD are R2 = 0.83 and R2 = 0.44 for MYD04_L2 and for MAIAC, respectively, suggesting a greater sensitivity of the high-resolution product to small-scale deviations. However, the introduction of Relative Humidity (RH) and Planetary Boundary Layer (PBL) depth corrections allowed for a significant improvement to the bin-averaged PM - AOD correlation, which led to a similar performance: R2 = 0.96 for MODIS and R2 = 0.95 for MAIAC. Furthermore, the introduction of the PBL information in the corrected AOD values was found to be crucial in order to capture the clear seasonal cycle shown by measured PM10 values. The study allowed us to define four seasonal linear correlations that estimate PM10 concentrations satisfactorily from the remotely sensed MAIAC AOD retrieval. Overall, the results show that the high

  16. ESTIMATION OF THE RATE OF VOC EMISSIONS FROM SOLVENT-BASED INDOOR COATING MATERIALS BASED ON PRODUCT FORMULATION

    EPA Science Inventory

    Two computational methods are proposed for estimation of the emission rate of volatile organic compounds (VOCs) from solvent-based indoor coating materials based on the knowledge of product formulation. The first method utilizes two previously developed mass transfer models with ...

  17. Comparative In Vitro Toxicity Profile of Electronic and Tobacco Cigarettes, Smokeless Tobacco and Nicotine Replacement Therapy Products: E-Liquids, Extracts and Collected Aerosols

    PubMed Central

    Misra, Manoj; Leverette, Robert D.; Cooper, Bethany T.; Bennett, Melanee B.; Brown, Steven E.

    2014-01-01

    The use of electronic cigarettes (e-cigs) continues to increase worldwide in parallel with accumulating information on their potential toxicity and safety. In this study, an in vitro battery of established assays was used to examine the cytotoxicity, mutagenicity, genotoxicity and inflammatory responses of certain commercial e-cigs and compared to tobacco burning cigarettes, smokeless tobacco (SLT) products and a nicotine replacement therapy (NRT) product. The toxicity evaluation was performed on e-liquids and pad-collected aerosols of e-cigs, pad-collected smoke condensates of tobacco cigarettes and extracts of SLT and NRT products. In all assays, exposures with e-cig liquids and collected aerosols, at the doses tested, showed no significant activity when compared to tobacco burning cigarettes. Results for the e-cigs, with and without nicotine in two evaluated flavor variants, were very similar in all assays, indicating that the presence of nicotine and flavors, at the levels tested, did not induce any cytotoxic, genotoxic or inflammatory effects. The present findings indicate that neither the e-cig liquids and collected aerosols, nor the extracts of the SLT and NRT products produce any meaningful toxic effects in four widely-applied in vitro test systems, in which the conventional cigarette smoke preparations, at comparable exposures, are markedly cytotoxic and genotoxic. PMID:25361047

  18. Comparative in vitro toxicity profile of electronic and tobacco cigarettes, smokeless tobacco and nicotine replacement therapy products: e-liquids, extracts and collected aerosols.

    PubMed

    Misra, Manoj; Leverette, Robert D; Cooper, Bethany T; Bennett, Melanee B; Brown, Steven E

    2014-10-30

    The use of electronic cigarettes (e-cigs) continues to increase worldwide in parallel with accumulating information on their potential toxicity and safety. In this study, an in vitro battery of established assays was used to examine the cytotoxicity, mutagenicity, genotoxicity and inflammatory responses of certain commercial e-cigs and compared to tobacco burning cigarettes, smokeless tobacco (SLT) products and a nicotine replacement therapy (NRT) product. The toxicity evaluation was performed on e-liquids and pad-collected aerosols of e-cigs, pad-collected smoke condensates of tobacco cigarettes and extracts of SLT and NRT products. In all assays, exposures with e-cig liquids and collected aerosols, at the doses tested, showed no significant activity when compared to tobacco burning cigarettes. Results for the e-cigs, with and without nicotine in two evaluated flavor variants, were very similar in all assays, indicating that the presence of nicotine and flavors, at the levels tested, did not induce any cytotoxic, genotoxic or inflammatory effects. The present findings indicate that neither the e-cig liquids and collected aerosols, nor the extracts of the SLT and NRT products produce any meaningful toxic effects in four widely-applied in vitro test systems, in which the conventional cigarette smoke preparations, at comparable exposures, are markedly cytotoxic and genotoxic.

  19. Study of MPLNET-Derived Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version 3 Backscatter and Extinction Products

    NASA Technical Reports Server (NTRS)

    Misra, Amit; Tripathi, S. N.; Kaul, D. S.; Welton, Ellsworth J.

    2012-01-01

    The level 2 aerosol backscatter and extinction profiles from the NASA Micropulse Lidar Network (MPLNET) at Kanpur, India, have been studied from May 2009 to September 2010. Monthly averaged extinction profiles from MPLNET shows high extinction values near the surface during October March. Higher extinction values at altitudes of 24 km are observed from April to June, a period marked by frequent dust episodes. Version 3 level 2 Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol profile products have been compared with corresponding data from MPLNET over Kanpur for the above-mentioned period. Out of the available backscatter profiles, the16 profiles used in this study have time differences less than 3 h and distances less than 130 km. Among these profiles, four cases show good comparison above 400 m with R2 greater than 0.7. Comparison with AERONET data shows that the aerosol type is properly identified by the CALIOP algorithm. Cloud contamination is a possible source of error in the remaining cases of poor comparison. Another source of error is the improper backscatter-to-extinction ratio, which further affects the accuracy of extinction coefficient retrieval.

  20. Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States

    NASA Astrophysics Data System (ADS)

    Li, Jingyi; Mao, Jingqiu; Min, Kyung-Eun; Washenfelder, Rebecca A.; Brown, Steven S.; Kaiser, Jennifer; Keutsch, Frank N.; Volkamer, Rainer; Wolfe, Glenn M.; Hanisco, Thomas F.; Pollack, Ilana B.; Ryerson, Thomas B.; Graus, Martin; Gilman, Jessica B.; Lerner, Brian M.; Warneke, Carsten; Gouw, Joost A.; Middlebrook, Ann M.; Liao, Jin; Welti, André; Henderson, Barron H.; McNeill, V. Faye; Hall, Samuel R.; Ullmann, Kirk; Donner, Leo J.; Paulot, Fabien; Horowitz, Larry W.

    2016-08-01

    We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and Master Chemical Mechanism (MCM) v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γglyx of 2 × 10-3 and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 µg m-3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals. We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of isoprene epoxydiol (IEPOX) peroxy radicals with HO2. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.

  1. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  2. Improvement of Aerosol Prediction Capability

    DTIC Science & Technology

    2001-09-30

    by dust storms in the past.) The operational aerosol products will be used for initialization or specification of aerosols in COAMPS when new cloud...Figure 2. SeaWiFS visible imagery for May 18, 2001, showing a dust storm originating at dry lakes along the Iran-Afghanistan border and then...versions of the Navy Aerosol Analysis and Prediction System (NAAPS) for analysis of airborne dust loads (Westphal/NRL). B: Modify existing radiative

  3. Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products.

    PubMed

    Sohail, Asma; Turner, Mark S; Prabawati, Elisabeth Kartika; Coombes, Allan G A; Bhandari, Bhesh

    2012-07-02

    This study investigated the effect of microencapsulation on the survival of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM and their acidification in orange juice at 25°C for nine days and at 4°C over thirty five days of storage. Alginate micro beads (10-40 μm) containing the probiotics were produced by a novel dual aerosol method of alginate and CaCl(2) cross linking solution. Unencapsulated L. rhamnosus GG was found to have excellent survivability in orange juice at both temperatures. However unencapsulated L. acidophilus NCFM showed significant reduction in viability. Encapsulation of these two bacteria did not significantly enhance survivability but did reduce acidification at 25°C and 4°C. In agreement with this, encapsulation of L. rhamnosus GG also reduced acidification in pear and peach fruit-based foods at 25°C, however at 4°C difference in pH was insignificant between free and encapsulated cells. In conclusion, L. rhamnosus GG showed excellent survival in orange juice and microencapsulation has potential in reducing acidification and possible negative sensory effects of probiotics in orange juice and other fruit-based products.

  4. Development/verification of methods for measurement of exhaled breath and environmental e-vapor product aerosol.

    PubMed

    Oldham, Michael J; Wagner, Karl A; Gene Gilman, I; Beach, James B; Liu, Jianmin; Rostami, Ali A; Sarkar, Mohamadi A

    2017-04-01

    Concerns have been raised about the potential health effects of potential bystander exposure to exhaled aerosols from e-vapor products (EVPs). An exhaled breath collection system (EBS) was developed and analytical methods were verified for collection and analysis of exhaled breath from users of EVPs. Analytical methods were adapted and verified for collection of environmental air samples during EVP use in an exposure chamber. Analysis of constituents in exhaled breath focused on nicotine, propylene glycol, and glycerin (because these are reported as the major constituents in EVPs) and selected carbonyl compounds (acetaldehyde, acrolein, and formaldehyde). Analysis of environmental samples included nicotine, propylene glycol, glycerin, 12 volatile organic compounds (VOCs), 15 carbonyl compounds and 4 metals. The EBS and analytical methods used were found to be suitable for collection and analysis of the target constituents in exhaled breath. Environmental sampling for background levels of VOCs and carbonyl compounds found only acetone, acetaldehyde, benzene, ethylbenzene, formaldehyde, isoprene, methyl ethyl ketone, hexaldehyde, propionaldehyde, and toluene above the limit of quantification in some samples. None of the targeted metals were detected. Background levels of VOCs and carbonyl compounds were consistent with levels previously reported for ambient air.

  5. Aerosol contributions to speleothem geochemistry

    NASA Astrophysics Data System (ADS)

    Dredge, J. A.; Fairchild, I. J.; Harrison, R.; Woodhead, J. D.; Hellstrom, J.

    2011-12-01

    The term "aerosols" encompasses the suspension of both fine solid or liquid particles within a gaseous medium. Aerosols become suspended into the earth's atmosphere through a multitude of processes both natural and anthropogenic. Atmospheric aerosols enter cave networks as a result of cave ventilation processes and are either deposited, or cycled and removed from the system. Speleothem offer a multiproxy palaeoclimate resource; many of the available proxies have been extensively investigated and utilised for palaeoclimatic reconstructions in a range of studies. The potential contribution of aerosols to speleothem chemistry and their applicability for palaeoenvironmental reconstructions remains untested and the extent of their value as an addition to palaeoclimate sciences unknown. Aerosols through incorporation into speleothem may provide a novel palaeoenvironmental resource. The aerosol component of interest is that which is transported into the cave atmosphere and deposited and are available for incorporation into precipitated calcite. Aerosol deposition and therefore distribution in the cave has shown to be a complex function of ventilation and changing environmental factors. Through detailed monitoring aerosols have been detected, identified, characterised and quantified to determine their prominence in the cave system. Investigations are on a case study basis, searching for suitable aerosol proxies of environmentally significant emission processes. Case studies include: Palaeofires at Yarrangobilly Caves, Australia; anthropogenic emissions at St Michaels Cave, Gibraltar and Cheddar gorge, UK; and drip water aerosol production and geochemical addition in Obir cave, Austria. Monitoring has allowed for the temporal and spatial determination of aerosols in karst networks. Speleothem samples will be analysed in combination with in-situ monitoring to determine incorporation factors and record preservation. By understanding how aerosols are transmitted within the

  6. High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols

    SciTech Connect

    Romonosky, Dian E.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2015-03-19

    A significant fraction of atmospheric organic compounds is predominantly found in condensed phases, such as aerosol particles and cloud droplets. Many of these compounds are photolabile and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of aqueous droplets (hours) and particles (days). This paper presents a systematic investigation of the molecular level composition and the extent of aqueous photochemical processing in different types of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors including α-pinene, β-pinene, β-myrcene, d- limonene, α-humulene, 1,3,5-trimethylbenzene, and guaiacol, oxidized by ozone (to simulate a remote atmosphere) or by OH in the presence of NOx (to simulate an urban atmosphere). Chamber- and flow tube-generated SOA samples were collected, extracted in a methanol/water solution, and photolyzed for 1 h under identical irradiation conditions. In these experiments, the irradiation was equivalent to about 3-8 h of exposure to the sun in its zenith. The molecular level composition of the dissolved SOA was probed before and after photolysis with direct-infusion electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). The mass spectra of unphotolyzed SOA generated by ozone oxidation of monoterpenes showed qualitatively similar features, and contained largely overlapping subsets of identified compounds. The mass spectra of OH/NOx generated SOA had more unique visual appearance, and indicated a lower extent of products overlap. Furthermore, the fraction of nitrogen containing species (organonitrates and nitroaromatics) was highly sensitive to the SOA precursor. These observations suggest that attribution of high-resolution mass spectra in field SOA samples to specific SOA precursors should be more straightforward under OH/NOx oxidation conditions compared to the ozone driven oxidation. Comparison of the SOA constituents

  7. Induction heat treatment and technique of bioceramic coatings production on medical titanium alloys

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Rodionov, Igor V.; Fomina, Marina A.; Poshivalova, Elena Y.; Krasnikov, Aleksandr V.; Petrova, Natalia N.; Zakharevich, Andrey M.; Skaptsov, Alexander A.; Gribov, Andrey N.; Atkin, Vsevolod S.

    2015-03-01

    Prospective composite bioceramic titania coatings were obtained on intraosseous implants fabricated from medical titanium alloy VT16 (Ti-2.5Al-5Mo-5V). Consistency changes of morphological characteristics, physico-mechanical properties and biocompatibility of experimental titanium implant coatings obtained by oxidation during induction heat treatment are defined. Technological recommendations for obtaining bioceramic coatings with extremely high strength on titanium items surface are given.

  8. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... zirconium. 700.16 Section 700.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient... indicates that certain zirconium compounds have caused human skin granulomas and toxic effects in the...

  9. DEVELOPMENT OF AN INNOVATIVE SPRAY DISPENSER TO REDUCE INDOOR AIR EMISSIONS FROM AEROSOL CONSUMER PRODUCTS

    EPA Science Inventory

    The report presents the operating principles and performance of a new type of spray nozzle. This nozzle, termed a "ligament-controlled effervescent atomizer," was developed to allow consumer product manufacturers to replace volatile organic compound (VOC) solvents with water, and...

  10. Ceramic fiber insulation impregnated with an infra-red retardant coating and method for production thereof

    NASA Technical Reports Server (NTRS)

    Zinn, Alfred A. (Inventor); Tarkanian, Ryan Jeffrey (Inventor)

    2007-01-01

    The invented insulation is a ceramic fiber insulation wherein the ceramic fibers are treated with a coating which contains transition metal oxides. The invented process for coating the insulation is a process of applying the transition metal oxide coating to the fibers of the insulation after the fibers have been formed into a tile or other porous body. The coating of transition metal oxide lowers the transmittance of radiation through the insulation thereby lowering the temperature of the backface of the insulation and better protecting the structure that underlies the insulation.

  11. AERUS-GEO: a MSG/SEVIRI satellite-based aerosol product allowing to capture dust events for the last 10 years over Europe and Africa

    NASA Astrophysics Data System (ADS)

    Carrer, Dominique; Roujean, Jean-Louis; Ceamanos, Xavier; Six, Bruno; Moparthy, Suman

    2016-04-01

    The aerosol signal derived from visible and near-infrared remote sensing observations can now be isolated thanks to a method allowing a proper separation of the atmosphere and surface components. This product is called AERUS-Geo (Aerosol and surface albEdo Retrieval Using a directional Splitting method - application to Geo data) and covers Europe, Africa, and the Eastern part of South America. It fully exploits the directional and temporal dimensions of the MSG/SEVIRI satellite signal through the use of a semi-empirical kernel-driven BRDF (Bidirectional Reflectance Distribution Function) model mimicking the radiative anisotropy for the surface/atmosphere coupled system. The AOD values estimated at 0.63 μm and 1.64 μm serve to calculate an Ångström coefficient that is further used to classify the aerosol layer into a continental, maritime, or a desert type. The AERUS-GEO product compares favourably with measurements of several AERONET stations, MODIS-derived (Moderate Resolution Imaging Spectro-radiometer), and MISR-derived (Multi-angle Imaging Spectro-Radiometer) products within a 20% of accuracy. The method proves to be competitive, not only in tracking anthropogenic aerosol emissions in the troposphere but also in estimating dust events. In addition, the higher frequency of AOD products with AERUS-GEO provides the means to quantify the aerosol radiative forcing in a more accurate manner than using low-orbit satellite data. The AERUS-GEO algorithm was implemented by the ICARE Data Center (http://www.icare.univ-lille1.fr), which operationally disseminates in near real time (NRT) a daily AOD product at 0.63 μm over the MSG (Meteosat Second Generation) disk since 2014. In addition to an NRT AOD product, also a long term reprocessing of satellite derived AOD still based on MSG/SEVIRI observations has been implemented. This allows to perform a thorough monitoring of the dust events over Europe and Africa for the last 10 years (2005 to 2015) for the benefit of a

  12. Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines.

    PubMed

    Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L

    2013-12-17

    Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.

  13. CALIPSO Observations of Aerosol Properties Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas; Yang, Weidong

    2010-01-01

    Clouds are surrounded by a transition zone of rapidly changing aerosol properties. Characterizing this zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects as well as for improving satellite measurements of aerosol properties. We present a statistical analysis of a global dataset of CALIPSO (Cloud-Aerosol Lidar and infrared Pathfinder Satellite Observation) Lidar observations over oceans. The results show that the transition zone extends as far as 15 km away from clouds and it is ubiquitous over all oceans. The use of only high confidence level cloud-aerosol discrimination (CAD) data confirms the findings. However, the results underline the need for caution to avoid biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  14. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; Kroll, J. H.; Worsnop, D. R.; Thornton, J. A.

    2015-07-01

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO-HR-ToF-CIMS are highly correlated with, and explain at least 25-50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of

  15. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; Kroll, J. H.; Worsnop, D.; Thornton, J. A.

    2015-02-01

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25-50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of

  16. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  17. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...

    2015-07-16

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  18. Method of producing a carbon coated ceramic membrane and associated product

    DOEpatents

    Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.

    1993-01-01

    A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.

  19. Fe-Zn Alloy Coating on Galvannealed (GA) Steel Sheet to Improve Product Qualities

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata; Guin, Akshya Kumar; Raju, Pankaj; Manna, Manindra; Dutta, Monojit; Venugopalan, T.

    2014-09-01

    Galvannealed steel sheets (GA) have become the mainstream steel sheet for automobile applications because of their superior corrosion resistance, paintability, and weldability. To impart specific properties, different coatings on GA steel sheet were reported to improve properties further. In this context, we have developed an electroplating process (flash coating) for bright and adherent Fe-Zn alloy coating on GA steel sheet to enhance performances such as weldability, frictional behavior, phosphatability, and defect coverage. A comparative study with bare GA steel sheet was carried out for better elastration. The electroplating time was reduced below 10 s for practical applicability in an industrial coating line by modulating the bath composition. Electroplating was performed at current density of 200-500 A/m2 which yielded with higher cathode current efficiency of 85-95%. The performance results show that Fe-10 wt.% Zn-coated GA steel sheet (coating time 7 s) has better spot weldability, lower dynamic coefficient of friction (0.06-0.07 in lubrication), and better corrosion resistance compared to bare GA steel sheet. Uniform phosphate coating with globular crystal size of 2-5 µm was obtained on Fe-Zn flash-coated GA steel sheet. Hopeite was the main phosphate compound (77.9 wt.%) identified along with spencerite (13.6 wt.%) and phosphophyllite (8.5 wt.%).

  20. Method of producing a carbon coated ceramic membrane and associated product

    DOEpatents

    Liu, P.K.T.; Gallaher, G.R.; Wu, J.C.S.

    1993-11-16

    A method is described for producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane. 12 figures.

  1. Application of Earth Sciences Products for Use in Next Generation Numerical Aerosol Prediction Models

    DTIC Science & Technology

    2009-09-30

    slope correction to attempt to address the microphysical errors, and a linear regression against MODIS albedo data to correct the boundary condition...scenarios, typically 3 times larger than the standard level 2 product. To help speciate dust , depolarization profiles are also used for the 0.532 µm...10.1029/2008JD010870. [published, refereed] Hansell, R. A., K.N. Liou, S.C. Ou, S.C. Tsay, Q. Ji, and J. S. Reid, 2008: Remote sensing of mineral dust

  2. Improvement of black nickel coatings. [product development for use in solar collectors

    NASA Technical Reports Server (NTRS)

    Peterson, R. E.; Lin, J. H.

    1976-01-01

    Selectively absorbing black nickel coatings are among the most optically efficient low cost coatings for use on flat plate solar collectors. However, a current Ni-Zn-S-O coating in use is quite susceptible to a humid environment, degrading badly in less than ten days at 38 C (100 F) at 95 percent relative humidity. Therefore, a black nickel formula was developed which can withstand such exposures with no loss of optical efficiency, solar absorption of 0.92 and an infrared emittance (at 100 C) of 1.00 were still present after 14 days of humidity exposure. This compares to a solar absorptance of only 0.72 for the previous formula after a similar time period. The electroplating bath and conditions were changed to obtain the more stable coating configuration. The effect of bath composition, temperature, pH, and plating current density and time on the coating composition, spectral optical properties and durability were investigated systematically.

  3. MODIS Collection 6 aerosol products: Comparison between Aqua's e-Deep Blue, Dark Target, and "merged" data sets, and usage recommendations

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Munchak, L. A.; Hsu, N. C.; Levy, R. C.; Bettenhausen, C.; Jeong, M.-J.

    2014-12-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) Atmospheres data product suite includes three algorithms applied to retrieve midvisible aerosol optical depth (AOD): the Enhanced Deep Blue (DB) and Dark Target (DT) algorithms over land, and a DT over-water algorithm. All three have been refined in the recent "Collection 6" (C6) MODIS reprocessing. In particular, DB has been expanded to cover vegetated land surfaces as well as brighter desert/urban areas. Additionally, a new "merged" data set which draws from all three algorithms is included in the C6 products. This study is intended to act as a point of reference for new and experienced MODIS data users with which to understand the global and regional characteristics of the C6 DB, DT, and merged data sets, based on MODIS Aqua data. This includes validation against Aerosol Robotic Network (AERONET) observations at 111 sites, focused toward regional and categorical (surface/aerosol type) analysis. Neither algorithm consistently outperforms the other, although in many cases the retrieved AOD and the level of its agreement with AERONET are very similar. In many regions the DB, DT, and merged data sets are all suitable for quantitative applications, bearing in mind that they cannot be considered independent, while in other cases one algorithm does consistently outperform the other. Usage recommendations and caveats are thus somewhat complicated and regionally dependent.

  4. Apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons

    NASA Technical Reports Server (NTRS)

    Muradov, Nazim Z. (Inventor); Smith, Franklyn (Inventor); Tabatabaie-Raissi, Ali (Inventor)

    2012-01-01

    A novel process and apparatus is disclosed for sustainable, continuous production of hydrogen and carbon by catalytic dissociation or decomposition of hydrocarbons at elevated temperatures using in-situ generated carbon particles. Carbon particles are produced by decomposition of carbonaceous materials in response to an energy input. The energy input can be provided by at least one of a non-oxidative and oxidative means. The non-oxidative means of the energy input includes a high temperature source, or different types of plasma, such as, thermal, non-thermal, microwave, corona discharge, glow discharge, dielectric barrier discharge, or radiation sources, such as, electron beam, gamma, ultraviolet (UV). The oxidative means of the energy input includes oxygen, air, ozone, nitrous oxide (NO.sub.2) and other oxidizing agents. The method, apparatus and process of the present invention is applicable to any gaseous or liquid hydrocarbon fuel and it produces no or significantly less CO.sub.2 emissions compared to conventional processes.

  5. Toward understanding amines and their degradation products from postcombustion CO2 capture processes with aerosol mass spectrometry.

    PubMed

    Ge, Xinlei; Shaw, Stephanie L; Zhang, Qi

    2014-05-06

    Amine-based postcombustion CO2 capture (PCCC) is a promising technique for reducing CO2 emissions from fossil fuel burning plants. A concern of the technique, however, is the emission of amines and their degradation byproducts. To assess the environmental risk of this technique, standardized stack sampling and analytical methods are needed. Here we report on the development of an integrated approach that centers on the application of a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) for characterizing amines and PCCC-relevant species. Molecular characterization is achieved via ion chromatography (IC) and electrospray ionization high-resolution mass spectrometry (ESI-MS). The method has been optimized, particularly, by decreasing the AMS vaporizer temperature, to gain quantitative information on the elemental composition and major nitrogen-containing species in laboratory-degraded amine solvents commonly tested for PCCC applications, including ethanolamine (MEA), methyldiethanolamine (MDEA), and piperazine (PIP). The AMS-derived nitrogen-to-carbon (N/C) ratios for the degraded solvent and product mixtures agree well with the results from a total organic carbon and total nitrogen (TOC/TN) analyzer. In addition, marker ions identified in the AMS spectra are used to estimate the mass contributions of individual species. Overall, our results indicate that this new approach is suitable for characterizing PCCC-related mixtures as well as organic nitrogen species in other sample types. As an online instrument, AMS can be used for both real-time characterization of emissions from operating PCCC plants and ambient particles in the vicinity of the facilities.

  6. Toward Understanding Amines and Their Degradation Products from Postcombustion CO2 Capture Processes with Aerosol Mass Spectrometry

    PubMed Central

    2015-01-01

    Amine-based postcombustion CO2 capture (PCCC) is a promising technique for reducing CO2 emissions from fossil fuel burning plants. A concern of the technique, however, is the emission of amines and their degradation byproducts. To assess the environmental risk of this technique, standardized stack sampling and analytical methods are needed. Here we report on the development of an integrated approach that centers on the application of a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) for characterizing amines and PCCC-relevant species. Molecular characterization is achieved via ion chromatography (IC) and electrospray ionization high-resolution mass spectrometry (ESI-MS). The method has been optimized, particularly, by decreasing the AMS vaporizer temperature, to gain quantitative information on the elemental composition and major nitrogen-containing species in laboratory-degraded amine solvents commonly tested for PCCC applications, including ethanolamine (MEA), methyldiethanolamine (MDEA), and piperazine (PIP). The AMS-derived nitrogen-to-carbon (N/C) ratios for the degraded solvent and product mixtures agree well with the results from a total organic carbon and total nitrogen (TOC/TN) analyzer. In addition, marker ions identified in the AMS spectra are used to estimate the mass contributions of individual species. Overall, our results indicate that this new approach is suitable for characterizing PCCC-related mixtures as well as organic nitrogen species in other sample types. As an online instrument, AMS can be used for both real-time characterization of emissions from operating PCCC plants and ambient particles in the vicinity of the facilities. PMID:24617831

  7. Aerosol emission monitoring in the production of silicon carbide nanoparticles by induction plasma synthesis

    NASA Astrophysics Data System (ADS)

    Thompson, Drew; Leparoux, Marc; Jaeggi, Christian; Buha, Jelena; Pui, David Y. H.; Wang, Jing

    2013-12-01

    In this study, the synthesis of silicon carbide (SiC) nanoparticles in a prototype inductively coupled thermal plasma reactor and other supporting processes, such as the handling of precursor material, the collection of nanoparticles, and the cleaning of equipment, were monitored for particle emissions and potential worker exposure. The purpose of this study was to evaluate the effectiveness of engineering controls and best practice guidelines developed for the production and handling of nanoparticles, identify processes which result in a nanoparticle release, characterize these releases, and suggest possible administrative or engineering controls which may eliminate or control the exposure source. No particle release was detected during the synthesis and collection of SiC nanoparticles and the cleaning of the reactor. This was attributed to most of these processes occurring in closed systems operated at slight underpressure. Other tasks occurring in more open spaces, such as the disconnection of a filter assembly from the reactor system and the use of compressed air for the cleaning of filters where synthesized SiC nanoparticles were collected, resulted in releases of submicrometer particles with a mode size of 170-180 nm. Observation of filter samples under scanning electron microscope confirmed that the particles were agglomerates of SiC nanoparticles.

  8. Development of an Operational Multi-sensor and Multi-channel Aerosol Assimilation Package

    DTIC Science & Technology

    2011-08-18

    contamination, especially cirrus cloud contamination, is still a problem for the MISR aerosol product. Therefore, quality assurance and quality check...the Cloud -Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). With knowledge gained from the multi-sensor analysis, the long-term... Cloud -Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) aerosol products {Zhang et al, BACIMO, 2010; Zhang et al, Aerosol

  9. Aglite lidar: a portable elastic lidar system for investigating aerosol and wind motions at or around agricultural production facilities

    NASA Astrophysics Data System (ADS)

    Marchant, Christian C.; Wilkerson, Thomas; Bingham, Gail E.; Zavyalov, Vladimir V.; Andersen, Jan M.; Wright, Cordell B.; Cornelsen, Scott S.; Martin, Randal S.; Silva, Philip J.; Hatfield, Jerry L.

    2009-02-01

    The Aglite Lidar is a portable scanning lidar that can be quickly deployed at agricultural and other air quality study sites. The purpose of Aglite is to map the concentration of PM10 and PM2.5 in aerosol plumes from agricultural and other sources. Aglite uses a high-repetition rate low-pulse energy 3-wavelength YAG laser with photon-counting detection together with a steerable pointing mirror to measure aerosol concentration with high spatial and temporal resolution. Aglite has been used in field campaigns in Iowa, Utah and California. The instrument is described, and performance and lidar sensitivity data are presented. The value of the lidar in aerosol plume mapping is demonstrated, as is the ability to extract wind-speed information from the lidar data.

  10. Contribution of methane to aerosol carbon mass

    NASA Astrophysics Data System (ADS)

    Bianchi, F.; Barmet, P.; Stirnweis, L.; El Haddad, I.; Platt, S. M.; Saurer, M.; Lötscher, C.; Siegwolf, R.; Bigi, A.; Hoyle, C. R.; DeCarlo, P. F.; Slowik, J. G.; Prévôt, A. S. H.; Baltensperger, U.; Dommen, J.

    2016-09-01

    Small volatile organic compounds (VOC) such as methane (CH4) have long been considered non-relevant to aerosol formation due to the high volatility of their oxidation products. However, even low aerosol yields from CH4, the most abundant VOC in the atmosphere, would contribute significantly to the total particulate carbon budget. In this study, organic aerosol (OA) mass yields from CH4 oxidation were evaluated at the Paul Scherrer Institute (PSI) smog chamber in the presence of inorganic and organic seed aerosols. Using labeled 13C methane, we could detect its oxidation products in the aerosol phase, with yields up to 0.09

  11. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  12. Polymer coating for immobilizing soluble ions in a phosphate ceramic product

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.

    2000-01-01

    A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.

  13. Polymer Coating for Immobilizing Soluble Ions in a Phosphate Ceramic Product

    SciTech Connect

    Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.

    1999-05-05

    A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.

  14. Known Unknowns Explained: Hono Daytime Production from the Anion-Catalyzed Uptake of NO2 on Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Colussi, A. J.

    2012-12-01

    Recent evidence strongly suggests that the decay of NO2 in urban air and the related production of HONO at daytime involve unidentified multiphase reactions. Here we address these issues and analyze the results of field campaigns from the perspective of our laboratory studies on interfacial NO2 chemistry. We note that the similar (~ 4 hr) NO2 decay lifetimes inferred from satellite sightings over megacities ranging from 2° N to 40° N at all seasons are incompatible with the conventional view that NO2 is removed (as HNO3) by gas-phase OH-radicals whose concentrations depend on solar irradiance. This insight also applies to the daytime source of HONO, a non-photochemical process that reaches its maximal strength at noon. Herein, we present new laboratory experiments and quantum mechanical calculations confirming that the reactive uptake of gaseous NO2 on aqueous interfaces is generally catalyzed by anions, and show that the preceding observations can be accounted for by the disproportionation of NO2 (via 2 NO2 + H2O = H+ + NO3- + HONO) on secondary organic aerosol particles containing carboxylate ion loadings that peak at noon, as reported elsewhere.IGURE 1 - Left axis: The frequencies of O(1D) atom production from the solar photolysis of ozone, J(O1D), at zero elevation under an ozone column of 300 Dobson units at noon on (from left to right) Feb. 1st, May 1st, Aug. 1st and Nov. 1st over: (1) Singapore 1.3° N, (2) Pearl River Delta 22.5° N, (3) Riyadh 24.6° N, (4) Isfahan 32.6° N, (5) Los Angeles 34° N, (6) Tokyo 35.6° N, (7) Four Corners 36.7° N, (8) Madrid 40.4° N and (9) Moscow 55.8° N. Right axis (note the logarithmic scale): red dashes correspond to the ratios J(O1D)mid-summer/J(O1D)mid-winter (herein midsummer is Aug. 1st, midwinter is Feb. 1st).

  15. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: Secondary organic aerosol formation and gas-phase oxidation products

    NASA Astrophysics Data System (ADS)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Deboudt, Karine; Fourmentin, Marc; Choël, Marie

    2014-04-01

    Methoxyphenols are low molecular weight semi-volatile polar aromatic compounds produced from the pyrolysis of wood lignin. The reaction of guaiacol (2-methoxyphenol) with hydroxyl radicals has been studied in the LPCA simulation chamber at (294 ± 2) K, atmospheric pressure, low relative humidity (RH < 1%) and under high-NOx conditions using CH3ONO as OH source. The aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer); the SOA yields were in the range from 0.003 to 0.87 and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. Transmission (TEM) and Scanning (SEM) Electron Microscopy observations were performed to characterize the physical state of SOA produced from the OH reaction with guaiacol; they display both liquid and solid particles (in an amorphous state). GC-FID (Gas Chromatography - Flame Ionization Detection) and GC-MS (Gas Chromatography - Mass Spectrometry) analysis show the formation of nitroguaiacol isomers as main oxidation products in the gas- and aerosol-phases. In the gas-phase, the formation yields were (10 ± 2) % for 4-nitroguaiacol (1-hydroxy-2-methoxy-4-nitrobenzene; 4-NG) and (6 ± 2) % for 3- or 6-nitroguaiacol (1-hydroxy-2-methoxy-3-nitrobenzene or 1-hydroxy-2-methoxy-6-nitrobenzene; 3/6-NG; the standards are not commercially available so both isomers cannot be distinguished) whereas in SOA their yield were much lower (≤0.1%). To our knowledge, this work represents the first identification of nitroguaiacols as gaseous oxidation products of the OH reaction with guaiacol. As the reactivity of nitroguaiacols with atmospheric oxidants is probably low, we suggest using them as biomass burning emission gas tracers. The atmospheric implications of the guaiacol + OH reaction are also discussed.

  16. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia during the last decade.

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Michael; Rap, Alex; Reddington, Carly; Spracklen, Dominick; Buermann, Wolfgang

    2016-04-01

    The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning have increased the diffuse fraction of incoming solar radiation and the efficiency of photosynthesis leading to increased plant carbon uptake. Using a combination of atmospheric and biospheric models, we find that changes in diffuse light associated with fossil fuel aerosol emission accounts for only 2.8% of the increase in global net primary production (1.221 PgC/yr) over the study period 1998 to 2007. This relatively small global signal is however a result of large regional compensations. Over East Asia, the strong increase in fossil fuel emissions contributed nearly 70% of the increased plant carbon uptake (21 TgC/yr), whereas the declining fossil fuel aerosol emissions in Europe and North America contributed negatively (-16% and -54%, respectively) to increased plant carbon uptake. At global scale, we also find the CO2 fertilization effect on photosynthesis to be the dominant driver of increased plant carbon uptake, in line with previous studies. These results suggest that further research into alternative mechanisms by which fossil fuel emissions could increase carbon uptake, such as nitrogen deposition and carbon-nitrogen interactions, is required to better understand a potential link between the recent changes in fossil fuel emissions and terrestrial carbon uptake.

  17. Annual cycle and temperature dependence of pinene oxidation products and other water-soluble organic compounds in coarse and fine aerosol samples

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-05-01

    Filter samples of fine and coarse particulate matter were collected over a period of one year and analyzed for water-soluble organic compounds, including the pinene oxidation products pinic acid, pinonic acid, 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA) and a variety of dicarboxylic acids (C5-C16) and nitrophenols. Seasonal variations and other characteristic features are discussed with regard to aerosol sources and sinks and data from other studies and regions. The ratios of adipic acid (C6) and phthalic acid (Ph) to azelaic acid (C9) indicate that the investigated aerosols samples were mainly influenced by biogenic sources. An Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature. Model calculations suggest that the temperature dependence is largely due to enhanced emissions and OH radical concentrations at elevated temperatures, whereas the influence of gas-particle partitioning appears to play a minor role. Enhanced ratios of pinic acid to 3-MBTCA indicate strong chemical aging of the investigated aerosols in summer and spring. Acknowledgment: The authors would like to thank M. Claeys for providing synthetic 3-methyl-1,2,3-butanetricarboxylic acid standards for LC-MS analysis and J. Fröhlich for providing filter samples and related information.

  18. Aerosol size distribution and aerosol water content measurements during Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sievering, H.; Boatman, J.; Wellman, D.; Pszenny, A.

    1995-11-01

    Aerosol size distribution data measured during the June 1992 Marine Aerosol and Gas Exchange experiment are analyzed to investigate the characteristics of fine marine aerosol particles measured over the North Atlantic near the Azores Islands. Measured aerosol size distribution data were corrected using the corrected size calibration data based on the optical properties of particles being measured. The corrected size distribution data were then approximated with either one or two lognormal size distributions, depending on air mass conditions. Under clean air mass conditions <3 μm diameter aerosol size distributions typically exhibited two modes, consisting of an accumulation mode and the small end of the sea-salt particle mode. However, under the influence of continental polluted air masses, the aerosol size distribution was dominated by <1 μm diameter particles in a single mode with an increased aerosol concentration. Aerosol water content of accumulation mode marine aerosols was estimated from differences between several series of ambient and dried aerosol size distributions. The average aerosol water fraction was 0.31, which is in good agreement with an empirical aerosol growth model estimate. The average rate of SO4= production in the accumulation mode aerosol water by H2O2 oxidation was estimated to be <7×10-10 mol L-1 s-1, which is an insignificant contributor to the observed non-sea-salt SO4= in the accumulation mode.

  19. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K. Hartwell; John b. Walter

    2010-10-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  20. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K Hartwell; John B. Walter

    2008-09-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  1. Solutions Network Formulation Report. Integration of OMI and TES Aerosol Products into the EPA Regional Planning Organizations' FASTNET Aerosol Tracking and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly; Andrews, Jane C.

    2006-01-01

    Every year, more than 280 million visitors tour our Nation s most treasured parks and wilderness areas. Unfortunately, many visitors are unable to see the spectacular vistas they expect because of white or brown haze in the air. Most of this haze is not natural; it is air pollution, carried by the wind often hundreds of miles from its origin. Some of the pollutants have been linked to serious health problems, such as asthma and other lung disorders, and even premature death. In addition, nitrates and sulfates contribute to acid rain formation, which contaminates rivers and lakes and erodes buildings and historical monuments. The U.S. Environmental Protection Agency RPOs (Regional Planning Organizations) have been tasked with monitoring and determining the nature and origin of haze in Class I scenic areas, and finding ways to reduce haze in order to improve visibility in these areas. The RPOs have developed an Internet-based air quality DST (Decision Support Tool) called FASTNET (Fast Aerosol Sensing Tools for Natural Event Tracking). While FASTNET incorporates a few satellite datasets, most of the data utilized by this DST comes from ground-based instrument networks. The problem is that in many areas the sensors are sparsely located, with long distances between them, causing difficulties in tracking haze over the United States, determining its source, and analyzing its content. Satellite data could help to fill in the data gaps and to supplement and verify ground-recorded air quality data. Although satellite data are now being used for air quality research applications, such data are not routinely used for environmental decision support, in part because of limited resources, difficulties with interdisciplinary data interpretation, and the need for advanced inter-agency partnerships. As a result, the validation and verification of satellite data for air quality operational system applications has been limited This candidate solution evaluates the usefulness of OMI

  2. Aglite Lidar: A Portable Elastic Lidar System for Investigating Aerosol and Wind Motions at or Around Agricultural Production Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Aglite Lidar is a portable scanning lidar that can be quickly deployed at agricultural and other air quality study sites. The purpose of Aglite is to map the concentration of PM10 and PM2.5 in aerosol plumes from agricultural and other sources. Aglite uses a high-repetition rate low-pulse energy...

  3. Diamond Coatings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advances in materials technology have demonstrated that it is possible to get the advantages of diamond in a number of applications without the cost penalty, by coating and chemically bonding an inexpensive substrate with a thin film of diamond-like carbon (DLC). Diamond films offer tremendous technical and economic potential in such advances as chemically inert protective coatings; machine tools and parts capable of resisting wear 10 times longer; ball bearings and metal cutting tools; a broad variety of optical instruments and systems; and consumer products. Among the American companies engaged in DLC commercialization is Diamonex, Inc., a diamond coating spinoff of Air Products and Chemicals, Inc. Along with its own proprietary technology for both polycrystalline diamond and DLC coatings, Diamonex is using, under an exclusive license, NASA technology for depositing DLC on a substrate. Diamonex is developing, and offering commercially, under the trade name Diamond Aegis, a line of polycrystalline diamond-coated products that can be custom tailored for optical, electronic and engineering applications. Diamonex's initial focus is on optical products and the first commercial product is expected in late 1990. Other target applications include electronic heat sink substrates, x-ray lithography masks, metal cutting tools and bearings.

  4. Dry particle coating of polymer particles for tailor-made product properties

    SciTech Connect

    Blümel, C. Schmidt, J. Dielesen, A. Sachs, M. Winzer, B. Peukert, W. Wirth, K.-E.

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratio and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.

  5. Production of Conductive PEDOT-Coated PVA-GO Composite Nanofibers

    NASA Astrophysics Data System (ADS)

    Zubair, Nur Afifah; Rahman, Norizah Abdul; Lim, Hong Ngee; Sulaiman, Yusran

    2017-02-01

    Electrically conductive nanofiber is well known as an excellent nanostructured material for its outstanding performances. In this work, poly(3,4-ethylenedioxythiophene) (PEDOT)-coated polyvinyl alcohol-graphene oxide (PVA-GO)-conducting nanofibers were fabricated via a combined method using electrospinning and electropolymerization techniques. During electrospinning, the concentration of PVA-GO solution and the applied voltage were deliberately altered in order to determine the optimized electrospinning conditions. The optimized parameters obtained were 0.1 mg/mL of GO concentration with electrospinning voltage of 15 kV, which displayed smooth nanofibrous morphology and smaller diameter distribution. The electrospun PVA-GO nanofiber mats were further modified by coating with the conjugated polymer, PEDOT, using electropolymerization technique which is a facile approach for coating the nanofibers. SEM images of the obtained nanofibers indicated that cauliflower-like structures of PEDOT were successfully grown on the surface of the electrospun nanofibers during the potentiostatic mode of the electropolymerization process. The conductive nature of PEDOT coating strongly depends on the different electropolymerization parameters, resulting in good conductivity of PEDOT-coated nanofibers. The optimum electropolymerization of PEDOT was at a potential of 1.2 V in 5 min. The electrochemical measurements demonstrated that the fabricated PVA-GO/PEDOT composite nanofiber could enhance the current response and reduce the charge transfer resistance of the nanofiber.

  6. Production of Conductive PEDOT-Coated PVA-GO Composite Nanofibers.

    PubMed

    Zubair, Nur Afifah; Rahman, Norizah Abdul; Lim, Hong Ngee; Sulaiman, Yusran

    2017-12-01

    Electrically conductive nanofiber is well known as an excellent nanostructured material for its outstanding performances. In this work, poly(3,4-ethylenedioxythiophene) (PEDOT)-coated polyvinyl alcohol-graphene oxide (PVA-GO)-conducting nanofibers were fabricated via a combined method using electrospinning and electropolymerization techniques. During electrospinning, the concentration of PVA-GO solution and the applied voltage were deliberately altered in order to determine the optimized electrospinning conditions. The optimized parameters obtained were 0.1 mg/mL of GO concentration with electrospinning voltage of 15 kV, which displayed smooth nanofibrous morphology and smaller diameter distribution. The electrospun PVA-GO nanofiber mats were further modified by coating with the conjugated polymer, PEDOT, using electropolymerization technique which is a facile approach for coating the nanofibers. SEM images of the obtained nanofibers indicated that cauliflower-like structures of PEDOT were successfully grown on the surface of the electrospun nanofibers during the potentiostatic mode of the electropolymerization process. The conductive nature of PEDOT coating strongly depends on the different electropolymerization parameters, resulting in good conductivity of PEDOT-coated nanofibers. The optimum electropolymerization of PEDOT was at a potential of 1.2 V in 5 min. The electrochemical measurements demonstrated that the fabricated PVA-GO/PEDOT composite nanofiber could enhance the current response and reduce the charge transfer resistance of the nanofiber.

  7. High-resolution mass spectrometry and molecular characterization of aqueous photochemistry products of common types of secondary organic aerosols.

    PubMed

    Romonosky, Dian E; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2015-03-19

    This work presents a systematic investigation of the molecular level composition and the extent of aqueous photochemical processing in different types of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors including α-pinene, β-pinene, β-myrcene, d-limonene, α-humulene, 1,3,5-trimethylbenzene, and guaiacol, oxidized by ozone (to simulate a remote atmosphere) or by OH in the presence of NOx (to simulate an urban atmosphere). Chamber- and flow-tube-generated SOA samples were collected, extracted in a methanol/water solution, and photolyzed for 1 h under identical irradiation conditions. In these experiments, the irradiation was equivalent to about 3-8 h of exposure to the sun in its zenith. The molecular level composition of the dissolved SOA was probed before and after photolysis with direct-infusion electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). The mass spectra of unphotolyzed SOA generated by ozone oxidation of monoterpenes showed qualitatively similar features and contained largely overlapping subsets of identified compounds. The mass spectra of OH/NOx-generated SOA had more unique visual appearance and indicated a lower extent of product overlap. Furthermore, the fraction of nitrogen-containing species (organonitrates and nitroaromatics) was highly sensitive to the SOA precursor. These observations suggest that attribution of high-resolution mass spectra in field SOA samples to specific SOA precursors should be more straightforward under OH/NOx oxidation conditions compared to the ozone-driven oxidation. Comparison of the SOA constituents before and after photolysis showed the tendency to reduce the average number of atoms in the SOA compounds without a significant effect on the overall O/C and H/C ratios. SOA prepared by OH/NOx photooxidation of 1,3,5-trimethylbenzene and guaiacol were more resilient to photolysis despite being the most light-absorbing. The composition of SOA prepared by ozonolysis of

  8. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    acetate, polymerized rapidly and produced some polymer film encapsulation of the aerosol droplets. A two-stage microcapsule generator was designed...encapsulating material, the generator also produced microcapsules of dibutyl phosphite in polyethylene, nitrocellulose, and natural rubber.

  9. Production and performance of multilayer-coated conical x-ray mirrors.

    PubMed

    Ulmer, Melville P; Altkorn, Robert; Graham, Michael E; Madan, Anita; Chu, Yong S

    2003-12-01

    A method of fabricating replica figured x-ray optics with integral multilayer coatings is presented. With the intact electroforming multilayer process (IEMP) technique, we sputter multilayers onto a reusable superpolished mandrel, electroform nickel over the multilayers, and remove the multilayer-coated nickel shell intact from the mandrel. This approach offers advantages over more traditional, original, and segmented-replica fabrication techniques, including low cost; compatibility with a wide range of mirror designs, diameters, and focal lengths; simple integration with multilayer sputtering processes; and the ability to produce complete shells of revolution. The fabrication of W/Si multilayer-coated 10-cm-diameter conical x-ray mirrors is described, as are reflectivity measurements at 10 and 30 keV. The measured reflectivity of the IEMP multilayers at the 10-keV primary Bragg peak was 17%. Measurements of multiple points on the cone showed multilayer uniformity to within a few percent around the mirror.

  10. Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products.

    PubMed

    López-Carballo, G; Hernández-Muñoz, P; Gavara, R; Ocio, M J

    2008-08-15

    The aim of this work was to develop antimicrobial photosensitizer-containing edible films and coatings based on gelatin as the polymer matrix, incorporating sodium magnesium chlorophyllin (E-140) and sodium copper chlorophyllin (E-141). Chlorophyllins were incorporated into the gelatin film-forming solution and the inhibiting effect of the cast films was tested against Staphylococcus aureus and Listeria monocytogenes. The results demonstrated that water soluble sodium magnesium chlorophyllin and water soluble sodium copper chlorophyllin reduced the growth of S. aureus and L. monocytogenes by 5 log and 4 log respectively. Subsequently, the activity of self-standing films and coatings containing E-140 was assessed on cooked frankfurters inoculated with S. aureus and L. monocytogenes. These tests showed that it was possible to reduce microorganism growth in cooked frankfurters inoculated with S. aureus and L. monocytogenes by covering them with sodium magnesium chlorophyllin-gelatin films and coatings.

  11. Biology of the Coarse Aerosol Mode: Insights Into Urban Aerosol Ecology

    NASA Astrophysics Data System (ADS)

    Dueker, E.; O'Mullan, G. D.; Montero, A.

    2015-12-01

    Microbial aerosols have been understudied, despite implications for climate studies, public health, and biogeochemical cycling. Because viable bacterial aerosols are often associated with coarse aerosol particles, our limited understanding of the coarse aerosol mode further impedes our ability to develop models of viable bacterial aerosol production, transport, and fate in the outdoor environment, particularly in crowded urban centers. To address this knowledge gap, we studied aerosol particle biology and size distributions in a broad range of urban and rural settings. Our previously published findings suggest a link between microbial viability and local production of coarse aerosols from waterways, waste treatment facilities, and terrestrial systems in urban and rural environments. Both in coastal Maine and in New York Harbor, coarse aerosols and viable bacterial aerosols increased with increasing wind speeds above 4 m s-1, a dynamic that was observed over time scales ranging from minutes to hours. At a New York City superfund-designated waterway regularly contaminated with raw sewage, aeration remediation efforts resulted in significant increases of coarse aerosols and bacterial aerosols above that waterway. Our current research indicates that bacterial communities in aerosols at this superfund site have a greater similarity to bacterial communities in the contaminated waterway with wind speeds above 4 m s-1. Size-fractionated sampling of viable microbial aerosols along the urban waterfront has also revealed significant shifts in bacterial aerosols, and specifically bacteria associated with coarse aerosols, when wind direction changes from onshore to offshore. This research highlights the key connections between bacterial aerosol viability and the coarse aerosol fraction, which is important in assessments of production, transport, and fate of bacterial contamination in the urban environment.

  12. Solar geoengineering using solid aerosol in the stratosphere

    NASA Astrophysics Data System (ADS)

    Weisenstein, D. K.; Keith, D. W.; Dykema, J. A.

    2015-10-01

    Solid aerosol particles have long been proposed as an alternative to sulfate aerosols for solar geoengineering. Any solid aerosol introduced into the stratosphere would be subject to coagulation with itself, producing fractal aggregates, and with the natural sulfate aerosol, producing liquid-coated solids. Solid aerosols that are coated with sulfate and/or have formed aggregates may have very different scattering properties and chemical behavior than uncoated non-aggregated monomers do. We use a two-dimensional (2-D) chemistry-transport-aerosol model to capture the dynamics of interacting solid and liquid aerosols in the stratosphere. As an example, we apply the model to the possible use of alumina and diamond particles for solar geoengineering. For 240 nm radius alumina particles, for example, an injection rate of 4 Tg yr-1 produces a global-average shortwave radiative forcing of -1.2 W m-2 and minimal self-coagulation of alumina although almost all alumina outside the tropics is coated with sulfate. For the same radiative forcing, these solid aerosols can produce less ozone loss, less stratospheric heating, and less forward scattering than sulfate aerosols do. Our results suggest that appropriately sized alumina, diamond or similar high-index particles may have less severe technology-specific risks than sulfate aerosols do. These results, particularly the ozone response, are subject to large uncertainties due to the limited data on the rate constants of reactions on the dry surfaces.

  13. Quantification of isocyanates and amines in polyurethane foams and coated products by liquid chromatography–tandem mass spectrometry

    PubMed Central

    Mutsuga, Motoh; Yamaguchi, Miku; Kawamura, Yoko

    2014-01-01

    An analytical method for the identification and quantification of 10 different isocyanates and 11 different amines in polyurethane (PUR) foam and PUR-coated products was developed and optimized. Isocyanates were extracted and derivatized with di-n-butylamine, while amines were extracted with methanol. Quantification was subsequently performed by liquid chromatography–tandem mass spectrometry. Using this methodology, residual levels of isocyanates and amines in commercial PUR products were quantified. Although the recoveries of certain isocyanates and amines were low, the main compounds used as monomers in the production of PUR products, and their decomposition species, were clearly identified at quantifiable levels. 2,4-and 2,6-toluenediisocyanate were detected in most PUR foam samples and a pastry bag in the range of 0.02–0.92 mg/kg, with their decomposition compounds, 2,4-and 2,6-toluenediamine, detected in all PUR foam samples in the range of 9.5–59 mg/kg. PUR-coated gloves are manufactured using 4,4′-methylenebisphenyl diisocyanate as the main raw material, and a large amount of this compound, in addition to 4,4′-methylenedianiline and dicyclohexylmethane-4,4′-diamine were found in these samples. PMID:24804074

  14. FINISHING FABRICATED METAL PRODUCTS WITH POWDER COATING. Project Summary (EPA/600/SR-96/152)

    EPA Science Inventory

    This report provides a technical and economic evaluation of a polyester powder coating system applied to the exterior and interior surfaces of metal boxes fabricated for the telephone and cable industries. This evaluation summarized many of the requirements and benefits of a clea...

  15. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds

    DTIC Science & Technology

    2013-09-30

    understanding of the effects of aerosol-cloud interactions and drizzle and entrainment processes in boundary layer clouds for the purpose of developing...thickness, cloud turbulence intensity, and aerosols on precipitation production; 4) study the processing of aerosols by cloud processes ; 5) explore mass...drizzle processes to the artificial introduction of CCN and giant nuclei under differing aerosol backgrounds. In addition, a set of aerosol and cloud

  16. Production and magnetic properties of in situ oligomer coated α-Fe nanoparticles in the gas phase

    NASA Astrophysics Data System (ADS)

    Choi, Byeong Ju; Lee, Gang Ho

    2007-11-01

    We report on the production and characterization of the magnetic properties of in situ oligomer coated α-Fe nanoparticles. Although a polymer cannot be used to in situ coat iron nanoparticles in the gas phase due to its low vapor pressure, an oligomer (i.e., a low mass polymer) may be used for this purpose because it has enough vapor pressure. Besides surface protection, functional molecules such as ligands, peptides, antibodies, and DNA can be also easily bound to an oligomer, which will be extremely useful for further advanced applications. We in situ coated α-Fe nanoparticles with a dimethylsilylenesiloxane oligomer in the gas phase by thermally decomposing Fe(CO)5 as a precursor of α-Fe nanoparticles with a resistive heater in the presence of dimethylsilylenesiloxane oligomer vapor. These core-shell nanoparticles ranging from 5 to 15 nm in core α-Fe nanoparticle diameter showed saturation magnetization as high as 68 emu/g and coercivities as large as 1338 and 381 Oe at 10 and 300 K, respectively.

  17. Emission and Photochemical Evolution of Low Vapor Pressure-Volatile Organic Compounds (LVP-VOCs): from Consumer Products to Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Li, L.; Kacarab, M.; Chen, C. L.; Price, D.; Carter, W. P. L.; Cocker, D. R., III

    2015-12-01

    Missing emission sources contribute to potential problems in air quality modeling and human health. Low Vapor Pressure-Volatile Organic Compounds (LVP-VOCs) are widely used in consumer products and currently receive VOC exemptions based on their vapor pressure. However, 58.5 TPD LVP-VOC is estimated to emit in 2020 from consumer products in California based on government and industry inventory data. This work investigates the emission and photochemical evolution of major LVP-VOCs in consumer products to demonstrate LVP-VOC impacts on criteria air pollutants. LVP-VOC emission potential is investigated by offline gravimetric and online headspace tracking pure compounds and consumer product mixtures under ambient relevant conditions. Only 3 of the 14 pure LVP-VOCs were found to be atmospherically unavailable. All target LVP-VOCs are observed to evaporate from tested consumer product mixtures. We found improved thermodynamic parameters to predict LVP-VOC evaporation rate. LVP-VOCs photochemical evolution and their impact on ozone and secondary organic aerosol (SOA) formation are evaluated by integrating SAPRC-11 modeling with laboratory studies in a 90 m3 dual environmental chamber at UC Riverside/CE-CERT. Simultaneous photooxidation experiments, with and without the LVP-VOC, are conducted in the presence of reactive organic gas (ROG) surrogate representing urban chemical smog. Further, LVP-VOC photochemical evolution pathway is investigated under various atmospheric activity (LVP + H2O2, LVP+NO or LVP+H2O2+NO) in the environmental chamber. Gas phase and particle phase mass spectrometers (SIFT-MS, Selected Ion Flow Tube-Mass Spectrum and HR-ToF-MS, High Resolution Time-of-Flight Aerosol mass Spectrometer) are applied to monitor the evolution of LVP-VOCs in the controlled atmosphere. The potential of LVP-VOC oxidation into ELVOC is also illustrated. We finally interpret the health risk and environmental concern related to LVP-VOC emission and photoxidation.

  18. [Experience in scaling up the film coating process for theophylline sustained-release pellets in mass production].

    PubMed

    Grunenberg, P; Lorck, C; Jünger, H; Laicher, A

    1998-05-01

    The scale-up of the film coating process for the production of Bronchoretard pellets (theophylline, CAS 58-55-9) is an example for the successful setup of a modern production technology designed to meet the increasing GMP requirements while taking into consideration ecological and economical aspects. This technology provides a reduction in polymer losses on drying from approx. 20% to under 5% and a distinct improvement in the reproducibility of the in vitro dissolution profiles. Double batch sizes and higher spray rates allow for a substantially higher batch turnover. A production line installed exclusively for Bronchoretard pellets and specific process optimization measures resulted in considerably lower lag-times of the equipment.

  19. AERONET: The Aerosol Robotic Network

    DOE Data Explorer

    The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and is greatly expanded by collaborators from national agencies, institutes, universities, individual scientists, and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, mircrophysical and radiative properties for aerosol research and characterization, validation of satellite retrievals, and synergism with other databases. The network imposes standardization of instruments, calibration, processing and distribution. AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  20. Electron microscopic evaluation and fission product identification of irradiated TRISO coated particles from the AGR-1 experiment: A preliminary Study

    SciTech Connect

    I J van Rooyen; D E Janney; B D Miller; J L Riesterer; P A Demkowicz

    2012-10-01

    ABSTRACT Post-irradiation examination of coated particle fuel from the AGR-1 experiment is in progress at Idaho National Laboratory and Oak Ridge National Laboratory. In this presentation a brief summary of results from characterization of microstructures in the coating layers of selected irradiated fuel particles with burnup of 11.3% and 19.3% FIMA will be given. The main objective of the characterization were to study irradiation effects, fuel kernel porosity, layer debonding, layer degradation or corrosion, fission-product precipitation, grain sizes, and transport of fission products from the kernels across the TRISO layers. Characterization techniques such as scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, and wavelength dispersive spectroscopy were used. A new approach to microscopic quantification of fission-product precipitates is also briefly demonstrated. The characterization emphasized fission-product precipitates in the SiC-IPyC interface, SiC layer and the fuel-buffer interlayer, and provided significant new insights into mechanisms of fission-product transport. Although Pd-rich precipitates were identified at the SiC-IPyC interlayer, no significant SiC-layer thinning was observed for the particles investigated. Characterization of these precipitates highlighted the difficulty of measuring low concentration Ag in precipitates with significantly higher concentrations of contain Pd and U. Different approaches to resolving this problem are discussed. Possible microstructural differences between particles with high and low releases of Ag particles are also briefly discussed, and an initial hypothesis is provided to explain fission-product precipitate compositions and locations. No SiC phase transformations or debonding of the SiC-IPyC interlayer as a result of irradiation were observed. Lessons learned from the post-irradiation examination are described and future actions are recommended.

  1. Roll-to-Roll Production of Spray Coated N-doped Carbon Nanotube Electrodes for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Karakaya, Mehmet; Zhu, Jingyi; Raghavendra, Achyut; Podila, Ramakrishna; Parler, Samuel; Kaplan, James; Rao, Apparao; Cornell Dubilier Electronics, Inc. Collaboration

    2015-03-01

    Although nanocarbons are being increasingly used in energy storage, there has been a lack of inexpensive, continuous and scalable synthesis methods. Here we present a scalable roll-to-roll spray coating process for synthesizing supercapacitors from randomly oriented multi-walled carbon nanotubes electrodes on Al foils, which yield high power and energy densities (~ 700 mW/cm3 and 1 mWh/cm3) and cycle stability (>10000 cycles) on par with Li-ion thin film batteries. Our cost analysis shows that the R2R spray coating process can produce supercapacitors with 10 times the energy density of conventional activated carbon devices at ~ 17% lower cost. NSF CMMI SNM Award #1246800.

  2. The Effects of Long Term Cure on Offgassed Products of Coatings

    NASA Technical Reports Server (NTRS)

    Engle, Ginger; Whitfield, Steve

    1997-01-01

    The Environmental Chemistry and Compatability Team at The Marshall Space Flight Center conducts toxic offgassing analysis on materials and flight hardware for use in habitable environments aboard the Space Shuttle and the International Space Station. As part of Research and Development, the Toxic Offgassing Laboratory conducted a long term cure study on four polyurethane coatings which are slated for potential use on Space Station. This study demonstrates the effects of cure time and temperature on the total tox value (sum T) and the maximum usage weight for each coating. All analysis was conducted according to test procedures outlined specifically for Space Station environments. Therefore, the ratings and weight limits generated for these materials are most applicable to space environments. However, this test does give some indication of time frames for solvent removal and is therefore of interest to, the environmental community as a whole.

  3. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  4. Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implications for PM2.5

    NASA Astrophysics Data System (ADS)

    Jaoui, M.; Lewandowski, M.; Docherty, K.; Offenberg, J. H.; Kleindienst, T. E.

    2014-12-01

    Secondary organic aerosol (SOA) was generated by irradiating 1,3-butadiene (13BD) in the presence of H2O2 or NOx. Experiments were conducted in a smog chamber operated in either flow or batch mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The chemical composition of the gas phase and SOA was analyzed using derivative-based methods (BSTFA, BSTFA + PFBHA, or DNPH) followed by gas chromatography-mass spectrometry (GC-MS) or high-performance liquid chromatography (HPLC) analysis of the derivative compounds. The analysis showed the occurrence of more than 60 oxygenated organic compounds in the gas and particle phases, of which 31 organic monomers were tentatively identified. The major identified products include glyceric acid, d-threitol, erythritol, d-threonic acid, meso-threonic acid, erythrose, malic acid, tartaric acid, and carbonyls including glycolaldehyde, glyoxal, acrolein, malonaldehyde, glyceraldehyde, and peroxyacryloyl nitrate (APAN). Some of these were detected in ambient PM2.5 samples, and could potentially serve as organic markers of 13BD. Furthermore, a series of oligoesters were detected and found to be produced through chemical reactions occurring in the aerosol phase between compounds bearing alcoholic groups and compounds bearing acidic groups. SOA was analyzed for organic mass to organic carbon (OM /OC) ratio, effective enthalpy of vaporization (Δ Hvapeff), and aerosol yield. The average OM /OC ratio and SOA density were 2.7 ± 0.09 and 1.2 ± 0.05, respectively. The average Δ Hvapeff was -26.08 ± 1.46 kJ mol-1, a value lower than that of isoprene SOA. The average laboratory SOA yield measured in this study at aerosol mass concentrations between 22.5 and 140.2 μg m-3 was 0.025 ± 0.011, a value consistent with the literature (0.021-0.178). While the focus of this study has been examination of the particle-phase measurements, the gas-phase photooxidation products have also been

  5. Materials and Coatings for Extreme Performances: Investigations, Applications, Ecologically Safe Technologies for Their Production and Utilization

    DTIC Science & Technology

    2004-11-16

    disordered tissue that gives rise to the broaden peak shown in Fig. 1. The TiN nano- scaled grains are responsible for the second peak. Thus, one can...0.2 to 1.4 N were used in tests. To avoid responsibility as to inaccuracies, which can occur due to the influence of scale factor, coatings were...less expensive dusted powders. III. Application of ferromagnetic powder for mill scale removal New area of steel and cast iron powder

  6. Production development of organic nonflammable spacecraft potting, encapsulating and conformal coating compounds. Volume 4: Executive summary

    NASA Technical Reports Server (NTRS)

    Lieberman, S. L.

    1974-01-01

    The necessity of having nonflammable versions of potting and encapsulating compounds and conformal coatings for space vehicles is discussed. The formulation, EPOCAST 87517 A/B, was found to have the best balance of thermal, electrical, mechanical, physical, and chemical properties of those evaluated. The requirements which this formulation did not meet are listed, and other formulations which were evaluated are summarized. Recommendations for improving EPOCAST 87517 A/B are included.

  7. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  8. In Situ Production of Hard Metal Matrix Composite Coating on Engineered Surfaces Using Laser Cladding Technique

    NASA Astrophysics Data System (ADS)

    Raza, Mohammad Shahid; Hussain, Manowar; Kumar, Vikash; Das, Alok Kumar

    2016-11-01

    The growing need for high wear-resistant surface with enhanced physical properties has led to extensive researches in the field of surface engineering. Laser cladding emerged to be a promising method to achieve these objectives in a cost-effective way. The present paper studies the viability of cladding of tungsten disulfide (WS2) powder by using 400 W continuous-wave fiber laser. WS2 was used as a coating material, which was decomposed at higher temperature and underwent several chemical reactions. By this process, in situ formation of metal matrix composites and hard face coating on the substrate surface were attained. The characterization of laser cladded surface was done to study its morphological, microstructural, mechanical and tribological properties. It was observed that cladding of WS2 powder on 304 SS resulted in the formation of Cr-W-C-Fe metal matrix composite having improved mechanical and tribological properties. The value of microhardness of the coated surface was found to increase three to four times in comparison with the parent material surface. Wear test results indicated a decrease in wear by 1/9th (maximum) as compared to the parent 304 SS surface. The volume fractions of tungsten particles on the cladded surface were also investigated through EDS analysis.

  9. In Situ Production of Hard Metal Matrix Composite Coating on Engineered Surfaces Using Laser Cladding Technique

    NASA Astrophysics Data System (ADS)

    Raza, Mohammad Shahid; Hussain, Manowar; Kumar, Vikash; Das, Alok Kumar

    2017-01-01

    The growing need for high wear-resistant surface with enhanced physical properties has led to extensive researches in the field of surface engineering. Laser cladding emerged to be a promising method to achieve these objectives in a cost-effective way. The present paper studies the viability of cladding of tungsten disulfide (WS2) powder by using 400 W continuous-wave fiber laser. WS2 was used as a coating material, which was decomposed at higher temperature and underwent several chemical reactions. By this process, in situ formation of metal matrix composites and hard face coating on the substrate surface were attained. The characterization of laser cladded surface was done to study its morphological, microstructural, mechanical and tribological properties. It was observed that cladding of WS2 powder on 304 SS resulted in the formation of Cr-W-C-Fe metal matrix composite having improved mechanical and tribological properties. The value of microhardness of the coated surface was found to increase three to four times in comparison with the parent material surface. Wear test results indicated a decrease in wear by 1/9th (maximum) as compared to the parent 304 SS surface. The volume fractions of tungsten particles on the cladded surface were also investigated through EDS analysis.

  10. Heterogeneous photochemistry of imidazole-2-carboxaldehyde: HO2 radical formation and aerosol growth

    NASA Astrophysics Data System (ADS)

    González Palacios, Laura; Corral Arroyo, Pablo; Aregahegn, Kifle Z.; Steimer, Sarah S.; Bartels-Rausch, Thorsten; Nozière, Barbara; George, Christian; Ammann, Markus; Volkamer, Rainer

    2016-09-01

    The multiphase chemistry of glyoxal is a source of secondary organic aerosol (SOA), including its light-absorbing product imidazole-2-carboxaldehyde (IC). IC is a photosensitizer that can contribute to additional aerosol ageing and growth when its excited triplet state oxidizes hydrocarbons (reactive uptake) via H-transfer chemistry. We have conducted a series of photochemical coated-wall flow tube (CWFT) experiments using films of IC and citric acid (CA), an organic proxy and H donor in the condensed phase. The formation rate of gas-phase HO2 radicals (PHO2) was measured indirectly by converting gas-phase NO into NO2. We report on experiments that relied on measurements of NO2 formation, NO loss and HONO formation. PHO2 was found to be a linear function of (1) the [IC] × [CA] concentration product and (2) the photon actinic flux. Additionally, (3) a more complex function of relative humidity (25 % < RH < 63 %) and of (4) the O2 / N2 ratio (15 % < O2 / N2 < 56 %) was observed, most likely indicating competing effects of dilution, HO2 mobility and losses in the film. The maximum PHO2 was observed at 25-55 % RH and at ambient O2 / N2. The HO2 radicals form in the condensed phase when excited IC triplet states are reduced by H transfer from a donor, CA in our system, and subsequently react with O2 to regenerate IC, leading to a catalytic cycle. OH does not appear to be formed as a primary product but is produced from the reaction of NO with HO2 in the gas phase. Further, seed aerosols containing IC and ammonium sulfate were exposed to gas-phase limonene and NOx in aerosol flow tube experiments, confirming significant PHO2 from aerosol surfaces. Our results indicate a potentially relevant contribution of triplet state photochemistry for gas-phase HO2 production, aerosol growth and ageing in the atmosphere.

  11. 75 FR 24973 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Advanced Coatings...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... Coatings for Infrastructure Joint Venture Agreement Notice is hereby given that, on March 10, 2010... seq. (``the Act''), Advanced Coatings for Infrastructure Joint Venture Agreement (``Advanced Coatings... identities of the parties to the venture are: MesoCoat Inc., Euclid, OH; Polythermics LLC, Kirkland, WA;...

  12. Production of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall in aerosol murine models of tuberculosis.

    PubMed

    Cardona, P J; Julián, E; Vallès, X; Gordillo, S; Muñoz, M; Luquin, M; Ausina, V

    2002-06-01

    Evolution of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall has been studied for the first time in experimental murine models of tuberculosis induced by aerosol, in which infection, reinfection, reactivation, prophylaxis and treatment with antibiotics have been assayed. Results show a significant humoral response against these antigens, where diacyltrehaloses (DAT) and sulpholipid I (SL-I) elicited higher antibody levels than protein antigens like antigen 85 protein complex (Ag85), culture filtrate proteins (CFP) and purified protein derivative (PPD). Only immunoglobulin M (IgM) antibodies have been detected against DAT and SL-I. Their evolution has a positive correlation with bacillary concentration in tissues.

  13. PIT Coating Requirements Analysis

    SciTech Connect

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  14. CARBON COATED (CARBONOUS) CATALYST IN EBULLATED BED REACTOR FOR PRODUCTION OF OXYGENATED CHEMICALS FROM SYNGAS/CO2

    SciTech Connect

    Peizheng Zhou

    2001-10-26

    There are a number of exothermic chemical reactions which might benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. A particularly promising area is production of oxygenated chemicals, such as alcohols and ethers, from synthesis gas, which can be economically produced from coal or biomass. The ebullated bed operation requires that the small-diameter ({approx}1/32 inch) catalyst particles have enough mechanical strength to avoid loss by attrition. However, all of the State Of The Art (SOTA) catalysts and advanced catalysts for the purpose are low in mechanical strength. The patented carbon-coated catalyst technology developed in our laboratory converts catalyst particles with low mechanical strength to strong catalysts suitable for ebullated bed application. This R&D program is concerned with the modification on the mechanical strength of the SOTA and advanced catalysts so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO{sub 2} efficiently and economically. The objective of this R&D program is to study the technical and economic feasibility of selective production of high-value oxygenated chemicals from synthesis gas and CO{sub 2} mixed feed in an ebullated bed reactor using carbon-coated catalyst particles.

  15. CARBON COATED (CARBONOUS) CATALYST IN EBULLATED BED REACTOR FOR PRODUCTION OF OXYGENATED CHEMICALS FROM SYNGAS/CO2

    SciTech Connect

    Peizheng Zhou

    2000-11-17

    There are a number of exothermic chemical reactions which might benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. A particularly promising area is production of oxygenated chemicals, such as alcohols and ethers, from synthesis gas, which can be economically produced from coal or biomass. The ebullated bed operation requires that the small-diameter ({approx} 1/32 inch) catalyst particles have enough mechanical strength to avoid loss by attrition. However, all of the State Of The Art (SOTA) catalysts and advanced catalysts for the purpose are low in mechanical strength. The patented carbon-coated catalyst technology developed in our laboratory converts catalyst particles with low mechanical strength to strong catalysts suitable for ebullated bed application. This R&D program is concerned with the modification on the mechanical strength of the SOTA and advanced catalysts so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO{sub 2} efficiently and economically. The objective of this R&D program is to study the technical and economic feasibility of selective production of high-value oxygenated chemicals from synthesis gas and CO{sub 2} mixed feed in an ebullated bed reactor using carbon-coated catalyst particles.

  16. Solutions Network Formulation Report. Aerosol Polarimetry Sensor Measurements of Diffuse-to-Global Irradiance Ratio for Improved Forecasting of Plant Productivity and Health

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly; Andrews, Jane C.; Ryan, Robert E.

    2007-01-01

    Studies have shown that vegetation is directly sensitive to changes in the diffuse-to-global irradiance ratio and that increased percentage of diffuse irradiation can accelerate photosynthesis. Therefore, measurements of diffuse versus global irradiance could be useful for monitoring crop productivity and overall vegetative health as they relate to the total amount of particulates in the air that result from natural disasters or anthropogenic (manmade) causes. While the components of solar irradiance are measured by satellite and surface sensors and calculated with atmospheric models, disagreement exists between the results, creating a need for more accurate and comprehensive retrievals of atmospheric aerosol parameters. Two satellite sensors--APS and VIIRS--show promise for retrieving aerosol properties at an unprecedented level of accuracy. APS is expected to be launched in December 2008. The planned launch date for VIIRS onboard NPP is September 2009. Identified partners include the USDA s ARS, North Carolina State University, Purdue Climate Change Research Center, and the Cooperative Institute for Research in the Atmosphere at Colorado State University. Although at present no formal DSSs (decision support systems) require accurate values of diffuse-to-global irradiance, this parameter is sufficiently important that models are being developed that will incorporate these measurements. This candidate solution is aligned with the Agricultural Efficiency and Air Quality National Applications.

  17. Biological impact of cigarette smoke compared to an aerosol produced from a prototypic modified risk tobacco product on normal human bronchial epithelial cells.

    PubMed

    Kogel, U; Gonzalez Suarez, I; Xiang, Y; Dossin, E; Guy, P A; Mathis, C; Marescotti, D; Goedertier, D; Martin, F; Peitsch, M C; Hoeng, J

    2015-12-01

    Cigarette smoking causes serious and fatal diseases. The best way for smokers to avoid health risks is to quit smoking. Using modified risk tobacco products (MRTPs) may be an alternative to reduce the harm caused for those who are unwilling to quit smoking, but little is known about the toxic effects of MRTPs, nor were the molecular mechanisms of toxicity investigated in detail. The toxicity of an MRTP and the potential molecular mechanisms involved were investigated in high-content screening tests and whole genome transcriptomics analyses using human bronchial epithelial cells. The prototypic (p)MRTP that was tested had less impact than reference cigarette 3R4F on the cellular oxidative stress response and cell death pathways. Higher pMRTP aerosol extract concentrations had impact on pathways associated with the detoxification of xenobiotics and the reduction of oxidative damage. A pMRTP aerosol concentration up to 18 times higher than the 3R4F caused similar perturbation effects in biological networks and led to the perturbation of networks related to cell stress, and proliferation biology. These results may further facilitate the development of a systems toxicology-based impact assessment for use in future risk assessments in line with the 21st century toxicology paradigm, as shown here for an MRTP.

  18. BrCl production in NaBr/NaCl/HNO3/O3 solutions representative of sea-salt aerosols in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Disselkamp, R. S.; Chapman, E. G.; Barchet, W. R.; Colson, S. D.; Howd, C. D.

    Atomic bromine and chlorine liberated from sea-salt aerosol is thought to play an important role in chemistry of the marine boundary layer. Despite numerous modeling studies, no prior experimental investigations of the oxidation of halide species contained in simulated, or actual, sea-salt solutions have been performed. We present laboratory data that examines chemistry in NaBr/NaCl/HNO3/O3 solutions at 290 K. Ozonation experiments were performed by flowing ozone in air through a nitric acid/salt solution and monitoring pH with time using an ion-sensitive electrode. The rate of oxidation was observed to be first order in ozone concentration and to have a non-first order bromide concentration dependence. Ion Chromatography was used to measure both bromide disappearance as well as oxidation products formed during the course of the reactions studied. Our measurements of the oxidation rate versus ion concentration indicate that the high ionic strength present in sea-salt aerosol will possess unique kinetics different from dilute solution behavior. In addition, our results are consistent with the reaction sequence O3 + H+ + Br- → O2 + HOBr and HOBr + Cl- + H+ → BrCl + H2O. These observations support the HOBr mediated Cl- oxidation process proposed previously (Vogt et al., 1996).

  19. Effect of Blood Component Coatings of Enosseal Implants on Proliferation and Synthetic Activity of Human Osteoblasts and Cytokine Production of Peripheral Blood Mononuclear Cells

    PubMed Central

    Hulejova, Hana; Bartova, Jirina; Riedel, Tomas; Pesakova, Vlasta

    2016-01-01

    The study monitored in vitro early response of connective tissue cells and immunocompetent cells to enosseal implant materials coated by different blood components (serum, activated plasma, and plasma/platelets) to evaluate human osteoblast proliferation and synthetic activity and inflammatory response presented as a cytokine profile of peripheral blood mononuclear cells (PBMCs) under conditions imitating the situation upon implantation. The cells were cultivated on coated Ti-plasma-sprayed (Ti-PS), Ti-etched (Ti-Etch), Ti-hydroxyapatite (Ti-HA), and ZrO2 surfaces. The plasma/platelets coating supported osteoblast proliferation only on osteoconductive Ti-HA and Ti-Etch whereas activated plasma enhanced proliferation on all surfaces. Differentiation (BAP) and IL-8 production remained unchanged or decreased irrespective of the coating and surface; only the serum and plasma/platelets-coated ZrO2 exhibited higher BAP and IL-8 expression. RANKL production increased on serum and activated plasma coatings. PBMCs produced especially cytokines playing role in inflammatory phase of wound healing, that is, IL-6, GRO-α, GRO, ENA-78, IL-8, GM-CSF, EGF, and MCP-1. Cytokine profiles were comparable for all tested surfaces; only ENA-78, IL-8, GM-CSF, and MCP-1 expression depended on materials and coatings. The activated plasma coating led to uniformed surfaces and represented a favorable treatment especially for bioinert Ti-PS and ZrO2 whereas all coatings had no distinctive effect on bioactive Ti-HA and Ti-Etch. PMID:27651560

  20. A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products

    NASA Technical Reports Server (NTRS)

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I; Morcrette, J. J.; Solomon, F.; Szopa, S.; Dulac, F; Collins, W.; Ghan, S.; Horowitz, L. W.; Lamarque, J. F.; Lee, Y. H.; Naik, V.; Nagashima, T.; Shindell, D.; Skeie, R.

    2013-01-01

    Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multiyear database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, seasalt, sulfate, black and organic carbon). We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth- Probe) and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997), the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level- 2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA) has the best average AOD scores over this region, showing a relevant spatio-temporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer), and sulfate aerosols over continental Europe (summer). The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products). Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between dust

  1. Simulated fission product-SiC interaction in Triso-coated LEU or MEU HTGR fuel particles

    SciTech Connect

    Pearson, R.L.; Lindemer, T.B.; Beahm, E.C.

    1980-11-01

    Proliferation issues relating to the use of highly enriched uranium (HEU) have led to an evaluation of the fission product-SiC interaction problems that might arise if low enriched uranium (LEU) or medium enriched uranium (MEU) were used as fissile fuel in HTGR systems. Simulated Triso-coated UO/sub 2/, UC/sub 2/, and UO/sub 2//UC/sub 2/ particles mixed with varying amounts of Mo, Ru, Rh, Pd, Ag, and Cd were prepared. These fission products were chosen because, after full burnup, their concentrations are higher in LEU and MEU fuels than in HEU fuel. After the particles were heat treated in the laboratory, their behavior was examined by use of metallography, scanning electron microscopy, and electron microprobe x-ray analysis.

  2. Possibilities of the Technology of Additive Production for Making Complex-Shape Parts and Depositing Functional Coatings from Metallic Powders

    NASA Astrophysics Data System (ADS)

    Grigor'ev, S. N.; Tarasova, T. V.

    2016-01-01

    The aspects of terminology, definitions and classification in the technology of additive production are considered. The principal possibility of fabrication of complex-shape parts from a refractory cobalt alloy by the method of selective laser melting and deposition of hard and wear-resistant coatings from Ti and SiC powders by coaxial laser surfacing is shown. The technological possibility of microlaser surfacing with lateral resolution about 100 μm in the production of parts from aluminum alloys is considered. The mechanisms of formation of structure in the studied alloys typical for selective laser melting, laser surfacing and microlaser surfacing are determined. The physical and mechanical properties of the alloys are investigated.

  3. Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

    NASA Astrophysics Data System (ADS)

    Wahab, A. M.; Sarker, M. L. R.

    2014-02-01

    Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation.

  4. Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing.

    PubMed

    Wang, Menghua

    2006-12-10

    The current ocean color data processing system for the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and the moderate resolution imaging spectroradiometer (MODIS) uses the Rayleigh lookup tables that were generated using the vector radiative transfer theory with inclusion of the polarization effects. The polarization effects, however, are not accounted for in the aerosol lookup tables for the ocean color data processing. I describe a study of the aerosol polarization effects on the atmospheric correction and aerosol retrieval algorithms in the ocean color remote sensing. Using an efficient method for the multiple vector radiative transfer computations, aerosol lookup tables that include polarization effects are generated. Simulations have been carried out to evaluate the aerosol polarization effects on the derived ocean color and aerosol products for all possible solar-sensor geometries and the various aerosol optical properties. Furthermore, the new aerosol lookup tables have been implemented in the SeaWiFS data processing system and extensively tested and evaluated with SeaWiFS regional and global measurements. Results show that in open oceans (maritime environment), the aerosol polarization effects on the ocean color and aerosol products are usually negligible, while there are some noticeable effects on the derived products in the coastal regions with nonmaritime aerosols.

  5. Methylecgonidine coats the crack particle.

    PubMed

    Wood, R W; Shojaie, J; Fang, C P; Graefe, J F

    1996-01-01

    Crack is a form of cocaine base self-administered by smoking. When heated, it volatilizes and may partially pyrolyze to methylecgonidine (MEG). Upon cooling, a condensation aerosol forms. Heating cocaine base in model crack pipes produced particles of about 1 micron in diameter, regardless of the amount heated; however, MEG concentration increased from < or = 2% at 10 mg per heating to as much as 5% at 30 mg per heating. Methylecgonidine was < or = 1% of the recovered material when cocaine was vaporized off a heated wire coil, but the particles were larger (2-5 microns), and the distribution disperse. The vapor pressure of MEG was higher [log P(mm Hg) = 9.994 - 3530/T] than cocaine base, consistent with MEG coating the droplet during condensation, and with evaporation during aging or dilution. Disappearance of MEG from a chamber filled with crack smoke was a two-component process, one proceeding at the rate of cocaine particle removal, and the other at the desorption rate from other surfaces. Particle diameter influences the deposition site in the respiratory tract; thus, the likely different patterns of deposition in the respiratory tract of humans and animals of crack aerosols produced by different techniques warrant consideration, as they may influence our understanding of immediate and delayed sequelae of the inhalation of cocaine and its pyrolysis product, MEG.

  6. Coating Galvanized Steel

    DTIC Science & Technology

    1989-06-01

    phenolic drying oil products with a zinc dust-zinc oxide pigmentation. Roebuck et al. (Ref 3), state "For instance, coatings subject to saponification ...coating. All three types of TT-P-641 are subject to saponification , since they con- tain drying oils. The General Services Administration (GSA) sells con...penetration " Chemical degradation of coatings, particularly saponification of alkyd coatings in an alkaline environment " Differences in expansion and

  7. Toxicity of atmospheric aerosols on marine phytoplankton

    PubMed Central

    Paytan, Adina; Mackey, Katherine R. M.; Chen, Ying; Lima, Ivan D.; Doney, Scott C.; Mahowald, Natalie; Labiosa, Rochelle; Post, Anton F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus. We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere–ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia. PMID:19273845

  8. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  9. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    were enhanced with time compared with larger sizes. In contrast, all particle sizes were equally enhanced when frits were used. Aerosolized particles were hygroscopic, a finding with significance for warm cloud formation and potential liquid-to-ice phase transformations. Aqueous and dry aerosolized particles from biologically active mesocosm water were found to efficiently nucleate ice exposed to supersaturated water vapor. The majority of particles, including those nucleating ice, consisted of a sea salt core coated with organic material dominated by the carboxyl functional group, and corresponded to a particle type commonly found in marine air. Our results provide improved estimates of marine aerosol production, chemical composition, and hygroscopicity, as well as an accurate physical and chemical representation of ice nucleation by marine biogenic aerosol particles for use in cloud and climate models.

  10. Predicting the mineral composition of dust aerosols - Part 1: Representing key processes

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.

    2015-02-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, coating by heterogeneous uptake of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the resulting aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent in a soil whose aggregates are dispersed by wet sieving during analysis. We reconstruct the undispersed size distribution of the original soil that is subject to wind erosion. An empirical constraint upon the relative emission of clay and silt is applied that further differentiates the soil and aerosol mineral composition. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to measurements from North Africa shows that the extension brings the model into better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.

  11. Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implication for PM2.5

    NASA Astrophysics Data System (ADS)

    Jaoui, M.; Lewandowski, M.; Docherty, K.; Offenberg, J. H.; Kleindienst, T. E.

    2014-06-01

    Secondary organic aerosol (SOA) was generated by irradiating 1,3-butadiene (13BD) in the presence of H2O2 or NOx. Experiments were conducted in a smog chamber operated in either flow or batch mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The chemical composition of the gas phase and SOA was analyzed using derivative-based methods (BSTFA, BSTFA + PFBHA, or DNPH) followed by gas chromatography-mass spectrometry (GC-MS) or high-performance liquid chromatography (HPLC) analysis of the derivative compounds. The analysis showed the occurrence of more than 60 oxygenated organic compounds in the gas and particle phases, of which 31 organic monomers were tentatively identified. The major identified products include glyceric acid, d-threitol, erythritol, d-threonic acid, meso-threonic acid, erythrose, malic acid, tartaric acid, and carbonyls including glycolaldehyde, glyoxal, acrolein, malonaldehyde, glyceraldehyde, and peroxyacryloyl nitrate (APAN). Some of these were detected in ambient PM2.5 samples and could potentially serve as organic markers of 1,3-butadiene (13BD). Furthermore, a series of oligoesters were detected and found to be produced from esterification reactions among compounds bearing alcoholic groups and compounds bearing acidic groups. Time profiles are provided for selected compounds. SOA was analyzed for organic mass to organic carbon (OM / OC) ratio, effective enthalpy of vaporization (ΔHvapeff), and aerosol yield. The average OM / OC ratio and SOA density were 2.7 ± 0.09 and 1.2 ± 0.05, respectively. The average ΔHvapeff was 26.1 ± 1.5 kJ mol-1, a value lower than that of isoprene SOA. The average laboratory SOA yield measured in this study at aerosol mass concentrations between 22.5 and 140.2 μg m-3 was 0.025 ± 0.011, a value consistent with the literature (0.021-0.178). While the focus of this study has been examination of the particle-phase measurements, the gas

  12. Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim

    2006-01-01

    Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.

  13. Protective Coatings

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  14. A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products

    SciTech Connect

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J. -J.; Solmon, F.; Szopa, S.; Dulac, F.; Collins, W.; Ghan, Steven J.; Horowitz, L.; Lamarque, J.-F.; Lee, Y. H.; Naik, Vaishali; Nagashima, T.; Shindell, Drew; Skeie, R. B.

    2013-05-17

    Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multiyear database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, seasalt, sulfate, black and organic carbon). We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth- Probe) and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997), the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level- 2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA) has the best average AOD scores over this region, showing a relevant spatiotemporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer), and sulfate aerosols over continental Europe (summer). The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products). Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between dust aerosols

  15. Intermediate Volatility Organic Compound Emissions from On-Road Diesel Vehicles: Chemical Composition, Emission Factors, and Estimated Secondary Organic Aerosol Production.

    PubMed

    Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L

    2015-10-06

    Emissions of intermediate-volatility organic compounds (IVOCs) from five on-road diesel vehicles and one off-road diesel engine were characterized during dynamometer testing. The testing evaluated the effects of driving cycles, fuel composition and exhaust aftertreatment devices. On average, more than 90% of the IVOC emissions were not identified on a molecular basis, instead appearing as an unresolved complex mixture (UCM) during gas-chromatography mass-spectrometry analysis. Fuel-based emissions factors (EFs) of total IVOCs (speciated + unspeciated) depend strongly on aftertreatment technology and driving cycle. Total-IVOC emissions from vehicles equipped with catalyzed diesel particulate filters (DPF) are substantially lower (factor of 7 to 28, depending on driving cycle) than from vehicles without any exhaust aftertreatment. Total-IVOC emissions from creep and idle operations are substantially higher than emissions from high-speed operations. Although the magnitude of the total-IVOC emissions can vary widely, there is little variation in the IVOC composition across the set of tests. The new emissions data are combined with published yield data to investigate secondary organic aerosol (SOA) formation. SOA production from unspeciated IVOCs is estimated using surrogate compounds, which are assigned based on gas-chromatograph retention time and mass spectral signature of the IVOC UCM. IVOCs contribute the vast majority of the SOA formed from exhaust from on-road diesel vehicles. The estimated SOA production is greater than predictions by previous studies and substantially higher than primary organic aerosol. Catalyzed DPFs substantially reduce SOA formation potential of diesel exhaust, except at low speed operations.

  16. Investigation of the formation of benzoyl peroxide, benzoic anhydride, and other potential aerosol products from gas-phase reactions of benzoylperoxy radicals

    NASA Astrophysics Data System (ADS)

    Strollo, Christen M.; Ziemann, Paul J.

    2016-04-01

    The secondary organic aerosol (SOA) products of the reaction of benzaldehyde with Cl atoms and with OH radicals in air in the absence of NOx were investigated in an environmental chamber in order to better understand the possible role of organic peroxy radical self-reactions in SOA formation. SOA products and authentic standards were analyzed using mass spectrometry and liquid chromatography, and results show that the yields of benzoyl peroxide (C6H5C(O)OO(O)CC6H5) and benzoic anhydride (C6H5C(O)O(O)CC6H5), two potential products from the gas-phase self-reaction of benzoylperoxy radicals (C6H5C(O)OO·), were less than 0.1%. This is in contrast to results of recent studies that have shown that the gas-phase self-reactions of β-nitrooxyperoxy radicals formed from reactions of isoprene with NO3 radicals form dialkyl peroxides that contribute significantly to gas-phase and SOA products. Such reactions have also been proposed to explain the gas-phase formation of extremely low volatility dimers from autooxidation of terpenes. The results obtained here indicate that, at least for benzoylperoxy radicals, the self-reactions form only benzoyloxy radicals. Analyses of SOA composition and volatility were inconclusive, but it appears that the SOA may consist primarily of oligomers formed through heterogeneous/multiphase reactions possibly involving some combination of phenol, benzaldehyde, benzoic acid, and peroxybenzoic acid.

  17. Aerosol growth in Titan's ionosphere through particle charging

    NASA Astrophysics Data System (ADS)

    Lavvas, P.; Yelle, R. V.; Koskinen, T.; Bazin, A.; Vuitton, V.; Vigren, E.; Galand, M. F.; Wellbrock, A.; Coates, A. J.; Wahlund, J.; Crary, F.; Snowden, D. S.

    2012-12-01

    Observations of Titan's lower thermosphere and ionosphere by Cassini instruments demonstrate the presence of large mass negative ions of a few thousand amu, and the presence of positive ions up to a few hundred amu [1,2]. The mechanisms though responsible for the production of these large ions have so far remained elusive. A recent Titan flyby that probed deeper layers of Titan's thermosphere than usual, revealed a discrepancy in the observed positive ion and electron density, with the electron density lower than the abundance required to satisfy charge balance [3]. The remaining electron density was found in the form of the large mass negative ions. Aerosols can be charged on interaction with electrons and ions, while this charge can affect the particle coagulation, thus, their subsequent growth. Given the above observations we investigate here the potential role of aerosols in Titan's ionosphere and how this interaction affects the aerosol evolution. This investigation is performed with the use of a model that couples between the ionospheric photochemical evolution and the microphysical growth of aerosols in a self-consistent approach. Our results show that particle charging has an important role in the ionosphere. Most of the produced particles in the ionosphere attain a negative charge. Thus, they act as a sink for the free electrons with the remaining free electron densities consistent with the recent Cassini observations. Being negatively charged, the particles repel each other reducing in this way the coagulation rates and the growth of the aerosols. On the other hand, the negatively charged particles attract the abundant positive ions, which results to enhanced collisions between them. The mass added to the particles by the ions leads to an increase in their size and an increase in the resulting mass flux of the aerosols. Our simulated mass per charge spectra provide excellent fits to the observed positive and negative ion spectra from the Cassini Plasma

  18. Long-Term Effects of Soldering By-Products on Nickel-Coated Copper Wire

    NASA Technical Reports Server (NTRS)

    Rolin, T. D.; Hodge, R. E.

    2008-01-01

    An analysis of thirty-year-old, down graded flight cables was conducted to determine the makeup of a green material on the surface of the shielded wire near soldered areas and to ascertain if the green material had corroded the nickel-coated copper wire. Two likely candidates were possible due to the handling and environments to which these cables were exposed. The flux used to solder the cables is known to contain abietic acid, a carboxylic acid found in many pine rosins used for the soldering process. The resulting material copper abietate is green in color and is formed during the application of heat during soldering operations. Copper (II) chloride, which is also green in color is known to contaminate flight parts and is corrosive. Data is presented that shows the material is copper abietate, not copper (II) chloride, and more importantly that the abietate does not aggressively attack nickel-plated copper wire.

  19. Characterization of aerosols produced by surgical procedures

    SciTech Connect

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K.; Turner, R.S.

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  20. A CLOSURE STUDY OF AEROSOL MASS CONCENTRATION MEASUREMENTS: COMPARISON OF VALUES OBTAINED WITH FILTERS AND BY DIRECT MEASUREMENTS OF MASS DISTRIBUTIONS. (R826372)

    EPA Science Inventory

    We compare measurements of aerosol mass concentrations obtained gravimetrically using Teflon coated glass fiber filters and by integrating mass distributions measured with the differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) technique (Aero...

  1. Comparison study of laboratory and production spray guns in film coating: effect of pattern air and nozzle diameter.

    PubMed

    Müller, Ronny; Kleinebudde, Peter

    2006-01-01

    An optimal atomization air/pattern air ratio is necessary for a good coating process. The influences of variations in pattern air and nozzle diameter on the spray characteristics, such as droplet size, droplet velocity, and spray density, are investigated by using laboratory and production Schlick spray guns, both equipped with a new antibearding cap (ABC). An increase in the pattern air results in a wider spray accompanied with a decrease in droplet size in the spray center for both spray guns. Furthermore, an increase in the pattern air leads to a reduction in spray density in the spray center and, simultaneously, to an increase in spray density at the spray rim. A variation in nozzle diameter does not influence the spray characteristics for both spray guns.

  2. Informing Aerosol Transport Models With Satellite Multi-Angle Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Limbacher, J.; Patadia, F.; Petrenko, M.; Martin, M. Val; Chin, M.; Gaitley, B.; Garay, M.; Kalashnikova, O.; Nelson, D.; Scollo, S.

    2011-01-01

    As the aerosol products from the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) mature, we are placing greater focus on ways of using the aerosol amount and type data products, and aerosol plume heights, to constrain aerosol transport models. We have demonstrated the ability to map aerosol air-mass-types regionally, and have identified product upgrades required to apply them globally, including the need for a quality flag indicating the aerosol type information content, that varies depending upon retrieval conditions. We have shown that MISR aerosol type can distinguish smoke from dust, volcanic ash from sulfate and water particles, and can identify qualitative differences in mixtures of smoke, dust, and pollution aerosol components in urban settings. We demonstrated the use of stereo imaging to map smoke, dust, and volcanic effluent plume injection height, and the combination of MISR and MODIS aerosol optical depth maps to constrain wildfire smoke source strength. This talk will briefly highlight where we stand on these application, with emphasis on the steps we are taking toward applying the capabilities toward constraining aerosol transport models, planet-wide.

  3. Production of maize tortillas and cookies from nixtamalized flour enriched with anthocyanins, flavonoids and saponins extracted from black bean (Phaseolus vulgaris) seed coats.

    PubMed

    Chávez-Santoscoy, Rocio A; Gutiérrez-Uribe, Janet A; Serna-Saldivar, Sergio O; Perez-Carrillo, Esther

    2016-02-01

    Ethanolic extract from black beans coat is a source of flavonoids, saponins and antocyanins. Nixtamalized maize flours (NF) are used for the preparation of products such as tortillas, tortillas chips, cookies among others. The objective of this research was to study the effect on textural parameters and color after adding flavonoids, saponins and anthocyanins from black bean seed coat in NF used for the production of tortillas and gluten-free cookies. Furthermore, the retention of bioactive compounds after tortilla and gluten-free-cookie preparation was assessed. Ethanolic extracts of black bean seed coats were added (3g/kg or 7 g/kg) to NF in order to prepare corn tortillas and gluten free cookies characterized in terms of dimensions, color and texture. Addition of 7 g/kg affected the color of cookies and tortillas without effect on texture and dimensions. It was possible to retain more than 80% and 60% of bioactives into baked tortillas and cookies, respectively.

  4. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  5. PhyLM: A Mission Design Concept for an Optical/Lidar Instrument to Measure Ocean Productivity and Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Gervin, Janette C.; Behrenfeld, Michael; McClain, Charles R.; Spinhirne, James; Purves, Lloyd; Wood, H. John; Roberto, Michael R.

    2004-01-01

    The Physiology Lidar-Multispectral Mission (PhyLM) is intended to explore the complex ecosystems of our global oceans. New "inversion" methods and improved understanding of marine optics have opened the door to quantifying a range of critical ocean properties. This new information could revolutionize our understanding of global ocean processes, such as phytoplankton growth, harmful algal blooms, carbon fluxes between major pools and the productivity equation. The new science requires new measurements not addressed by currently planned space missions. PhyLM will combine active and advanced passive remote sensing technologies to quantify standing stocks and fluxes of climate-critical components of the Ocean carbon cycle to meet these science providing multispectral bands from the far UV through the near infrared (340 - 1250 nm) at a ground resolution of 250 m. Improved detectors, filters, mirrors, digitization and focal plane design will offer an overall higher-quality data product. The unprecedented accuracy and precision of the absolute water-leaving radiances will support inversion- based quantification of an expanded set of ocean carbon cycle components. The dual- wavelength (532 & 1064 nm) Nd:Yag Lidar will enhance the accuracy and precision of the passive data by providing aerosol profiles for atmospheric correction and coincident active measurements of backscattering. The Lidar will also examine dark-side fluorescence as an additional approach to quantifying phytoplankton biomass in highly productive regions.

  6. Production of strontium sulfide coatings by metal organic chemical vapor deposition

    SciTech Connect

    Moss, T.S.; Dye, R.C.; Tuenge, R.T.

    1998-11-01

    This work was focused on the MOCVD of the cerium-doped strontium sulfide (SrS:Ce) phosphor for use in thin film electroluminescent displays (TFELs). Following previous research on a small scale reactor, a feasibility scale-up using a commercially available reactor enlarged the size of the deposition area to a 4`` diameter wafer or a 2`` by 2`` glass slide. Films were deposited from the reaction of Sr(thd){sub 2}, Ce(thd){sub 4}, and H{sub 2}S at 450{degrees}C and 5 torr. This system employed a liquid delivery system for the accurate and repeatable delivery of the metal organic reagents. The deposition from this reactor was shown to be crystalline-as-deposited SrS with a (200) orientation, possibly a result of the thin nature of the coating and the involvement of (200) grains in the initial nucleation process. The wafers showed good uniformity, but had some thickness variation near the outer radius of the wafer resulting from the addition of H{sub 2}S from the outer edge. There were eighteen total deposition experiments, of which nine were characterized for EL performance. The highest brightness observed was 5 fL.. The samples were exceedingly thin as a result of the fifteen fold increase in the surface area between the deposition reactors. Increasing the sample thickness to 7,000{angstrom} or higher will dramatically increase the brightness of the emission.

  7. Coating Carbon Nanosphere with Patchy Gold for Production of Highly Efficient Photothermal Agent.

    PubMed

    Wang, Xiaoxiao; Cao, Dongwei; Tang, Xuejiao; Yang, Jingjing; Jiang, Daoyong; Liu, Mei; He, Nongyue; Wang, Zhifei

    2016-08-03

    Gold- or carbon-based photothermal therapy (PTT) agents have shown encouraging therapeutic effects of PTT in the near-infrared region (NIR) in many preclinical animal experiments. It is expected that gold/carbon hybrid nanomaterial will possess combinational NIR light absorption and can achieve further improvement in photothermal conversion efficiency. In this work, we design and construct a novel PTT agent by coating a carbon nanosphere with patchy gold. To synthesize this composite particle with Janus structure, a new versatile approach based on a facile adsorption-reduction method was presented. Different from the conventional fabrication procedures, the formation of patchy gold in this approach is mainly a thermodynamics-driven spontaneous process. The results show that when compared with the conventional PTT agent gold nanorod the obtained nanocomposites not only have higher photothermal conversion efficiency but also perform more thermally stable. On the basis of these outstanding photothermal effects, the in vitro and in vivo photothermal performances in a MCF-7 cells (human breast adenocarcinoma cell line) and mice were investigated separately. Additionally, to further illustrate the advantage of this asymmetric structure, their potential was explored by selective surface functionalization, taking advantage of the affinity of both patchy gold and carbon domain to different functional molecules. These results suggest that this new hybrid nanomaterial can be used as an effective PTT agent for cancer treatment in the future.

  8. Aerosols and contact insecticides as alternatives to methyl bromide in flour mills, food production facilities, and food warehouses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fumigant methyl bromide (MB) is being phased out of production and usage to control stored product insects in flour and rice mills, as well as feed and food production plants, in the United States (US) and other developed countries throughout the world. A phase-out schedule has also been establi...

  9. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  10. Eugenol wash and chitosan based coating reduces Campylobacter jejuni counts on poultry products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter, a leading cause of foodborne illness globally in humans, is strongly associated with the consumption of contaminated poultry products. Unfortunately, current strategies to reduce Campylobacter counts in poultry have had limited success. Our study investigated the efficacy of eugenol ...

  11. Generation of a monodispersed aerosol

    NASA Technical Reports Server (NTRS)

    Schenck, H.; Mikasa, M.; Devicariis, R.

    1974-01-01

    The identity and laboratory test methods for the generation of a monodispersed aerosol are reported on, and are subjected to the following constraints and parameters; (1) size distribution; (2) specific gravity; (3) scattering properties; (4) costs; (5) production. The procedure called for the collection of information from the literature, commercial available products, and experts working in the field. The following topics were investigated: (1) aerosols; (2) air pollution -- analysis; (3) atomizers; (4) dispersion; (5) particles -- optics, size analysis; (6) smoke -- generators, density measurements; (7) sprays; (8) wind tunnels -- visualization.

  12. An AERONET-based aerosol classification using the Mahalanobis distance

    NASA Astrophysics Data System (ADS)

    Hamill, Patrick; Giordano, Marco; Ward, Carolyne; Giles, David; Holben, Brent

    2016-09-01

    We present an aerosol classification based on AERONET aerosol data from 1993 to 2012. We used the AERONET Level 2.0 almucantar aerosol retrieval products to define several reference aerosol clusters which are characteristic of the following general aerosol types: Urban-Industrial, Biomass Burning, Mixed Aerosol, Dust, and Maritime. The classification of a particular aerosol observation as one of these aerosol types is determined by its five-dimensional Mahalanobis distance to each reference cluster. We have calculated the fractional aerosol type distribution at 190 AERONET sites, as well as the monthly variation in aerosol type at those locations. The results are presented on a global map and individually in the supplementary material. Our aerosol typing is based on recognizing that different geographic regions exhibit characteristic aerosol types. To generate reference clusters we only keep data points that lie within a Mahalanobis distance of 2 from the centroid. Our aerosol characterization is based on the AERONET retrieved quantities, therefore it does not include low optical depth values. The analysis is based on "point sources" (the AERONET sites) rather than globally distributed values. The classifications obtained will be useful in interpreting aerosol retrievals from satellite borne instruments.

  13. Toward Creating A Global Retrospective Climatology of Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Curran, Robert J.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2000-01-01

    Tropospheric aerosols are thought to cause a significant direct and indirect climate forcing, but the magnitude of this forcing remains highly uncertain because of poor knowledge of global aerosol characteristics and their temporal changes. The standard long-term global product, the one-channel Advanced Very-High-Resolution Radiometer (AVHRR) aerosol optical thickness over the ocean, relies on a single predefined aerosol model and can be inaccurate in many cases. Furthermore, it provides no information on aerosol column number density, thus making it impossible to estimate the indirect aerosol effect on climate. Total Ozone Mapping Spectrometer (TOMS) data can be used to detect absorbing aerosols over land, but are insensitive to aerosols located below one kilometer. It is thus clear that innovative approaches must be employed in order to extract a more quantitative and accurate aerosol climatology from available satellite and other measurements, thus enabling more reliable estimates of the direct and indirect aerosol forcings. The Global Aerosol Climatology Project (GACP) was established in 1998 as part of the Global Energy and Water Cycle Experiment (GEWEX). Its main objective is to analyze satellite radiance measurements and field observations to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations. The overall goal is to develop advanced global aerosol climatologies for the period of satellite data and to make the aerosol climatologies broadly available through the GACP web site.

  14. Genesis of elevated aerosol loading over the Indian region

    NASA Astrophysics Data System (ADS)

    Prijith, S. S.; Rao, P. V. N.; Mohan, Mannil

    2016-05-01

    Elevated aerosols assume importance as the diabatic heating due to aerosol absorption is more intense at higher altitudes where the atmosphere becomes thinner. Indian region, especially its central and northern latitudes, experiences significant loading of elevated aerosols during pre-monsoon and summer months. Genesis of elevated aerosol loading over Indian region is investigated in the present study, using multi-year satellite observations from Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and Moderate Resolution Imaging Spectroradiometer (MODIS) along with reanalysis winds from MERRA. Central India is observed to have prominent aerosols loading at higher altitudes during pre-monsoon season, whereas it is during summer months over north-west India. Further analysis reveals that the elevated aerosols over Indian region in pre-monsoon and summer months are significantly contributed by transported mineral dust from the arid continental regions at west. In addition to the mineral dust advection, aerosols at higher altitudes over Indian region are enriched by strong convection and associated vertical transport of surface level aerosols. Vertical transport of aerosols observed over Indian region during pre-monsoon and summer months is aided by intense convergence at the surface level and divergence at the upper level. Moreover, aerosol source/sink strength estimated using aerosol flux continuity equation show significant aerosol production over central India during pre-monsoon. Strong vertical transport prevails during pre-monsoon uplifts the locally produced aerosols, with considerable anthropogenic fraction, to higher altitudes where their impacts would be more intense.

  15. Compliance Timeline, Compliance Options, and Required Notifications for Surface Coating of Wood Building Products National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    This January 2005 document contains a diagram of dates and events for compliance with the NESHAP for surface coating of wood building products. Also on this page is a January 2005 document with flow charts to demonstrate compliance options for the NESHAP

  16. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju,