Science.gov

Sample records for aerosol concentration due

  1. Future Projections of Aerosol Optical Depth, Radiative Forcing, and Climate Response Due to Declining Aerosol Emissions in the Representative Concentration Pathways

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Mauzerall, D. L.; Horowitz, L. W.; Naik, V.

    2014-12-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted based on human health concerns. However, the resulting decrease in atmospheric aerosol burden will have unintended climate consequences. Since aerosols generally exert a net cooling influence on the climate, their removal will lead to an unmasking of global warming as well as other changes to the climate system. Aerosol and precursor global emissions decrease by as much as 80% by the year 2100, according to projections in four Representative Concentration Pathway (RCP) scenarios. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without aerosol emission changes projected by the RCPs in order to isolate the radiative forcing and climate response due to the aerosol reductions. We find that up to 1 W m-2 of radiative forcing may be unmasked globally by 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d-1 (3%). Regionally and locally, climate impacts are much larger, as RCP8.5 projects a 2.1 K warming over China, Japan, and Korea due to reduced aerosol emissions. Our results highlight the importance of crafting emissions control policies with both climate and air pollution benefits in mind. The expected unmasking of additional global warming from aerosol reductions highlights the importance of robust greenhouse gas mitigation policies and may require more aggressive policies than anticipated.

  2. Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Andrews, E.; Burkhart, J. F.; Forster, C.; Herber, A.; Hoch, S. W.; Kowal, D.; Lunder, C.; Mefford, T.; Ogren, J. A.; Sharma, S.; Spichtinger, N.; Stebel, K.; Stone, R.; StröM, J.; TøRseth, K.; Wehrli, C.; Yttri, K. E.

    2006-11-01

    During summer of 2004, about 2.7 million hectare of boreal forest burned in Alaska, the largest annual area burned on record, and another 3.1 million hectare burned in Canada. This study explores the impact of emissions from these fires on light absorbing aerosol concentration levels, aerosol optical depths (AOD), and albedo at the Arctic stations Barrow (Alaska), Alert (Canada), Summit (Greenland), and Zeppelin/Ny Ålesund on Spitsbergen (Norway). The Lagrangian particle dispersion model FLEXPART was run backward from these sites to identify periods that were influenced by forest fire pollution plumes. It is shown that the fires led to enhanced values of particle light absorption coefficients (σap) at all of these sites. Barrow, about 1000 km away from the fires, was affected by several fire pollution plumes, one leading to spectacularly high 3-hour mean σap values of up to 32 Mm-1, more than the highest values measured in Arctic Haze. AOD measurements for a wavelength of 500 nm saturated but were estimated at above 4-5 units, unprecedented in the station records. Fire plumes were transported through the atmospheric column over Summit continuously for 2 months, during which all measured AOD values were enhanced, with maxima up to 0.4-0.5 units. Equivalent black carbon concentrations at the surface at Summit were up to 600 ng m-3 during two major episodes, and Alert saw at least one event with enhanced σap values. FLEXPART results show that Zeppelin was located in a relatively unaffected part of the Arctic. Nevertheless, there was a 4-day period with daily mean σap > 0.3 Mm-1, the strongest episode of the summer half year, and enhanced AOD values. Elevated concentrations of the highly source-specific compound levoglucosan positively confirmed that biomass burning was the source of the aerosols at Zeppelin. In summary, this paper shows that boreal forest fires can lead to elevated concentrations of light absorbing aerosols throughout the entire Arctic. Enhanced

  3. Secondary acidification: Changes in gas-aerosol partitioning of semivolatile nitric acid and enhancement of its deposition due to increased emission and concentration of SOx

    NASA Astrophysics Data System (ADS)

    Kajino, Mizuo; Ueda, Hiromasa; Nakayama, Shinji

    2008-02-01

    Secondary acidification, or the indirect enhancement of semivolatile air pollutant deposition associated with increased SO42- concentrations, is shown to occur in general air pollution using data collected from six stations of the Acid Deposition Monitoring Network in East Asia (EANET) in Japan. This effect was first detected as a result of volcanic SO2 plumes in our previous studies. Results indicate that as SO42- concentration increases, gas-aerosol partitioning of nitric acid shifts to the gas phase, increasing the HNO3 gas concentration. Since the dry and wet deposition rates of HNO3 gas are very high, deposition can be enhanced even when the emission of NOx remains unchanged. In western Japan, the indirect effect for wet deposition is most apparent from spring to autumn, when the Asian continental outflow carries sulfate-rich contaminated air masses. However, it is not pronounced in air masses containing abundant sea-salt particles and related cation components in aerosols. In areas such as forests or farmlands with low surface resistance, dry deposition of nitric acid is more pronounced than wet deposition as the dry deposition velocity of HNO3 gas is high. Increased dry deposition of t-NO3 due to the indirect effect and consequent vegetation damage is thus of considerable concern in such regions. The deposition of other semivolatile components, such as hydrochloric acid and ammonia, can be altered and can also induce secondary acidification.

  4. Systematic aerosol characterization by combining GOME-2 UV Aerosol Indices with trace gas concentrations

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M.; Stammes, P.; Wagner, T.

    2012-04-01

    The task of determining aerosol type using passive remote sensing instruments is a daunting one. First, because the variety in aerosol (optical) properties is very large; and second, because the effect of aerosols on the detected top-of-atmosphere reflectance spectrum is smooth and mostly featureless. In addition, spectrometers like GOME-2 have a coarse spatial resolution, which makes aerosol characterization even more difficult due to interferences with clouds. On account of these problems, we do not attempt to derive aerosol properties from single measurements: instead, we combine time series of UV Aerosol Index and trace gas concentrations to derive the dominating aerosol type for each season. Aside from the Index values and trace gas concentrations themselves, the correlation between UV Aerosol Indices (which are indicative of aerosol absorption) with NO2, HCHO, and CHOCHO columns - or absence of it - provides clues to the (main) source of the aerosols in the investigated region and time range. For example: a high correlation of HCHO and Absorbing Aerosol Index points to aerosols from biomass burning, highly correlated CHOCHO, HCHO, and SCattering Index indicate biogenic secondary organic aerosols, and coinciding high NO2 concentrations with high SCattering Index values are associated with industrial and urban aerosols. We here present case studies for several regions to demonstrate the suitability of our approach. Then, we introduce a method to systematically derive the dominating aerosol type on a global scale on time scales varying from monthly to yearly.

  5. High Concentration Standard Aerosol Generator.

    DTIC Science & Technology

    1985-07-31

    materials. In addition to material problems, many liquids are extremely flammable or explosive when aerosolized. This can be checked by putting a small...Hochriner. D. (1975) Stub 3A 440-445. St6ber, W. Flachsbart, H. and Hochramn, D. (1970) Staub 3^, 277. Yoshida. H. Fujii, K. Yomimoto, Y. Masuda. H. and

  6. The Various Influences due to Aerosol Depositions

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei

    2011-01-01

    Recently the issue on glacier retreats comes up and many factors should be relevant to the issue. The absorbing aerosols such as dust and black carbon (BC) are considered to be one of the factors. After they deposited onto the snow surface, it will reduce snow albedo (called snow darkening effect) and probably contribute to further melting of glacier. The Goddard Earth Observing System version 5 (GEOS-5) has developed at NASA/GSFC. However, the original snowpack model used in the land surface model in the GEOS-5 did not consider the snow darkening effect. Here we developed the new snow albedo scheme which can consider the snow darkening effect. In addition, another scheme on calculating mass concentrations on the absorbing aerosols in snowpack was also developed, in which the direct aerosol depositions from the chemical transport model in the GEOS-5 were used. The scheme has been validated with the observed data obtained at backyard of the Institute of Low Temperature Science, Hokkaido University, by Dr. Teruo Aoki (Meteorological Research Institute) et al. including me. The observed data was obtained when I was Ph.D.caftdidate. The original GEOS-5 during 2007-2009 over the Himalayas and Tibetan Plateau region showed more reductions of snow than that of the new GEOS-5 because the original one used lower albedo settings. On snow cover fraction, the new GEOS-5 simulated more realistic snow-covered area comparing to the MODIS snow cover fraction. The reductions on snow albedo, snow cover fraction, and snow water equivalent were seen with statistically significance if we consider the snow darkening effect comparing to the results without the snow darkening effect. In the real world, debris cover, inside refreezing process, surface flow of glacier, etc. affect glacier mass balance and the simulated results immediately do not affect whole glacier retreating. However, our results indicate that some surface melting over non debris covered parts of the glacier would be

  7. Intercomparison of aerosol instruments: number concentration

    SciTech Connect

    Knutson, E O; Sinclair, D; Tu, K W; Hinchliffe, L; Franklin, H

    1982-05-01

    An intercomparison of aerosol instruments conducted February 23-27, 1981, at the Environmental Measurements Laboratory (EML) focused on five instruments: the Pollak and TSI condensation nucleus counters; the Active Scattering Aerosol Spectrometer (ASAS-X); and two aerosol electrometers. Test aerosols of sodium chloride and ammonium fluorescein generated by nebulization/electrostatic classification were used to obtain 195 lines of comparison data. Concentrations measured by the ASAS-X and the TSI aerosol electrometer averaged respectively 1.388 and 1.581 times that measured by the Pollak. These ratios were very stable during the week and there was little effect of particle size or material. Most other comparisons were equally stable. However, a review of past work at EML and elsewhere led to the disturbing conclusion that these ratios may change from year to year, or from season to season. A filter sample was taken from microscopy, concurrent with readings from the ASAS-X and the TSI condensation nucleus counters. In this sample, the two instruments differed by 20%. Within its 20% uncertainty, the filter result matched both the TSI and ASAS-X readings.

  8. ModelE2-TOMAS development and evaluation using aerosol optical depths, mass and number concentrations

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Adams, P. J.; Shindell, D. T.

    2014-09-01

    The TwO-Moment Aerosol Sectional microphysics model (TOMAS) has been integrated into the state-of-the-art general circulation model, GISS ModelE2. TOMAS has the flexibility to select a size resolution as well as the lower size cutoff. A computationally efficient version of TOMAS is used here, which has 15 size bins covering 3 nm to 10 μm aerosol dry diameter. For each bin, it simulates the total aerosol number concentration and mass concentrations of sulphate, pure elementary carbon (hydrophobic), mixed elemental carbon (hydrophilic), hydrophobic organic matter, hydrophilic organic matter, sea salt, mineral dust, ammonium, and aerosol-associated water. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the TOMAS model is compared to the default aerosol model in ModelE2, which is a bulk aerosol model. Overall, the ModelE2-TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of sulphur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as the bulk aerosol model) cannot capture the observed vertical distribution of sulphur dioxide over the Pacific Ocean possibly due to overly strong convective transport. The TOMAS model successfully captures observed aerosol number concentrations and cloud condensation nuclei concentrations. Anthropogenic aerosol burdens in the bulk aerosol model running in the same host model as TOMAS (ModelE2) differ by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. Larger differences are found for naturally

  9. Development of a continuous aerosol mass concentration measurement device.

    PubMed

    Bémer, D; Thomas, D; Contal, P; Subra, I

    2003-08-01

    A dynamic aerosol mass concentration measurement device has been developed for personal sampling. Its principle consists in sampling the aerosol on a filter and monitoring the change of pressure drop over time (Delta P). Ensuring that the linearity of the Delta P = f(mass of particles per unit area of filter) relationship has been well established, the change of concentration can be deduced. The response of the system was validated in the laboratory with a 3.5 microm alumina aerosol (mass median diameter) generated inside a 1-m(3) ventilated enclosure. As the theory predicted that the mass sensitivity of the system would vary inversely with the square of the particle diameter, only sufficiently fine aerosols were able to be measured. The system was tested in the field in a mechanical workshop in the vicinity of an arc-welding station. The aerosol produced by welding is indeed particularly well-adapted due to the sub-micronic size of the particles. The device developed, despite this limitation, has numerous advantages over other techniques: robustness, compactness, reliability of calibration, and ease of use.

  10. Spectral solar attenuation due to aerosol loading over an urban area in India

    NASA Astrophysics Data System (ADS)

    Latha, K. Madhavi; Badarinath, K. V. S.

    2005-06-01

    Anthropogenic activities in urban areas are sources for atmospheric aerosols and are increasing due to population explosion and migration. Many large cities in the developing world are presently plagued by high levels of atmospheric pollution and long-term effect of urban aerosol on climate is an important topic. In the present study, ground-based measurements of solar irradiance, aerosol loading and black carbon (BC) aerosol concentration have been analyzed during different aerosol loading conditions during 2003 over an urban environment. BC aerosols concentration has been observed to be enhanced during high aerosol optical depth day suggesting influence of local anthropogenic activities. The analysis of wind fields over the study area during the measurement period is from north with continental air mass prevailing over the region. Spectral measurements of solar irradiance exhibited variations based on aerosol loading in urban atmosphere. Relative attenuations caused by aerosols have been found to be of the order of 21% and 17% on the irradiance on visible and near infrared respectively.

  11. Source contributions to carbonaceous aerosol concentrations in Korea

    NASA Astrophysics Data System (ADS)

    Jeong, Jaein I.; Park, Rokjin J.; Woo, Jung-Hun; Han, Young-Ji; Yi, Seung-Muk

    2011-02-01

    We estimated the source contributions to carbonaceous aerosol concentration in Korea on the basis of Intercontinental Chemical Transport Experiment Phase B (INTEX-B) anthropogenic emissions and satellite-derived biomass burning emissions by using a nested version of GEOS-Chem with a spatial resolution of 0.5° × 0.667° for the period March 2006-February 2007. First, we evaluated the model by comparing the simulated and observed aerosol concentrations at East Asia Network (EANET) sites and at a site in Korea. The results indicate that the model reproduces the variability and magnitudes of the observed SO 42-, NO 3-, and NH 4+ concentrations in Korea and those of the observed PM 10 concentrations in East Asia. However, the organic carbon (OC) and black carbon (BC) aerosol concentrations estimated by the model are lower than those observed in Korea by a factor of 2, especially in winter. This underestimation is likely due to extremely low domestic anthropogenic emissions and lack in seasonal variation. Source adjustments using a simple fitting and the Emission Database for Global Atmospheric Research (EDGAR) monthly allocation factors for seasonal variation yield significantly improved model results ( R2 increased from 0.58 to 0.84), which can then be used to estimate the source contributions to the OC and BC concentrations in Korea. We found that domestic anthropogenic emissions are the most important factors, contributing 74% (9% from fossil fuels and 65% from biofuels) and 78% (42% from fossil fuels and 36% from biofuels) to the OC and BC concentrations, respectively, on an annual mean basis in Korea. The trans-boundary transport of Chinese sources is another important factor, contributing 13% and 20% to the OC and BC concentrations, respectively. The contributions of wildfires and biogenic sources to the annual mean carbonaceous aerosol concentration in Korea are relatively small (4% and 6%, respectively).

  12. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H.; Henry, Mike; Baden, Daniel G.

    2009-01-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1 h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5–10 μg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m3. The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. PMID:19879288

  13. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G

    2010-05-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction.

  14. Assessment of Error in Aerosol Optical Depth Measured by AERONET Due to Aerosol Forward Scattering

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Holben, Brent N.; Smirnov, Alexander; Eck, Thomas F.; Slustsker, Ilya; Schafer, Joel S.; Giles, David M.; Sorokin, Michail

    2013-01-01

    We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, 99.53%. Only 0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold.

  15. Assessment of error in aerosol optical depth measured by AERONET due to aerosol forward scattering

    NASA Astrophysics Data System (ADS)

    Sinyuk, Alexander; Holben, Brent N.; Smirnov, Alexander; Eck, Thomas F.; Slutsker, Ilya; Schafer, Joel S.; Giles, David M.; Sorokin, Mikhail

    2012-12-01

    We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, ∼99.53%. Only ∼0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold.

  16. Direct gravimetric determination of aerosol mass concentration in central antarctica.

    PubMed

    Annibaldi, Anna; Truzzi, Cristina; Illuminati, Silvia; Scarponi, Giuseppe

    2011-01-01

    In Antarctica, experimental difficulties due to extreme conditions have meant that aerosol mass has rarely been measured directly by gravimetry, and only in coastal areas where concentrations were in the range of 1-7 μg m(-3). The present work reports on a careful differential weighing methodology carried out for the first time on the plateau of central Antarctica (Dome C, East Antarctica). To solve problems of accurate aerosol mass measurements, a climatic room was used for conditioning and weighing filters. Measurements were carried out in long stages of several hours of readings with automatic recording of temperature/humidity and mass. This experimental scheme allowed us to sample from all the measurements (up to 2000) carried out before and after exposure, those which were recorded under the most stable humidity conditions and, even more importantly, as close to each other as possible. The automatic reading of the mass allowed us in any case to obtain hundreds of measurements from which to calculate average values with uncertainties sufficiently low to meet the requirements of the differential weighing procedure (±0.2 mg in filter weighing, between ±7% and ±16% both in aerosol mass and concentration measurements). The results show that the average summer aerosol mass concentration (aerodynamic size ≤10 μm) in central Antarctica is about 0.1 μg m(-3), i.e., about 1/10 of that of coastal Antarctic areas. The concentration increases by about 4-5 times at a site very close to the station.

  17. Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect

    SciTech Connect

    Wang, J. X.; Lee, Y.- N.; Daum, Peter H.; Jayne, John T.; Alexander, M. L.

    2008-11-03

    Abstract. Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/ Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at 0.2% supersaturation to those predicted based on size distribution and chemical composition using K¨ohler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization.

  18. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  19. Effect of aerosol number concentration on cloud droplet dispersion: An LES study and implications for aerosol indirect forcing

    NASA Astrophysics Data System (ADS)

    Lu, M.; Seinfeld, J. H.

    2005-12-01

    Through three-dimensional LES simulations of marine stratocumulus we explore the factors that control the cloud spectral relative dispersion (ratio of cloud droplet spectral width to the mean radius of the distribution) as a function of aerosol number concentration and the extent to which the relative dispersion either enhances or mitigates the Twomey effect. We find that relative dispersion decreases with increasing aerosol number concentration (for aerosol number concentrations less than about 1000 cm- 3) because smaller droplets resulting from higher aerosol number concentrations inhibit precipitation and lead to: (1) less spectral broadening by suppressed collision and coalescence processes; and (2) more spectral narrowing by droplet condensational growth at higher updraft velocity, because reduced drizzle latent heating at cloud top results in increased boundary layer turbulent kinetic energy production by buoyancy and thereby stronger turbulence. Increased spectral broadening owing to increased cloud-top entrainment mixing, also as a result of increased boundary layer turbulence, is relatively insignificant compared with (1) and (2). The coefficient k, an important parameter that relates cloud droplet effective radius and volume mean radius in large-scale models, is a function of skewness and relative dispersion of the distribution and is negatively correlated with relative dispersion. Increasing k with increasing aerosol number concentration leads to maximum enhancement of the cloud susceptibility (the change of cloud optical depth due to change of cloud droplet number concentration) over that attributable to the Twomey effect alone by about 4.2% and 39% for simulated FIRE and ASTEX cases, respectively.

  20. The effect of aerosol vertical profiles on satellite-estimated surface particle sulfate concentrations

    SciTech Connect

    Liu, Yang; Wang, Zifeng; Wang, Jun; Ferrare, Richard A.; Newsom, Rob K.; Welton, Ellsworth J.

    2011-02-15

    The aerosol vertical distribution is an important factor in determining the relationship between satellite retrieved aerosol optical depth (AOD) and ground-level fine particle pollution concentrations. We evaluate how aerosol profiles measured by ground-based lidar and simulated by models can help improve the association between AOD retrieved by the Multi-angle Imaging Spectroradiometer (MISR) and fine particle sulfate (SO4) concentrations using matched data at two lidar sites. At the Goddard Space Flight Center (GSFC) site, both lidar and model aerosol profiles marginally improve the association between SO4 concentrations and MISR fractional AODs, as the correlation coefficient between cross-validation (CV) and observed SO4 concentrations changes from 0.87 for the no-scaling model to 0.88 for models scaled with aerosol vertical profiles. At the GSFC site, a large amount of urban aerosols resides in the well-mixed boundary layer so the column fractional AODs are already excellent indicators of ground-level particle pollution. In contrast, at the Atmospheric Radiation Measurement Program (ARM) site with relatively low aerosol loadings, scaling substantially improves model performance. The correlation coefficient between CV and observed SO4 concentrations is increased from 0.58 for the no-scaling model to 0.76 in the GEOS-Chem scaling model, and the model bias is reduced from 17% to 9%. In summary, despite the inaccuracy due to the coarse horizontal resolution and the challenges of simulating turbulent mixing in the boundary layer, GEOS-Chem simulated aerosol profiles can still improve methods for estimating surface aerosol (SO4) mass from satellite-based AODs, particularly in rural areas where aerosols in the free troposphere and any long-range transport of aerosols can significantly contribute to the column AOD.

  1. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2016-02-01

    Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between simulations and observations of

  2. Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog

    NASA Astrophysics Data System (ADS)

    Elias, T.; Dupont, J.-C.; Hammer, E.; Hoyle, C. R.; Haeffelin, M.; Burnet, F.; Jolivet, D.

    2015-06-01

    The study assesses the contribution of aerosols to the extinction of visible radiation in the mist-fog-mist cycle. Relative humidity is large in the mist-fog-mist cycle, and aerosols most efficient in interacting with visible radiation are hydrated and compose the accumulation mode. Measurements of the microphysical and optical properties of these hydrated aerosols with diameters larger than 0.4 μm were carried out near Paris, during November 2011, under ambient conditions. Eleven mist-fog-mist cycles were observed, with a cumulated fog duration of 96 h, and a cumulated mist-fog-mist cycle duration of 240 h. In mist, aerosols grew by taking up water at relative humidities larger than 93%, causing a visibility decrease below 5 km. While visibility decreased down from 5 to a few kilometres, the mean size of the hydrated aerosols increased, and their number concentration (Nha) increased from approximately 160 to approximately 600 cm-3. When fog formed, droplets became the strongest contributors to visible radiation extinction, and liquid water content (LWC) increased beyond 7 mg m-3. Hydrated aerosols of the accumulation mode co-existed with droplets, as interstitial non-activated aerosols. Their size continued to increase, and some aerosols achieved diameters larger than 2.5 μm. The mean transition diameter between the aerosol accumulation mode and the small droplet mode was 4.0 ± 1.1 μm. Nha also increased on average by 60 % after fog formation. Consequently, the mean contribution to extinction in fog was 20 ± 15% from hydrated aerosols smaller than 2.5 μm and 6 ± 7% from larger aerosols. The standard deviation was large because of the large variability of Nha in fog, which could be smaller than in mist or 3 times larger. The particle extinction coefficient in fog can be computed as the sum of a droplet component and an aerosol component, which can be approximated by 3.5 Nha (Nha in cm-3 and particle extinction coefficient in Mm-1. We observed an influence of

  3. Recent Field Measurements of Ice Nuclei Concentration Relation to Aerosol Properties

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Sullivan, R. C.; McMeeking, G.; Prenni, A. J.; Hill, T. C.; Franc, G. D.; Sullivan, A. P.; Garcia, E.; Tobo, Y.; Prather, K. A.; Suski, K.; Cazorla, A.; Anderson, J. R.; Kreidenweis, S. M.

    2011-12-01

    It is expected that atmospheric variability of ice nuclei concentrations is governed by a variety of factors related to aerosol physical and chemical properties. Not all particles contribute equally due to the special nature of ice nuclei. The "size requirement" of ice nuclei (Pruppacher and Klett, 1997), partly related to the typical aerosol compositions known to act as ice nuclei (e.g., mineral dust particles, certain biological particles), leads to the relation of ice nuclei number concentrations to larger aerosol concentrations in some cases, but we emphasize here the additional relation to aerosol chemistry. Recent atmospheric ice nuclei measurements focused on biomass burning, mineral dust, pollution and biological particles will be discussed to highlight new assessment of their source contributions on the basis of physical, chemical and biological analysis. Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation (2nd Edition), Kluwer Academic Press, Dordrecht, 954 pp.

  4. Concentration, sources, and degradation of organic aerosol at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, Erika

    Characterization and understanding of the carbonaceous portion of the aerosol in the Arctic is limited. The objective of the research presented in this thesis was to improve the scope of knowledge pertaining to carbonaceous aerosols, in terms of atmospheric and snow concentrations, sources, and post-depositional processing. An extraction technique was developed to quantitatively identify a suite of organic compounds, typically observed in aerosol samples, at trace level concentrations in snow melt water samples. A field campaign of sampling and exposure experiments was carried out at Summit, Greenland. A 3-meter snow pit, sampled at 20 cm intervals, was analyzed for organic compounds and total organic carbon (TOC). The average concentration of TOC for the entire pit was 64 mug C kg-1. The quantified organic compounds comprised 6 to 24% of TOC throughout the layers. Median concentrations of the water insoluble individual organic compounds ranged from 0.14 ng kg-1 (hopane) to 2200 ng kg-1 (alkanoic acid) at any one depth. High-volume aerosol samples were collected over a six month period and analyzed for organics. Median concentrations ranged from 0.00045 ng kg-1 (hopane) to 0.23 ng kg-1 (levoglucosan) in the air samples. Source apportionment results from the aerosol samples indicate anthropogenic influence at Summit from biomass burning, fossil fuels, and vegetative detritus. The majority (>90%) of the organic carbon in the aerosol was estimated to be secondary organic aerosol. To investigate the post-depositional processing of organic compounds in snow, contaminant labeled snow was produced and exposed for up to 72 hours on the surface of the Greenland ice sheet at Summit. Degradation of alkanes, acids, and PAHs to a threshold concentration was observed. The threshold concentration, at which no further degradation was observed, ranged from 10 to 60% of the original (non-exposed) snow concentrations, depending on the reaction rate. This would indicate that a

  5. The importance of aerosol composition and mixing state on predicted CCN concentration and the variation of the importance with atmospheric processing of aerosol

    SciTech Connect

    Wang, J.; Cubison, M.; Aiken, A.; Jimenez, J.; Collins, D.; Gaffney, J.; Marley, N.

    2010-03-15

    The influences of atmospheric aerosols on cloud properties (i.e., aerosol indirect effects) strongly depend on the aerosol CCN concentrations, which can be effectively predicted from detailed aerosol size distribution, mixing state, and chemical composition using Köhler theory. However, atmospheric aerosols are complex and heterogeneous mixtures of a large number of species that cannot be individually simulated in global or regional models due to computational constraints. Furthermore, the thermodynamic properties or even the molecular identities of many organic species present in ambient aerosols are often not known to predict their cloud-activation behavior using Köhler theory. As a result, simplified presentations of aerosol composition and mixing state are necessary for large-scale models. In this study, aerosol microphysics, CCN concentrations, and chemical composition measured at the T0 urban super-site in Mexico City during MILAGRO are analyzed. During the campaign in March 2006, aerosol size distribution and composition often showed strong diurnal variation as a result of both primary emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. The submicron aerosol composition was ~1/2 organic species. Closure analysis is first carried out by comparing CCN concentrations calculated from the measured aerosol size distribution, mixing state, and chemical composition using extended Köhler theory to concurrent CCN measurements at five supersaturations ranging from 0.11% to 0.35%. The closure agreement and its diurnal variation are studied. CCN concentrations are also derived using various simplifications of the measured aerosol mixing state and chemical composition. The biases associated with these simplifications are compared for different supersaturations, and the variation of the biases is examined as a function of aerosol age. The results show that the simplification of internally mixed, size

  6. g Dependent particle concentration due to sedimentation

    NASA Astrophysics Data System (ADS)

    Haranas, Ioannis; Gkigkitzis, Ioannis; Zouganelis, George D.

    2012-11-01

    Sedimentation of particles in a fluid has long been used to characterize particle size distribution. Stokes' law is used to determine an unknown distribution of spherical particle sizes by measuring the time required for the particles to settle a known distance in a fluid of known viscosity and density. In this paper, we study the effects of gravity on sedimentation by examining the resulting particle concentration distributed in an equilibrium profile of concentration C m, n above the bottom of a container. This is for an experiment on the surface of the Earth and therefore the acceleration of gravity had been corrected for the oblateness of the Earth and its rotation. Next, at the orbital altitude of the spacecraft in orbit around Earth the acceleration due to the central field is corrected for the oblateness of the Earth. Our results show that for experiments taking place in circular or elliptical orbits of various inclinations around the Earth the concentration ratio C m, n / C m, ave , the inclination seems to be the most ineffective in affecting the concentration among all the orbital elements. For orbital experiment that use particles of diameter d p =0.001 μm the concentration ratios for circular and slightly elliptical orbits in the range e=0-0.1 exhibit a 0.009 % difference. The concentration ratio increases with the increase of eccentricity, which increases more for particles of larger diameters. Finally, for particles of the same diameter concentration ratios between Earth and Mars surface experiments are related in the following way C_{(m,n)_{mathit{Earth}}} = 0.99962 C_{(m,n)_{mathit{Mars}}}.

  7. Aerosol ion concentration dependence on atmospheric conditions in Chicago

    NASA Astrophysics Data System (ADS)

    Fosco, Tinamarie; Schmeling, Martina

    This study seeks to determine the influence of precursor trace gases and local meteorology, including lake breeze events, on the concentrations of secondary aerosol species in Chicago. For this, two particulate air samples per day were collected onto quartz fiber filters at the Loyola University Chicago Air Station (LUCAS) during the summer months of 2002 and 2003 and subsequently analyzed by ion chromatography for sulfate, nitrate and oxalate. In parallel, mixing ratios of ozone (O 3) and nitrogen oxides (NO and NO 2dbnd NO x) were monitored and weather parameters were recorded. In addition, backward trajectories were obtained to estimate air mass transport to Chicago. Ozone and NO x mixing ratios as well as sulfate, nitrate and oxalate concentrations varied substantially throughout the study, but three situations could be distinguished based on meteorology and chemistry. Case one had the lowest ozone, NO x and ion levels due to wind directions constantly from Lake Michigan. Case two comprised of days showing the highest pollutant levels because of to predominantly southwestern air currents and warm temperatures and case three experienced an air stagnation situation in the morning leading to high NO x mixing ratios and a subsequent lake breeze event. In the last case, elevated ozone mixing ratios and ion concentrations were observed after lake breeze onset indicating pollutant transport.

  8. MCS precipitation and downburst intensity response to increased aerosol concentrations

    NASA Astrophysics Data System (ADS)

    Clavner, M.; Cotton, W. R.; van den Heever, S. C.

    2015-12-01

    Mesoscale convective systems (MCSs) are important contributors to rainfall in the High Plains of the United States as well as producers of severe weather such as hail, tornados and straight-line wind events known as derechos. Past studies have shown that changes in aerosol concentrations serving as cloud condensation nuclei (CCN) alter the MCS hydrometeor characteristics which in turn modify precipitation yield, downdraft velocity, cold-pool strength, storm propagation and the potential for severe weather to occur. In this study, the sensitivity of MCS precipitation characteristics and convective downburst velocities associated with a derecho to changes in CCN concentrations were examined by simulating a case study using the Regional Atmospheric Modeling System (RAMS). The case study of the 8 May 2009 "Super-Derecho" MCS was chosen since it produced a swath of widespread wind damage in association with an embedded large-scale bow echo, over a broad region from the High Plains of western Kansas to the foothills of the Appalachians. The sensitivity of the storm to changes in CCN concentrations was examined by conducting a set of three simulations which differed in the initial aerosol concentration based on output from the 3D chemical transport model, GEOS-Chem. Results from this study indicate that while increasing CCN concentrations led to an increase in precipitation rates, the changes to the derecho strength were not linear. A moderate increase in aerosol concentration reduced the derecho strength, while the simulation with the highest aerosol concentrations increased the derecho intensity. These changes are attributed to the impact of enhanced CCN concentration on the production of convective downbursts. An analysis of aerosol loading impacts on these MCS features will be presented.

  9. Process evaluation of sea salt aerosol concentrations at remote marine locations

    NASA Astrophysics Data System (ADS)

    Struthers, H.; Ekman, A. M.; Nilsson, E. D.

    2011-12-01

    Sea salt, an important natural aerosol, is generated by bubbles bursting at the surface of the ocean. Sea salt aerosol contributes significantly to the global aerosol burden and radiative budget and are a significant source of cloud condensation nuclei in remote marine areas (Monahan et al., 1986). Consequently, changes in marine aerosol abundance is expected to impact on climate forcing. Estimates of the atmospheric burden of sea salt aerosol mass derived from chemical transport and global climate models vary greatly both in the global total and the spatial distribution (Texor et al. 2006). This large uncertainty in the sea salt aerosol distribution in turn contributes to the large uncertainty in the current estimates of anthropogenic aerosol climate forcing (IPCC, 2007). To correctly attribute anthropogenic climate change and to veraciously project future climate, natural aerosols including sea salt must be understood and accurately modelled. In addition, the physical processes that determine the sea salt aerosol concentration are susceptible to modification due to climate change (Carslaw et al., 2010) which means there is the potential for feedbacks within the climate/aerosol system. Given the large uncertainties in sea salt aerosol modelling, there is an urgent need to evaluate the process description of sea salt aerosols in global models. An extremely valuable source of data for model evaluation is the long term measurements of PM10 sea salt aerosol mass available from a number of remote marine observation sites around the globe (including the GAW network). Sea salt aerosol concentrations at remote marine locations depend strongly on the surface exchange (emission and deposition) as well as entrainment or detrainment to the free troposphere. This suggests that the key parameters to consider in any analysis include the sea surface water temperature, wind speed, precipitation rate and the atmospheric stability. In this study, the sea salt aerosol observations

  10. Direct Radiative Forcing Due to Carbonaceous Aerosols in Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Marks, M.; Heo, J.; Adams, P. J.; Donahue, N. M.; Robinson, A. L.

    2014-12-01

    Most climate forcing calculations treat black carbon (BC) as the only carbonaceous particulate light-absorber. Numerous studies have shown that some organic aerosols (OA), mainly associated with biomass burning emissions, contain significant amounts of light-absorbing brown carbon (BrC). However, the light absorption properties of biomass burning OA are poorly constrained, complicating its representation in climate models. During the Fire Laboratory at Missoula Experiment (FLAME 4), we conducted experiments to characterize the light absorption properties of OA in emissions of globally important biomass fuels. We showed that the effective absorptivity of OA depends largely on burn conditions, not fuel type, and derived a parameterization that links OA absorptivity to the BC-to-OA ratio of the emissions (Nature Geoscience, DOI:10.1038/ngeo2220). Here, we utilize this parameterization to estimate the direct radiative effect (DRE) of carbonaceous aerosols in biomass burning emissions using a global chemical transport model (GEOS-Chem) and a column radiative transfer model (libRadTran). The simulations were performed for the year 2005. Monthly-averaged global aerosol concentrations, including BC, OA, inorganic sulfates and nitrates, sea salt, and mineral dust, were obtained from GEOS-Chem simulations. Concentrations of BC and OA from biomass burning emissions were determined by running two GEOS-Chem simulations, one with and one without biomass burning emissions. We attributed the difference in BC and OA concentrations between the two simulations to biomass burning, and could thus calculate the BC-to-OA ratio for biomass burning emissions. libRadTran was used (offline) to calculated DRE due to biomass burning carbonaceous aerosols at each GEOS-Chem grid-cell. Our results show that the global average DRE due to carbonaceous biomass burning emissions increases significantly if light-absorption by OA is considered (using our parameterization for OA absorptivity), compared

  11. Size and concentration measurement of an industrial aerosol

    SciTech Connect

    O'Brien, D.; Baron, P.; Willeke, K.

    1986-07-01

    Several real-time particle sizing instruments were evaluated for measuring the size distribution and concentration of the aerosol produced during the high speed grinding of gray iron castings. Aerosol was sampled in the airstream entrained by the motion of a spinning grinding wheel in a pilot grinding operation. Measurement methods based on differing physical principles were selected for evaluation and compared: particle inertia (aerodynamic particle sizer and quartz crystal microbalance cascade impactor); light scattering (laser aerosol spectrometer); and projected-area microscopy (scanning electron microscope). Inferences of aerodynamic diameter based on measurements by the laser aerosol spectrometer consistently undersized that determined by the aerodynamic particle sizer by a factor of 1.5. Estimates of aerodynamic diameters from projected area diameters determined by scanning electron microscopy differed from those obtained by the aerodynamic particle sizer by a factor of 2. Differences appeared to be a non-linear function of particle diameter. Estimates of respirable mass determined from mass-weighted particle size spectra varied by a factor of 6 between the largest estimate (scanning electron microscope) and the smallest estimate (laser aerosol spectrometer).

  12. Size and concentration measurement of an industrial aerosol.

    PubMed

    O'Brien, D; Baron, P; Willeke, K

    1986-07-01

    Several real-time particle sizing instruments were evaluated for measuring the size distribution and concentration of the aerosol produced during the high speed grinding of gray iron castings. Aerosol was sampled in the airstream entrained by the motion of a spinning grinding wheel in a pilot grinding operation. Measurement methods based on differing physical principles were selected for evaluation and compared: particle inertia (aerodynamic particle sizer and quartz crystal microbalance cascade impactor); light scattering (laser aerosol spectrometer); and projected-area microscopy (scanning electron microscope). Inferences of aerodynamic diameter based on measurements by the laser aerosol spectrometer consistently undersized that determined by the aerodynamic particle sizer by a factor of 1.5. Estimates of aerodynamic diameters from projected area diameters determined by scanning electron microscopy differed from those obtained by the aerodynamic particle sizer by a factor of 2. Differences appeared to be a non-linear function of particle diameter. Estimates of respirable mass determined from mass-weighted particle size spectra varied by a factor of 6 between the largest estimate (scanning electron microscope) and the smallest estimate (laser aerosol spectrometer).

  13. Design and Fabrication of an Aerosol Concentrator.

    DTIC Science & Technology

    1980-05-08

    MBEran GpVt 08C IO NO 3. RECIPIENT’S CATALOG NUMBER 4. TITL S. VVIREOP ePORT A PERIOD COVERED Interim report on a continuing ~ESIGN AND ,BRICATION OF AN...electronic tachometer , and a variable speed controller. Our motor is a hand-held router motor, model 90114, manufactured by the Stanley Power Tool Company (P.O...be obtained from Lordco Supply (Erie, PA 16505). Since the concentrator is run at various speeds, we incorporated an electronic tachometer into the

  14. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review

    NASA Astrophysics Data System (ADS)

    Haywood, James; Boucher, Olivier

    2000-11-01

    This paper reviews the many developments in estimates of the direct and indirect global annual mean radiative forcing due to present-day concentrations of anthropogenic tropospheric aerosols since Intergovernmental Panel on Climate Change [1996]. The range of estimates of the global mean direct radiative forcing due to six distinct aerosol types is presented. Additionally, the indirect effect is split into two components corresponding to the radiative forcing due to modification of the radiative properties of clouds (cloud albedo effect) and the effects of anthropogenic aerosols upon the lifetime of clouds (cloud lifetime effect). The radiative forcing for anthropogenic sulphate aerosol ranges from -0.26 to -0.82 W m-2. For fossil fuel black carbon the radiative forcing ranges from +0.16 W m-2 for an external mixture to +0.42 W m-2 for where the black carbon is modeled as internally mixed with sulphate aerosol. For fossil fuel organic carbon the two estimates of the likely weakest limit of the direct radiative forcing are -0.02 and -0.04 W m-2. For biomass-burning sources of black carbon and organic carbon the combined radiative forcing ranges from -0.14 to -0.74 W m-2. Estimates of the radiative forcing due to mineral dust vary widely from +0.09 to -0.46 W m-2; even the sign of the radiative forcing is not well established due to the competing effects of solar and terrestrial radiative forcings. A single study provides a very tentative estimate of the radiative forcing of nitrates to be -0.03 W m-2. Estimates of the cloud albedo indirect radiative forcing range from -0.3 to approximately -1.8 W m-2. Although the cloud lifetime effect is identified as a potentially important climate forcing mechanism, it is difficult to quantify in the context of the present definition of radiative forcing of climate change and current model simulations. This is because its estimation by general circulation models necessarily includes some level of cloud and water vapor feedbacks

  15. Concentrations and size distributions of Antarctic stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ferry, G. V.; Pueschel, R. F.; Neish, E.; Schultz, M.

    1989-01-01

    Particle Measuring Systems laser particle spectrometer (ASAS-X and FSSP) probes were used to measure aerosol particle concentrations and size distributions during 11 ER-2 flights between Punta Arenas (53 deg S) and Antarctica (up to 72 deg S) from August 17 to September 22, 1987. The time resolution was 10 s, corresponding to a spatial resolution of 2 km. The data were divided into two size classes (0.05-0.25 and 0.53-5.5 micron radius) to separate the small particle from the coarse particle populations. Results show that the small-particle concentrations are typical for a background aerosol during volcanic quiescence. This concentration is generally constant along a flight track; in only one instance a depletion of small particles during a polar stratospheric cloud (PSC) encounter was measured, suggesting a nucleation of type I PSC particles on background aerosols. Temporary increases of the coarse particle concentrations indicated the presence of tenuous polar stratospheric clouds that were encountered most frequently at the southernmost portion of a flight track and when the aircraft descended to lower altitudes. During 'particle events', particle modes were found at 0.6-micron radius, corresponding to type I PSCs, and occasionally, at 2.0-micron radius corresponding to type II PSCs.

  16. Investigation of air pollution and regional climate change due to anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Nakata, Makiko; Sano, Itaru; Mukai, Sonoyo

    2016-10-01

    Increased emissions of anthropogenic aerosols associated with economic growth can lead to increased concentrations of hazardous air pollutants. In particular, large cities in East Asia have experienced numerous heavy haze episodes. Atmospheric aerosol distributions in East Asia are complex, being influenced by both natural phenomena and human activity, with urban areas in particular being dominated by fine anthropogenic aerosols released from diesel-powered vehicles and industrial activity. In Japan, air pollution levels have been reduced; nevertheless, in recent years, there is increasing concern regarding air pollution caused by fine particulate matter. The origins of air pollution were examined, focusing on the comparison between aerosol properties observed from satellites and that on the ground. Because of their short life spans, concentrations of anthropogenic aerosols are highest over the source regions, and as a result, the climatic impacts of anthropogenic aerosols are also found to be most pronounced in these regions. In this study, aerosol impacts on climate are assessed by numerical model simulations. The direct effects of aerosols include reduced solar radiation, and hence a decrease in surface temperatures. In addition to these changes in the radiation budget, aerosols have a significant potential to change cloud and precipitation fields. These climatic responses to aerosols can manifest far from their source regions with high industrial activities.

  17. A Study of Direct and Cloud-Mediated Radiative Forcing of Climate Due to Aerosols

    NASA Technical Reports Server (NTRS)

    Yu, Shao-Cai

    1999-01-01

    mathematically unique procedure involving a Mie code and a radiative transfer code in conjunction with the retrieved aerosol size distribution, AOD, and diffuse-direct irradiance ratio. It was found that N, r(eff) and sigma(g) were in the ranges of 10 to 1.7 x 10(exp 4)/cubic cm, 0.09 to 0.68 micrometers and 1.12 to 2.95, respectively. The asymmetry factor and single scattering albedo were in the ranges of 0.63 to 0.75 and 0.74 to 0.97 respectively. The ground albedo for the forested terrain and imaginary part of refractive index were found to be in the ranges of 0.06 to 0.29 and 0.005 to 0.051 respectively. On the basis of these aerosol radiative properties obtained at the research sites and computations using the Column Radiation Model (CRM) of National Center of Atmospheric Research (NCAR) Community Climate Model (CCM3), it was found that the average cloud-free 24-hour ADRF values were -13 +/- 8, -8 +/- 3, -33 +/- 16 W/square m for marine, continental, and polluted air masses, respectively. On the assumption that the fractional coverage of clouds is 0.61, it was estimated that the annual mean ADRF was 7 +/- 2 W/square m in the southeastern US. The review with respect to the current knowledge of organic acids shows that aerosol formate and acetate concentrations range from 0.02 to 5.3 nmol/cubic m and from 0.03 to 12.4 nmol/cubic m respectively, and that between 34% to 77% of formate and between 21% to 66% of acetate are present in the fine fraction of aerosols. It was found that although most (98-99%) of these volatile organic acids were present in the gas phase, their concentrations in the aerosol particles were sufficient to make them a good candidate for cloud condensation nuclei (CCN). It is hypothesized that organic acids are at least one of the primary sources of CCN in the atmosphere due to their ubiquitous presence in the troposphere, especially over the continental forested areas. The results of our measurements at Palmer Station, Antarctica show that the daily

  18. Enhanced shortwave cloud radiative forcing due to anthropogenic aerosols

    SciTech Connect

    Schwartz, S.E.; Slingo, A.

    1995-05-01

    It has been suggested that anthropogenic aerosols in the troposphere can influence the microphysical properties of clouds and in turn their reflectivity, thereby exerting a radiative influence on climate. This article presents the theoretical basis for of this so-called indirect forcing and reviews pertinent observational evidence and climate model calculations of its magnitude and geographical distribution. We restrict consideration to liquid-water clouds.

  19. Black Carbon Concentration from Worldwide Aerosol Robotic Network (AERONET)

    NASA Technical Reports Server (NTRS)

    Schuster, Greg; Dubovik, Oleg; Holben, Brent; Clothiaux, Eugene

    2008-01-01

    Worldwide black carbon concentration measurements are needed to assess the efficacy of the carbon emissions inventory and transport model output. This requires long-term measurements in many regions, as model success in one region or season does not apply to all regions and seasons. AERONET is an automated network of more than 180 surface radiometers located throughout the world. The sky radiance measurements obtained by AERONET are inverted to provide column-averaged aerosol refractive indices and size distributions for the AERONET database, which we use to derive column-averaged black carbon concentrations and specific absorptions that are constrained by the measured radiation field. This provides a link between AERONET sky radiance measurements and the elemental carbon concentration of transport models without the need for an optics module in the transport model. Knowledge of both the black carbon concentration and aerosol absorption optical depth (i.e., input and output of the optics module) will enable improvements to the transport model optics module.

  20. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.

    PubMed

    Parkhurst, Mary Ann; Cheng, Yung Sung; Kenoyer, Judson L; Traub, Richard J

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65

  1. Variation in aerosol nucleation and growth in coal-fired power plant plumes due to background aerosol, meteorology and emissions: sensitivity analysis and parameterization.

    NASA Astrophysics Data System (ADS)

    Stevens, R. G.; Lonsdale, C. L.; Brock, C. A.; Reed, M. K.; Crawford, J. H.; Holloway, J. S.; Ryerson, T. B.; Huey, L. G.; Nowak, J. B.; Pierce, J. R.

    2012-04-01

    amount of sunlight and NOx since both control OH concentrations. Decreases in NOx emissions without simultaneous decreases in SO2 emissions increase new-particle formation and growth due to increased oxidation of SO2. The parameterization we describe here should allow for more accurate predictions of aerosol size distributions and a greater confidence in the effects of aerosols in climate and health studies.

  2. Concentrations, size distributions and temporal variations of fluorescent biological aerosol particles in southern tropical India

    NASA Astrophysics Data System (ADS)

    Valsan, Aswathy; Krishna R, Ravi; CV, Biju; Huffman, Alex; Poschl, Ulrich; Gunthe, Sachin

    2015-04-01

    observed that the FBAP concentrations were very low. This may be due to the clean marine influx coming over the Indian Ocean and due to continuous wash out during the rain. While in case of sporadic rain events with fluctuating wind direction, high FBAP concentration was noticed. However such a similar trend was not observed for total aerosol particle concentration. The detailed results will be presented.

  3. Increasing risk of Amazonian drought due to decreasing aerosol pollution.

    PubMed

    Cox, Peter M; Harris, Phil P; Huntingford, Chris; Betts, Richard A; Collins, Matthew; Jones, Chris D; Jupp, Tim E; Marengo, José A; Nobre, Carlos A

    2008-05-08

    The Amazon rainforest plays a crucial role in the climate system, helping to drive atmospheric circulations in the tropics by absorbing energy and recycling about half of the rainfall that falls on it. This region (Amazonia) is also estimated to contain about one-tenth of the total carbon stored in land ecosystems, and to account for one-tenth of global, net primary productivity. The resilience of the forest to the combined pressures of deforestation and global warming is therefore of great concern, especially as some general circulation models (GCMs) predict a severe drying of Amazonia in the twenty-first century. Here we analyse these climate projections with reference to the 2005 drought in western Amazonia, which was associated with unusually warm North Atlantic sea surface temperatures (SSTs). We show that reduction of dry-season (July-October) rainfall in western Amazonia correlates well with an index of the north-south SST gradient across the equatorial Atlantic (the 'Atlantic N-S gradient'). Our climate model is unusual among current GCMs in that it is able to reproduce this relationship and also the observed twentieth-century multidecadal variability in the Atlantic N-S gradient, provided that the effects of aerosols are included in the model. Simulations for the twenty-first century using the same model show a strong tendency for the SST conditions associated with the 2005 drought to become much more common, owing to continuing reductions in reflective aerosol pollution in the Northern Hemisphere.

  4. Capstone depleted uranium aerosol biokinetics, concentrations, and doses.

    PubMed

    Guilmette, Raymond A; Miller, Guthrie; Parkhurst, Mary Ann

    2009-03-01

    One of the principal goals of the Capstone Depleted Uranium (DU) Aerosol Study was to quantify and characterize DU aerosols generated inside armored vehicles by perforation with a DU penetrator. This study consequently produced a database in which the DU aerosol source terms were specified both physically and chemically for a variety of penetrator-impact geometries and conditions. These source terms were used to calculate radiation doses and uranium concentrations for various scenarios as part of the Capstone Human Health Risk Assessment (HHRA). This paper describes the scenario-related biokinetics of uranium, and summarizes intakes, chemical concentrations to the organs, and E(50) and HT(50) for organs and tissues based on exposure scenarios for personnel in vehicles at the time of perforation as well as for first responders. For a given exposure scenario (duration time and breathing rates), the range of DU intakes among the target vehicles and shots was not large, about a factor of 10, with the lowest being for a ventilated operational Abrams tank and the highest being for an unventilated Abrams with DU penetrator perforating DU armor. The ranges of committed effective doses were more scenario-dependent than were intakes. For example, the largest range, a factor of 20, was shown for scenario A, a 1 min exposure, whereas, the range was only a factor of two for the first-responder scenario (E). In general, the committed effective doses were found to be in the tens of mSv. The risks ascribed to these doses are discussed separately.

  5. Profile of heating rate due to aerosols using lidar and skyradiometer in SKYNET Hefei site

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Liu, D.; Xie, C.

    2015-12-01

    Atmospheric aerosols have a significant impact on climate due to their important role in modifying atmosphere energy budget. On global scale, the direct radiative forcing is estimated to be in the range of -0.9 to -0.1 Wm-2 for aerosols [1]. Yet, these estimates are subject to very large uncertainties because of uncertainties in spatial and temporal variations of aerosols. At local scales, as aerosol properties can vary spatially and temporally, radiative forcing due to aerosols can be also very different and it can exceed the global value by an order of magnitude. Hence, it is very important to investigate aerosol loading, properties, and radiative forcing due to them in detail on local regions of climate significance. Haze and dust events in Hefei, China are explored by Lidar and Skyradiometer. Aerosol optical properties including the AOD, SSA, AAE and size distribution are analysed by using the SKYRAD.PACK [2] and presented in this paper. Furthermore, the radiative forcing due to aerosols and the heating rate in the ATM are also calculated using SBDART model [3]. The results are shown that the vertical heating rate is tightly related to aerosol profile. References: 1. IPCC. 2007. Climate Change 2007: The Physical Science Basic. Contribution of Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. Solomon S, Qing D H, Manning M, et al. eds., Cambridge University Press, Cambridge, United Kingdom and New York, N Y, USA. 2. Nakajima, T., G. Tonna, R. Rao, Y. Kaufman, and B. Holben, 1996: Use of sky brightness measurements from ground for remote sensing of particulate poly dispersions, Appl. Opt., 35, 2672-2686. 3. Ricchiazzi et al 1998. SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere,Bulletin of the American Meteorological Society,79,2101-2114.

  6. Aerosol-Radiation Feedback and PM10 Air Concentrations Over Poland

    NASA Astrophysics Data System (ADS)

    Werner, Małgorzata; Kryza, Maciej; Skjøth, Carsten Ambelas; Wałaszek, Kinga; Dore, Anthony J.; Ojrzyńska, Hanna; Kapłon, Jan

    2017-02-01

    We have implemented the WRF-Chem model version 3.5 over Poland to quantify the direct and indirect feedback effects of aerosols on simulated meteorology and aerosol concentrations. Observations were compared with results from three simulations at high spatial resolutions of 5 × 5 km: (1) BASE—without any aerosol feedback effects; (2) DIR—with direct aerosol-radiative effects (3) INDIR—with direct and indirect aerosol-radiative effects. We study the overall effect during January 2011 as well as selected episodes of the highest differences in PM10 concentrations between the three simulations. For the DIR simulation, the decrease in monthly mean incoming solar radiation (SWDOWN) appears for the entire study area. It changes geographically, from about -8.0 to -2.0 W m-2, respectively for the southern and northern parts of the country. The highest changes do not correspond to the highest PM10 concentration. Due to the solar radiation changes, the surface mean monthly temperature (T2) decreases for 96 % of the area of Poland, but not more than 1.0 °C. Monthly mean PBLH changes by more than ±5 m for 53 % of the domain. Locally the differences in PBLH between the DIR and BASE are higher than ± 20 m. Due to the direct effect, for 84 % of the domain, the mean monthly PM10 concentrations increase by up to 1.9 µg m-3. For the INDIR simulation the spatial distribution of changes in incoming solar radiation as well as air temperature is similar to the DIR simulation. The decrease of SWDOWN is noticed for the entire domain and for 23 % of the domain is higher than -5.0 W m-2. The absolute differences of PBLH are slightly higher for INDIR than DIR but similarly distributed spatially. For daily episodes, the differences between the simulations are higher, both for meteorology and PM10 concentrations, and the pattern of changes is usually more complex. The results indicate the potential importance of the aerosol feedback effects on modelled meteorology and PM10

  7. Evidence for Natural Variability in Marine Stratocumulus Cloud Properties Due to Cloud-Aerosol

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce; Sharon, Tarah; Jonsson, Haf; Minnis, Patrick; Minnis, Patrick; Ayers, J. Kirk; Khaiyer, Mandana M.

    2004-01-01

    In this study, aircraft observations from the Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter are used to characterize the variability in drizzle, cloud, and aerosol properties associated with cloud rifts and the surrounding solid clouds observed off the coast of California. A flight made on 16 July 1999 provided measurements directly across an interface between solid and rift cloud conditions. Aircraft instrumentation allowed for measurements of aerosol, cloud droplet, and drizzle spectra. CCN concentrations were measured in addition to standard thermodynamic variables and the winds. A Forward Scatter Spectrometer Probe (FSSP) measured size distribution of cloud-sized droplets. A Cloud Imaging Probe (CIP) was used to measure distributions of drizzle-sized droplets. Aerosol distributions were obtained from a Cloud Aerosol Scatterprobe (CAS). The CAS probe measured aerosols, cloud droplets and drizzle-sized drops; for this study. The CAS probe was used to measure aerosols in the size range of 0.5 micron - 1 micron. Smaller aerosols were characterized using an Ultrafine Condensation Particle Counter (CPC) sensor. The CPC was used to measure particles with diameters greater than 0.003 micron. By subtracting different count concentrations measured with the CPC, this probe was capable of identifying ultrafine particles those falling in the size range of 3 nanometers - 7 nanometers that are believed to be associated with new particle production.

  8. Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Dye, C.; Kiss, G.

    2007-08-01

    Sugars and sugar-alcohols are demonstrated to be important constituents of the ambient aerosol water-soluble organic carbon fraction, and to be tracers for primary biological aerosol particles (PBAP). In the present study, levels of four sugars (fructose, glucose, sucrose, trehalose) and three sugar-alcohols (arabitol, inositol, mannitol) in ambient aerosols have been quantified using a novel HPLC/HRMS-TOF (High Performance Liquid Chromatography in combination with High Resolution Mass Spectrometry - Time of Flight) method to assess the contribution of PBAP to PM>sub>10 and PM2.5. Samples were collected at four sites in Norway at different times of the year in order to reflect the various contributing sources and the spatial and seasonal variation of the selected compounds. Sugars and sugar-alcohols were present at all sites investigated, underlining the ubiquity of these highly polar organic compounds. The highest concentrations were reported for sucrose, reaching a maximum concentration of 320 ng m-3 in PM10 and 55 ng m-3 in PM2.5. The mean concentration of sucrose was up to 10 times higher than fructose, glucose and the dimeric sugar trehalose. The mean concentrations of the sugar-alcohols were typically lower, or equal, to that of the monomeric sugars and trehalose. Peak concentrations of arabitol and mannitol did not exceed 30 ng m-3 in PM10, and for PM2.5 all concentrations were below 6 ng m-3. Sugars and sugar-alcohols were associated primarily with coarse aerosols except during wintertime at the suburban site in Elverum, where a shift towards sub micron aerosols was observed. It is proposed that this shift was due to the intensive use of wood burning for residential heating at this site during winter, confirmed by high concurrent concentrations of levoglucosan. Elevated concentrations of sugars in PM2.5 were observed during spring and early summer at the rural background site Birkenes. It is hypothesized that this was due to ruptured pollen.

  9. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    SciTech Connect

    Kleinman L. I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek III, A. J.; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2012-01-04

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (D{sub p} > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25 % of aerosol with D{sub p} > 100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the

  10. Aerosol nucleation and growth in the TTL, due to tropical convection, during the ACTIVE campaign

    NASA Astrophysics Data System (ADS)

    Waddicor, D.; Vaughan, G.; Choularton, T.

    2009-04-01

    much reduced aerosol number concentration in cloud. The high aerosol (cloud free) areas would appear after the cloud began to evaporate through the process of aerosol nucleation. The evaporating cloud particles and reduced cloud surface area would allow aerosol nucleation to occur - typically involving sulphuric acid and water, released from ice crystals. The time scales for the particle production have also been investigated using satellite and wind projections/ECMWF back trajectories.

  11. The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic

    NASA Astrophysics Data System (ADS)

    Struthers, H.; Ekman, A. M. L.; Glantz, P.; Iversen, T.; Kirkevåg, A.; Mårtensson, E. M.; Seland, Ø.; Nilsson, E. D.

    2011-04-01

    Understanding Arctic climate change requires knowledge of both the external and the local drivers of Arctic climate as well as local feedbacks within the system. An Arctic feedback mechanism relating changes in sea ice extent to an alteration of the emission of sea salt aerosol and the consequent change in radiative balance is examined. A set of idealized climate model simulations were performed to quantify the radiative effects of changes in sea salt aerosol emissions induced by prescribed changes in sea ice extent. The model was forced using sea ice concentrations consistent with present day conditions and projections of sea ice extent for 2100. Sea salt aerosol emissions increase in response to a decrease in sea ice, the model results showing an annual average increase in number emission over the polar cap (70-90° N) of 86 × 106 m-2 s-1 (mass emission increase of 23 μg m-2 s-1). This in turn leads to an increase in the natural aerosol optical depth of approximately 23%. In response to changes in aerosol optical depth, the natural component of the aerosol direct forcing over the Arctic polar cap is estimated to be between -0.2 and -0.4 W m-2 for the summer months, which results in a negative feedback on the system. The model predicts that the change in first indirect aerosol effect (cloud albedo effect) is approximately a factor of ten greater than the change in direct aerosol forcing although this result is highly uncertain due to the crude representation of Arctic clouds and aerosol-cloud interactions in the model. This study shows that both the natural aerosol direct and first indirect effects are strongly dependent on the surface albedo, highlighting the strong coupling between sea ice, aerosols, Arctic clouds and their radiative effects.

  12. Numerical simulation of advection fog formation on multi-disperse aerosols due to combustion-related pollutants

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.

    1980-01-01

    The effects of multi-disperse distribution of the aerosol population are presented. Single component and multi-component aerosol species on the condensation/nucleation processes which affect the reduction in visibility are described. The aerosol population with a high particle concentration provided more favorable conditions for the formation of a denser fog than the aerosol population with a greater particle size distribution when the value of the mass concentration of the aerosols was kept constant. The results were used as numerical predictions of fog formation. Two dimensional observations in horizontal and vertical coordinates, together with time-dependent measurements were needed as initial values for the following physical parameters: (1)wind profiles; (2) temperature profiles; (3) humidity profiles; (4) mass concentration of aerosol particles; (5) particle size distribution of aerosols; and (6) chemical composition of aerosols. Formation and dissipation of advection fog, thus, can be forecasted numerically by introducing initial values obtained from the observations.

  13. Influence of the Surf Zone on the Marine Aerosol Concentration in a Coastal Area

    NASA Astrophysics Data System (ADS)

    Tedeschi, Gilles; van Eijk, Alexander M. J.; Piazzola, Jacques; Kusmierczyk-Michulec, Jolanta T.

    2017-01-01

    Sea-salt aerosol concentrations in the coastal zone are assessed with the numerical aerosol-transport model MACMod that applies separate aerosol source functions for open ocean and the surf zone near the sea-land transition. Numerical simulations of the aerosol concentration as a function of offshore distance from the surf zone compare favourably with experimental data obtained during a surf-zone aerosol experiment in Duck, North Carolina in autumn 2007. Based on numerical simulations, the effect of variations in aerosol production (source strength) and transport conditions (wind speed, air-sea temperature difference), we show that the surf-zone aerosols are replaced by aerosols generated over the open ocean as the airmass advects out to sea. The contribution from the surf-generated aerosol is significant during high wind speeds and high wave events, and is significant up to 30 km away from the production zone. At low wind speeds, the oceanic component dominates, except within 1-5 km of the surf zone. Similar results are obtained for onshore flow, where no further sea-salt aerosol production occurs as the airmass advects out over land. The oceanic aerosols that are well-mixed throughout the boundary layer are then more efficiently transported inland than are the surf-generated aerosols, which are confined to the first few tens of metres above the surface, and are therefore also more susceptible to the type of surface (trees or grass) that determines the deposition velocity.

  14. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    SciTech Connect

    Kleinman, L.I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek III, A. J.; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2011-06-21

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO{sub 2} from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25% of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50% of aerosol with D{sub p} > 110 nm were not activated, the difference between the two

  15. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    NASA Astrophysics Data System (ADS)

    Kleinman, L. I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek, A. J., III; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2011-06-01

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O3 and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO2 from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 °C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of ~150 cm-3, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that ~25 % of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50 % of aerosol with Dp > 110 nm were not activated, the difference between the two approaches possibly representing

  16. Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrations

    NASA Astrophysics Data System (ADS)

    Vergara-Temprado, Jesús; Murray, Benjamin J.; Wilson, Theodore W.; O'Sullivan, Daniel; Browse, Jo; Pringle, Kirsty J.; Ardon-Dryer, Karin; Bertram, Allan K.; Burrows, Susannah M.; Ceburnis, Darius; DeMott, Paul J.; Mason, Ryan H.; O'Dowd, Colin D.; Rinaldi, Matteo; Carslaw, Ken S.

    2017-03-01

    Ice-nucleating particles (INPs) are known to affect the amount of ice in mixed-phase clouds, thereby influencing many of their properties. The atmospheric INP concentration changes by orders of magnitude from terrestrial to marine environments, which typically contain much lower concentrations. Many modelling studies use parameterizations for heterogeneous ice nucleation and cloud ice processes that do not account for this difference because they were developed based on INP measurements made predominantly in terrestrial environments without considering the aerosol composition. Errors in the assumed INP concentration will influence the simulated amount of ice in mixed-phase clouds, leading to errors in top-of-atmosphere radiative flux and ultimately the climate sensitivity of the model. Here we develop a global model of INP concentrations relevant for mixed-phase clouds based on laboratory and field measurements of ice nucleation by K-feldspar (an ice-active component of desert dust) and marine organic aerosols (from sea spray). The simulated global distribution of INP concentrations based on these two species agrees much better with currently available ambient measurements than when INP concentrations are assumed to depend only on temperature or particle size. Underestimation of INP concentrations in some terrestrial locations may be due to the neglect of INPs from other terrestrial sources. Our model indicates that, on a monthly average basis, desert dusts dominate the contribution to the INP population over much of the world, but marine organics become increasingly important over remote oceans and they dominate over the Southern Ocean. However, day-to-day variability is important. Because desert dust aerosol tends to be sporadic, marine organic aerosols dominate the INP population on many days per month over much of the mid- and high-latitude Northern Hemisphere. This study advances our understanding of which aerosol species need to be included in order to

  17. Evaluation of the tropospheric aerosol number concentrations simulated by two versions of the global model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Kazil, J.; Feichter, J.

    2009-04-01

    Since its first version developed by Stier et al. (2005), the global aerosol-climate model ECHAM5-HAM has gone through further development and updates. The changes in the model include (1) a new time integration scheme for the condensation of the sulfuric acid gas on existing particles, (2) a new aerosol nucleation scheme that takes into account the charged nucleation caused by cosmic rays, and (3) a parameterization scheme explicitly describing the conversion of aerosol particles to cloud nuclei. In this work, simulations performed with the old and new model versions are evaluated against some measurements reported in recent years. The focus is on the aerosol size distribution in the troposphere. Results show that modifications in the parameterizations have led to significant changes in the simulated aerosol concentrations. Vertical profiles of the total particle number concentration (diameter > 3nm) compiled by Clarke et al. (2002) suggest that, over the Pacific in the upper free troposphere, the tropics are associated with much higher concentrations than the mid-latitude regions. This feature is more reasonably reproduced by the new model version, mainly due to the improved results of the nucleation mode aerosols. In the lower levels (2-5 km above the Earth's surface), the number concentrations of the Aitken mode particles are overestimated compared to both the Pacific data given in Clarke et al. (2002) and the vertical profiles over Europe reported by Petzold et al. (2007). The physical and chemical processes that have led to these changes are identified by sensitivity tests. References: Clarke and Kapustin: A Pacific aerosol survey - part 1: a decade of data on production, transport, evolution and mixing in the troposphere, J. Atmos. Sci., 59, 363-382, 2002. Petzold et al.: Perturbation of the European free troposphere aerosol by North American forest fire plumes during the ICARTT-ITOP experiment in summer 2004, Atmos. Chem. Phys., 7, 5105-5127, 2007

  18. Aerosol Properties Changes of Northeast Asia due to a Severe Dust Storm in April 2014

    NASA Astrophysics Data System (ADS)

    Fang, Li; Wang, Shupeng; Yu, Tao; Gu, Xingfa; Zhang, Xingying; Wang, Weihe; Ren, Suling

    2016-04-01

    This study focuses on analyzing the aerosol properties changes due to the dust storm named as "China's Great Wall of Dust" oriented from Taklimakan desert in April, 2014. Dust identification IDDI (Infrared Difference Dust Index) images from FY-2E and true color composite images from FY-3C MERSI (Medium Resolution Spectral Imager) show the breakout and transport of the dust storm.From 4-day forward air mass trajectories, the dusty air masses were mostly transported within the lower boundary layer(<3km) over the Northwest China on April 23rd and April 24th, however they were progressively increasing in altitude to above 5km above the surface when they reached the central part of north China region (32°N-42°N; 105°E-123°E). 3-hourly data records at surface stations suggest that anticyclonic circulation occupying southern Xinjiang basin and cyclonic circulation maintaining in Mongolia formed the typical Synoptic condition which leaded to the strong dust storm. Aerosol Index (AI) results of TOU (Total Ozone Unit) aboard FY-3B are first developed and used in studying the affected areas due to the dust storm. The retrieved aerosol indexes show sensitivity to the dust particles. The dust affected areas agree with the synoptic meteorological condition analysis, which prove the synoptic meteorological condition is the main reason for the break out and transport of the dust storm. Anomalies of the average MODIS (Moderate Resolution Imaging Spectroradiometer) AOD (Aerosol Optical Depth) distributions over Northeast Asia during the dust storm to the average of that in April between 2010-2014 show high aerosol loading due to the dust storm. Compared with the 5-year average AOD in April, aerosol loading during this dust storm was much higher, with AOD values at 550nm up to 2.9 observed over the northwest China.The dust storm also brought different change in the aerosol microphysical properties between Beijing and Dalanzadgad. Aerosol Robotic Network (AERONET) retrievals

  19. Impacts of Wet Scavenging Parameterizations on Global Simulations of Aerosol Concentrations and Lifetimes (Invited)

    NASA Astrophysics Data System (ADS)

    Croft, B.; Martin, R.; Lohmann, U.; Pierce, J. R.

    2013-12-01

    Wet scavenging processes strongly control aerosol three-dimensional distributions. In this study, we quantify the uncertainty in global simulations of aerosol vertical profiles and lifetimes, which may be attributed to uncertainties in both convective and stratiform wet scavenging parameterizations. For convective clouds, we show that different assumptions about the wet removal of aerosols entrained above convective cloud bases can yield differences of about one order of magnitude in middle and upper tropospheric aerosol concentrations. For stratiform clouds, we demonstrate the impact of size-dependent aerosol wet scavenging as compared to the use of fixed prescribed scavenging coefficients. We quantify the difference in simulated aerosol concentrations, particularly at high latitudes, yielded by different assumptions about scavenging in mixed phase and ice clouds. We also examine the sensitivity of simulated global mean aerosol lifetimes to parameterizations for wet scavenging. Global simulations of the scavenging of aerosol-bound radionuclides following the Fukushima Dai-Ichi nuclear power plant accident are also presented. The simulated radionuclide lifetimes are compared to measurements. We present an interpretation of these constraints on global mean aerosol lifetimes. The sensitivity of simulated aerosol-bound radionuclide lifetimes to altitude and location of the radionuclide injection is also examined with consideration to the interplay of aerosol transport, mixing, and removal processes.

  20. Direct radiative effect due to brownness in organic carbon aerosols generated from biomass combustion

    NASA Astrophysics Data System (ADS)

    Rathod, T. D.; Sahu, S. K.; Tiwari, M.; Pandit, G. G.

    2016-12-01

    We report the enhancement in the direct radiative effect due the presence of Brown carbon (BrC) as a part of organic carbon aerosols. The optical properties of organic carbon aerosols generated from pyrolytic combustion of mango tree wood (Magnifera Indica) and dung cake at different temperatures were considered. Mie codes were used to calculate absorption and scattering coefficients coupled with experimentally derived imaginary complex refractive index. The direct radiative effect (DRE) for sampled organic carbon aerosols was estimated using a wavelength dependent radiative transfer equation. The BrC DRE was estimated taking virtually non absorbing organic aerosols as reference. The BrC DRE from wood and dung cake was compared at different combustion temperatures and conditions. The BrC contributed positively to the direct top of the atmosphere radiative effect. Dung cake generated BrC aerosols were found to be strongly light absorbing as compared to BrC from wood combustion. It was noted that radiative effects of BrC from wood depended on its generation temperature and conditions. For BrC aerosols from dung cake such strong dependence was not observed. The average BrC aerosol DRE values were 1.53±0.76 W g-1 and 17.84±6.45 W g-1 for wood and dung cake respectively. The DRE contribution of BrC aerosols came mainly (67-90%) from visible light absorption though they exhibited strong absorption in shorter wavelengths of the UV-visible spectrum.

  1. Effect of aerosol number concentration on cloud droplet dispersion: A large-eddy simulation study and implications for aerosol indirect forcing

    NASA Astrophysics Data System (ADS)

    Lu, Miao-Ling; Seinfeld, John H.

    2006-01-01

    Through three-dimensional large-eddy simulations of marine stratocumulus we explore the factors that control the cloud spectral relative dispersion (ratio of cloud droplet spectral width to the mean radius of the distribution) as a function of aerosol number concentration and the extent to which the relative dispersion either enhances or mitigates the Twomey effect. We find that relative dispersion decreases with increasing aerosol number concentration (for aerosol number concentrations less than about 1000 cm-3) because smaller droplets resulting from higher aerosol number concentrations inhibit precipitation and lead to (1) less spectral broadening by suppressed collision and coalescence processes and (2) more spectral narrowing by droplet condensational growth at higher updraft velocity because reduced drizzle latent heating at cloud top results in increased boundary layer turbulent kinetic energy production by buoyancy and thereby stronger turbulence. Increased spectral broadening owing to increased cloud-top entrainment mixing, also as a result of increased boundary layer turbulence, is relatively insignificant compared with outcomes 1 and 2. The coefficient k, an important parameter that relates cloud droplet effective radius and volume mean radius in large-scale models, is a function of skewness and relative dispersion of the distribution and is negatively correlated with relative dispersion. Increasing k with increasing aerosol number concentration leads to maximum enhancement of the cloud susceptibility (the change of cloud optical depth due to change of cloud droplet number concentration) over that attributable to the Twomey effect alone by about 4.2% and 39% for simulated FIRE and ASTEX cases, respectively.

  2. Daily concentration variations of nitrate in the atmospheric aerosols voer Sakai, Japan

    SciTech Connect

    Mizohata, Akira; Ito, Norio

    1996-12-31

    Atmospheric aerosols have been sampled on a quartz fiber filter on a daily basis in Sakai, Japan since 1986. The obtained filter samples were extracted with distilled water, and ionic species concentrations were quantitatively determined by using ion chromatography. In this paper study of the nitrate concentration was described. Analysis showed that the mean concentration for period January 1986 to December 1993 was 2.4 {mu}g/m{sup 3}. Monthly mean was in the range of 0.9 to 3.9 {mu}g/m{sup 3}, and highest in April and lowest in August. Especially the concentrations for period March to June 1991 were remarkably high because of the Kuwait oil well fire due to the Gulf War. Annual mean was increasing over a long period of time. Explaining this trend and the seasonal variations, we considered air mass trajectories.

  3. Investigation of the seasonal variations of aerosol physicochemical properties and their impact on cloud condensation nuclei number concentration

    NASA Astrophysics Data System (ADS)

    Logan, Timothy S.

    Aerosols are among the most complex yet widely studied components of the atmosphere not only due to the seasonal variability of their physical and chemical properties but also their effects on climate change. The three main aerosol types that are known to affect the physics and chemistry of the atmosphere are: mineral dust, anthropogenic pollution, and biomass burning aerosols. In order to understand how these aerosols affect the atmosphere, this dissertation addresses the following three scientific questions through a combination of surface and satellite observations: SQ1: What are the seasonal and regional variations of aerosol physico-chemical properties at four selected Asian sites? SQ2: How do these aerosol properties change during transpacific and intra-continental long range transport? SQ3: What are the impacts of aerosol properties on marine boundary layer cloud condensation nuclei number concentration? This dissertation uses an innovative approach to classify aerosol properties by region and season to address SQ1. This is useful because this method provides an additional dimension when investigating the physico-chemical properties of aerosols by linking a regional and seasonal dependence to both the aerosol direct and indirect effects. This method involves isolating the aerosol physico-chemical properties into four separate regions using AERONET retrieved Angstrom exponent (AEAOD) and single scattering co-albedo (o oabs) to denote aerosol size and absorptive properties. The aerosols events are then clustered by season. The method is first applied to four AERONET sites representing single mode aerosol dominant regions: weakly absorbing pollution (NASA Goddard), strongly absorbing pollution (Mexico City), mineral dust (Solar Village), and biomass burning smoke (Alta Floresta). The method is then applied to four Asian sites that represent complicated aerosol components. There are strong regional and seasonal influences of the four aerosol types over the

  4. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; ...

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3more » and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  5. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea-ice

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2015-10-01

    The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the ice-breaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and

  6. Concentration Effects on the Thermophoresis of Aerosol Spheres.

    PubMed

    Keh; Ho

    1999-08-01

    The thermophoretic motion of a homogeneous suspension of identical spherical particles of arbitrary thermal conductivity and surface properties is considered under conditions of small Knudsen, Peclet, and Reynolds numbers. The effects of interaction of the individual particles are taken into explicit account by employing a unit cell model which is known to provide good predictions for the sedimentation of monodisperse suspensions of spherical particles. The appropriate equations of conservation of energy and momentum are solved for each cell, in which a spherical particle is envisaged to be surrounded by a concentric shell of suspending fluid, and the thermophoretic migration velocity of the particle is calculated for various cases. Analytical expressions of this mean particle velocity are obtained in closed form as functions of the volume fraction of the particles. Comparisons between the ensemble-averaged thermophoretic velocity of a test particle in a dilute suspension and our cell-model results are made. A parallel analysis for the sedimentation of aerosol spheres is also presented. Copyright 1999 Academic Press.

  7. Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog

    NASA Astrophysics Data System (ADS)

    Elias, T.; Dupont, J.-C.; Hammer, E.; Hoyle, C. R.; Haeffelin, M.; Burnet, F.; Jolivet, D.

    2015-01-01

    The study assesses the contribution of aerosols to the extinction of visible radiation in the mist-fog-mist cycle. Measurements of the microphysical and optical properties of hydrated aerosols with diameters larger than 400 nm, composing the accumulation mode, which are the most efficient to interact with visible radiation, were carried out near Paris, during November 2011, in ambient conditions. Eleven mist-fog-mist cycles were observed, with cumulated fog duration of 95 h, and cumulated mist-fog-mist duration of 240 h. In mist, aerosols grew up by taking up water at relative humidities larger than 93%, causing a visibility decrease below 5 km. While visibility decreased down to few km, the mean size of the hydrated aerosols increased, and their number concentration (Nha) increased from approximately 160 to approximately 600 cm-3. When fog formed, droplets became the strongest contributors to visible radiation extinction, and liquid water content (LWC) increased beyond 7 mg m-3. Hydrated aerosols of the accumulation mode co-existed with droplets, as interstitial non-activated aerosols. Their size continued to increase, and a significant proportion of aerosols achieved diameters larger than 2.5 μm. The mean transition diameter between the accumulation mode and the small droplet mode was 4.0 ± 1.1 μm. Moreover Nha increased on average by 60% after fog formation. Consequently the mean aerosol contribution to extinction in fog was 20 ± 15% for diameter smaller than 2.5 μm and 6 ± 7% beyond. The standard deviation is large because of the large variability of Nha in fog, which could be smaller than in mist or three times larger. The particle extinction coefficient in fog can be computed as the sum of a droplet component and an aerosol component, which can be approximated by 3.5 Nha (Nha in cm-3 and particle extinction coefficient in Mm-1). We observed an influence of the main formation process on Nha, but not on the contribution to fog extinction by aerosols

  8. Warming-induced increase in aerosol number concentration likely to moderate climate change

    NASA Astrophysics Data System (ADS)

    Paasonen, Pauli; Asmi, Ari; Petäjä, Tuukka; Kajos, Maija K.; Äijälä, Mikko; Junninen, Heikki; Holst, Thomas; Abbatt, Jonathan P. D.; Arneth, Almut; Birmili, Wolfram; van der Gon, Hugo Denier; Hamed, Amar; Hoffer, András; Laakso, Lauri; Laaksonen, Ari; Richard Leaitch, W.; Plass-Dülmer, Christian; Pryor, Sara C.; Räisänen, Petri; Swietlicki, Erik; Wiedensohler, Alfred; Worsnop, Douglas R.; Kerminen, Veli-Matti; Kulmala, Markku

    2013-06-01

    Atmospheric aerosol particles influence the climate system directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. Apart from black carbon aerosol, aerosols cause a negative radiative forcing at the top of the atmosphere and substantially mitigate the warming caused by greenhouse gases. In the future, tightening of controls on anthropogenic aerosol and precursor vapour emissions to achieve higher air quality may weaken this beneficial effect. Natural aerosols, too, might affect future warming. Here we analyse long-term observations of concentrations and compositions of aerosol particles and their biogenic precursor vapours in continental mid- and high-latitude environments. We use measurements of particle number size distribution together with boundary layer heights derived from reanalysis data to show that the boundary layer burden of cloud condensation nuclei increases exponentially with temperature. Our results confirm a negative feedback mechanism between the continental biosphere, aerosols and climate: aerosol cooling effects are strengthened by rising biogenic organic vapour emissions in response to warming, which in turn enhance condensation on particles and their growth to the size of cloud condensation nuclei. This natural growth mechanism produces roughly 50% of particles at the size of cloud condensation nuclei across Europe. We conclude that biosphere-atmosphere interactions are crucial for aerosol climate effects and can significantly influence the effects of anthropogenic aerosol emission controls, both on climate and air quality.

  9. Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation

    NASA Technical Reports Server (NTRS)

    Guzman, Marcelo I.; Athalye, Richa R.; Rodriguez, Jose M.

    2012-01-01

    During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO2, NaNO3, NaClO4, and NaIO4. The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f (Isub x-)) and their correlation with ion properties. Although no correlation exists between f (sub x-) and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R(sub x-), dehydration free-energy ?Gdehyd, and polarizability alpha, follows the order: (R(sub x-)(exp -2)) > (R(sub x-)(exp -1)) >(R(sub x-) > delta G(sub dehyd) > alpha. The same pure physical process is observed in H2O and D2O. The factor f (sub x-) does not change with pH (6.8-8.6), counterion (Li+, Na+, K+, and Cs+) substitution effects, or solvent polarity changes in methanol - and ethanol-water mixtures (0 <= xH2O <= 1). Sodium polysorbate 20 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I- on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I- < Br- < Cl- over the oceanic boundary layer due to concentration effects in sea spray aerosol formation.

  10. The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols

    SciTech Connect

    Wang, J.; Cubison, M. J.; Aiken, A. C.; Jimenez, J. L.; Collins, D. R.

    2010-05-01

    Aerosol microphysics, chemical composition, and CCN concentrations were measured at the T0 urban supersite in Mexico City during Megacity Initiative: Local and Global Research Observations (MILAGRO) in March 2006. The aerosol size distribution and composition often showed strong diurnal variation associated with traffic emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. CCN concentrations (N{sub CCN}) are derived using Kohler theory from the measured aerosol size distribution and various simplified aerosol mixing state and chemical composition, and are compared to concurrent measurements at five supersaturations ranging from 0.11% to 0.35%. The influence of assumed mixing state on calculated N{sub CCN} is examined using both aerosols observed during MILAGRO and representative aerosol types. The results indicate that while ambient aerosols often consist of particles with a wide range of compositions at a given size, N{sub CCN} may be derived within {approx}20% assuming an internal mixture (i.e., particles at a given size are mixtures of all participating species, and have the identical composition) if great majority of particles has an overall {kappa} (hygroscopicity parameter) value greater than 0.1. For a non-hygroscopic particle with a diameter of 100 nm, a 3 nm coating of sulfate or nitrate is sufficient to increase its {kappa} from 0 to 0.1. The measurements during MILAGRO suggest that the mixing of non-hygroscopic primary organic aerosol (POA) and black carbon (BC) particles with photochemically produced hygroscopic species and thereby the increase of their {kappa} to 0.1 take place in a few hours during daytime. This rapid process suggests that during daytime, a few tens of kilometers away for POA and BC sources, N{sub CCN} may be derived with sufficient accuracy by assuming an internal mixture, and using bulk chemical composition. The rapid mixing also indicates that, at least for very active

  11. Concentrations and sources of organic carbon aerosols in the free troposphere over North America

    NASA Astrophysics Data System (ADS)

    Heald, Colette L.; Jacob, Daniel J.; Turquety, SolèNe; Hudman, Rynda C.; Weber, Rodney J.; Sullivan, Amy P.; Peltier, Richard E.; Atlas, Eliot L.; de Gouw, Joost A.; Warneke, Carsten; Holloway, John S.; Neuman, J. Andrew; Flocke, Frank M.; Seinfeld, John H.

    2006-12-01

    Aircraft measurements of water-soluble organic carbon (WSOC) aerosol over NE North America during summer 2004 (ITCT-2K4) are simulated with a global chemical transport model (GEOS-Chem) to test our understanding of the sources of organic carbon (OC) aerosol in the free troposphere (FT). Elevated concentrations were observed in plumes from boreal fires in Alaska and Canada. WSOC aerosol concentrations outside of these plumes average 0.9 ± 0.9 μg C m-3 in the FT (2-6 km). The corresponding model value is 0.7 ± 0.6 μg C m-3, including 42% from biomass burning, 36% from biogenic secondary organic aerosol (SOA), and 22% from anthropogenic emissions. Previous OC aerosol observations over the NW Pacific in spring 2001 (ACE-Asia) averaged 3.3 ± 2.8 μg C m-3 in the FT, compared to a model value of 0.3 ± 0.3 μg C m-3. WSOC aerosol concentrations in the boundary layer (BL) during ITCT-2K4 are consistent with OC aerosol observed at the IMPROVE surface network. The model is low in the boundary layer by 30%, which we attribute to secondary formation at a rate comparable to primary anthropogenic emission. Observed WSOC aerosol concentrations decrease by a factor of 2 from the BL to the FT, as compared to a factor of 10 decrease for sulfate, indicating that most of the WSOC aerosol in the FT originates in situ. Despite reproducing mean observed WSOC concentrations in the FT to within 25%, the model cannot account for the variance in the observations (R = 0.21). Covariance analysis of FT WSOC aerosol with other measured chemical variables suggests an aqueous-phase mechanism for SOA generation involving biogenic precursors.

  12. Calculating Capstone depleted uranium aerosol concentrations from beta activity measurements.

    PubMed

    Szrom, Frances; Falo, Gerald A; Parkhurst, Mary Ann; Whicker, Jeffrey J; Alberth, David P

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the DU source term for the subsequent Human Health Risk Assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short-lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Values for the equilibrium fraction ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92. This paper describes the process used and adjustments necessary to calculate uranium mass from proportional counting measurements.

  13. A balloon-borne aerosol spectrometer for high altitude low aerosol concentration measurements

    SciTech Connect

    Brown, G.S. ); Weiss, R.E. )

    1990-08-01

    Funded by Air Force Wright Aeronautical Laboratory, a new balloon-borne high altitude aerosol spectrometer, for the measurement of cirrus cloud ice crystals, has been developed and successfully flown by Sandia National Laboratories and Radiance Research. This report (1) details the aerosol spectrometer design and construction, (2) discusses data transmission and decoding, (3) presents data collected on three Florida flights in tables and plots. 2 refs., 11 figs., 3 tabs.

  14. Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin

    SciTech Connect

    Lunden, Melissa M.; Kirchstetter, Thomas W.; Thatcher, Tracy L.; Hering, Susanne V.; Brown, Nancy J.

    2007-06-25

    A field study was conducted in an unoccupied single story residence in Clovis, California to provide data to address issues important to assess the indoor exposure to particles of outdoor origin. Measurements of black and organic carbonaceous aerosols were performed using a variety of methods, resulting in both near real-time measurements as well as integrated filter based measurements. Comparisons of the different measurement methods show that it is crucial to account for gas phase adsorption artifacts when measuring organic carbon (OC). Measured concentrations affected by the emissions of organic compounds sorbed to indoor surfaces imply a higher degree of infiltration of outdoor organic carbon aerosols into the indoor environment for our unoccupied house. Analysis of the indoor and outdoor data for black carbon (BC) aerosols show that, on average, the indoor concentration of black carbon aerosols behaves in a similar manner to sulfate aerosols. In contrast, organic carbon aerosols are subject to chemical transformations indoors that, for our unoccupied home, resulted in lower indoor OC concentrations than would be expected by physical loss mechanisms alone. These results show that gas to particle partitioning of organic compounds, as well as gas to surface interactions within the residence, are an important process governing the indoor concentration to OC aerosols of outdoor origin.

  15. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation.

    PubMed

    Grinshpun, Sergey A; Adhikari, Atin; Honda, Takeshi; Kim, Ki Youn; Toivola, Mika; Rao, K S Ramchander; Reponen, Tiina

    2007-01-15

    An indoor air purification technique, which combines unipolar ion emission and photocatalytic oxidation (promoted by a specially designed RCI cell), was investigated in two test chambers, 2.75 m3 and 24.3 m3, using nonbiological and biological challenge aerosols. The reduction in particle concentration was measured size selectively in real-time, and the Air Cleaning Factor and the Clean Air Delivery Rate (CADR) were determined. While testing with virions and bacteria, bioaerosol samples were collected and analyzed, and the microorganism survival rate was determined as a function of exposure time. We observed that the aerosol concentration decreased approximately 10 to approximately 100 times more rapidly when the purifier operated as compared to the natural decay. The data suggest that the tested portable unit operating in approximately 25 m3 non-ventilated room is capable to provide CADR-values more than twice as great than the conventional closed-loop HVAC system with a rating 8 filter. The particle removal occurred due to unipolar ion emission, while the inactivation of viable airborne microorganisms was associated with photocatalytic oxidation. Approximately 90% of initially viable MS2 viruses were inactivated resulting from 10 to 60 min exposure to the photocatalytic oxidation. Approximately 75% of viable B. subtilis spores were inactivated in 10 min, and about 90% or greater after 30 min. The biological and chemical mechanisms that led to the inactivation of stress-resistant airborne viruses and bacterial spores were reviewed.

  16. Climate Sensitivities due to Stratocumulus Cloud droplet number concentrations

    NASA Astrophysics Data System (ADS)

    Parkes, Ben; Stevens, Laura; Gadian, Alan; Lathman, John; Blyth, Alan

    2010-05-01

    Four experiments have been carried out using the Met Office Unified Model v6.1 (HadGEM1) to investigate the effects of albedo modification on the climate system as the amount of carbon dioxide in the atmosphere continues to rise. This work is designed to analyse and assess the "cloud whiteneing" method of geoengineering postulated in (Latham, 1990) and expanded upon by (Latham et al., 2008)(Salter et al., 2008) and (Rasch et al., 2009). Consideration will be given to the effect of the cloud modification on rainfall rates and global circulation patterns. Furthermore temperature changes in polar regions are investigated to assess the increase in polar sea ice coverage. The four experiments are a control, one with an increase in carbon dioxide by 1% per year and two potential geoengineering scenarios based on a climate with increasing carbon dioxide. The first geoengineering simulation consists of forcing clouds with a cloud droplet number concentration (CDNC) of N = 375 m-3 over three regions of low lying stratocumulus clouds. These regions are the West coasts of California, Peru and Namibia(Latham et al., 2008). The second geoenginnering simulation is based upon forcing all marine environments with a CDNC of N = 375 m-3. Starting conditions for the experiments were provided by the UK Met Office from the A1B simulation used in the 2007 Intergovernmental Panel on Climate Change report(IPCC, 2007). The geoengineering method proposed relies on the aerosol indirect effect(Twomey, 1977) and the second aerosol indirect(Albrecht, 1989) effects on clouds to increase their brightness and prolong their lifetime. The effects of a change in CDNC on a clean marine stratocumulus cloud can be investigated using data collected from the VOCALs field campaign which took place in the South Eastern Pacific in 2008. radiometry and in cloud data has been collected by several aircraft including the FAAM BAe-146 and the NCAR/NSF C-130(Allen & Abel, 2009). The albedo of the observed region

  17. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-08-01

    Sources, composition and occurrence of secondary organic aerosols in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeastern Greenland, during the full annual cycle of 2008 and 2010, respectively. Speciation of organic acids, organosulfates and nitrooxy organosulfates - from both anthropogenic and biogenic precursors were in focus. A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate and 3-methyl-1,2,3-butanetricarboxylic acid), 12 organosulfates and 1 nitrooxy organosulfate were identified in aerosol samples from the two sites using a high-performance liquid chromatograph (HPLC) coupled to a quadrupole Time-of-Flight mass spectrometer. At Station Nord, compound concentrations followed a distinct annual pattern, where high mean concentrations of organosulfates (47 ± 14 ng m-3) and organic acids (11.5 ± 4 ng m-3) were observed in January, February and March, contrary to considerably lower mean concentrations of organosulfates (2 ± 3 ng m-3) and organic acids (2.2 ± 1 ng m-3) observed during the rest of the year. At Zeppelin Mountain, organosulfate and organic acid concentrations remained relatively constant during most of the year at a mean concentration of 15 ± 4 ng m-3 and 3.9 ± 1 ng m-3, respectively. However during four weeks of spring, remarkably higher concentrations of total organosulfates (23-36 ng m-3) and total organic acids (7-10 ng m-3) were observed. Elevated organosulfate and organic acid concentrations coincided with the Arctic haze period at both stations, where northern Eurasia was identified as the main source region. Air mass transport from northern Eurasia to Zeppelin Mountain was associated with a 100% increase in the number of detected organosulfate species compared with periods of air mass transport from the Arctic Ocean, Scandinavia and Greenland. The results from this

  18. Middle East measurements of concentration and size distribution of aerosol particles for coastal zones

    NASA Astrophysics Data System (ADS)

    Bendersky, Sergey; Kopeika, Norman S.; Blaunstein, Natan S.

    2005-10-01

    Recently, an extension of the Navy Aerosol Model (NAM) was proposed based on analysis of an extensive series of measurements at the Irish Atlantic Coast and at the French Mediterranean Coast. We confirm the relevance of that work for the distant eastern Meditteranean and extend several coefficients of that coastal model, proposed by Piazzola et al. for the Meditteranean Coast (a form of the Navy Aerosol Model), to midland Middle East coastal environments. This analysis is based on data collected at three different Middle East coastal areas: the Negev Desert (Eilat) Red Sea Coast, the Sea of Galilee (Tiberias) Coast, and the Mediterranean (Haifa) Coast. Aerosol size distributions are compared with those obtained through measurements carried out over the Atlantic, Pacific, and Indian Ocean Coasts, and Mediterranean, and Baltic Seas Coasts. An analysis of these different results allows better understanding of the similarities and differences between different coastal lake, sea, and open ocean zones. It is shown that in the coastal regions in Israel, compared to open ocean and other sea zones, larger differences in aerosol particle concentration are observed. The aerosol particle concentrations and their dependences on wind speed for these coastal zones are analyzed and discussed. We propose to classify the aerosol distribution models to either: 1. a coastal model with marine aerosol domination; 2. a coastal model with continental aerosol domination (referred to as midland coast in this work); or 3. a coastal model with balanced marine and continental conditions.

  19. On the contribution of organics to the North East Atlantic aerosol number concentration

    NASA Astrophysics Data System (ADS)

    Bialek, Jakub; Dall'Osto, Manuel; Monahan, Ciaran; Beddows, David; O'Dowd, Colin

    2012-12-01

    k-means statistical-cluster analysis of submicron aerosol size distributions is combined with coincident humidity tandem differential mobility analyser data, leading to five unique aerosol categories for hygroscopic growth factors (HGFs): low sea-salt background marine, high sea-salt background marine, coastal nucleation, open ocean nucleation and anthropogenically influenced scenarios. When considering only marine conditions, and generic aerosol species associated with this environment (e.g. non-sea-salt sulfate, sea-salt, partly soluble organic matter and water insoluble organic matter), the two-year annual average contribution to aerosol number concentration from the different generic species was made up as follows: 46% (30-54%) of partially modified ammonium sulfate particles; 23% (11-40%) of partially modified sea-salt; and the remaining 31% (25-35%) contribution attributed to two distinct organic species as evidenced by different, but low, HGFs. The analysis reveals that on annual timescales, ˜30% of the submicron marine aerosol number concentration is sourced from predominantly organic aerosol while 60% of the anthropogenic aerosol number is predominantly organic. Coastal nucleation events show the highest contribution of the lowest HGF mode (1.19), although this contribution is more likely to be influenced by inorganic iodine oxides. While organic mass internally mixed with inorganic salts will lower the activation potential of these mixed aerosol types, thereby potentially reducing the concentration of cloud condensation nuclei (CCN), pure organic water soluble particles are still likely to be activated into cloud droplets, thereby increasing the concentration of CCN. A combination of dynamics and aerosol concentrations will determine which effect will prevail under given conditions.

  20. Winter monsoon variability and its impact on aerosol concentrations in East Asia.

    PubMed

    Jeong, Jaein I; Park, Rokjin J

    2017-02-01

    We investigate the relationship between winter aerosol concentrations over East Asia and variability in the East Asian winter monsoon (EAWM) using GEOS-Chem 3-D global chemical transport model simulations and ground-based aerosol concentration data. We find that both observed and modeled surface aerosol concentrations have strong relationships with the intensity of the EAWM over northern (30-50°N, 100-140°E) and southern (20-30°N, 100-140°E) East Asia. In strong winter monsoon years, compared to weak winter monsoon years, lower and higher surface PM2.5 concentrations by up to 25% are shown over northern and southern East Asia, respectively. Analysis of the simulated results indicates that the southward transport of aerosols is a key process controlling changes in aerosol concentrations over East Asia associated with the EAWM. Variability in the EAWM is found to play a major role in interannual variations in aerosol concentrations; consequently, changes in the EAWM will be important for understanding future changes in wintertime air quality over East Asia.

  1. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Zhao, Y.

    2015-12-01

    To better understand the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations in China, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal and spatial distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols. The national OC emissions are estimated to have increased 29% from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37% (from 1356 to 1857 Gg). Updated emission factors based on the most recent local field measurements, particularly for biofuel stoves, lead to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while SOC/OC ratios are found in southern cities, due to the joint effects of primary emissions and meteorology. Higher OC/EC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, smaller SOC/OC is found for cold seasons, particularly at rural and remote sites, attributed partly to weaker atmospheric oxidation and SOC formation in winter. Enhanced SOC formation from oxidization and anthropogenic activities like biomass combustion is judged to have crucial effects on severe haze events characterized by high particle concentrations. Several observational studies indicate an increasing trend in ambient OC/EC (but not in OC or EC individually) from 2000 to 2010, confirming increased atmospheric oxidation of OC across the country. Combining the results of

  2. Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCNhack concentration prediction

    NASA Astrophysics Data System (ADS)

    Almeida, G. P.; Brito, J.; Morales, C. A.; Andrade, M. F.; Artaxo, P.

    2014-07-01

    Measurements of cloud condensation nuclei (CCN), aerosol size distribution and non-refractory chemical composition were performed from 16 to 31 October 2012 in the São Paulo Metropolitan Area (SPMA), Brazil. CCN measurements were performed at 0.23, 0.45, 0.68, 0.90 and 1.13% water supersaturation and were subsequently compared with the Köhler theory, considering the chemical composition. Real-time chemical composition has been obtained by deploying, for the first time in the SPMA, an aerosol chemical ionization monitor (ACSM). CCN closure analyses were performed considering internal mixtures. Average aerosol composition during the studied period yielded (arithmetic mean~± standard deviation) 4.81 ± 3.05, 3.26 ± 2.10, 0.30 ± 0.27, 0.52 ± 0.32, 0.37 ± 0.21 and 0.04 ± 0.04 μg m-3 for organics, BC, NH4, SO4, NO3 and Cl, respectively. Particle number concentration was 12 813 ± 5350 cm-3, with a dominant nucleation mode. CCN concentrations were on average 1090 ± 328 and 3570 ± 1695 cm-3 at SS = 0.23% and SS = 1.13%, respectively. Results show an increase in aerosol hygroscopicity in the afternoon as a result of aerosol photochemical processing, leading to an enhancement of both organic and inorganic secondary aerosols in the atmosphere, as well as an increase in aerosol average diameter. Considering the bulk composition alone, observed CCN concentrations were substantially overpredicted when compared with the Köhler theory (44.1 ± 47.9% at 0.23% supersaturation and 91.4 ± 40.3% at 1.13% supersaturation). Overall, the impact of composition on the calculated CCN concentration (NCCN) decreases with decreasing supersaturation, partially because using bulk composition introduces less bias for large diameters and lower critical supersaturations, defined as the supersaturation at which the cloud droplet activation will take place. Results suggest that the consideration of only inorganic fraction improves the calculated NCCN. Introducing a size-dependent chemical

  3. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C. P.; Zhang, J.

    2015-08-01

    China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29 % from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37 % (from 1356 to 1857 Gg). The residential, industrial, and transportation sectors contributed an estimated 74-78, 17-21, and 4-6 % of the total emissions of OC, respectively, and 49-55, 30-34, and 14-18 % of EC. Updated emission factors (EFs) based on the most recent local field measurements, particularly for biofuel stoves, led to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while higher OC / EC ratios are found in southern sites, due to the joint effects of primary emissions and meteorology. Higher OC / EC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC / OC is reduced, particularly at rural and remote sites

  4. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C. P.; Zhang, J.

    2015-03-01

    China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29% from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37% (from 1356 to 1857 Gg). The residential, industrial, and transportation sectors contributed an estimated 76 ± 2, 19 ± 2 and 5 ± 1% of the total emissions of OC, respectively, and 52 ± 3, 32 ± 2 and 16 ± 2% of EC. Updated emission factors based on the most recent local field measurements, particularly for biofuel stoves, lead to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while larger OC/EC and SOC/OC ratios are found in southern cities, due to the joint effects of primary emissions and meteorology. Higher SOC/OC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC/OC is reduced, particularly at rural and

  5. Radiative Forcing Due to Major Aerosol Emitting Sectors in China and India

    NASA Technical Reports Server (NTRS)

    Streets, David G.; Shindell, Drew Todd; Lu, Zifeng; Faluvegi, Greg

    2013-01-01

    Understanding the radiative forcing caused by anthropogenic aerosol sources is essential for making effective emission control decisions to mitigate climate change. We examined the net direct plus indirect radiative forcing caused by carbonaceous aerosol and sulfur emissions in key sectors of China and India using the GISS-E2 chemistry-climate model. Diesel trucks and buses (67 mW/ sq. m) and residential biofuel combustion (52 mW/ sq. m) in India have the largest global mean, annual average forcings due mainly to the direct and indirect effects of BC. Emissions from these two sectors in China have near-zero net global forcings. Coal-fired power plants in both countries exert a negative forcing of about -30 mW/ sq. m from production of sulfate. Aerosol forcings are largest locally, with direct forcings due to residential biofuel combustion of 580 mW/ sq. m over India and 416 mW/ sq. m over China, but they extend as far as North America, Europe, and the Arctic

  6. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years

    NASA Astrophysics Data System (ADS)

    Weber, Rodney J.; Guo, Hongyu; Russell, Armistead G.; Nenes, Athanasios

    2016-04-01

    Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate is often the main acid component of aerosols, and largely determines the acidity of fine particles under 2.5 μm in diameter, PM2.5. Over the past 15 years, atmospheric sulfate concentrations in the southeastern United States have decreased by 70%, whereas ammonia concentrations have been steady. Similar trends are occurring in many regions globally. Aerosol ammonium nitrate concentrations were assumed to increase to compensate for decreasing sulfate, which would result from increasing neutrality. Here we use observed gas and aerosol composition, humidity, and temperature data collected at a rural southeastern US site in June and July 2013 (ref. ), and a thermodynamic model that predicts pH and the gas-particle equilibrium concentrations of inorganic species from the observations to show that PM2.5 at the site is acidic. pH buffering by partitioning of ammonia between the gas and particle phases produced a relatively constant particle pH of 0-2 throughout the 15 years of decreasing atmospheric sulfate concentrations, and little change in particle ammonium nitrate concentrations. We conclude that the reductions in aerosol acidity widely anticipated from sulfur reductions, and expected acidity-related health and climate benefits, are unlikely to occur until atmospheric sulfate concentrations reach near pre-anthropogenic levels.

  7. Opposite seasonality of the aerosol optical depth and the surface particulate matter concentration over the north China Plain

    NASA Astrophysics Data System (ADS)

    Qu, Wenjun; Wang, Jun; Zhang, Xiaoye; Sheng, Lifang; Wang, Wencai

    2016-02-01

    Great difference exists in the aerosol optical depth (AOD) between summer and winter over the North China Plain (NCP). Monthly mean AOD at 550 nm derived from the MODIS (MODerate Resolution Imaging Spectroradiometer) products during 2000-2014 over the area of 30-40° N and 110-125° E exhibits an annual maximum in June (0.855 ± 0.130) and a minimum in December (0.381 ± 0.032). This seasonality of AOD is in the opposite phase with the surface particulate matter (PM) concentration (higher in winter and lower in summer). The possible causes for the higher AOD in June (compared with December) include (a) a higher boundary layer height (BLH) that results in more efficient transport and mixing of aerosol particles to a higher altitude (corresponding to a lower particle concentration near surface) as revealed by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations profile, (b) a higher relative humidity (RH) due to the inshore monsoon circulation that leads to enhancement of aerosol extinction, (c) emission from the regional open stalk burning in the summer harvest season (as seen from MODIS fire products), and (d) the typical eastward open topographical basin over NCP. Under the assumption that the aerosol and water vapor are well mixed within the boundary layer, analysis on multi-year average shows that the differences in BLH, RH and surface PM concentration can explain up to 81% of the variance of monthly averaged AOD over NCP. A preliminarily hypothesis is also suggested to interpret the shift of AOD pattern from winter to summer with an abrupt increase of AOD from May to June, as well as an increase of surface PM2.5 concentration over NCP during the early phase of northward progress of the East Asia summer monsoon front.

  8. Lidar detection of high concentrations of ozone and aerosol transported from northeastern Asia over Saga, Japan

    NASA Astrophysics Data System (ADS)

    Uchino, Osamu; Sakai, Tetsu; Izumi, Toshiharu; Nagai, Tomohiro; Morino, Isamu; Yamazaki, Akihiro; Deushi, Makoto; Yumimoto, Keiya; Maki, Takashi; Tanaka, Taichu Y.; Akaho, Taiga; Okumura, Hiroshi; Arai, Kohei; Nakatsuru, Takahiro; Matsunaga, Tsuneo; Yokota, Tatsuya

    2017-02-01

    To validate products of the Greenhouse gases Observing SATellite (GOSAT), we observed vertical profiles of aerosols, thin cirrus clouds, and tropospheric ozone with a mobile-lidar system that consisted of a two-wavelength (532 and 1064 nm) polarization lidar and a tropospheric ozone differential absorption lidar (DIAL). We used these lidars to make continuous measurements over Saga (33.24° N, 130.29° E) during 20-31 March 2015. High ozone and high aerosol concentrations were observed almost simultaneously in the altitude range 0.5-1.5 km from 03:00 to 20:00 Japan Standard Time (JST) on 22 March 2015. The maximum ozone volume mixing ratio was ˜ 110 ppbv. The maxima of the aerosol extinction coefficient and optical depth at 532 nm were 1.2 km-1 and 2.1, respectively. Backward trajectory analysis and the simulations by the Model of Aerosol Species IN the Global AtmospheRe (MASINGAR) mk-2 and the Meteorological Research Institute Chemistry-Climate Model, version 2 (MRI-CCM2), indicated that mineral dust particles from the Gobi Desert and an air mass with high ozone and aerosol (mainly sulfate) concentrations that originated from the North China Plain could have been transported over the measurement site within about 2 days. These high ozone and aerosol concentrations impacted surface air quality substantially in the afternoon of 22 March 2015. After some modifications of its physical and chemical parameters, MRI-CCM2 approximately reproduced the high ozone volume mixing ratio. MASINGAR mk-2 successfully predicted high aerosol concentrations, but the predicted peak aerosol optical thickness was about one-third of the observed value.

  9. Effect of stratospheric aerosols on direct sunlight and implications for concentrating solar power.

    PubMed

    Murphy, Daniel M

    2009-04-15

    Light scattering calculations and data show that stratospheric aerosols reduce direct sunlight by about 4 W for every watt reflected to outer space. The balance becomes diffuse sunlight. One consequence of deliberate enhancement of the stratospheric aerosol layer would be a significant reduction in the efficiency of solar power generation systems using parabolic or other concentrating optics. There also would be a reduction in the effectiveness of passive solar design.

  10. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Li, X.; Khain, A.; Mastsui, T.; Lang, S.; Simpson, J.

    2007-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 20011. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. ln this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific. In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection.

  11. Ambient aerosol chlorine concentrations and artefacts during the MEGAPOLI Paris campaigns

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Visser, Suzanne; Slowik, Jay; Crippa, Monica; Poulain, Laurent; Sciare, Jean; Flechsig, Uwe; Prévôt, André; Baltensperger, Urs

    2015-04-01

    Trace elements, especially those that are toxic, can affect the environment in significant ways. Studying them is advantageous with respect to a refinement of source apportionment when measured with high time resolution and appropriate size segregation. This approach is especially useful in urban environments with numerous time-variant emission sources distributed across a relatively narrow space. Two field campaigns took place in the framework of the MEGAPOLI project in Paris, France: one in the summer of 2009 (1-31 July), the other in the winter of 2010 (11 Jan - 10 Feb). Rotating drum impactors (RDI) were operated at an urban and a suburban site in each campaign. The RDI segregated the aerosols into three size ranges (PM10-2.5, PM2.5-1.0 and PM1.0-0.3) and sampled with 2-hour time resolution. The samples were analyzed with synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF) at the synchrotron facility of the Paul Scherrer Institute (SLS), where a broad range of elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn) was analyzed for each size range. Time series of the analyzed elements for the different sites and campaigns were prepared to characterize the aerosol trace element composition and temporal behavior for different weather situations and urban environments. Quality assurance was performed partly by intercomparison with independent measurements. An exceptional behavior was observed for chlorine (Cl), where periods with zero RDI concentration alternated with periods of normal load. Zero concentrations were not observed in particle-into-liquid (PILS) measurements. This identifies the observed behavior as a RDI sampling artefact. Nevertheless, the non-zero periods of Cl concentrations are still a gain in information compared to conventional sampling techniques, mainly due to the high time resolution.

  12. Validation of LIRIC aerosol concentration retrievals using airborne measurements during a biomass burning episode over Athens

    NASA Astrophysics Data System (ADS)

    Kokkalis, Panagiotis; Amiridis, Vassilis; Allan, James D.; Papayannis, Alexandros; Solomos, Stavros; Binietoglou, Ioannis; Bougiatioti, Aikaterini; Tsekeri, Alexandra; Nenes, Athanasios; Rosenberg, Philip D.; Marenco, Franco; Marinou, Eleni; Vasilescu, Jeni; Nicolae, Doina; Coe, Hugh; Bacak, Asan; Chaikovsky, Anatoli

    2017-01-01

    In this paper we validate the Lidar-Radiometer Inversion Code (LIRIC) retrievals of the aerosol concentration in the fine mode, using the airborne aerosol chemical composition dataset obtained over the Greater Athens Area (GAA) in Greece, during the ACEMED campaign. The study focuses on the 2nd of September 2011, when a long-range transported smoke layer was observed in the free troposphere over Greece, in the height range from 2 to 3 km. CIMEL sun-photometric measurements revealed high AOD ( 0.4 at 532 nm) and Ångström exponent values ( 1.7 at 440/870 nm), in agreement with coincident ground-based lidar observations. Airborne chemical composition measurements performed over the GAA, revealed increased CO volume concentration ( 110 ppbv), with 57% sulphate dominance in the PM1 fraction. For this case, we compare LIRIC retrievals of the aerosol concentration in the fine mode with the airborne Aerosol Mass Spectrometer (AMS) and Passive Cavity Aerosol Spectrometer Probe (PCASP) measurements. Our analysis shows that the remote sensing retrievals are in a good agreement with the measured airborne in-situ data from 2 to 4 km. The discrepancies observed between LIRIC and airborne measurements at the lower troposphere (below 2 km), could be explained by the spatial and temporal variability of the aerosol load within the area where the airborne data were averaged along with the different time windows of the retrievals.

  13. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  14. Strong radiative heating due to wintertime black carbon aerosols in the Brahmaputra River Valley

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Rajan K.; Garro, Mark A.; Wilcox, Eric M.; Moosmüller, Hans

    2012-05-01

    The Brahmaputra River Valley (BRV) of Southeast Asia recently has been experiencing extreme regional climate change. A week-long study using a micro-Aethalometer was conducted during January-February 2011 to measure black carbon (BC) aerosol mass concentrations in Guwahati (India), the largest city in the BRV region. Daily median values of BC mass concentration were 9-41 μgm-3, with maxima over 50 μgm-3 during evenings and early mornings. Median BC concentrations were higher than in mega cities of India and China, and significantly higher than in urban locations of Europe and USA. The corresponding mean cloud-free aerosol radiative forcing is -63.4 Wm-2 at the surface and +11.1 Wm-2 at the top of the atmosphere with the difference giving the net atmospheric BC solar absorption, which translates to a lower atmospheric heating rate of ˜2 K/d. Potential regional climatic impacts associated with large surface cooling and high lower-atmospheric heating are discussed.

  15. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  16. Flux concentrations on solar dynamic components due to mispointing

    NASA Astrophysics Data System (ADS)

    Rylicki, Daniel S.

    1992-11-01

    Mispointing of the solar dynamic (SD) concentrator designed for use on Space Station Freedom (SSF) causes the optical axis of the concentrator to be nonparallel to the incoming rays from the Sun. This causes solar flux not to be focused into the aperture hole of the receiver and may position the flux on other SSF components. A Rocketdyne analysis has determined the thermal impact of off-axis radiation due to mispointing on elements of the SD module and photovoltaic (PV) arrays. The conclusion was that flux distributions on some of the radiator components, the two-axis gimbal rings, the truss, and the PV arrays could present problems. The OFFSET computer code was used at Lewis Research Center to further investigate these flux distributions incident on components. The Lewis study included distributions for a greater range of mispoint angles than the Rocketdyne study.

  17. Emission controls versus meteorological conditions in determining aerosol concentrations in Beijing during the 2008 Olympic Games

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Liu, X.; Zhao, C.; Zhang, M.; Wang, Y.

    2011-06-01

    A series of emission control measures were undertaken in Beijing and the adjacent provinces in China during the 2008 Beijing Olympic Games on 8-24 August 2008. This provides a unique opportunity for investigating the effectiveness of emission controls on air pollution in Beijing. We conducted a series of numerical experiments over East Asia for the period of July to September 2008 using a coupled meteorology-chemistry model (WRF-Chem). Model can generally reproduce the observed variation of aerosol concentrations. Consistent with observations, modeled concentrations of aerosol species (sulfate, nitrate, ammonium, black carbon, organic carbon, total particulate matter) in Beijing were decreased by 30-50 % during the Olympic period compared to the other periods in July and August in 2008 and the same period in 2007. Model results indicate that emission controls were effective in reducing the aerosol concentrations by comparing simulations with and without emission controls. However, our analysis suggests that meteorological conditions (e.g., wind direction and precipitation) are at least as important as emission controls in producing the low aerosol concentrations appearing during the Olympic period. Transport from the regions surrounding Beijing determines the temporal variation of aerosol concentrations in Beijing. Based on the budget analysis, we suggest that to improve the air quality over Beijing, emission control strategy should focus on the regional scale instead of the local scale.

  18. Emission controls versus meteorological conditions in determining aerosol concentrations in Beijing during the 2008 Olympic Games

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Liu, X.; Zhao, C.; Zhang, M.

    2011-12-01

    A series of emission control measures were undertaken in Beijing and the adjacent provinces in China during the 2008 Beijing Olympic Games on 8-24 August 2008. This provides a unique opportunity for investigating the effectiveness of emission controls on air pollution in Beijing. We conducted a series of numerical experiments over East Asia for the period of July to September 2008 using a coupled meteorology-chemistry model (WRF-Chem). Model can generally reproduce the observed variation of aerosol concentrations. Consistent with observations, modeled concentrations of aerosol species (sulfate, nitrate, ammonium, black carbon, organic carbon, total particulate matter) in Beijing were decreased by 30-50% during the Olympic period compared to the other periods in July and August in 2008 and the same period in 2007. Model results indicate that emission controls were effective in reducing the aerosol concentrations by comparing simulations with and without emission controls. In addition to emission controls, our analysis suggests that meteorological conditions (e.g. wind direction and precipitation) were also important in producing the low aerosol concentrations appearing during the Olympic period. Transport from the regions surrounding Beijing determined the daily variation of aerosol concentrations in Beijing. Based on the budget analysis, we suggest that to improve the air quality over Beijing, emission control strategy should focus on the regional scale instead of the local scale.

  19. Emission Controls Versus Meteorological Conditions in Determining Aerosol Concentrations in Beijing during the 2008 Olympic Games

    SciTech Connect

    Gao, Yi; Liu, Xiaohong; Zhao, Chun; Zhang, Meigen

    2011-12-12

    A series of emission control measures were undertaken in Beijing and the adjacent provinces in China during the 2008 Beijing Olympic Games on August 8th-24th, 2008. This provides a unique opportunity for investigating the effectiveness of emission controls on air pollution in Beijing. We conducted a series of numerical experiments over East Asia for the period of July to September 2008 using a coupled meteorology-chemistry model (WRF-Chem). Model can generally reproduce the observed variation of aerosol concentrations. Consistent with observations, modeled concentrations of aerosol species (sulfate, nitrate, ammonium, black carbon, organic carbon, total particulate matter) in Beijing were decreased by 30-50% during the Olympic period compared to the other periods in July and August in 2008 and the same period in 2007. Model results indicate that emission controls were effective in reducing the aerosol concentrations by comparing simulations with and without emission controls. However, our analysis suggests that meteorological conditions (e.g., wind direction and precipitation) are at least as important as emission controls in producing the low aerosol concentrations appearing during the Olympic period. Transport from the regions surrounding Beijing determines the temporal variation of aerosol concentrations in Beijing. Based on the budget analysis, we suggest that emission control strategy should focus on the regional scale instead of the local scale to improve the air quality over Beijing.

  20. Simultaneous retrieval of aerosol optical thickness and chlorophyll concentration from multiwavelength measurement over East China Sea

    NASA Astrophysics Data System (ADS)

    Shi, Chong; Nakajima, Teruyuki; Hashimoto, Makiko

    2016-12-01

    A flexible inversion algorithm is proposed for simultaneously retrieving aerosol optical thickness (AOT) and surface chlorophyll a (Chl) concentration from multiwavelength observation over the ocean. In this algorithm, forward radiation calculation is performed by an accurate coupled atmosphere-ocean model with a comprehensive bio-optical ocean module. Then, a full-physical nonlinear optimization approximation approach is used to retrieve AOT and Chl. For AOT retrieval, a global three-dimensional spectral radiation-transport aerosol model is used as the a priori constraint to increase the retrieval accuracy of aerosol. To investigate the algorithm's availability, the retrieval experiment is conducted using simulated radiance data to demonstrate that the relative errors in simultaneously determining AOT and Chl can be mostly controlled to within 10% using multiwavelength and angle covering in and out of sunglint. Furthermore, the inversion results are assessed using the actual satellite observation data obtained from Cloud and Aerosol Imager (CAI)/Greenhouse gas Observation SATellite GOSAT and MODerate resolution Imaging Spectroradiometer (MODIS)/Aqua instruments through comparison to Aerosol Robotic Network (AERONET) aerosol and ocean color (OC) products over East China Sea. Both the retrieved AOT and Chl compare favorably to the reported AERONET values, particularly when using the CASE 2 ocean module in turbid water, even when the retrieval is performed in the presence of high aerosol loading and sunglint. Finally, the CAI and MODIS images are used to jointly retrieve the spatial distribution of AOT and Chl in comparison to the MODIS AOT and OC products.

  1. Influence of the external mixing state of atmospheric aerosol on derived CCN number concentrations

    NASA Astrophysics Data System (ADS)

    Wex, H.; McFiggans, G.; Henning, S.; Stratmann, F.

    2010-05-01

    We derived the range of particle hygroscopicities ($\\kappa$) that occurs in the atmosphere, based on literature data of measured hygroscopic growth or based on chemical composition. The derived $\\kappa$-values show that the atmospheric aerosol often is an external mixture with respect to hygroscopicity. Mean $\\kappa$ were derived for urban, rural, and marine aerosols for the different hygroscopic modes. Using these $\\kappa$ and exemplary particle number size distributions for the different aerosols, the number concentration of cloud condensation nuclei (NCCN) was derived for two cases, (1) accounting for the less hygroscopic fraction of particles and (2) assuming all particles to have $\\kappa$ of the more hygroscopic mode. NCCN derived from measured particle hygroscopicity is overestimated for case (2). Overestimation of NCCN is largest for fresh continental aerosol and less pronounced for marine aerosol. With $\\kappa$ derived from bulk aerosol composition data, only the hygroscopicity of more soluble aerosol particles is captured. Bulk or even size-resolved composition data will be insufficient to predict NCCN under many conditions unless independent information about particle mixing state is available.

  2. Optical loss due to diffraction by concentrator Fresnel lenses

    SciTech Connect

    Hornung, Thorsten Nitz, Peter

    2014-09-26

    Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as a primary optical element. They focus sunlight on small solar cells or on the entrance apertures of secondary optical elements. A Fresnel lens consists of several prism rings and diffraction by these prism rings is unavoidable. Some of the light that would reach a designated target area according to geometric optics will miss it due to diffraction. This diffraction loss may be of relevant magnitude for CPV applications. The results of published analytical calculations are evaluated, discussed, and compared to computer simulations and measurements.

  3. On the submicron aerosol distributions and CCN number concentrations in and around the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Yum, S. S.; Shim, S.; Kim, W. J.; Park, M.; Kim, J.-H.; Kim, M.-H.; Yoon, S.-C.

    2014-08-01

    Total number concentrations of particles having a diameter larger than 10 nm (NCN), cloud condensation nuclei at several supersaturation (S) values (NCCN) and number size distributions of particles with 10-414 nm diameter were measured in Seoul between 2004 and 2010. Overall average values of NCN and geometric mean diameter were 17 811 ± 5581 cm-3 and 48 ± 6 nm. Average NCCN at 0.4, 0.6 and 0.8% S were 4145 ± 2016, 5323 ± 2453 and 6067 ± 2780 cm-3 and corresponding NCCN / NCN were 0.26 ± 0.11, 0.33 ± 0.11 and 0.37 ± 0.12. There is a clear seasonal variation in aerosol concentration, which seems to be due to the monsoon. NCN and NCCN are also found to depend on the volume of traffic and the height of the planetary boundary layer, respectively. During aircraft campaigns in 2009 and 2011, NCN and NCCN at 0.6% S (N0.6%) were measured in and around the Korean Peninsula. During the 2011 campaign, the aerosol scattering coefficient was also measured. NCN and N0.6% in the lower altitudes were generally higher than at higher altitudes, except for cases when particle formation and growth events were thought to occur at higher altitudes. NCN and N0.6% generally show a positive correlation with aerosol scattering coefficients but this correspondence tends to vary with altitude. Occasional instances of low (< 0.3) N0.6% / NCN in the boundary layer are demonstrated to be associated with particle formation and growth events. With the support of ground measurements, it is confirmed that a particle formation and growth event did indeed occur over the Yellow Sea on a flight day, and the areal extent of this event is estimated to be greater than 100 km × 450 km. With the combination of the current and several relevant previous studies, a composite map of NCN and NCCN in and around the Korean Peninsula is produced. Overall, the exhibited concentrations are typical of values measured over polluted regions elsewhere on the globe. Moreover, there is a generally decreasing trend

  4. On the submicron aerosol distributions and CCN number concentrations in and around the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Yum, S. S.; Shim, S.; Kim, W. J.; Park, M.; Kim, J.; Kim, M.; Yoon, S. C.

    2014-03-01

    Total number concentrations of particles having diameter larger than 10 nm (NCN), cloud condensation nuclei at several supersaturation (S) values (NCCN), and the number size distribution of particles for 10-414 nm particle diameter range were measured in Seoul between 2004 and 2010. Overall average values of NCN and geometric mean diameter are 17 811 ± 5581 cm-3 and 48 ± 6 nm, respectively. Average NCCN at 0.4, 0.6, and 0.8% S are 4145 ± 2016, 5323 ± 2453 and 6067 ± 2780 cm-3, respectively and corresponding NCCN / NCN are 0.26 ± 0.11, 0.33 ± 0.11 and 0.37 ± 0.12. There is a clear seasonal variation of aerosol concentration, which seems to be due to the monsoon. NCN and NCCN are also found to be dependent on the volume of traffic and the height of planetary boundary layer, respectively. During the two aircraft campaigns in 2009 and 2011, NCN and NCCN at 0.6% S were measured in and around the Korean Peninsula. During the 2011 campaign, aerosol scattering coefficient was also measured. NCN and NCCN 0.6 in the lower altitudes were generally higher than at higher altitudes, except for the cases when particle formation and growth events are thought to occur at higher altitudes. NCN and NCCN 0.6 show generally a positive correlation with aerosol scattering coefficients but its correspondence tends to vary with altitude. Occasional instances of low (< 0.3) NCCN 0.6 / NCN in the boundary layer are demonstrated to be associated with particle formation and growth events. With the support of ground measurements, it is confirmed that a particle formation and growth event indeed occurred on a flight day over the Yellow Sea and the areal extent of the event is estimated to be greater than 100 km × 450 km. With the combination of the current and several relevant previous studies, a composite map of NCN and NCCN in and around the Korean Peninsula is produced. Overall, the exhibited concentrations are typical of the values measured over the polluted regions elsewhere in the

  5. Spatial variability of carbonaceous aerosol concentrations in East and West Jerusalem.

    PubMed

    von Schneidemesser, Erika; Zhou, Iiabin; Stone, Elizabeth A; Schauer, James I; Shpund, Jacob; Brenner, Shmuel; Qasrawi, Radwan; Abdeen, Ziad; Sarnat, Jeremy A

    2010-03-15

    Carbonaceous aerosol concentrations and sources were compared during a year long study at two sites in East and West Jerusalem that were separated by a distance of approximately 4 km. One in six day 24-h PM(2.5) elemental and organic carbon concentrations were measured, along with monthly average concentrations of particle-phase organic compound tracers for primary and secondary organic aerosol sources.Tracer compounds were used in a chemical mass balance ICMB) model to determine primary and secondary source contributions to organic carbon. The East Jerusalem sampling site at Al Quds University experienced higher concentrations of organic carbon (OC) and elemental carbon (EC) compared to the West Jerusalem site at Hebrew University. The annual average concentrations of OC and EC at the East Jerusalem site were 5.20 and 2.19 μg m(-3), respectively, and at the West Jerusalem site were 4.03 and 1.14 μg m(-3), respectively. Concentrations and trends of secondary organic aerosol and vegetative detritus were similar at both sites, but large differences were observed in the concentrations of organic aerosol from fossil fuel combustion and biomass burning, which was the cause of the large differences in OC and EC concentrations observed at the two sites.

  6. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption in Xianghe, SE of Beijing, China

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2005-12-01

    China's rapid industrialization over the last few decades has affected air quality in many regions of China, and even the regional climate. As a part of the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals since January 2005 at Xianghe, about 70 km southeast of Beijing. Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations during the winter months (January-March) ranged from 9 to 459 μg/m3 in the coarse mode with an average concentration of 122 μg/m3, and from 11 to 203 μg/m3 in the fine mode with an average concentration of 45 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Absorption efficiency measurements at 550 nm show very high values compared to measurements performed in the United States during the CLAMS experiment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in refractive indices from the several collected species and particle size effects. The absorption properties from aerosols measured in China show large absorption efficiencies, compared to aerosols measured in the US, possibly linked to different technology practices used in these countries. For organic plus black carbon aerosols, where the refractive index seems to be relatively constant, the absorption efficiency spectral dependence for fine mode aerosols falls between 1/λ and 1/λ2. The coarse mode absorption shows much less spectral dependence.

  7. Measurement of elemental concentration of aerosols using spark emission spectroscopy.

    PubMed

    Diwakar, Prasoon K; Kulkarni, Pramod

    A coaxial microelectrode system has been used to collect and analyse the elemental composition of aerosol particles in near real-time using spark emission spectroscopy. The technique involves focused electrostatic deposition of charged aerosol particles onto the flat tip of a microelectrode, followed by introduction of spark discharge. A pulsed spark discharge was generated across the electrodes with input energy ranging from 50 to 300 mJ per pulse, resulting in the formation of controlled pulsed plasma. The particulate matter on the cathode tip is ablated and atomized by the spark plasma, resulting in atomic emissions which are subsequently recorded using a broadband optical spectrometer for element identification and quantification. The plasma characteristics were found to be very consistent and reproducible even after several thousands of spark discharges using the same electrode system. The spark plasma was characterized by measuring the excitation temperature (~7000 to 10 000 K), electron density (~10(16) cm(-3)), and evolution of spectral responses as a function of time. The system was calibrated using particles containing Pb, Si, Na and Cr. Absolute mass detection limits in the range 11 pg to 1.75 ng were obtained. Repeatability of spectral measurements varied from 2 to 15%. The technique offers key advantages over similar microplasma-based techniques such as laser-induced breakdown spectroscopy, as: (i) it does not require any laser beam optics and eliminates any need for beam alignment, (ii) pulse energy from dc power supply in SIBS system can be much higher compared to that from laser source of the same physical size, and (iii) it is quite conducive to compact, field-portable instrumentation.

  8. Measurement of elemental concentration of aerosols using spark emission spectroscopy†

    PubMed Central

    Diwakar, Prasoon K.

    2015-01-01

    A coaxial microelectrode system has been used to collect and analyse the elemental composition of aerosol particles in near real-time using spark emission spectroscopy. The technique involves focused electrostatic deposition of charged aerosol particles onto the flat tip of a microelectrode, followed by introduction of spark discharge. A pulsed spark discharge was generated across the electrodes with input energy ranging from 50 to 300 mJ per pulse, resulting in the formation of controlled pulsed plasma. The particulate matter on the cathode tip is ablated and atomized by the spark plasma, resulting in atomic emissions which are subsequently recorded using a broadband optical spectrometer for element identification and quantification. The plasma characteristics were found to be very consistent and reproducible even after several thousands of spark discharges using the same electrode system. The spark plasma was characterized by measuring the excitation temperature (~7000 to 10 000 K), electron density (~1016 cm−3), and evolution of spectral responses as a function of time. The system was calibrated using particles containing Pb, Si, Na and Cr. Absolute mass detection limits in the range 11 pg to 1.75 ng were obtained. Repeatability of spectral measurements varied from 2 to 15%. The technique offers key advantages over similar microplasma-based techniques such as laser-induced breakdown spectroscopy, as: (i) it does not require any laser beam optics and eliminates any need for beam alignment, (ii) pulse energy from dc power supply in SIBS system can be much higher compared to that from laser source of the same physical size, and (iii) it is quite conducive to compact, field-portable instrumentation. PMID:26491209

  9. Aerosol effects on ozone concentrations in Beijing: a model sensitivity study.

    PubMed

    Xu, Jun; Zhang, Yuanhang; Zheng, Shaoqing; He, Youjiang

    2012-01-01

    Most previous O3 simulations were based only on gaseous phase photochemistry. However, some aerosol-related processes, namely, heterogeneous reactions occurring on the aerosol surface and photolysis rate alternated by aerosol radiative influence, may affect O3 photochemistry under high aerosol loads. A three-dimensional air quality model, Models-3/Community Multi-scale Air Quality-Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution, was employed to simulate the effects of the above-mentioned processes on O3 formation under typical high O3 episodes in Beijing during summer. Five heterogeneous reactions, i.e., NO2, NO3, N2O5, HO2, and O3, were individually investigated to elucidate their effects on 03 formation. The results showed that the heterogeneous reactions significantly affected O3 formation in the urban plume. NO2 heterogeneous reaction increased O3 to 90 ppb, while HO2 heterogeneous reaction decreased O3 to 33 ppb. In addition, O3 heterogeneous loss decreased O3 to 31 ppb. The effects of NO2, NO3, and N2O5 heterogeneous reactions showed opposite O3 concentration changes between the urban and extra-urban areas because of the response of the reactions to the two types of O3 formation regimes. When the aerosol radiative influence was included, the photolysis rate decreased and O3 decreased significantly to 73 ppb O3. The two aerosol-related processes should be considered in the study of O3 formation because high aerosol concentration is a ubiquitous phenomenon that affects the urban- and regional air quality in China.

  10. Characterization of the Changes in Hygroscopicity of Ambient Organic Aerosol due to Oxidation by Gas Phase OH

    NASA Astrophysics Data System (ADS)

    Wong, J. P.; McWhinney, R. D.; Slowik, J. G.; Abbatt, J.

    2011-12-01

    Despite the ubiquitous nature of organic aerosols and their importance in climate forcing, the influence of chemical processes on their ability to act as cloud condensation nuclei (CCN) in the atmosphere remains uncertain. Changes to the hygroscopicity of ambient organic aerosol due to OH oxidation were explored at a remote forested (Whistler, British Columbia) and an urban (Toronto, Ontario) site. Organic aerosol was exposed to controlled levels of OH radicals in a portable flow tube reactor, the Toronto Photo-Oxidation Tube (TPOT). An Aerodyne Aerosol Mass Spectrometer (AMS) monitored the changes in the chemical composition due to OH-initiated oxidation. The CCN activity of size-selected particles was measured with a DMT Cloud Condensation Nuclei Counter (CCNc) to determine the hygroscopicity parameter, κ. Preliminary results suggest that gas phase OH oxidation increases the degree of oxygenation of organic aerosol, leading to increases in hygroscopicity. These results yield insights into the mechanism by which oxidation affects the hygroscopicity of ambient aerosol of various sources, and to constrain the main aging process that leads to the observation of increasing hygroscopicity with increasing oxidation of organic aerosol.

  11. Development of a sampling method for carbonyl compounds released due to the use of electronic cigarettes and quantitation of their conversion from liquid to aerosol.

    PubMed

    Jo, Sang-Hee; Kim, Ki-Hyun

    2016-01-15

    In this study, an experimental method for the collection and analysis of carbonyl compounds (CCs) released due to the use of electronic cigarettes (e-cigarettes or ECs) was developed and validated through a series of laboratory experiments. As part of this work, the conversion of CCs from a refill solution (e-solution) to aerosol also was investigated based on mass change tracking (MCT) approach. Aerosol samples generated from an e-cigarette were collected manually using 2,4-dinitrophenylhydrazine (DNPH) cartridges at a constant sampling (puffing) velocity of 1 L min(-1) with the following puff conditions: puff duration (2s), interpuff interval (10s), and puff number (5, 10, and 15 times). The MCT approach allowed us to improve the sampling of CCs through critical evaluation of the puff conditions in relation to the consumed quantities of refill solution. The emission concentrations of CCs remained constant when e-cigarettes were sampled at or above 10 puff. Upon aerosolization, the concentrations of formaldehyde and acetaldehyde increased 6.23- and 58.4-fold, respectively, relative to their concentrations in e-solution. Furthermore, a number of CCs were found to be present in the aerosol samples which were not detected in the initial e-solution (e.g., acetone, butyraldehyde, and o-tolualdehyde).

  12. Aerosol formation by ozonolysis of α- and β-pinene with initial concentrations below 1 ppb

    NASA Astrophysics Data System (ADS)

    Saathoff, Harald; Naumann, Karl-Heinz; Möhler, Ottmar

    2014-05-01

    Secondary organic aerosols (SOA) from the oxidation of biogenic volatile organic compounds (BVOC) are a large fraction of the tropospheric aerosol especially over tropical continental regions. The dominant SOA forming compounds are monoterpenes of which pinene is the most abundant. The reactions of monoterpenes with OH radicals, NO3 radicals, and ozone yield secondary organic aerosol mass in highly variable yields. Despite the various studies on SOA formation the influence of temperature and precursor concentrations on SOA yields are still major uncertainties in tropospheric aerosol models. In previous studies we observed a negative temperature dependence of SOA yields for SOA from ozonolysis α-pinene and limonene (Saathoff et al., 2009). However, this study as well as most of the literature data for measured SOA yields is limited to terpene concentrations of several ppb and higher (e.g. Bernard et al., 2012), hence about an order of magnitude higher than terpene concentrations even near their sources. Monoterpene concentrations in and above tropical or boral forests reach values up to a few tenth of a ppb during daytime decreasing rapidly with altitude in the boundary layer (Kesselmeier et al. 2000; Boy et al., 2004). Therefore we investigated the yield of SOA material from the ozonolysis of α- and β-pinene under simulated tropospheric conditions in the large aerosol chamber AIDA on time scales of several hours and for terpene concentrations between 0.1 and 1 ppb. The temperatures investigated were 243, 274, and 296 K with relative humidities ranging from 25% to 41%. The organic aerosol was generated by controlled oxidation with an excess of ozone (220-930 ppb) and the aerosol yield is calculated from size distributions measured with differential mobility analysers (SMPS, TSI, 3071 & 3080N) in the size range between 2 and 820 nm. On the basis of the measured initial particle size distribution, particle number concentration (CPC, TSI, 3775, 3776, 3022), and

  13. Estimation of columnar concentrations of absorbing and scattering fine mode aerosol components using AERONET data

    NASA Astrophysics Data System (ADS)

    Choi, Yongjoo; Ghim, Young Sung

    2016-11-01

    Columnar concentrations of absorbing and scattering components of fine mode aerosols were estimated using Aerosol Robotic Network (AERONET) data for a site downwind of Seoul. The study period was between March 2012 and April 2013 including the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia campaign in March to May 2012. The Maxwell Garnett mixing rule was assumed for insoluble components embedded in a host solution, while the volume average mixing rule was assumed for the aqueous solution of soluble components. During the DRAGON-Asia campaign the surface concentrations of major components of fine particles were measured. The columnar mass fractions of black carbon (BC), organic carbon (OC), mineral dust (MD), and ammonium sulfate (AS) were 1.5, 5.9, 6.6, and 52%, respectively, which were comparable to the mass fractions measured at the surface for BC, OC, and secondary inorganic aerosols at 2.3, 18, and 55%. The vertical distributions of BC and AS were investigated by employing the concept of a column height. While the column height for BC was similar to the planetary boundary layer (PBL) height, that for AS was 4.4 times higher than the PBL height and increased with air temperature from March to May. The monthly variations of the columnar mass concentrations during the study period were generally well explained in term of meteorology and emission characteristics. However, certain variations of MD were different from those typically observed primarily because only fine mode aerosols were considered.

  14. Concentrations of iodine isotopes ((129)I and (127)I) and their isotopic ratios in aerosol samples from Northern Germany.

    PubMed

    Daraoui, A; Riebe, B; Walther, C; Wershofen, H; Schlosser, C; Vockenhuber, C; Synal, H-A

    2016-04-01

    New data about (129)I, (127)I concentrations and their isotopic ratios in aerosol samples from the trace survey station of the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Northern Germany, are presented and discussed in this paper. The investigated samples were collected on a weekly basis during the years 2011 to 2013. Iodine was extracted from aerosol filters using a strong basic solution and was separated from the matrix elements with chloroform and was analysed by accelerator mass spectrometry (AMS) for (129)I and by inductively coupled plasma mass spectrometry (ICP-MS) for (127)I. The concentrations of (127)I and (129)I in aerosol filters ranged from 0.31 to 3.71 ng m(-3) and from 0.06 to 0.75 fg m(-3), respectively. The results of (129)I/(127)I isotopic ratios were in the order 10(-8) to 10(-7). The (129)I originated directly from gaseous emissions and indirectly from liquid emissions (via sea spray) from the reprocessing plants in Sellafield and La Hague. In comparison with the results of (131)I after the Fukushima accident, no contribution of (129)I from this accident was detectable in Central Europe due to the high background originating from the (129)I releases of the European reprocessing plants. (129)I atmospheric activity concentrations were compared with those of an anthropogenic radionuclide ((85)Kr). We did not find any correlation between (129)I and (85)Kr, both having nuclear reprocessing plant as the main source.

  15. Spatial variability of aerosol and black carbon concentrations in the troposphere of the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Kozlov, Valerii S.; Panchenko, Mikhail V.; Paris, Jean D.; Nédéléc, Philippe; Chernov, Dmitry G.; Shmargunov, Vladimir P.

    2015-11-01

    A cycle of flights of the Optik TU-134 Flying Laboratory of IAO SB RAS over regions of Western Siberia and the Russian Arctic (55.0-74.8°N, 61.3-82.9°E) was carried out on October 15-17 of 2014 within the framework of the YAK-AEROSIB Russian—French Project. The mass concentrations of submicron aerosol and Black Carbon (BC) in the troposphere up to a height of 8.5 km were measured in the flights. The ranges of variability were 0.3-20 μg/m3 for the aerosol concentration and 0.02-1 μg/m3 for the BC concentration. In the subpolar latitudes of 71-74.8°N, the lower levels of aerosol (0.8-6 μg/m3) and BC (0.02-0.3 μg/m3) were observed. The comparison of the results of airborne sensing in 2008 and 2014 has shown that in the Western Subartic the aerosol and BC concentrations in the vertical profiles up to six times exceeded those observed in the Eastern Subarctic (0.3-1 μg/m3 and 10-50 ng/m3). The excess of the mean integral BC concentrations and the aerosol optical depth was, on average, 2-2.5 times (0.16 mg/m2; 0.02). In the region of the Kara Sea at heights of 0.5-2 and 4-6 km, the excess of the aerosol content in the western sector in comparison with the eastern one was, on average, 2 times, while for the black carbon the excess achieved 7 times at heights of 1-2 km (0.25- 0.035 μg/m3). The mean integral concentrations of aerosol and black carbon ˜ 1.3 times exceeded those in the clearer eastern region of the sea (0.31 mg/m2; 0.049). The obtained estimates indicate the decrease of the aerosol and BC concentrations in the subpolar latitudes of the Russian Federation from the west to the east.

  16. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall.

    PubMed

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M J; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A F; Springston, Stephen R; Tomlinson, Jason M; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N; Kulmala, Markku; Machado, Luiz A T; Artaxo, Paulo; Andreae, Meinrat O; Petäjä, Tuukka; Martin, Scot T

    2016-11-17

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  17. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M. J.; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E.; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L.; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A. F.; Springston, Stephen R.; Tomlinson, Jason M.; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N.; Kulmala, Markku; Machado, Luiz A. T.; Artaxo, Paulo; Andreae, Meinrat O.; Petäjä, Tuukka; Martin, Scot T.

    2016-11-01

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  18. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    SciTech Connect

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M. J.; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E.; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L.; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A. F.; Springston, Stephen R.; Tomlinson, Jason M.; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N.; Kulmala, Markku; Machado, Luiz A. T.; Artaxo, Paulo; Andreae, Meinrat O.; Petäjä, Tuukka; Martin, Scot T.

    2016-10-24

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. Lastly, this rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  19. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    DOE PAGES

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; ...

    2016-10-24

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- andmore » ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. Lastly, this rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.« less

  20. Stratospheric denitrification due to polar aerosol formation: Implications for a future atmosphere with increased CO2

    NASA Astrophysics Data System (ADS)

    Pitari, Giovanni; Ricciardulli, Lucrezia

    The amount of stratospheric denitrification produced by NAT aerosol formation is studied with a photochemical two-dimensional model which includes the effects of zonal asymmetries of the temperature field. The model photochemistry is coupled with a microphysical code for aerosol formation and growth, so that the permanent loss of stratospheric nitric acid and water vapor may be taken into account. The model results for nitric acid relative to the atmospheric chemical composition of 1980 are compared with LIMS data. We show that the level of denitrification may rise substantially if the polar vortex cools down, as it could be the case in a future atmosphere richer in carbon dioxide. A three-dimensional model is used to calculate the temperature perturbation due to an increase of CO2 from 335 ppmv of 1980 (baseline) up to 500 ppmv (predicted for 2050). The photochemical model adopting these new temperatures predicts an average 20% HNO3 column decrease poleward of 45N with respect to baseline. One consequence is that the relative weight of the NOx catalytic cycle for O3 destruction decreases with respect to the present atmosphere.

  1. Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations

    NASA Technical Reports Server (NTRS)

    Igel, Adele L.; Van Den Heever, Susan C.; Naud, Catherine M.; Saleeby, Stephen M.; Posselt, Derek J.

    2013-01-01

    An extratropical cyclone that crossed the United States on 9-11 April 2009 was successfully simulated at high resolution (3-km horizontal grid spacing) using the Colorado State University Regional Atmospheric Modeling System. The sensitivity of the associated warm front to increasing pollution levels was then explored by conducting the same experiment with three different background profiles of cloud-nucleating aerosol concentration. To the authors' knowledge, no study has examined the indirect effects of aerosols on warm fronts. The budgets of ice, cloud water, and rain in the simulation with the lowest aerosol concentrations were examined. The ice mass was found to be produced in equal amounts through vapor deposition and riming, and the melting of ice produced approximately 75% of the total rain. Conversion of cloud water to rain accounted for the other 25%. When cloud-nucleating aerosol concentrations were increased, significant changes were seen in the budget terms, but total precipitation remained relatively constant. Vapor deposition onto ice increased, but riming of cloud water decreased such that there was only a small change in the total ice production and hence there was no significant change in melting. These responses can be understood in terms of a buffering effect in which smaller cloud droplets in the mixed-phase region lead to both an enhanced vapor deposition and decreased riming efficiency with increasing aerosol concentrations. Overall, while large changes were seen in the microphysical structure of the frontal cloud, cloud-nucleating aerosols had little impact on the precipitation production of the warm front.

  2. Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012

    SciTech Connect

    Meskhidze, Nicholas

    2013-10-21

    The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

  3. Study of satellite retrieved aerosol optical depth spatial resolution effect on particulate matter concentration prediction

    NASA Astrophysics Data System (ADS)

    Strandgren, J.; Mei, L.; Vountas, M.; Burrows, J. P.; Lyapustin, A.; Wang, Y.

    2014-10-01

    The Aerosol Optical Depth (AOD) spatial resolution effect is investigated for the linear correlation between satellite retrieved AOD and ground level particulate matter concentrations (PM2.5). The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) for obtaining AOD with a high spatial resolution of 1 km and provides a good dataset for the study of the AOD spatial resolution effect on the particulate matter concentration prediction. 946 Environmental Protection Agency (EPA) ground monitoring stations across the contiguous US have been used to investigate the linear correlation between AOD and PM2.5 using AOD at different spatial resolutions (1, 3 and 10 km) and for different spatial scales (urban scale, meso-scale and continental scale). The main conclusions are: (1) for both urban, meso- and continental scale the correlation between PM2.5 and AOD increased significantly with increasing spatial resolution of the AOD, (2) the correlation between AOD and PM2.5 decreased significantly as the scale of study region increased for the eastern part of the US while vice versa for the western part of the US, (3) the correlation between PM2.5 and AOD is much more stable and better over the eastern part of the US compared to western part due to the surface characteristics and atmospheric conditions like the fine mode fraction.

  4. Fire and biofuel annual contributions to aerosol mass concentrations in the United States

    NASA Astrophysics Data System (ADS)

    Park, R. J.; Jacob, D. J.; Logan, J. A.

    2006-12-01

    Fires are a potentially major but poorly quantified factor for air quality degradation in the United States. Although episodic effects are well established, little attention has been paid to the more diffuse, nationwide effects of fires on seasonal and annual aerosol concentrations of relevance for air quality and visibility standards. Effects of biofuel use, both residential and industrial, have also received little attention. We use here correlations with non-soil potassium (ns-K) at the nationwide IMPROVE network of surface sites for 2001- 2004 to estimate total contributions to total carbonaceous (TC) aerosol concentrations from wildfires, prescribed fires, and residential and industrial biofuels. We find that the year-to-year variation of fires largely drives the observed interannual variability in TC. We present estimates of biomass burning contributions to regional aerosol concentrations in the western and eastern United States and further examine their implications for the national ambient air quality standard of fine aerosol concentrations and for the application of natural visibility condition by the U.S. EPA Regional Haze Rule.

  5. AEROSOL CONCENTRATIONS DURING THE 1999 FRESNO EXPOSURE STUDIES AS FUNCTIONS OF SIZE, SEASON, AND METEOROLOGY

    EPA Science Inventory

    The 1999 Fresno exposure studies took place in February (winter season) and April/May (spring season) for two periods of four weeks. During that time, nearly-continuous measurements of outdoor aerosol concentrations were made with a scanning mobility spectrometer (TSI SNIPS) an...

  6. Changes in Antarctic stratospheric aerosol characteristics due to volcanic eruptions as monitored by the Stratospheric Aerosol and Gas Experiment II satellite

    NASA Astrophysics Data System (ADS)

    Saxena, V. K.; Anderson, John; Lin, N.-H.

    1995-08-01

    An estimated 20-30 megatons of SO2 and crustal material was injected into the stratosphere during June 12-16, 1991, by the eruption of Mount Pinatubo (15.1°N, 120.4°E). The impact on Antarctic aerosol characteristics is of utmost concern owing to the seasonality in the observed ozone depletion and climate implications. This study focuses on Antarctic stratospheric aerosol characteristics during three temporal periods: September 23-30, September 30 to October 13, and November 13-27, 1991, at latitudes poleward of 60°S for vertically averaged characteristics, and at latitudes poleward of 50°S for temporal and spatial characteristics. Stratospheric aerosol characteristics are inferred from the Stratospheric Aerosol and Gas Experiment (SAGE) II measurements using a modified randomized minimization search technique (RMST). Aerosol characteristics such as size distribution, number concentration, mass loading, surface area concentration, and radial characteristics are derived between 15 and 30 km for particles having radii between 0.1 and 0.8 μm. Results indicate that aerosol size distributions between 15 and 30 km are bimodal in several instances for all three time periods and can be fitted with the sum of two lognormal distributions. Larger concentrations are observed for particles of all sizes between 18 and 30 km during November 1991, signaling the arrival of the Mount Pinatubo plume. An order of magnitude increase in concentration is observed for particles with radii between 0.1 and 0.2 μm and between 0.7 and 0.8 μm. Vertical aerosol profiles show that the peak in aerosol concentration shifted to a higher altitude between 21 and 26 km as compared to the preplume peak between 15 and 18 km. Using the displacement as a function of time for a mass loading of 1.7 μg m-3 isopleth, we estimated meridional velocity ≈0.9 m s-1, zonal velocity ≈16 m s-1, and downward vertical velocity of 0.5 cm s-1 during September to mid-October, 1991, and 0.3 cm s-1 during mid to

  7. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2010-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on Clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. In this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific, In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection. The model results suggest that evaporative cooling is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions

  8. Effects of climate change on aerosol concentrations in Europe

    NASA Astrophysics Data System (ADS)

    Megaritis, Athanasios G.; Fountoukis, Christos; Pandis, Spyros N.

    2013-04-01

    High concentrations of particulate matter less than 2.5 μm in size (PM2.5), ozone and other major constituents of air pollution, have adverse effects on human health, visibility and ecosystems (Seinfeld and Pandis, 2006), and are strongly influenced by meteorology. Emissions control policy is currently made assuming that climate will remain constant in the future. However, climate change over the next decades is expected to be significant (IPCC, 2007) and may impact local and regional air quality. Determining the sensitivity of the concentrations of air pollutants to climate change is an important step toward estimating future air quality. In this study we applied PMCAMx (Fountoukis et al., 2011), a three dimensional chemical transport model, over Europe, in order to quantify the individual effects of various meteorological parameters on fine particulate matter (PM2.5) concentrations. A suite of perturbations in various meteorological factors, such as temperature, wind speed, absolute humidity and precipitation were imposed separately on base case conditions to determine the sensitivities of PM2.5 concentrations and composition to these parameters. Different simulation periods (summer, autumn 2008 and winter 2009) are used to examine also the seasonal dependence of the air quality - climate interactions. The results of these sensitivity simulations suggest that there is an important link between changes in meteorology and PM2.5 levels. We quantify through separate sensitivity simulations the processes which are mainly responsible for the final predicted changes in PM2.5 concentration and composition. The predicted PM2.5 response to those meteorology perturbations was found to be quite variable in space and time. These results suggest that, the changes in concentrations caused by changes in climate should be taken into account in long-term air quality planning. References Fountoukis C., Racherla P. N., Denier van der Gon H. A. C., Polymeneas P., Charalampidis P. E

  9. Concentration characteristics of bromine and iodine in aerosols in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Gao, Yunchuan; Sun, Mingxing; Wu, Xiaowei; Liu, Yongdi; Guo, Yaqi; Wu, Ji

    2010-11-01

    Aerosol samples (TSP and PM 10) during each season were collected at a national monitoring point in Shanghai in 2008. Halogens (Br, I) were determined in samples along with sodium (Na) by ICP-MS and ICP-OES after microwave digestion. In this report we focused on the concentration characteristics of halogen elements Br and I and their seasonal distributions. The mean annual concentrations of total Br and I were 24 ng m -3 and 12 ng m -3 for TSP, 21 ng m -3 and 9 ng m -3 for PM 10, respectively. Concentrations of Br and I in TSP and PM 10 were lowest in summer but an increase occurred in autumn and winter. Water-soluble Br and I accounted for about 32% of the total Br and I in aerosols, and about 68% of Br and I was non soluble which may be non-soluble organic species. These non-soluble organic species are present in aerosols in the possible binding forms as mineral dust, natural organic matter, and adsorption to black carbon or mineral material such as iron oxides. Soluble Br and I in PM 10 extracted by a dilute acid solution (HNO 3 + H 2SO 4) increased by 22% and 18%, respectively, compared with water-soluble Br and I. A positive correlation with Na and sea water enrichment factors for Br and I indicated that bromine and iodine in aerosols originated mostly from marine sources in Shanghai.

  10. Black Carbon Concentration from Worldwide Aerosol Robotic Network (AERONET) Measurements

    NASA Technical Reports Server (NTRS)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent N.; Clothiaux, Eugene E.

    2006-01-01

    The carbon emissions inventories used to initialize transport models and general circulation models are highly parameterized, and created on the basis of multiple sparse datasets (such as fuel use inventories and emission factors). The resulting inventories are uncertain by at least a factor of 2, and this uncertainty is carried forward to the model output. [Bond et al., 1998, Bond et al., 2004, Cooke et al., 1999, Streets et al., 2001] Worldwide black carbon concentration measurements are needed to assess the efficacy of the carbon emissions inventory and transport model output on a continuous basis.

  11. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  12. Simulations of organic aerosol concentrations during springtime in the Guanzhong Basin, China

    NASA Astrophysics Data System (ADS)

    Feng, Tian; Li, Guohui; Cao, Junji; Bei, Naifang; Shen, Zhenxing; Zhou, Weijian; Liu, Suixin; Zhang, Ting; Wang, Yichen; Huang, Ru-jin; Tie, Xuexi; Molina, Luisa T.

    2016-08-01

    The organic aerosol (OA) concentration is simulated in the Guanzhong Basin, China from 23 to 25 April 2013 utilizing the WRF-CHEM model. Two approaches are used to predict OA concentrations: (1) a traditional secondary organic aerosol (SOA) module; (2) a non-traditional SOA module including the volatility basis-set modeling method in which primary organic aerosol (POA) is assumed to be semivolatile and photochemically reactive. Generally, the spatial patterns and temporal variations of the calculated hourly near-surface ozone and fine particle matters agree well with the observations in Xi'an and surrounding areas. The model also yields reasonable distributions of daily PM2.5 and elemental carbon (EC) compared to the filter measurements at 29 sites in the basin. Filter-measured organic carbon (OC) and EC are used to evaluate OA, POA, and SOA using the OC / EC ratio approach. Compared with the traditional SOA module, the non-traditional module significantly improves SOA simulations and explains about 88 % of the observed SOA concentration. Oxidation and partitioning of POA treated as semivolatile constitute the most important pathway for the SOA formation, contributing more than 75 % of the SOA concentrations in the basin. Residential emissions are the dominant anthropogenic OA source, constituting about 50 % of OA concentrations in urban and rural areas and 30 % in the background area. The OA contribution from transportation emissions decreases from 25 % in urban areas to 20 % in the background area, and the industry emission OA contribution is less than 6 %.

  13. Trace metal concentration in Trade Wind aerosols collected over Barbados and Miami.

    NASA Astrophysics Data System (ADS)

    Trapp, J. M.; Millero, F. J.; Prospero, J. M.

    2007-12-01

    African mineral dust aerosols are transported by trade winds to Barbados and often reach Miami. The trace metals contained in these aerosols play an important role in biogeochemical processes and thus the global carbon cycle. High-volume bulk aerosols were collected in the summer dust season (June-September) of 2003 and 2004 in Miami and Barbados on Whatman-41 filters and microwave digested using a modified version of EPA method 3051. Aliquots of digested samples were tested for trace metal concentrations by ICP-MS. Excellent agreement with gravimetrically determined ashed weights was observed with dust concentrations calculated based on Al crustal abundance. As a major component, aluminum averaged 8.7% content in agreement to 8.1% crustal abundance, and was used to examine other trace metals. Al, Fe, V, Cr, Mn, Cu, Co, Ni, Zn, As, Tl, Ba, Cd, Pb and REE's were examined and deviations from average crustal abundance are discussed in relationship to temporal variation and meteorological conditions. In addition, trace metal pollutants in Miami aerosols were examined relative to the relatively clean samples offered by Barbados.

  14. Precipitation changes due to anthropogenic aerosols and greenhouse gases in MLO experiments

    NASA Astrophysics Data System (ADS)

    Folini, Doris; Dallafior, Tanja; Wild, Martin; Knutti, Reto

    2016-04-01

    We analyze mixed layer ocean (MLO) equilibria from time slice experiments with the global climate model ECHAM6.1, combined with the Hamburg aerosol module HAM2.2. For each first year of each decade from 1870 to 2000, three MLO experiments were carried out: aerosols and greenhouse gases (GHGs) of that year, only aerosols of that year and GHGs of 1850, only GHGs of that year and aerosols of 1850. We quantify how total precipitation as well as its composites (convective and large scale) change through these experiments on global and regional scales. Special emphasis is given to differences in precipitation response to either aerosol or GHG forcing, despite similar (absolute value) global mean temperature response. Finally, we address the role of the prescribed deep ocean heat flux.

  15. Atmospheric heating due to black carbon aerosol during the summer monsoon period over Ballia: A rural environment over Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Dumka, U. C.; Hopke, P. K.; Tunved, P.; Srivastava, A. K.; Bisht, D. S.; Chakrabarty, R. K.

    2016-09-01

    Black carbon (BC) aerosols are one of the most uncertain drivers of global climate change. The prevailing view is that BC mass concentrations are low in rural areas where industrialization and vehicular emissions are at a minimum. As part of a national research program called the "Ganga Basin Ground Based Experiment-2014 under the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) Phase-III" of Ministry of Earth Sciences, Government of India, the continuous measurements of BC and particulate matter (PM) mass concentrations, were conducted in a rural environment in the highly-polluted Indo-Gangetic Plain region during 16th June to 15th August (monsoon period), 2014. The mean mass concentration of BC was 4.03 (± 0.85) μg m- 3 with a daily variability between 2.4 and 5.64 μg m- 3, however, the mean mass PM concentrations [near ultrafine (PM1.0), fine (PM2.5) and inhalable (PM10)] were 29.1(± 16.2), 34.7 (± 19.9) and 43.7 (± 28.3) μg m- 3, respectively. The contribution of BC in PM1.0 was approximately 13%, which is one of the highest being recorded. Diurnally, the BC mass concentrations were highest (mean: 5.89 μg m- 3) between 20:00 to 22:00 local time (LT) due to the burning of biofuels/biomass such as wood, dung, straw and crop residue mixed with dung by the local residents for cooking purposes. The atmospheric direct radiative forcing values due to the composite and BC aerosols were determined to be + 78.3, + 44.9, and + 45.0 W m- 2 and + 42.2, + 35.4 and + 34.3 W m- 2 during the months of June, July and August, respectively. The corresponding atmospheric heating rates (AHR) for composite and BC aerosols were 2.21, 1.26 and 1.26; and 1.19, 0.99 and 0.96 K day- 1 for the month of June, July and August, respectively, with a mean of 1.57 and 1.05 K day- 1 which was 33% lower AHR (BC) than for the composite particles during the study period. This high AHR underscores the importance of absorbing aerosols such as BC contributed by

  16. Long-term comparative study of columnar and surface mass concentration aerosol properties in a background environment

    NASA Astrophysics Data System (ADS)

    Bennouna, Y. S.; Cachorro, V. E.; Mateos, D.; Burgos, M. A.; Toledano, C.; Torres, B.; de Frutos, A. M.

    2016-09-01

    The relationship between columnar and surface aerosol properties is not a straightforward problem. The Aerosol Optical Depth (AOD), Ångström exponent (AE), and ground-level Particulate Matter (PMX, x = 10 or 2.5 μm) data have been studied from a climatological point of view. Despite the different meanings of AOD and PMx both are key and complementary quantities that quantify aerosol load in the atmosphere and many studies intend to find specific relationships between them. Related parameters such as AE and PM ratio (PR = PM2.5/PM10), giving information about the predominant particle size, are included in this study on the relationships between columnar and surface aerosol parameters. This study is based on long measurement records (2003-2014) obtained at two nearby background sites from the AERONET and EMEP networks in the north-central area of Spain. The climatological annual cycle of PMx shows two maxima along the year (one in late-winter/early-spring and another in summer), but this cycle is not followed by the AOD which shows only a summer maximum and a nearly bell shape. However, the annual means of both data sets show strong correlation (R = 0.89) and similar decreasing trends of 40% (PM10) and 38% (AOD) for the 12-year record. PM10 and AOD daily data are moderately correlated (R = 0.58), whereas correlation increases for monthly (R = 0.74) and yearly (R = 0.89) means. Scatter plots of AE vs. AOD and PR vs. PM10 have been used to characterize aerosols over the region. The PR vs. AE scatterplot of daily data shows no correlation due to the prevalence of intermediate-sized particles. As day-to-day correlation is low (especially for high turbidity events), a binned analysis was also carried out to establish consistent relationships between columnar and surface quantities, which is considered to be an appropriate approach for environmental and climate studies. In this way the link between surface concentrations and columnar remote sensing data is shown to

  17. [Characteristics of carbonaceous aerosol concentration in snow and ice of glaciers in Tianshan Mountains].

    PubMed

    Wang, Sheng-Jie; Zhang, Ming-Jun; Wang, Fei-Teng; Li, Zhong-Qin

    2012-03-01

    The snow and ice samples, collected at Glacier No. 1 at the headwaters of Urumqi River (UG1) and Glacier No. 51 at Haxilegen of Kuytun River (HG51) in 2002 and 2004, were analyzed for organic carbon (OC) and element carbon (EC) by thermal/ optical reflectance (TOR). The spatio-temporal characteristics and environmental significance of OC and EC concentration were discussed in details. The concentration order of total carbon (TC) was: snowpack of west branch on UG1 (1 943 ng x g(-1)) > snowpack of east branch on UG1 (989 ng x g(-1)) > snowpack of HG51 (150 ng x g(-1)) > glacier ice of east branch on UG1 (77 ng x g(-1)), and the concentration order of OC and EC lay similar as TC. The concentration of OC and EC in snowpack of Tianshan Mountains were 557 ng x g(-1) and 188 ng x g(-1), respectively. Concentration peak of carbonaceous aerosol usually appeared near the dust layer at the bottom section of snowpack, but the some sudden events could increase the concentration in the surface snow. Because of the seasonality of carbon emission (e. g. heating and agricultural activities) and transportation (e. g. atmospheric circulation), the concentration of carbonaceous aerosol increased from July to November with fluctuations. Difference on the order of magnitude might exist between the concentration in snow (firn) and glacier ice, which was influenced by the glacier surroundings, sampling situation and other factors. EC on the surface snow affected the albedo significantly, and an average albedo reduction of 0.22 in the wavelength of 300-700 nm was simulated by SNICAR (snow, ice, and aerosol radiative) model.

  18. The Influence of High Aerosol Concentration on Atmospheric Boundary Layer Temperature Stratification

    SciTech Connect

    Khaykin, M.N.; Kadygrove, E.N.; Golitsyn, G.S.

    2005-03-18

    Investigations of the changing in the atmospheric boundary layer (ABL) radiation balance as cased by natural and anthropogenic reasons is an important topic of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program. The influence of aerosol on temperature stratification of ABL while its concentration was extremely high within a long period of time was studied experimentally. The case was observed in Moscow region (Russia) with the transport of combustion products from peat-bog and forest fires in July-September, 2002. At this time the visibility was some times at about 100-300 m. Aerosol concentration measured by Moscow University Observatory and A.M. Obukhov Institute of Atmospheric Physics field station in Zvenigorod (55.7 N; 36.6 E) for several days was in 50-100 times more than background one (Gorchakov at al 2003). The high aerosol concentration can change the radiation balance at ABL, and so to change thermal stratification in ABL above the mega lopolis. For the analysis the data were used of synchronous measurements by MTP-5 (Microwave Temperature Profiler operating at wavelength 5 mm) in two locations, namely: downtown Moscow and country-side which is 50 km apart to the West (Zvenigorod station). (Kadygrov and Pick 1998; Westwater at al 1999; Kadygrov at al 2002). Zvenigorod station is located in strongly continental climate zone which is in between of the climates of ARM sites (NSANorth Slope of Alaska and SGP-Southern Great Plains). The town of Zvenigorod has little industry, small traffic volume and topography conductive to a good air ventilation of the town. For these reasons Zvenigorod can be considered as an undisturbed rural site. For the analysis some days were chosen with close meteorological parameters (average temperature, humidity, wind, pressure and cloud form) but strongly differing in aerosol concentration level.

  19. Soot aggregate restructuring due to coatings of secondary organic aerosol derived from aromatic precursors.

    PubMed

    Schnitzler, Elijah G; Dutt, Ashneil; Charbonneau, André M; Olfert, Jason S; Jäger, Wolfgang

    2014-12-16

    Restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) derived from hydroxyl radical-initiated oxidation of toluene, p-xylene, ethylbenzene, and benzene was investigated in a series of photo-oxidation (smog) chamber experiments. Soot aggregates were generated by combustion of ethylene using a McKenna burner, treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to low vapor pressure products of aromatic hydrocarbon oxidation, which formed SOA coatings. Aggregate restructuring began once a threshold coating mass was reached, and the degree of the subsequent restructuring increased with mass growth factor. Although significantly compacted, fully processed aggregates were not spherical, with a mass-mobility exponent of 2.78, so additional SOA was required to fill indentations between collapsed branches of the restructured aggregates before the dynamic shape factor of coated particles approached 1. Trends in diameter growth factor, effective density, and dynamic shape factor with increasing mass growth factor indicate distinct stages in soot aggregate processing by SOA coatings. The final degree and coating mass dependence of soot restructuring were found to be the same for SOA coatings from all four aromatic precursors, indicating that the surface tensions of the SOA coatings are similar.

  20. Influence of a high aerosol concentration on the thermal structure of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Khaikin, M. N.; Kuznetsova, I. N.; Kadygrov, E. N.

    2006-12-01

    The influence of increased concentrations of submicron aerosol produced by forest fires on thermal characteristics of the atmospheric boundary layer (ABL) in Moscow and its remote vicinity (the town of Zvenigorod) are analyzed on the basis of regular remote measurements of the ABL temperature profile with the use of MTP-5 profilers. In the air basin of a large city, additional aerosol and accompanying pollutants in early morning hours (at small heights of the Sun) most frequently did not cause substantial changes in the ABL thermal structure. In the locality remote from the megalopolis (Zvenigorod), the atmospheric pollution by aerosol led to noticeable changes in the ABL thermal characteristics. Especially strong changes were observed in the daytime, during the maximum supply of solar radiation. In morning hours, the heating rate of the lower 100-m layer of the polluted air exceeded the heating rate of a relatively pure air by more than one degree. In higher layers, the differences between the rates of temperature changes in a relatively clean atmosphere and in an atmosphere polluted by aerosol (in the suburb) were insignificant.

  1. Causes of seasonal and daily variations in aerosol sea-salt concentrations at a coastal Antarctic station

    NASA Astrophysics Data System (ADS)

    Hall, J. S.; Wolff, E. W.

    Two years worth of daily aerosol data has been collected from Halley station, Antarctica, between February 1991 and February 1993. The seasonal cycle of sea-salt aerosol was found to peak during the winter months, with an annual mean of 162 ng m -3. Specific site characteristics are used to explain this relatively low value. The winter sea-salt source does not appear to be solely due to the presence of open water. Comparison of individual high salt concentration events in the data, with 3 hourly meteorological records, shows that sea-salt loadings are not linked to high wind speeds, but more moderate ones. The high sea-salt loadings are associated with a change in wind direction that opens up an area of water and then switches to bring sea-salt inland. It is hypothesised that the exposed areas of sea water, which are rapidly frozen in winter creating areas of local, freshly formed ice with a surface covering of concentrated brine, are the source of the winter sea-salt. Fractionation of the sea-salt component in individual high concentration events, is used to reinforce the theory that a surface skim of highly saline brine, on fresh ice, is the winter sea-salt source. The presence of frost flowers is thought to aid incorporation of sea-salt into the atmosphere. Implications for the interpretation of sea-salt data in ice cores are highlighted.

  2. First measurements of reactive α-dicarbonyl concentrations on PM2.5 aerosol over the Boreal forest in Finland during HUMPPA-COPEC 2010 - source apportionment and links to aerosol aging

    NASA Astrophysics Data System (ADS)

    Kampf, C. J.; Corrigan, A. L.; Johnson, A. M.; Song, W.; Keronen, P.; Königstedt, R.; Williams, J.; Russell, L. M.; Petäjä, T.; Fischer, H.; Hoffmann, T.

    2012-07-01

    The first dataset for summertime boreal forest concentrations of two atmospherically relevant α-dicarbonyl compounds, glyoxal (Gly) and methylglyoxal (Mgly) on PM2.5 aerosol was obtained during the HUMPPA-COPEC-2010 field measurement intensive in Hyytiälä, Finland. Anthropogenic influences over the course of the campaign were identified using trace gas signatures and aerosol particle chemical composition analysis. The data evaluation allowed the identification of different events such as urban pollution plumes, biomass burning and sawmill emissions as sources of high Gly and Mgly concentrations. Mean aerosol concentrations during periods of biogenic influence were 0.81 ng m-3 for Gly and 0.31 ng m-3 for Mgly. Mgly was generally less abundant in PM2.5, probably due to its shorter photolysis lifetime and less effective partitioning into the particle phase due to its smaller effective Henry's Law constant compared to Gly. This is in contrast with previous urban studies which show significantly more Mgly than Gly. Peak concentrations for Gly coincided with nearby sources, e.g. high VOC emissions from nearby sawmills, urban pollution plumes from the city of Tampere located 50 km southwest of the sampling site and biomass burning emissions from wildfires. Calculated ratios of Gly in PM2.5 and total organic matter in PM1 aerosols indicate higher values in less aged aerosols. Irreversible processing of Gly in the particle phase, e.g. via oxidation by OH radicals, organo sulfate or imidazole formation are processes currently discussed in the literature which could likely explain these findings.

  3. First measurements of reactive α-dicarbonyl concentrations on PM2.5 aerosol over the boreal forest in Finland during HUMPPA-COPEC 2010 - source apportionment and links to aerosol aging

    NASA Astrophysics Data System (ADS)

    Kampf, C. J.; Corrigan, A. L.; Johnson, A. M.; Song, W.; Keronen, P.; Königstedt, R.; Williams, J.; Russell, L. M.; Petäjä, T.; Fischer, H.; Hoffmann, T.

    2012-01-01

    The first dataset for summertime boreal forest concentrations of two atmospherically relevant α-dicarbonyl compounds, glyoxal (Gly) and methylglyoxal (Mgly) on PM2.5 aerosol was obtained during the HUMPPA-COPEC-2010 field measurement intensive in Hyytiälä, Finland. Identification of anthropogenic influences over the course of the campaign, using trace gas signatures and aerosol particle chemical composition analysis, allowed the identification of different events such as urban pollution plumes, biomass burning and sawmill emissions as sources of high Gly and Mgly concentrations. Mean aerosol concentrations during periods of biogenic influence were 0.81 ng m-3 for Gly and 0.31 ng m-3 for Mgly. Mgly was generally less abundant in PM2.5, probably due to its shorter photolysis lifetime and less effective partitioning into the particle phase due to its smaller effective Henry's Law constant compared to Gly. This is in contrast with previous urban studies which show significantly more Mgly than Gly. Peak concentrations for Gly coincided with nearby sources, e.g. high VOC emissions from nearby sawmills, urban pollution plumes from the city of Tampere located 50 km southwest of the sampling site and biomass burning emissions from wildfires. Calculated ratios of Gly in PM2.5 and total organic matter in PM1 aerosols indicate higher values in less aged aerosols. Irreversible processing of Gly in the particle phase, e.g. via oxidation by OH radicals, organo sulfate or imidazole formation are processes currently discussed in the literature which could likely explain these findings.

  4. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NO x photooxidation system

    NASA Astrophysics Data System (ADS)

    Lu, Zifeng; Hao, Jiming; Takekawa, Hideto; Hu, Lanhua; Li, Junhua

    High concentrations (>15 μm 3 cm -3) of CaSO 4, Ca(NO 3) 2 and (NH 4) 2SO 4 were selected as surrogates of dry neutral, aqueous neutral and dry acidic inorganic seed aerosols, respectively, to study the effects of inorganic seeds on secondary organic aerosol (SOA) formation in irradiated m-xylene/NO x photooxidation systems. The results indicate that neither ozone formation nor SOA formation is significantly affected by the presence of neutral aerosols (both dry CaSO 4 and aqueous Ca(NO 3) 2), even at elevated concentrations. The presence of high concentrations of (NH 4) 2SO 4 aerosols (dry acidic) has no obvious effect on ozone formation, but it does enhance SOA generation and increase SOA yields. In addition, the effect of dry (NH 4) 2SO 4 on SOA yield is found to be positively correlated with the (NH 4) 2SO 4 surface concentration, and the effect is pronounced only when the surface concentration reaches a threshold value. Further, it is proposed that the SOA generation enhancement is achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of dry (NH 4) 2SO 4 seed aerosols.

  5. Concentrations and composition of aerosols and particulate matter in surface waters along the transatlantic section

    NASA Astrophysics Data System (ADS)

    Nemirovskaya, I. A.; Lisitzin, A. P.; Novigatsky, A. N.; Redzhepova, Z. U.; Dara, O. M.

    2016-07-01

    Along the transatlantic section from Ushuaia to Gdańsk (March 26-May 7, 2015; cruise 47 of R/V Akademik Ioffe), data were obtained on the concentrations of aerosols in the near-water layer of the atmosphere and of particulate matter in surface waters, as well as of organic compounds within the considered matter (Corg, chlorophyll a, lipids, and hydrocarbons). The concentrations of aerosols amounted to 1237-111 739 particles/L for the fraction of 0.3-1 μm and to 0.02-34.4 μg/m2/day for the matter collected by means of the network procedure. The distribution of aerosols is affected by circumcontinental zoning and by the fluxes from arid areas of African deserts. The maximum concentration of the treated compounds were found in the river-sea frontal area (the runoff of the Colorado River, Argentina), as well as when nearing the coasts, especially in the English Channel.

  6. Regional Comparisons of Satellite (AVHRR) and Space Shuttle (MAPS) Derived Estimates of CO and Aerosol Concentrations

    NASA Technical Reports Server (NTRS)

    Vulcan, D. V.; Christopher, S. A.; Welch, R. M.; Connors, V. S.

    1996-01-01

    Biomass burning is considered to be a major source of trace gas species and aerosol particles which play a vital role in tropospheric chemistry and climate. Anthropogenic biomass burning has largely expanded in the last 15 years, due to increased deforestation practices in the Amazon Basin, as well as to clear land for shifting cultivation in South America, southern Asia, and Africa. Biomass burning produces large amounts of carbon dioxide, carbon monoxide (CO), water, hydrocarbons, nitrous oxides, and smoke particles.

  7. Fungal Spore Concentrations and Ergosterol Content in Aerosol Samples in the Caribbean During African Dust Events

    NASA Astrophysics Data System (ADS)

    Santos-Figueroa, G.; Bolaños-Rosero, B.; Mayol-Bracero, O. L.

    2015-12-01

    Fungal spores are a major component of primary biogenic aerosol particles that are emitted to the atmosphere, are ubiquitous, and play an important role in the chemistry and physics of the atmosphere, climate, and public health. Every year, during summer months, African dust (AD) particles are transported to the Caribbean region causing an increase in the concentrations of particulate matter in the atmosphere. AD is one of the most important natural sources of mineral particulate matter at the global scale, and many investigations suggest that it has the ability to transport dust-associated biological particles through long distances. The relationship between AD incursions and the concentration of fungal spores in the Caribbean region is poorly understood. In order to investigate the effects of AD incursions on fungal spore's emissions, fungal spore concentrations were monitored using a Burkard spore trap at the tropical montane cloud forest of Pico del Este at El Yunque National Forest, Puerto Rico. The presence of AD was supported with satellite images of aerosol optical thickness, and with the results from the air masses backward trajectories calculated with the NOAA HYSPLIT model. Basidiospores and Ascospores comprised the major components of the total spore's concentrations, up to a maximum of 98%, during both AD incursions and background days. A considerably decrease in the concentration of fungal spores during AD events was observed. Ergosterol, biomarker for measuring fungal biomass, concentrations were determined in aerosols that were sampled at a marine site, Cabezas de San Juan Nature Reserve, in Fajardo Puerto Rico, and at an urban site, Facundo Bueso building at the University of Puerto Rico. Additional efforts to understand the relationship between the arrival of AD to the Caribbean and a decrease in spore's concentrations are needed in order to investigate changes in local spore's vs the contribution of long-range spores transported within the AD.

  8. Edge Vortex Flow Due to Inhomogeneous Ion Concentration

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2017-04-01

    The ion distribution of an open parallel electrode system is not known even though it is often used to measure the electrical characteristics of an electrolyte. Thus, for an open electrode system, we perform a non-steady direct multiphysics simulation based on the coupled Poisson-Nernst-Planck and Stokes equations and find that inhomogeneous ion concentrations at edges cause vortex flows and suppress the anomalous increase in the ion concentration near the electrodes. A surprising aspect of our findings is that the large vortex flows at the edges approximately maintain the ion-conserving condition, and thus the ion distribution of an open electrode system can be approximated by the solution of a closed electrode system that considers the ion-conserving condition rather than the Gouy-Chapman solution, which neglects the ion-conserving condition. We believe that our findings make a significant contribution to the understanding of surface science.

  9. Variations of the aerosol concentration and chemical composition over the arid steppe zone of Southern Russia in summer

    NASA Astrophysics Data System (ADS)

    Artamonova, M. S.; Gubanova, D. P.; Iordanskii, M. A.; Lebedev, V. A.; Maksimenkov, L. O.; Minashkin, V. M.; Obvintsev, Y. I.; Chketiani, O. G.

    2016-12-01

    Variations in the surface aerosol over the arid steppe zone of Southern Russia have been measured. The parameters of atmospheric aerosol (mass concentration, both dispersed and elemental compositions) and meteorological parameters were measured in Tsimlaynsk raion (Rostov oblast). The chemical composition of aerosol particles in the atmospheric surface layer has been determined, and the coefficients of enrichment of elements with respect to clarkes in the Earth's crust have been calculated. It is shown that, in summer, arid aerosols are transported from both alkaline and sandy soils of Kalmykia to the air basin over the observation zone. Aerosol particles in the surface air layer over this region have been found to contain the products of combustion of oil, coal, and ethylized fuel. These combustion products make a small contribution to the total mass concentration of atmospheric aerosol; however, they are most hazardous to the health of people because of their sizes and heavy-metal contents. A high concentration of submicron sulfur-containing aerosol particles of chemocondensation nature has been recorded. Sources of aerosol of both natural and anthropogenic origins in southern Russia are discussed.

  10. Solar Spectral Radiative Forcing Due to Dust Aerosol During the Puerto Rico Dust Experiment

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Bergstrom, R.; Rabbette, M.; Livingston, J.; Russell, P.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    During the Puerto Rico Dust Experiment (PRIDE) upwelling and downwelling solar spectral irradiance was measured on board the SPAWAR Navajo and downwelling solar spectral flux was measured at a surface site using the NASA Ames Solar Spectral Flux Radiometer. These data will be used to determine the net solar radiative forcing of dust aerosol and to quantify the solar spectral radiative energy budget in the presence of elevated aerosol loading. We will assess the variability in spectral irradiance using formal principal component analysis procedures and relate the radiative variability to aerosol microphysical properties. Finally, we will characterize the sea surface reflectance to improve aerosol optical depth retrievals from the AVHRR satellite and to validate SeaWiFS ocean color products.

  11. MODELING THE EFFECT OF CHLORINE EMISSIONS ON ATMOSPHERIC OZONE AND SECONDARY ORGANIC AEROSOL CONCENTRATIONS ACROSS THE UNITED STATES

    EPA Science Inventory

    This paper presents the modeled effects of natural and anthropogenic chlorine emissions on the atmospheric concentrations of ozone and secondary organic aerosol across the United States. The model calculations include anthropogenic molecular chlorine emissions, anthropogenic hypo...

  12. Local aerosol concentrations and optical characteristics influenced by the Indonesian forest fire

    NASA Astrophysics Data System (ADS)

    Ru, Jianfei; Minomura, Mitsuo; Kuze, Hiroaki; Takeuchi, Nobuo

    1998-08-01

    Indonesian forest fire took place on Kalimantan and Sumatera islands in 1997 and continuously influenced the atmospheric conditions of South-East Asia nearly throughout the last half of that year. The color composed images of visible, near IR and IR channels from NOAA AVHRR daily data, arbitrarily assigned to red, green and blue respectively, were synthesized for distinguishing the smoke area. The data of three periods, the beginning, mid, and ending parts of the fire, were collected and analyzed in order to show the variation of atmosphere with the development of fire. A retrieval algorithm was established by use of Mie theory calculation and the radiative transfer codes. Local aerosol concentrations and properties over ocean parts between the two islands were derived. It is found that the aerosol optical thickness increased in accordance with the exacerbation of the fires. The changes of angstrom exponents show that smaller particle amounts were raised by the effects of burning.

  13. Is It Possible to Distinguish Between Dust and Salt Aerosol Over Waters with Unknown Chlorophyll Concentrations Using Spectral Remote Sensing?

    NASA Technical Reports Server (NTRS)

    Levy, R. C.; Kaufman, Y. J.

    1999-01-01

    Atmospheric aerosol has uncertain impacts on the global climate system, as well as on atmospheric and bio-geo-chemical processes of regional and local scales. EOS-MODIS is one example of a satellite sensor designed to improve understanding of the aerosols' type, size and distribution at all temporal and spatial scales. Ocean scientists also plan to use data from EOS-MODIS to assess the temporal and spatial coverage of in-water chlorophyll. MODIS is the first sensor planned to observe the combined ocean-atmosphere system with a wide spectral range (from 410 to 2200 nm). Dust aerosol and salt aerosol have similar spectral signals for wavelengths longer than 550 nm, but because dust selectively absorbs blue light, they have divergent signals in the blue wavelength regions (412 to 490 nm). Chlorophyll also selectively absorbs blue radiation, so that varying chlorophyll concentrations produces a highly varying signal in the blue regions, but less variability in the green, and almost no signal in the red to mid-infrared regions. Thus, theoretically, it may be difficult to differentiate dust and salt in the presence of unknown chlorophyll in the ocean. This study attempts to address the cases in which aerosol and chlorophyll signals can and cannot be separated. For the aerosol spectra, we use the aerosol lookup table from the operational MODIS aerosol-over-ocean algorithm, and for chlorophyll spectra, we use the SeaBAM data set (created for SeaWiFS). We compare the signals using Principal Component Analysis and attempt to retrieve both chlorophyll and aerosol properties using a variant of the operational MODIS aerosol-over-ocean algorithm. Results show that for small optical depths, less than 0.5, it is not possible to differentiate between dust and salt and to determine the chlorophyll concentration at the same time. For larger aerosol optical depths, the chlorophyll signals are comparatively insignificant, and we can hope to distinguish between dust and salt.

  14. Analysis of Venus Express optical extinction due to aerosols in the upper haze of Venus

    NASA Astrophysics Data System (ADS)

    Parkinson, C. D.; Bougher, S. W.; Schulte, R.; Gao, P.; Yung, Y. L.; Vandaele, A.; Wilquet, V.; Mahieux, A.; Tellmann, S.

    2013-12-01

    Observations by the SPICAV/SOIR instruments aboard the Venus Express (VEx) spacecraft have revealed that the upper haze (UH) of Venus, between 70 and 90 km, is variable on the order of days to weeks and that it is populated by two particle modes. Gao et al. (submitted, Icarus, 2013) posit that one mode is made up of cloud particles that have diffused upwards from the main sulfuric acid cloud deck below, while the other mode is generated in situ by nucleation of sulfuric acid droplets on meteoric dust. They also propose that the observed variability in the UH is caused in part by vertical transient winds. They test this hypothesis by simulating a column of the Venus atmosphere from 40 to 100 km above the surface using a model based upon the Community Aerosol and Radiation Model for Atmospheres (CARMA). In this work, we significantly extend the analysis using the new more detailed SOIR/VeRa VEx temperature profiles which better constrain the observed strong CO2 15-micron cooling emission and 4.3-μm near-IR heating in Venus' atmosphere (and consistent with Venus Thermospheric General Circulation Model (VTGCM) simulations of Brecht et al. (2011)). We discuss our new results in context of the recent VEx observations (Wilquet et al., Icarus 217, 2012) with an intercomparison with the PVO data. We will also discuss similarities and differences arising from the PVO and VEx epochs where they exist. Additionally we report on our efforts self-consistently applying the VTGCM to constrain the degree to which effects due to vertical transient wind simulations can establish variability timescales and number density profiles that match VEx observations.

  15. Relating Aerosol Profile and Column Measurements to Surface Concentrations: What Have We Learned from Discover-AQ?

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.

    2014-12-01

    One research goal of the Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission was to determine sufficient column profile measurements to relate column integrated quantities such as Aerosol Optical Depth to surface concentrations. I will review the relationship between AOD and PM2.5 at the surface. DISCOVER-AQ in Baltimore, the San Joaquin Valley, Houston and Denver revealed quite different conditions for determining this relationship. In each case, the surface reflectivity made determination of aerosol optical depth challenging, but upward looking columns of aerosol optical depth from sunphotometers provided confirmation of the AOD results from space. In Baltimore, AOD fields reflected PM2.5 concentrations well. In California, however, the low boundary layer heights and dominance of nitrate and organic aerosols made the AOD fields less predictive of PM2.5. In California and Colorado, hydration of the aerosol varied dramatically with aerosol type (especially smoke and dust) and revealed that without an understanding of the degree of aerosol hydration with aerosol composition, the relationship between AOD and PM2.5 will continue to be a challenge. Model predictions in the Baltimore-Washington study are relatively disappointing in helping define the needed physics between the optical and microphysical properties. An overview of the measurements from DISCOVER-AQ which will help define the needed information in a more general case in the future will be given.

  16. Susceptibility of Tribolium confusum (Coleoptera: Tenebrionidae) to pyrethrin aerosol: effects of aerosol particle size, concentration, and exposure conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of laboratory studies were conducted to assess effect of droplet size on efficacy of pyrethrin aerosol against adults of Tribolium confusum Jacqueline DuVal, the confused flour beetle. A vertical flow aerosol exposure chamber that generated a standardized particle size diameter was used for...

  17. A European aerosol phenomenology -4: Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe

    NASA Astrophysics Data System (ADS)

    Cavalli, F.; Alastuey, A.; Areskoug, H.; Ceburnis, D.; Čech, J.; Genberg, J.; Harrison, R. M.; Jaffrezo, J. L.; Kiss, G.; Laj, P.; Mihalopoulos, N.; Perez, N.; Quincey, P.; Schwarz, J.; Sellegri, K.; Spindler, G.; Swietlicki, E.; Theodosi, C.; Yttri, K. E.; Aas, W.; Putaud, J. P.

    2016-11-01

    Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and more uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0.4 to 2.8 μg C/m3) and analytical discrepancies (between -50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 μg C/m3, and from 0.1 to 2 μg C/m3, respectively. TC/PM10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM2.5 ratios are slightly greater at all sites (0.15-0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites.

  18. Temporal variations in sources and concentrations of black and organic carbon aerosols in the LA Basin

    NASA Astrophysics Data System (ADS)

    Mouteva, G.; Kearney, J.; Fahrni, S.; Santos, G. M.; Czimczik, C. I.

    2012-12-01

    Temporal variations in sources and concentrations of black and organic carbon aerosols in the LA Basin Black carbon (BC), derived from incomplete combustion of fossil and biogenic fuels and vegetation fires, is a crucial component of the aerosol pool, but sources as well as atmospheric transport and lifetime remain poorly constrained by measurements. We characterized the composition of carbonaceous aerosols emitted from urban areas by quantifying the temporal variations in the concentrations and sources of BC and organic carbon (OC) in PM-10 and PM-2.5 from two locations in the Los Angeles basin. Using the radiocarbon signatures in BC and OC allowed us to apportion emissions into fossil and modern contributions. We separated and quantified BC and OC using a modified Sunset OC-EC analyzer coupled to a vacuum line and cryogenically trapped the evolving CO2 (Zhang et al. In Prep.). The instrument and method were tested with well-defined radiocarbon standards to determine background, accuracy and precision. The purified CO2 was converted to graphite and measured at the Keck-AMS facility on unknown samples as small as ≥5 μg C. Preliminary results suggest that radiocarbon content can be used to apportion BC into fossil and modern sources. BC concentrations are on the order of 6-31% total carbon, with 48 to 96% fossil contribution. In the OC fraction we detected several super-modern samples, suggesting local production of radiocarbon, e.g. from medical waste incinerators. Thus, the radiocarbon-based approach cannot be used to quantify sources of OC and bulk carbonaceous aerosols in urban areas. Our measurements contribute to a comprehensive quantification of temporal and spatial variations in urban BC, a key uncertainty in constraining BC sources and transport in North America. References: Zhang YL, Perron N, Zotter P, Minguillón MC, Wacker L, Prévôt ASH, Baltensperger U, Szidat S. In Prep. On the isolation of OC and EC and the optimal strategy of radiocarbon

  19. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The

  20. A CLOSURE STUDY OF AEROSOL MASS CONCENTRATION MEASUREMENTS: COMPARISON OF VALUES OBTAINED WITH FILTERS AND BY DIRECT MEASUREMENTS OF MASS DISTRIBUTIONS. (R826372)

    EPA Science Inventory

    We compare measurements of aerosol mass concentrations obtained gravimetrically using Teflon coated glass fiber filters and by integrating mass distributions measured with the differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) technique (Aero...

  1. Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity.

    PubMed

    Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H

    2016-01-01

    Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration.

  2. Aerosol light-scattering enhancement due to water uptake during TCAP campaign

    NASA Astrophysics Data System (ADS)

    Titos, G.; Jefferson, A.; Sheridan, P. J.; Andrews, E.; Lyamani, H.; Alados-Arboledas, L.; Ogren, J. A.

    2014-02-01

    Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility in the framework of the Two-Column Aerosol Project (TCAP) deployed at Cape Cod, Massachusetts, for a~one year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0-180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically-influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically-influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air-masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in-situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine

  3. Aerosol light-scattering enhancement due to water uptake during the TCAP campaign

    NASA Astrophysics Data System (ADS)

    Titos, G.; Jefferson, A.; Sheridan, P. J.; Andrews, E.; Lyamani, H.; Alados-Arboledas, L.; Ogren, J. A.

    2014-07-01

    Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign deployed at Cape Cod, Massachusetts, for a 1-year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0 to 180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine if

  4. An observational study of night time aerosol concentrations in the lower atmosphere at a tropical coastal station

    NASA Astrophysics Data System (ADS)

    Parameswaran, K.; Rajeev, K.; Sen Gupta, K.

    1997-09-01

    Aerosol number densities in the lower troposphere measured by a bistatic CW lidar are used to study their altitude structure in the nocturnal mixing region and its association with stratified turbulence. In the early night hours the aerosol concentration shows a maximum just above the daytime Thermal Internal Boundary Layer. This maximum disappears in the late night hours. The integrated aerosol content in the first 1 km shows a general decrease during the post-midnight hours. Stratified aerosol layers are observed in the nocturnal mixing region during the post-midnight period. The association between these stratified aerosol layers and the prevailing atmospheric stability condition in this region is studied using the altitude profiles of different meteorological parameters obtained from pilot balloon and tethered balloonsonde observations.

  5. Effects of turbulence on mixed-phase deep convective clouds under different basic-state winds and aerosol concentrations

    NASA Astrophysics Data System (ADS)

    Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young

    2014-12-01

    The effects of turbulence-induced collision enhancement (TICE) on mixed-phase deep convective clouds are numerically investigated using a 2-D cloud model with bin microphysics for uniform and sheared basic-state wind profiles and different aerosol concentrations. Graupel particles account for the most of the cloud mass in all simulation cases. In the uniform basic-state wind cases, graupel particles with moderate sizes account for some of the total graupel mass in the cases with TICE, whereas graupel particles with large sizes account for almost all the total graupel mass in the cases without TICE. This is because the growth of ice crystals into small graupel particles is enhanced due to TICE. The changes in the size distributions of graupel particles due to TICE result in a decrease in the mass-averaged mean terminal velocity of graupel particles. Therefore, the downward flux of graupel mass, and thus the melting of graupel particles, is reduced due to TICE, leading to a decrease in the amount of surface precipitation. Moreover, under the low aerosol concentration, TICE increases the sublimation of ice particles, consequently playing a partial role in reducing the amount of surface precipitation. The effects of TICE are less pronounced in the sheared basic-state wind cases than in the uniform basic-state wind cases because the number of ice crystals is much smaller in the sheared basic-state wind cases than in the uniform basic-state wind cases. Thus, the size distributions of graupel particles in the cases with and without TICE show little difference.

  6. Radiative Forcing Due to Enhancements in Tropospheric Ozone and Carbonaceous Aerosols Caused by Asian Fires During Spring 2008

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.

    2012-01-01

    Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.

  7. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site.

    PubMed

    Pal, S; Lee, T R; Phelps, S; De Wekker, S F J

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (zi), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime zi from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the zi and the fine fraction (0.3-0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality.

  8. Pulmonary deposition of aerosolized Bacillus atrophaeus in a Swine model due to exposure from a simulated anthrax letter incident.

    PubMed

    Duncan, E J Scott; Kournikakis, Bill; Ho, Jim; Hill, Ira

    2009-02-01

    Dry anthrax spore powder is readily disseminated as an aerosol and it is possible that passive dispersion when opening a letter containing anthrax spores may result in lethal doses to humans. The specific aim of this study was to quantify the respirable aerosol hazard associated with opening an envelope/letter contaminated with a dry spore powder of the biological pathogen anthrax in a typical office environment. An envelope containing a letter contaminated with 1.0 g of dry Bacillus atrophaeus (BG) spores (pathogen simulant) was opened in the presence of an unrestrained swine model. Aerosolized spores were detected in the room in seconds and peak concentrations occurred by three minutes. The swine, located approximately 1.5 m from the source, was exposed to the aerosol for 28 min following the letter opening event and then moved to a clean room for 30 min. A necropsy was completed to determine the extent of in vivo spore deposition in the lungs. The median number of viable colony forming units (CFU) measured in the combined right and left lung was 21,200: the average mass of both lungs was 283 g. In excess of 100 CFU per gram of lung tissue was found at sites within the anterior, intermediate and posterior lobes. The results of this study confirmed that opening an envelope containing spores generated an aerosol spanning the respirable particle size range of 1-10 microm, and that normal respiration of swine led to spore deposition throughout the lungs. The observed deposition of spores in the lungs of the swine is within the LD(50) range of 2,500-55,000 estimated for humans for inhaled anthrax. Thus, there would appear to be a significant health risk to those individuals exposed to anthrax spores when opening a contaminated envelope.

  9. Acid and organic aerosol coatings on magnetic nanoparticles increase iron concentrations in human airway epithelial cells.

    PubMed

    Ghio, Andrew J; Dailey, Lisa A; Richards, Judy H; Jang, Myoseon

    2009-07-01

    Numerous industrial applications for man-made nanoparticles have been proposed. Interactions of nanoparticles with agents in the atmosphere may impact human health. We tested the postulate that in vitro exposures of respiratory epithelial cells to airborne magnetic nanoparticles (MNP; Fe(3)O(4)) with and without a secondary organic aerosol (SOA) and an inorganic acid could affect iron homeostasis, oxidative stress, and interleukin (IL)-8 release. Cell iron concentrations were increased after exposures to MNP and values were further elevated with co-exposures to either SOA or inorganic acid. Increased expression of ferritin and elevated levels of RNA for DMT1, proteins for iron storage and transport respectively, followed MNP exposures, but values were significant for only those with co-exposures to inorganic acid and organic aerosols. Cell iron concentration corresponded to a measure of oxidative stress in the airway epithelial cells; MNP with co-exposures to SOA and inorganic acid increased both available metal and indices of oxidant generation. Finally, the release of a proinflammatory cytokine (i.e. IL-8) by the exposed cells similarly increased with cell iron concentration. We conclude that MNP can interact with a SOA and an inorganic acid to present metal in a catalytically reactive state to cultured respiratory cells. This produces an oxidative stress to affect a release of IL-8.

  10. Asian aerosols in North America: Extracting the chemical composition and mass concentration of the Asian continental aerosol plume from long-term aerosol records in the western United States

    NASA Astrophysics Data System (ADS)

    Vancuren, Richard A.

    2003-10-01

    Empirical assessment of the frequency and intensity of dust transport from Asia to North America has found that the dust regularly impacts elevated sites in the western United States, revealing a pattern of consistent, frequent transport above the marine boundary layer. Using the dust as a marker for Asian transport, a subset of Asian-influenced samples was identified within a decade of routine aerosol samples from two sites in the western cordillera of North America: Crater Lake, Oregon, and Mount Lassen, California. This subset was used to guide a statistical analysis to isolate Asian aerosol against the "background" of local contaminants. The analysis was then generalized to all samples during the transport season (March-October) for 1989-1999. A mixture of dust and combustion products dominates the Asian aerosol with typical concentration around 5 μg/m3 and mass median diameter between 2 and 3 μm. Major fine particle (<2.5 μm diameter) constituent fractions are ˜30% mineral, 28% organic compounds, 4% elemental carbon, 10% sulfate, <5% nitrate, and <1% sea salt. A second, possibly Asian, component of aged biomass smoke and sea salt is also present, with typical concentration (when present) around 1.5 μg/m3. Averaged over the transport season the dusty Asian aerosol and the smoky aerosol comprise 60 and 6%, respectively, of total particle mass (<10 μm diameter) and 72 and 13% of fine particle mass at these sites. These data indicate that the Asian continental plume is a significant contributor to aerosol loading at remote high-altitude sites across western North America. This implies a significant influence for Asian emissions on free troposphere aerosols over North America and suggests that they need to be explicitly accounted for in aerosol analyses ranging from climate studies to aerosol regulatory programs.

  11. Grid-scale Indirect Radiative Forcing of Climate due to aerosols over the northern hemisphere simulated by the integrated WRF-CMAQ model: Preliminary results

    EPA Science Inventory

    In this study, indirect aerosol effects on grid-scale clouds were implemented in the integrated WRF3.3-CMAQ5.0 modeling system by including parameterizations for both cloud droplet and ice number concentrations calculated from the CMAQ-predicted aerosol particles. The resulting c...

  12. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-02-01

    Sources, composition and occurrence of secondary organic aerosols (SOA) in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeast Greenland, during the full annual cycle of 2008 and 2010 respectively. We focused on the speciation of three types of SOA tracers: organic acids, organosulfates and nitrooxy organosulfates from both anthropogenic and biogenic precursors, here presenting organosulfate concentrations and compositions during a full annual cycle and chemical speciation of organosulfates in Arctic aerosols for the first time. Aerosol samples were analysed using High Performance Liquid Chromatography coupled to a quadrupole Time-of-Flight mass spectrometer (HPLC-q-TOF-MS). A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate (DTAA) and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA)), 12 organosulfates and one nitrooxy organosulfate were identified at the two sites. Six out of the 12 organosulfates are reported for the first time. Concentrations of organosulfates follow a distinct annual pattern at Station Nord, where high concentration were observed in late winter and early spring, with a mean total concentration of 47 (±14) ng m-3, accounting for 7 (±2)% of total organic matter, contrary to a considerably lower organosulfate mean concentration of 2 (±3) ng m-3 (accounting for 1 (±1)% of total organic matter) observed during the rest of the year. The organic acids followed the same temporal trend as the organosulfates at Station Nord; however the variations in organic acid concentrations were less pronounced, with a total mean organic acid concentration of 11.5 (±4) ng m-3 (accounting for 1.7 (±0.6)% of total organic matter) in late winter and early spring, and 2.2 (±1) ng m-3 (accounting for 0.9 (±0.4)% of total organic matter) during the rest of the year. At Zeppelin Mountain

  13. Saharan dust aerosol over the central Mediterranean Sea: PM10 chemical composition and concentration versus optical columnar measurements

    NASA Astrophysics Data System (ADS)

    Marconi, M.; Sferlazzo, D. M.; Becagli, S.; Bommarito, C.; Calzolai, G.; Chiari, M.; di Sarra, A.; Ghedini, C.; Gómez-Amo, J. L.; Lucarelli, F.; Meloni, D.; Monteleone, F.; Nava, S.; Pace, G.; Piacentino, S.; Rugi, F.; Severi, M.; Traversi, R.; Udisti, R.

    2014-02-01

    This study aims to determine the mineral contribution to PM10 in the central Mediterranean Sea, based on 7 yr of daily PM10 samplings made on the island of Lampedusa (35.5° N, 12.6° E). The chemical composition of the PM10 samples was determined by ion chromatography for the main ions, and, on selected samples, by particle-induced X-ray emission (PIXE) for the total content of crustal markers. Aerosol optical depth measurements were carried out in parallel to the PM10 sampling. The average PM10 concentration at Lampedusa over the period June 2004-December 2010 is 31.5 μg m-3, with low interannual variability. The annual means are below the EU annual standard for PM10, but 9.9% of the total number of daily data exceeds the daily threshold value established by the European Commission for PM (50 μg m-3, European Community, EC/30/1999). The Saharan dust contribution to PM10 was derived by calculating the contribution of Al, Si, Fe, Ti, non-sea-salt (nss) Ca, nssNa, and nssK oxides in samples in which PIXE data were available. Cases in which crustal content exceeded the 75th percentile of the crustal oxide content distribution were identified as elevated dust events. Using this threshold, we obtained 175 events. Fifty-five elevated dust events (31.6%) displayed PM10 higher than 50 μg m-3, with dust contributing by 33% on average. The crustal contribution to PM10 has an annual average value of 5.42 μg m-3, and reaches a value as high as 67.9 μg m-3 (corresponding to 49% of PM10) during an intense Saharan dust event. The crustal content estimated from a single tracer, such as Al or Ca, is in good agreement with the one calculated as the sum of the metal oxides. Conversely, larger crustal contents are derived by applying the EU guidelines for demonstration and subtraction of exceedances in PM10 levels due to high background of natural aerosol. The crustal aerosol amount and contribution to PM10 showed a very small seasonal dependence; conversely, the dust columnar

  14. Changes in the concentration and composition of anthropogenic and biogenic aerosols in the Finnish Arctic

    NASA Astrophysics Data System (ADS)

    Yli-Tuomi, Tarja

    In this study, historical samples of Arctic haze collected between 1964 and 1978 from northern Finland have been analyzed. The aim has been to determine the sources of the particles, as well as the temporal variation in the source contributions and the source regions. There is no other long-term data available from this early time period and overall, more information about the occurrence, nature, origin and transport of anthropogenic and biogenic aerosols in the European Arctic is needed in order to protect the vulnerable Arctic environment. In addition, evidence for climate/biosphere interaction observed in a previous study of the Arctic aerosol has been sought. The chemical composition data was analyzed with a Multilinear Engine using two different models, pure bilinear and a mixed 2-way/3-way model. The results of receptor modeling were connected with back trajectory data in a Potential Source Contribution Function analysis to determine the likely source areas. Nine sources, namely silver emissions, coal combustion, biomass burning, nonferrous smelters (two sources), crustal elements from remote sources, excess silicon from local sources, sea salt particles and biogenic sulfur emissions from marine algae were found. Although the emissions from industrial areas in the Kola Peninsula have an effect on the concentration of anthropogenic pollutants at Kevo, the highest concentrations during winter are transported from the sources in the mid-latitudes. The yearly strength of the biogenic sulfur emissions showed no dependence on the Northern Hemisphere temperature anomaly and thus, a climatic feedback loop can not be confirmed.

  15. Gas-phase CO2 subtraction for improved measurements of the organic aerosol mass concentration and oxidation degree by an aerosol mass spectrometer.

    PubMed

    Collier, S; Zhang, Q

    2013-12-17

    The Aerodyne aerosol mass spectrometer (AMS) has been widely used for real-time characterization of the size-resolved chemical composition of sub-micrometer aerosol particles. The first step in AMS sampling is the pre-concentration of aerosols while stripping away the gas-phase components, which contributes to the high sensitivity of this instrument. The strength of the instrument lies in particle phase measurement; however, ion signals generated from gas-phase species can influence the interpretation of the particle-phase chemistry data. Here, we present methods for subtracting the varying contributions of gas-phase carbon dioxide (CO2) in the AMS spectra of aerosol particles, which is critical for determining the mass concentration and oxygen-to-carbon (O/C) ratio of organic aerosol. This report gives details on the gaseous CO2 subtraction analysis performed on a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) data set acquired from sampling of fresh and diluted vehicle emissions. Three different methods were used: (1) collocated continuous gas-phase CO2 measurement coupled with periodic filter tests consisting of sampling the same particle-free air by the AMS and the CO2 analyzer, (2) positive matrix factorization (PMF) analysis to separate the gas- and particle-phase signals of CO2(+) at m/z 44, and (3) use of the particle time-of-flight (PTOF) size-resolved chemical information for separation of gas- and particle-phase signals at m/z 44. Our results indicate that these three different approaches yield internally consistent values for the gas/particle apportionment of m/z 44, but methods 2 and 3 require certain conditions to be met to yield reliable results. The methods presented are applicable to any situation where gas-phase components may influence the PM signal of interest.

  16. Brown haze types due to aerosol pollution at Hefei in the summer and fall.

    PubMed

    Zhang, Xiaolin; Mao, Mao

    2015-01-01

    Brown haze episodes were evaluated at Hefei in the summer (June-August) and fall (September-November) seasons, and typical haze types were identified by air-mass back-trajectories and fire spot maps. Compared with clear weather conditions, larger median single scattering albedo values of 0.82 and 0.78 at 550 nm were obtained for the summer and fall haze episodes, respectively. Further, the observed lower scattering Angstrom exponents imply that more large particles than small particles dominated the haze plumes, which is in agreement with the profiles of size distribution. Particles during a haze episode in Hefei grow to a size such that the 0.10 limit for the backscattering ratio is reached, which may indicate that the aged aerosols promote the formation of haze episodes. Three typical haze types were identified: biomass burning, anthropogenic industrial and traffic emissions, and brown carbon. Less negative aerosol radiative forcing efficiencies of -12.7 and -10.9 W m(-2) in summer and fall were estimated, respectively, for haze impacted by biomass burning, which emphasizes an enhanced significance of biomass burning aerosols on climate forcing.

  17. Seasonality of the mass concentration and chemical composition of aerosols around an urbanized basin in East Asia

    NASA Astrophysics Data System (ADS)

    Chou, C. C.-K.; Hsu, W.-C.; Chang, S.-Y.; Chen, W.-N.; Chen, M.-J.; Huang, W.-R.; Huang, S.-H.; Tsai, C.-Y.; Chang, S.-C.; Lee, C.-T.; Liu, S.-C.

    2017-02-01

    This study investigated seasonal variations in the mass concentration and chemical composition of ambient aerosols observed at three stations (coastal, mountainous, and downtown sites) in northern Taiwan from March 2009 to February 2012. The results show that the major aerosol components include ammonium, sulfate, nitrate, sea salt, dust, organic carbon, and elemental carbon, whereas the mass fraction of each species depends on the sampling location and season. A significant correlation (r = 0.7-0.8) was observed in aerosol concentrations measured at the respective stations, indicating that aerosol concentrations were dominated by regional-scale factors. Ammonium, sulfate, and nitrate consistently reached respective peak values in the spring in conjunction with dust particle levels. This shows that the transport of dust and particulate air pollutants from the Asian continent has affected the atmospheric environment in this area. Distinct seasonality was observed for sea salt and secondary organic carbon (SOC): sea salt levels peaked in the autumn, whereas SOC levels peaked in the summer, implying that their sources were regulated by independent seasonal factors. Correlation between sea salt concentration and surface wind speed was derived from coastal measurements and showed a high value for the wind speed sensitivity parameter of around 0.37 for our location. In addition, it was revealed that the SOC concentration in aerosols was positively correlated with oxidant photolysis index (Ox × UVB), suggesting that the SOC seasonality was dominated by hydroxyl radical production.

  18. Worldwide impact of aerosol's time scale on the predicted long-term concentrating solar power potential.

    PubMed

    Ruiz-Arias, Jose A; Gueymard, Christian A; Santos-Alamillos, Francisco J; Pozo-Vázquez, David

    2016-08-10

    Concentrating solar technologies, which are fuelled by the direct normal component of solar irradiance (DNI), are among the most promising solar technologies. Currently, the state-of the-art methods for DNI evaluation use datasets of aerosol optical depth (AOD) with only coarse (typically monthly) temporal resolution. Using daily AOD data from both site-specific observations at ground stations as well as gridded model estimates, a methodology is developed to evaluate how the calculated long-term DNI resource is affected by using AOD data averaged over periods from 1 to 30 days. It is demonstrated here that the use of monthly representations of AOD leads to systematic underestimations of the predicted long-term DNI up to 10% in some areas with high solar resource, which may result in detrimental consequences for the bankability of concentrating solar power projects. Recommendations for the use of either daily or monthly AOD data are provided on a geographical basis.

  19. Ozone and aerosol tropospheric concentrations variability analyzed using the ADRIMED measurements and the WRF and CHIMERE models

    NASA Astrophysics Data System (ADS)

    Menut, L.; Mailler, S.; Siour, G.; Bessagnet, B.; Turquety, S.; Rea, G.; Briant, R.; Mallet, M.; Sciare, J.; Formenti, P.; Meleux, F.

    2015-06-01

    During the months of June and July 2013, over the Euro-Mediterranean area, the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project was dedicated to characterize the ozone and aerosol concentrations in the troposphere. It is first shown that this period was not highly polluted compared to previous summers in this region, with a moderate ozone production, no significant vegetation fire events and several precipitation periods scavenging the aerosol. The period is modeled with the WRF (Weather Research and Forecasting) and CHIMERE models, and their ability to quantify the observed pollution transport events is presented. The CHIMERE model simulating all kinds of sources (anthropogenic, biogenic, mineral dust, vegetation fires); the aerosol speciation, not available with the measurements, is presented: during the whole period, the aerosol was mainly constituted by mineral dust, sea salt and sulfates close to the surface and mainly by mineral dust in the troposphere. Compared to the AERONET (Aerosol Robotic Network) size distribution, it is shown that the model underestimates the coarse mode near mineral dust sources and overestimates the fine mode in the Mediterranean area, highlighting the need to improve the model representation of the aerosol size distribution both during emissions, long-range transport and deposition.

  20. Relationship between column aerosol optical properties and surface aerosol gravimetric concentrations during the Distributed Regional Aerosol Gridded Observation Network - Northeast ASIA 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Seo, S.; Choi, M.; Kim, W. V.; Holben, B. N.; Lee, S.; Kim, J.

    2012-12-01

    One of the main objectives of Distributed Regional Aerosol Gridded Observation Network (DRAGON) campaign in Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission is to understand the relationship between the column optical properties of the atmosphere and the surface level air quality in terms of aerosols and gases. This study aims to identify the important parameters that affecting the relationship between those variables during the DRAGON - northeast Asia 2012 campaign. Column aerosol optical properties from ten Cimel sun photometers at DRAGON sites in Seoul, MODIS (Moderate Resolution Imaging Spectroradiometer), and GOCI (Geostationary Ocean Color Imager) and particulate matter (PM10) sampling from 40 NIER (National Institute of Environmental Research of South Korea) measurement sites in Seoul during the period of 1st March - 31th May 2012 were employed in this study. The key parameters in relationship between aerosol optical depth (AOD) and PM are reported to be aerosol vertical profile and hygroscopicity of the aerosols. The meteorological conditions including relative humidity, surface temperature, and wind speed that could affect those parameters were investigated.

  1. Indoor/outdoor radon decay products associated aerosol particle-size distributions and their relation to total number concentrations.

    PubMed

    Moriizumi, Jun; Yamada, Shinya; Xu, Yang; Matsuki, Satoru; Hirao, Shigekazu; Yamazawa, Hiromi

    2014-07-01

    The activity size distributions of indoor and outdoor radioactive aerosol associated with short-lived radon decay products were observed at Nagoya, Japan, for some periods from 2010 to 2012, following the indoor observation by Mostafa et al. [Mostafa, A. M. A., Tamaki, K., Moriizumi, J., Yamazawa, H. and Iida, T. The weather dependence of particle size distribution of indoor radioactive aerosol associated with radon decay products. Radiat. Prot. Dosim. 146: (1-3), 19-22 (2011)]. The tendency of smaller indoor activity median aerodynamic diameter (AMAD) after rainfalls showed in the previous study was not consistently obtained, while the consistent tendency of less indoor radioactive particles with diameters in the accumulation mode was observed again after rainfalls. The indoor aerosols showed activity size distributions similar to the outdoor ones. Non-radioactive aerosol particle concentrations measured with a laser particle counter suggested a somewhat liner relationship with AMAD.

  2. Strong enhancement in light absorption by black carbon due to aerosol water uptake

    NASA Astrophysics Data System (ADS)

    Fierce, Laura; Mena, Francisco; Riemer, Nicole; Bond, Tami C.; Bauer, Susanne E.

    2015-04-01

    Black carbon exerts a strong, yet highly uncertain, warming effect on the climate. One source of uncertainty in predicting black carbon's radiative effects is the absorption per black carbon mass. Although models suggest that light absorption is strongly enhanced if black carbon is coated with non-absorbing aerosol material, recent ambient observations find only weak absorption enhancement from aerosol coatings. In this study, we use a particle-resolved aerosol model to evaluate how oversimplified representations of particle composition impact modeled light absorption by black carbon. We show that oversimplifying the representation of particle composition leads to overestimation of modeled absorption enhancement. In order to improve global model representations of BC absorption, we performed a nonparametric regression on particle-reolved model data from a series of simulations. Through this nonparametric analysis we derived a relationship for absorption enhancement as a function of variables that global models already track, the population-averaged composition and the environmental relative humidity. Finally, we show how this nonparametric relationship can be exploited for use in global models to improve predictions of absorption by black carbon. In order to quantify the global-scale impact of water uptake on light absorption by black carbon, we applied the relationship for absorption enhancement to output of the climate model GISS-MATRIX. We find weak absorption enhancement in locations with low relative humidity, but light absorption is strongly enhanced in humid regions. This enhancement in light absorption by particles taking up water strongly impacts black carbon's radiative effects at the global scale, enhancing light absorption by black carbon by 20% relative to dry conditions.

  3. An Investigation of Size-Dependent Concentration of Trace Elements in Aerosols Emitted from the Oil-Fired Heating Plants

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sentell, R. J.; Khandelwal, G. S.

    1976-01-01

    Aerosols emitted from two oil-fired heating plants were aerodynamically separated into eight size groups and were analyzed using the photon-induced X-ray emission (PIXE) technique. It was found that Zn, Mo, Ag, and Pb, and (to a lesser extent) Cd, have a tendency to concentrate preferentially on the smaller aerosols. All of these elements, in certain chemical forms, are known to be toxic. Zinc and molybdenum, although present in low concentrations in the parent fuels, show the strongest tendencies to be concentrated in finer aerosols. Selenium, previously reported to show a very strong tendency to concentration in finer fly ash from coal-fired power plants shows little preference for surface residence. Vanadium, which occurs in significant concentration in the oil fuels for both plants, also shows little preference for surface concentration. Even though the absolute concentrations of the toxic elements involved are well below the safety levels established by the National Institute for Occupational Safety and Health (NIOSH), it would be advisable to raise the heights of the heating-plant exhaust chimneys well above the neighborhood buildings to insure more efficient aerosol dispersal.

  4. Detection of Free Tropospheric Air Masses With High So2 and Aerosol Concentrations: Evidence For New Aerosol Particle Formation By H2so4/h2o Nucleation

    NASA Astrophysics Data System (ADS)

    Katragkou, E.; Wilhelm, S.; Kiendler, A.; Arnold, F.; Minikin, A.; Schlager, H.; van Velthoven, P.

    Sulfur dioxide and aerosol measurements were performed in the free troposphere (FT) and the Planetary Boundary Layer (PBL) above continental Europe. The measure- ments took place on board of the German research aircraft "Falcon" in 18 April 2001 as a part of the SCAVEX campaign. A novel aircraft based CIMS (Chemical Ion- ization Mass Spectrometry) instrument equipped with an ion trap mass spectrometer (ITMS) with a low detection limit (50pptv) and a high time resolution (1.3s) operated by MPI-K was used to perform the SO2 measurements. For the aerosol measurements DLR-IPA operated a Condensation Particle Size Analyzer, detecting particles with diameters d > 4, 7, 9 and 20nm and a PCASP-100X aerosol spectrometer probe (d > 100nm). In the measurements made mostly around 5000m altitude SO2 rich air masses were occasionally observed with SO2 VMR of up to 2900pptv. The strong SO2 pollu- tion was due to fast vertical transport of polluted continental PBL air and small-scale deep convection, as indicated by the 5-day backward 3D trajectories. These observa- tions of strong SO2 pollution have interesting implications for aerosol processes, in- cluding efficient formation of gaseous sulfuric acid (GSA) and new aerosol particles. They also imply fast growth of freshly nucleated aerosol particles, which increases the chance for new particles to grow to the size of a CCN. Our analysis indicates the occurrence of new particle formation by H2SO4/H2O nucleation and fast new particle growth by H2SO4/H2O condensation and self-coagulation in the different air masses encountered during the flight.

  5. Light Absorption in the Stratosphere: Trend, Soot Aerosol Concentration and Contribution by...

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Verma, S.; Strwwa, A. W.; Ferry, G. V.; Hamill, P.; Vay, S.; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    The light absorption coefficient, Beta(a) of the stratospheric aerosol is an important quantity that determines its radiative effects. When combined with the aerosol scattering coefficient, Beta(a) it becomes possible to evaluate the aerosol single scatter albedo, omega = Beta(s)/(Beta(s) + Beta(a)) which is essential for modeling the overall radiative effects of the stratospheric aerosol. Pollack1 determined that omega = 0.98 is a critical value that separates stratospheric cooling from warming.

  6. Changes in concentration, composition and source contribution of atmospheric organic aerosols by shifting coal to natural gas in Urumqi

    NASA Astrophysics Data System (ADS)

    Ren, Yanqin; Wang, Gehui; Wu, Can; Wang, Jiayuan; Li, Jianjun; Zhang, Lu; Han, Yanni; Liu, Lang; Cao, Cong; Cao, Junji; He, Qing; Liu, Xinchun

    2017-01-01

    Size-segregated aerosols were collected in Urumqi, a megacity in northwest China, during two heating seasons, i.e., before (heating season І: January-March 2012) and after (heating season II: January-March 2014) the project "shifting coal to natural gas", and determined for n-alkanes, PAHs and oxygenated PAHs to investigate the impact of replacement of coal by natural gas on organic aerosols in the urban atmosphere. Our results showed that compared to those in heating season I concentrations of n-alkanes, PAHs and OPAHs decreased by 74%, 74% and 82% in heating season II, respectively. Source apportionment analysis suggested that coal combustion, traffic emission and biomass burning are the major sources of the determined organics during the heating seasons in Urumqi. Traffic emission is the main source for n-alkanes in the city. Coal combustion is the dominant source of PAHs and OPAHs in heating season І, but traffic emission becomes their major source in heating season ІI. Relative contributions of coal combustion to n-alkanes, PAHs and OPAHs in Urumqi decreased from 21 to 75% in heating season I to 4.0-21% in heating season II due to the replacement of coal with natural gas for house heating. Health risk assessment further indicated that compared with that in heating season I the number of lung cancer related to PAHs exposure in Urumqi decreased by 73% during heating season II due to the project implementation. Our results suggest that replacing coal by clean energy sources for house heating will significantly mitigate air pollution and improve human health in China.

  7. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3 aerosol during the 2013 Southern Oxidant and Aerosol Study

    SciTech Connect

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; Ault, A.; Bondy, A.; Takahama, S.; Modini, R. L.; Baumann, K.; Edgerton, E.; Knote, C.; Laskin, A.; Wang, B.; Fry, J. L.

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.

  8. Impact of global climate change on ozone, particulate matter, and secondary organic aerosol concentrations in California: A model perturbation analysis

    NASA Astrophysics Data System (ADS)

    Horne, Jeremy R.; Dabdub, Donald

    2017-03-01

    Air quality simulations are performed to determine the impact of changes in future climate and emissions on regional air quality in the South Coast Air Basin (SoCAB) of California. The perturbation parameters considered in this study include (1) temperature, (2) absolute humidity, (3) biogenic VOC emissions due to temperature changes, and (4) boundary conditions. All parameters are first perturbed individually. In addition, the impact of simultaneously perturbing more than one parameter is analyzed. Air quality is simulated with meteorology representative of a summertime ozone pollution episode using both a baseline 2005 emissions inventory and a future emissions projection for the year 2023. Different locations within the modeling domain exhibit varying degrees of sensitivity to the perturbations considered. Afternoon domain wide average ozone concentrations are projected to increase by 13-18% as a result of changes in future climate and emissions. Afternoon increases at individual locations range from 10 to 36%. The change in afternoon particulate matter (PM) levels is a strong function of location in the basin, ranging from -7.1% to +4.7% when using 2005 emissions and -8.6% to +1.7% when using 2023 emissions. Afternoon secondary organic aerosol (SOA) concentrations for the entire domain are projected to decrease by over 15%, and the change in SOA levels is not a strong function of the emissions inventory utilized. Temperature increases play the dominant role in determining the overall impact on ozone, PM, and SOA concentrations in both the individual and combined perturbation scenarios.

  9. Analysis of spatial and seasonal distributions of MODIS aerosol optical properties and ground-based measurements of mass concentrations in the Yellow Sea region in 2009.

    PubMed

    Kim, Hak-Sung; Chung, Yong-Seung; Lee, Sun-Gu

    2013-01-01

    Satellite-retrieved data on aerosol optical depth (AOD) and Ångström exponent (AE) using a moderate resolution imaging spectrometer (MODIS) were used to analyze large-scale distributions of atmospheric aerosols in East Asia. AOD was relatively high in March (0.44 ± 0.25) and low in September (0.24 ± 0.21) in the East Asian region in 2009. Sandstorms originating from the deserts and dry areas in northern China and Mongolia were transported on a massive scale during the springtime, thus contributing to the high AOD in East Asia. However, whereas PM10 with diameters ≤10 μm was the highest in February at Anmyon, Cheongwon, and Ulleung, located leeward about halfway through the Korean Peninsula, AOD rose to its highest in May. The growth of hygroscopic aerosols attendant on increases in relative humidity prior to the Asian monsoon season contributed to a high AOD level in May. AE typically appears at high levels (1.30 ± 0.37) in August due to anthropogenic aerosols originating from the industrial areas in eastern China, while AOD stays low in summer due to the removal process caused by rainfall. The linear correlation coefficients of the MODIS AOD and ground-based mass concentrations of PM10 at Anmyon, Cheongwon, and Ulleung were measured at 0.4~0.6. Four cases (6 days) of mineral dustfall from sandstorms and six cases (12 days) of anthropogenically polluted particles were observed in the central area of the Korean Peninsula in 2009. PM10 mass concentrations increased at both Anmyon and Cheongwon in the cases of mineral dustfall and anthropogenically polluted particles. Cases of dustfall from sandstorms and anthropogenic polluted particles, with increasing PM10 mass concentrations, showed higher AOD values in the Yellow Sea region.

  10. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    SciTech Connect

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M. J.; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E.; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L.; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A. F.; Springston, Stephen R.; Tomlinson, Jason M.; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N.; Kulmala, Markku; Machado, Luiz A. T.; Artaxo, Paulo; Andreae, Meinrat O.; Petäjä, Tuukka; Martin, Scot T.

    2016-10-24

    A necessary prerequisite of cloud formation, aerosol particles represent one of the largest uncertainties in computer simulations of climate change1,2, in part because of a poor understanding of processes under natural conditions3,4. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions5-7. Cloud condensation nuclei (CCN) in clean Amazonia are mostly produced by the growth of smaller particles in the boundary layer8-10, whereas these smaller particles themselves 31 appear to be produced elsewhere5,11. Key questions are in what part of the atmosphere they might 32 be produced and what could be the transport processes that deliver them to the boundary layer, where they grow into CCN. Here, using recent aircraft measurements above central Amazonia, we show high concentrations of small particles in the lower free troposphere. The particle size spectrum shifts towards larger sizes with decreasing altitude, implying particle growth as air descends from the free troposphere towards Earth's surface. Complementary measurements at ground sites show that free tropospheric air having high concentrations of small particles (diameters of less than 50 nm) is transported into the boundary layer during precipitation events, both by strong convective downdrafts and by weaker downward motions in the trailing stratiform region. This vertical transport helps maintain the population of small particles and ultimately CCN in the boundary layer, thereby playing an important role in controlling the climate state under natural conditions. In contrast, this mechanism becomes masked under polluted conditions, which sometimes prevail at times in Amazonia as well as over other tropical continental regions5,12.

  11. Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies

    NASA Astrophysics Data System (ADS)

    Kreyling, Wolfgang G.; Biswas, Pratim; Messing, Maria E.; Gibson, Neil; Geiser, Marianne; Wenk, Alexander; Sahu, Manoranjan; Deppert, Knut; Cydzik, Izabela; Wigge, Christoph; Schmid, Otmar; Semmler-Behnke, Manuela

    2011-02-01

    The intensive use of nano-sized titanium dioxide (TiO2) particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of TiO2 nanoparticles (NP) with biological systems ideally needs to be investigated using physico-chemically uniform and well-characterized NP. In this article, we describe the reproducible production of TiO2 NP aerosols using spark ignition technology. Because currently no data are available on inhaled NP in the 10-50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation studies in rodents. For anticipated in vivo dosimetry analyses, TiO2 NP were radiolabeled with 48V by proton irradiation of the titanium electrodes of the spark generator. The dissolution rate of the 48V label was about 1% within the first day. The highly concentrated, polydisperse TiO2 NP aerosol (3-6 × 106 cm-3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation, and number concentration. Extensive characterization of NP chemical composition, physical structure, morphology, and specific surface area was performed. The originally generated amorphous TiO2 NP were converted into crystalline anatase TiO2 NP by thermal annealing at 950 °C. Both crystalline and amorphous 20-nm TiO2 NP were chain agglomerated/aggregated, consisting of primary particles in the range of 5 nm. Disintegration of the deposited TiO2 NP in lung tissue was not detectable within 24 h.

  12. Changes in the character of Polar stratospheric clouds over Antarctica in 1992 due to the Pinatubo volcanic aerosol

    SciTech Connect

    Deshler, T.; Johnson, B.J.; Rozier, W.R. )

    1994-02-15

    Vertical profiles of aerosol concentration were measured on 8 occasions from McMurdo Station, Antarctica (78[degrees]S), between late August and early October 1992. Polar stratospheric clouds (PSCs) were observed on 6 of these soundings. The characteristics of PSCs, and ozone, were quite different above and below about 16 km. Above 16 km PSCs were variable in time, with particles > 1.0 [mu]m radius contributing significantly to the surface area, generally < 8 [mu]m[sup 2] cm[sup [minus]3]. Below 16 km PSCs were much more stable and were dominated by high concentrations of smaller particles, < 1.0 [mu]m, with surface areas of 20-30 [mu]m[sup 2] cm[sup [minus]3]. This lower layer coincided with the altitude of the primary Pinatubo volcanic aerosol as measured in mid September and October, and with the 4 km region of the atmosphere where ozone was virtually completed destroyed over Antarctica in 1992. 12 refs., 4 figs.

  13. Effect of aerosols and NO2 concentration on ultraviolet actinic flux near Mexico City during MILAGRO: measurements and model calculations

    NASA Astrophysics Data System (ADS)

    Palancar, G. G.; Lefer, B. L.; Hall, S. R.; Shaw, W. J.; Corr, C. A.; Herndon, S. C.; Slusser, J. R.; Madronich, S.

    2012-08-01

    Urban air pollution absorbs and scatters solar ultraviolet (UV) radiation, and thus has a potentially large effect on tropospheric photochemical rates. We present the first detailed comparison between UV actinic fluxes (AF) measured in highly polluted conditions and simulated with the Tropospheric Ultraviolet-Visible (TUV) model. Measurements were made during the MILAGRO campaign near Mexico City in March 2006, at a ground-based station near Mexico City (the T1 supersite) and from the NSF/NCAR C-130 aircraft. At the surface, measured AF values are typically smaller than the model by up to 25% in the morning, 10% at noon, and 40% in the afternoon, for pollution-free and cloud-free conditions. When measurements of PBL height, NO2 concentration and aerosols optical properties are included in the model, the agreement improves to within ±10% in the morning and afternoon, and ±3% at noon. Based on daily averages, aerosols account for 67% and NO2 for 25% of AF reductions observed at the surface. Several overpasses from the C-130 aircraft provided the opportunity to examine the AF perturbations aloft, and also show better agreement with the model when aerosol and NO2 effects are included above and below the flight altitude. TUV model simulations show that the vertical structure of the actinic flux is sensitive to the choice of the aerosol single scattering albedo (SSA) at UV wavelengths. Typically, aerosols enhance AF above the PBL and reduce AF near the surface. However, for highly scattering aerosols (SSA > 0.95), enhancements can penetrate well into the PBL, while for strongly absorbing aerosols (SSA < 0.6) reductions in AF are computed in the free troposphere as well as in the PBL. Additional measurements of the SSA at these wavelengths are needed to better constrain the effect of aerosols on the vertical structure of the AF.

  14. Effect of aerosols and NO2 concentration on ultraviolet actinic flux near Mexico City during MILAGRO: measurements and model calculations

    NASA Astrophysics Data System (ADS)

    Palancar, G. G.; Lefer, B. L.; Hall, S. R.; Shaw, W. J.; Corr, C. A.; Herndon, S. C.; Slusser, J. R.; Madronich, S.

    2013-01-01

    Urban air pollution absorbs and scatters solar ultraviolet (UV) radiation, and thus has a potentially large effect on tropospheric photochemical rates. We present the first detailed comparison between actinic fluxes (AF) in the wavelength range 330-420 nm measured in highly polluted conditions and simulated with the Tropospheric Ultraviolet-Visible (TUV) model. Measurements were made during the MILAGRO campaign near Mexico City in March 2006, at a ground-based station near Mexico City (the T1 supersite) and from the NSF/NCAR C-130 aircraft. At the surface, measured AF values are typically smaller than the model by up to 25% in the morning, 10% at noon, and 40% in the afternoon, for pollution-free and cloud-free conditions. When measurements of PBL height, NO2 concentration and aerosols optical properties are included in the model, the agreement improves to within ±10% in the morning and afternoon, and ±3% at noon. Based on daily averages, aerosols account for 68% and NO2 for 25% of AF reductions observed at the surface. Several overpasses from the C-130 aircraft provided the opportunity to examine the AF perturbations aloft, and also show better agreement with the model when aerosol and NO2 effects are included above and below the flight altitude. TUV model simulations show that the vertical structure of the actinic flux is sensitive to the choice of the aerosol single scattering albedo (SSA) at UV wavelengths. Typically, aerosols enhance AF above the PBL and reduce AF near the surface. However, for highly scattering aerosols (SSA > 0.95), enhancements can penetrate well into the PBL, while for strongly absorbing aerosols (SSA < 0.6) reductions in AF are computed in the free troposphere as well as in the PBL. Additional measurements of the SSA at these wavelengths are needed to better constrain the effect of aerosols on the vertical structure of the AF.

  15. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    NASA Astrophysics Data System (ADS)

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  16. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  17. Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales

    NASA Astrophysics Data System (ADS)

    Bones, David L.; Henricksen, Dana K.; Mang, Stephen A.; Gonsior, Michael; Bateman, Adam P.; Nguyen, Tran B.; Cooper, William J.; Nizkorodov, Sergey A.

    2010-03-01

    This study investigated long-term chemical aging of model biogenic secondary organic aerosol (SOA) prepared from the ozonolysis of terpenes. Techniques including electrospray ionization mass spectrometry (ESI-MS), UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, NMR, and three-dimensional fluorescence were used to probe the changes in chemical composition of SOA collected by impaction on substrates and also of aqueous extracts of SOA. The addition of ammonium ions or amino acids to limonene SOA reproducibly produced orange-colored species that strongly absorbed visible radiation and fluoresced at UV and visible wavelengths. Simultaneous addition of H2SO4 to the SOA aqueous extracts inhibited this color transformation. These observations suggest the existence of aging processes leading to heavily conjugated molecules containing organic nitrogen. The presence of nitrogen in the chromophores was confirmed by the dependence of the absorption and fluorescence spectra on the amino acids added. In contrast to the strong change in the absorption and fluorescence spectra, there was no significant change in the ESI-MS, FTIR, and NMR spectra, suggesting that the chromophores were minor species in the aged SOA. Aqueous extracts of aged limonene + NH4+ SOA were characterized by an effective base-e absorption coefficient of ˜3 L g-1 cm-1 at 500 nm. Assuming particulate matter concentrations typical of polluted rural air gives an upper limit of 0.2 M m-1 for the aerosol absorption coefficient due to the aged limonene oxidation products. Biogenic SOA can therefore become weakly absorbing if they undergo aging in the presence of NH4+-containing aerosol.

  18. Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Furukawa, T.; Kanai, Y.; Uematsu, M.; Zheng, G.; Marcus, M. A.

    2013-03-01

    Atmospheric iron (Fe) can be a significant source of nutrition for phytoplankton inhabiting remote oceans, which in turn has a large influence on the Earth's climate. The bioavailability of Fe in aerosols depends mainly on the fraction of soluble Fe (= [FeSol]/[FeTotal], where [FeSol] and [FeTotal] are the atmospheric concentrations of soluble and total Fe, respectively). However, the numerous factors affecting the soluble Fe fraction have not been fully understood. In this study, the Fe species, chemical composition, and soluble Fe concentrations in aerosols collected in Tsukuba, Japan were investigated over a year (nine samples from December 2002 to October 2003) to identify the factors affecting the amount of soluble Fe supplied into the ocean. The soluble Fe concentration in aerosols is correlated with those of sulfate and oxalate originated from anthropogenic sources, suggesting that soluble Fe is mainly derived from anthropogenic sources. Moreover, the soluble Fe concentration is also correlated with the enrichment factors of vanadium and nickel emitted by fossil fuel combustion. These results suggest that the degree of Fe dissolution is influenced by the magnitude of anthropogenic activity, such as fossil fuel combustion. X-ray absorption fine structure (XAFS) spectroscopy was performed in this study to identify the Fe species in aerosols. The fitting of XAFS spectra coupled with micro X-ray fluorescence analysis (XRF) determined the main Fe species in aerosols in Tsukuba to be illite, ferrihydrite, hornblende, and Fe(III) sulfate. Moreover, the soluble Fe fraction in each sample measured by leaching experiments is closely correlated with the Fe(III) sulfate fraction determined by the XAFS spectrum fitting, suggesting that Fe(III) sulfate is the main soluble Fe in the ocean. Another possible factor that can control the amount of soluble Fe supplied into the ocean is the total Fe(III) concentration in the atmosphere, which was high in spring due to the high

  19. Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Furukawa, T.; Kanai, Y.; Uematsu, M.; Zheng, G.; Marcus, M. A.

    2013-08-01

    Atmospheric iron (Fe) can be a significant source of nutrition for phytoplankton inhabiting remote oceans, which in turn has a large influence on the Earth's climate. The bioavailability of Fe in aerosols depends mainly on the fraction of soluble Fe (= [FeSol]/[FeTotal], where [FeSol] and [FeTotal] are the atmospheric concentrations of soluble and total Fe, respectively). However, the numerous factors affecting the soluble Fe fraction have not been fully understood. In this study, the Fe species, chemical composition, and soluble Fe concentrations in aerosols collected in Tsukuba, Japan were investigated over a year (nine samples from December 2002 to October 2003) to identify the factors affecting the amount of soluble Fe supplied into the ocean. The soluble Fe concentration in aerosols is correlated with those of sulfate and oxalate originated from anthropogenic sources, suggesting that soluble Fe is mainly derived from anthropogenic sources. Moreover, the soluble Fe concentration is also correlated with the enrichment factors of vanadium and nickel emitted by fossil fuel combustion. These results suggest that the degree of Fe dissolution is influenced by the magnitude of anthropogenic activity, such as fossil fuel combustion. X-ray absorption fine structure (XAFS) spectroscopy was performed in order to identify the Fe species in aerosols. Fitting of XAFS spectra coupled with micro X-ray fluorescence analysis (μ-XRF) showed the main Fe species in aerosols in Tsukuba to be illite, ferrihydrite, hornblende, and Fe(III) sulfate. Moreover, the soluble Fe fraction in each sample measured by leaching experiments is closely correlated with the Fe(III) sulfate fraction determined by the XAFS spectrum fitting, suggesting that Fe(III) sulfate is the main soluble Fe in the ocean. Another possible factor that can control the amount of soluble Fe supplied into the ocean is the total Fe(III) concentration in the atmosphere, which was high in spring due to the high mineral

  20. Spinning-disk generation and drying of monodisperse solid aerosols with output concentrations sufficient for single-breath inhalation studies.

    PubMed

    Byron, P R; Hickey, A J

    1987-01-01

    The air-driven spinning-disk aerosol generator was modified to allow the production of monodisperse dry spherical aerosols of disodium fluorescein (as model solute) in high output concentrations. Output concentrations were determined by filtration. Optical and aerodynamic size distributions were determined microscopically (after electrostatic precipitation) and by cascade impaction. The generator housing allowed the entrainment of 25-microns primary aqueous solution droplets in a 10-L X min-1 downward flow of dry, filtered air. Internal equipment surfaces were machined flush and polished to minimize aerosol losses. Primary droplets were dried within a stainless steel pipe encased in a tube furnace. Water vapor was removed by diffusion drying. Disk-driven air, satellite droplets, and additional dilution air were vented to waste without using a vacuum. Generator yields were increased by reducing the size of the satellite droplet extraction gap. Aerosols were generated reproducibly by delivering aqueous solutions at a rate of 0.2 mL X min-1 to the center of the disk and spinning at 1000 rps. Dry aerosols, with mass median aerodynamic diameters of 2, 4.9, and 9 microns, were produced in concentrations of 0.89, 5.48, and 54.6 micrograms X L-1 from aqueous solutions containing 0.0374, 0.584, and 3.4% solute by weight. Geometric standard deviations were less than 1.2 in all cases. Concentrations are several times higher than others in the literature and are suitable for single-breath inhalation studies of therapeutic aerosol deposition and effect.

  1. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  2. Analysis of Venus Express optical extinction due to aerosols in the upper haze of Venus

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Bougher, Stephen; Mahieux, Arnaud; Tellmann, Silvia; Pätzold, Martin; Vandaele, Ann C.; Wilquet, Valérie; Schulte, Rick; Yung, Yuk; Gao, Peter; Bardeen, Charles

    Observations by the SPICAV/SOIR instruments aboard Venus Express (VEx) have revealed that the Upper Haze of Venus is populated by two particle modes, as reported by Wilquet et al. (J. Geophys. Res., 114, E00B42, 2009; Icarus 217, 2012). Gao et al. (In press, Icarus, 2013) posit that the large mode is made up of cloud particles that have diffused upwards from the cloud deck below, while the smaller mode is generated by the in situ nucleation of meteoric dust. They tested this hypothesis by using version 3.0 of the Community Aerosol and Radiation Model for Atmospheres, first developed by Turco et al. (J. Atmos. Sci., 36, 699-717, 1979) and upgraded to version 3.0 by Bardeen et al. (The CARMA 3.0 microphysics package in CESM, Whole Atmosphere Working Group Meeting, 2011). Using the meteoric dust production profile of Kalashnikova et al. (Geophys. Res. Lett., 27, 3293-3296, 2000), the sulfur/sulfate condensation nuclei production profile of Imamura and Hashimoto (J. Atmos. Sci., 58, 3597-3612, 2001), and sulfuric acid vapor production profile of Zhang et al. (Icarus, 217, 714-739, 2012), they numerically simulate a column of the Venus atmosphere from 40 to 100 km above the surface. Their aerosol number density results agree well with Pioneer Venus Orbiter (PVO) data from Knollenberg and Hunten (J. Geophys. Res., 85, 8039-8058, 1980), while their gas distribution results match that of Kolodner and Steffes below 55 km (Icarus, 132, 151-169, 1998). The resulting size distribution of cloud particles shows two distinct modes, qualitatively matching the observations of PVO. They also observe a third mode in their results with a size of a few microns at 48 km altitude, which appears to support the existence of the controversial third mode in the PVO data. This mode disappears if coagulation is not included in the simulation. The Upper Haze size distribution shows two lognormal-like distributions overlapping each other, possibly indicating the presence of the two distinct

  3. [Concentration distribution of metal elements in atmospheric aerosol under different weather conditions in Qingdao Coastal Region].

    PubMed

    Chen, Xiao-Jing; Qi, Jian-Hua; Liu, Ning; Zhang, Xiang-Yu; Shen, Heng-Qing; Liu, Ming-Xu

    2014-10-01

    To know the influence of different weather conditions on the concentration of metal elements in aerosols in the coastal region, total suspended particles (TSP) samples were collected from April to May 2012, and August 2012 to March 2013 in the Qingdao coastal region, and common trace metals were analyzed by using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Al, Ca, Fe, Na, K and Mg were the dominant metal elements in TSP, and the sum of the six elements accounted for 94.2% of the sum of all metals. TSP and metal elements had significant monthly variations, Fe, Al, K, Ca, Mg, Zn, Ba, Mn, Ti, Sr and Li had the highest concentration in November and January, while Be, Sc, Co, Ni and Cr showed the highest value in January. Na had the highest concentration in August, November and February, and the lowest in December. Pb had the highest concentration in January and February, and the lowest in August and December. Enrichment factors indicated that Be, Co, Al, Ca, Fe, K, Mg, Mn, Sr and Ti were mainly affected by natural sources; Li, Cr, Ni, Zn, Ba and Na were affected by natural sources and part of anthropogenic sources; Pb was mainly from anthropogenic sources. Different weather conditions had great impact on TSP and metal elements concentrations, all the measured metals had the highest concentrations in smog except Ti. Compared with the sunny day, the concentration of atmospheric particulate Ti decreased, while the other elements increased by 1 to 4 times in smog. Li, Be, Cr, Ni, Al, Fe, Mg and Mn had little variation in concentration in foggy day, and the concentration of Pb and Na increased considerably. The concentration of Co, Ca and Ti reduced obviously in fog. Except for Cr, Co and Ti, the other elements increased by 1 to 3 times in haze. Most of the elements had the minimal enrichment factors in sunny day, while the other had the maximal enrichment factor in

  4. A comparison of secondary organic aerosol (SOA) yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2

    NASA Astrophysics Data System (ADS)

    Draper, D. C.; Farmer, D. K.; Desyaterik, Y.; Fry, J. L.

    2015-05-01

    The effect of NO2 on secondary organic aerosol (SOA) formation from ozonolysis of α-pinene, β-pinene, Δ3-carene, and limonene was investigated using a dark flow-through reaction chamber. SOA mass yields were calculated for each monoterpene from ozonolysis with varying NO2 concentrations. Kinetics modeling of the first generation gas-phase chemistry suggests that differences in observed aerosol yields for different NO2 concentrations are consistent with NO3 formation and subsequent competition between O3 and NO3 to oxidize each monoterpene. α-pinene was the only monoterpene studied that showed a systematic decrease in both aerosol number concentration and mass concentration with increasing [NO2]. β-pinene and Δ3-carene produced fewer particles at higher [NO2], but both retained moderate mass yields. Limonene exhibited both higher number concentrations and greater mass concentrations at higher [NO2]. SOA from each experiment was collected and analyzed by HPLC-ESI-MS, enabling comparisons between product distributions for each system. In general, the systems influenced by NO3 oxidation contained more high molecular weight products (MW >400 amu), suggesting the importance of oligomerization mechanisms in NO3-initiated SOA formation. α-pinene, which showed anomalously low aerosol mass yields in the presence of NO2, showed no increase in these oligomer peaks, suggesting that lack of oligomer formation is a likely cause of α-pinene's near 0% yields with NO3. Through direct comparisons of mixed-oxidant systems, this work suggests that NO3 is likely to dominate nighttime oxidation pathways in most regions with both biogenic and anthropogenic influences. Therefore, accurately constraining SOA yields from NO3 oxidation, which vary substantially with the VOC precursor, is essential in predicting nighttime aerosol production.

  5. A qualitative comparison of secondary organic aerosol yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2

    NASA Astrophysics Data System (ADS)

    Draper, D. C.; Farmer, D. K.; Desyaterik, Y.; Fry, J. L.

    2015-11-01

    The effect of NO2 on secondary organic aerosol (SOA) formation from ozonolysis of α-pinene, β-pinene, Δ3-carene, and limonene was investigated using a dark flow-through reaction chamber. SOA mass yields were calculated for each monoterpene from ozonolysis with varying NO2 concentrations. Kinetics modeling of the first-generation gas-phase chemistry suggests that differences in observed aerosol yields for different NO2 concentrations are consistent with NO3 formation and subsequent competition between O3 and NO3 to oxidize each monoterpene. α-Pinene was the only monoterpene studied that showed a systematic decrease in both aerosol number concentration and mass concentration with increasing [NO2]. β-Pinene and Δ3-carene produced fewer particles at higher [NO2], but both retained moderate mass yields. Limonene exhibited both higher number concentrations and greater mass concentrations at higher [NO2]. SOA from each experiment was collected and analyzed by HPLC-ESI-MS, enabling comparisons between product distributions for each system. In general, the systems influenced by NO3 oxidation contained more high molecular weight products (MW > 400 amu), suggesting the importance of oligomerization mechanisms in NO3-initiated SOA formation. α-Pinene, which showed anomalously low aerosol mass yields in the presence of NO2, showed no increase in these oligomer peaks, suggesting that lack of oligomer formation is a likely cause of α-pinene's near 0 % yields with NO3. Through direct comparisons of mixed-oxidant systems, this work suggests that NO3 is likely to dominate nighttime oxidation pathways in most regions with both biogenic and anthropogenic influences. Therefore, accurately constraining SOA yields from NO3 oxidation, which vary substantially with the volatile organic compound precursor, is essential in predicting nighttime aerosol production.

  6. Technical note: An improved approach to determining background aerosol concentrations with PILS sampling on aircraft

    NASA Astrophysics Data System (ADS)

    Fukami, Christine S.; Sullivan, Amy P.; Ryan Fulgham, S.; Murschell, Trey; Borch, Thomas; Smith, James N.; Farmer, Delphine K.

    2016-07-01

    Particle-into-Liquid Samplers (PILS) have become a standard aerosol collection technique, and are widely used in both ground and aircraft measurements in conjunction with off-line ion chromatography (IC) measurements. Accurate and precise background samples are essential to account for gas-phase components not efficiently removed and any interference in the instrument lines, collection vials or off-line analysis procedures. For aircraft sampling with PILS, backgrounds are typically taken with in-line filters to remove particles prior to sample collection once or twice per flight with more numerous backgrounds taken on the ground. Here, we use data collected during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) to demonstrate that not only are multiple background filter samples are essential to attain a representative background, but that the chemical background signals do not follow the Gaussian statistics typically assumed. Instead, the background signals for all chemical components analyzed from 137 background samples (taken from ∼78 total sampling hours over 18 flights) follow a log-normal distribution, meaning that the typical approaches of averaging background samples and/or assuming a Gaussian distribution cause an over-estimation of background samples - and thus an underestimation of sample concentrations. Our approach of deriving backgrounds from the peak of the log-normal distribution results in detection limits of 0.25, 0.32, 3.9, 0.17, 0.75 and 0.57 μg m-3 for sub-micron aerosol nitrate (NO3-), nitrite (NO2-), ammonium (NH4+), sulfate (SO42-), potassium (K+) and calcium (Ca2+), respectively. The difference in backgrounds calculated from assuming a Gaussian distribution versus a log-normal distribution were most extreme for NH4+, resulting in a background that was 1.58× that determined from fitting a log-normal distribution.

  7. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Chan, A. W. H.; Chan, M. N.; Surratt, J. D.; Chhabra, P. S.; Loza, C. L.; Crounse, J. D.; Yee, L. D.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2010-08-01

    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO2) formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3-8), the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  8. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Chan, A. W. H.; Chan, M. N.; Surratt, J. D.; Chhabra, P. S.; Loza, C. L.; Crounse, J. D.; Yee, L. D.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2010-04-01

    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO2) formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios, the SOA yields from isoprene high-NOxphotooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  9. Observations of accumulation mode aerosol composition and soot carbon concentrations by means of a high-temperature volatility technique

    NASA Astrophysics Data System (ADS)

    Smith, Michael H.; O'Dowd, Colin D.

    1996-08-01

    A high-temperature volatility system has been deployed for the measurement of the composition and concentration of the accumulation mode aerosol (0.05 μm < r < 1 μm) within the atmospheric boundary layer. This instrumentation comprises a volatility system based around a Particle Measuring Systems ASASP-X optical particle counter, which was operated together with an aethalometer for the direct observation of soot carbon concentrations. By cycling the heater tube through a range of temperatures from near ambient to over 1000°C, size-differentiated information upon aerosol composition may be obtained. Furthermore, by careful selection of analysis temperatures, discrimination is possible between elemental carbon and the more volatile fractions of the soot carbon aerosol. Observations made over the North Sea near the Dutch coast and in the central United Kingdom are presented for differing environmental conditions with soot carbon concentrations ranging from about 100 to over 6000 ng m-3. For polluted conditions over the North Sea the volatility technique clearly showed the dominance of soot carbon particles over other aerosol components with a narrow carbon particle distribution of mode radius around 0.06 μm accounting for about 80% of all particles with radii below 0.1 μm. Under polluted conditions, only about 25% of the total soot carbon aerosol comprised elemental carbon (with the remainder consisting of more volatile material), whereas this proportion rose to around 50% in the lower carbon loadings found in a cleaner maritime air mass. The use of soot carbon loadings as a tracer of anthropogenic aerosol inputs to oceanic regions is explored on the basis of measurements from a NE Atlantic cruise.

  10. Effects of turbulence on warm clouds and precipitation with various aerosol concentrations

    NASA Astrophysics Data System (ADS)

    Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young

    2015-02-01

    This study investigates the effects of turbulence-induced collision enhancement (TICE) on warm clouds and precipitation by changing the cloud condensation nuclei (CCN) number concentration using a two-dimensional dynamic model with bin microphysics. TICE is determined according to the Taylor microscale Reynolds number and the turbulent dissipation rate. The thermodynamic sounding used in this study is characterized by a warm and humid atmosphere with a capping inversion layer, which is suitable for simulating warm clouds. For all CCN concentrations, TICE slightly reduces the liquid water path during the early stage of cloud development and accelerates the onset of surface precipitation. However, changes in the rainwater path and in the amount of surface precipitation that are caused by TICE depend on the CCN concentrations. For high CCN concentrations, the mean cloud drop number concentration (CDNC) decreases and the mean effective radius increases due to TICE. These changes cause an increase in the amount of surface precipitation. However, for low CCN concentrations, changes in the mean CDNC and in the mean effective radius induced by TICE are small and the amount of surface precipitation decreases slightly due to TICE. A decrease in condensation due to the accelerated coalescence between droplets explains the surface precipitation decrease. In addition, an increase in the CCN concentration can lead to an increase in the amount of surface precipitation, and the relationship between the CCN concentration and the amount of surface precipitation is affected by TICE. It is shown that these results depend on the atmospheric relative humidity.

  11. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  12. Fluorescent Biological Aerosol Particle Concentrations and Size Distributions Measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Treutlein, B.; Pöschl, U.

    2009-12-01

    Primary biological aerosol particles (PBAPs), including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany, we used an ultraviolet aerodynamic particle sizer (UV-APS) to measure fluorescent biological aerosol particles (FBAPs), which can be regarded as viable bioaerosol particles representing a lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (< 1 µm), but not for coarse particles (1 - 20 µm). Averaged over the four-month measurement period (August - December 2006), the mean number concentration of coarse FBAPs was ~3x10-2 cm-3, corresponding to ~4% of total coarse particle number [1]. The mean mass concentration of FBAPs was ~1 µg m-3, corresponding to ~20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters. A pronounced peak at ~3 µm was essentially always observed and can be described by the following campaign-average lognormal fit parameters: geometric mean diameter 3.2 µm, geometric standard deviation 1.3, number concentration 1.6 x 10-2 cm-3. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle with maximum intensity during early/mid-morning. FBAP peaks around ~1.5 µm, ~5 µm, and ~13 µm were also observed, but less pronounced and less frequent. These may be explained by single bacterial cells, larger fungal spores, and pollen grains, respectively. The observed number concentrations and characteristic sizes of FBAPs are consistent with microscopic, biological and chemical analyses of

  13. Fluorescent biological aerosol particle concentrations and size distributions measured with an ultraviolet aerodynamic particle sizer (UV-APS) in Central Europe

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Treutlein, B.; Pöschl, U.

    2009-08-01

    Primary biological aerosol particles (PBAPs), including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany, we used an ultraviolet aerodynamic particle sizer (UV-APS) to measure fluorescent biological aerosol particles (FBAPs), which can be regarded as viable bioaerosol particles representing a lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (<1 μm), but not for coarse particles (1-20 μm). Averaged over the four-month measurement period (August-December 2006), the mean number concentration of coarse FBAPs was ~3×10-2 cm-3, corresponding to ~4% of total coarse particle number. The mean mass concentration of FBAPs was ~1 μg m-3, corresponding to ~20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters. A pronounced peak at ~3 μm was essentially always observed and can be described by the following campaign-average lognormal fit parameters: geometric mean diameter 3.2 μm, geometric standard deviation 1.3, number concentration 1.6×10-2 cm-3. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle with maximum intensity during early/mid-morning. FBAP peaks around ~1.5 μm, ~5 μm, and ~13 μm were also observed, but less pronounced and less frequent. These may be explained by single bacterial cells, larger fungal spores, and pollen grains, respectively. The observed number concentrations and characteristic sizes of FBAPs are consistent with microscopic, biological and chemical analyses of PBAPs in

  14. Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Treutlein, B.; Pöschl, U.

    2010-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany we used an Ultraviolet Aerodynamic Particle Sizer (UV-APS) to measure Fluorescent Biological Aerosol Particles (FBAPs), which provide an estimate of viable bioaerosol particles and can be regarded as an approximate lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (<1 μm), but not for coarse particles (1-20 μm). Averaged over the four-month measurement period (August-December 2006), the mean number concentration of coarse FBAPs was ~3×10-2 cm-3, corresponding to ~4% of total coarse particle number. The mean mass concentration of FBAPs was ~1μg m-3, corresponding to ~20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters. A pronounced peak at ~3 μm was essentially always observed and can be described by the following campaign-average lognormal fit parameters: geometric mean diameter 3.2 μm, geometric standard deviation 1.3, number concentration 1.6×10-2 cm-3. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle (24-h) with maximum intensity during early/mid-morning. FBAP peaks around ~1.5 μm, ~5 μm, and ~13 μm were also observed, but less pronounced and less frequent. These may be single bacterial cells, larger fungal spores, and pollen grains, respectively. The observed number concentrations and characteristic sizes of FBAPs are consistent with microscopic, biological and chemical

  15. Gravity-wave effects on tracer gases and stratospheric aerosol concentrations during the 2013 ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Chane Ming, Fabrice; Vignelles, Damien; Jegou, Fabrice; Berthet, Gwenael; Renard, Jean-Baptiste; Gheusi, François; Kuleshov, Yuriy

    2016-07-01

    Coupled balloon-borne observations of Light Optical Aerosol Counter (LOAC), M10 meteorological global positioning system (GPS) sondes, ozonesondes, and GPS radio occultation data, are examined to identify gravity-wave (GW)-induced fluctuations on tracer gases and on the vertical distribution of stratospheric aerosol concentrations during the 2013 ChArMEx (Chemistry-Aerosol Mediterranean Experiment) campaign. Observations reveal signatures of GWs with short vertical wavelengths less than 4 km in dynamical parameters and tracer constituents, which are also correlated with the presence of thin layers of strong local enhancements of aerosol concentrations in the upper troposphere and the lower stratosphere. In particular, this is evident from a case study above Ile du Levant (43.02° N, 6.46° E) on 26-29 July 2013. Observations show a strong activity of dominant mesoscale inertia GWs with horizontal and vertical wavelengths of 370-510 km and 2-3 km respectively, and periods of 10-13 h propagating southward at altitudes of 13-20 km during 27-28 July. The European Centre for Medium-Range Weather Forecasts (ECMWF) analyses also show evidence of mesoscale inertia GWs with similar horizontal characteristics above the eastern part of France. Ray-tracing experiments indicate the jet-front system as the main source of observed GWs. Using a simplified linear GW theory, synthetic vertical profiles of dynamical parameters with large stratospheric vertical wind maximum oscillations of ±40 mms-1 are produced for the dominant mesoscale GW observed at heights of 13-20 km. Parcel advection method reveals signatures of GWs in the ozone mixing ratio and the tropospheric-specific humidity. Simulated vertical wind perturbations of the dominant GWs and small-scale perturbations of aerosol concentration (aerosol size of 0.2-0.7 µm) are revealed to be in phase in the lower stratosphere. Present results support the importance of vertical wind perturbations in the GW-aerosol relationship

  16. On the concentration and size distribution of sub-micron aerosol in the Galápagos Islands

    NASA Astrophysics Data System (ADS)

    Sorribas, M.; Gómez Martín, J. C.; Hay, T. D.; Mahajan, A. S.; Cuevas, C. A.; Agama Reyes, M. V.; Paredes Mora, F.; Gil-Ojeda, M.; Saiz-Lopez, A.

    2015-12-01

    During the CHARLEX campaign in the Galápagos Islands, a Scanning Particle Mobility Sizer was deployed on San Cristobal Island in July-August 2011 to carry out size-resolved measurements of the concentration of submicron aerosols. To our knowledge these are the first measurements of aerosol concentrations in this unique environment. The particles with marine origin displayed a tri-modal number size distribution with peak diameters of 0.016 μm, 0.050 μm and 0.174 μm and a cloud-processed intermodal minimum at 0.093 μm. The mean total aerosol number concentration for the marine contribution was 470 ± 160 cm-3. A low particle concentration of 70 ± 50 cm-3 for the nucleation size range was measured, but no evidence of new particle production in the atmospheric marine boundary layer (MBL) was observed. The concentration of the Aitken size mode was found to be related to aerosol entrainment from the free troposphere off the coast of Chile followed by transport within the MBL to the Galápagos Islands. Cloud processing may activate the particles in the Aitken size range, growing through 'in-cloud' sulphate production and increasing the particle concentration in the accumulation size range. The 0.093 μm cloud processed minima suggests that the critical supersaturation at which the particle is activated to a cloud droplet is in the 0.14-0.21% range. The daytime marine particle background concentration was influenced by human activity around the sampling site, as well as by new particle formation triggered by biogenic emissions from the vegetation cover of the island's semiarid lowlands. Effective CCN formation may play a role in the formation and properties of the stratus clouds, which permanently cover the top of the windward side of the islands and establish one of their characteristic climatic bands.

  17. Concentrations and sources of aerosol ions and trace elements during ANTCI-2003

    NASA Astrophysics Data System (ADS)

    Arimoto, R.; Zeng, T.; Davis, D.; Wang, Y.; Khaing, H.; Nesbit, C.; Huey, G.

    As part of the Antarctic Tropospheric Chemistry Investigation (ANTCI), bulk aerosol-particle samples collected at the South Pole were analyzed for nitrate, sulfate, methanesulfonate (MSA), selected trace elements and radionuclides. The samples were collected in the same manner as in the Investigation of Sulfur Chemistry in the Antarctic Troposphere (ISCAT) campaigns of 1998 and 2000. The ANTCI mean sulfate (124 ng m -3) and MSA (9.1 ng m -3) concentrations were comparable to those during ISCAT, but high MSA and sodium and high MSA/sulfate in late November/early December indicated pervasive maritime influences during that time. Trajectory analyses indicate that the Weddell Sea and the Southern Ocean near Wilkes Land were probable sources for the ocean-derived sulfate. The transport of marine air occurs mainly in the buffer layer or free troposphere, and the rapid oxidation of biogenic sulfur to SO 2 appears to be the basis for the observed low MSA/sulfate ratios. Elements typically associated with mineral dust (Al, Fe, K) and other elements with continental sources (Pb, Sb, Zn) had higher concentrations during ANTCI than ISCAT. The mean filterable nitrate (f-NO 3-) concentration (280 ng m -3) also was conspicuously higher than during ISCAT (39 and 150 ng m -3). Several peaks in f-NO 3- were synchronous with those for MSA and sulfate, but some samples had high f-NO 3- but neither high MSA nor sulfate. While there is some evidence that nitrate or nitric acid is transported to SP from distant sources, local emissions of nitrogen oxides from the snow are a far more important source overall.

  18. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century.

    PubMed

    O'Sullivan, M; Rap, A; Reddington, C L; Spracklen, D V; Gloor, M; Buermann, W

    2016-08-16

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998-2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.

  19. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    NASA Astrophysics Data System (ADS)

    O'Sullivan, M.; Rap, A.; Reddington, C. L.; Spracklen, D. V.; Gloor, M.; Buermann, W.

    2016-08-01

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998-2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.

  20. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    PubMed Central

    Rap, A.; Reddington, C. L.; Spracklen, D. V.; Gloor, M.; Buermann, W.

    2016-01-01

    Abstract The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen‐carbon interactions. PMID:27773953

  1. Ground level environmental protein concentrations in various ecuadorian environments: potential uses of aerosolized protein for ecological research

    USGS Publications Warehouse

    Staton, Sarah J.R.; Woodward, Andrea; Castillo, Josemar A.; Swing, Kelly; Hayes, Mark A.

    2014-01-01

    Large quantities of free protein in the environment and other bioaerosols are ubiquitous throughout terrestrial ground level environments and may be integrative indicators of ecosystem status. Samples of ground level bioaerosols were collected from various ecosystems throughout Ecuador, including pristine humid tropical forest (pristine), highly altered secondary humid tropical forest (highly altered), secondary transitional very humid forest (regrowth transitional), and suburban dry montane deforested (suburban deforested). The results explored the sensitivity of localized aerosol protein concentrations to spatial and temporal variations within ecosystems, and their value for assessing environmental change. Ecosystem specific variations in environmental protein concentrations were observed: pristine 0.32 ± 0.09 μg/m3, highly altered 0.07 ± 0.05 μg/m3, regrowth transitional 0.17 ± 0.06 μg/m3, and suburban deforested 0.09 ± 0.04 μg/m3. Additionally, comparisons of intra-environmental differences in seasonal/daily weather (dry season 0.08 ± 0.03 μg/m3 and wet season 0.10 ± 0.04 μg/m3), environmental fragmentation (buffered 0.19 ± 0.06 μg/m3 and edge 0.15 ± 0.06 μg/m3), and sampling height (ground level 0.32 ± 0.09 μg/m3 and 10 m 0.24 ± 0.04 μg/m3) demonstrated the sensitivity of protein concentrations to environmental conditions. Local protein concentrations in altered environments correlated well with satellite-based spectral indices describing vegetation productivity: normalized difference vegetation index (NDVI) (r2 = 0.801), net primary production (NPP) (r2 = 0.827), leaf area index (LAI) (r2 = 0.410). Moreover, protein concentrations distinguished the pristine site, which was not differentiated in spectral indices, potentially due to spectral saturation typical of highly vegetated environments. Bioaerosol concentrations represent an inexpensive method to increase understanding of environmental changes, especially in densely vegetated

  2. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.

    2014-05-01

    The effect of dry and wet deposition of semi-volatile organic compounds (SVOC) in the gas-phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the regional chemistry transport model WRF-Chem, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48% and 63% respectively over the continental US Dry deposition of gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (-40% vs. -8% for anthropogenics, -52% vs. -11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas-phase (61% for anthropogenics, 76% for biogenics). A number of sensitivity studies shows that this is a robust feature of the modeling system. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility of SVOCs made in some current modeling systems (H* = 105 M atm-1; H* = H* (HNO3)) still lead to an overestimation of 25% / 10% compared to our best estimate. A saturation effect is observed for Henry's law constants above 108 M atm-1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower

  3. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.

    2015-01-01

    The effect of dry and wet deposition of semi-volatile organic compounds (SVOCs) in the gas phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the WRF-Chem regional chemistry transport model, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48 and 63% respectively over the continental US. Dry deposition of gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (-40 vs. -8% for anthropogenics, and -52 vs. -11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas phase (61% for anthropogenics and 76% for biogenics). Results are sensitive to assumptions made in the dry deposition scheme, but gas-phase deposition of SVOCs remains crucial even under conservative estimates. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations. A saturation effect is observed for Henry's law constants above 108 M atm-1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility of SVOCs made in

  4. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    DOE PAGES

    Knote, C.; Hodzic, A.; Jimenez, J. L.

    2015-01-06

    The effect of dry and wet deposition of semi-volatile organic compounds (SVOCs) in the gas phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the WRF-Chem regional chemistry transport model, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48 and 63% respectively over the continental US. Dry deposition ofmore » gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (−40 vs. −8% for anthropogenics, and −52 vs. −11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas phase (61% for anthropogenics and 76% for biogenics). Results are sensitive to assumptions made in the dry deposition scheme, but gas-phase deposition of SVOCs remains crucial even under conservative estimates. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations. A saturation effect is observed for Henry's law constants above 108 M atm−1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility

  5. On-line analysis of urban particulate matter focusing on elevated wintertime aerosol concentrations.

    PubMed

    Tan, Phillip V; Evans, Greg J; Tsai, Julia; Owega, Sandy; Fila, Michael S; Malpica, Oscar; Brook, Jeffrey R

    2002-08-15

    A 10-day winter sampling campaign was conducted in downtown Toronto for particulate matter (PM) air pollution in the fine (<2.5 microm) size range. An aerosol laser ablation mass spectrometer (LAMS), a tapered-element oscillating microbalance (TEOM), and an aerodynamic particle sizer (APS) were operated in parallel to characterize the PM on-line. In this study, the LAMS observed differences in the chemical composition between three separate episodes with higher PM2.5 mass and APS counts. LAMS results showed that in one instance of elevated PM, organic amines were present in the particulates. Temporal analyses of this episode revealed chemical transformations as the amines, characterized by m/z peaks 58(C3HeN)+, 86(C5H2N)+, and nitrates, increased in number concentration while Ca and hydrocarbon particle classes concurrently decreased. On another day, sulfates were found to have increased significantly. The third event was only 4 h in duration and exhibited an increase in the number of submicron-sized K/hydrocarbons and sulfate-containing particles. In this last event, the hydrocarbons and a K to Fe ratio enrichment indicated there was likely a contribution from a combustion source. This work offers some of the first insights into single particle size and chemistry in a cold winter climate.

  6. Comparison of Satellite Observations of Aerosol Optical Depth to Surface Monitor Fine Particle Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.

    2004-01-01

    Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.

  7. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations. Revision

    SciTech Connect

    Sextro, R.G.; Offermann, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-11-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. The experiments were conducted in a room-size chamber using cigarette smoke and radon injection from an external source. Of the devices examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be essentially negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. At the low particle concentrations, deposition of the unattached radon progeny on room surfaces was found to be a significant removal mechanism. Deposition rates of attached and unattached progeny have been estimated from these data, and were used to calculate the equilibrium factors for total and unattached progeny concentrations as a function of particle concentration. While particle removal reduces total airborne radon progeny concentrations, the relative alpha decay dose to the lungs appears to change very little as the particle concentration decreases due to the greater radiological importance of unattached progeny.

  8. Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990-2015

    NASA Astrophysics Data System (ADS)

    Myhre, Gunnar; Aas, Wenche; Cherian, Ribu; Collins, William; Faluvegi, Greg; Flanner, Mark; Forster, Piers; Hodnebrog, Øivind; Klimont, Zbigniew; Lund, Marianne T.; Mülmenstädt, Johannes; Myhre, Cathrine Lund; Olivié, Dirk; Prather, Michael; Quaas, Johannes; Samset, Bjørn H.; Schnell, Jordan L.; Schulz, Michael; Shindell, Drew; Skeie, Ragnhild B.; Takemura, Toshihiko; Tsyro, Svetlana

    2017-02-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. -1 to -3 % yr-1 in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by +0.17 ± 0.08 W m-2, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5. The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  9. Multi-Model Simulations of Aerosol and Ozone Radiative Forcing Due to Anthropogenic Emission Changes During the Period 1990-2015

    NASA Technical Reports Server (NTRS)

    Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.

    2017-01-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  10. Sensitivity of modelled sulfate aerosol and its radiative effect on climate to ocean DMS concentration and air-sea flux

    NASA Astrophysics Data System (ADS)

    Tesdal, Jan-Erik; Christian, James R.; Monahan, Adam H.; von Salzen, Knut

    2016-09-01

    Dimethylsulfide (DMS) is a well-known marine trace gas that is emitted from the ocean and subsequently oxidizes to sulfate in the atmosphere. Sulfate aerosols in the atmosphere have direct and indirect effects on the amount of solar radiation reaching the Earth's surface. Thus, as a potential source of sulfate, ocean efflux of DMS needs to be accounted for in climate studies. Seawater concentration of DMS is highly variable in space and time, which in turn leads to high spatial and temporal variability in ocean DMS emissions. Because of sparse sampling (in both space and time), large uncertainties remain regarding ocean DMS concentration. In this study, we use an atmospheric general circulation model with explicit aerosol chemistry (CanAM4.1) and several climatologies of surface ocean DMS concentration to assess uncertainties about the climate impact of ocean DMS efflux. Despite substantial variation in the spatial pattern and seasonal evolution of simulated DMS fluxes, the global-mean radiative effect of sulfate is approximately linearly proportional to the global-mean surface flux of DMS; the spatial and temporal distribution of ocean DMS efflux has only a minor effect on the global radiation budget. The effect of the spatial structure, however, generates statistically significant changes in the global-mean concentrations of some aerosol species. The effect of seasonality on the net radiative effect is larger than that of spatial distribution and is significant at global scale.

  11. Synergistic interaction of ozone and respirable aerosols on rat lungs. II. Synergy between ammonium sulfate aerosol and various concentrations of ozone

    SciTech Connect

    Warren, D.L.; Guth, D.J.; Last, J.A.

    1986-07-01

    Pulmonary responses after continuous exposure of rats to concentrations of ozone (O3) ranging from 0.12 to 0.64 ppm were quantified by measuring tissue collagen synthesis rate, tissue protein and DNA content, and various constituents of bronchoalveolar lavage fluid. After 7 days of exposure to 0.64 ppm of O3, lung collagen synthesis rate and tissue content of protein and DNA were elevated. After shorter durations of exposure to 0.64 ppm of O3, significant elevations were observed in the protein content and the activities of lactate dehydrogenase, acid phosphatase, and N-acetyl-beta-D-glucosaminidase from lavage fluid. After exposure of rats to 0.20 ppm of O3 for 7 days, changes could be detected in both lung collagen synthesis rate and tissue protein content. Total lavagable protein content, a sensitive indicator for O3-induced effects upon the lung, was significantly elevated in lungs of rats exposed to 0.12 or 0.20 ppm of O3. To examine whether a synergistic interaction occurred between 0.20 or 0.64 ppm of O3 and acid aerosols, rats were continuously exposed to O3 with and without concurrent exposure to 5 mg/m3 of ammonium sulfate. A synergistic interaction between 0.20 ppm of O3 and ammonium sulfate aerosol was observed by measurement of total lavagable protein and of lung collagen synthesis rate. These results demonstrate that ammonium sulfate aerosol interacts synergistically with O3 at concentrations of O3 that approach ambient levels.

  12. Estimating Errors in Satellite Retrievals of Bio-Optical Properties due to Incorrect Aerosol Model Selection

    DTIC Science & Technology

    2011-01-01

    as Martha’s Vineyard or Venice. This is due to a large amount of cloud coverage during the year, as well as the AERONET-OC station being unavailable...can be used to produce a good result for nLw(412) for day 176. This is an instance where the MODIS image has sporadic cloud coverage, as well as haze...1989). [10] Gordon, H. R., Brown, J. W. and Evans, R. H., "Exact Rayleigh scattering calculations for use with the Nimbus -7 Coastal Zone Color

  13. CFD Modeling and Image Analysis of Exhaled Aerosols due to a Growing Bronchial Tumor: towards Non-Invasive Diagnosis and Treatment of Respiratory Obstructive Diseases

    SciTech Connect

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu

    2015-02-06

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure vari-ations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagran-gian tracking approach were used to model respiratory airflows and aerosol dynamics. Respira-tions of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug de-livery protocol.

  14. CFD Modeling and Image Analysis of Exhaled Aerosols due to a Growing Bronchial Tumor: towards Non-Invasive Diagnosis and Treatment of Respiratory Obstructive Diseases

    SciTech Connect

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu

    2015-01-01

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug de- livery protocol.

  15. CFD Modeling and Image Analysis of Exhaled Aerosols due to a Growing Bronchial Tumor: towards Non-Invasive Diagnosis and Treatment of Respiratory Obstructive Diseases

    PubMed Central

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu

    2015-01-01

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug delivery protocol. PMID:25767612

  16. CFD modeling and image analysis of exhaled aerosols due to a growing bronchial tumor: Towards non-invasive diagnosis and treatment of respiratory obstructive diseases

    DOE PAGES

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; ...

    2015-01-01

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treatmore » the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 μm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug delivery protocol.« less

  17. CFD modeling and image analysis of exhaled aerosols due to a growing bronchial tumor: Towards non-invasive diagnosis and treatment of respiratory obstructive diseases

    SciTech Connect

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu

    2015-01-01

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 μm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug delivery protocol.

  18. Aerosols and gases concentrations observed at Stelvio National Park (Italian Alps) during summer conditions

    NASA Astrophysics Data System (ADS)

    Landi, T. C.; Marinoni, A.; Cristofanelli, P.; Bonafè, U.; Calzolari, F.; Duchi, R.; Laj, P.; Villani, P.; Bonasoni, P.

    2012-04-01

    Three summer fields campaigns were carried out during 2009, 2010 and 2011 in two sites in the area of Stelvio National Park (SNP), Central Italian Alps. Those activities were performed in the frame of the SHARE - Stelvio project (Station at High Altitude for Research on the Environment). SNP includes an extensive impervious territory of valleys and high mountains, up to 3900 m asl. Two high altitude sampling sites, Rifugio Guasti (3285 m asl) and Forni glacier ( 2700 m asl), have been picked out for collecting the main atmospheric parameters: the first site hosted the field campaign in 2009 and 2010 and was located at Cevedale pass, at the border between Lombardia and Trentino-Alto Adige regions, while in 2011 the measurements were carried out on Forni glacier surface, in a N-S oriented valley, through SHARE-box, a portable and autonomous unit for atmospheric measurements developed in the framework of SHARE project. Because of different location Rifugio Guasti is an ideal site to monitor long range transport on Southern slope of Alpine range, while Forni glacier is more affected by local influence of valley and glacier breezes. Monitored parameters concerned (i) meteorology, such as air temperature, relative humidity, wind speed and direction, air pressure, (ii) chemical and physical properties of the aerosols (number concentrations, size distribution and chemical composition) and (iii) , gases concentration (CO2, O3). This work is aimed at describing the behaviour of these compounds, in terms of concentration observed over different time scales, such hourly and daily, in order to investigate the impact of transport processes (i.e. air masses transports arisen from both "thermal" breezes or synoptic circulation) on aerosols and gases variability at SNP. The Alps face the Po Valley, one of the more populated and industrialized region in Europe. This is one of the most probable source of polluted air masses which spread towards high altitude sites, such as Alps and

  19. A method for retrieving vertical distribution of aerosol mass concentration in atmosphere from results of lidar sensing at Nd:YAG laser wavelengths

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2011-03-01

    A method for retrieving the vertical profiles of atmospheric aerosol concentration from the results of lidar sensing at Ng:YAG laser wavelengths is developed based on the found multiple regressions between the optical location characteristics of aerosol at wavelengths of 0.355, 0.532, and 1.064 nm, as well as between the aerosol backscattering coefficient at these wavelengths and the concentration of aerosol particles. The method does not require solving ill-posed inverse problems and minimizes the use of a priori information. The reliability and generality of regressions obtained are confirmed by their good agreement with the AERO-NET data. The method efficiency is demonstrated by numerical experiments on retrieving profiles of back-scattering coefficients and concentration that corresponds to different optical models of aerosol.

  20. Comparison of POLDER Derived Aerosol Optical Thickness to Surface Monitor Fine Particle Concentration

    NASA Astrophysics Data System (ADS)

    Leon, J.; Kacenelenbogen, M.; Chiapello, I.

    2005-12-01

    The Particulate Matter (PM) mass measured at the ground level is a common way to quantify the amount of aerosol particles in the atmosphere and is used as a standard to evaluate air quality. Satellite remote sensing is well suited for a daily monitoring of the aerosol load. However, there are no straightforward relationship between aerosol optical properties derived from the satellite sensor and the PM mass at the ground. This paper is focused on the use of Polarization and Directionality of Earth's Reflectance (POLDER-2) derived aerosol optical thickness (AOT) for the monitoring of PM2.5. We present a correlation study between PM2.5 data collected in the frame of the French Environmental protection agency, aerosol optical properties derived from Sun photometer measurements, and POLDER derived-AOT over the land. POLDER AOT retrieval algorithm over the land is based on the use of the measurement of the linear polarized light in the 670 nm and 865 nm channels. We show that only the fine fraction (below 0.3 μm) of the aerosol size distribution contributes to the signal in polarization and then to the POLDER derived-AOT and then is well suited for monitoring of fine particle. The correlation between POLDER AOT and PM2.5 is significant (R between 0.6 and 0.7) over several sites. We present a tentative evaluation of Air Quality Categories from satellite data.

  1. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  2. n-Alkanoic monocarboxylic acid concentrations in urban and rural aerosols: Seasonal dependence and major sources

    NASA Astrophysics Data System (ADS)

    Shannigrahi, Ardhendu S.; Pettersson, Jan B. C.; Langer, Sarka; Arrhenius, Karine; Hagström, Magnus; Janhäll, Sara; Hallquist, Mattias; Pathak, Ravi Kant

    2014-06-01

    We report new data on the abundance and distribution of n-monocarboxylic acids (n-MCAs) in fine- and coarse-mode aerosols in rural and urban areas of Sweden, and determine their possible sources. Overall, C6-C16n-MCAs accounted for ~ 0.5-1.2% of the total PM10 (particulate matter ≤ 10 μm) mass. In general, the C12-C16 fraction was the most abundant (> 75%), with the exception of wintertime samples from a rural site, where C6-C11 acids accounted for 65% of the total C6-C16n-MCA mass. Positive matrix factorization analysis revealed four major sources of n-MCAs: traffic emissions, wood combustion, microbial activity, and a fourth factor that was dominated by semi-volatile n-MCAs. Traffic emissions were important in the urban environment in both seasons and at the rural site during winters, and were a major source of C9-C11 acids. Wood combustion was a significant source at urban sites during the winter and also to some extent at the rural site in both seasons. This is consistent with the use of wood for domestic heating but may also be related to meat cooking. Thus, during the winter, traffic, wood combustion and microbial activity were all important sources in the urban environment, while traffic was the dominant source at the rural site. During the summer, there was considerable day-to-day variation in n-MCA concentrations but microbial activity was the dominant source. The semi-volatile low molecular weight C6-C8 acids accounted for a small (~ 5-10%) fraction of the total mass of n-MCAs. This factor is unlikely to be linked to a single source and its influence instead reflects the partitioning of these compounds between the gas and particle phases. This would explain their greater contribution during the winter.

  3. Differences in the OC/EC Ratios that Characterize Ambient and Source Aerosols due to Thermal-Optical Analysis

    EPA Science Inventory

    Thermal-optical analysis (TOA) is typically used to measure the OC/EC (organic carbon/elemental carbon) and EC/TC (elemental carbon/total carbon) ratios in source and atmospheric aerosols. The present study utilizes a dual-optical carbon aerosol analyzer to examine the effects of...

  4. Vertical profile of elemental concentrations in aerosol particles in the Bermuda area during GCE/CASE/WATOX

    NASA Astrophysics Data System (ADS)

    Ennis, G.; Sievering, H.

    1990-06-01

    During the 1988 Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX) joint effort, research was conducted to determine elemental concentrations in atmospheric aerosol particles near Bermuda, to construct a three-level (15, 150, and 2600 m ASL) vertical profile of these concentrations, and to ascertain the source of the particles. Samples were collected by the NOAA King Air aircraft and NOAA ship Mt. Mitchell on July 24-28, 1988. Concentration determinations were made for 16 elements through the use of an X ray fluorescence instrument designed for analysis of small-mass samples. A layering effect was found; concentrations of several elements at 150 m were more than twice their respective concentrations at 15 m and 2600 m. Enrichment factors, V/Mn ratio, and correlations between concentrations suggest a Saharan mineral source, despite air mass back trajectories that show no direct continental input for up to 10 days prior to sample collection. Estimated total mineral aerosol concentrations at 15 m, 150 m, and 2600 m are 1.5, 4.1, and 2.1 μg m-3.

  5. The variation of nitric acid vapor and nitrate aerosol concentrations near the island of Hawaii

    SciTech Connect

    Lee, G.

    1992-01-01

    Anthropogenic emissions of nitrogen oxides (NO + NO[sub 2]) are estimated to be half of the global emissions to the atmosphere. To understand the effect of increasing anthropogenic reactive nitrogen inputs to the global atmosphere, one needs to monitor their long-term variations. This dissertation examines the variations of total nitrate (nitric acid vapor and nitrate aerosol) at the Mauna Loa Observatory (MLO), Hawaii. During the Mauna Loa Observatory Photochemistry Experiment (MLOPEX) in May, 1988, six different air types were identified at MLO with statistical analysis. They were: (1) volcano influenced air, (2) stratosphere-like air, (3) boundary-layer air with recent anthropogenic influence, (4) photochemical haze, (5) marine boundary-layer air, (6) well-aged and modified marine air. Samples that might be influenced by marine air or human activity from local islands were eliminated with three meterological criteria (wind direction, condensation nuclei, and dew point). To examine the negative sampling artifacts of nitric acid vapor due to ground loss, mixing ratio gradients with height were measured during August of 1991. The observed gradients of nitric acid vapor indicated that the long-term samplers at 8 m at MLO may underestimate the free tropospheric nitric acid vapor mixing ratio by about 20%. The three year mean and median of free tropospheric total nitrate during long-term measurements were 113 pptv and 93 pptv, respectively. Each year, the total nitrate mixing ratios at MLO during the spring and summer were increased by more than a factor of two higher than fall and winter. NO[sub y] from remote continents (Asia and North America) are likely sources of these increased total nitrate at MLO during these seasons. However, other processes govern the total nitrate mixing ratios, e.g., degree of mixing between free tropospheric air and boundary air at source regions, stratospheric injection, and wet removal of total nitrate.

  6. Simulation of Long-term Changes in the Surface Ozone and Aerosol Concentrations Based on the Solar Activity Data

    NASA Astrophysics Data System (ADS)

    Belan, Boris; Antokhin, Pavel; Arshinov, Mikhail; Belan, Sergey; Slyadneva, Tatyana; Tolmachev, Gennadii

    2010-05-01

    Based on the long-term data obtained during previous studies we have found an interrelationship the surface ozone and aerosol content with solar activity. Variation of the concentration of both these atmospheric components have a period close to 11 years that has a 2(3)-year phase lag with respect to solar activity. Analyzing possible causes of such behaviour we discarded hypotheses of the anthropogenic origin of the trend and post-volcanic influence of El Chichon and Penatubo eruptions. It turned out, that variation of aerosol number concentration correlates with atmospheric circulation forms (W, E, and C), which are governed by solar activity. Then we analysed sequentially an ozone mechanism and variations of incoming ultraviolet radiation to determine possible causes of this phenomenon. As a result we found an intermediate process, which consists in the influence of increasing UV radiation on plants. At the beginning of UV radiation increase it is observed suppression of the vegetation. After 1- or 2-year adaptation period its productivity becomes stronger that leads to the emission of additional amount of ozone and aerosol precursors. This hypothesis has been verified using Normalized Difference Vegetation Index (NDVI) and gave good results. Prediction of the long-term changes in the surface ozone and aerosol concentrations has been done based on this hypothesis. This work was funded by Presidium of RAS (Program No. 16), Brunch of Geology, Geophysics and Mining Sciences of RAS (Program No 5), Russian Foundation for Basic Research (grant No 08-05-92499), and Federal Agency for Science and Innovation (State Contract № 02.518.11.7153).

  7. Estimating Size-Resolved Surface Particulate Matter Concentrations Using MISR High-Resolution Size-Fractionated Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Franklin, M.; Kalashnikova, O. V.; Garay, M. J.

    2015-12-01

    There is significant public health interest in gaining a better understanding of the health effects associated with particulate matter (PM) of different composition and size, yet ground-based monitoring data for such PM species is extremely limited. Due to their spatial and temporal coverage, satellite observations of total column aerosol optical depth (AOD) have increasingly been used to estimate surface concentrations of PM. While techniques for using satellite observations of AOD to predict surface concentrations of PM2.5 have been established, predicting surface concentrations of different particle sizes and species is more challenging. The Multi-angle Imaging SpectroRadiometer (MISR) instrument has the unique capability of estimating both total column AOD as well as total column size fractionated (small, medium and large) AOD. Using MISR AOD and AOD size fractionated products derived from high-resolution (275 m) observations reported at a spatial scale of 4.4 km in combination with national Air Quality System (AQS) monitoring data over the 2008-2009 period, we examine the association between size-fractionated MISR AOD and surface measurements of PM at different sizes (PM2.5 and PM10) and PM2.5 species (EC, OC, SO42-, NH4+) over the greater Los Angeles area. While there was a limited sample size of speciated PM data, the strongest univariate association found was between AOD and PM2.5 SO42- (R2=0.76). Incorporating meteorological data from weather stations in the area resulted in improvements to the models associating AOD with PM2.5 and PM10 mass. We found that PM2.5 was best predicted by a spatio-temporal model of AOD that also included dew point temperature and wind speed (R2=0.61), and that PM10 was best predicted by a spatio-temporal model of large fraction AOD that also included atmospheric pressure and wind speed (R2=0.65). These flexibly specified spatio-temporal models enabled reliable predictions of surface PM2.5 and PM10 concentrations at a 4.4km

  8. Aerosolized colistin for the treatment of nosocomial pneumonia due to multidrug-resistant Gram-negative bacteria in patients without cystic fibrosis

    PubMed Central

    Michalopoulos, Argyris; Kasiakou, Sofia K; Mastora, Zefi; Rellos, Kostas; Kapaskelis, Anastasios M; Falagas, Matthew E

    2005-01-01

    cured and three improved [they were transferred to another facility]). One patient deteriorated and died from septic shock and multiple organ failure. Aerosolized colistin was well tolerated by all patients; no bronchoconstriction or chest tightness was reported. Conclusion Aerosolized colistin may be a beneficial adjunctive treatment in the management of nosocomial pneumonia (ventilator associated or not) due to multidrug-resistant Gram-negative bacteria. PMID:15693967

  9. Radiative forcing by stratospheric aerosol in a CCM with interactive aerosol module

    NASA Astrophysics Data System (ADS)

    Brühl, Christoph; Lelieveld, Jos; Tost, Holger; Steil, Benedikt; Höpfner, Michael

    2013-04-01

    Multiyear studies with the atmospheric chemistry general circulation model EMAC with the aerosol module GMXe demonstrate that stratospheric aerosol formation is controlled by COS oxidation and SO2 injected by low-latitude volcanic eruptions. The model consistently uses the same parameters in the troposphere and stratosphere for 7 aerosol modes applied. Calculated radiative heating by aerosol feeds back to stratospheric dynamics. Radiative forcing by stratospheric aerosol can be diagnosed separately. The simulations include the medium size tropical eruptions in 2003, 2005 and 2006 but also the major eruption of Pinatubo in 1991. We show that calculated radiative forcing by stratospheric aerosol agrees well with the corresponding satellite derived quantity and that the medium size tropical eruptions should not be neglected in climate simulations. Changes in temperature, dynamics and tracer transport due to interactive aerosol will be also presented. We show also that calculated aerosol and SO2 concentrations are consistent with the observations by SAGE and by MIPAS on ENVISAT.

  10. CCN concentrations and BC warming influenced by maritime ship emitted aerosol plumes over southern Bay of Bengal

    PubMed Central

    Ramana, M. V.; Devi, Archana

    2016-01-01

    Significant quantities of carbon soot aerosols are emitted into pristine parts of the atmosphere by marine shipping. Soot impacts the radiative balance of the Earth-atmosphere system by absorbing solar-terrestrial radiation and modifies the microphysical properties of clouds. Here we examined the impact of black carbon (BC) on net warming during monsoon season over southern Bay-of-Bengal, using surface and satellite measurements of aerosol plumes from shipping. Shipping plumes had enhanced the BC concentrations by a factor of four around the shipping lane and exerted a strong positive influence on net warming. Compiling all the data, we show that BC atmospheric heating rates for relatively-clean and polluted-shipping corridor locations to be 0.06 and 0.16 K/day respectively within the surface layer. Emissions from maritime ships had directly heated the lower troposphere by two-and-half times and created a gradient of around 0.1 K/day on either side of the shipping corridor. Furthermore, we show that ship emitted aerosol plumes were responsible for increase in the concentration of cloud condensation nuclei (CCN) by an order of magnitude that of clean air. The effects seen here may have significant impact on the monsoonal activity over Bay-of-Bengal and implications for climate change mitigation strategies. PMID:27480275

  11. CCN concentrations and BC warming influenced by maritime ship emitted aerosol plumes over southern Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Ramana, M. V.; Devi, Archana

    2016-08-01

    Significant quantities of carbon soot aerosols are emitted into pristine parts of the atmosphere by marine shipping. Soot impacts the radiative balance of the Earth-atmosphere system by absorbing solar-terrestrial radiation and modifies the microphysical properties of clouds. Here we examined the impact of black carbon (BC) on net warming during monsoon season over southern Bay-of-Bengal, using surface and satellite measurements of aerosol plumes from shipping. Shipping plumes had enhanced the BC concentrations by a factor of four around the shipping lane and exerted a strong positive influence on net warming. Compiling all the data, we show that BC atmospheric heating rates for relatively-clean and polluted-shipping corridor locations to be 0.06 and 0.16 K/day respectively within the surface layer. Emissions from maritime ships had directly heated the lower troposphere by two-and-half times and created a gradient of around 0.1 K/day on either side of the shipping corridor. Furthermore, we show that ship emitted aerosol plumes were responsible for increase in the concentration of cloud condensation nuclei (CCN) by an order of magnitude that of clean air. The effects seen here may have significant impact on the monsoonal activity over Bay-of-Bengal and implications for climate change mitigation strategies.

  12. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size... Concentration (µg/m 3) Estimated Mass Concentration Measurement (µg/m 3) Ideal Sampler Fractional...

  13. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size... Concentration (µg/m3) Estimated Mass Concentration Measurement (µg/m3) Ideal Sampler Fractional...

  14. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size... Concentration (µg/m3) Estimated Mass Concentration Measurement (µg/m3) Ideal Sampler Fractional...

  15. Aircraft measurements of ozone, NOx, CO, and aerosol concentrations in biomass burning smoke over Indonesia and Australia in October 1997: Depleted ozone layer at low altitude over Indonesia

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yukitomo; Sawa, Yousuke; Makino, Yukio; Jensen, Jørgen B.; Gras, John L.; Ryan, Brian F.; Diharto, Sri; Harjanto, Hery

    The 1997 El Niño unfolded as one of the most sever El Niño Southern Oscillation (ENSO) events in this century and it coincided with massive biomass burning in the equatorial western Pacific region. To assess the influence on the atmosphere, aircraft observations of trace gases and aerosol were conducted over Kalimantan in Indonesia and Australia. Over Kalimantan in Indonesia, high concentrations of O3, NOx, CO, and aerosols were observed during the flight. Although the aerosol and NOx decreased with altitude, the O3 had the maximum concentration (80.5 ppbv) in the middle layer of the smoke haze and recorded very low concentrations (˜20 ppbv) in the lower smoke layer. This feature was not observed in the Australian smoke. We proposed several hypotheses for the low O3 concentration at low levels over Kalimantan. The most likely are lack of solar radiation and losses at the surface of aerosol particles.

  16. Simulation of Regional-scale Nucleation Events and Prediction of Aerosol Number Concentration in a Regional Air Quality Model

    NASA Astrophysics Data System (ADS)

    Jung, J.; Adams, P.; Pandis, S.

    2006-12-01

    Nanoparticles can perturb Earth's climate by growing to cloud condensation nuclei sizes and also may be harmful to human health. Accurate simulation of the nucleation, growth, and removal of multicomponent nanoparticles demands enormous computational resources. Most regional-scale three-dimensional chemical transport models do not include nanoparticles and do not conserve number concentrations. A major challenge associated with the simulation of nucleation events is the uncertainty regarding the controlling nucleation mechanism under typical atmospheric conditions. Previous work indicates that nucleation events in the Pittsburgh area are well predicted using ternary (H2O-H2SO4-NH3) nucleation theory, which was successful in predicting on which days nucleation events occurred during summer and winter, as well as the beginning and end of the events. To predict the composition and growth of nanoparticles, we have developed a computationally efficient new approach based on the Two-Moment Aerosol Sectional (TOMAS) microphysics module. This model simulates inorganic and organic components of the nanoparticles describing both the number and the mass distribution of the particulate matter from approximately 1 nm to 10 micrometers. The model explains why nanoparticles were observed to be acidic during nucleation events that appear to involve ammonia. The simulation suggests that nanoparticles produced by ternary nucleation can be acidic due to depletion of ammonia vapor during the growth of the particles out of the nucleation sizes. The low CPU time requirements of the model using TOMAS make it suitable for incorporation in three- dimensional chemical transport models. The nucleation/coagulation/growth model has been added to the PMCAMx regional air quality model and is used for the investigation of nucleation events in the Eastern U.S. We can estimate number budget in the Eastern U.S. and predict frequency/size of nucleation events.

  17. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  18. Trace Gas/Aerosol Boundary Concentrations and their Impacts on Continental-scale AQMEII Modelling Domains

    EPA Science Inventory

    Over twenty modeling groups are participating in the Air Quality Model Evaluation International Initiative (AQMEII) in which a variety of mesoscale photochemical and aerosol air quality modeling systems are being applied to continental-scale domains in North America and Europe fo...

  19. Daily variation of organic aerosol concentration and composition in Seoul, Korea during KORUS pre-campaign

    NASA Astrophysics Data System (ADS)

    Shin, H. J.; Lee, J.; Choi, A. Y.; Park, S. M.; Park, J. S.; Song, I. H.; Hong, Y. D.

    2015-12-01

    Daily variation of Organic Aerosol (OA) as well as organic tracer compounds have been observed in aerosol samples collected during KORUS-AQ (Korea-US Air Quality Study) pre-campaign (From May 18 to June 12) in Seoul, Korea. NR-PM1 bounded OA was measured by HR-TOF-AMS (Aerodyne) and the temporal variation, composition of OA by family group characterization, and oxidation state of OA was studied. And to distinguish the source characteristics (such as HOA, COA, NOA, SV-OOA, LV-OOA, etc…) of the organic, AMS-PMF model will be used.For the observation of organic tracer compounds, solvent extractable fractions were analyzed by GC-MS. More than 80 organic compounds were detected in the aerosol samples and grouped by source characterized classes, including vehicular emission tracers, biomass burning tracers, coal emission tracers, secondary organic aerosol (SOA) tracers. The main objective of this study is evaluation of the validity of OA fractionation based on the AMS measurement. So, we will compare daily variation of OA composition measured by AMS with daily variation of organic tracer compounds. Further, we will specify source characteristics estimated using AMS-PMF model by comparing the results of source apportionment of OA using PMF of organic tracer compounds.

  20. Computational fluid dynamics (CFD) simulations of dilute fluid-particle flows in aerosol concentrators

    NASA Astrophysics Data System (ADS)

    Hari, Sridhar

    2003-07-01

    In this study, commercially available Computational Fluid Dynamics (CFD) software, CFX-4.4 has been used for the simulations of aerosol transport through various aerosol-sampling devices. Aerosol transport was modeled as a classical dilute and dispersed two-phase flow problem. Eulerian-Lagrangian framework was adopted wherein the fluid was treated as the continuous phase and aerosol as the dispersed phase, with a one-way coupling between the phases. Initially, performance of the particle transport algorithm implemented in the code was validated against available experimental and numerical data in the literature. Code predictions were found to be in good agreement against experimental data and previous numerical predictions. As a next step, the code was used as a tool to optimize the performance of a virtual impactor prototype. Suggestions on critical geometrical details available in the literature, for a virtual impactor, were numerically investigated on the prototype and the optimum set of parameters was determined. Performance curves were generated for the optimized design at various operating conditions. A computational model of the Linear Slot Virtual Impactor (LSVI) fabricated based on the optimization study, was constructed using the worst-case values of the measured geometrical parameters, with offsets in the horizontal and vertical planes. Simulations were performed on this model for the LSVI operating conditions. Behavior of various sized particles inside the impactor was illustrated with the corresponding particle tracks. Fair agreement was obtained between code predictions and experimental results. Important information on the virtual impactor performance, not known earlier, or, not reported in the literature in the past, obtained from this study, is presented. In the final part of this study, simulations on aerosol deposition in turbulent pipe flow were performed. Code predictions were found to be completely uncorrelated to experimental data. The

  1. Errors in the determination of the solar constant by the Langley method due to the presence of volcanic aerosol

    SciTech Connect

    Schotland, R.M.; Hartman, J.E.

    1989-02-01

    The accuracy in the determination of the solar constant by means of the Langley method is strongly influenced by the spatial inhomogeneities of the atmospheric aerosol. Volcanos frequently inject aerosol into the upper troposphere and lower stratosphere. This paper evaluates the solar constant error that would occur if observations had been taken throughout the plume of El Chichon observed by NASA aircraft in the fall of 1982 and the spring of 1983. A lidar method is suggested to minimize this error. 15 refs.

  2. Aircraft observations of aerosol and trace gas concentrations in the tropical troposphere up to 12 km during the INCA campaign

    NASA Astrophysics Data System (ADS)

    Minikin, A.; Baehr, J.; Krejci, R.; Schlager, H.; van Velthoven, P.; Seifert, M.; Ström, J.; Petzold, A.; Schumann, U.

    2003-04-01

    During the EU funded project INCA (Interhemispheric differences in cirrus properties from anthropogenic emissions) the DLR Falcon 20, a German research aircraft with a maximum ceiling of 13~km, carried out measurements of aerosol and trace gas concentrations during transfer from Europe to South America and back in order to obtain meridional cross sections between 50^o~N and 50^o~S. At tropical latitudes the southbound transfer flights were directed along the west coast of South America, whereas the northbound transfer flights passed over Brazil and the central Atlantic Ocean. We report on observational data of number concentrations of Aitken and accumulation mode particles, the fractionation between volatile and non-volatile particles, as well as mixing ratios of carbon monoxide, reactive nitrogen species and ozone. In the tropics aerosol number concentrations above 9~km altitude increase by one order of magnitude, if compared to the sub-tropics and mid-latitudes, most pronounced for refractory particles. These elevated aerosol concentrations occur where 3-dimensional back trajectories originate from the central South American continent (Amazon basin) and have undergone systematic uplifting. The very high fraction of refractory particles, up to 50--60~% of total condensation nuclei, may indicate a strong contribution of continental ground sources. The INCA measurements confirm earlier TROPOZ II observations of an extended upper tropospheric layer of enhanced CO and NO over tropical South America during the wet season. Vertical distributions show a striking increase of CO mixing ratios above 6~km. Corresponding increases of NO and NOy and decreases of ozone were also found. During INCA an anticyclonic flow over tropical South America was persistent in the upper troposphere. This upper-level anticyclone is associated with intense convective activity over the Amazon basin and redistributes the convectively lifted air masses over a large area in the tropical middle

  3. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Weidinger, Tamás; Maenhaut, Willy

    Aerosol samples were collected using a stacked filter unit (SFU) for PM10-2.0 and PM2.0 size fractions on the platform of a metropolitan underground railway station in downtown Budapest. Temporal variations in the PM10 mass concentration and wind speed and direction were determined with time resolutions of 30 and 4 s using a tapered-element oscillating microbalance (TEOM) and a wind monitor, respectively. Sample analysis involved gravimetry for particulate mass, and particle-induced X-ray emission spectrometry (PIXE) for elemental composition. Diurnal variation of the PM10 mass concentration exhibited two peaks, one at approximately 07:00 h and the other at approximately 17:00 h. The mean±SD PM10 mass concentration for working hours was 155±55 μg m -3. Iron, Mn, Ni, Cu, and Cr concentrations were higher than in outdoor air by factors between 5 and 20, showing substantial enrichment compared to both the average crustal rock composition and the average outdoor aerosol composition. Iron accounted for 40% and 46% of the PM10-2.0 and PM2.0 masses, respectively, and 72% of the PM10 mass was associated with the PM10-2.0 size fraction. The aerosol composition in the metro station (in particular the abundance of the metals mentioned above) is quite different from the average outdoor downtown composition. Mechanical wear and friction of electric conducting rails and bow sliding collectors, ordinary rails and wheels, as well as resuspension, were identified as the primary sources. Possible health implications based on comparison to various limit values and to data available for other underground railways are discussed.

  4. Relationship and variations of aerosol number and PM 10 mass concentrations in a highly polluted urban environment—New Delhi, India

    NASA Astrophysics Data System (ADS)

    Mönkkönen, P.; Uma, R.; Srinivasan, D.; Koponen, I. K.; Lehtinen, K. E. J.; Hämeri, K.; Suresh, R.; Sharma, V. P.; Kulmala, M.

    Measurements of the aerosol number concentration and the PM 10 mass concentrations of urban background aerosols in different seasons were performed in New Delhi 2002, including the simultaneous measurements of NO 2, SO 2 and CO concentrations. The results indicate an interesting relationship between the aerosol number and the PM 10 mass concentrations. The number concentration increases with the mass concentration up to 300 μg m -3. However, after this point, the number concentration decreases even if the mass concentration increases. An explanation for this nonlinear behavior is proposed through a dynamic model involving the coagulation sink concept. The linear relationship between the mass and the number concentration in ambient air is valid if the mass concentration is relatively low. A high sink, however, means that the number concentration cannot be high—resulting in a decline in the number vs. mass plot. Clear diurnal, weekly and seasonal variations in concentrations were observed. High number concentrations of aerosols were observed in the mornings (7-8 a.m.) and in the evenings (7-10 p.m.). The number concentration was highest in March and lowest in June and the mass concentration was highest in November and lowest in June. The number concentration was higher during weekdays, but the mass concentration was higher during weekends. The number concentration correlates with the NO 2 concentration, which indicates that one major source of aerosol particles for the monitored site in New Delhi may be vehicular emission, but also domestic use of fossil fuels and biofuels cannot be neglected.

  5. Aerosol Behavior Log-Normal Distribution Model.

    SciTech Connect

    GIESEKE, J. A.

    2001-10-22

    HAARM3, an acronym for Heterogeneous Aerosol Agglomeration Revised Model 3, is the third program in the HAARM series developed to predict the time-dependent behavior of radioactive aerosols under postulated LMFBR accident conditions. HAARM3 was developed to include mechanisms of aerosol growth and removal which had not been accounted for in the earlier models. In addition, experimental measurements obtained on sodium oxide aerosols have been incorporated in the code. As in HAARM2, containment gas temperature, pressure, and temperature gradients normal to interior surfaces are permitted to vary with time. The effects of reduced density on sodium oxide agglomerate behavior and of nonspherical shape of particles on aerosol behavior mechanisms are taken into account, and aerosol agglomeration due to turbulent air motion is considered. Also included is a capability to calculate aerosol concentration attenuation factors and to restart problems requiring long computing times.

  6. Regional background aerosols over the Balearic Islands over the last 3 years: ground-based concentrations, atmospheric deposition and sources

    NASA Astrophysics Data System (ADS)

    Cerro, Jose Carlos; Pey, Jorge; Bujosa, Carles; Caballero, Sandra; Alastuey, Andres; Sicard, Michael; Artiñano, Begoña; Querol, Xavier

    2013-04-01

    In the context of the ChArMEx (The Chemistry-Aerosol Mediterranean Experiment, https://charmex.lsce.ipsl.fr) initiative, a 3-year study over a regional background environment (Can Llompart, CLP) in Mallorca has been conducted. Ground-based PM mass concentrations, gaseous pollutants and meteorological parameters were continuously registered from 2010 to 2012. Since the beginning of the campaign, PM10 daily samples for chemical determinations were obtained every 4 days, and dry and wet deposition samples were collected every week. Moreover, additional instruments (condensation particle counter, multi-angle absorption photometer, airpointer, sequential high and low volume samplers) were deployed during intensive filed campaigns in 2011 and 2012, as well as the sampling frequency was intensified. In the laboratory, PM samples were analyzed for inorganic compounds, and organic and elemental carbon following different approaches. In addition, n-alkanes, iso-alkanes, antiso-alkanes, levoglucosan, alkanoic acids and cholesterol were determined by GC-MS chromatography in a selection of 30 samples. Mean PM10, PM2.5 and PM1 concentrations in the period 2010-2012 reached 17, 11, and 8 µg/m3 respectively. Mass concentrations displayed marked seasonal trends, with much higher background levels in summer due to stagnant conditions over the western Mediterranean and increased frequency of Saharan dust events. Likewise, diverse-intensity peaks of coarse PM due to African dust inputs were observed along the year. On average, African dust in PM10 accounted for 1.0-1.5 µg/m3. Sporadic pollution events, characterized by most of the particles in the fine mode, were related to the transport of anthropogenic polluted air masses from central and eastern Europe. Wet and dry atmospheric deposition samples are being analyzed to quantify the deposition fluxes for different soluble and insoluble compounds. On average, PM10 composition is made up of organic matter (23%), mineral components (17

  7. Seasonal evolution of anionic, cationic and non-ionic surfactant concentrations in coastal aerosols from Askö, Sweden

    NASA Astrophysics Data System (ADS)

    Gérard, Violaine; Nozière, Barbara; Baduel, Christine

    2015-04-01

    Surfactants present in atmospheric aerosols are expected to enhance the activation into cloud droplets by acting on one of the two key parameters of the Köhler equation: the surface tension, σ. But because the magnitude of this effect and its regional and temporal variability are still highly uncertain [1,2], various approaches have been developed to evidence it directly in the atmosphere. This work presents the analysis of surfactants present in PM2.5 aerosol fractions collected at the coastal site of Askö, Sweden (58° 49.5' N, 17° 39' E) from July to October 2010. The total surfactant fraction was extracted from the samples using an improved double extraction technique. Surface tension measurements performed with the pendant drop technique [3] indicated the presence of very strong surfactants (σ ~ 30 - 35 mN/m) in these aerosols. In addition, these extractions were combined with colorimetric methods to determine the anionic, cationic and non-ionic surfactant concentrations [4,5], and provided for the first time interference-free surfactant concentrations in atmospheric aerosols. At this site, the total surfactant concentration in the PM2.5 samples varied between 7 to 150 mM and was dominated by anionic and non-ionic ones. The absolute surface tension curves obtained for total surfactant fraction displayed Critical Micelle Concentrations (CMC) in the range 50 - 400 uM, strongly suggesting a biological origin for the surfactants. The seasonal evolution of these concentrations and their relationships with environmental or meteorological parameters at the site will be discussed. [1] Ekström, S., Nozière, B. et al., Biogeosciences, 2010, 7, 387 [2] Baduel, C., Nozière, B., Jaffrezo, J.-L., Atmos. Environ., 2012, 47, 413 [3] Nozière, B., Baduel, C., Jaffrezo, J.-L., Nat. Commun., 2014, 5, 1 [4] Latif, M. T.; Brimblecombe, P. Environ. Sci. Technol., 2004, 38, 6501 [5] Pacheco e Silva et al., Method to measure surfactant in fluid, 2013, US 2013/0337568 A1

  8. Modeling Impacts On and Feedbacks Among Surface Energy and Water Budgets Due to Aerosols-In-Snow Across North America

    NASA Astrophysics Data System (ADS)

    Oaida, C. M.; Xue, Y.; Chin, M.; Flanner, M.; De Sales, F.; Painter, T. H.

    2014-12-01

    Snow albedo is known to have a significant impact on energy and water budgets by modulating land-atmosphere flux exchanges. In recent decades, anthropogenic activities that cause dust and soot emission and deposition on snow-covered areas have lead to the alteration of snow albedo. Our study aims to investigate and quantitatively assess the impact of aerosols-in-snow on surface energy and water budgets at a local and regional scale using a recently enhanced regional climate model that has physically based snow processes, including aerosols in snow. We employ NCAR's WRF-ARW model, which we have previously coupled with a land surface model, Simplified Simple Biosphere version 3 (SSiB-3). We improve the original WRF/SSiB-3 framework to include a snow-radiative transfer model, Snow, Ice, and Aerosol Radiative (SNICAR) model, which considers the effects of snow grain size and aerosols-in-snow on snow albedo evolution. Furthermore, the modified WRF/SSiB-3 can now account for the deposition and tracking of aerosols in snow. The model is run for 10 continuous years (2000-2009) over North America under two scenarios: (1) no aerosol deposition in snow, and (2) with GOCART dust, black carbon, and organic carbon surface deposition in snow. By comparing the two cases, we can investigate the impact of aerosols-in-snow. We examine the changes in surface energy balance, such as albedo, surface net solar radiation (radiative forcing), and surface air and skin temperature, and how these might interact with, and lead to, changes in the hydrologic cycle, including SWE, runoff, evapotranspiration and soil moisture. We investigate the mechanisms and feedbacks that might contribute to the changes seen across select regions of North America, which are potentially a result of both local and remote effects.

  9. Evaluation of serum myeloperoxidase concentration in dogs with heart failure due to chronic mitral valvular insufficiency.

    PubMed

    Park, Jong-In; Suh, Sang-Il; Hyun, Changbaig

    2017-01-01

    Myeloperoxidase (MPO) is a leukocyte-derived enzyme involved in the process of heart failure and is found to have good diagnostic and prognostic values in humans with chronic heart failure. This study evaluated the relationship between serum MPO levels and the severity of heart failure (HF) due to chronic mitral valvular insufficiency (CMVI) in dogs. Eighty-two client-owned dogs consisting of 69 dogs with different stages of HF due to CMVI and 13 age-matched healthy dogs were enrolled in this study. Serum MPO concentrations in the healthy and CMVI groups were determined by enzyme-linked immunosorbent assay (ELISA) using a canine-specific monoclonal anti-MPO antibody. Serum MPO concentrations were 273.3 ± 179.6 ng/L in the controls, 140.8 ± 114.1 ng/L in the International Small Animal Cardiac Health Council (ISACHC) I group, 109.0 ± 85.2 ng/L in the ISACHC II group, and 106.0 ± 42.3 ng/L in the ISACHC III group. Close negative correlation to serum MPO concentration was found in the severity of heart failure (ISACHC stage). Although this study found a modest relationship between serum MPO levels and the severity of HF due to CMVI in dogs, it also suggested that serum MPO levels decreased as the severity of HF increased.

  10. Concentration, distribution and variation of polar organic aerosol tracers in Ya'an, a middle-sized city in western China

    NASA Astrophysics Data System (ADS)

    Li, Li; Dai, Dongjue; Deng, Shihuai; Feng, Jialiang; Zhao, Min; Wu, Jun; Liu, Lu; Yang, Xiaohui; Wu, Sishi; Qi, Hui; Yang, Gang; Zhang, Xiaohong; Wang, Yingjun; Zhang, Yanzong

    2013-02-01

    composition of isoprene oxidation products, particularly, the high concentrations of the C5-alkene triols and their relative abundances comparable to those of the 2-methyltetrols, are possibly due to the fact that they are formed through acid-catalyzed reactions of C5-epoxydiols on weak acidic aerosols. Moreover, sugars and sugar alcohols were measured in important fractions at the two study areas, with the median concentrations of 309.7 and 465.7 ng/m3 at SAU and BSSA, respectively. The high abundances of sugar and sugar alcohols in the study area are explained by the robust metabolism of microorganism in the fertile soil under the warm and moist climate as well as vigorous physiological activities of vegetations in the exuberant subtropical areas. The detected organic tracers accounted in total for 1.5-1.8% of organic carbon (OC) in the study atmosphere, and about 15-21% of the OC could in total be apportioned to biogenic aerosol sources and source processes.

  11. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Estimated Mass Concentration... Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  12. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m 3)...

  13. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Estimated Mass Concentration... Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  14. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  15. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m 3)...

  16. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  17. Explicit Simulation of Aerosol Physics in a Cloud-Resolving Model: Aerosol Transport and Processing in the Free Troposphere.

    NASA Astrophysics Data System (ADS)

    Ekman, Annica M. L.; Wang, Chien; Ström, Johan; Krejci, Radovan

    2006-02-01

    Large concentrations of small aerosols have been previously observed in the vicinity of anvils of convective clouds. A 3D cloud-resolving model (CRM) including an explicit size-resolving aerosol module has been used to examine the origin of these aerosols. Five different types of aerosols are considered: nucleation mode sulfate aerosols (here defined by 0 d 5.84 nm), Aitken mode sulfate aerosols (here defined by 5.84 nm d 31.0 nm), accumulation mode sulfate aerosols (here defined by d 31.0 nm), mixed aerosols, and black carbon aerosols.The model results suggest that approximately 10% of the initial boundary layer number concentration of Aitken mode aerosols and black carbon aerosols are present at the top of the convective cloud as the cloud reaches its decaying state. The simulated average number concentration of Aitken mode aerosols in the cloud anvil (1.6 × 104 cm-3) is in the same order of magnitude as observations. Thus, the model results strongly suggest that vertical convective transport, particularly during the active period of the convection, is responsible for a major part of the appearance of high concentrations of small aerosols (corresponding to the Aitken mode in the model) observed in the vicinity of cloud anvils.There is some formation of new aerosols within the cloud, but the formation is small. Nucleation mode aerosols are also efficiently scavenged through impaction scavenging by precipitation. Accumulation mode and mixed mode aerosols are efficiently scavenged through nucleation scavenging and their concentrations in the cloud anvil are either very low (mixed mode) or practically zero (accumulation mode).In addition to the 3D CRM, a box model, including important features of the aerosol module of the 3D model, has been used to study the formation of new aerosols after the cloud has evaporated. The possibility of these aerosols to grow to suitable cloud condensation or ice nuclei size is also examined. Concentrations of nucleation mode aerosols

  18. Production Mechanisms, Number Concentration, Size Distribution. Chemical Composition, and Optical Properties of Sea Spray Aerosols

    NASA Technical Reports Server (NTRS)

    Meskhidze, Nicholas; Petters, Markus; Tsigaridis, Kostas; Bates. Tim; O'Dowd, Colin; Reid, Jeff; Lewis, Ernie R.; Gantt, Brett; Anguelova, Magdalena D.; Bhave, Prakash V.; Bird, James; Callaghan, Adrian H.; Ceburnis, Darius; Chang, Rachel; Clark, Antony; deLeeuw, Gerrit; Deane, Grant; DeMott, Paul J.; Elliot, Scott; Facchini, Maria Cristina; Fairall, Chris W.; Hawkins, Lelia; Hu, Yongxiang; Smirnov, Alexander

    2013-01-01

    Over forty scientists from six countries convened in Raleigh, NC on June 4-6 2012 to review the status and prospects of sea spray aerosol research. Participants were researchers from the oceanography and atmospheric science communities, including academia, private industry, and government agencies. The recommendations from the working groups are summarized in a science prioritization matrix that is meant to prioritize the research agenda and identify areas of investigation by the magnitude of their impact on proposed science questions. Str

  19. AGLITE: a multiwavelength lidar for aerosol size distributions, flux, and concentrations

    NASA Astrophysics Data System (ADS)

    Wilkerson, Thomas D.; Zavyalov, Vladimir V.; Bingham, Gail E.; Swasey, Jason A.; Hancock, Jed J.; Crowther, Blake G.; Cornelsen, Scott S.; Marchant, Christian; Cutts, James N.; Huish, David C.; Earl, Curtis L.; Andersen, Jan M.; Cox, McLain L.

    2006-05-01

    We report on the design, construction and operation of a new multiwavelength lidar developed for the Agricultural Research Service of the United States Department of Agriculture and its program on particle emissions from animal production facilities. The lidar incorporates a laser emitting simultaneous, pulsed Nd laser radiation at 355, 532 and 1064 nm at a PRF of 10 kHz. Lidar backscatter and extinction data are modeled to extract the aerosol information. All-reflective optics combined with dichroic and interferometric filters permit all the wavelength channels to be measured simultaneously, day or night, using photon counting by PMTs, an APD, and high speed scaling. The lidar is housed in a transportable trailer for all-weather operation at any accessible site. The laser beams are directed in both azimuth and elevation to targets of interest. We describe application of the lidar in a multidisciplinary atmospheric study at a swine production farm in Iowa. Aerosol plumes emitted from the hog barns were prominent phenomena, and their variations with temperature, turbulence, stability and feed cycle were studied, using arrays of particle samplers and turbulence detectors. Other lidar measurements focused on air motion as seen by long duration scans of the farm region. Successful operation of this lidar confirms the value of multiwavelength, eye-safe lidars for agricultural aerosol measurements.

  20. Mapping of PM10 surface concentrations derived from satellite observations of aerosol optical thickness over South-Eastern France

    NASA Astrophysics Data System (ADS)

    Péré, J.-C.; Pont, V.; Mallet, M.; Bessagnet, B.

    2009-01-01

    This work aims at developing a methodology based on in-situ experimental observations in order to use satellite retrievals as a tool for monitoring air particulate pollution. This methodology is applied during summer time on the South-Eastern France, which is one of the most polluted zones over Europe, enclosing further large cities and industrial sites. In a first time, we consider correlations between daily mean AERONET AOT and PM10 concentrations at five sites located as well close to as far from pollution sources. Our results show significant correlation coefficients, ranging from 0.68 to 0.79, following the site studied. Several factors like aerosol vertical distribution or hygroscopic growth factor could affect the link between PM10 ground measurements and aerosol optical thickness. To statistically strengthen this approach, we gather data sets from three types of sites (urban, near urban and rural) and establish a linear relationship between daily mean AOT measured from AERONET and PM10 mass concentrations. Secondly and thanks to good agreements between AOT measured from AERONET and AOT retrieved from the MODIS sensor, we calculate estimated concentrations of PM10 by using MODIS retrievals above the South-Eastern France. Uncertainties about this approach are discussed.

  1. Aerosol effects on deep convective clouds: impact of changes in aerosol size distribution and aerosol activation parameterization

    NASA Astrophysics Data System (ADS)

    Ekman, A. M. L.; Engström, A.; Söderberg, A.

    2010-03-01

    A cloud-resolving model including explicit aerosol physics and chemistry is used to study the impact of aerosols on deep convective strength. More specifically, by conducting six sensitivity series we examine how the complexity of the aerosol model, the size of the aerosols and the aerosol activation parameterization influence the aerosol-induced deep convective cloud sensitivity. Only aerosol effects on liquid droplet formation are considered. We find that an increased aerosol concentration generally results in stronger convection, which for the simulated case is in agreement with the conceptual model presented by Rosenfeld et al. (2008). However, there are two sensitivity series that do not display a monotonic increase in updraft velocity with increasing aerosol concentration. These exceptions illustrate the need to: 1) account for changes in evaporation processes and subsequent cooling when assessing aerosol effects on deep convective strength, 2) better understand graupel impaction scavenging of aerosols which may limit the number of CCN at a critical stage of cloud development and thereby dampen the convection, 3) increase our knowledge of aerosol recycling due to evaporation of cloud droplets. Furthermore, we find a significant difference in the aerosol-induced deep convective cloud sensitivity when using different complexities of the aerosol model and different aerosol activation parameterizations. For the simulated case, a 100% increase in aerosol concentration results in a difference in average updraft between the various sensitivity series which is as large as the average updraft increase itself. The model simulations also show that the change in graupel and rain formation is not necessarily directly proportional to the change in updraft velocity. For example, several of the sensitivity series display a decrease of the rain amount at the lowest model level with increasing updraft velocity. Finally, an increased number of aerosols in the Aitken mode (here

  2. Temporal variability of mineral dust in southern Tunisia: analysis of 2 years of PM10 concentration, aerosol optical depth, and meteorology monitoring

    NASA Astrophysics Data System (ADS)

    Bouet, Christel; Taieb Labiadh, Mohamed; Bergametti, Gilles; Rajot, Jean Louis; Marticorena, Béatrice; Sekrafi, Saâd; Ltifi, Mohsen; Féron, Anaïs; des Tureaux, Thierry Henry

    2016-04-01

    The south of Tunisia is a region very prone to wind erosion. During the last decades, changes in soil management have led to an increase in wind erosion. In February 2013, a ground-based station dedicated to the monitoring of mineral dust (that can be seen in this region as a proxy of the erosion of soils by wind) was installed at the Institut des Régions Arides (IRA) of Médenine (Tunisia) to document the temporal variability of mineral dust concentrations. This station allows continuous measurements of surface PM10 concentration (TEOM™), aerosol optical depth (CIMEL sunphotometer), and total atmospheric deposition of insoluble dust (CARAGA automatic sampler). The simultaneous monitoring of meteorological parameters (wind speed and direction, relative humidity, air temperature, atmospheric pressure, and precipitations) allows to analyse the factors controlling the variations of mineral dust concentration from the sub-daily to the annual scale. The results from the two first years of measurements of PM10 concentration are presented and discussed. In average on year 2014, PM10 concentration is 56 μg m-3. However, mineral dust concentration highly varies throughout the year: very high PM10 concentrations (up to 1,000 μg m-3 in daily mean) are frequently observed during wintertime and springtime, hardly ever in summer. These episodes of high PM10 concentration (when daily average PM10 concentration is higher than 240 μg m-3) sometimes last several days. By combining local meteorological data, air-masses trajectories, sunphotometer measurements, and satellite imagery, the part of the high PM10concentration due to local emissions and those linked to an advection of dusty air masses by medium and long range transport from the Sahara desert is quantified.

  3. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application

    PubMed Central

    van Donkelaar, Aaron; Martin, Randall V.; Brauer, Michael; Kahn, Ralph; Levy, Robert; Verduzco, Carolyn; Villeneuve, Paul J.

    2010-01-01

    Background Epidemiologic and health impact studies of fine particulate matter with diameter < 2.5 μm (PM2.5) are limited by the lack of monitoring data, especially in developing countries. Satellite observations offer valuable global information about PM2.5 concentrations. Objective In this study, we developed a technique for estimating surface PM2.5 concentrations from satellite observations. Methods We mapped global ground-level PM2.5 concentrations using total column aerosol optical depth (AOD) from the MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multiangle Imaging Spectroradiometer) satellite instruments and coincident aerosol vertical profiles from the GEOS-Chem global chemical transport model. Results We determined that global estimates of long-term average (1 January 2001 to 31 December 2006) PM2.5 concentrations at approximately 10 km × 10 km resolution indicate a global population-weighted geometric mean PM2.5 concentration of 20 μg/m3. The World Health Organization Air Quality PM2.5 Interim Target-1 (35 μg/m3 annual average) is exceeded over central and eastern Asia for 38% and for 50% of the population, respectively. Annual mean PM2.5 concentrations exceed 80 μg/m3 over eastern China. Our evaluation of the satellite-derived estimate with ground-based in situ measurements indicates significant spatial agreement with North American measurements (r = 0.77; slope = 1.07; n = 1057) and with noncoincident measurements elsewhere (r = 0.83; slope = 0.86; n = 244). The 1 SD of uncertainty in the satellite-derived PM2.5 is 25%, which is inferred from the AOD retrieval and from aerosol vertical profile errors and sampling. The global population-weighted mean uncertainty is 6.7 μg/m3. Conclusions Satellite-derived total-column AOD, when combined with a chemical transport model, provides estimates of global long-term average PM2.5 concentrations. PMID:20519161

  4. Radiocarbon-insights into temporal variations in the sources and concentrations of carbonaceous aerosols in the Los Angeles and Salt Lake City Metropolitan Areas

    NASA Astrophysics Data System (ADS)

    Czimczik, Claudia; Mouteva, Gergana; Simon, Fahrni; Guaciara, Santos; James, Randerson

    2014-05-01

    Increased fossil fuel consumption and biomass burning are contributing to significantly larger emissions of black carbon (BC) aerosols to the atmosphere. Together with organic carbon (OC), BC is a major constituent of fine particulate matter in urban air, contributes to haze and has been linked to a broad array of adverse health effects. Black carbon's high light absorption capacity and role in key (in-)direct climate feedbacks also lead to a range of impacts in the Earth system (e.g. warming, accelerated snow melt, changes in cloud formation). Recent work suggests that regulating BC emissions can play an important role in improving regional air quality and reducing future climate warming. However, BC's atmospheric transport pathways, lifetime and magnitudes of emissions by sector and region, particularly emissions from large urban centers, remain poorly constrained by measurements. Contributions of fossil and modern sources to the carbonaceous aerosol pool (corresponding mainly to traffic/industrial and biomass-burning/biogenic sources, respectively) can be quantified unambiguously by measuring the aerosol radiocarbon (14C) content. However, accurate 14C-based source apportionment requires the physical isolation of BC and OC, and minimal sample contamination with extraneous carbon or from OC charring. Compound class-specific 14C analysis of BC remains challenging due to very small sample sizes (5-15 ug C). Therefore, most studies to date have only analyzed the 14C content of the total organic carbonaceous aerosol fraction. Here, we present time-series 14C data of BC and OC from the Los Angeles (LA) metropolitan area in California - one of two megacities in the United States - and from Salt Lake City (SLC), UT. In the LA area, we analyzed 48h-PM10 samples near the LA port throughout 2007 and 2008 (with the exception of summer). We also collected monthly-PM2.5 samples at the University of California - Irvine, with shorter sampling periods during regional wildfire

  5. Relationship of ground-level aerosol concentration and atmospheric electric field at three observation sites in the Arctic, Antarctic and Europe

    NASA Astrophysics Data System (ADS)

    Kubicki, Marek; Odzimek, Anna; Neska, Mariusz

    2016-09-01

    Aerosol number concentrations in the particle size range from 10 nm to 1 μm and vertical electric field strength in the surface layer was measured between September 2012 and December 2013 at three observation sites: mid-latitude station Swider, Poland, and, for the first time, in Hornsund in the Arctic, Spitsbergen, and the Antarctic Arctowski station in the South Shetland Islands. The measurements of aerosol concentrations have been performed simultaneously with measurements of the electric field with the aim to assess the local effect of aerosol on the electric field Ez near the ground at the three stations which at present form a network of atmospheric electricity observatories. Measurements have been made regardless of weather conditions at Swider and Arctowski station and mostly on fair-weather days at Hornsund station. The monthly mean particle number concentrations varied between 580 and 2100 particles cm- 3 at Arctowski, between 90 and 1270 particles cm- 3 in Hornsund, and between 6700 and 14,000 particles cm- 3 in the middle latitude station Swider. Average diurnal variations of the ground-level electric field Ez and particle number concentrations in fair-weather conditions were independent of each other for Arctowski and Hornsund stations. At Swider station the diurnal variation is usually characterized by an increase of aerosol concentration in the evening which results in the increased electric field. The assumption of neglecting the influence of varying aerosol concentration on the variation of the electric field in the polar regions, often adopted in studies, is confirmed here by the observations at Arctowski and Hornsund. The results of aerosol observations are also compared with modelled aerosol concentrations for global atmospheric electric circuit models.

  6. Basic hydraulic experiment on the saturated concentration of suspended load due to tsunamis

    NASA Astrophysics Data System (ADS)

    Takahashi, Tomoyuki; Somekawa, Shiho

    2016-04-01

    When tsunamis arrive in the shallow sea, a huge amount of suspended load is generated by large velocity and strong turbulence. The suspended load causes the geomorphic processes of erosion and deposition. Because the suspended load cannot be increased endlessly, it should have the saturated concentration. Many numerical models of sediment transport due to tsunamis have assumed a constant value of 1% for the saturated concentration empirically. However, it is supposed as a function of velocity. In this study, a hydraulic experiment was carried out to investigate a relationship between velocity and the saturated concentration of suspended load when tsunamis attack. A water circulation pipe used in the experiment was 10 cm in a diameter, 260 cm in length and 50 cm in width. A velocity of water flow in the pipe had been controlled by two pumps and two valves. It was changed from 0.24 to 1.22 m/s. Various amounts of sand was spread on the bottom of pipe. The amount of sand was changed from 0.1 to 10% as converted in the concentration of suspended load if all sand suspended. A diameter and a density of the sand were 0.267 mm and 2.64 x 103 kg/m^3. A condition of sediment transport in the pipe was recorded by video camera from a transparent window at the side of pipe. The condition was judged as all sand particles were suspended or not. The former condition indicates that the concentration of suspended load is saturated and the latter does it is not saturated. When velocity was smaller than 0.47 m/s, there was no suspended load because of a weak tractive force. When velocity became larger, the suspended load was generated and the concentration also became higher. However, the concentration had the upper limit and surplus sand appeared on the bed of pipe when velocity became much larger. The condition gave the saturated concentration of suspended load. When velocity was 0.665 m/s, the saturated concentration was smaller than 1% which is used in many numerical simulations

  7. Decadal trend of black carbon and refractory carbonaceous aerosol in the western rim of the North Pacific Ocean: atmospheric concentration and the retrieved record of deposition flux

    NASA Astrophysics Data System (ADS)

    Kaneyasu, Naoki; Yamaguchi, Takashi; Noguchi, Izumi; Akiyama, Masayuki; Matsumoto, Kiyoshi

    2013-04-01

    The long-term trend of light absorbing carbonaceous aerosols (or black carbon: BC) or refractory carbonaceous aerosol (or elemental carbon: EC) concentration is reported at European background sites such as Mace Head, and that of aerosol absorption coefficient are monitored in many GAW sites. On the contrary, such long-term data are relatively scarce at around the western part of the North Pacific Ocean. Thus, to understand the long-term variation of in the area, BC in fine aerosol fraction has been measured at Chichi-jima Islands, Japan. Chichi-jima Island is located 1000 km south of the Japanese mainland, and 1800 km west of the coast line of the Asian continent. BC has been measured with an Aethalometer (Magee, AE-16 and AE-30) since December, 1998 with 1 hr time resolution. Mass flowmeter embedded inside the Aethalometer is calibrated with a rotational dry gas-meter once a year. Monthly averaged BC concentration shows an obvious seasonal variation, i.e. high concentration during late autumn-winter-spring period resulting from the transport from East Asia, with maximum daily concentration above 500 ng m-3. In summer, daily concentration was usually less than 20 ng m-3, due to the clean background airmass originating from the North Pacific Anticyclone. Decadal trend of the annual averaged BC concentration showed a increasing trend from 2000 to 2007 and started to decrease after 2008, which roughly coincides with the reported emission trend of SO2 in China (Lu et al., 2010). In addition, total (i.e., wet + dry) deposition record of refractory carbon at two sites in the northern Japan (Rishiri Island: a remote island site, and Sapporo City: an urban site) are retrieved. At these sites, the local government have been measuring the chemical components in precipitation water collected by deposition gauges. In the deposition gauge, a membrane filter made of cellulose-acetate is fixed at the bottom of the funnel to remove water-insoluble particles from the precipitated

  8. Radionuclide concentration in cabbage samples due to gamma radiation in Samsun, Turkey

    NASA Astrophysics Data System (ADS)

    Altıkulaç, Aydan; Gümüş, Hasan

    2016-11-01

    Establishing of radioactivity planes in foodstuff has emphasis because it allows the evaluation of population exposure to radiation by take nourishment. In this paper, the activity concentrations of 226Ra, 232Th, 40K and 137Cs were determined in cabbage samples collected from Samsun city of Turkey using a gamma ray spectrometry method with a HPGe detector. The mean concentration value of 226Ra, 232Th, 40K and 137Cs in cabbage samples were 1.11±0.03 Bqkg-1, 1.44±0.04 Bqkg-1, 743.75±21.21 Bqkg-1 and 0.18±0.003 Bqkg-1, respectively. The calculated total annual effective dose received from 226Ra, 232Th, 40K and 137Cs due to cabbage samples by population of Samsun province was quite lower than the World average value as suggested by UNSCEAR.

  9. Effect of aerosols and NO2 concentration on ultraviolet actinic flux near Mexico City during MILAGRO: measurements and model calculations

    SciTech Connect

    Palancar, G. G.; Lefer, B. L.; Hall, S. R.; Shaw, W. J.; Corr, C. A.; Herndon, S. C.; Slusser, J. R.; Madronich, S.

    2013-01-24

    Ultraviolet (UV) actinic fluxes (AF) measured with three Scanning Actinic Flux Spectroradiometers (SAFS) are compared with the Tropospheric Ultraviolet-Visible (TUV) model v.5 in order to assess the effects of aerosols and NO2 concentrations on the radiation. Measurements were made during the MILAGRO campaign near Mexico City in March 2006, at a ground-based station near Mexico City (the T1 supersite) and from the NSF/NCAR C-130 aircraft. At the surface, measurements are typically smaller by up to 25 % in the morning, 10% at noon, and 40% in the afternoon, than actinic flux modeled for clean, cloud-free conditions. When measurements of PBL height, NO2 concentration and aerosols optical properties are included in the model, the agreement improves to within ±10% in the morning and afternoon, and ±3% at noon. Based on daily averages, aerosols account for 68%, NO2 for 25%, and residual uncertainties for 7% of these AF reductions observed at the surface. Several overpasses from the C-130 aircraft provided the opportunity to examine the actinic flux perturbations aloft, and also show better agreement with the model when aerosol and NO2 effects are included above and below the flight altitude. TUV model simulations show that the vertical structure of the actinic flux is sensitive to the choice of the aerosol single scattering albedo (SSA) at UV wavelengths. Typically, aerosols caused enhanced AF above the PBL and reduced AF near the surface. However, for highly scattering aerosols (SSA > 0.95), enhancements can penetrate well into the PBL, while for strongly absorbing aerosols (SSA<0.7) reductions in AF are computed in the free troposphere as well as in the PBL. Finally, additional measurements of the SSA at these wavelengths are needed to better constrain the effect of aerosols on the vertical structure of the actinic flux.

  10. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-concentration Size Distributions

    NASA Astrophysics Data System (ADS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2000-03-01

    We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po210), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below.

  11. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-Concentration Size Distributions

    NASA Technical Reports Server (NTRS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2001-01-01

    We have developed a fast-response Nanometer Aerosol Size Analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 seconds. The analyzer includes a bipolar charger (P0210), an extended-length Nanometer Differential Mobility Analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 second per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the Tandem Differential Mobility Analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented.

  12. Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign

    NASA Astrophysics Data System (ADS)

    Li, G.; Zavala, M.; Lei, W.; Tsimpidi, A. P.; Karydis, V. A.; Pandis, S. N.; Canagaratna, M. R.; Molina, L. T.

    2011-04-01

    Organic aerosol concentrations are simulated using the WRF-CHEM model in Mexico City during the period from 24 to 29 March in association with the MILAGRO-2006 campaign. Two approaches are employed to predict the variation and spatial distribution of the organic aerosol concentrations: (1) a traditional 2-product secondary organic aerosol (SOA) model with non-volatile primary organic aerosols (POA); (2) a non-traditional SOA model including the volatility basis-set modeling method in which primary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA (Mexico City Metropolitan Area) 2006 official emission inventory is used in simulations and the POA emissions are modified and distributed by volatility based on dilution experiments for the non-traditional SOA model. The model results are compared to the Aerosol Mass Spectrometry (AMS) observations analyzed using the Positive Matrix Factorization (PMF) technique at an urban background site (T0) and a suburban background site (T1) in Mexico City. The traditional SOA model frequently underestimates the observed POA concentrations during rush hours and overestimates the observations in the rest of the time in the city. The model also substantially underestimates the observed SOA concentrations, particularly during daytime, and only produces 21% and 25% of the observed SOA mass in the suburban and urban area, respectively. The non-traditional SOA model performs well in simulating the POA variation, but still overestimates during daytime in the urban area. The SOA simulations are significantly improved in the non-traditional SOA model compared to the traditional SOA model and the SOA production is increased by more than 100% in the city. However, the underestimation during daytime is still salient in the urban area and the non-traditional model also fails to reproduce the high level of SOA concentrations in the suburban area

  13. Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign

    NASA Astrophysics Data System (ADS)

    Li, G.; Zavala, M.; Lei, W.; Tsimpidi, A. P.; Karydis, V. A.; Pandis, S. N.; Molina, L. T.

    2010-12-01

    Organic aerosol concentrations are simulated using the WRF-CHEM model in Mexico City during the period from 24 to 29 March in association with the MILAGRO-2006 campaign. Two approaches are employed to predict the variation and spatial distribution of the organic aerosol concentrations: (1) a traditional 2-product secondary organic aerosol (SOA) model with non-volatile primary organic aerosols (POA); (2) a non-traditional SOA model including the volatility basis-set modeling method in which primary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA 2006 official emission inventory is used in simulations and the POA emissions are modified and distributed by volatility based on dilution experiments for the non-traditional SOA model. The model results are compared to the Aerosol Mass Spectrometry (AMS) observations analyzed using the Positive Matrix Factorization (PMF) technique at an urban background site (T0) and a suburban background site (T1) in Mexico City. The traditional SOA model frequently underestimates the observed POA concentrations during rush hours and overestimates the observations in the rest of the time in the city. The model also substantially underestimates the observed SOA concentrations, particularly during daytime, and only produces 21% and 25% of the observed SOA mass in the suburban and urban area, respectively. The non-traditional SOA model performs well in simulating the POA variation, but still overestimates during daytime in the urban area. The SOA simulations are significantly improved in the non-traditional SOA model compared to the traditional SOA model and the SOA production is increased by more than 100% in the city. However, the underestimation during daytime is still salient in the urban area and the non-traditional model also fails to reproduce the high level of SOA concentrations in the suburban area. In the non-traditional SOA model

  14. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE PAGES

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; ...

    2015-03-18

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in themore » chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of

  15. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption at Three Location in and Around Mexico City

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2006-12-01

    As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in

  16. [Use of laser flow-type fluorescence aerosol particle counter to evaluate the concentration of microbes in the surface air under high dust content].

    PubMed

    Kalinin, Iu T; Vorob'ev, S A; Khramov, E N; Vorob'eva, E A; Kuznetsov, A P; Kiselev, O S

    2000-01-01

    The paper deals with the use of a laser flow-type fluorescence aerosol particle counter to evaluate the concentrations of microbes in the surface air under high dust content. Various circuits of flow-type optic aerosol recorders are analyzed. Flow spectral luminescence analysis of some particles flow while exciting the fourth harmonics of a pulse laser on yttrium-aluminium garnet with neodymium by ultraviolet radiation is shown to be the most optimum method for indication of individual aerosol particles. Experiments were conducted on the authors' model of a pilot plant based on this method. The model of a laser flow-type optic analyzer was developed for experimental studies that give a clear display of biological aerosols in complex aerosols. The laser flow-type analyzer-based unit developed may provide a fluorescence signal of aerosol particles in the flow of a sample and that light diffusion signal from them at an exciting light wavelength of 266 nm. Experiments with BVC aerosols and soil dust particles were conducted in different regions of Russia. They showed it possible to detect and to rapidly calculate soil microorganisms by laser flow-type fluorescence assay of individual particles when excited by ultraviolet radiation.

  17. Toxicity of atmospheric aerosols on marine phytoplankton

    PubMed Central

    Paytan, Adina; Mackey, Katherine R. M.; Chen, Ying; Lima, Ivan D.; Doney, Scott C.; Mahowald, Natalie; Labiosa, Rochelle; Post, Anton F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus. We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere–ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia. PMID:19273845

  18. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  19. Predictions of size-resolved aerosol concentrations of ammonium, chloride and nitrate at a bayside site using EQUISOLV II

    NASA Astrophysics Data System (ADS)

    Campbell, Scott W.; Evans, Melissa C.; Poor, Noreen D.

    Measured ambient air concentrations of ammonium, chloride and nitrate were compared with concentrations produced by EQUISOLV II, an aerosol thermodynamic equilibrium model. The monitoring equipment was located ˜50 m from Old Tampa Bay at the eastern end of the Gandy Bridge in Tampa, FL. Size-segregated ion concentrations of ammonium, sodium, potassium, calcium, magnesium, fluoride, chloride, nitrite, nitrate, sulfate and phosphate were determined from 6- and 1-day integrated cascade impactor samples obtained in May and August 2001, respectively. EQUISOLV II was initialized with these ion concentrations by size bin, and by gas phase concentrations of the volatile species, acquired with a collocated annular denuder system. The model redistributed the ions between the size bins until gas and particle concentrations reached equilibrium. The model calculated predominantly fine particle ammonium and coarse particle chloride and nitrate. For the May sampling period, when the average relative humidity was below 65%, the model predicted the formation of seven solids KNO 3, K 2SO 4, (NH 4) 2SO 4, Na 2SO 4, NaCl, NaNO 3, and CaSO 4·2H 2O. The amounts of ammonium in the fine fraction and of nitrate and chloride in the coarse fraction were predicted within the combined measurement and modeling uncertainty in the majority of cases.

  20. Evaluating the Role of Boundary Layer Processes on Diurnal Aerosol Concentrations in the Blue Ridge Mountains of Virginia

    NASA Astrophysics Data System (ADS)

    Lee, T. R.; de Wekker, S.

    2009-12-01

    Forecasting air quality in mountainous terrain is a challenging topic. In this study, we aim to understand the diurnal variability of particulate matter, CO, and CO2 in the Shenandoah National Park (SNP) located in the Blue Ridge Mountains of Virginia. We focus on the effect of atmospheric boundary layer (ABL) dynamics on the diurnal aerosol variability using a combination of observations and numerical modeling. Boundary layer dynamics in mountainous terrain is complicated by a variety of factors such as terrain-induced wind flows. These flows can have a significant impact on atmospheric chemistry but are not well resolved in current air quality forecasting models. In this research, we seek to 1) measure and simulate the diurnal evolution of the ABL at a mountaintop site in the Blue Ridge Mountains, 2) investigate the effect of ABL dynamics on aerosol and CO concentrations on clear days, and 3) investigate the transport of aerosols and pollutants by local, regional, and synoptic-scale flows to the mountaintop using the FLEXPART particle dispersion model and WRF-CHEM model. WRF-CHEM will be run with and without chemistry to isolate the effects of boundary layer dynamics and aerosol formation on diurnal aerosol variability. The results of this study will be incorporated into a diagnostic air quality forecast model for SNP. Measurements come from a 17-m walkup tower that was established in May 2008 along a ridgeline at an elevation of 1037m (38.61°N, 78.35°W) at Pinnacles in the north-central section of SNP. The tower is outfitted with a suite of instruments, including temperature/humidity sensors, cup and sonic anemometers, radiation sensors, a closed-path CO/CO2 gas analyzer, and particle counter. Also, a portable eye-safe LIDAR system is located on-site. In addition, ozone data are collected at a site located nearby. Preliminary results from select clear days in fall, 2008 indicate that ABL height is an important factor governing CO and CO2 concentrations at

  1. Assessing the use of VIIRS Aerosol Intermediate Product for AOD retrieval and PM25 concentrations.

    NASA Astrophysics Data System (ADS)

    Gross, B.; Nazmi, C.; Moshary, F.; Lightstone, S.

    2015-12-01

    In previous work, it was shown that MODIS AOD retreivals over urban areas have overbiases that can be removed if proper account is made of the surface land classification. In fact, both direct methods where improvements to urban model albedos were implemented as well as post processing approaches using Neural Networks (NN's) were shown to be useful in reducing biases and retreival uncertainty. In this paper, we make a preliminary study of these approaches to the VIIRS Intermediate Aerosol Optical Depth Product and demonstrate that VIIRS Biases can also be substantially reduced. Comparisons with MODIS will be made and direct use of the high resolution product will be used to assess potential PM25 estimation.

  2. Vacancies driven magnetic ordering in ZnO nanoparticles due to low concentrated Co ions

    NASA Astrophysics Data System (ADS)

    Verma, Kuldeep Chand; Bhatia, Ravi; Kumar, Sanjeev; Kotnala, R. K.

    2016-07-01

    The lattice defects due to oxygen vacancies in ZnO nanoparticles with low doping of Co ions are investigated. The low concentrated Co ions in ZnO are responsible to the free charge carriers and oxygen vacancies to induce long-range ferromagnetic ordering. We have synthesized Zn1-x Co x O [x = 0.002, 0.004, 0.006 and 0.008] nanoparticles by a sol-gel process. X-ray fluorescence analysis detects the chemical composition of Zn, Co and O atoms. Rietveld refinement of x-ray diffraction pattern could confirm the wurtzite ZnO structure and the lattice constants with Co doping. The nanoparticles dimensions as well lattice spacing of ZnO are enhanced with Co substitution. Fourier transform infrared vibrational modes involve some organic groups to induce lattice defects and the ionic coordination among Zn, Co and O atoms. The room temperature Raman active mode E2 indicates frequency shifting with Co to induce stress in the wurtzite lattice. Photoluminescence spectra have a strong near-band-edge emission due to band gap energy and defects related to oxygen vacancies. X-ray photoelectron spectra confirm that the low dopant Co ions in ZnO lattice occupied Zn atoms by introducing oxygen vacancies and the valance states Zn2+, Co2,3+. The zero-field and field cooling magnetic measurement at 500 Oe in Co:ZnO samples indicate long-range ferromagnetism that is enhanced at 10 K due to antiferromagnetic-ferromagnetic ordering. The lattice defects/vacancies due to oxygen act as the medium of magnetic interactions which is explained by the bound magnetic polaron model.

  3. The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE

    SciTech Connect

    Jackson, Robert C.; McFarquhar, Greg; Korolev, Alexei; Earle, Michael; Liu, Peter S.; Lawson, R. P.; Brooks, Sarah D.; Wolde, Mengistu; Laskin, Alexander; Freer, Matthew

    2012-08-14

    Cloud and aerosol data acquired by the National Research Council of Canada (NRC) Convair-580 aircraft in, above, and below single-layer arctic stratocumulus cloud during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 were used to test three aerosol indirect effects hypothesized to act in mixed-phase clouds: the riming indirect effect, the glaciation indirect effect, and the cold second indirect effect. The data showed a correlation of R= 0.75 between liquid drop number concentration, Nliq, inside cloud and ambient aerosol number concentration NPCASP below cloud. This, combined with increasing liquid water content LWC with height above cloud base and the nearly constant profile of Nliq, suggested that liquid drops were nucleated from aerosol at cloud base. No strong evidence of a riming indirect effect was observed, but a strong correlation of R = 0.69 between ice crystal number concentration Ni and NPCASP above cloud was noted. Increases in ice nuclei (IN) concentration with NPCASP above cloud combined with the subadiabatic LWC profiles suggest possible mixing of IN from cloud top consistent with the glaciation indirect effect. The higher Nice and lower effective radius rel for the more polluted ISDAC cases compared to data collected in cleaner single-layer stratocumulus conditions during the Mixed-Phase Arctic Cloud Experiment is consistent with the operation of the cold second indirect effect. However, more data in a wider variety of meteorological and surface conditions, with greater variations in aerosol forcing, are required to identify the dominant aerosol forcing mechanisms in mixed-phase arctic clouds.

  4. Highly time-resolved trace element concentrations in aerosols during the Megapoli Paris campaigns

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Visser, Suzanne; Slowik, Jay G.; Crippa, Monica; Poulain, Laurent; Appel, Karen; Flechsig, Uwe; Prevot, Andre S. H.; Baltensperger, Urs

    2014-05-01

    Trace elements contribute typically only a few percent to the total mass of air pollutants, however, they can affect the environment in significant ways, especially those that are toxic. Furthermore, they are advantageous with respect to a refinement of source apportionment when measured with high time resolution and appropriate size segregation. This approach is especially advantageous in an urban environment with numerous time-variant emission sources distributed across a relatively narrow space, as is typically the setting of a megacity. Two 1-month long field campaigns took place in the framework of the Megapoli project in Paris, France, in the summer of 2009 and in the winter of 2010. Rotating drum impactors (RDI) were operated at two sites in each campaign, one urban, the other one suburban. The RDI segregated the aerosols into three size ranges (PM10-2.5, PM2.5-1 and PM1-0.1) and sampled with 2-hour time resolution. The samples were analyzed with synchrotron radiation induced X-ray fluorescence spectrometry (SR-XRF) at the synchrotron facilities of Paul Scherrer Institute (SLS) and Deutsches Elektronen-Synchrotron (HASYLAB), where a broad range of elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Sr, Zr, Cd, Sn, Sb, Ba, Pb) was analyzed for each size range. Time series of the analyzed elements for the different sites and campaigns were prepared to characterize the aerosol trace element composition and temporal behavior for the different weather situations and urban environments. They allow for the distinction of regional vs. local sources and transport, and provide a basis for source apportionment calculations. Local and regional contributions of traffic, including re-suspension, break wear and exhaust, wood burning, marine and other sources will be discussed. Indications of long-range transport from Polish coal emissions in the city center of Paris were also found.

  5. Source apportionment of elevated BaP concentrations in PM10 aerosols in an alpine valley in Austria

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Puxbaum, Hans; Jankowski, Nicole; Sampaio Cordeiro Wagner, Lylian

    2010-05-01

    INTRODUCTION: In a village situated at 1215 m a.s.l. in a natural preserve in an Austrian alpine valley elevated BaP concentrations have been measured in the last years. A highly frequented highway leading from Italy to Germany passes near the village. Monthly means of particulate BaP concentrations show a clear seasonal trend with values below 1 ng/m³ during the warmer months and with concentrations up to 9 ng/m³ in the cold season. Annual averages in the years 2000 - 2005 ranged between 1.4 and 2.8 ng/m³ - much higher than the EU target value of 1 ng/m³. We used a macrotracer model developed at the Vienna University of Technology to determine the contributions of the sources for BaP emissions, which were mainly space heating with wood and traffic from the highway. EXPERIMENTAL: The macrotracer concept is a nine component model to derive source contribution and explains 80-100% of PM10 aerosols in Austria. The amount of traffic exhaust is derived by using EC as tracer, whereas EC produced by wood burning is subtracted, the amount of wood smoke is derived by the anhydro-sugar levoglucosan and the ratio between the anhydro-sugars levoglucosan and mannosan. For the source apportionment of BaP the applied factors reflect on the one hand the composition of the automotive fleet in Austria and on the other hand the composition of the fire wood in the region. Filter samples collected with a high volume sampler in winter were analyzed for PM10 aerosol mass, total, organic, elemental and carbonate carbon, HULIS, anhydro-sugars, polyols and ions (major ions and organic acids) and PAHs. In the same way emission samples taken at a motor test stand and at a test stand for wood combustion were analyzed (Schmidl et al. 2008). The saccharides were determined using high pH anion exchange and pulsed amperometry (HPAE-PAD). Details of the analytical method are given in Iinuma et al., 2009. Elemental and organic carbon were determined with a thermal-optical instrument (Sunset lab

  6. Impacts of Stabilized Criegee Intermediates, surface uptake processes and higher aromatic secondary organic aerosol yields on predicted PM2.5 concentrations in the Mexico City Metropolitan Zone

    NASA Astrophysics Data System (ADS)

    Ying, Qi; Cureño, Iris V.; Chen, Gang; Ali, Sajjad; Zhang, Hongliang; Malloy, Meagan; Bravo, Humberto A.; Sosa, Rodolfo

    2014-09-01

    The Community Multiscale Air Quality Model (CMAQ) with the SAPRC-99 gas phase photochemical mechanism and the AERO5 aerosol module was applied to model gases and particulate matter (PM) concentrations in the Mexico City Metropolitan Zone (MCMZ) and the surrounding regions for March 2006 using the official 2006 emission inventories, along with emissions from biogenic sources, biomass burning, windblown dust, the Tula Industrial Complex and the Popocatépetl volcano. The base case model was capable of reproducing the observed hourly concentrations of O3 and attaining CO, NO2 and NOx performance similar to previous modeling studies. Although the base case model performance of hourly PM2.5 and PM10 meets the model performance criteria, under-prediction of high PM2.5 concentrations in late morning indicates that secondary PM, such as sulfate and secondary organic aerosol (SOA), might be under-predicted. Several potential pathways to increase SOA and secondary sulfate were investigated, including Stabilized Criegee Intermediates (SCIs) from ozonolysis reactions of unsaturated hydrocarbons and their reactions with SO2, the reactive uptake processes of SO2, glyoxal and methylglyoxal on particle surface and higher SOA formation due to higher mass yields of aromatic SOA precursors. Averaging over the entire episode, the glyoxal and methylglyoxal reactive uptake and higher aromatics SOA yields contribute to ∼0.9 μg m-3 and ∼1.25 μg m-3 of SOA, respectively. Episode average SOA in the MCMZ reaches ∼3 μg m-3. The SCI pathway increases PM2.5 sulfate by 0.2-0.4 μg m-3 or approximately 10-15%. The relative amount of sulfate increase due to SCI agrees with previous studies in summer eastern US. Surface SO2 uptake significantly increases sulfate concentration in MCMZ by 1-3 μg m-3 or approximately 50-60%. The higher SOA and sulfate leads to improved PM2.5 and PM10 model performance.

  7. Modulation of aerosol radiative forcing due to mixing state in clear and cloudy-sky: A case study from Delhi National Capital Region, India

    NASA Astrophysics Data System (ADS)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul K.; Singh, Sachchidanand; Tiwari, Suresh; Agarwal, Poornima

    2016-04-01

    Aerosol properties change with the change in mixing state of aerosols and therefore it is a source of uncertainty in estimated aerosol radiative forcing (ARF) from observations or by models assuming a specific mixing state. The problem is important in the Indo-Gangetic Basin, Northern India, where various aerosol types mix and show strong seasonal variations. Quantifying the modulation of ARF by mixing state is hindered by lack of knowledge about proper aerosol composition. Hence, first a detailed chemical composition analysis of aerosols for Delhi National capital region (NCR) is carried out. Aerosol composition is arranged quantitatively into five major aerosol types - accumulation dust, coarse dust, water soluble (WS), water insoluble (WINS), and black carbon (BC) (directly measured by Athelometer). Eight different mixing cases - external mixing, internal mixing, and six combinations of core- shell mixing (BC over dust, WS over dust, WS over BC, BC over WS, WS over WINS, and BC over WINS; each of the combinations externally mixed with other species) have been considered. The spectral aerosol optical properties - extinction coefficient, single scattering albedo (SSA) and asymmetry parameter (g) for each of the mixing cases are calculated and finally 'clear-sky' and 'cloudy-sky' ARF at the top-of-the-atmosphere (TOA) and surface are estimated using a radiative transfer model. Comparison of surface-reaching flux for each of the cases with MERRA downward shortwave surface flux reveals the most likely mixing state. 'BC-WINS+WS+Dust' show least deviation relative to MERRA during the pre-monsoon (MAMJ) and monsoon (JAS) seasons and hence is the most probable mixing states. During the winter season (DJF), 'BC-Dust+WS+WINS' case shows the closest match with MERRA, while external mixing is the most probable mixing state in the post-monsoon season (ON). Lowest values for both TOA and surface 'clear-sky' ARF is observed for 'BC-WINS+WS+ Dust' mixing case. TOA ARF is 0.28±2

  8. Alteration in Intrapulmonary Pharmacokinetics of Aerosolized Model Compounds Due to Disruption of the Alveolar Epithelial Barriers Following Bleomycin-Induced Pulmonary Fibrosis in Rats.

    PubMed

    Togami, Kohei; Chono, Sumio; Tada, Hitoshi

    2016-03-01

    Idiopathic pulmonary fibrosis is a lethal lung disease that is characterized by the accumulation of extracellular matrix and a change in lung structure. In this study, intrapulmonary pharmacokinetics of aerosolized model compounds were evaluated using rats with bleomycin-induced pulmonary fibrosis. Aerosol formulations of indocyanine green, 6-carboxyfluorescein (6-CF), and fluorescein isothiocyanate dextrans (FD; 4.4, 10, 70, and 250 kDa) were administered to rat lungs using a MicroSprayer. Indocyanine green fluorescence signals were significantly weaker in fibrotic lungs than in control lungs and 6-CF and FD concentrations in the plasma of pulmonary fibrotic animals were markedly higher than in the plasma of control animals. Moreover, disrupted epithelial tight junctions, including claudins-1, -3, and -5, were observed in pulmonary fibrotic lesions using immunofluorescence microscopy. In addition, destruction of tight junctions on model alveolar epithelial cells (NCI-H441) by transforming growth factor-β1 treatment enhanced the permeability of 6-CF and FDs through NCI-H441 cell monolayers. These results indicate that aerosolized drugs are easily distributed into the plasma after leakage through damaged tight junctions of alveolar epithelium. Therefore, the development of delivery systems for anti-fibrotic agents to improve intrapulmonary pharmacokinetics may be necessary for effective idiopathic pulmonary fibrosis therapy.

  9. Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways

    SciTech Connect

    Lamarque, J.-F.; Kyle, G. Page; Meinshausen, Malte; Riahi, Keywan; Smith, Steven J.; Van Vuuren, Detlef; Conley, Andrew; Vitt, Francis

    2011-08-05

    In this paper, we discuss the results of 2000-2100 simulations with a chemistry-climate model, focusing on the changes in atmospheric composition (troposphere and stratosphere) following the emissions associated with the Representative Concentration Pathways. We show that tropospheric ozone is projected to decrease (RCP3PD and RCP4.5) or increase (RCP8.5) between 2000 and 2100. Surface ozone in 2100 is projected to change little compared from 2000 conditions, a much-reduced impact from the projections based on the A2 scenario. Aerosols are projected to strongly decrease in the 21st century, a reflection of their projected decrease in emissions. Similarly, sulfate deposition is projected to strongly decrease. However, nitrogen deposition is projected to increase over certain regions because of the projected increase NH3 emissions.

  10. Three years of aerosol mass, black carbon and particle number concentrations at Montsec (southern Pyrenees, 1570 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Ripoll, A.; Pey, J.; Minguillón, M. C.; Pérez, N.; Pandolfi, M.; Querol, X.; Alastuey, A.

    2014-04-01

    Time variation of mass particulate matter (PM1 and PM1&minus10), black carbon (BC) and number of particles (N3: number of particles with an aerodynamic diameter higher than 3 nm, and N10: higher than 10 nm) concentrations at the high-altitude site of Montsec (MSC) in the southern Pyrenees was interpreted for the period 2010-2012. At MSC, PM10 (12 μg m-3) and N7 (2140 # cm-3) three-year arithmetic average concentrations were higher than those measured at other high-altitude sites in central Europe during the same period (PM10: 3-9 μg m-3 and N: 634-2070 # cm-3). By contrast, BC concentrations at MSC (0.2 μg m-3) were equal to or even lower than those measured at these European sites (0.2-0.4 μg m-3). These differences were attributed to the higher relevance of Saharan dust transport and to the higher importance of the biogenic precursor emissions and new particle formation (NPF) processes, and to the lower influence of anthropogenic emissions at MSC. The different time variation of PM and BC concentrations compared with that of N suggests that these aerosol parameters were governed by diverse factors at MSC. Both PM and BC concentrations showed marked differences for different meteorological scenarios, with enhanced concentrations under North African air outbreaks (PM1&minus10: 13 μg m-3, PM1: 8 μg m-3 and BC: 0.3 μg m-3) and low concentrations when Atlantic advections occurred (PM1-10: 5 μg m-3, PM1: 4 μg m-3 and BC: 0.1 μg m-3). PM and BC concentrations increased in summer, with a secondary maximum in early spring, and were at their lowest in winter, due to the contrasting origin of the air masses in the warmer seasons (spring and summer) and in the colder seasons (autumn and winter). The maximum in the warmer seasons was attributed to long-range transport processes that mask the breezes and regional transport breaking the daily cycles of these pollutants. By contrast, PM and BC concentrations showed clear diurnal cycles, with maxima at midday in the

  11. Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

    NASA Astrophysics Data System (ADS)

    Wahab, A. M.; Sarker, M. L. R.

    2014-02-01

    Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation.

  12. Remote sensing of aerosol in the terrestrial atmosphere from space: "AEROSOL-UA" mission

    NASA Astrophysics Data System (ADS)

    Yatskiv, Yaroslav; Milinevsky, Gennadi; Degtyarev, Alexander

    2016-07-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project AEROSOL-UA that will obtain the data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The mission is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  13. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  14. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  15. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  16. Evidence for anthropogenic impact on number concentration and sulfate content of cloud-processed aerosol particles over the North-Atlantic

    NASA Astrophysics Data System (ADS)

    van Dingenen, Rita; Raes, Frank; Jensen, Niels R.

    1995-10-01

    Aerosol properties were measured during two transects over the North Atlantic between Halifax (Nova Scotia, Canada) and the Moroccan coast. Measurements of the chemical composition of total aerosol, of the black carbon concentration and of the number size distributions with particle diameter Dp in the range 16 nm < Dp < 1 μm were made. The e-folding lifetime of the black carbon aerosol, coming from the northeast American continent and transported eastward over the ocean, was estimated to be 15 hours. The non-sea-salt (nss) fraction of the sulfate concentrations encountered during this campaign spans a 3 order of magnitude range (0.02 μm m-3 to 19 μm m-3) and shows a high correlation with black carbon. The measured bimodal aerosol size distributions were analysed in order to yield number concentrations of the nuclei and the accumulation mode (ACM), the latter being interpreted as cloud-processed particles and thus as cloud condensation nuclei (CCN). A strong positive correlation was found between ACM number concentration and nss-sulfate load over the whole concentration range, i.e. for clean to polluted air masses. Furthermore, our regression between nss-sulfate and ACM number concentration also agrees well with results from other investigators where CCN or cloud droplet concentrations were related to nss-sulfate at a variety of geographical locations and degrees of pollution. The composite data set shows that the nss-sulfate-CCN relationship from baseline conditions to anthropogenically conditioned aerosol, happens via a smooth transition which can be described by a linear regression on a logarithmic scale.

  17. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  18. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation.

    PubMed

    Percival, Carl J; Welz, Oliver; Eskola, Arkke J; Savee, John D; Osborn, David L; Topping, David O; Lowe, Douglas; Utembe, Steven R; Bacak, Asan; McFiggans, Gordon; Cooke, Michael C; Xiao, Ping; Archibald, Alexander T; Jenkin, Michael E; Derwent, Richard G; Riipinen, Ilona; Mok, Daniel W K; Lee, Edmond P F; Dyke, John M; Taatjes, Craig A; Shallcross, Dudley E

    2013-01-01

    Carbonyl oxides ("Criegee intermediates"), formed in the ozonolysis of alkenes, are key species in tropospheric oxidation of organic molecules and their decomposition provides a non-photolytic source of OH in the atmosphere (Johnson and Marston, Chem. Soc. Rev., 2008, 37, 699, Harrison et al, Sci, Total Environ., 2006, 360, 5, Gäb et al., Nature, 1985, 316, 535, ref. 1-3). Recently it was shown that small Criegee intermediates, C.I.'s, react far more rapidly with SO2 than typically represented in tropospheric models, (Welz, Science, 2012, 335, 204, ref. 4) which suggested that carbonyl oxides could have a substantial influence on the atmospheric oxidation of SO2. Oxidation of 502 is the main atmospheric source of sulphuric acid (H2SO4), which is a critical contributor to aerosol formation, although questions remain about the fundamental nucleation mechanism (Sipilä et al., Science, 2010, 327, 1243, Metzger et al., Proc. Natl. Acad. Sci. U. S. A., 2010 107, 6646, Kirkby et al., Nature, 2011, 476, 429, ref. 5-7). Non-absorbing atmospheric aerosols, by scattering incoming solar radiation and acting as cloud condensation nuclei, have a cooling effect on climate (Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: The Physical Science Basis, Cambridge University Press, 2007, ref. 8). Here we explore the effect of the Criegees on atmospheric chemistry, and demonstrate that ozonolysis of alkenes via the reaction of Criegee intermediates potentially has a large impact on atmospheric sulphuric acid concentrations and consequently the first steps in aerosol production. Reactions of Criegee intermediates with SO2 will compete with and in places dominate over the reaction of OH with SO2 (the only other known gas-phase source of H2SO4) in many areas of the Earth's surface. In the case that the products of Criegee intermediate reactions predominantly result in H2SO4 formation, modelled particle nucleation rates can be substantially increased by the improved

  19. Spatial and Temporal Variability of Outdoor Coarse Particulate Matter Mass Concentrations Measured with a New Coarse Particulate Sampler during the Detroit Exposure and Aerosol Research Study

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) provided data to compare outdoor residential coarse particulate matter (PM10-2.5) concentrations in six different areas of Detroit with data from a central monitoring site. Daily and seasonal influences on the spa...

  20. MAPPING ANNUAL MEAN GROUND-LEVEL PM2.5 CONCENTRATIONS USING MULTIANGLE IMAGING SPECTRORADIOMETER AEROSOL OPTICAL THICKNESS OVER THE CONTIGUOUS UNITED STATES

    EPA Science Inventory

    We present a simple approach to estimating ground-level fine particle (PM2.5, particles smaller than 2.5 um in diameter) concentration using global atmospheric chemistry models and aerosol optical thickness (AOT) measurements from the Multi- angle Imaging SpectroRadiometer (MISR)...

  1. INDOOR/OUTDOOR AEROSOL CONCENTRATION RATIOS DURING THE 1999 FRESNO PARTICULATE MATTER EXPOSURE STUDIES AS A FUNCTION OF SIZE, SEASON, AND TIME OF DAY

    EPA Science Inventory

    The 1999 Fresno particulate matter exposure studies tools place in February (winter season) and April/May (spring season) for two periods of four weeks. During that time, near-continuous measurements of indoor and outdoor aerosol concentrations were made with a scanning mobilit...

  2. Impacts of alternative fuels in aviation on microphysical aerosol properties and predicted ice nuclei concentration at aircraft cruise altitude

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; D'Ascoli, E.; Sauer, D. N.; Kim, J.; Scheibe, M.; Schlager, H.; Moore, R.; Anderson, B. E.; Ullrich, R.; Mohler, O.; Hoose, C.

    2015-12-01

    In the past decades air traffic has been substantially growing affecting air quality and climate. According to the International Civil Aviation Authority (ICAO), in the next few years world passenger and freight traffic is expected to increase annually by 6-7% and 4-5%, respectively. One possibility to reduce aviation impacts on the atmosphere and climate might be the replacement of fossil fuels by alternative fuels. However, so far the effects of alternative fuels on particle emissions from aircraft engines and their ability to form contrails remain uncertain. To study the effects of alternative fuels on particle emissions and the formation of contrails, the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) field experiment was conducted in California. In May 2014, the DLR Falcon 20 and the NASA HU-25 jet aircraft were instrumented with an extended aerosol and trace gas payload probing different types of fuels including JP-8 and JP-8 blended with HEFA (Hydroprocessed Esters and Fatty Acids) while the NASA DC8 aircraft acted as the source aircraft for ACCESS-2. Emission measurements were taken in the DC8 exhaust plumes at aircraft cruise level between 9-12 km altitude and at distances between 50 m and 20 km behind the DC8 engines. Here, we will present results from the ACCESS-2 aerosol measurements which show a 30-60% reduction of the non-volatile (mainly black carbon) particle number concentration in the aircraft exhaust for the HEFA-blend compared to conventional JP-8 fuel. Size-resolved particle emission indices show the largest reductions for larger particle sizes suggesting that the HEFA blend contains fewer and smaller black carbon particles. We will combine the airborne measurements with a parameterization of deposition nucleation developed during a number of ice nucleation experiments at the AIDA chamber in Karlsruhe and discuss the impact of alternative fuels on the abundance of potential ice nuclei at cruise conditions.

  3. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

    SciTech Connect

    Rawl, Richard R; Scofield, Patricia A; Leggett, Richard Wayne; Eckerman, Keith F

    2010-04-01

    The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low-level NORM

  4. Black Carbon, Metal Concentrations and Lead Isotopes Ratios in Aerosols as Tracers of Human and Natural Activities in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Guinot, B. P.

    2015-12-01

    Atmospheric brown clouds (ABC) observed as widespread layers of brownish haze are regional scale plumes of air pollutants with a hot spot of emission located in East Asia. ABC are mainly composed of aerosol particles such as Black Carbon (BC) emitted to the atmosphere during biomass burning and fossil fuels combustion. The atmospheric lifetime of BC ranges from a few days in wet season up to one month in dry season. The use of stable lead isotopes and 21 elements as tracers of air pollution was applied to identify and characterized the main sources of anthropogenic activities in Asian region. Aerosol samples from Haiphong (North Vietnam) were collected by a high volume sampler for a period of one year from October 2012 to October 2013. Vietnam's 207Pb/206Pb ratios were almost identical to those found for China. Ratios of 207Pb/206Pb ranged from 0.837 to 0.871 which agrees with values previously reported for the last 10 years in China (0.841 - 0.879). No significant variation in isotope ratio was observed during the sampling period, which suggests that there was no large seasonal variation in the isotope ratios of airborne lead. Trajectory analysis showed that almost two third of the air masses originated from East Northeast which implies that China was a major source of lead in atmosphere. Enrichment factor calculations indicated a large influence of coal activity (EF(Al) As = 1982 ± 796, EF(Al) Cd = 972 ± 659, EF(Al) Sb = 1358 ± 930) but the difference between combustion and mining exploitation could not be evidenced. Significant correlations were found between two others groups of elements: As, Cu, Ni, Zn, and Al, Fe K, Co. Wind dilution was effective on metals concentration variation. During the cold and dry season (winter) ambient concentrations were high and variable, during the warm and wet season (summer) concentrations were stable and low. Taken together, these factors also identified industrial and lithogenic activities in the region.

  5. Reformulating Aerosol Thermodynamics and Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Metzger, S.

    2006-12-01

    Modeling aerosol composition and cloud microphysics is rather complex due to the required thermodynamics, even if chemical and thermodynamical equilibrium is assumed. We show, however, that for deliquescent atmospheric aerosols thermodynamics can be considerably simplified, if we reformulate chemical equilibrium to include water purely based on thermodynamic principles. In chemical and thermodynamical equilibrium, the relative humidity (RH) fixes the molality of atmospheric aerosols. Although this fact is in theory well known, it has hardly been utilized in aerosol modeling nor has been the fact that for the same reason also the aerosol activity (including activity coefficients) and water content are fixed (by RH) for a given aerosol concentration and type. The only model that successfully utilizes this fact is the computationally very efficient EQuilibrium Simplified thermodynamic gas/Aerosol partitioning Model, EQSAM (Metzger et al., 2002a), EQSAM2 (Metzger et al., 2006). In both versions the entire gas/liquid/solid aerosol equilibrium partitioning is solved analytically and hence non-iteratively a substantial advantage in aerosol composition modeling. Here we briefly present the theoretical framework of EQSAM2, which differs from EQSAM in a way that the calculation of the water activity of saturated binary or mixed inorganic/organic salt solutions of multi-component aerosols has been generalized by including the Kelvin-term, thus allowing for any solute activity above the deliquescence relative humidity, including supersaturation. With application of our new concept to a numerical whether prediction (NWP) model, we demonstrate its wide implications for the computation of various aerosol and cloud properties, as our new concept allows to consistently and efficiently link the modeling of aerosol thermodynamics and cloud microphysics through the aerosol water mass, which therefore deserves special attention in atmospheric chemistry, air pollution, NWP and climate

  6. Long-Term Observations on Aerosol Elemental Carbon and Mass Concentrations in Winter-Time in New Delhi: Implications for Local Source Changes

    NASA Astrophysics Data System (ADS)

    Aggarwal, S. G.; Singh, K.; Singh, N.; Gupta, P. K.

    2009-12-01

    Fossil-fuel and bio-fuel burning are the two major sources identified for high carbonaceous aerosol loadings in several mega cities in India. In the last decade, according to a report from the Central Pollution Control Board (CPCB, 1999), the vehicular emission (mostly diesel-powered engines) was contributed to ~67% of the total air pollution load in New Delhi. Therefore, a policy decision was taken by the government, and most of the diesel-powered engines were converted to compressed natural gas (CNG) -powered engines by 2003. To better understand the effect of these changes on air quality, we collected high volume aerosol samples (total suspended particles, TSP) mostly for a day basis at our institute building in New Delhi almost everyday during winter season (November to January) from 2002 to 2008. We found very high mean aerosol loading, i.e., 488±47 μg m-3 in 2002 winter, which dropped significantly to 280±73 μg m-3 in 2003 winter. Thereafter, a steadily increased trend of aerosol mass loadings was observed, i.e., 339±112, 339±120, 412±107 and 444±55 μg m-3 in 2004, 2005, 2006 and 2007 winters, respectively. Similar trend was also observed for elemental carbon (EC) concentration in TSP, which was peaked in 2002 (47±11 μg m-3) and minimized in 2003 (32±6 μg m-3), and then gradually increased to 41±8 μg m-3 in 2007 winter. These decline trends of aerosol mass and EC concentrations in 2003 can be explained well, because of the conversion of diesel engine to CNG engines of public transport facilities. However, again increase in aerosol mass and EC concentrations possibly because of a high increase in road traffic in recent years. According to the economic survey of New Delhi 2008-09, the number of vehicles (which includes all types of engines, i.e., petrol, diesel and CNG) has grown from ~3.3 millions in 1997-98 to ~5.6 millions in 2007-08. The influence of engine types and vehicle population on aerosol loading can also be explained well by SO2 and

  7. DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation

    NASA Astrophysics Data System (ADS)

    Boucher, O.; Moulin, C.; Belviso, S.; Aumont, O.; Bopp, L.; Cosme, E.; von Kuhlmann, R.; Lawrence, M. G.; Pham, M.; Reddy, M. S.; Sciare, J.; Venkataraman, C.

    2003-01-01

    The global sulphur cycle has been simulated using a general circulation model with a focus on the source and oxidation of atmospheric dimethylsulphide (DMS). The sensitivity of atmospheric DMS to the oceanic DMS climatology, the parameterisation of the sea-air transfer and to the oxidant fields have been studied. The importance of additional oxidation pathways (by O3 in the gas- and aqueous-phases and by BrO in the gas phase) not incorporated in global models has also been evaluated. While three different climatologies of the oceanic DMS concentration produce rather similar global DMS fluxes to the atmosphere at 24-27 Tg S yr -1, there are large differences in the spatial and seasonal distribution. The relative contributions of OH and NO3 radicals to DMS oxidation depends critically on which oxidant fields are prescribed in the model. Oxidation by O3 appears to be significant at high latitudes in both hemispheres. Oxidation by BrO could be significant even for BrO concentrations at sub-pptv levels in the marine boundary layer. The impact of such refinements on the DMS chemistry onto the indirect radiative forcing by anthropogenic sulphate aerosols is also discussed.

  8. Global Distribution of Cloud Droplet Number Concentration, Autoconversion Rate, and Aerosol Indirect Effect Under Diabatic Droplet Activation

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan; Sotiropoulou, Rafaella; Nenes, Athanasios

    2011-01-01

    This study presents a global assessment of the sensitivity of droplet number to diabatic activation (i.e., including effects from entrainment of dry air) and its first-order tendency on indirect forcing and autoconversion. Simulations were carried out with the NASA Global Modeling Initiative (GMI) atmospheric and transport model using climatological metereorological fields derived from the former NASA Data Assimilation Office (DAO), the NASA Finite volume GCM (FVGCM) and the Goddard Institute for Space Studies version II (GISS) GCM. Cloud droplet number concentration (CDNC) is calculated using a physically based prognostic parameterization that explicitly includes entrainment effects on droplet formation. Diabatic activation results in lower CDNC, compared to adiabatic treatment of the process. The largest decrease in CDNC (by up to 75 percent) was found in the tropics and in zones of moderate CCN concentration. This leads to a global mean effective radius increase between 0.2-0.5 micrometers (up to 3.5 micrometers over the tropics), a global mean autoconversion rate increase by a factor of 1.1 to 1.7 (up to a factor of 4 in the tropics), and a 0.2-0.4 W m(exp -2) decrease in indirect forcing. The spatial patterns of entrainment effects on droplet activation tend to reduce biases in effective radius (particularly in the tropics) when compared to satellite retrievals. Considering the diabatic nature of ambient clouds, entrainment effects on CDNC need to be considered in GCM studies of the aerosol indirect effect.

  9. Size segregated mass concentration and size distribution of near surface aerosols over a tropical Indian semi-arid station, Anantapur: Impact of long range transport.

    PubMed

    Raghavendra Kumar, K; Narasimhulu, K; Balakrishnaiah, G; Suresh Kumar Reddy, B; Rama Gopal, K; Reddy, R R; Moorthy, K Krishna; Suresh Babu, S

    2009-10-15

    Regular measurements of size segregated as well as total mass concentration and size distribution of near surface composite aerosols, made using a ten-channel Quartz Crystal Microbalance (QCM) cascade impactor during the period of September 2007-May 2008 are used to study the aerosol characteristics in association with the synoptic meteorology. The total mass concentration varied from 59.70+/-1.48 to 41.40+/-1.72 microg m(-3), out of which accumulation mode dominated by approximately 50%. On a synoptic scale, aerosol mass concentration in the accumulation (submicron) mode gradually increased from an average low value of approximately 26.92+/-1.53 microg m(-3) during the post monsoon season (September-November) to approximately 34.95+/-1.32 microg m(-3) during winter (December-February) and reaching a peak value of approximately 43.56+/-1.42 microg m(-3) during the summer season (March-May). On the contrary, mass concentration of aerosols in the coarse (supermicron) mode increased from approximately 9.23+/-1.25 microg m(-3)during post monsoon season to reach a comparatively high value of approximately 25.89+/-1.95 microg m(-3) during dry winter months and a low value of approximately 8.07+/-0.76 microg m(-3) during the summer season. Effective radius, a parameter important in determining optical (scattering) properties of aerosol size distribution, varied between 0.104+/-0.08 microm and 0.167+/-0.06 microm with a mean value of 0.143+/-0.01 microm. The fine mode is highly reduced during the post monsoon period and the large and coarse modes continue to remain high (replenished) so that their relative dominance increases. It can be seen that among the two parameters measured, correlation of total mass concentration with air temperature is positive (R(2)=0.82) compared with relative humidity (RH) (R(2)=0.75).

  10. Concentrations of mineral aerosol from desert to plains across the central Rocky Mountains, western United States

    NASA Astrophysics Data System (ADS)

    Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Goldstein, Harland L.; Neff, Jason C.

    2016-12-01

    Mineral dusts can have profound effects on climate, clouds, ecosystem processes, and human health. Because regional dust emission and deposition in western North America are not well understood, measurements of total suspended particulate (TSP) from 2011 to 2013 were made along a 500-km transect of five remote sites in Utah and Colorado, USA. The TSP concentrations in μg m-3 adjusted to a 24-h period were relatively high at the two westernmost, dryland sites at Canyonlands National Park (mean = 135) and at Mesa Verde National Park (mean = 99), as well as at the easternmost site on the Great Plains (mean = 143). The TSP concentrations at the two intervening montane sites were less, with more loading on the western slope of the Rocky Mountains (Telluride, mean = 68) closest to the desert sites compared with the site on the eastern slope (Niwot Ridge, mean = 58). Dust concentrations were commonly highest during late winter-late spring, when Pacific frontal storms are the dominant causes of regional wind. Low concentrations (<7 wt%) of organic matter indicated that rock-derived mineral particles composed most TSP. Most TSP mass was carried by particle sizes larger than 10 μm (PM>10), as revealed by relatively low average daily concentrations of fine (<5 μg m-3; PM2.5) and coarse (<10 μg m-3; PM2.5-10) fractions monitored at or near four sites. Standard air-quality measurements for PM2.5 and PM10 apparently do not capture the large majority of mineral-particulate pollution in the remote western interior U.S.

  11. Concentrations of mineral aerosol from desert to plains across the central Rocky Mountains, western United States

    USGS Publications Warehouse

    Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Goldstein, Harland L.; Neff, Jason C.

    2016-01-01

    Mineral dusts can have profound effects on climate, clouds, ecosystem processes, and human health. Because regional dust emission and deposition in western North America are not well understood, measurements of total suspended particulate (TSP) from 2011 to 2013 were made along a 500-km transect of five remote sites in Utah and Colorado, USA. The TSP concentrations in μg m−3 adjusted to a 24-h period were relatively high at the two westernmost, dryland sites at Canyonlands National Park (mean = 135) and at Mesa Verde National Park (mean = 99), as well as at the easternmost site on the Great Plains (mean = 143). The TSP concentrations at the two intervening montane sites were less, with more loading on the western slope of the Rocky Mountains (Telluride, mean = 68) closest to the desert sites compared with the site on the eastern slope (Niwot Ridge, mean = 58). Dust concentrations were commonly highest during late winter-late spring, when Pacific frontal storms are the dominant causes of regional wind. Low concentrations (<7 wt%) of organic matter indicated that rock-derived mineral particles composed most TSP. Most TSP mass was carried by particle sizes larger than 10 μm (PM>10), as revealed by relatively low average daily concentrations of fine (<5 μg m−3; PM2.5) and coarse (<10 μg m−3; PM2.5–10) fractions monitored at or near four sites. Standard air-quality measurements for PM2.5 and PM10 apparently do not capture the large majority of mineral-particulate pollution in the remote western interior U.S.

  12. Aerosol and Trace Gas Sources in Northern China: Changes in Concentrations Before and After the Official "Heating Season" Help Characterize Emissions From Coal-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Li, C.; Marufu, L. T.; Dickerson, R. R.; Li, Z.; Stehr, J. W.; Chen, H.; Wang, P.

    2006-05-01

    In March 2005, as a part of the project EAST-AIRE (East Asian Study of Tropospheric Aerosols: An International Regional Experiment), in-situ measurements of trace gases and aerosol optical properties were made at Xianghe, a rural surface site about 70 km east-southeast, generally downwind, of Beijing metropolitan area. CO, SO2, NO/NOy, O3, aerosol absorption coefficient, and aerosol scattering coefficients were determined simultaneously using the University of Maryland light aircraft instrument package. Pollutant ratios have been calculated to characterize the emission sources around the site. A dramatic drop in the NOy/CO ratio found around March 13/14 suggesting a sudden shutoff of a large fraction of the high- temperature combustion sources in the region. This observed change in concentrations occurred simultaneously with the transition from "heating season" to "non-heating season" in Northern China. Over the course of just a few days (around March 15), all boilers used to provide heat for cities and towns in this region are shut down in accordance with a governmental guideline. Most of these boilers operate with coal, and by using ratios of NOy/CO, SO2/CO, aerosol scattering/CO, and aerosol absorption/CO during and after the "heating season", emissions from these small to medium sized coal-fired boilers can be characterized. Results indicate that these residential and small-scale industrial heaters are a major source of NOy and SO2. Besides elevating the regional atmospheric pollutant level, the trace gases and aerosols emitted also have potential effects in other aspects such as the biogeochemical cycle of N and the agricultural production in this region.

  13. Correlating bioaerosol load with PM2.5 and PM10cf concentrations: a comparison between natural desert and urban-fringe aerosols

    NASA Astrophysics Data System (ADS)

    Boreson, Justin; Dillner, Ann M.; Peccia, Jordan

    2004-11-01

    Seasonal allergies and microbial mediated respiratory diseases, can coincide with elevated particulate matter concentrations, often when dry desert soils are disturbed. In addition to effects from the allergens, allergic and asthmatic responses may be enhanced when chemical and biological constituents of particulate matter (PM) are combined together. Because of these associations and also the recent regulatory and health-related interests of monitoring PM2.5, separately from total PM10, the biological loading between the fine (dp<2.5 μm) and coarse (2.5 μmaerosol composition. Total protein concentration was used as a surrogate measure of total biological concentration within the PM2.5 and PM10cf (coarse fraction) size ranges. In all seasons, coarse protein at the urban fringe was consistently higher than the natural desert. When high-anthropogenic PM events were separated from the data set, a positive significant correlation (p<0.05) was found between protein and coarse PM fraction, but not in the fine fraction. An 18S rDNA clone library was developed from PM10 aerosol samples to characterize the type and phylogenetic diversity of airborne eukaryotic (non-bacterial) microorganisms existing in ambient PM for the urban fringe and natural desert. Both sites contained allergenic organisms. Some groups of eukaryotic species were exclusive to only one of the sites. The natural desert contained more species of Basidiomycota fungi and the urban fringe contained more species of green plants, suggesting that the

  14. Mount St. Helens related aerosol properties from solar extinction measurements

    SciTech Connect

    Michalsky, J.J.; Kleckner, E.W.; Stokes, G.M.

    1980-11-01

    The optical extinction due to the introduction of aerosols and aerosol-precursors into the troposphere and stratosphere during the major eruptive phase of Mount St. Helens, Washington, is quantified. The concentration is on the two-week period centered on the major eruption of 22 July 1980. (ACR)

  15. ACTRIS ACSM intercomparison - Part I: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with Time-of-Flight ACSM (ToF-ACSM), High Resolution ToF Aerosol Mass Spectrometer (HR-ToF-AMS) and other co-located instruments

    NASA Astrophysics Data System (ADS)

    Crenn, V.; Sciare, J.; Croteau, P. L.; Verlhac, S.; Fröhlich, R.; Belis, C. A.; Aas, W.; Äijälä, M.; Alastuey, A.; Artiñano, B.; Baisnée, D.; Bonnaire, N.; Bressi, M.; Canagaratna, M.; Canonaco, F.; Carbone, C.; Cavalli, F.; Coz, E.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Lunder, C.; Minguillón, M. C.; Močnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petit, J.-E.; Petralia, E.; Poulain, L.; Priestman, M.; Riffault, V.; Ripoll, A.; Sarda-Estève, R.; Slowik, J. G.; Setyan, A.; Wiedensohler, A.; Baltensperger, U.; Prévôt, A. S. H.; Jayne, J. T.; Favez, O.

    2015-07-01

    As part of the European ACTRIS project, the first large Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) intercomparison study was conducted in the region of Paris for three weeks during the late fall-early winter period (November-December 2013). The first week was dedicated to tuning and calibration of each instrument whereas the second and third were dedicated to side-by-side comparison in ambient conditions with co-located instruments providing independent information on submicron aerosol optical, physical and chemical properties. Near real-time measurements of the major chemical species (organic matter, sulfate, nitrate, ammonium and chloride) in the non-refractory submicron aerosols (NR-PM1) were obtained here from 13 Q-ACSM. The results show that these instruments can produce highly comparable and robust measurements of the NR-PM1 total mass and its major components. Taking the median of the 13 Q-ACSM as a reference for this study, strong correlations (r2 > 0.9) were observed systematically for each individual ACSM across all chemical families except for chloride for which three ACSMs showing weak correlations partly due to the very low concentrations during the study. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were determined using appropriate methodologies defined by the International Standard Organization (ISO 17025) and were found to be of 9, 15, 19, 28 and 36 % for NR-PM1, nitrate, organic matter, sulfate and ammonium respectively. However, discrepancies were observed in the relative concentrations of the constituent mass fragments for each chemical component. In particular, significant differences were observed for the organic fragment at mass-to-charge ratio 44, which is a key parameter describing the oxidation state of organic aerosol. Following this first major intercomparison exercise of a large number of ACSMs, detailed intercomparison results are presented as well as a discussion of some recommendations

  16. Measured In Situ Atmospheric Ambient Aerosol Size-Distributions, Particle Concentrations, and Turbulence Data for RSA TA-6 Test Range, Redstone Arsenal, AL, April-May 2015

    DTIC Science & Technology

    2015-09-01

    Concentrations, and Turbulence Data for RSA TA-6 Test Range, Redstone Arsenal , AL, April–May 2015 by Kristan Gurton, Stephanie Cunningham, and...Aerosol Size-Distributions, Particle Concentrations, and Turbulence Data for RSA TA-6 Test Range, Redstone Arsenal , AL, April–May 2015 by Kristan...Redstone Arsenal , AL Approved for public release; distribution unlimited. ii REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

  17. Local emission of primary air pollutants and its contribution to wet deposition and concentrations of aerosols and gases in ambient air in Japan

    NASA Astrophysics Data System (ADS)

    Aikawa, Masahide; Hiraki, Takatoshi; Tomoyose, Nobutaka; Ohizumi, Tsuyoshi; Noguchi, Izumi; Murano, Kentaro; Mukai, Hitoshi

    2013-11-01

    We studied wet deposition by precipitation and the concentrations of aerosols and gases in ambient air in relation to the primary air pollutants discharged from domestic areas. The concentrations of aerosols and gases were influenced by nearby emissions except for non-sea-salt SO, which is transported long distances. The area facing the Sea of Japan showed much larger wet deposition than other areas, although the domestic emissions of the primary air pollutants there were small and showed a peak in wet deposition from October to March, as distinct from April to September in other areas. We performed the correlation analyses between wet deposition of each component and the product of the concentrations of corresponding aerosols and gases in ambient air and the two-thirds power of the precipitation. From the results, following scavenging processes were suggested. • Sulfate and ammonium were scavenged in precipitation as particulate matter such as (NH4)2SO4 and NH4HSO4. • Nitrate was scavenged mainly in precipitation through gaseous HNO3. • Ammonium was complementarily scavenged in precipitation through aerosols such as (NH4)2SO4 and NH4HSO4 and through gaseous NH3.

  18. Comparison of Bulk Carbon Concentrations and Optical Properties of Carbonaceous Aerosols in the North Slope Alaska from Summer 2012 and Summer 2015

    NASA Astrophysics Data System (ADS)

    Sheesley, R. J.; Barrett, T. E.; Moffett, C.; Gunsch, M.; Pratt, K.

    2015-12-01

    With recent drilling permits being issued for exploratory drilling in the Chukchi Sea, there is a need for characterization of carbonaceous aerosols in the Arctic both prior to and during the exploratory drilling phase. A month-long field sampling campaign will be conducted in Barrow, AK, at the confluence of the Chukchi and Beaufort seas, from August to September 2015. Total suspended particulate (TSP) aerosol samples will be collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Samples will be analyzed for organic carbon (OC), elemental carbon (EC) on a Sunset carbon analyzer utilizing the NIOSH 5040 method. Samples will also be analyzed for water soluble organic carbon (WSOC) using a water extraction method and subsequent analysis on a Shimadzu Total Carbon Analyzer. Optical properties of the aqueous extracts will also be measured using an Agilent ultraviolet-visible (UV-Vis) spectrometer. OC, EC and WSOC concentrations will then be compared to aerosol samples collected at the same location in summer 2012, prior to the onset of exploratory drilling in the Chukchi Sea. Back trajectory (BT) analysis will be performed for each sampling campaign to help assess the impact of source region on the carbonaceous aerosol budget and to identify any changes in source region between the two campaigns. A comparison of samples from the same location and season both prior to and post drilling will allow for a more accurate characterization and tracking of the potential impacts of new aerosol emission sources in the region.

  19. The Influence of Free Tropospheric Aerosol on the Boundary Layer Aerosol Budget in the Arctic

    NASA Astrophysics Data System (ADS)

    Igel, A. L.; Ekman, A.; Leck, C.; Savre, J.; Tjernstrom, M. K. H.; Sedlar, J.

    2015-12-01

    Large-eddy simulations of the summertime high Arctic boundary layer with mixed-phase stratus clouds have been performed based on observations taken during the ASCOS[1] campaign. The model includes a prognostic aerosol scheme where accumulation mode aerosol particles can be activated into cloud droplets, impaction scavenged, and regenerated upon cloud droplet evaporation or ice crystal sublimation. Two sets of simulations were performed, one with a constant aerosol concentration in the boundary layer and free troposphere, and one with enhanced free tropospheric concentrations based on observed aerosol concentration profiles. We find that the rate of aerosol depletion in the boundary layer is an order of magnitude larger than the median surface emission rates measured over the open water, indicating that for the present case the surface emissions are unlikely to compensate for aerosol loss due to interactions with clouds. In this case study, when the enhanced free troposphere aerosol concentrations are included, the entrainment of these particles into the boundary layer is able to offset the loss of particles from aerosol-cloud interactions. These results suggest that enhanced levels of accumulation mode particles, if located at the cloud top, may be an important source of accumulation mode particles in the Arctic boundary layer. [1] The Arctic Summer Cloud Ocean Study (ASCOS) was conducted in 2008 with the overall aim to improve our understanding of stratus cloud formation and possible climate feedback processes over the central Arctic Ocean. Tjernström et al., 2014 give more details.

  20. Atmospheric trace metals over the Atlantic and South Indian Oceans: Investigation of metal concentrations and lead isotope ratios in coastal and remote marine aerosols

    NASA Astrophysics Data System (ADS)

    Witt, Melanie; Baker, Alex R.; Jickells, Tim D.

    Atmospheric concentrations of trace metals over the oceans are investigated through analysis of aerosol samples collected during cruises from the UK to the Falkland Islands and from South Africa to Australia. The readily soluble concentrations of Cu (4-256 pmol m -3), Ni (0.1-54 pmol m -3), Ba (0.2-60 pmol m -3), Zn (6-316 pmol m -3), Cd (0.01-0.29 pmol m -3) and Pb (0.4-22 pmol m -3) were measured in the aerosols, along with total concentrations of crustal elements (Fe, Al and Mn) to evaluate the crustal contributions. Air mass back trajectories suggested most of the aerosol samples had spent several days over the ocean prior to collection. The highest metal concentrations were observed in aerosols close to South Africa, Australia and major cities in South America, although these concentrations were lower than had been reported previously in the literature. Apart from Ba, which had a major crustal source, the trace metals were enriched relative to crustal sources in most samples, including some collected thousands of kilometers from emission sources. The mean trace metal concentrations in the remote Indian Ocean were lower than those measured in the Atlantic Ocean. Even lower concentrations are reported in the literature for the remote Pacific Ocean. In contrast to previous studies, no clear north-south gradient is observed in the concentrations of the trace metals in the aerosols. Lead isotope measurements were also carried out on aerosol samples using a multicollector inductively coupled plasma mass spectrometer to assist in source apportionment. Clear differences were noted in the isotope ratios collected on either side of the Indian Ocean with Australian lead ore dominating over much of the eastern and mid-southern Indian Ocean. Samples collected over the western Indian Ocean and Atlantic Ocean under South African influence had lead isotopes quite different from those seen in South African cities in the past, and are closer in ratio to the coal signature of

  1. WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia

    SciTech Connect

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

  2. Heterogeneous processing of biomass burning aerosol proxies by OH radicals for a wide range of OH concentrations and detection of volatilization products

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Knopf, D. A.

    2012-12-01

    Biomass burning aerosol (BBA) constitutes the majority of primary organic aerosol found in the atmosphere, with emission rates comparable to fossil-fuel burning. BBA affects earth's radiative budget directly through absorption and scattering of radiation or indirectly by modifying cloud radiative properties, and impacts air quality. Quantifying BBA source strength and thus its effects on air quality, human health, and climate can be difficult since these organic particles can chemically transform during atmospheric transport, a process also termed aging, due to heterogeneous reactions with oxidants and radicals such as OH. In this work we investigate the reactive uptake of OH radicals by typical BBA compounds that also serve as molecular markers for source apportionment studies. Organic substrates of cellulose pyrolysis products such as levoglucosan (1,6-anhydro-β-glucopyranose, C6H10O5), resin acids such as abietic acid (1-phenanthrenecarboxylic acid, C20H30O2), and lignin decomposition products such as 5-nitroguaiacol (2-methoxy-5-nitrophenol, C7H7NO4) have been exposed to a wide range of OH concentrations (~107-1011 cm-3), in presence of O2 in a rotating wall flow reactor operated at 2-6 mbar coupled to a custom built chemical ionization mass spectrometer (CIMS). OH radicals were generated through H2 dissociation in an Evenson microwave resonant cavity operated at 2.45 GHz followed by reaction with O2 or NO2. In addition, potential volatilization of organic material due to heterogeneous oxidation by OH has been determined in-situ by monitoring the volatile organic compounds using a high resolution-proton transfer reaction-time of flight-mass spectrometer (HR-PTR-ToF-MS). The volatilization studies are conducted at 1 atm and OH is generated by O3 photolysis in the presence of H2O vapor and quantified using a photochemical box model as well as through reaction with a known concentration of isoprene (2-methyl-1,3-butadiene, C5H8). Reactive uptake validation

  3. Aerosol species concentrations and source apportionment of ammonia at Rocky Mountain National Park.

    PubMed

    Malm, William C; Schichtel, Bret A; Barna, Michael G; Gebhart, Kristi A; Rodriguez, Marco A; Collett, Jeffrey L; Carrico, Christian M; Benedict, Katherine B; Prenni, Anthony J; Kreidenweis, Sonia M

    2013-11-01

    Changes in ecosystem function at Rocky Mountain National Park (RMNP) are occurring because of emissions of nitrogen and sulfate species along the Front Range of the Colorado Rocky Mountains, as well as sources farther east and west. The nitrogen compounds include both oxidized and reduced nitrogen. A year-long monitoring program of various oxidized and reduced nitrogen species was initiated to better understand their origins as well as the complex chemistry occurring during transport from source to receptor. Specifically the goals of the study were to characterize the atmospheric concentrations of nitrogen species in gaseous, particulate, and aqueous phases (precipitation and clouds) along the east and west sides of the Continental Divide; identify the relative contributions to atmospheric nitrogen species in RMNP from within and outside of the state of Colorado; identify the relative contributions to atmospheric nitrogen species in RMNP from emission sources along the Colorado Front Range versus other areas within Colorado; and identify the relative contributions to atmospheric nitrogen species from mobile sources, agricultural activities, and large and small point sources within the state of Colorado. Measured ammonia concentrations are combined with modeled releases of conservative tracers from ammonia source regions around the United States to apportion ammonia to its respective sources, using receptor modeling tools.

  4. A new method for estimating aerosol mass flux in the urban surface layer using LAS technology

    NASA Astrophysics Data System (ADS)

    Yuan, Renmin; Luo, Tao; Sun, Jianning; Liu, Hao; Fu, Yunfei; Wang, Zhien

    2016-04-01

    Atmospheric aerosol greatly influences human health and the natural environment, as well as the weather and climate system. Therefore, atmospheric aerosol has attracted significant attention from society. Despite consistent research efforts, there are still uncertainties in understanding its effects due to poor knowledge about aerosol vertical transport caused by the limited measurement capabilities of aerosol mass vertical transport flux. In this paper, a new method for measuring atmospheric aerosol vertical transport flux is developed based on the similarity theory of surface layer, the theory of light propagation in a turbulent atmosphere, and the observations and studies of the atmospheric equivalent refractive index (AERI). The results show that aerosol mass flux can be linked to the real and imaginary parts of the atmospheric equivalent refractive index structure parameter (AERISP) and the ratio of aerosol mass concentration to the imaginary part of the AERI. The real and imaginary parts of the AERISP can be measured based on the light-propagation theory. The ratio of the aerosol mass concentration to the imaginary part of the AERI can be measured based on the measurements of aerosol mass concentration and visibility. The observational results show that aerosol vertical transport flux varies diurnally and is related to the aerosol spatial distribution. The maximum aerosol flux during the experimental period in Hefei City was 0.017 mg m-2 s-1, and the mean value was 0.004 mg m-2 s-1. The new method offers an effective way to study aerosol vertical transport in complex environments.

  5. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS - diurnal variations and PMF receptor modelling

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.

    2013-04-01

    Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter < 2.5 μm) resolved aerosol samples analysed by Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie European Union framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the approach used is the simultaneous sampling at two monitoring sites in Barcelona (Spain) during September-October 2010: an urban background site (UB) and a street canyon traffic road site (RS). Elements related to primary non-exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (regional sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non-exhaust brake dust (Fe-Cu) - 7%), and three types of industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%, percentages presented are average source contributions to the total elemental mass measured). The validity of the PMF solution of the PIXE data is supported by very good correlations with external single particle mass spectrometry measurements. Some important conclusions can be drawn about the PM2.5 mass fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both

  6. High concentrations of biological aerosol particles and ice nuclei during and after rain

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Pöhlker, C.; Prenni, A. J.; DeMott, P. J.; Mason, R. H.; Robinson, N. H.; Fröhlich-Nowoisky, J.; Tobo, Y.; Després, V. R.; Garcia, E.; Gochis, D. J.; Harris, E.; Müller-Germann, I.; Ruzene, C.; Schmer, B.; Sinha, B.; Day, D. A.; Andreae, M. O.; Jimenez, J. L.; Gallagher, M.; Kreidenweis, S. M.; Bertram, A. K.; Pöschl, U.

    2013-01-01

    Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties and sources are not well understood. Here we show that the concentration of airborne biological particles in a forest ecosystem increases dramatically during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2-6 μm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteraceae, Pseudomonadaceae). In addition to known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN and rainfall are more tightly coupled than previously assumed.

  7. High concentrations of biological aerosol particles and ice nuclei during and after rain

    NASA Astrophysics Data System (ADS)

    Huffman, J. Alex; Pöhlker, Christopher; Prenni, Anthony; DeMott, Paul; Mason, Ryan; Robinson, Niall; Fröhlich-Nowoisky, Janine; Tobo, Yutaka; Després, Viviane; Garcia, Elvin; Gochis, David; Sinha, Bärbel; Day, Douglas; Andreae, Meinrat; Jimenez, Jose; Gallagher, Martin; Kreidenweis, Sonia; Bertram, Allan; Pöschl, Ulrich

    2013-04-01

    Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties and sources are not well understood. Here we show that the concentration of airborne biological particles in a forest ecosystem increases dramatically during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2-6 µm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteraceae, Pseudomonadaceae). In addition to known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN and rainfall are more tightly coupled than previously assumed.

  8. Aerosol cloud processing with the global model ECHAM5-HAM-SALSA

    NASA Astrophysics Data System (ADS)

    Bergman, T.; Korhonen, H.; Zubair, M.; Romakkaniemi, S.; Lehtinen, K.; Kokkola, H.

    2012-04-01

    Atmospheric aerosols and their interactions with clouds constitute the largest uncertainty in the radiative forcing of the Earth's atmosphere. Increasing aerosol number concentrations increases the cloud droplet concentration and droplet surface and hence the cloud albedo. This mechanism is called the aerosol indirect effect on climate. Understanding the changes in cloud droplet number concentrations and size by anthropogenic aerosols are the key factors in the study of future climate change. Therefore the aerosols' formation and growth from nanoparticles to cloud condensation nuclei (CCN) must be described accurately. The formation and growth of aerosols are shown to be described more accurately with sectional representations than with bulk (total aerosol mass only), modal (lognormal modes describing mass and number size distribution) or moment (processes tied to different moments of particle number size distribution) approaches. Recently the sectional aerosol models have been implemented to global climate models. However, the resolution of sectional models must be optimised to reduce the computational cost. We have implemented the sectional aerosol model SALSA in ECHAM5-HAM. SALSA describes the aerosol population with 20 size sections. The dynamics are optimised for large scale applications and the model includes an improved moving center sectional method. The particulate mass consists of five compounds: sulphate, organic carbon, black carbon, sea salt and dust. The aerosol processing has been studied extensively and there are many numerical models used to predict CCN number concentrations. However, due to computational limitations many of them are not suitable for utilisation in global climate models. Therefore in most global climate studies on aerosol activation to CCN is examined using cloud activation parameterisations. We study the aerosol cloud processing and its affect on transport of aerosols using Abdul-Razzak-Ghan aerosol cloud activation

  9. High concentrations of biological aerosol particles and ice nuclei during and after rain

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Prenni, A. J.; DeMott, P. J.; Pöhlker, C.; Mason, R. H.; Robinson, N. H.; Fröhlich-Nowoisky, J.; Tobo, Y.; Després, V. R.; Garcia, E.; Gochis, D. J.; Harris, E.; Müller-Germann, I.; Ruzene, C.; Schmer, B.; Sinha, B.; Day, D. A.; Andreae, M. O.; Jimenez, J. L.; Gallagher, M.; Kreidenweis, S. M.; Bertram, A. K.; Pöschl, U.

    2013-07-01

    Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties, and sources are not well understood. Here we show that the concentration of airborne biological particles in a North American forest ecosystem increases significantly during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2-6 μm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including groups containing human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteriaceae, Pseudomonadaceae). In addition to detecting known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN, and rainfall are more tightly coupled than previously assumed.

  10. Interaction of gaseous pollutants with aerosols in Asia during March 2002.

    PubMed

    Jeong, Jae-In; Park, Soon-Ung

    2008-03-25

    The Asian Dust Aerosol Model (ADAM) and the aerosol dynamic model with the output of the fifth generation of mesoscale model (MM5) in a grid of 60x60 km2 over the Asian domain have been performed with and without the heterogeneous reaction (gas-aerosol interaction) to estimate the effect of the gas-aerosol interaction on the formation of aerosol for the period of 1-31 March 2002 when a severe Asian dust event has been observed during this period. The simulated gas-phase pollutants concentrations and aerosols are compared with those observed in South Korea and the East Asia Network (EANET). The results indicate that the present modeling system including ADAM, aerosol dynamic model and MM5 model simulates quite well and the gas-phase pollutants concentrations observed in South Korea and the simulated aerosol concentrations with the gas-aerosol interaction yield much better results in concentrations than those without the gas-aerosol interaction. It is found that the favorable regions for the gas-aerosol interaction in Asia are eastern China (high pollutants emissions), Korea, Japan and the East China Sea that are downstream regions of the Asian dust sources and relatively high relative humidity. In these regions the concentrations of SO2 and O3 decrease whereas the concentrations of sulfate and nitrate increase significantly due to the gas-aerosol interaction. In particular, the increase of sulfate concentration due to the interaction is more than 30% of the corresponding concentration without the gas-aerosol interaction. It is also found that the time-area mean column concentrations of PM10, sulfate, nitrate in the model domain are respectively to be 154.9, 3.2, 3.6 mg m(-2) without the gas-aerosol interaction. However, with the gas-aerosol interaction these values have been increased to 0.6% (155.8 mg m(-2)), 16% (3.7 mg m(-2)), and 14% (4.1 mg m(-2)) of the corresponding concentration without the gas-aerosol interaction. On the other hand, the time-area mean

  11. Boundary Layer Model for Air Pollutant Concentrations Due to Highway Traffic

    ERIC Educational Resources Information Center

    Ragland, Kenneth W.; Peirce, J. Jeffrey

    1975-01-01

    A numerical solution of the three-dimensional steady-state diffusion equation for a finite width line source is presented. The wind speed and eddy diffusivity as a function of height above the roadway are obtained. Normalized ground level and elevated concentrations near a highway are obtained for winds perpendicular, parallel, and at 45 degrees.…

  12. Airship measurements of aerosol size distributions, cloud droplet spectra, and trace gas concentrations in the marine boundary layers

    SciTech Connect

    Frick, G.M.; Hoppel, W.A. )

    1993-11-01

    The use of an airship as a platform to conduct atmospheric chemistry, aerosol, and cloud microphysical research is described, and results from demonstration flights made off the Oregon coast are presented. The slow speed of the airship makes it an ideal platform to do high-spatial resolution profiling both vertically and horizontally, and to measure large aerosol and cloud droplet distributions without the difficulties caused by high-speed aircraft sampling. A unique set of data obtained during the demonstration flights show the effect that processing marine boundary layer aerosol through stratus clouds has on the aerosol size distribution. Evidence of new particle formation (nucleation of particles) was also observed on about half the days on which flights were made. 11 refs., 9 figs., 1 tab.

  13. Aerosol Specification in Single-Column CAM5

    NASA Astrophysics Data System (ADS)

    Habtezion, B. L.; Caldwell, P.

    2014-12-01

    The importance of aerosol specification in climate models for direct and indirect effects in climate had been widely documented in many research studies. The inclusion of the prognostic aerosol model in the Community Atmospheric Model (CAM) is a major breakthrough in the model development of CAM. The Single Column Model (SCM) version of CAM is very useful tool for an efficient development of model numeric and physics. However, SCM hasn't been well maintained due to focus to the full 3D model. SCM hasn't been updated appropriately to handle the prognostic aerosol model in CAM. In this study we identify the problems of using the default SCM version of CAM5 (SCAM5) and introduce fixes to the identified problems. We used four different aerosol specification methods in the SCM simulations. The aerosol specifications are default model (with prognostic aerosol, initialized to zero), prescribed aerosol (with monthly climatological aerosol values), observed aerosol (with aerosols from observations), and a case with fixed droplet concentration. We use SCM simulations with the different aerosol specification for a variety of cloud regimes. The sites used for these study include subtropical drizzling stratocumulus (DYCOMSRF02), multi-level Arctic clouds (MPACE-B), shallow convection (RICO), and summertime mid-latitude continental convection (ARM95). Simulations at the default time step and default model resolution were conducted and results are analyzed and compared to observations and previous Large Eddy Simulation (LES) studies.

  14. Amplitude concentration in a phase-modulated spectrum due to femtosecond filamentation

    PubMed Central

    Thompson, J. V.; Zhokhov, P. A.; Springer, M. M.; Traverso, A. J.; Yakovlev, V. V.; Zheltikov, A. M.; Sokolov, A. V.; Scully, M. O.

    2017-01-01

    We present a method by which the spectral intensity of an ultrafast laser pulse can be accumulated at selected frequencies by a controllable amount. Using a 4-f pulse shaper we modulate the phase of the frequency components of a femtosecond laser. By inducing femtosecond filamentation with the modulated pulse, we can concentrate the spectral amplitude of the pulse at various frequencies. The phase mask applied by the pulse shaper determines the frequencies for which accumulation occurs, as well as the intensity of the spectral concentration. This technique provides a way to obtain pulses with adjustable amplitude using only phase modulation and the nonlinear response of a medium. This provides a means whereby information which is encoded into spectral phase jumps may be decoded into measurable spectral intensity spikes. PMID:28266540

  15. Amplitude concentration in a phase-modulated spectrum due to femtosecond filamentation

    NASA Astrophysics Data System (ADS)

    Thompson, J. V.; Zhokhov, P. A.; Springer, M. M.; Traverso, A. J.; Yakovlev, V. V.; Zheltikov, A. M.; Sokolov, A. V.; Scully, M. O.

    2017-03-01

    We present a method by which the spectral intensity of an ultrafast laser pulse can be accumulated at selected frequencies by a controllable amount. Using a 4-f pulse shaper we modulate the phase of the frequency components of a femtosecond laser. By inducing femtosecond filamentation with the modulated pulse, we can concentrate the spectral amplitude of the pulse at various frequencies. The phase mask applied by the pulse shaper determines the frequencies for which accumulation occurs, as well as the intensity of the spectral concentration. This technique provides a way to obtain pulses with adjustable amplitude using only phase modulation and the nonlinear response of a medium. This provides a means whereby information which is encoded into spectral phase jumps may be decoded into measurable spectral intensity spikes.

  16. Load concentration due to missing members in planar faces of a large space truss

    NASA Technical Reports Server (NTRS)

    Waltz, J. E.

    1979-01-01

    A large space structure with members missing was investigated using a finite element analysis. The particular structural configuration was the tetrahedral truss, with attention restricted to one of its planar faces. Initially the finite element model of a complete face was verified by comparing it with known results for some basic loadings. Then an analysis was made of the structure with members near the center removed. Some calculations were made on the influence of the mesh size of a structure containing a hexagonal hole, and an analysis was also made of a structure with a rigid hexagonal insert. In general, load concentration effects in these trusses were significantly lower than classical stress concentration effects in an infinitely wide isotropic plate with a circular rigid inclusion, although larger effects were obtained when a hole extended over several rings of elements.

  17. Aerosol activation properties and CCN closure during TCAP

    NASA Astrophysics Data System (ADS)

    Mei, F.; Tomlinson, J. M.; Shilling, J. E.; Wilson, J. M.; Zelenyuk, A.; Chand, D.; Comstock, J. M.; Hubbe, J.; Berg, L. K.; Schmid, B.

    2013-12-01

    The indirect effects of atmospheric aerosols currently remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2007). This large uncertainty is partially due to our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturation. In addition, there is a large uncertainty in the aerosol optical depth (AOD) simulated by climate models near the North American coast and a wide variety in the types of clouds are observed over this region. The goal of the US Department of Energy Two Column Aerosol Project (TCAP) is to understand the processes responsible for producing and maintaining aerosol distributions and associated radiative and cloud forcing off the coast of North America. During the TCAP study, aerosol total number concentration, cloud condensation nuclei (CCN) spectra and aerosol chemical composition were in-situ measured from the DOE Gulfstream 1 (G-1) research aircraft during two Intensive Operations Periods (IOPs), one conducted in July 2012 and the other in February 2013. An overall aerosol size distribution was achieved by merging the observations from several instruments, including Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), Passive Cavity Aerosol Spectrometer Probe (PCASP-200, DMT), and Cloud Aerosol Spectrometer (CAS, DMT). Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.) and single particle mass spectrometer, mini-SPLAT. Based on the aerosol size distribution, CCN number concentration (characterized by a DMT dual column CCN counter with a range from 0.1% to 0.4%), and chemical composition, a CCN closure was obtained. The sensitivity of CCN closure to organic hygroscopicity was investigated. The differences in aerosol/CCN properties between two columns, and between two phases, will be discussed.

  18. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution F Table F-4 to Subpart F of Part 53... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-4 Table F-4 to Subpart F of Part 53—Estimated...

  19. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Estimated Mass Concentration Measurement of PM2.5 for Idealized âTypicalâ Coarse Aerosol Size Distribution F Table F-5 to Subpart F of Part... of Class II Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-5 Table F-5 to Subpart F of...

  20. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution F Table F-6 to Subpart F of Part 53... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-6 Table F-6 to Subpart F of Part 53—Estimated...

  1. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution F Table F-4 to Subpart F of Part 53... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-4 Table F-4 to Subpart F of Part 53—Estimated...

  2. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Estimated Mass Concentration Measurement of PM2.5 for Idealized âTypicalâ Coarse Aerosol Size Distribution F Table F-5 to Subpart F of Part... of Class II Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-5 Table F-5 to Subpart F of...

  3. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution F Table F-6 to Subpart F of Part 53... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-6 Table F-6 to Subpart F of Part 53—Estimated...

  4. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    NASA Astrophysics Data System (ADS)

    Wang, Guihua; Ogden, Joan M.; Chang, Daniel P. Y.

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air quality

  5. The aerosol radiative effects of uncontrolled combustion of domestic waste

    NASA Astrophysics Data System (ADS)

    Kodros, John K.; Cucinotta, Rachel; Ridley, David A.; Wiedinmyer, Christine; Pierce, Jeffrey R.

    2016-06-01

    Open, uncontrolled combustion of domestic waste is a potentially significant source of aerosol; however, this aerosol source is not generally included in many global emissions inventories. To provide a first estimate of the aerosol radiative impacts from domestic-waste combustion, we incorporate the Wiedinmyer et al. (2014) emissions inventory into GEOS-Chem-TOMAS, a global chemical-transport model with online aerosol microphysics. We find domestic-waste combustion increases global-mean black carbon and organic aerosol concentrations by 8 and 6 %, respectively, and by greater than 40 % in some regions. Due to uncertainties regarding aerosol optical properties, we estimate the globally averaged aerosol direct radiative effect to range from -5 to -20 mW m-2; however, this range increases from -40 to +4 mW m-2 when we consider uncertainties in emission mass and size distribution. In some regions with significant waste combustion, such as India and China, the aerosol direct radiative effect may exceed -0.4 W m-2. Similarly, we estimate a cloud-albedo aerosol indirect effect of -13 mW m-2, with a range of -4 to -49 mW m-2 due to emission uncertainties. In the regions with significant waste combustion, the cloud-albedo aerosol indirect effect may exceed -0.4 W m-2.

  6. Enhanced concentrations of citric acid in spring aerosols collected at the Gosan background site in East Asia

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Kawamura, Kimitaka

    2011-09-01

    In order to investigate water-soluble dicarboxylic acids and related compounds in the aerosol samples under the Asian continent outflow, total suspended particle (TSP) samples ( n = 32) were collected at the Gosan site in Jeju Island over 2-5 days integration during 23 March-1 June 2007 and 16-24 April 2008. The samples were analyzed for water-soluble dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls using a capillary gas chromatography technique. We found elevated concentrations of atmospheric citric acid (range: 20-320 ng m -3) in the TSP samples during mid- to late April of 2007 and 2008. To specify the sources of citric acid, dicarboxylic acids and related compounds were measured in the pollen sample collected at the Gosan site (Pollen_Gosan), authentic pollen samples from Japanese cedar ( Cryptomeria) (Pollen_cedar) and Japanese cypress ( Chamaecyparis obtusa) (Pollen_cypress), and tangerine fruit produced from Jeju Island. Citric acid (2790 ng in unit mg of pollen mass) was found as most abundant species in the Pollen_Gosan, followed by oxalic acid (2390 ng mg -1). Although citric acid was not detected in the Pollen_cedar and Pollen_cypress as major species, it was found as a dominant species in the tangerine juice while malic acid was detected as major species in the tangerine peel, followed by oxalic and citric acids. Since Japanese cedar trees are planted around tangerine farms to prevent strong winds from the Pacific Ocean, citric acid that may be directly emitted from tangerine is likely adsorbed on pollens emitted from Japanese cedar and then transported to the Gosan site. Much lower malic/citric acid ratios obtained under cloudy condition than clear condition suggest that malic acid may rapidly decompose to lower molecular weight compounds such as oxalic and malonic acids (

  7. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century

    NASA Astrophysics Data System (ADS)

    Yue, Xu; Mickley, Loretta J.; Logan, Jennifer A.; Kaplan, Jed O.

    2013-10-01

    We estimate future wildfire activity over the western United States during the mid-21st century (2046-2065), based on results from 15 climate models following the A1B scenario. We develop fire prediction models by regressing meteorological variables from the current and previous years together with fire indexes onto observed regional area burned. The regressions explain 0.25-0.60 of the variance in observed annual area burned during 1980-2004, depending on the ecoregion. We also parameterize daily area burned with temperature, precipitation, and relative humidity. This approach explains ˜0.5 of the variance in observed area burned over forest ecoregions but shows no predictive capability in the semi-arid regions of Nevada and California. By applying the meteorological fields from 15 climate models to our fire prediction models, we quantify the robustness of our wildfire projections at midcentury. We calculate increases of 24-124% in area burned using regressions and 63-169% with the parameterization. Our projections are most robust in the southwestern desert, where all GCMs predict significant (p < 0.05) meteorological changes. For forested ecoregions, more GCMs predict significant increases in future area burned with the parameterization than with the regressions, because the latter approach is sensitive to hydrological variables that show large inter-model variability in the climate projections. The parameterization predicts that the fire season lengthens by 23 days in the warmer and drier climate at midcentury. Using a chemical transport model, we find that wildfire emissions will increase summertime surface organic carbon aerosol over the western United States by 46-70% and black carbon by 20-27% at midcentury, relative to the present day. The pollution is most enhanced during extreme episodes: above the 84th percentile of concentrations, OC increases by ˜90% and BC by ˜50%, while visibility decreases from 130 km to 100 km in 32 Federal Class 1 areas in

  8. Global upper ocean heat storage response to radiative forcing from changing solar irradiance and increasing greenhouse gas/aerosol concentrations

    NASA Astrophysics Data System (ADS)

    White, Warren B.; Cayan, Daniel R.; Lean, Judith

    1998-09-01

    We constructed gridded fields of diabatic heat storage changes in the upper ocean from 20°S to 60°N from historical temperature profiles collected from 1955 to 1996. We filtered these 42 year records for periods of 8 to 15 years and 15 to 30 years, producing depth-weighted vertical average temperature (DVT) changes from the sea surface to the top of the main pycnocline. Basin and global averages of these DVT changes reveal decadal and interdecadal variability in phase across the Indian, Pacific, Atlantic, and Global Oceans, each significantly correlated with changing surface solar radiative forcing at a lag of 0+/-2 years. Decadal and interdecadal changes in global average DVT are 0.06°+/-0.01°K and 0.04°K+/-0.01°K, respectively, the same as those expected from consideration of the Stefan-Boltzmann radiation balance (i.e., 0.3°K per Wm-2) in response to 0.1% changes in surface solar radiative forcing of 0.2 Wm-2 and 0.15 Wm-2, respectively. Global spatial patterns of DVT changes are similar to temperature changes simulated in coupled ocean-atmosphere models, suggesting that natural modes of Earth's variability are phase-locked to the solar irradiance cycle. A trend in global average DVT of 0.15°K over this 42 year record cannot be explained by changing surface solar radiative forcing. But when we consider the 0.5 Wm-2 increase in surface radiative forcing estimated from the increase in atmospheric greenhouse gas and aerosol (GGA) concentrations over this period [Intergovernmental Panel on Climate Change, 1995], the Stefan-Boltzmann radiation balance yields this observed change. Moreover, the sum of solar and GGA surface radiative forcing can explain the relatively sharp increase in global and basin average DVT in the late 1970's.

  9. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions.

    PubMed

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A; Yang, Fan

    2016-12-13

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics ([Formula: see text]) for high aerosol concentration, and slow microphysics ([Formula: see text]) for low aerosol concentration; here, [Formula: see text] is the phase-relaxation time and [Formula: see text] is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as [Formula: see text], and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation.

  10. Constraining the aerosol influence on cloud fraction

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, E.; Quaas, J.; Bellouin, N.

    2016-04-01

    Aerosol-cloud interactions have the potential to modify many different cloud properties. There is significant uncertainty in the strength of these aerosol-cloud interactions in analyses of observational data, partly due to the difficulty in separating aerosol effects on clouds from correlations generated by local meteorology. The relationship between aerosol and cloud fraction (CF) is particularly important to determine, due to the strong correlation of CF to other cloud properties and its large impact on radiation. It has also been one of the hardest to quantify from satellites due to the strong meteorological covariations involved. This work presents a new method to analyze the relationship between aerosol optical depth (AOD) and CF. By including information about the cloud droplet number concentration (CDNC), the impact of the meteorological covariations is significantly reduced. This method shows that much of the AOD-CF correlation is explained by relationships other than that mediated by CDNC. By accounting for these, the strength of the global mean AOD-CF relationship is reduced by around 80%. This suggests that the majority of the AOD-CF relationship is due to meteorological covariations, especially in the shallow cumulus regime. Requiring CDNC to mediate the AOD-CF relationship implies an effective anthropogenic radiative forcing from an aerosol influence on liquid CF of -0.48 W m-2 (-0.1 to -0.64 W m-2), although some uncertainty remains due to possible biases in the CDNC retrievals in broken cloud scenes.

  11. Evaluation of Potential pH-Driven Metal Release Due to Elevated Groundwater CO2 Concentrations

    NASA Astrophysics Data System (ADS)

    Tinnacher, R. M.; Varadharajan, C.; Zheng, L.; Spycher, N.; Birkholzer, J. T.; Trautz, R. C.; Pugh, J. D.; Esposito, R.; Nico, P. S.

    2012-12-01

    The injection of carbon dioxide (CO2) emissions from industrial sources into deep geologic formations is a potential option for the control of CO2 concentrations in the atmosphere. While the risk of CO2 migration from the storage reservoir into potable groundwater is low considering the safeguards of site characterization and permitting, it is important to understand what type of potential impacts could occur and how to identify these impacts. Elevated CO2 concentrations may potentially lead to a decrease in groundwater pH and the subsequent release of metals and ions from natural sediments into the groundwater solution. In this risk scenario, potential metal release processes, such as enhanced mineral dissolution, metal desorption and/or ion exchange reactions, may be driven by changes in groundwater pH, the presence of carbonate ligands in solution or a combination of the two. However, a detailed understanding and a distinction of pH-driven and carbonate-driven metal release reactions are important for the development of site monitoring plans and remediation strategies, required by regulations in the unlikely event of a release. Hence, in this study we characterized metal release from natural sediments into synthetic groundwater solutions at two pH conditions in order to mimic the native groundwater pH (pH ~8.5) and the low pH conditions expected in the event of elevated CO2 concentrations (pH~5). In addition, results are compared between tests performed in the presence and absence of elevated CO2. Metal release was investigated in lab-scale sequential leaching experiments using two sediment types with different organic carbon contents over a time-frame of 25 days. Supernatant solutions were monitored for pH and characterized in terms of metal concentrations (ICP-MS), total inorganic carbon (TIC) and anion composition. Furthermore, experimental results were compared with data from a field study involving the controlled release of groundwater containing dissolved

  12. Elastic vibrations of a fiber due to impact of an aerosol particle and their influence on the efficiency of fibrous filters

    NASA Astrophysics Data System (ADS)

    Chernyakov, A. L.; Kirsch, A. A.; Kirsch, V. A.

    2011-05-01

    The excitation of sound vibrations of a cylindrical fine fiber due to the impact of a spherical aerosol particle is investigated. The equations describing the dynamics of impact are derived for an arbitrary shooting parameter. The coefficient of restitution is calculated, and its analytical approximation is obtained. It is shown, for the case of long fibers, that the coefficient of restitution depends upon a single parameter λc. The parameter λc depends on the particle radial velocity component near the fiber surface, the mass of the particle, the density of the fiber, the modulus of elasticity, and the geometric parameters of the fiber and the particle. The inertial deposition of submicron aerosol particles on fine fibers in a filter is considered. The efficiency of filtration is studied as a function of the gas flow velocity. The existence of a critical flow velocity U*, below which the losses of particle energy during collision have no effect on the efficiency, is demonstrated. For velocities higher than the critical velocity, the filtration efficiency is dependent on the mechanisms of nonelastic losses of the particle's energy. Its value can be significantly lower than that estimated when particle rebound effects are neglected. After they have rebounded, some particles are not able to attain the initial high velocities in the stream, thus depositing on neighboring fibers. The dynamics of these particles is investigated. For this case, it is shown that the filtration efficiency is dependent on the velocity distribution of the rebounded particles and that it increases with the packing density of fibers. A qualitative difference between the asymptotic behavior of a fiber and that of a flat plate is found long after the initial impulse.

  13. Global observations of cloud-sensitive aerosol loadings in low-level marine clouds

    NASA Astrophysics Data System (ADS)

    Andersen, H.; Cermak, J.; Fuchs, J.; Schwarz, K.

    2016-11-01

    Aerosol-cloud interaction is a key component of the Earth's radiative budget and hydrological cycle, but many facets of its mechanisms are not yet fully understood. In this study, global satellite-derived aerosol and cloud products are used to identify at what aerosol loading cloud droplet size shows the greatest sensitivity to changes in aerosol loading (ACSmax). While, on average, cloud droplet size is most sensitive at relatively low aerosol loadings, distinct spatial and temporal patterns exist. Possible determinants for these are identified with reanalysis data. The magnitude of ACSmax is found to be constrained by the total columnar water vapor. Seasonal patterns of water vapor are reflected in the seasonal patterns of ACSmax. Also, situations with enhanced turbulent mixing are connected to higher ACSmax, possibly due to intensified aerosol activation. Of the analyzed aerosol species, dust seems to impact ACSmax the most, as dust particles increase the retrieved aerosol loading without substantially increasing the concentration of cloud condensation nuclei.

  14. Elevated concentrations of endotoxin in indoor air due to cigarette smoking.

    PubMed

    Sebastian, Aleksandra; Pehrson, Christina; Larsson, Lennart

    2006-05-01

    Exposure to environmental tobacco smoke (ETS) is an important worldwide public health issue. The present study demonstrates that cigarette smoke can be a major source of endotoxin (lipopolysaccharide, LPS) in indoor environments. Gas-chromatography/mass-spectrometry was used to determine 3-hydroxy fatty acids as markers of endotoxin in air-borne house dust in homes of smokers and non-smokers. Air concentrations of endotoxin were 4-63 times higher in rooms of smoking students than in identical rooms of non-smoking students. The fact that cigarette smoke contains large amounts of endotoxin may partly explain the high prevalence of respiratory disorders among smokers and may also draw attention to a hitherto neglected risk factor of ETS.

  15. Flow reversal in traveling-wave electrokinetics: an analysis of forces due to ionic concentration gradients.

    PubMed

    García-Sánchez, P; Ramos, A; González, A; Green, N G; Morgan, H

    2009-05-05

    Pumping of electrolytes using ac electric fields from arrays of microelectrodes is a subject of current research. The behavior of fluids at low signal amplitudes (<2-3 V(pp)) is in qualitative agreement with the prediction of the ac electroosmosis theory. At higher voltages, this theory cannot account for the experimental observations. In some cases, net pumping is generated in the direction opposite to that predicted by the theory (flow reversal). In this work, we use fluorescent dyes to study the effect of ionic concentration gradients generated by Faradaic currents. We also evaluate the influence of factors such as the channel height and microelectrode array shape in the pumping of electrolytes with traveling-wave potentials. Induced charge beyond the Debye length is postulated to be responsible for the forces generating the observed flows at higher voltages. Numerical calculations are performed in order to illustrate the mechanisms that might be responsible for generating the flow.

  16. Investigation of sulphur isotope variation due to different processes applied during uranium ore concentrate production.

    PubMed

    Krajkó, Judit; Varga, Zsolt; Wallenius, Maria; Mayer, Klaus; Konings, Rudy

    The applicability and limitations of sulphur isotope ratio as a nuclear forensic signature have been studied. The typically applied leaching methods in uranium mining processes were simulated for five uranium ore samples and the n((34)S)/n((32)S) ratios were measured. The sulphur isotope ratio variation during uranium ore concentrate (UOC) production was also followed using two real-life sample sets obtained from industrial UOC production facilities. Once the major source of sulphur is revealed, its appropriate application for origin assessment can be established. Our results confirm the previous assumption that process reagents have a significant effect on the n((34)S)/n((32)S) ratio, thus the sulphur isotope ratio is in most cases a process-related signature.

  17. WRF-Chem Simulation of Air Quality in China: Sensitivity Analyses of PM Concentrations to Emissions, Atmospheric Transport, and Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Saikawa, E.; Naik, V.; Horowitz, L. W.; Takigawa, M.; Zhao, Y.

    2014-12-01

    We investigate air quality in China in April 2007, using the Weather Research and Forecasting model coupled with Chemistry version 3.5 (WRF-Chem) at a spatial resolution of 20km × 20km with 31 vertical levels. The model domain covers the entire East Asian region with 399 × 299 grid cells. The initial and lateral chemical boundary conditions are taken from a present-day simulation of the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) global chemistry-climate model AM3. The Regional Acid Deposition version 2 (RADM2) atmospheric chemical mechanism is used for gas-phase chemistry and the Model Aerosol Dynamics for Europe with the Secondary Organic Aerosol Model (MADE/SORGAM) and aqueous chemistry is used for aerosol chemistry. The emissions of gaseous pollutants (CO, NOx, NH3, VOCs, and SO2) and particulate matter (BC, OC, PM2.5, and PM10) are taken from the Regional Emission Inventory in Asia (REAS) version 2. Dust and sea salt emissions are simulated online, where dust parameters are optimized using observed particular matter (PM10) concentrations in 73 cities in China. We add gravitational settlement for dust and sea salt in vertical levels. The preliminary results show that the model predicts PM10 reasonably well compared to the ground measurement data. The bias in modeled PM10 concentrations in South and Northwest­­­­­­­ China is less than 10%. We will present results of sensitivity analyses that assess the impact of emissions, atmospheric transport, and secondary organic aerosol formation on PM concentrations.

  18. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  19. Test-Aerosol Generator For Calibrating Particle Counters

    NASA Technical Reports Server (NTRS)

    Mogan, Paul A.; Adams, Alois J.; Schwindt, Christian J.; Hodge, Timothy R.; Mallow, Tim J.; Duong, Anh A.; Bukauskas, Vyto V.

    1996-01-01

    Apparatus generates clean, stable aerosol stream for use in testing and calibrating laser-based aerosol-particle counter. Size and concentration of aerosol particles controlled to ensure accurate calibration. Cheap, widely available medical nebulizers used to generate aerosols.

  20. [Elevated serum lithium concentration due to switch from parenteral nutrition alone to parenteral with enteral nutrition].

    PubMed

    Goto, Hidekazu; Tomita, Takashi; Doki, Shotaro; Nakanishi, Rie; Kojima, Chikako; Yoneshima, Mihoko; Yoshida, Tadashi; Tanaka, Katsuya; Kohda, Yukinao

    2015-01-01

    We report a patient with elevated serum lithium concentration caused by switching from parenteral nutrition alone to parenteral with enteral nutrition. A 73-year-old female inpatient was treated with lithium carbonate 600 mg/d for manic episodes of bipolar disorder. Her serum lithium level was maintained at 0.57-0.79 mEq/L. She was administered total parenteral nutrition owing to difficulty in oral intake. Her diet contained 4.8-5.8 g/d of sodium chloride. After this, parenteral with enteral nutrition was initiated. The total sodium chloride intake decreased from 6.3 to 3.0-4.0 g/d following this change. On day 15 after initiation of parenteral with enteral nutrition, her serum lithium level increased to 1.17 mEq/L, which is closer to the upper therapeutic range limit. Therefore enteral nutrition was stopped immediately, and an electrolyte solution was administered instead of enteral nutrition. An antibiotic agent was also simultaneously administered because of infection. The total amount of sodium chloride administered was increased to 7.0 g/d during this treatment. Four days after treatment, the serum lithium level returned to 0.57 mEq/L. This case suggests that administration of appropriate sodium chloride nutrition is important during treatment with lithium carbonate, because disposition of lithium ion is paralleled to that of sodium.

  1. The influence of metallurgy on the formation of welding aerosols.

    PubMed

    Zimmer, Anthony T

    2002-10-01

    Recent research has indicated that insoluble ultrafine aerosols (ie., particles whose physical diameters are less than 100 nm) may cause adverse health effects due to their small size, and that toxicological response may be more appropriately represented by particle number or particle surface area. Unfortunately, current exposure criteria and the associated air-sampling techniques are primarily mass-based. Welding processes are high-temperature operations that generate substantial number concentrations of ultrafine aerosols. Welding aerosols are formed primarily through the nucleation of metal vapors followed by competing growth mechanisms such as coagulation and condensation. Experimental results and mathematical tools are presented to illustrate how welding metallurgy influences the chemical aspects and dynamic processes that initiate and evolve the resultant aerosol. This research suggests that a fundamental understanding of metallurgy and aerosol physics can be exploited to suppress the formation of undesirable chemical species as well as the amount of aerosol generated during a welding process.

  2. Future premature mortality due to O3, secondary inorganic aerosols and primary PM in Europe--sensitivity to changes in climate, anthropogenic emissions, population and building stock.

    PubMed

    Geels, Camilla; Andersson, Camilla; Hänninen, Otto; Lansø, Anne Sofie; Schwarze, Per E; Skjøth, Carsten Ambelas; Brandt, Jørgen

    2015-03-04

    Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000-2009, 2050-2059 and 2080-2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future.

  3. Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock

    PubMed Central

    Geels, Camilla; Andersson, Camilla; Hänninen, Otto; Lansø, Anne Sofie; Schwarze, Per E.; Ambelas Skjøth, Carsten; Brandt, Jørgen

    2015-01-01

    Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000–2009, 2050–2059 and 2080–2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future. PMID:25749320

  4. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Wright, D. L.; Koch, D.; Lewis, E. R.; McGraw, R.; Chang, L.-S.; Schwartz, S. E.; Ruedy, R.

    2008-10-01

    A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) are described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations. A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment. This is more likely due to

  5. Impact of aerosol size representation on modeling aerosol-cloud interactions

    DOE PAGES

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; ...

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  6. Impact of aerosol size representation on modeling aerosol-cloud interactions

    SciTech Connect

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; Abdul-Razzak, H.

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach. The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).

  7. Magnetic Flux Concentrations in Stratified Turbulent Plasma Due to Negative Effective Magnetic Pressure Instability

    NASA Astrophysics Data System (ADS)

    Jabbari, S.; Brandenburg, A.

    2014-12-01

    al. 2013). When the field is vertical, the resulting magnetic flux concentrations lead to the magnetic spots and can be of equipartition field strength. DNS, MFS, and implicit large eddy simulations (ILES) confirm that in a proper parameter regime, vertical imposed fields lead to the formation of circular magnetic spots (Brandenburg et al. 2014).

  8. Magnetic Flux Concentrations in Stratified Turbulent Plasma Due to Negative Effective Magnetic Pressure Instability

    NASA Astrophysics Data System (ADS)

    Jabbari, Sarah

    2015-08-01

    We study a system of a highly stratified turbulent plasma. In such a system, when the magnetic Reynolds number is large enough and there is a background field of suitable strength, a new effect will play role in con- centrating magnetic fields such that it leads to the formation of magnetic spots and bipolar regions. This effect is due to the fact that the turbu- lent pressure is suppressed by the large-scale magnetic field, which adds a negative term to the total mean-field (effective) pressure. This leads to an instability, which is known as the negative effective magnetic pressure instability (NEMPI). Direct numerical simulations (DNS) of isothermally forced turbulence have shown that NEMPI leads to the formation of spots in the presence of an imposed field. Our main aim now is to use NEMPI to explain the formation of active regions and sunspots. To achieve this goal, we need to move progressively to more realistic models. Here we extend our model by allowing the magnetic field to be generated by a dy- namo. A dynamo plays an important role in solar activity. Therefore, it is of interest to investigate NEMPI in the presence of dynamo-generated magnetic fields. Mean-field simulations (MFS) of such systems in spheri- cal geometry have shown how these two instabilities work in concert. In fact NEMPI will be activated as long as the strength of the magnetic field generated by the dynamo is in a proper range (for more detail see Jab- bari et al. 2013). In our new study, we use DNS to investigate a similar system. The turbulence is forced in the entire spherical shell, but the forc- ing is made helical in the lower 30% of the shell, similar to the model of Mitra et al. (2014). We perform simulations using the Pencil Code for different density contrasts and other input parameters. We applied ver- tical field boundary conditions in the r direction. The results show that, when the stratification is high enough, intense bipolar regions form and as time passes, they expand

  9. Thermal Infrared Radiative Forcing By Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    Adhikari, Narayan

    The work mainly focuses on the study of thermal infrared (IR) properties of atmospheric greenhouse gases and aerosols, and the estimation of the aerosol-induced direct longwave (LW) radiative forcing in the spectral region 5-20 mum at the Earth's surface (BOA; bottom of the atmosphere) and the top of the atmosphere (TOA) in cloud-free atmospheric conditions. These objectives were accomplished by conducting case studies on clear sky, smoky, and dusty conditions that took place in the Great Basin of the USA in 2013. Both the solar and thermal IR measurements and a state-of-the-science radiative transfer model, the LBLDIS, a combination of the Line-By-Line Radiative Transfer Model and the Discrete Ordinate Radiative Transfer (DISORT) solver were employed for the study. The LW aerosol forcing is often not included in climate models because the aerosol effect on the LW is often assumed to be negligible. We lack knowledge of aerosol characteristics in the LW region, and aerosol properties exhibit high variability. We have found that the LW TOA radiative forcing due to fine mode aerosols, mainly associated with small biomass burning smoke particles, is + 0.4 W/m2 which seems to be small, but it is similar to the LW radiative forcing due to increase in CO2 concentration in the Earth's atmosphere since the preindustrial era of 1750 (+ 1.6 W/m 2). The LW radiative forcing due to coarse mode aerosols, associated with large airborne mineral dust particles, was found to be as much as + 5.02 W/m2 at the surface and + 1.71 W/m2 at the TOA. All of these significant positive values of the aerosol radiative forcing both at the BOA and TOA indicate that the aerosols have a heating effect in the LW range, which contributes to counterbalancing the cooling effect associated with the aerosol radiative forcing in the shortwave (SW) spectral region. In the meantime, we have found that LW radiative forcing by aerosols is highly sensitive to particle size and complex refractive indices of

  10. Aerosol Radiative Forcing and Weather Forecasts in the ECMWF Model

    NASA Astrophysics Data System (ADS)

    Bozzo, A.; Benedetti, A.; Rodwell, M. J.; Bechtold, P.; Remy, S.

    2015-12-01

    Aerosols play an important role in the energy balance of the Earth system via direct scattering and absorpiton of short-wave and long-wave radiation and indirect interaction with clouds. Diabatic heating or cooling by aerosols can also modify the vertical stability of the atmosphere and influence weather pattern with potential impact on the skill of global weather prediction models. The Copernicus Atmosphere Monitoring Service (CAMS) provides operational daily analysis and forecast of aerosol optical depth (AOD) for five aerosol species using a prognostic model which is part of the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF-IFS). The aerosol component was developed during the research project Monitoring Atmospheric Composition and Climate (MACC). Aerosols can have a large impact on the weather forecasts in case of large aerosol concentrations as found during dust storms or strong pollution events. However, due to its computational burden, prognostic aerosols are not yet feasible in the ECMWF operational weather forecasts, and monthly-mean climatological fields are used instead. We revised the aerosol climatology used in the operational ECMWF IFS with one derived from the MACC reanalysis. We analyse the impact of changes in the aerosol radiative effect on the mean model climate and in medium-range weather forecasts, also in comparison with prognostic aerosol fields. The new climatology differs from the previous one by Tegen et al 1997, both in the spatial distribution of the total AOD and the optical properties of each aerosol species. The radiative impact of these changes affects the model mean bias at various spatial and temporal scales. On one hand we report small impacts on measures of large-scale forecast skill but on the other hand details of the regional distribution of aerosol concentration have a large local impact. This is the case for the northern Indian Ocean where the radiative impact of the mineral

  11. The impact of monthly variation of the Pacific-North America (PNA) teleconnection pattern on wintertime surface-layer aerosol concentrations in the United States

    NASA Astrophysics Data System (ADS)

    Feng, Jin; Liao, Hong; Li, Jianping

    2016-04-01

    The Pacific-North America teleconnection (PNA) is the leading general circulation pattern in the troposphere over the region of North Pacific to North America during wintertime. This study examined the impacts of monthly variations of the PNA phase (positive or negative phase) on wintertime surface-layer aerosol concentrations in the United States (US) by analyzing observations during 1999-2013 from the Air Quality System of the Environmental Protection Agency (EPA-AQS) and the model results for 1986-2006 from the global three-dimensional Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem). The composite analyses on the EPA-AQS observations over 1999-2013 showed that the average concentrations of PM2.5, sulfate, nitrate, ammonium, organic carbon, and black carbon aerosols over the US were higher in the PNA positive phases (25 % of the winter months examined, and this fraction of months had the highest positive PNA index values) than in the PNA negative phases (25 % of the winter months examined, and this fraction of months had the highest negative PNA index values) by 1.0 µg m-3 (8.7 %), 0.01 µg m-3 (0.5 %), 0.3 µg m-3 (29.1 %), 0.1 µg m-3 (11.9 %), 0.6 µg m-3 (13.5 %), and 0.2 µg m-3 (27.8 %), respectively. The simulated geographical patterns of the differences in concentrations of all aerosol species between the PNA positive and negative phases were similar to observations. Based on the GEOS-Chem simulation, the pattern correlation coefficients were calculated to show the impacts of PNA-induced variations in meteorological fields on aerosol concentrations. The PNA phase was found (i) to influence sulfate concentrations mainly through changes in planetary boundary layer height (PBLH), precipitation (PR), and temperature; (ii) to influence nitrate concentrations mainly through changes in temperature; and (iii) to influence concentrations of ammonium, organic carbon, and black carbon mainly through changes in PR and PBLH. Results from

  12. CHANGES IN OPERATING PROCEDURES FOR AEROSOL CONCENTRATION UNIFORMITY FOR PM2.5 AND PM10 SAMPLER TESTING

    EPA Science Inventory

    This technical note documents changes in the standard operating procedures used at the Environmental Protection Agency's (U.S. EPA) aerosol testing wind tunnel facility for testing of particulate matter monitoring methods of PM2.5 and PM10. These changes are relative to the op...

  13. Microphysical, chemical and optical aerosol properties in the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Kikas, Ülle; Reinart, Aivo; Pugatshova, Anna; Tamm, Eduard; Ulevicius, Vidmantas

    2008-11-01

    The microphysical structure, chemical composition and prehistory of aerosol are related to the aerosol optical properties and radiative effect in the UV spectral range. The aim of this work is the statistical mapping of typical aerosol scenarios and adjustment of regional aerosol parameters. The investigation is based on the in situ measurements in Preila (55.55° N, 21.00° E), Lithuania, and the AERONET data from the Gustav Dalen Tower (58 N, 17 E), Sweden. Clustering of multiple characteristics enabled to distinguish three aerosol types for clear-sky periods: 1) clean maritime-continental aerosol; 2) moderately polluted maritime-continental aerosol; 3) polluted continental aerosol. Differences between these types are due to significant differences in aerosol number and volume concentration, effective radius of volume distribution, content of SO 4- ions and Black Carbon, as well as different vertical profiles of atmospheric relative humidity. The UV extinction, aerosol optical depth (AOD) and the Ångstrom coefficient α increased with the increasing pollution. The value α = 1.96 was observed in the polluted continental aerosol that has passed over central and eastern Europe and southern Russia. Reduction of the clear-sky UV index against the aerosol-free atmosphere was of 4.5%, 27% and 41% for the aerosol types 1, 2 and 3, respectively.

  14. Evaluation of the global aerosol microphysical ModelE2-TOMAS model against satellite and ground-based observations

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Adams, P. J.; Shindell, D. T.

    2015-03-01

    The TwO-Moment Aerosol Sectional (TOMAS) microphysics model has been integrated into the state-of-the-art general circulation model, GISS ModelE2. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the ModelE2-TOMAS model is compared to the default aerosol model in ModelE2, which is a one-moment aerosol (OMA) model (i.e. no aerosol microphysics). Overall, the ModelE2-TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement (mostly within a factor of 2) with observations of sulfur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as ModelE2-OMA) cannot capture the observed vertical distribution of sulfur dioxide over the Pacific Ocean, possibly due to overly strong convective transport and overpredicted precipitation. The ModelE2-TOMAS model simulates observed aerosol number concentrations and cloud condensation nuclei concentrations roughly within a factor of 2. Anthropogenic aerosol burdens in ModelE2-OMA differ from ModelE2-TOMAS by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. We observed larger differences for naturally emitted aerosols such as sea salt and mineral dust, as those emission rates are quite different due to different upper size cutoff assumptions.

  15. Boundary layer aerosol size distribution, mass concentration and mineralogical composition in Morocco and at Cape Verde Islands during SAMUM I-II

    NASA Astrophysics Data System (ADS)

    Kandler, K.; Lieke, K.

    2009-04-01

    The Saharan Mineral Dust Experiment (SAMUM) is dedicated to the understanding of the radiative effects of mineral dust. Two major field experiments were performed: A first joint field campaign took place at Ouarzazate and near Zagora, southern Morocco, from May 13 to June 7, 2006. Aircraft and ground based measurements of aerosol physical and chemical properties were carried out to collect a data set of surface and atmospheric columnar information within a major dust source. This data set combined with satellite data provides the base of the first thorough columnar radiative closure tests in Saharan dust. A second field experiment was conducted during January-February 2008, in the Cape Verde Islands region, where about 300 Tg of mineral dust are transported annually from Western Africa across the Atlantic towards the Caribbean Sea and the Amazon basin. Along its transport path, the mineral dust is expected to influence significantly the radiation budget - by direct and indirect effects - of the subtropical North Atlantic. We are lacking a radiative closure in the Saharan air plume. One focus of the investigation within the trade wind region is the spatial distribution of mixed dust/biomass/sea salt aerosol and their physical and chemical properties, especially with regard to radiative effects. We report on measurements of size distributions, mass concentrations and mineralogical composition conducted at the Zagora (Morocco) and Praia (Cape Verde islands) ground stations. The aerosol size distribution was measured from 20 nm to 500

  16. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  17. Atmospheric responses to stratospheric aerosol geoengineering

    NASA Astrophysics Data System (ADS)

    Ferraro, Angus; Highwood, Eleanor; Charlton-Perez, Andrew

    2013-04-01

    Stratospheric aerosol geoengineering, also called solar radiation management (SRM), involves the injection of aerosol into the stratosphere to increase the planetary albedo. It has been conceieved as a policy option in response to human-induced global warming. It is well-established from modelling studies and observations following volcanic eruptions that stratospheric sulphate aerosols cause global cooling. Some aspects of the climate response, especially those involving large-scale dynamical changes, are more uncertain. This work attempts to identify the physical mechanisms operating in the climate response to stratospheric aerosol geoengineering using idealised model experiments. The radiative forcing produced by the aerosol depends on its type (species) and size. Aerosols absorb terrestrial and solar radiation, which drives stratospheric temperature change. The stratospheric temperature change also depends on aerosol type and size. We calculate the stratospheric temperature change due to geoengineering with sulphate, titania, limestone and soot in a fixed-dynamical-heating radiative model. Sulphate produces tropical heating of up to ~6 K. Titania produces much less heating, whereas soot produces much more. Most aerosols increase the meridional temperature gradient in the lower stratosphere which, by thermal wind balance, would be expected to intensify the zonal winds in the polar vortex. An intermediate-complexity general circulation model is used to investigate the dynamical response to geoengineering aerosols. Atmospheric carbon dioxide concentrations are quadrupled. The carbon dioxide forcing is then balanced using stratospheric sulphate aerosol. We assess dynamical changes in the stratosphere, for example, the frequency of stratospheric sudden warmings and the strength of the Brewer-Dobson overturning circulation. We also assess changes in the strength and position of the tropospheric jets. We compare results for sulphate with those for titania.

  18. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2012-08-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was increased by a factor of 7.5 to 11 (e.g. ~40 ng m-3 for pinonic acid) by using the miniature Versatile Aerosol Concentration Enrichment System (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total sub-micron organic aerosol mass was estimated to be about 60%. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene) cannot account for all of the measured fragments, which illustrates the complexity of ambient aerosol and possibly indicates unidentified or underestimated biogenic SOA precursor in the boreal forest.

  19. Diurnal and seasonal variations of meteorology and aerosol concentrations in the foothills of the nepal himalayas (Nagarkot: 1,900 m asl)

    NASA Astrophysics Data System (ADS)

    Shrestha, Rudra K.; Gallagher, Martin W.; Connolly, Paul J.

    2016-02-01

    A 10-months long monitoring experiment to investigate the diurnal and seasonal variation of aerosol size distribution at Nagarkot (1,900 m asl) in the Kathmadu Valley was carried out as part of a study on katabatic and anabatic influence on pollution dispersion mechanisms. Seasonal means show total aerosol number concentration was highest during post-monsoon season (775 ± 417 cm-3) followed by pre-monsoon (644 ± 429 cm-3) and monsoon (293 ± 205 cm-3) periods. Fine particle concentration (0.25 μm ≤ DP ≤ 2.5 μm) dominated in all seasons, however, contribution by coarse particles (3.0 μm ≤ DP ≤ 10.0 μm) is more significant in the monsoon season with contributions from particles larger than 10.0 μm being negligible. Our results show a regular diurnal pattern of aerosol concentration in the valley with a morning and an evening peak. The daily twin peaks are attributed to calm conditions followed by transitional growth and break down of the valley boundary layer below. The peaks are generally associated with enhancement of the coarse particle fraction. The evening peak is generally higher than the morning peak, and is caused by fresh evening pollution from the valley associated with increased local activities coupled with recirculation of these trapped pollutants. Relatively clean air masses from neighbouring valleys contribute to the smaller morning peak. Gap flows through the western passes of the Kathmandu Valley, which sweep away the valley pollutants towards the eastern passes modulated by the mountain - valley wind system, are mainly responsible for the dominant pollutant circulation patterns exhibited within the valley.

  20. AGLITE: a multi-wavelength lidar for measuring emitted aerosol concentrations and fluxes and air motion from agricultural facilities

    NASA Astrophysics Data System (ADS)

    Wilkerson, Thomas D.; Bingham, Gail E.; Zavyalov, Vladimir V.; Swasey, Jason A.; Hancock, Jed J.; Crowther, Blake G.; Cornelsen, Scott S.; Marchant, Christian; Cutts, James N.; Huish, David C.; Earl, Curtis L.; Andersen, Jan M.; Cox, McLain L.

    2006-12-01

    AGLITE is a multi-wavelength lidar developed for the Agricultural Research Service (ARS), United States Department of Agriculture (USDA) and its program on particle emissions from animal production facilities. The lidar transmitter is a 10 kHz pulsed NdYAG laser at 355, 532 and 1064 nm. We analyze lidar backscatter and extinction to extract aerosol physical properties. All-reflective optics and dichroic and interferometric filters permit all wavelengths to be measured simultaneously, day or night, using photon counting by MTs, an APD, and fast data acquisition. The lidar housing is a transportable trailer suitable for all-weather operation at any accessible site. We direct the laser and telescope FOVs to targets of interest in both azimuth and elevation. The lidar has been applied in atmospheric studies at a swine production farm in Iowa and a dairy in Utah. Prominent aerosol plumes emitted from the swine facility were measured as functions of temperature, turbulence, stability and the animal feed cycle. Particle samplers and turbulence detectors were used by colleagues specializing in those fields. Lidar measurements also focused on air motion as seen by scans of the farm volume. The value of multi-wavelength, eye-safe lidars for agricultural aerosol measurements has been confirmed by the successful operation of AGLITE.

  1. Inferring the composition and concentration of aerosols by combining the AERONET, MPLNET and CALIOP data: comparison with in-situ measurements and utilization to evaluate and improve GCM results

    NASA Astrophysics Data System (ADS)

    Ganguly, D.; Ginoux, P. A.; Ramaswamy, V.

    2009-12-01

    We present a method to derive the concentration of aerosol components using the spectral measurements of AOD (aerosol optical depth) and single scattering albedo along with their size distribution and extinction profile available from AERONET (Aerosol Robotic Network) and MPLNET (Micro-pulse Lidar Network) stations as well as the space borne CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar [Ganguly et al., 2009a; 2009b]. The technique involves finding the best combination of aerosol concentration by minimizing differences between measured and calculated spectral variation in AOD and single scattering albedo along with the size distribution of aerosols over specific locations. Lidar data on extinction profile provides the vertical constraint on the distribution of aerosols in the atmosphere. Relative humidity from NCEP reanalysis is used to compute the hygroscopic growth factors and associated changes in the optical properties of aerosol components at all vertical levels. The technique has been successfully applied over different regions around the world such as North America, Southern Africa and South Asia. The results have been validated using in-situ measurements of aerosol composition available from the first two regions. Finally, we show how these results are being used to evaluate and improve the GFDL-AM2/AM3 climate model simulations. We believe our technique could also be used for the retrieval of air quality by calculating PM2.5 and PM10 concentrations. This could improve the existing methods by providing a better relation between surface measurements of PM2.5 concentration and satellite data. References: Ganguly, D., P. Ginoux, V. Ramaswamy, O. Dubovik, J. Welton, E. A. Reid and B. N. Holben (2009a), Inferring the composition and concentration of aerosols by combining AERONET and MPLNET data: comparison with other measurements and utilization to evaluate GCM output, J. Geophys. Res., 114, D16203, doi:10.1029/2009JD011895. Ganguly, D., P

  2. A Sensitivity Study of Aerosol Effects on an Idealized Supercell Storm

    NASA Astrophysics Data System (ADS)

    Takeishi, A.; Storelvmo, T.

    2013-12-01

    One of the largest uncertainties in future climate projections lies in the climatic effects of aerosols. It has been shown that the cooling effect of aerosols could partially offset the current global warming induced by increased greenhouse gas concentration. Among the effects of aerosols, the interaction between aerosols and deep convective clouds is especially difficult to quantify, due to the complex interaction and limited measurements available. Although the radiative effect of deep convective clouds on climate is small, they could affect the local, regional, and global climate by altering precipitation and the large-scale circulations. Thus, it is of importance to understand how deep convection changes its development and evolution with aerosol loading. This study aims to understand the effects of varying aerosol number concentrations on deep convective clouds, using the Weather Research and Forecasting (WRF) model. A quarter-circular shear supercell is simulated with three different microphysics schemes in an idealized setting, while mimicking the changes in aerosol concentration by changing either cloud droplet concentration or activated cloud condensation nuclei concentration. We find that the simulated amount of precipitation has quite different sensitivities to aerosol concentration, depending on the microphysics scheme used; one of the simulations shows a drastic decrease in precipitation with increased aerosol loading, whereas simulations with the other two schemes show relatively low sensitivities to aerosol concentration. This fact highlights uncertainties in the complex microphysical interactions in convective clouds. In addition, changes in ice nuclei concentration are mimicked by changing the ice nucleation rate in each scheme. Sensitivity to this variation is also dependent on the microphysics scheme used. Furthermore, radiation is added in the simulations so that both radiative and microphysical effects of aerosol on the supercell storm are

  3. Temporal Variation of Aerosol Properties at a Rural Continental Site and Study of Aerosol Evolution through Growth Law Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Jian; Collins, Don; Covert, David; Elleman, Robert; Ferrare, Richard A.; Gasparini, Roberto; Jonsson, Haflidi; Ogren, John; Sheridan, Patrick; Tsay, Si-Chee

    2006-01-01

    Aerosol size distributions were measured by a Scanning Mobility Particle Sizer (SMPS) onboard the CIRPAS Twin Otter aircraft during 16 flights at the Southern Great Plains (SGP) site in northern central Oklahoma as part of the Aerosol Intensive Operation period in May, 2003. During the same period a second SMPS was deployed at a surface station and provided continuous measurements. Combined with trace gas measurements at the SGP site and back-trajectory analysis, the aerosol size distributions provided insights into the sources of aerosols observed at the SGP site. High particle concentrations, observed mostly during daytime, were well correlated with the sulfur dioxide (SO2) mixing ratios, suggesting nucleation involving sulfuric acid is likely the main source of newly formed particles at the SGP. Aerosols within plumes originating from wildfires in Central America were measured at the surface site. Vertically compact aerosol layers, which can be traced back to forest fires in East Asia, were intercepted at altitudes over 3000 meters. Analyses of size dependent particle growth rates for four periods during which high cloud coverage was observed indicate growth dominated by volume controlled reactions. Sulfate accounts for 50% to 72% of the increase in aerosol volume concentration; the rest of the volume concentration increase was likely due to secondary organic species. The growth law analyses and meteorological conditions indicate that the sulfate was produced mainly through aqueous oxidation of SO2 in clouds droplets and hydrated aerosol particles.

  4. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  5. [A Case of Renal Cell Carcinoma with High Everolimus Blood Concentrations and Hyperglycemia Due to Everolimus-Induced Hepatic Dysfunction].

    PubMed

    Takasaki, Shinya; Kikuchi, Masafumi; Kawasaki, Yoshihide; Ito, Akihiro; Arai, Yoichi; Yamaguchi, Hiroaki; Mano, Nariyasu

    2017-01-01

    We report the case of a patient who had renal cell carcinoma with high everolimus blood concentrations and hyperglycemia due to everolimus-induced hepatic dysfunction. A 74-year-old man who underwent right nephrectomy for renal cell carcinoma was administered everolimus for multiple lung metastases. Everolimus caused grade 3 hepatic dysfunction and hyperglycemia; hence, high blood levels of everolimus were observed. Although the patient was re-administrated everolimus after recovering from hepatic dysfunction, hepatic function test values worsened again. Everolimus was discontinued before its blood concentration increased, and the patient was switched to axitinib treatment. Therefore, the measurement of everolimus blood level is considered useful for the management of adverse events in renal cell carcinoma.

  6. Mice with neuropathic pain exhibit morphine tolerance due to a decrease in the morphine concentration in the brain.

    PubMed

    Ochiai, Wataru; Kaneta, Mitsumasa; Nagae, Marina; Yuzuhara, Ami; Li, Xin; Suzuki, Haruka; Hanagata, Mika; Kitaoka, Satoshi; Suto, Wataru; Kusunoki, Yoshiki; Kon, Risako; Miyashita, Kazuhiko; Masukawa, Daiki; Ikarashi, Nobutomo; Narita, Minoru; Suzuki, Tsutomu; Sugiyama, Kiyoshi

    2016-09-20

    The chronic administration of morphine to patients with neuropathic pain results in the development of a gradual tolerance to morphine. Although the detailed mechanism of this effect has not yet been elucidated, one of the known causes is a decrease in μ-opioid receptor function with regard to the active metabolite of morphine, M-6-G(morphine-6-glucuronide), in the ventrotegmental area of the midbrain. In this study, the relationship between the concentration of morphine in the brain and its analgesic effect was examined after the administration of morphine in the presence of neuropathic pain. Morphine was orally administered to mice with neuropathic pain, and the relationship between morphine's analgesic effect and its concentration in the brain was analysed. In addition, the expression levels of the conjugation enzyme, UGT2B (uridine diphosphate glucuronosyltransferase), which has morphine as its substrate, and P-gp, which is a transporter involved in morphine excretion, were examined. In mice with neuropathic pain, the concentration of morphine in the brain was significantly decreased, and a correlation was found between this decrease and the decrease in the analgesic effect. It was considered possible that this decrease in the brain morphine concentration may be due to an increase in the expression level of P-gp in the small intestine and to an increase in the expression level and binding activity of UGT2B in the liver. The results of this study suggest the possibility that a sufficient analgesic effect may not be obtained when morphine is administered in the presence of neuropathic pain due to a decrease in the total amount of morphine and M-6-G that reach the brain.

  7. Prediction of electron concentration reductions in re-entry flow fields due to electrophilic liquid and water injection.

    NASA Technical Reports Server (NTRS)

    Pergament, H. S.; Mikatarian, R. R.; Kurzius, S. C.

    1972-01-01

    Discussion of an analytical model which leads to predictions of reductions in electron concentrations in reentry flow fields due to the injection of electrophilic liquids and water. The processes incorporated into the model are: penetration and breakup of the liquid jet, droplet acceleration and vaporization, expansion of the liquid spray due to droplet vaporization, electrophilic vapor diffusion, heterogeneous and homogeneous charged species recombination kinetics and homogeneous electron attachment kinetics. Spray boundary calculations are shown to be in good agreement with photographic observations of water and Freon E-3 sprays in wind tunnel tests of a scale model RAM C-III flight vehicle. Fixed-bias electrostatic probe data taken during the RAM C-III flight are interpreted in terms of effective jet penetration distances - which are shown to be consistent with calculations using the present model.

  8. The Impact of Monthly Variation of the Pacific-North America (PNA) Teleconnection Pattern on Wintertime Surface-layer Aerosol Concentrations in the United States

    NASA Astrophysics Data System (ADS)

    Feng, J.; Liao, H.; Li, J.

    2015-12-01

    The Pacific-North America teleconnection (PNA) is the leading general circulation pattern in the troposphere over the region of North Pacific to North America during wintertime. The PNA exhibits positive (negative) phases with positive (negative) anomalies in geopotential height in the vicinity of Hawaii and over the intermountain region of North America, and negative (positive) anomalies in geopotential height over south of the Aleutian Islands and the Gulf Coast region of the United States. This study examined the impacts of monthly variation of the PNA phase on wintertime surface-layer aerosol concentrations in the United States by analyzing observations during 1999-2013 from the Air Quality System of Environmental Protection Agency (EPA-AQS) and the model results for 1986-2006 from the global three-dimensional Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem). The composite analyses on the EPA-AQS observations over 1999-2003 showed that the average PM2.5 concentrations were higher in the PNA positive phases than in the PNA negative phases by 1.0 μg m-3 (8.6%), 2.1μg m-3 (24.1%), and 1.1 μg m-3 (10.6%) in the eastern, western, and whole of United States, respectively. Relative to the PNA negative phases, the number of exceedance days (days with the PM2.5 concentrations exceeding 35 μg m-3) in the PNA positive phases increased by 5-8 days month-1 in California and the contiguous Great Salt Lake and by 2-3 days month-1 in Iowa. The simulated geographical patterns of the differences in concentrations of PM2.5, nitrate, sulfate, ammonium, OC, and BC between the PNA positive and negative phases were similar to observations. The PNA influences surface-layer aerosol concentrations in the United States by changing meteorological variables such as temperature, precipitation, planetary boundary layer height, relative humidity, and wind speed. We found that that the PNA-induced variation in planetary boundary layer height was the most dominant

  9. Modeling of growth and evaporation effects on the extinction of 1.0-micron solar radiation traversing stratospheric sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Deepak, A.

    1981-01-01

    The effects of growth and evaporation of stratospheric sulfuric acid aerosols on the extinction of solar radiation traversing such an aerosol medium are reported for the case of 1.0-micron solar radiation. Modeling results show that aerosol extinction is not very sensitive to the change of ambient water vapor concentration, but is sensitive to ambient temperature changes, especially at low ambient temperatures and high ambient water vapor concentration. A clarification is given of the effects of initial aerosol size distribution and composition on the change of aerosol extinction due to growth and evaporation processes. It is shown that experiments designed to observe solar radiation extinction of aerosols may also be applied to the determination of observed changes in aerosol optical properties, environmental parameters, or the physical and optical characteristics of sulfate aerosols.

  10. Source bioaerosol concentration and rRNA gene-based identification of microorganisms aerosolized at a flood irrigation wastewater reuse site.

    PubMed

    Paez-Rubio, Tania; Viau, Emily; Romero-Hernandez, Socorro; Peccia, Jordan

    2005-02-01

    Reuse of partially treated domestic wastewater for agricultural irrigation is a growing practice in arid regions throughout the world. A field sampling campaign to determine bioaerosol concentration, culturability, and identity at various wind speeds was conducted at a flooded wastewater irrigation site in Mexicali, Baja California, Mexico. Direct fluorescent microscopy measurements for total microorganisms, culture-based assays for heterotrophs and gram-negative enteric bacteria, and small-subunit rRNA gene-based cloning were used for microbial characterizations of aerosols and effluent wastewater samples. Bioaerosol results were divided into two wind speed regimens: (i) below 1.9 m/s, average speed 0.5 m/s, and (ii) above 1.9 m/s, average speed 4.5 m/s. Average air-borne concentration of total microorganisms, culturable heterotrophs, and gram-negative enteric bacteria were, respectively, 1.1, 4.2, and 6.2 orders of magnitude greater during the high-wind-speed regimen. Small-subunit rRNA gene clone libraries processed from samples from air and the irrigation effluent wastewater during a high-wind sampling event indicate that the majority of air clone sequences were more than 98% similar to clone sequences retrieved from the effluent wastewater sample. Overall results indicate that wind is a potential aerosolization mechanism of viable wastewater microorganisms at flood irrigation sites.

  11. Calculation of gamma radiation dose rate and radon concentration due to granites used as building materials in Iran.

    PubMed

    Abbasi, A

    2013-07-01

    Natural radioactivity concentrations in granite building materials that are commonly used in Iran have been surveyed by using a gamma-ray spectrometry system, using a high-purity germanium detector. Health hazards from gamma radiation doses due to granite and radon concentration have been calculated. The dose rate of exposure from granite building materials on humans is obtained as a result of an external exposure from gamma-emitting radionuclides in the granites. Another mode of exposure is from the inhalation of the decay products of (222)Ra and (220)Ra. The average concentrations of (232)Th, (226)Ra and (40)K were in the ranges of 6.5-172.2, 3.8-94.2 and 556.9-1539.2 Bq kg(-1), respectively. The radon exhalation rates have also been studied and values were in the range of 0.32 ± 0.01 to 7.86 ± 1.65 Bq m(-2) h(-1). For two models of standard living rooms (5.0 m × 4.0 m area; 2.8 m), the radon concentration (Ci) and the absorbed dose (D) rates were calculated and the results were found to be 10.64-29.32 Bq m(-3), 3.84-68.02 nGy h(-1) and 0.02-0.33 mSv y(-1) for Model 1, 10.07-15.38 Bq m(-3) and 2.29-39.99 nGy h(-1) for Model 2, respectively. According to our estimations, mechanical ventilation systems (λν = 0.5 h(-1)) in a room all granite samples would produce radon concentration <100 Bq m(-3).

  12. Atmospheric aerosol and gaseous pollutant concentrations in Bucharest area using first datasets from the city AQ monitoring network

    NASA Astrophysics Data System (ADS)

    Balaceanu, Cristina; Iorga, Gabriela

    2010-05-01

    City of Bucharest is the largest and most populated (about 2.8 million inhabitants) city in the Romanian Plain and encounters environmental problems and meteorology typical for several cities in southeastern Europe. City environment includes intense emissions arising from traffic (about 1 million cars per day), five thermo-electrical power-generation stations, that use both natural gas and oil derivatives for power generation and domestic heating, and from industrial sources (more than 800 small and medium plants). In the present work we performed an extensive analysis of the air pollution state for the Bucharest area (inside and outside the city) using filter measurement aerosol data PM10 and PM2.5. Data spanning over first year of continuous sampling (2005) were taken from the city Air Quality Monitoring Network, which consists of eight sampling stations: three industrial and two traffic, one EPA urban background, one suburban and one regional station located outside of Bucharest. The objective was to assess the PM10 recorded levels and their degree of compliance with the EU-legislated air quality standards and to provide a statistical investigation of the factors controlling seasonal and spatial variations of PM levels. PM10 relationships with other measured air pollutants (SO2, CO, NOx) and meteorological parameters (temperature, relative humidity, atmospheric pressure, wind velocity and direction) were investigated by statistical analysis. Back trajectory modeling and wind direction frequency distributions were used to identify the origin of the polluted air masses. Contribution of combustion (slopes) and non-combustion (intercepts) sources to PM10 recorded levels was quantified by linear analysis, for two seasonal periods: cold (15 October-14 April) and warm (15 April-14 October). PM10 and PM2.5 concentrations were compared with corresponding values in other European urban areas. Main conclusions are as follows: Traffic and industrial sites contribute to the

  13. Analysis of Characteristics of Dust Aerosols in Northwest China based on Satellite Remote-sensing Data

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Liu, L.; Zhao, Y.; Gong, S.; Henze, D. K.

    2014-12-01

    Based on the CloudSat data, effects of dust aerosol on cloud parameters under the circumstance of the monthly average, dusty days and dust-free days were analyzed during April, 2010. By using L2 aerosol profiles satellite data of CALIOP/CALIOPSO the aerosol extinction coefficients were analyzed over northwest China. As an important case, space distribution and transmission route of dust aerosol were investigated during the dust events occurred from April 16th to 18th in 2013 over northwest China, based on L1 data of CALIOP/CALIOPSO, a combination of multiple satellite data and models. The results show that (1) dust aerosols could cause the reduction in effective radius of particle, cloud liquid water content and cloud optical thickness, and the increase of the number concentration of liquid cloud particles as well, (2) The aerosol extinction coefficients were decreased with the increase of height. The value of the aerosol extinction coefficients in desert area was greater than that in the area of Gansu Province due to urbanization. Distribution of the aerosol extinction coefficients in spring was nearly the same as the annual average. (3) Using aerosol products of the vertical characteristics