Science.gov

Sample records for aerosol contaminant extractor

  1. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  2. Ldrd-2015-00076 -- Validation Study Of The SRNL Vacuum Aerosol Contaminant Extractor

    SciTech Connect

    Siegfried, M.

    2015-10-14

    SRNL recently developed a prototype device for the IAEA to prepare particulate samples collected on swipes for laboratory analysis. The Vacuum Aerosol Contaminant Extractor (VacACE) utilizes electrostatic precipitation in lieu of the impaction or ultrasonic solvent extraction methods presently employed by the IAEA to place particles of interest on carbon planchets for investigation. The project was funded by the Intentional Safeguards Projects Office (ISPO) with scope for device design and fabrication, but no scope for validation or testing. Without documented validation of the tool, sample processing and subsequent analysis fidelity cannot be assured. The goal of this project was to determine collection efficacy in a rigorous fashion, demonstrate proof of concept with standardized particulates, and produce a validated VacACE sampling protocol.

  3. Hospital washbasin water: risk of Legionella-contaminated aerosol inhalation.

    PubMed

    Cassier, P; Landelle, C; Reyrolle, M; Nicolle, M C; Slimani, S; Etienne, J; Vanhems, P; Jarraud, S

    2013-12-01

    The contamination of aerosols by washbasin water colonized by Legionella in a hospital was evaluated. Aerosol samples were collected by two impingement technologies. Legionella was never detected by culture in all the (aerosol) samples. However, 45% (18/40) of aerosol samples were positive for Legionella spp. by polymerase chain reaction, with measurable concentrations in 10% of samples (4/40). Moreover, immunoassay detected Legionella pneumophila serogroup 1 and L. anisa, and potentially viable bacteria were seen on viability testing. These data suggest that colonized hospital washbasins could represent risks of exposure to Legionella aerosol inhalation, especially by immunocompromised patients.

  4. Recovery of phosphonate surface contaminants from glass using a simple vacuum extractor with a solid-phase microextraction fiber

    SciTech Connect

    Gary S. Groenewold; Jill R. Scott; Cathy Rae

    2011-07-01

    Recovery of chemical contaminants from fixed surfaces for analysis can be challenging particularly if it is not possible to acquire a solid sample. A simple device is described that collects semivolatile organic compounds from fixed surfaces by creating an enclosed volume over the surface, then generating a modest vacuum. A solid-phase microextraction fiber is then inserted into the evacuated volume where it functions to sorb volatilized organic contaminants. The device is based on a syringe modified with a seal that is used to create the vacuum, with a perforable plunger through which the SPME fiber is inserted. The vacuum speeds partitioning of the semivolatile compounds into the gas phase, and reduces the boundary layer around the SPME fiber, which enables a fraction of the volatilized organics to partition into the SPME fiber. After sample collection the SPME fiber is analyzed using conventional gas chromatography/mass spectrometry. The methodology has been used to collect organophosphorus compounds from glass surfaces, to provide a simple test for the functionality of the devices. Thirty minute sampling times (deltaTvac) resulted in fractional recovery efficiencies ranged from 10(-3) to > 10(-1), and in absolute terms collection of low nanograms was demonstrated. Fractional recovery values were correlated to the vapor pressure of the compounds being sampled. Fractional recovery increased with increasing deltaTvac, and displayed a roughly logarithmic profile indicating that an operational equilibrium is being approached. Fractional recovery decreased with increasing time between exposure and sampling, however recordable quantities of the phosphonates could be collected three weeks after exposure.

  5. Optical properties of aerosol contaminated cloud derived from MODIS instrument

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Rozanov, Vladimir; Lelli, Luca; Vountas, Marco; Burrows, John P.

    2016-04-01

    The presence of absorbing aerosols above/within cloud can reduce the amount of up-welling radiation in visible (VIS) and short-wave infrared and darken the spectral reflectance when compared with a spectrum of a clean cloud observed by satellite instruments (Jethva et al., 2013). Cloud properties retrieval for aerosol contaminated cases is a great challenge. Even small additional injection of aerosol particles into clouds in the cleanest regions of Earth's atmosphere will cause significant effect on those clouds and on climate forcing (Koren et al., 2014; Rosenfeld et al., 2014) because the micro-physical cloud process are non-linear with respect to the aerosol loading. The current cloud products like Moderate Resolution Imaging Spectroradiometer (MODIS) ignoring the aerosol effect for the retrieval, which may cause significant error in the satellite-derived cloud properties. In this paper, a new cloud properties retrieval method, considering aerosol effect, based on the weighting-function (WF) method, is presented. The retrieval results shows that the WF retrieved cloud properties (e.g COT) agrees quite well with MODIS COT product for relative clear atmosphere (AOT ≤ 0.4) while there is a large difference for large aerosol loading. The MODIS COT product is underestimated for at least 2 - 3 times for AOT>0.4, and this underestimation increases with the increase of AOT.

  6. Metal and Metalloid Contaminants in Atmospheric Aerosols from Mining Operations

    PubMed Central

    Csavina, Janae; Landázuri, Andrea; Wonaschütz, Anna; Rine, Kyle; Rheinheimer, Paul; Barbaris, Brian; Conant, William; Sáez, A. Eduardo; Betterton, Eric A.

    2013-01-01

    Mining operations are potential sources of airborne metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, with potential deleterious effects on human health and ecology. Fine particulates such as those resulting from smelting operations may disperse more readily into the environment than coarser tailings dust. Fine particles also penetrate more deeply into the human respiratory system, and may become more bioavailable due to their high specific surface area. In this work, we report the size-fractionated chemical characterization of atmospheric aerosols sampled over a period of a year near an active mining and smelting site in Arizona. Aerosols were characterized with a 10-stage (0.054 to 18 μm aerodynamic diameter) multiple orifice uniform deposit impactor (MOUDI), a scanning mobility particle sizer (SMPS), and a total suspended particulate (TSP) collector. The MOUDI results show that arsenic and lead concentrations follow a bimodal distribution, with maxima centered at approximately 0.3 and 7.0 μm diameter. We hypothesize that the sub-micron arsenic and lead are the product of condensation and coagulation of smelting vapors. In the coarse size, contaminants are thought to originate as aeolian dust from mine tailings and other sources. Observation of ultrafine particle number concentration (SMPS) show the highest readings when the wind comes from the general direction of the smelting operations site. PMID:23441050

  7. Metal and Metalloid Contaminants in Atmospheric Aerosols from Mining Operations.

    PubMed

    Csavina, Janae; Landázuri, Andrea; Wonaschütz, Anna; Rine, Kyle; Rheinheimer, Paul; Barbaris, Brian; Conant, William; Sáez, A Eduardo; Betterton, Eric A

    2011-10-01

    Mining operations are potential sources of airborne metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, with potential deleterious effects on human health and ecology. Fine particulates such as those resulting from smelting operations may disperse more readily into the environment than coarser tailings dust. Fine particles also penetrate more deeply into the human respiratory system, and may become more bioavailable due to their high specific surface area. In this work, we report the size-fractionated chemical characterization of atmospheric aerosols sampled over a period of a year near an active mining and smelting site in Arizona. Aerosols were characterized with a 10-stage (0.054 to 18 μm aerodynamic diameter) multiple orifice uniform deposit impactor (MOUDI), a scanning mobility particle sizer (SMPS), and a total suspended particulate (TSP) collector. The MOUDI results show that arsenic and lead concentrations follow a bimodal distribution, with maxima centered at approximately 0.3 and 7.0 μm diameter. We hypothesize that the sub-micron arsenic and lead are the product of condensation and coagulation of smelting vapors. In the coarse size, contaminants are thought to originate as aeolian dust from mine tailings and other sources. Observation of ultrafine particle number concentration (SMPS) show the highest readings when the wind comes from the general direction of the smelting operations site.

  8. Disposable remote zero headspace extractor

    DOEpatents

    Hand, Julie J.; Roberts, Mark P.

    2006-03-21

    The remote zero headspace extractor uses a sampling container inside a stainless steel vessel to perform toxicity characteristics leaching procedure to analyze volatile organic compounds. The system uses an in line filter for ease of replacement. This eliminates cleaning and disassembly of the extractor. All connections are made with quick connect fittings which can be easily replaced. After use, the bag can be removed and disposed of, and a new sampling container is inserted for the next extraction.

  9. Contamination Resulting From Aerosolized Fluid During Laparoscopic Surgery

    PubMed Central

    Nowak, Brent M.; Seger, Michael V.; Duperier, Frank D.

    2014-01-01

    Background and Objectives: Aerosolized droplets of blood can travel considerable distances on release of intra-abdominal pressure during laparoscopic surgery. This creates an environmental hazard for members of the surgical team. This study describes and provides a method of measurement of aerosolized blood contamination during evacuation of the pneumoperitoneum in laparoscopic surgery. Methods: Samples were measured by removing a trocar from the abdomen while a pneumoperitoneum of 15 mm Hg was present. A white poster board was placed 24 inches above the incision to catch the released blood spatter. By use of machine vision, luminol fluorescence, and computerized spatial analysis, data from the boards were recorded, analyzed, and scored based on the distance, size, and quantity of particulate contamination. Results: We analyzed 27 boards. Spatter was present on every board. The addition of luminol to the boards increased the amount of visible spatter. Most tests created <1000 blood spatters. Fluids are typically ejected as a fine mist. Every test included at least 1 blood spatter. The range of the average blood spatter size was 0.53 × 10–3 to 7.11 × 10–3 sq in. The amount of spatter detected did not show any apparent correlation with the patient's body mass index, the estimated blood loss, or the type of operation performed. Conclusions: Evacuation of the pneumoperitoneum during laparoscopic surgery results in consistent contamination. Most blood spatter is not visible to the naked eye. Our results suggest that all surgical participants should wear appropriate protective barriers and conscious measures should be undertaken to prevent environmental contamination during pneumoperitoneal evacuation. PMID:25392644

  10. Rapid cleanup of bacterial DNA from samples containing aerosol contaminants

    NASA Astrophysics Data System (ADS)

    Menking, Darrell E.; Kracke, Suzanne K.; Emanuel, Peter A.; Valdes, James J.

    1999-01-01

    Polymerase Chain Reaction (PCR) is an in vitro enzymatic, synthetic method used to amplify specific DNA sequences from organisms. Detection of DNA using gene probes allows for absolute identification not only of specific organisms, but also of genetic material in recombinant organisms. PCR is an exquisite biological method for detecting bacteria in aerosol samples. A major challenge facing detection of DNA from field samples is that they are almost sure to contain impurities, especially impurities that inhibit amplification through PCR. DNA is being extracted from air, sewage/stool samples, food, sputum, a water and sediment; however, multi- step, time consuming methods are required to isolate the DNA from the surrounding contamination. This research focuses on developing a method for rapid cleanup of DNA which combines extraction and purification of DNA while, at the same time, removing inhibitors from 'dirty samples' to produce purified, PCR-ready DNA. GeneReleaser produces PCR-ready DNA in a rapid five-minute protocol. GeneReleaser resin was able to clean up sample contain micrograms of typical aerosol and water contaminants. The advantages of using GR are that it is rapid, inexpensive, requires one-step, uses no hazardous material and produces PCR-ready DNA.

  11. Evaluations of Thin Cirrus Contamination and Screening in Ground Aerosol Observations Using Collocated Lidar Systems

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.

    2012-01-01

    Cirrus clouds, particularly sub visual high thin cirrus with low optical thickness, are difficult to be screened in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to examine the susceptibility of operational aerosol products to thin cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the CALIPSO vertical feature mask (VFM) and the MODIS-derived thin cirrus screening parameters for the purpose of evaluating thin cirrus contamination. Key results of this study include: (1) Quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted. Although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons, (2) Challenges in matching up different data for analysis are highlighted and corresponding solutions proposed, and (3) Estimation of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

  12. Airborne Transmission of Melioidosis to Humans from Environmental Aerosols Contaminated with B. pseudomallei

    PubMed Central

    Lin, Hsi-Hsun; Liu, Pei-Ju; Ni, Wei-Fan; Hsueh, Pei-Tan; Liang, Shih-Hsiung; Chen, Chialin; Chen, Ya-Lei

    2015-01-01

    Melioidosis results from an infection with the soil-borne pathogen Burkholderia pseudomallei, and cases of melioidosis usually cluster after rains or a typhoon. In an endemic area of Taiwan, B. pseudomallei is primarily geographically distributed in cropped fields in the northwest of this area, whereas melioidosis cases are distributed in a densely populated district in the southeast. We hypothesized that contaminated cropped fields generated aerosols contaminated with B. pseudomallei, which were carried by a northwesterly wind to the densely populated southeastern district. We collected soil and aerosol samples from a 72 km2 area of land, including the melioidosis-clustered area and its surroundings. Aerosols that contained B. pseudomallei-specific TTSS (type III secretion system) ORF2 DNA were well distributed in the endemic area but were rare in the surrounding areas during the rainy season. The concentration of this specific DNA in aerosols was positively correlated with the incidence of melioidosis and the appearance of a northwesterly wind. Moreover, the isolation rate in the superficial layers of the contaminated cropped field in the northwest was correlated with PCR positivity for aerosols collected from the southeast over a 2-year period. According to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) analyses, PFGE Type Ia (ST58) was the predominant pattern linking the molecular association among soil, aerosol and human isolates. Thus, the airborne transmission of melioidosis moves from the contaminated soil to aerosols and/or to humans in this endemic area. PMID:26061639

  13. Validation of MODIS aerosol retrievals and evaluation of potential cloud contamination in East Asia.

    PubMed

    Xia, Xiang-Ao; Chen, Hong-Bin; Wang, Pu-Cai

    2004-01-01

    MODIS aerosol retrievals onboard Terra/Aqua and ground truth data obtained from AERONET (Aerosol Robtic Network) solar direct radiance measurements are collocated to evaluate the quality of the former in East Asia. AERONET stations in East Asia are separated into two groups according to their locations and the preliminary validation results for each station. The validation results showed that the accuracy of MODIS aerosol retrievals in East Asia is a little worse than that obtained in other regions such as Eastern U.S., Western Europe, Brazil and so on. The primary reason is due to the improper aerosol model used in MODIS aerosol retrieval algorithm, so it is of significance to characterize aerosol properties properly according to long-term ground-based remote sensing or other relevant in situ observations in order to improve MODIS retrievals in East Asia. Cloud contamination is proved to be one of large errors, which is demonstrated by the significant relation between MODIS aerosol retrievals versus cloud fraction, as well as notable improvement of linear relation between satellite and ground aerosol data after potential cloud contamination screened. Hence, it is suggested that more stringent clear sky condition be set in use of MODIS aerosol data. It should be pointed out that the improvement might be offset by other error sources in some cases because of complex relation between different errors. Large seasonal variation of surface reflection and uncertainties associated with it result in large intercepts and random error in MODIS aerosol retrievals in northern inland of East Asia. It remains to be a big problem to retrieve aerosols accurately in inland characterized by relatively larger surface reflection than the requirement in MODIS aerosol retrieval algorithm.

  14. Colorimetric Solid-Phase Extractor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The heart of a colorimetric solid phase extractor (CSPE) test kit quickly measures the concentration of the biocides silver or iodine in astronauts' drinking water to determine whether concentrations are safe. When 10 milliliters (ml) of water is drawn through the disk, the disk will turn color (yellow in this picture for iodine) indicating the presence of the biocides. The device could someday be used to test water safety at reservoirs and water treatment plants on Earth. (photo credit: Microanalytical Instrumentation Center, Iowa State University).

  15. Hydraulic Extractor For Electronic Connectors

    NASA Technical Reports Server (NTRS)

    Smith, Larry D.

    1994-01-01

    Tool separates multipin electrical connectors in electronic equipment. Based on use of hydraulic pressure to apply balanced forces to connector and gently pull it free without damage. Easily assembled from readily available parts. Includes actuator syringe, two extractor syringes of disposable plastic 5-mL type, several pieces of flexible plastic tubing, and adjustable mounting components that brace tool in desired spacing configuration to suit connector extracted. Tubes and syringes filled with suitable fluid. Designed specifically for use on "D"-type connectors, also adapted for use wherever linear extraction motion used.

  16. [Studies of microbiological contamination of ultrasonic apparatus used in pediatric aerosol therapy].

    PubMed

    Alkiewicz, J; Kedzia, B; Hołderna, E; Bugaj, U

    It was found that inflating tube is most rarely contaminated with microorganisms during the use of ultrasonic inhalator TUR USI 70. Glass cylinder is contaminated more frequently whereas a diaphragm, aerosol preparation, inhaling mask and a pipe joining it with the device are contaminated most frequently. Sporadic contamination of the inflating tube indicate an efficient work of air filters while frequent contamination of the diaphragm, aerosol preparation and glass cylinder prove that the contamination is caused by a coupling fluid. It was also found that ultrasound exerts a destructive effect on microorganisms in the aerosol preparation. The investigations have shown that the inhaling mask and tubes joining it with the device should be changed before each use while the other parts of an inhalator and aerosol preparation may be changed once per 15 inhalations. It was also noted that disinfection of different parts of the device by a 2% aqueous glutaric aldehyde (30 minutes at room temperature) is efficient in about 95%. PMID:2485899

  17. Continuous CO2 extractor and methods

    SciTech Connect

    None listed

    2010-06-15

    The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

  18. Quantitative assessment of bio-aerosols contamination in indoor air of University dormitory rooms

    PubMed Central

    Hayleeyesus, Samuel Fekadu; Ejeso, Amanuel; Derseh, Fikirte Aklilu

    2015-01-01

    Objectives The purpose of this study is to provide insight into how students are exposed to indoor bio-aerosols in the dormitory rooms and to figure out the major possible factors that govern the contamination levels. Methodology The Bio-aerosols concentration level of indoor air of thirty dormitory rooms of Jimma University was determined by taking 120 samples. Passive air sampling technique; the settle plate method using open Petri-dishes containing different culture media was employed to collect sample twice daily. Results The range of bio-aerosols contamination detected in the dormitory rooms was 511–9960 CFU/m3 for bacterial and 531–6568 CFU/m3 for fungi. Based on the criteria stated by WHO expert group, from the total 120 samples 95 of the samples were above the recommended level. The statistical analysis showed that, occupancy were significantly affected the concentrations of bacteria that were measured in all dormitory rooms at 6:00 am sampling time (p-value=0.000) and also the concentrations of bacteria that were measured in all dormitory rooms were significantly different to each other (p-value=0.013) as of their significance difference in occupancy (p-value=0.000). Moreover, there were a significant different on the contamination level of bacteria at 6:00 am and 7:00 pm sampling time (p=0.015), whereas there is no significant difference for fungi contamination level for two sampling times (p= 0.674). Conclusion There is excessive bio-aerosols contaminant in indoor air of dormitory rooms of Jimma University and human occupancy produces a marked concentration increase of bacterial contamination levels and most fungi species present into the rooms air of Jimma University dormitory were not human-borne. PMID:26609289

  19. Monitoring the impact of aerosol contamination on the drought-induced decline of gross primary productivity

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Li, Weizhong; Zhu, Qiuan; Chen, Huai; Fang, Xiuqin; Zhang, Tinglong; Zhao, Pengxiang; Peng, Changhui

    2015-04-01

    Southwestern China experienced a period of severe drought from September 2009 to May 2010. It led to widespread decline in the enhanced vegetation index (EVI) and gross primary productivity (GPP) in the springtime of 2010 (March to May). However, this study observed a spatial inconsistency between drought-impacted vegetation decline and the precipitation deficit. Significant aerosol loads that correspond to inconsistent areas were also observed during the drought period. After analyzing both MODIS GPP/NPP Collection 5 (C5) and the newer Collection 5.5 (C55) data, a large area observed to be experiencing GPP decline in the eastern part of the study area proved to be unreliable. Based on EVI data, after atmospherically contaminated data were screened from analysis, approximately 20% of the study area exhibited browning whereas 33% displayed no change or greening and the remaining area (approximately 47%) lacked sufficient data to document changing conditions. Correlation analysis showed that fire occurrences, aerosol optical depth, and precipitation anomalies during the two drought periods (from September to February and from March to May) all contributed to a decrease in GPP. C55 data remains vulnerable to aerosol contamination due to a much higher correlation coefficient with aerosol optical depth compared to C5 data. In the future, users of remotely sensed data should be cautious of and take into account impacts related to atmospheric contamination, even during drought periods.

  20. [A simple testing installation for the production of aerosols with constant bacteria-contaminated concentrations].

    PubMed

    Herbst, M; Lehmhus, H; Oldenburg, B; Orlowski, C; Ohgke, H

    1983-04-01

    A simple experimental set for the production and investigation of bacterially contaminated solid-state aerosols with constant concentration is described. The experimental set consists mainly of a fluidized bed-particle generator within a modified chamber for formaldehyde desinfection. The special conditions for the production of a defined concentration of particles and microorganisms are to be found out empirically. In a first application aerosol-sizing of an Andersen sampler is investigated. The findings of Andersen (1) are confirmed with respect to our experimental conditions.

  1. Combustion aerosols formed during burning of radioactively contaminated materials: Experimental results

    SciTech Connect

    Halverson, M.A.; Ballinger, M.Y.; Dennis, G.W.

    1987-03-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases. Radioactive aerosols generated by fires were investigated in experiments in which combustible solids and liquids were contaminated with radioactive materials and burned. Uranium in powder and liquid form was used to contaminate five fuel types: polychloroprene, polystyrene, polymethylmethacrylate, cellulose, and a mixture of 30% tributylphosphate (TBP) in kerosene. Heat flux, oxygen concentration, air flow, contaminant concentration, and type of ignition were varied in the experiments. The highest release (7.1 wt %) came from burning TBP/kerosene over contaminated nitric acid. Burning cellulose contaminated with uranyl nitrate hexahydrate liquid gave the lowest release (0.01 wt %). Rate of release and particle size distribution of airborne radioactive particles were highly dependent on the type of fuel burned.

  2. Acute respiratory effects of endotoxin-contaminated machining fluid aerosols in guinea pigs.

    PubMed

    Gordon, T

    1992-07-01

    Exposure to machining fluid aerosols in the automotive industry is associated with a variety of respiratory symptoms including cross-shift changes in pulmonary function, cough, asthma, and phlegm. Lubricating and cooling fluids used in machining operations are predominantly water and thus are susceptible to microbial growth. In the present study, the role of endotoxin in the acute pulmonary injury produced by machining fluid aerosols was examined in guinea pigs. Animals were exposed to nebulized water, unused machining fluid, or used machining fluid. At the end of a 3-hr exposure, specific airway conductance (SGaw) was not affected by exposure to the vehicle water, but was decreased in a dose-dependent manner by exposure to aerosols of the used machining fluid. SGaw decreased from preexposure baseline values by 0, 7, and 40% in animals exposed to 1, 10, and 100 mg/m3 used machining fluid, respectively. These exposure levels also produced acute lung injury as evidenced by changes in cellular and biochemical indices in lavage fluid. These adverse respiratory effects may have been due to microbial contamination of the used machining fluid as the aerosol exposures were associated with airborne endotoxin concentrations of 0.3, 1.9, and 5.3 micrograms/m3, respectively. Animals exposed to aerosols of the endotoxin-free unused machining fluid had no statistically significant adverse functional, cellular, or biochemical effects except for a fourfold increase in neutrophils at 100 mg/m3. These results suggest that contamination of machining fluid during use or storage may lead to the adverse respiratory effects of aerosolized machining fluids.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Low-cost screening for microbial contaminants in aerosols generated in a dental office.

    PubMed

    Hubar, J Sean; Pelon, William

    2005-01-01

    It has been reported that aerosols and droplets generated by high-speed dental drills and cavitrons are contaminated with blood and bacteria and represent a potential route for transmitting disease. Bacterial cells possess a negative electrical charge, while the cathode ray tubes (CRT) that are used in computer monitors generate positively charged static electric fields. Consequently, bacteria dispersed within these aerosols could be attracted to the screens on CRT monitors. In this study, pathogenic strains of Staphylococcus aureus were found on CRT screens in different locations within the Louisiana State University School of Dentistry facility. The results suggest that surveying CRT screens is a simple method for evaluating the airborne microbial contaminants present within a dental office.

  4. 21 CFR 884.4340 - Fetal vacuum extractor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fetal vacuum extractor. 884.4340 Section 884.4340....4340 Fetal vacuum extractor. (a) Identification. A fetal vacuum extractor is a device used to... means of a suction cup attached to the scalp and is powered by an external vacuum source. This...

  5. 21 CFR 884.4340 - Fetal vacuum extractor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal vacuum extractor. 884.4340 Section 884.4340....4340 Fetal vacuum extractor. (a) Identification. A fetal vacuum extractor is a device used to... means of a suction cup attached to the scalp and is powered by an external vacuum source. This...

  6. 21 CFR 884.4340 - Fetal vacuum extractor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fetal vacuum extractor. 884.4340 Section 884.4340....4340 Fetal vacuum extractor. (a) Identification. A fetal vacuum extractor is a device used to... means of a suction cup attached to the scalp and is powered by an external vacuum source. This...

  7. 21 CFR 884.4340 - Fetal vacuum extractor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fetal vacuum extractor. 884.4340 Section 884.4340....4340 Fetal vacuum extractor. (a) Identification. A fetal vacuum extractor is a device used to... means of a suction cup attached to the scalp and is powered by an external vacuum source. This...

  8. 21 CFR 884.4340 - Fetal vacuum extractor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fetal vacuum extractor. 884.4340 Section 884.4340....4340 Fetal vacuum extractor. (a) Identification. A fetal vacuum extractor is a device used to... means of a suction cup attached to the scalp and is powered by an external vacuum source. This...

  9. Methodological aspects of assessing atmospheric contamination with metal aerosols in the vicinity of thermal power complexes.

    PubMed

    Sokolov, S M

    1986-01-01

    A study of metal aerosols content in waste steam-containing gases from a thermal power station operating on oil fuel revealed that the concentrations of V2O5, Al2O3, Fe2O3, MnO2 and Cr2O3 are not influenced by the operational mode, type of boiler, the mean ratios being 1 : 0, 3 : 0, 27 : 0, 2 : 0, 03 : 0 and 0.25 respectively. Comparing the metal content in oil fuel and waste gases showed that no more than 10% of the studied compounds are sorbed on the boiler walls, the remaining 90% being released into the atmosphere. It is suggested that V2O5 be determined as an integral indicator with the aim of rapid hygienic assessment of the extent of atmospheric contamination with metal aerosols. The presented results may be used in preventive and regular sanitary surveillance during thermal power plant designing, construction and reconstruction.

  10. The Role of Cloud Contamination, Aerosol Layer Height and Aerosol Model in the Assessment of the OMI Near-UV Retrievals Over the Ocean

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Torres, Omar

    2016-01-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD less than 0.3, 30% for AOD greater than 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm approximately less than 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (less than 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by

  11. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean

    NASA Astrophysics Data System (ADS)

    Gassó, Santiago; Torres, Omar

    2016-07-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD < 0.3, 30 % for AOD > 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm ˜ < 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (< 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the

  12. Dielectric-Based Wakefield Power Extractor

    SciTech Connect

    Jing, C.; Antipov, S.; Gao, F.; Kanareykin, A.; Schoessow, P.; Gai, W.; Conde, M.; Liu, W.; Power, J. G.; Konecny, R.; Yusof, Z.

    2010-11-04

    In the Two Beam Accelerator (TBA), wakefield power extractors which extract high power RF from a high current beam are used to power high gradient accelerating structures. A dielectric-based Wakefield Power Extractor (DWPE) is one option in addition to the metallic structures considered previously, like the CLIC PETS (Power Extraction and Transfer Structure). 7.8 GHz and 26 GHz DWPE prototypes have been successfully built and tested at the Argonne Wakefield Accelerator (AWA) facility. We are currently designing an X-band version for a potential application with the CLIC beam. In this article, we report on test results of the 26 GHz DWPE and the preliminary design of the X-band structure. Future plan and possible difficulties in the development of DWPEs are also discussed.

  13. The effect of carrier gas contaminants on the charging probability of aerosols under bipolar charging conditions.

    PubMed

    Steiner, Gerhard; Reischl, Georg P

    2012-12-01

    This work concentrates on the experimental determination of the properties of ionic molecular clusters that are produced in the bipolar ionic atmosphere of a radioactivity based (241)Am charger. The main scope of this study was to investigate the dependency of the ions' properties on carrier gas contaminants caused by the evaporation of trace gases from different kinds of frequently encountered tubing materials. A recently developed high resolution mobility spectrometer allows the precise determination of the ions' electrical mobility; an empirical mass-mobility relationship was used to approximate the corresponding ion masses. It was found that impurities in the carrier gas dramatically change the pattern of the ion mobility/size distribution, resulting in very different ion properties that strongly depend on the carrier gas composition. Since the ion properties control the charging process of aerosols, it was further investigated how the different ion properties affect the calculation of the charging probabilities of aerosols. The results show that despite large variations of the ions' properties, only a minor effect on the calculated charging probabilities can be found.

  14. Demolition and removal of radioactively contaminated concrete soil: Aerosol control and monitoring

    SciTech Connect

    Newton, G.J.; Hoover, M.D.; Grace, A.C. III

    1995-12-01

    From 1963 to 1985, two concrete-lined ponds were used to reduce the volume of radioactive liquids from the Institute`s research programs. Following withdrawal of the {open_quotes}hot ponds{close_quotes} from active use, the residual sludges and plastic liners of the ponds were removed and shipped to a radioactive waste disposal site. From 1987 to 1994, the concrete structures remained undisturbed pending environmental restoration on the site. Restoration began in 1994 and was completed in 1995. Restoration involved mechanical breakup and removal of the concrete structures and removal of areas of contaminated soils from the site. This report describes the design and results of the aerosol control and monitoring program that was conducted to ensure protection of workers and the environment during the restoration process. The aerosol control and monitoring strategy developed for remediation of the ITRI hot ponds was successful both in preventing dispersion of radioactive dusts and in demonstrating that exposures of workers and offsite releases were within statutory limits.

  15. 1. VIEW EAST, SEED EXTRACTOR BUILDING ON LEFT, IMPLEMENT BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW EAST, SEED EXTRACTOR BUILDING ON LEFT, IMPLEMENT BUILDING ON RIGHT. (see also WV-237-5, WV-237-9, WV-237-h-1, WV-237-L-1) - Parsons Nursery, Seed Extractor Building, South side of U.S. Route 219, Parsons, Tucker County, WV

  16. A Modular Framework for Quantum-Proof Randomness Extractors

    NASA Astrophysics Data System (ADS)

    Liu, Yipeng; Guo, JianSheng; Cui, Jingyi

    2016-08-01

    A quantum-proof extractor is a function that is used to extract randomness from any weakly random source X in the presence of prior quantum information about X. It is known that some constructions are quantum-proof, such as Trevisan's construction. However, these extractors are generally restrictive for applications on the one-bit output construction and the weak design. Here, we give a modular framework to combine multi-bit output extractors (not only one-bit) with pseudorandom transform, and show that it is sound in the presence of quantum side information. Then combined with the theory of operator spaces, we improve previous theoretical proofs, and discuss the security of two-bit output extractor by giving a tighter bound for it.

  17. Hydrochloric acid aerosol and gaseous hydrogen chloride partitioning in a cloud contaminated by solid rocket exhaust

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1980-01-01

    Partitioning of hydrogen chloride between hydrochloric acid aerosol and gaseous HCl in the lower atmosphere was experimentally investigated in a solid rocket exhaust cloud diluted with humid ambient air. Airborne measurements were obtained of gaseous HCl, total HCl, relative humidity and temperature to evaluate the conditions under which aerosol formation occurs in the troposphere in the presence of hygroscopic HCl vapor. Equilibrium predictions of HCl aerosol formation accurately predict the measured HCl partitioning over a range of total HCl concentrations from 0.6 to 16 ppm.

  18. Nighttime Aerosol Optical Thickness Retrievals Via the VIIRS Day/Night Band and the Effects of Lunar Contamination

    NASA Astrophysics Data System (ADS)

    McHardy, T. M.; Zhang, J.; Reid, J. S.; Miller, S. D.; Hyer, E. J.; Kuehn, R.

    2015-12-01

    Using Visible/Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data, a method for retrieving aerosol optical thickness (AOT) values at night via the examination of the dispersion of radiance values above an artificial light source ,dubbed the "variance method", is presented. Based on the improvement of a previous algorithm, this updated method derives a semi-quantitative indicator of nighttime AOT using artificial light sources. Nighttime DNB AOT retrievals from the variance method are compared with an AOT value from late afternoon and early morning ground observations from four AErosol RObotic NETwork (AERONET) sites as well as column integrated from one High Spectral Resolution Lidar (HSRL) site at Huntsville, AL during the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign, providing full diel coverage. An emphasis is placed on sensitivity studies performed to examine the effects of lunar illumination on VIIRS DNB AOT retrievals made via the variance method. Although the small sample size of this study limits the conclusiveness thus far, investigation reveals that lunar contamination may have a smaller impact on VIIRS DNB AOT retrievals made using this method than previously thought. Preliminary results suggest that artificial light sources can be used for estimating regional and global nighttime aerosol distributions in the future.

  19. Comparison between continuous stirred tank reactor extractor and soxhlet extractor for extraction of El-Lajjun oil shale

    SciTech Connect

    Anabtawi, M.Z.

    1996-02-01

    Extraction on El-Lajjun oil shale in a continuous stirred tank reactor extractor (CSTRE) and a Soxhlet extractor was carried out using toluene and chloroform as solvents. Solvents were recovered using two distillation stages, a simple distillation followed by a fractional distillation. Gas chromotography was used to test for the existence of trapped solvent in the yield. It was found that extraction using a CSTRE gave a 12% increase in yield on average compared with the Soxhlet extractor, and an optimum shale size of 1.0mm offered a better yield and solvent recovery for both techniques. It was also found that an optimum ratio of solvent to oil shale of 2:1 gave the best oil yield. The Soxhlet extractor was found to offer an extraction rate of 1 hour to complete extraction compared with 4 hours in a CSTRE. The yield in a CSTRE was found to increase on increase of stirring. When extraction was carried out at the boiling point of the solvents in a CSTRE, the yield was found to increase by 30% on average compared to that of extraction when the solvent was at room temperature. When toluene was used for extraction, the average amount of bitumen extracted was 0.032 g/g of oil shale and 76.4% of the solvent recovered, compared with 0.037 g/g of oil shale and 84.1% of the solvent recovered using a Soxhlet extractor.

  20. Contingency support using adaptive telemetry extractor and expert system technologies

    NASA Astrophysics Data System (ADS)

    Bryant, Thomas; Cruse, Bryant; Wende, Charles

    The 'telemetry analysis logic for operations support' prototype system constitutes an expert system that is charged with contingency planning for the NASA Hubble Space Telescope (HST); this system has demonstrated the feasibility of using an adaptive telemetry extractor/reformatter that is integrated with an expert system. A test case generated by a simulator has demonstrated the reduction of the time required for analysis of a complex series of failures to a few minutes, from the hour usually required. The HST's telemetry extractor will be able to read real-time engineering telemetry streams and disk-based data. Telemetry format changes will be handled almost instantaneously.

  1. Design of a 26 GHZ wakefield power extractor.

    SciTech Connect

    Konecny, R.; Gai, W.; Gao, F.; Jing, C.; Kanareykin, A.; Kazakov, S.; High Energy Physics; Euclid Techlabs, LLC; KEK

    2008-01-01

    High frequency, high output power, and high efficiency RF sources have compelling applications in accelerators for high energy physics. The 26 GHz RF power extractor proposed in this paper provides a practical approach for generating high power RF in this particular frequency range. The extractor is designed to couple out RF power generated from the high charge electron bunch train at the Argonne Wakefield Accelerator (AWA) facility traversing a dielectric loaded waveguide. Designs are presented including parameter optimization, electromagnetic modeling of structures and RF couplers, and analysis of beam dynamics.

  2. Use of lead isotopes to identify sources of metal and metalloid contaminants in atmospheric aerosol from mining operations.

    PubMed

    Félix, Omar I; Csavina, Janae; Field, Jason; Rine, Kyle P; Sáez, A Eduardo; Betterton, Eric A

    2015-03-01

    Mining operations are a potential source of metal and metalloid contamination by atmospheric particulate generated from smelting activities, as well as from erosion of mine tailings. In this work, we show how lead isotopes can be used for source apportionment of metal and metalloid contaminants from the site of an active copper mine. Analysis of atmospheric aerosol shows two distinct isotopic signatures: one prevalent in fine particles (<1μm aerodynamic diameter) while the other corresponds to coarse particles as well as particles in all size ranges from a nearby urban environment. The lead isotopic ratios found in the fine particles are equal to those of the mine that provides the ore to the smelter. Topsoil samples at the mining site show concentrations of Pb and As decreasing with distance from the smelter. Isotopic ratios for the sample closest to the smelter (650m) and from topsoil at all sample locations, extending to more than 1km from the smelter, were similar to those found in fine particles in atmospheric dust. The results validate the use of lead isotope signatures for source apportionment of metal and metalloid contaminants transported by atmospheric particulate. PMID:25496740

  3. Use of lead isotopes to identify sources of metal and metalloid contaminants in atmospheric aerosol from mining operations.

    PubMed

    Félix, Omar I; Csavina, Janae; Field, Jason; Rine, Kyle P; Sáez, A Eduardo; Betterton, Eric A

    2015-03-01

    Mining operations are a potential source of metal and metalloid contamination by atmospheric particulate generated from smelting activities, as well as from erosion of mine tailings. In this work, we show how lead isotopes can be used for source apportionment of metal and metalloid contaminants from the site of an active copper mine. Analysis of atmospheric aerosol shows two distinct isotopic signatures: one prevalent in fine particles (<1μm aerodynamic diameter) while the other corresponds to coarse particles as well as particles in all size ranges from a nearby urban environment. The lead isotopic ratios found in the fine particles are equal to those of the mine that provides the ore to the smelter. Topsoil samples at the mining site show concentrations of Pb and As decreasing with distance from the smelter. Isotopic ratios for the sample closest to the smelter (650m) and from topsoil at all sample locations, extending to more than 1km from the smelter, were similar to those found in fine particles in atmospheric dust. The results validate the use of lead isotope signatures for source apportionment of metal and metalloid contaminants transported by atmospheric particulate.

  4. Use of Lead Isotopes to Identify Sources of Metal and Metalloid Contaminants in Atmospheric Aerosol from Mining Operations

    PubMed Central

    Félix, Omar I.; Csavina, Janae; Field, Jason; Rine, Kyle P.; Sáez, A. Eduardo; Betterton, Eric A.

    2014-01-01

    Mining operations are a potential source of metal and metalloid contamination by atmospheric particulate generated from smelting activities, as well as from erosion of mine tailings. In this work, we show how lead isotopes can be used for source apportionment of metal and metalloid contaminants from the site of an active copper mine. Analysis of atmospheric aerosol shows two distinct isotopic signatures: one prevalent in fine particles (< 1 μm aerodynamic diameter) while the other corresponds to coarse particles as well as particles in all size ranges from a nearby urban environment. The lead isotopic ratios found in the fine particles are equal to those of the mine that provides the ore to the smelter. Topsoil samples at the mining site show concentrations of Pb and As decreasing with distance from the smelter. Isotopic ratios for the sample closest to the smelter (650 m) and from topsoil at all sample locations, extending to more than 1 km from the smelter, were similar to those found in fine particles in atmospheric dust. The results validate the use of lead isotope signatures for source apportionment of metal and metalloid contaminants transported by atmospheric particulate. PMID:25496740

  5. Development of 26GHz dielectric-based wakefield power extractor.

    SciTech Connect

    Jing, C.; Gai, W.; Konecny, R.; Power, J. G.; Conde, M.; Gao, F.; Kazakov, S.; Kustov, A.; High Energy Physics; Euclid Techlabs; KEK; Dynamics Software

    2009-01-01

    High frequency, high power rf sources are needed for many applications in particle accelerators, communications, radar, etc. In this article we present a design of a 26 GHz high power rf source based on the extraction of wakefields from a relativistic electron beam. The extractor is designed to couple out rf power generated from a high charge electron bunch train traversing a dielectric loaded waveguide. Using a 20 nC bunch train (bunch length of 1.5 mm) at the Argonne Wakefield Accelerator (AWA) facility, we can obtain a steady 26 GHz output power of 148 MW. The extractor has been fabricated and bench tested, with the first high power beam experiments to be performed in the coming year.

  6. Development of 26 GHz Dielectric-Based Wakefield Power Extractor

    SciTech Connect

    Jing, C.; Kanareykin, A.; Schoessow, P.; Gai, W.; Konecny, R.; Power, J. G.; Conde, M.; Gao, F.; Kazakov, S.; Kustov, A.

    2009-01-22

    High frequency, high power rf sources are needed for many applications in particle accelerators, communications, radar, etc. In this article we present a design of a 26 GHz high power rf source based on the extraction of wakefields from a relativistic electron beam. The extractor is designed to couple out rf power generated from a high charge electron bunch train traversing a dielectric loaded waveguide. Using a 20 nC bunch train (bunch length of 1.5 mm) at the Argonne Wakefield Accelerator (AWA) facility, we can obtain a steady 26 GHz output power of 148 MW. The extractor has been fabricated and bench tested, with the first high power beam experiments to be performed in the coming year.

  7. Joint Sandia/NIOSH exercise on aerosol contamination using the BROOM tool.

    SciTech Connect

    Ramsey, James L., Jr.; Melton, Brad; Finley, Patrick; Brockman, John; Peyton, Chad E.; Tucker, Mark David; Einfeld, Wayne; Brown, Gary Stephen; Griffith, Richard O.; Lucero, Daniel A.; Knowlton, Robert G.; McKenna, Sean Andrew; Ho, Pauline

    2006-06-01

    In February of 2005, a joint exercise involving Sandia National Laboratories (SNL) and the National Institute for Occupational Safety and Health (NIOSH) was conducted in Albuquerque, NM. The SNL participants included the team developing the Building Restoration Operations and Optimization Model (BROOM), a software product developed to expedite sampling and data management activities applicable to facility restoration following a biological contamination event. Integrated data-collection, data-management, and visualization software improve the efficiency of cleanup, minimize facility downtime, and provide a transparent basis for reopening. The exercise was held at an SNL facility, the Coronado Club, a now-closed social club for Sandia employees located on Kirtland Air Force Base. Both NIOSH and SNL had specific objectives for the exercise, and all objectives were met.

  8. 15.6 GHz Ceramic RF Power Extractor Design

    SciTech Connect

    Smirnov, A.V.; Luo, Y.; Yu, D.

    2004-12-07

    A 15.6GHz, slow-wave dielectric structure with matched RF power outcoupler is described. The extractor is to be driven at the 12th harmonic of a bunched electron beam at the upgraded AWA facility at ANL. The design includes a single-port output with two stubs, an upstream absorber, and a ceramic tube matched for the fundamental mode at the downstream end and for the dipole mode at the upstream end. Two codes (Microwave Studio registered and Gd1) were used to optimize and analyze the design in frequency and time domains including wakefields.

  9. Cement extractor device in revision prosthesis of the humerus.

    PubMed

    Giannotti, Stefano; Bottai, Vanna; Dell'Osso, Giacomo; Bugelli, Giulia; Guido, Giulio

    2014-11-01

    In revision arthroplasty the surgeon is often faced with the problem of removal of residual cement in the medullary canal. Conventional manual cement removal by hand or power-driven instruments can be time-consuming, can require osteotomy, and can be associated with complications such as cortical perforation, fracture, or bone loss. Ultrasonic devices offer an alternative method of cement removal, but the potential for thermal injury exists, in particular for the humerus and the radial nerve. Considering these problems with the use of ultrasound, and whereas the old cement mantle may be left in place in the hip or knee but not in the shoulder, we tried this new mechanical cement extractor also in the humerus. We utilized this extractor in 5 cases, and we eliminated all residual resin in an accurate and complete way without bone loss and without iatrogenic fractures in all cases. We believe this system, which was designed for revisions of hip and knee surgery, is also suitable for the shoulder. PMID:25433154

  10. Modelling and Optimisation of Eurycoma longifolia Extraction Utilising a Recirculating Flow Extractor

    NASA Astrophysics Data System (ADS)

    Ajib Mohtar, Mohd; Kumaresan, Sivakumar; Roji Sarmidi, Mohd; Aziz, Ramlan Abdul

    In this study, Tongkat Ali was extracted with a newly designed recirculating flow extractor with temperature and flow rate as the operating parameters. The optimum duration and ratio for extraction were found to be 90 min and 40:1 w/w, respectively. The determination of optimal operating parameter value for this extractor was based on maximum percentage extract yield and solid diffusivity, Ds,. From the experiments, it was found that the temperature and flow rate that produce the highest yield and solid diffusivity value were at 90°C and 400 rpm (22.47 mL sec-1), respectively. The optimal operating parameter values were used to compare the recirculating flow extractor performance with a batch extraction at 90°C. The comparison showed that the batch extraction was able to extract more rapidly than the recirculating flow extractor. The solid diffusivity, Ds, value for the batch extraction was found to be is 3.12x10-11 m2 sec-1 while the recirculating flow extractor had a solid diffusivity, Ds, value of 2.98x10-11 m2 sec-1 which indicated the difference in extraction rate. However, by utilizing the recirculating flow extractor, a higher final yield than batch extraction was produced which is 7.70% (w/w) for the recirculating flow extractor and 6.67% (w/w) for the batch extraction. This is possibly caused by the higher rates of solvent losses through evaporation for batch extraction.

  11. One way Doppler Extractor. Volume 2: Digital VCO technique

    NASA Technical Reports Server (NTRS)

    Nossen, E. J.; Starner, E. R.

    1974-01-01

    A feasibility analysis and trade-offs for a one-way Doppler extractor using digital VCO techniques is presented. The method of Doppler measurement involves the use of a digital phase lock loop; once this loop is locked to the incoming signal, the precise frequency and hence the Doppler component can be determined directly from the contents of the digital control register. The only serious error source is due to internally generated noise. Techniques are presented for minimizing this error source and achieving an accuracy of 0.01 Hz in a one second averaging period. A number of digitally controlled oscillators were analyzed from a performance and complexity point of view. The most promising technique uses an arithmetic synthesizer as a digital waveform generator.

  12. Plutonium purification cycle in centrifugal extractors: from flowsheet design to industrial operation

    SciTech Connect

    Baron, P.; Dinh, B.; Duhamet, J.; Drain, F.; Meze, F.; Lavenu, A.

    2008-07-01

    The extension of the UP2 plant at La Hague includes a new plutonium purification cycle using multistage centrifugal extractors to replace the previous cycle that used mixer/settler banks. This type of extractor is suitable for the treatment of fuel containing a high proportion of plutonium-238, as its short residence time limits solvent degradation. This paper deals with the research done to devise its flowsheet, the centrifugal extractors in which it is operated, as well as the feedback of six years of industrial operation.

  13. New data on the level of contamination with tritium aerosol fallout in the nearest influence zone of the mining-chemical combine of the Rosatom State Corporation

    NASA Astrophysics Data System (ADS)

    Bondareva, L. G.; Rubailo, A. I.

    2016-03-01

    The influence of tritium aerosol transport on radioactive contamination on the territory of the Krasnoyarsk region influenced by the mining-chemical combine of the Rosatom State Corporation was studied. Snow cover, foliage, and needles collected at various distances from the mining-chemical combine were selected as the object of this study. A new methodology of liquid extraction from plant material (leaves and needles) was worked out. As a result, the maximal concentrations of tritium (15 kBk/m3 in snow, 11 and 15 Bk/m2 for leaves and pine-tree needles, respectively) were determined. However, the results obtained are not anomalous. Consequently, contamination with tritium may not be accounted for entirely due to the low concentrations.

  14. Model of mass transfer processes in the cascade of centrifugal extractors

    NASA Astrophysics Data System (ADS)

    Zelenetskaya, E. P.; Goryunov, A. G.; Daneikina, N. V.

    2016-06-01

    The paper describes a mathematical model of mass transfer processes in a cascade of reverse-flow centrifugal extractors. Model of operation of each extractor is given as tightly coupled system of mixing and separating chambers. All model units are represented by systems of differential equations. The article presents the results of testing of the developed model, which confirmed the validity of the assumptions made in the model. The authors assessed the impact of the overflow of dense phase level on the hydrostatic position of phase interface level in the extractor. The research showed that a change in the volume of dense and light phases occurs in each apparatus of a cascade even in the steady mode. Operation of the cascade consisting of 12 series-connected centrifugal extractors was simulated in order to verify the model. Computer simulation results confirm the adequacy of the developed model.

  15. Continuous back extraction operation by a single liquid-liquid centrifugal extractor

    SciTech Connect

    Nakase, M.; Takeshita, K.

    2013-07-01

    We have developed a small, high-performance liquid-liquid countercurrent centrifugal extractor for the nuclear fuel cycle. The single extractor allows extraction with many multiple theoretical stages due to the formation of Taylor vortices. We have previously demonstrated multistage extraction for a forward extraction system. In this study, we have applied the centrifugal extractor to a continuous back extraction system with di(2-ethylhexyl)phosphoric acid. We examined the performance of our concept of the centrifugal extractor by varying the rotational speeds of the inner rotor and the nitric acid concentration in the stripping solution. The dispersion behavior, flow characteristics were determined and the back extraction performance was examined for a single chemical species and for multiple species. Complete back extraction by continuous process was achieved and it showed the possibility to minimize the volume and nitric acid concentration of the stripping solution. Our centrifugal extractors may provide a more effective separation system than the conventional separation process that uses many continuously connected extractors. (authors)

  16. Improved visual background extractor using an adaptive distance threshold

    NASA Astrophysics Data System (ADS)

    Han, Guang; Wang, Jinkuan; Cai, Xi

    2014-11-01

    Camouflage is a challenging issue in moving object detection. Even the recent and advanced background subtraction technique, visual background extractor (ViBe), cannot effectively deal with it. To better handle camouflage according to the perception characteristics of the human visual system (HVS) in terms of minimum change of intensity under a certain background illumination, we propose an improved ViBe method using an adaptive distance threshold, named IViBe for short. Different from the original ViBe using a fixed distance threshold for background matching, our approach adaptively sets a distance threshold for each background sample based on its intensity. Through analyzing the performance of the HVS in discriminating intensity changes, we determine a reasonable ratio between the intensity of a background sample and its corresponding distance threshold. We also analyze the impacts of our adaptive threshold together with an update mechanism on detection results. Experimental results demonstrate that our method outperforms ViBe even when the foreground and background share similar intensities. Furthermore, in a scenario where foreground objects are motionless for several frames, our IViBe not only reduces the initial false negatives, but also suppresses the diffusion of misclassification caused by those false negatives serving as erroneous background seeds, and hence shows an improved performance compared to ViBe.

  17. Subcritical water extractor for Mars analog soil analysis.

    PubMed

    Amashukeli, Xenia; Grunthaner, Frank J; Patrick, Steven B; Yung, Pun To

    2008-06-01

    Abstract Technologies that enable rapid and efficient extraction of biomarker compounds from various solid matrices are a critical requirement for the successful implementation of in situ chemical analysis of the martian regolith. Here, we describe a portable subcritical water extractor that mimics multiple organic solvent polarities by tuning the dielectric constant of liquid water through adjustment of temperature and pressure. Soil samples, collected from the Yungay region of the Atacama Desert (martian regolith analogue) in the summer of 2005, were used to test the instrument's performance. The total organic carbon was extracted from the samples at concentrations of 0.2-55.4 parts per million. The extraction data were compared to the total organic carbon content in the bulk soil, which was determined via a standard analytical procedure. The instrument's performance was examined over the temperature range of 25-250 degrees C at a fixed pressure of 20.7 MPa. Under these conditions, water remains in a subcritical fluid state with a dielectric constant varying between approximately 80 (at 25 degrees C) and approximately 30 (at 250 degrees C). PMID:18680410

  18. Long-wave infrared profile feature extractor (PFx) sensor

    NASA Astrophysics Data System (ADS)

    Sartain, Ronald B.; Aliberti, Keith; Alexander, Troy; Chiu, David

    2009-05-01

    The Long Wave Infrared (LWIR) Profile Feature Extractor (PFx) sensor has evolved from the initial profiling sensor that was developed by the University of Memphis (Near IR) and the Army Research Laboratory (visible). This paper presents the initial signatures of the LWIR PFx for human with and without backpacks, human with animal (dog), and a number of other animals. The current version of the LWIR PFx sensor is a diverging optical tripwire sensor. The LWIR PFx signatures are compared to the signatures of the Profile Sensor in the visible and Near IR spectral regions. The LWIR PFx signatures were collected with two different un-cooled micro bolometer focal plane array cameras, where the individual pixels were used as stand alone detectors (a non imaging sensor). This approach results in a completely passive, much lower bandwidth, much longer battery life, low weight, small volume sensor that provides sufficient information to classify objects into human Vs non human categories with a 98.5% accuracy.

  19. Subcritical Water Extractor for Mars Analog Soil Analysis

    NASA Astrophysics Data System (ADS)

    Amashukeli, Xenia; Grunthaner, Frank J.; Patrick, Steven B.; Yung, Pun To

    2008-06-01

    Technologies that enable rapid and efficient extraction of biomarker compounds from various solid matrices are a critical requirement for the successful implementation of in situ chemical analysis of the martian regolith. Here, we describe a portable subcritical water extractor that mimics multiple organic solvent polarities by tuning the dielectric constant of liquid water through adjustment of temperature and pressure. Soil samples, collected from the Yungay region of the Atacama Desert (martian regolith analogue) in the summer of 2005, were used to test the instrument's performance. The total organic carbon was extracted from the samples at concentrations of 0.2 55.4 parts per million. The extraction data were compared to the total organic carbon content in the bulk soil, which was determined via a standard analytical procedure. The instrument's performance was examined over the temperature range of 25 250°C at a fixed pressure of 20.7 MPa. Under these conditions, water remains in a subcritical fluid state with a dielectric constant varying between ˜80 (at 25°C) and ˜30 (at 250°C).

  20. Contamination Analysis Tools

    NASA Technical Reports Server (NTRS)

    Brieda, Lubos

    2015-01-01

    This talk presents 3 different tools developed recently for contamination analysis:HTML QCM analyzer: runs in a web browser, and allows for data analysis of QCM log filesJava RGA extractor: can load in multiple SRS.ana files and extract pressure vs. time dataC++ Contamination Simulation code: 3D particle tracing code for modeling transport of dust particulates and molecules. Uses residence time to determine if molecules stick. Particulates can be sampled from IEST-STD-1246 and be accelerated by aerodynamic forces.

  1. Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier.

    PubMed

    Zhang, Zehai; Zhang, Jun; Shu, Ting; Qi, Zumin

    2012-09-01

    A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed.

  2. Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier

    SciTech Connect

    Zhang Zehai; Zhang Jun; Shu Ting; Qi Zumin

    2012-09-15

    A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed.

  3. Numerical method for determining electrode shapes for high-perveance extractors

    SciTech Connect

    Schneider, J.D.; Armstrong, D.D.

    1981-01-01

    The design of high-perveance extractors is dominated by the space-charge forces in the beam and by the aberrations caused by fringing fields at the apertures. Computer programs were developed for various extractor geometries that incorporate these effects. Basically the approach was to find a Laplace solution, external to the beam, that matches smoothly to the Child-Langmuir potential distribution in a laminar-flow ion beam. The electrode shapes calculated are not unique but do provide the desired beam optics. The application of this technique to the development of electrodes for a 250-mA, 75-keV hydrogen-ion extractor is discussed. For this application spherical geometry was used. The beam obtained was of high quality, that is, low emittance and small angular divergence.

  4. Mini-winkler extractor and pitfall trap as complementary methods to sample formicidae.

    PubMed

    Silva, F H O; Delabie, J H C; dos Santos, G B; Meurer, E; Marques, M I

    2013-08-01

    The aim of the present study was to evaluate the use of mini-Winkler extractor and pitfall traps as appropriate and complementary methods to sample ant communities in the phytophysiognomy mosaic in the Poconé Pantanal region, state of Mato Grosso, Brasil. Seven units were studied for landscape, located within a 25 km(2) collection area, formed by thirty 250-m transects, at 1-km intervals in a 5 × 5 km area. Five collection points were marked in each transect at 50-m intervals, totaling 150 points. A collection was made at each sampling point with mini-Winkler extractor and pitfall traps. Using the mini-Winkler extractor, 1,088 individuals were collected distributed in 20 genera and 55 species, with Solenopsis invicta Buren and Pheidole (gr. biconstricta) sp.1 as the most frequent ants. Using pitfall traps, 2,726 individuals distributed in 24 genera and 48 species were sampled and Dorymyrmex (gr. pyramicus) sp.1 and Pheidole (gr. biconstricta) sp.1 were the most frequent species. A significant difference between the methods was observed in measured species number. The Principal coordinates analysis discriminated two species groups exclusively sampled by the mini-Winkler extractor and another by the pitfall methods. Therefore, it was concluded that these methods were complementary for ant diversity inventories in the Poconé Pantanal region.

  5. Pitfall Traps and Mini-Winkler Extractor as Complementary Methods to Sample Soil Coleoptera.

    PubMed

    Carneiro, A C; Batistella, D A; Battirola, L D; Marques, M I

    2016-02-01

    We compared abundance, species richness, and capture efficiency with pitfall traps and mini-Winkler extractors to examine their use as complementary methods for sampling soil Coleoptera during dry (2010) and high water seasons (2011) in three areas, including inundated and non-inundated regions, in the Pantanal of Poconé, Mato Grosso, Brazil. We paired treatments with two 10 × 10 m plots in inundated and non-inundated locations that were repeated three times in each location for a total of 18 plots. In each plot, we used nine pitfall traps and collected 2 m(2) of leaf litter and surface soil samples with mini-Winkler extractors. We collected a total of 4260 adult beetles comprising 36 families, 113 genera, and 505 species. Most were caught in pitfalls (69%) and the remainder in the mini-Winkler extractors (31%). Each method provided distinct information about the beetle community: 252 species were captured only in pitfall traps, 147 using only the mini-Winkler extractors, and these methods shared another 106 species. Pitfall and mini-Winkler contribute in different ways for the sampling of the soil beetle community, and so they should be considered complementary for a more thorough assessment of community diversity. PMID:26493175

  6. Efficient extraction of virus DNA by NucliSens Extractor allows sensitive detection of hepatitis B virus by PCR.

    PubMed

    Gobbers, E; Oosterlaken, T A; van Bussel, M J; Melsert, R; Kroes, A C; Claas, E C

    2001-12-01

    The NucliSens Extractor is an automated nucleic acid isolation system based on guanidinium thiocyanate (GuSCN)-silica extraction technology. The system has been validated for the isolation of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) RNAs from human samples in combination with nucleic acid sequence-based amplification- and reverse transcription-PCR-based methods. We evaluated the extractor for hepatitis B virus (HBV) DNA extraction from human samples using a noncommercial HBV DNA PCR. Several sample pretreatment procedures in combination with the extractor were compared with the Qiagen extraction method, and the impact of the sample volume used in the extraction on the sensitivity was investigated. Heating of the lysed sample prior to extractor isolation and the use of a large sample volume resulted in highly sensitive detection of HBV DNA. Incubation of a 1-ml sample in GuSCN at 80 degrees C (10 min) and at 37 degrees C (30 min) allowed detection of 4 and 40 HBV genome equivalents/ml, respectively, in standard dilution panels. Sample lysis in GuSCN at room temperature and proteinase K treatment prior to use of the extractor were less efficient procedures. All clinical samples that were PCR positive after Qiagen extraction and/or that were HBsAg positive were also PCR positive after extractor isolation. HBV DNA, HCV RNA, and HIV type 1 RNA were efficiently coextracted from a single sample, allowing reliable detection of viral genomes.

  7. Evaluation of an Automated Nucleic Acid Extractor for Hepatitis C Virus Load Quantification▿

    PubMed Central

    Martró, Elisa; García-Sierra, Nerea; González, Victoria; Saludes, Verónica; Matas, Lurdes; Ausina, Vicenç

    2009-01-01

    The increasing use of molecular methods strongly motivates clinical laboratories to introduce automated nucleic acid extractors. We compared the easyMAG (bioMérieux) with a manual extraction method for hepatitis C virus (HCV) load quantification (RealTime HCV; Abbott). Both methods were comparable, and, therefore, the easyMAG is suitable to be implemented in our laboratory for the management of HCV-infected patients. PMID:19129408

  8. Detection of soil microarthropod aggregations in soybean fields, using a modified tullgren extractor

    SciTech Connect

    Farrar, F.P. Jr.; Crossley, D.A. Jr.

    1983-01-01

    The spatial distribution of soil microarthropods in soybean fields was investigated by use of a modified Tullgren extractor. Blocks of soil were extracted over a grid of collection cells from which microarthropod aggregations could be identified and measured. Aggregations in conventionally tilled soybeans were smaller than those in no tillage soybeans, and had less influence on population distributions. Population size was highly correlated with the area of soil microarthropod aggregations. 10 references, 5 figures, 3 tables.

  9. Retained gas sampler extractor mixing and mass transfer rate study: Experimental and simulation results

    SciTech Connect

    Recknagle, K.P.; Bates, J.M.; Shekarriz, A.

    1997-11-01

    Research staff at Pacific Northwest National Laboratory conducted experimental testing and computer simulations of the impeller-stirred Retained Gas Sampler (RGS) gas extractor system. This work was performed to verify experimentally the effectiveness of the extractor at mixing viscous fluids of both Newtonian and non-Newtonian rheology representative of Hanford single- and double-shell wastes, respectively. Developing the computational models and validating their results by comparing them with experimental results would enable simulations of the mixing process for a range of fluid properties and mixing speeds. Five tests were performed with a full-scale, optically transparent model extractor to provide the data needed to compare mixing times for fluid rheology, mixer rotational direction, and mixing speed variation. The computer model was developed and exercised to simulate the tests. The tests demonstrated that rotational direction of the pitched impeller blades was not as important as fluid rheology in determining mixing time. The Newtonian fluid required at least six hours to mix at the hot cell operating speed of 3 rpm, and the non-Newtonian fluid required at least 46 hours at 3 rpm to become significantly mixed. In the non-Newtonian fluid tests, stagnant regions within the fluid sometimes required days to be fully mixed. Higher-speed (30 rpm) testing showed that the laminar mixing time was correlated to mixing speed. The tests demonstrated that, using the RGS extractor and current procedures, complete mixing of the waste samples in the hot cell should not be expected. The computer simulation of Newtonian fluid mixing gave results comparable to the test while simulation of non-Newtonian fluid mixing would require further development. In light of the laboratory test results, detailed parametric analysis of the mixing process was not performed.

  10. MuffinInfo: HTML5-Based Statistics Extractor from Next-Generation Sequencing Data.

    PubMed

    Alic, Andy S; Blanquer, Ignacio

    2016-09-01

    Usually, the information known a priori about a newly sequenced organism is limited. Even resequencing the same organism can generate unpredictable output. We introduce MuffinInfo, a FastQ/Fasta/SAM information extractor implemented in HTML5 capable of offering insights into next-generation sequencing (NGS) data. Our new tool can run on any software or hardware environment, in command line or graphically, and in browser or standalone. It presents information such as average length, base distribution, quality scores distribution, k-mer histogram, and homopolymers analysis. MuffinInfo improves upon the existing extractors by adding the ability to save and then reload the results obtained after a run as a navigable file (also supporting saving pictures of the charts), by supporting custom statistics implemented by the user, and by offering user-adjustable parameters involved in the processing, all in one software. At the moment, the extractor works with all base space technologies such as Illumina, Roche, Ion Torrent, Pacific Biosciences, and Oxford Nanopore. Owing to HTML5, our software demonstrates the readiness of web technologies for mild intensive tasks encountered in bioinformatics.

  11. Development of diffractive XUV-VUV light extractors for fusion plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Caravelli, G.; Delgado-Aparicio, L.; Finkenthal, M.; Tritz, K.; Kaita, R.; Roquemore, L.

    2009-11-01

    The diagnostic and control of next generation MFE and ICF fusion experiments will require optical light extractors capable of withstanding intense plasma and radiation exposure. A solution applicable from the XUV to the infrared is to use free-standing diffractive optics such as transmission gratings or zone plates. Here we present results on XUV-VUV diffractive extractors for the diagnostic of boundary MFE plasmas. For the VUV range we developed Si transmission gratings having 1 μm period, 5 μm thickness, 40% open fraction, 1x2 mm active area, and coated with Ni, while for the XUV range we use SiN gratings having 0.2 μm period, 0.3 μm thickness, 1x1 mm area, and coated with Ta. The grating extractors are spectrally and spatially calibrated in the laboratory using a newly developed extended XUV-VUV source and will be employed for imaging spectrometry on the NSTX experiment. The operational characteristics of the extended source and first space resolved XUV-VUV spectra will be presented. Work supported by DoE Grant DE-FG02-99ER54523 at JHU and Contract DE-AC02-09CH11466 at PU.

  12. MuffinInfo: HTML5-Based Statistics Extractor from Next-Generation Sequencing Data.

    PubMed

    Alic, Andy S; Blanquer, Ignacio

    2016-09-01

    Usually, the information known a priori about a newly sequenced organism is limited. Even resequencing the same organism can generate unpredictable output. We introduce MuffinInfo, a FastQ/Fasta/SAM information extractor implemented in HTML5 capable of offering insights into next-generation sequencing (NGS) data. Our new tool can run on any software or hardware environment, in command line or graphically, and in browser or standalone. It presents information such as average length, base distribution, quality scores distribution, k-mer histogram, and homopolymers analysis. MuffinInfo improves upon the existing extractors by adding the ability to save and then reload the results obtained after a run as a navigable file (also supporting saving pictures of the charts), by supporting custom statistics implemented by the user, and by offering user-adjustable parameters involved in the processing, all in one software. At the moment, the extractor works with all base space technologies such as Illumina, Roche, Ion Torrent, Pacific Biosciences, and Oxford Nanopore. Owing to HTML5, our software demonstrates the readiness of web technologies for mild intensive tasks encountered in bioinformatics. PMID:27606794

  13. Comparing features extractors in EEG-based cognitive fatigue detection of demanding computer tasks.

    PubMed

    Rifai Chai; Smith, Mitchell R; Nguyen, Tuan N; Sai Ho Ling; Coutts, Aaron J; Nguyen, Hung T

    2015-01-01

    An electroencephalography (EEG)-based classification system could be used as a tool for detecting cognitive fatigue from demanding computer tasks. The most widely used feature extractor in EEG-based fatigue classification is power spectral density (PSD). This paper investigates PSD and three alternative feature extraction methods, in order to find the best feature extractor for the classification of cognitive fatigue during cognitively demanding tasks. These compared methods are power spectral entropy (PSE), wavelet, and autoregressive (AR). Bayesian neural network was selected as the classifier in this study. The results showed that the use of PSD and PSE methods provide an average accuracy of 60% for each computer task. This finding is slightly improved using the wavelet method which has an average accuracy of 61%. The AR method is the best feature extractor compared with the PSD, PSE and wavelet in this study with accuracy of 75.95% in AX-continuous performance test (AX-CPT), 75.23% in psychomotor vigilance test (PVT) and 76.02% in Stroop task (p-value <; 0.05).

  14. Biological aerosol trigger

    NASA Astrophysics Data System (ADS)

    DeSha, Michael S.

    1999-01-01

    In recent history, manmade and natural events have shown us the every-present need for systems to monitor the troposphere for contaminates. These contaminants may take either a chemical or biological form, which determines the methods we use to monitor them. Monitoring the troposphere for biological contaminants is of particular interest to my organization. Whether manmade or natural, contaminants of a biological origin share similar constituents; typically the aromatic amino acids tryptophan, phenylalanine, and tyrosine. All of these proteinaceous compounds autofluorescence when exposed to UV radiation and this established the basis of the laser-induced fluorescence technique we use to detect biological contaminants. This technique can be employed in either point or remote detection schemes and is a valuable tool for discriminating proteinaceous form non-proteinaceous aerosols. For this particular presentation I am going to describe a breadboard point sensor we designed and fabricated to detect proteinaceous aerosols. Previous point sensor designs relied on convoluted flow paths to concentrate the aerosols into a solution. Other systems required precise beam alignment to evenly distribute the energy irradiating the detector elements. Our objective was to build a simple system where beam alignment is not critical, and the flow is straight and laminar. The breadboard system was developed over a nine- month period and its performance assessed at a recent test at Dugway Proving Grounds in Utah. In addition, we have performed chamber experiments in an attempt to establish a baseline for the systems. The results of these efforts are presented here.

  15. RACORO aerosol data processing

    SciTech Connect

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  16. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  17. A high efficient relativistic backward wave oscillator with coaxial nonuniform slow-wave structure and depth-tunable extractor

    SciTech Connect

    Ge Xingjun; Zhong Huihuang; Zhang Jun; Qian Baoliang

    2013-02-15

    A high efficient relativistic backward wave oscillator with coaxial nonuniform slow-wave structures (SWSs) and depth-tunable extractor is presented. The physical mechanism to increase the power efficiency is investigated theoretically and experimentally. It is shown that the nonuniform SWSs, the guiding magnetic field distribution, and the coaxial extractor depth play key roles in the enhancement of the beam-wave power conversion efficiency. The experimental results show that a 1.609 GHz, 2.3 GW microwave can be generated when the diode voltage is 890 kV and the beam current is 7.7 kA. The corresponding power efficiency reaches 33.6%.

  18. Performance of the goulden large-sample extractor in multiclass pesticide isolation and preconcentration from stream water

    USGS Publications Warehouse

    Foster, G.D.; Foreman, W.T.; Gates, Paul M.

    1991-01-01

    The reliability of the Goulden large-sample extractor in preconcentrating pesticides from water was evaluated from the recoveries of 35 pesticides amended to filtered stream waters. Recoveries greater than 90% were observed for many of the pesticides in each major chemical class, but recoveries for some of the individual pesticides varied in seemingly unpredictable ways. Corrections cannot yet be factored into liquid-liquid extraction theory to account for matrix effects, which were apparent between the two stream waters tested. The Goulden large-sample extractor appears to be well suited for rapid chemical screening applications, with quantitative analysis requiring special quality control considerations. ?? 1991 American Chemical Society.

  19. Sub microsecond notching of a negative hydrogen beam at low energy utilizing a magnetron ion source with a split extractor

    SciTech Connect

    Moehs, Douglas; /Fermilab

    2004-12-01

    A technique for sub-microsecond beam notching is being developed at 20 keV utilizing a Magnetron ion source with a slit extraction system and a split extractor. Each half of the extractor is treated as part of a 50 ohm transmission line which can be pulsed at {+-}700 volts creating a 1400 volt gradient. This system along with the associated electronics is electrically floated on top of a pulsed extraction voltage. A beam reduction of 95% has been observed at the end of the Fermilab 400 MeV Linac and 35% notching has recently been achieved in the Booster.

  20. Biology of the Coarse Aerosol Mode: Insights Into Urban Aerosol Ecology

    NASA Astrophysics Data System (ADS)

    Dueker, E.; O'Mullan, G. D.; Montero, A.

    2015-12-01

    Microbial aerosols have been understudied, despite implications for climate studies, public health, and biogeochemical cycling. Because viable bacterial aerosols are often associated with coarse aerosol particles, our limited understanding of the coarse aerosol mode further impedes our ability to develop models of viable bacterial aerosol production, transport, and fate in the outdoor environment, particularly in crowded urban centers. To address this knowledge gap, we studied aerosol particle biology and size distributions in a broad range of urban and rural settings. Our previously published findings suggest a link between microbial viability and local production of coarse aerosols from waterways, waste treatment facilities, and terrestrial systems in urban and rural environments. Both in coastal Maine and in New York Harbor, coarse aerosols and viable bacterial aerosols increased with increasing wind speeds above 4 m s-1, a dynamic that was observed over time scales ranging from minutes to hours. At a New York City superfund-designated waterway regularly contaminated with raw sewage, aeration remediation efforts resulted in significant increases of coarse aerosols and bacterial aerosols above that waterway. Our current research indicates that bacterial communities in aerosols at this superfund site have a greater similarity to bacterial communities in the contaminated waterway with wind speeds above 4 m s-1. Size-fractionated sampling of viable microbial aerosols along the urban waterfront has also revealed significant shifts in bacterial aerosols, and specifically bacteria associated with coarse aerosols, when wind direction changes from onshore to offshore. This research highlights the key connections between bacterial aerosol viability and the coarse aerosol fraction, which is important in assessments of production, transport, and fate of bacterial contamination in the urban environment.

  1. An RF-powered micro-extractor for the detection of astrobiological target molecules.

    NASA Astrophysics Data System (ADS)

    Scott, V. J.; Amashukeli, X.; Siegel, P. H.; Fisher, A.; Bae, Y.; Toda, R.

    2012-04-01

    Major goals of space exploration are to look for extant or extinct life (i.e. chemical biomarker molecules) and to determine the factors that make an environment habitable; an extension of this goal is to better understand prebiotic chemistry and the features that allow life to occur. In situ detection remains the most widely used method in missions that address these questions. Missions to astrobiological or geochemical planetary targets will require an efficient and non-altering extraction technique for efficient detection and characterization of biomarkers. Two new instruments are described that have been developed for use in the exploration of Mars - a target that attracts considerable attention from the astrobiology community; however it will be applicable to any mission requiring in situ analysis of planetary regolith and ice. The first of these instruments is a micro-extractor (μEX) that exploits the unique property of water to modify its dielectric constant when affected by radio-frequency (RF) radiation; the second is a smaller version of the Sub-Critical Water Extractor (Micro-scale Ion Analyzer, or MIA). These instruments are first tested on stock solutions of potential biomarkers to monitor any chemical changes and demonstrate some bond breaking capabilities, then on various planetary-analog samples for extraction. The best protocols for extraction of various bio-markers will be determined while maximizing efficiencies and minimizing the degradation of the targets and appropriate detection methods for each will be examined.

  2. Spaceborne SAR data for global urban mapping at 30 m resolution using a robust urban extractor

    NASA Astrophysics Data System (ADS)

    Ban, Yifang; Jacob, Alexander; Gamba, Paolo

    2015-05-01

    With more than half of the world population now living in cities and 1.4 billion more people expected to move into cities by 2030, urban areas pose significant challenges on local, regional and global environment. Timely and accurate information on spatial distributions and temporal changes of urban areas are therefore needed to support sustainable development and environmental change research. The objective of this research is to evaluate spaceborne SAR data for improved global urban mapping using a robust processing chain, the KTH-Pavia Urban Extractor. The proposed processing chain includes urban extraction based on spatial indices and Grey Level Co-occurrence Matrix (GLCM) textures, an existing method and several improvements i.e., SAR data preprocessing, enhancement, and post-processing. ENVISAT Advanced Synthetic Aperture Radar (ASAR) C-VV data at 30 m resolution were selected over 10 global cities and a rural area from six continents to demonstrate the robustness of the improved method. The results show that the KTH-Pavia Urban Extractor is effective in extracting urban areas and small towns from ENVISAT ASAR data and built-up areas can be mapped at 30 m resolution with very good accuracy using only one or two SAR images. These findings indicate that operational global urban mapping is possible with spaceborne SAR data, especially with the launch of Sentinel-1 that provides SAR data with global coverage, operational reliability and quick data delivery.

  3. The correlation study of parallel feature extractor and noise reduction approaches

    SciTech Connect

    Dewi, Deshinta Arrova; Sundararajan, Elankovan; Prabuwono, Anton Satria

    2015-05-15

    This paper presents literature reviews that show variety of techniques to develop parallel feature extractor and finding its correlation with noise reduction approaches for low light intensity images. Low light intensity images are normally displayed as darker images and low contrast. Without proper handling techniques, those images regularly become evidences of misperception of objects and textures, the incapability to section them. The visual illusions regularly clues to disorientation, user fatigue, poor detection and classification performance of humans and computer algorithms. Noise reduction approaches (NR) therefore is an essential step for other image processing steps such as edge detection, image segmentation, image compression, etc. Parallel Feature Extractor (PFE) meant to capture visual contents of images involves partitioning images into segments, detecting image overlaps if any, and controlling distributed and redistributed segments to extract the features. Working on low light intensity images make the PFE face challenges and closely depend on the quality of its pre-processing steps. Some papers have suggested many well established NR as well as PFE strategies however only few resources have suggested or mentioned the correlation between them. This paper reviews best approaches of the NR and the PFE with detailed explanation on the suggested correlation. This finding may suggest relevant strategies of the PFE development. With the help of knowledge based reasoning, computational approaches and algorithms, we present the correlation study between the NR and the PFE that can be useful for the development and enhancement of other existing PFE.

  4. Infusion Extractor

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    1988-01-01

    Apparatus and method of removing desirable constituents from an infusible material by infusion extraction, where a piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, and where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber.

  5. Infusion extractor

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R. (Inventor)

    1986-01-01

    This invention relates to an apparatus and method of removing desirable constituents from an infusible material by infusion extraction. A piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber. The method is applicable to operation in low or micro-gravity environments.

  6. Use of field-applied quality control samples to monitor performance of a Goulden large-sample extractor/GC-MS method for pesticides in water

    USGS Publications Warehouse

    Foreman, W.T.; Gates, Paul M.; Foster, G.D.; Rinella, F.A.; McKenzie, S.W.

    2000-01-01

    Since 1985, the Goulden large-sample extractor (GLSE) has been used to isolate a broad array of trace-organic contaminants from large volumes of water. In this study, field-applied quality control measures, including matrix and surrogate spikes and blanks, were used to monitor method performance from GLSE extraction through GC-MS analysis. The method was applied to the determination of multiple classes of pesticides isolated from 4- to 112-L filtered surface-water samples. Average recoveries of six surrogate compounds ranged from 84 ?? 18% for [2H10]diazinon to 15 ?? 13% for 4,4'-[2H8]DDT, the low recoveries for which were largely a result of unmonitored breakdown of this surrogate by the GC injection system. Field-matrix-spike samples were prepared by fortifying 10-L, 35-L, and 110-L filtered surface-water samples with 68 pesticides to amended concentrations of 11- to 50-ng/L each. Recoveries ranged from not detected to greater than 100%. Variability in pesticide recoveries from triplicate 10-L water samples collected at one site averaged 5.7% relative standard deviation and did not exceed 19%.Since 1985, the Goulden large-sample extractor (GLSE) has been used to isolate a broad array of trace-organic contaminants from large volumes of water. In this study, field-applied quality control measures, including matrix and surrogate spikes and blanks, were used to monitor method performance from GLSE extraction through GC-MS analysis. The method was applied to the determination of multiple classes of pesticides isolated from 4- to 112-L filtered surface-water samples. Average recoveries of six surrogate compounds ranged from 84 ?? 18% for [2H10]diazinon to 15 ?? 13% for 4,4???-[2H8]DDT, the low recoveries for which were largely a result of unmonitored breakdown of this surrogate by the GC injection system. Field-matrix-spike samples were prepared by fortifying 10-L, 35-L, and 110-L filtered surface-water samples with 68 pesticides to amended concentrations of 11- to 50

  7. Size-resolved dust and aerosol contaminants associated with copper and lead smelting emissions: implications for emission management and human health.

    PubMed

    Csavina, Janae; Taylor, Mark P; Félix, Omar; Rine, Kyle P; Eduardo Sáez, A; Betterton, Eric A

    2014-09-15

    Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb and other potentially toxic elements. In this work, we show that size-resolved concentrations of As and Pb generally follow a bimodal distribution with the majority of contaminants in the fine size fraction (<1 μm) around mining activities that include smelting operations at various sites in Australia and Arizona. This evidence suggests that contaminated fine particles (<1 μm) are the result of vapor condensation and coagulation from smelting operations while coarse particles are most likely the result of windblown dust from contaminated mine tailings and fugitive emissions from crushing and grinding activities. These results on the size distribution of contaminants around mining operations are reported to demonstrate the ubiquitous nature of this phenomenon so that more effective emission management and practices that minimize health risks associated with metal extraction and processing can be developed.

  8. DEVELOPMENT OF A TAMPER RESISTANT/INDICATING AEROSOL COLLECTION SYSTEM FOR ENVIRONMENTAL SAMPLING AT BULK HANDLING FACILITIES

    SciTech Connect

    Sexton, L.

    2012-06-06

    Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity to collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office

  9. A new solid state extractor pulser for the FNAL magnetron ion source

    SciTech Connect

    Bollinger, D. S.; Lackey, J.; Larson, J.; Triplett, K.

    2015-10-05

    A new solid state extractor pulser has been installed on the Fermi National Accelerator Laboratory (FNAL) magnetron ion source, replacing a vacuum tube style pulser that was used for over 40 years. The required ion source extraction voltage is 35 kV for injection into the radio frequency quadrupole. At this voltage, the old pulser had a rise time of over 150 μs due to the current limit of the vacuum tube. The new solid state pulsers are capable of 50 kV, 100 A peak current pulses and have a rise time of 9 μs when installed in the operational system. This paper will discuss the pulser design and operational experience to date.

  10. Using the joint transform correlator as the feature extractor for the nearest neighbor classifier

    NASA Astrophysics Data System (ADS)

    Soon, Boon Y.; Karim, Mohammad A.; Alam, Mohammad S.

    1999-01-01

    Financial transactions using credit cards have gained popularity but the growing number of counterfeits and frauds may defeat the purpose of the cards. The search for a superior method to curb the criminal acts has become urgent especially in the brilliant information age. Currently, neural-network-based pattern recognition techniques are employed for security verification. However, it has been a time consuming experience, as some techniques require a long period of training time. Here, a faster and more efficient method is proposed to perform security verification that verifies the fingerprint images using the joint transform correlator as a feature extractor for nearest neighbor classifier. The uniqueness comparison scheme is proposed to improve the accuracy of the system verification. The performance of the system under noise corruption, variable contrast, and rotation of the input image is verified with a computer simulation.

  11. Size-Resolved Dust and Aerosol Contaminants Associated with Copper and Lead Smelting Emissions: Implications for Emissions Management and Human Health

    PubMed Central

    Csavina, Janae; Taylor, Mark P.; Félix, Omar; Rine, Kyle P.; Sáez, A. Eduardo; Betterton, Eric A.

    2014-01-01

    Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb and other potentially toxic elements. In this work, we show that size-resolved concentrations of As and Pb generally follow a bimodal distribution with the majority of contaminants in the fine size fraction (< 1 μm) around mining activities that include smelting operations at various sites in Australia and Arizona. This evidence suggests that contaminated fine particles (< 1 μm) are the result of vapor condensation and coagulation from smelting operations while coarse particles are most likely the result of windblown dust from contaminated mine tailings and fugitive emissions from crushing and grinding activities. These results on the size distribution of contaminants around mining operations are reported to demonstrate the ubiquitous nature of this phenomenon so that more effective emissions management and practices that minimize health risks associated with metal extraction and processing can be developed. PMID:24995641

  12. Generation and characterization of aerosols and vapors for inhalation experiments.

    PubMed Central

    Tillery, M I; Wood, G O; Ettinger, H J

    1976-01-01

    Control of aerosol and vapor characteristics that affect the toxicity of inhaled contaminants often determines the methods of generating exposure atmospheres. Generation methods for aerosols and vapors are presented. The characteristics of the resulting exposure atmosphere and the limitations of the various generation methods are discussed. Methods and instruments for measuring the airborne contaminant with respect to various charcteristics are also described. PMID:797565

  13. Low cost venom extractor based on Arduino(®) board for electrical venom extraction from arthropods and other small animals.

    PubMed

    Besson, Thomas; Debayle, Delphine; Diochot, Sylvie; Salinas, Miguel; Lingueglia, Eric

    2016-08-01

    Extracting venom from small species is usually challenging. We describe here an affordable and versatile electrical venom extractor based on the Arduino(®) Mega 2560 Board, which is designed to extract venom from arthropods and other small animals. The device includes fine tuning of stimulation time and voltage. It was used to collect venom without apparent deleterious effects, and characterized for the first time the venom of Zoropsis spinimana, a common spider in French Mediterranean regions. PMID:27158113

  14. Low cost venom extractor based on Arduino(®) board for electrical venom extraction from arthropods and other small animals.

    PubMed

    Besson, Thomas; Debayle, Delphine; Diochot, Sylvie; Salinas, Miguel; Lingueglia, Eric

    2016-08-01

    Extracting venom from small species is usually challenging. We describe here an affordable and versatile electrical venom extractor based on the Arduino(®) Mega 2560 Board, which is designed to extract venom from arthropods and other small animals. The device includes fine tuning of stimulation time and voltage. It was used to collect venom without apparent deleterious effects, and characterized for the first time the venom of Zoropsis spinimana, a common spider in French Mediterranean regions.

  15. Aerosolized Antibiotics.

    PubMed

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  16. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  17. Chemical contamination remote sensing

    NASA Technical Reports Server (NTRS)

    Carrico, J. P.; Phelps, K. R.; Webb, E. N.; Mackay, R. A.; Murray, E. R.

    1986-01-01

    A ground mobile laser test bed system was assembled to assess the feasibility of detection of various types of chemical contamination using Differential Scattering (DISC) and Differential Absorption (DIAL) Lidar techniques. Field experiments with the test bed system using chemical simulants were performed. Topographic reflection and range resolved DIAL detection of vapors as well as DISC detection of aerosols and surface contamination were achieved. Review of detection principles, design of the test bed system, and results of the experiments are discussed.

  18. Protein Information and Knowledge Extractor: Discovering biological information from proteomics data.

    PubMed

    Medina-Aunon, J Alberto; Paradela, Alberto; Macht, Marcus; Thiele, Herbert; Corthals, Garry; Albar, Juan Pablo

    2010-09-01

    One of the main goals in proteomics is to solve biological and molecular questions regarding a set of identified proteins. In order to achieve this goal, one has to extract and collect the existing biological data from public repositories for every protein and afterward, analyze and organize the collected data. Due to the complexity of this task and the huge amount of data available, it is not possible to gather this information by hand, making it necessary to find automatic methods of data collection. Within a proteomic context, we have developed Protein Information and Knowledge Extractor (PIKE) which solves this problem by automatically accessing several public information systems and databases across the Internet. PIKE bioinformatics tool starts with a set of identified proteins, listed as the most common protein databases accession codes, and retrieves all relevant and updated information from the most relevant databases. Once the search is complete, PIKE summarizes the information for every single protein using several file formats that share and exchange the information with other software tools. It is our opinion that PIKE represents a great step forward for information procurement and drastically reduces manual database validation for large proteomic studies. It is available at http://proteo.cnb.csic.es/pike.

  19. Array data extractor (ADE): a LabVIEW program to extract and merge gene array data

    PubMed Central

    2013-01-01

    Background Large data sets from gene expression array studies are publicly available offering information highly valuable for research across many disciplines ranging from fundamental to clinical research. Highly advanced bioinformatics tools have been made available to researchers, but a demand for user-friendly software allowing researchers to quickly extract expression information for multiple genes from multiple studies persists. Findings Here, we present a user-friendly LabVIEW program to automatically extract gene expression data for a list of genes from multiple normalized microarray datasets. Functionality was tested for 288 class A G protein-coupled receptors (GPCRs) and expression data from 12 studies comparing normal and diseased human hearts. Results confirmed known regulation of a beta 1 adrenergic receptor and further indicate novel research targets. Conclusions Although existing software allows for complex data analyses, the LabVIEW based program presented here, “Array Data Extractor (ADE)”, provides users with a tool to retrieve meaningful information from multiple normalized gene expression datasets in a fast and easy way. Further, the graphical programming language used in LabVIEW allows applying changes to the program without the need of advanced programming knowledge. PMID:24289243

  20. A vacuum-operated pore-water extractor for estuarine and freshwater sediments

    USGS Publications Warehouse

    Winger, Parley V.; Lasier, Peter J.

    1991-01-01

    A vacuum-operated pore-water extractor for estuarine and freshwater sediments was developed and constructed from a fused-glass air stone attached with aquarium airline tubing to a 30 or 60 cc polypropylene syringe. Pore water is extracted by inserting the air stone into the sediment and creating a vacuum by retracting and bracing the syringe plunger. A hand-operated vacuum pump attached to a filtration flask was also evaluated as an alternative vacuum source. The volume and time to extract pore water varies with the number of devices and the sediment particle size. Extraction time is longer for fine sediments than for sandy sediments. Four liters of sediment generally yield between 500 and 1,500 mL of pore water. The sediment that surrounds and accumulates on the air stone acts as a filter, and, except for the first few milliliters, the collected pore water is clear. Because there is no exposure to air or avenue for escape, volatile compounds andin situ characteristics are retained in the extracted pore water.

  1. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  2. Increased prevalence of IgG-induced sensitization and hypersensitivity pneumonitis (humidifier lung) in nonsmokers exposed to aerosols of a contaminated air conditioner.

    PubMed

    Baur, X; Richter, G; Pethran, A; Czuppon, A B; Schwaiblmair, M

    1992-01-01

    Specific IgG antibodies against antigens of a contaminated air conditioner were estimated in serum of 134 workers of a printing company. Altogether 64% of the workers investigated revealed significantly elevated levels (> 3 U/ml) of IgG antibodies specific to these antigens as compared to a nonexposed control group. The occurrence of IgG antibodies for microbial extracts were 25% for Fusarium, 23% for Penicillium notatum, 13% for Alternaria tenuis, 12% for Aureobasidium pullulans, 9% for Sphaeropsidales species, 3% for Micropolyspora faeni, 2% for Aspergillus fumigatus and 2% for Thermoactionomyces vulgaris. Out of the 86 workers with elevated IgG antibodies for air conditioner antigens, 59 were nonsmokers. Considering a cut-off level of 10 U/ml IgG for high values, the proportion of smokers to nonsmokers becomes even more pronounced (6 to 36 respectively, binominal test p < 0.001). This is despite the fact that the distribution of smokers and nonsmokers among the 134 workers is approximately equal (60 to 74). All 3 workers with clinical diagnosis of humidifier lung or humidifier fever belonged to the nonsmoker group. Our findings indicate that crude water extracts of contaminated air conditioners are the best choice as antigen source for the diagnosis of humidifier lung in exposed workers. Nonsmokers are shown to have a high risk for immunological sensitization. PMID:1485005

  3. Microfabricated electrospray emitter arrays with integrated extractor and accelerator electrodes for the propulsion of small spacecraft

    NASA Astrophysics Data System (ADS)

    Dandavino, S.; Ataman, C.; Ryan, C. N.; Chakraborty, S.; Courtney, D.; Stark, J. P. W.; Shea, H.

    2014-07-01

    Microfabricated electrospray thrusters could revolutionize the spacecraft industry by providing efficient propulsion capabilities to micro and nano satellites (1-100 kg). We present the modeling, design, fabrication and characterization of a new generation of devices, for the first time integrating in the fabrication process individual accelerator electrodes capable of focusing and accelerating the emitted sprays. Integrating these electrodes is a key milestone in the development of this technology; in addition to increasing the critical performance metrics of thrust, specific impulse and propulsive efficiency, the accelerators enable a number of new system features such as power tuning and thrust vectoring and balancing. Through microfabrication, we produced high density arrays (213 emitters cm-2) of capillary emitters, assembling them at wafer-level with an extractor/accelerator electrode pair separated by micro-sandblasted glass. Through IV measurements, we could confirm that acceleration could be decoupled from the extraction of the spray—an important element towards the flexibility of this technology. We present the largest reported internally fed microfabricated arrays operation, with 127 emitters spraying in parallel, for a total beam of 10-30 µA composed by 95% of ions. Effective beam focusing was also demonstrated, with plume half-angles being reduced from approximately 30° to 15° with 2000 V acceleration. Based on these results, we predict, with 3000 V acceleration, thrust per emitter of 38.4 nN, specific impulse of 1103 s and a propulsive efficiency of 22% with <1 mW/emitter power consumption.

  4. Multi-nanosecond high power pulse generation at 7.8GHz with a dielectric-loaded power extractor.

    SciTech Connect

    Conde, M..; Gai, W.; Konecny, R.; Liu, W.; Power, J. G.; Gao, F.; Jing, C.; Wong, T.; Yusof, Z.; High Energy Physics; Illinois Inst. of Tech.; Euclid Techlabs LLC; IEEE

    2009-06-01

    Power extraction from charged particle beams is a prospective way to develop future high power radio frequency (RF) sources. We have designed and tested a 7.8 GHz power extractor based on a dielectric-loaded waveguide. Building upon earlier work on single electron bunch tests, 10 ns and 22 ns megawatt-level RF pulses have been generated with trains consisting of 16 electron bunches each, by using a laser splitting-recombination scheme. In addition, 44 MW of peak power has been generated with a train consisting 4 electron bunches. Behaviors of higher-order-modes are also explored.

  5. [Aerosol therapy].

    PubMed

    Wildhaber, J H

    1998-08-15

    Aerosol therapy plays a major role in the diagnosis and treatment of various lung diseases. The aim of inhalation therapy is to deposit a reproducible and adequate dose of a specific drug to the airways, in order to achieve a high, local, clinical effect while avoiding serious systemic side effects. To achieve this goal, it is therefore important to have an efficient inhalation device to deliver different medications. However, the currently available therapeutic inhalation devices (nebuliser, pressurised metered-dose inhaler and dry powder inhaler) are not very efficient in aerosol delivery and have several disadvantages. Inhalation devices can be assessed by in vitro studies, filter studies and radiolabelled deposition studies. Several radiolabelled deposition studies have shown that nebulisers and pressurised metered-dose inhalers are not very efficient in aerosol delivery. In children, before 1997, only 0.5% to 15% of the total nebulised or actuated dose from a nebuliser or pressurised metered-dose inhaler actually reached the lungs. These numbers were somewhat improved in adults, 30% of the total nebulised or actuated dose reaching the airways. Aerosol therapy with dry powder inhalers was the most efficient before 1997, 30% of the total dose being deposited in the lungs of adults and children. In 1997, new developments in pressurised metered-dose inhalers much improved their efficiency in aerosol delivery. Lung deposition can be increased by up to 60% with use of a non-electrostatic holding chamber and/or a pressurised metered-dose inhaler with a hydrofluoroalkane propellant possessing superior aerosol characteristics. Several studies comparing the clinical efficiency of different inhalation devices have shown that the choice of an optimal inhalation device is crucial. In addition to the aerosol characteristics, ventilation parameters and airway morphology have an important bearing on deposition patterns. These parameters may be greatly influenced by the

  6. Novel pipette-tip graphene/poly (vinyl alcohol) cryogel composite extractor for the analysis of carbofuran and carbaryl in water.

    PubMed

    Charoenpornpukdee, Kanokrat; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2014-01-01

    A novel pipette-tip extractor of a graphene/poly (vinyl alcohol) cryogel (graphene/PVA) composite sorbent was prepared to preconcentrate carbamate pesticides in environmental water samples before analysis with a gas chromatograph-flame ionization detector (GC-FID). This novel pipette-tip extractor with the graphene/PVA sorbent exhibited a high porosity when observed through a scanning electron micrograph (SEM). Under optimal conditions, using only 1.0 mL of sample and 0.75 mL of eluting solvent, the developed method provided a wide linear range of 10-700 ng mL(-1) and 10-500 ng mL(-1) with limit of detection (LOD) of 6.40 ± 0.18 and 9.17 ± 0.34 ng mL(-1) for carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) and carbaryl (1-naphthyl methylcarbamate), respectively. The pipette-tip extractor provided high extraction efficiency with high accuracy indicated, by good recoveries in the range of 74.5 ± 4.8% to 119.7 ± 1.6% and 76 ± 15% to 114 ± 19% for carbofuran and carbaryl, respectively. In addition, the fabrication procedure showed a good pipette-tip extractor-to-pipette-tip extractor reproducibility with a relative standard deviation of 1.3-9.8% (n = 5). When the developed pipette-tip extractor was applied for the extraction of carbofuran and carbaryl in surface water samples near vegetable plantation areas, 25.9 ± 8.2 ng mL(-1) of carbofuran was found, and carbaryl was also detected in concentrations that ranged from 45.0 ± 4.0 to 191 ± 13 ng mL(-1).

  7. Novel pipette-tip graphene/poly (vinyl alcohol) cryogel composite extractor for the analysis of carbofuran and carbaryl in water.

    PubMed

    Charoenpornpukdee, Kanokrat; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2014-01-01

    A novel pipette-tip extractor of a graphene/poly (vinyl alcohol) cryogel (graphene/PVA) composite sorbent was prepared to preconcentrate carbamate pesticides in environmental water samples before analysis with a gas chromatograph-flame ionization detector (GC-FID). This novel pipette-tip extractor with the graphene/PVA sorbent exhibited a high porosity when observed through a scanning electron micrograph (SEM). Under optimal conditions, using only 1.0 mL of sample and 0.75 mL of eluting solvent, the developed method provided a wide linear range of 10-700 ng mL(-1) and 10-500 ng mL(-1) with limit of detection (LOD) of 6.40 ± 0.18 and 9.17 ± 0.34 ng mL(-1) for carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) and carbaryl (1-naphthyl methylcarbamate), respectively. The pipette-tip extractor provided high extraction efficiency with high accuracy indicated, by good recoveries in the range of 74.5 ± 4.8% to 119.7 ± 1.6% and 76 ± 15% to 114 ± 19% for carbofuran and carbaryl, respectively. In addition, the fabrication procedure showed a good pipette-tip extractor-to-pipette-tip extractor reproducibility with a relative standard deviation of 1.3-9.8% (n = 5). When the developed pipette-tip extractor was applied for the extraction of carbofuran and carbaryl in surface water samples near vegetable plantation areas, 25.9 ± 8.2 ng mL(-1) of carbofuran was found, and carbaryl was also detected in concentrations that ranged from 45.0 ± 4.0 to 191 ± 13 ng mL(-1). PMID:25065822

  8. An RF-powered micro-extractor (μEX) for the detection of astrobiological target molecules on Mars

    NASA Astrophysics Data System (ADS)

    Scott, V.; Amashukeli, X.; Siegel, P.; Lin, R.; Bae, Y.; Fisher, A.

    2011-12-01

    Major goals of space exploration are to look for extant or extinct life (i.e. chemical biomarker molecules) and to determine the factors that make an environment habitable; an extension of this goal is to better understand prebiotic chemistry and the features that allow life to occur. In situ detection remains the most widely used method in missions that address these questions. Missions to astrobiological or geochemical planetary targets will require an efficient and non-altering extraction technique for efficient detection and characterization of biomarkers. Two new instruments are described that have been developed for use in the exploration of Mars - a target that attracts considerable attention from the astrobiology community; however it will be applicable to any mission requiring in situ analysis of planetary regolith and ice. The first of these instruments is a micro-extractor (μEXc) that exploits the unique property of water to modify its dielectric constant when affected by radio-frequency (RF) radiation; the second is a miniature version of the Sub-Critical Water Extractor (μSCWE). These instruments will be tested first on stock solutions of potential biomarkers to monitor any chemical changes and demonstrate some bond breaking capabilities, then on various planetary-analog samples for extraction. The best protocols for extraction of various bio-markers will be determined while maximizing efficiencies and minimizing the degradation of the targets and appropriate detection methods for each will be examined.

  9. Development of negative ion extractor in the high-power and long-pulse negative ion source for fusion application

    SciTech Connect

    Kashiwagi, M. Umeda, N.; Tobari, H.; Kojima, A.; Yoshida, M.; Taniguchi, M.; Dairaku, M.; Maejima, T.; Yamanaka, H.; Watanabe, K.; Inoue, T.; Hanada, M.

    2014-02-15

    High power and long-pulse negative ion extractor, which is composed of the plasma grid (PG) and the extraction grid (EXG), is newly developed toward the neutral beam injector for heating and current drive of future fusion machines such as ITER, JT-60 Super Advanced and DEMO reactor. The PG is designed to enhance surface production of negative ions efficiently by applying the chamfered aperture. The efficiency of the negative ion production for the discharge power increased by a factor of 1.3 against that of the conventional PG. The EXG is also designed with the thermal analysis to upgrade the cooling capability for the long pulse operation of >1000 s required in ITER. Though the magnetic field for electron suppression is reduced to 0.75 of that in the conventional EXG due to this upgrade, it was experimentally confirmed that the extracted electron current can be suppressed to the allowable level for the long pulse operation. These results show that newly developed extractor has the high potential for the long pulse extraction of the negative ions.

  10. An improved collimation algorithm for the Large Binocular Telescope using source extractor and an on-the-fly reconstructor

    NASA Astrophysics Data System (ADS)

    Miller, Douglas L.; Rakich, Andrew; Leibold, Torsten

    2012-09-01

    A recent upgrade of the LBTO’s Wavefront Reconstruction algorithm in the Active Optics system has proven to reduce the collimation time by a substantial amount and to provide a much more stable telescope collimation as observing conditions change. The new reconstruction algorithm uses Source Extractor to detect the spots in a Shack-Hartmann wavefront sensor camera image. With information about which Shack spots are detected, a reconstructor matrix is calculated on-the-fly that only includes the illuminated sub-apertures. This drastically improves the wavefront reconstruction for a highly aberrated wavefront when many sub-apertures contain no information. This is generally the situation at the beginning of the night when the collimation of the telescope is set only from models rather than on-sky information and occasionally when a new observational target is acquired. Similarly, the undersized tertiary mirror can cause vignetting of the pupil seen by the Shack-Hartmann wavefront sensor for far off-axis guide stars and again some sub-apertures have no wavefront information. We will present a brief description of the Active Optics system used at the Gregorian focal stations at the LBTO, discuss the original wavefront reconstruction algorithm, describe the new Source Extractor algorithm and compare the performance of these two approaches in several conditions (low signal to noise, highly aberrated wavefront, vignetted pupil, poor seeing).

  11. A Comparison of the Pitfall Trap, Winkler Extractor and Berlese Funnel for Sampling Ground-Dwelling Arthropods in Tropical Montane Cloud Forests

    PubMed Central

    Sabu, Thomas K.; Shiju, Raj T.; Vinod, KV.; Nithya, S.

    2011-01-01

    Little is known about the ground-dwelling arthropod diversity in tropical montane cloud forests (TMCF). Due to unique habitat conditions in TMCFs with continuously wet substrates and a waterlogged forest floor along with the innate biases of the pitfall trap, Berlese funnel and Winkler extractor are certain to make it difficult to choose the most appropriate method to sample the ground-dwelling arthropods in TMCFs. Among the three methods, the Winkler extractor was the most efficient method for quantitative data and pitfall trapping for qualitative data for most groups. Inclusion of floatation method as a complementary method along with the Winkler extractor would enable a comprehensive quantitative survey of ground-dwelling arthropods. Pitfall trapping is essential for both quantitative and qualitative sampling of Diplopoda, Opiliones, Orthoptera, and Diptera. The Winkler extractor was the best quantitative method for Psocoptera, Araneae, Isopoda, and Formicidae; and the Berlese funnel was best for Collembola and Chilopoda. For larval forms of different insect orders and the Acari, all the three methods were equally effective. PMID:21529148

  12. Assessment of phytoavailability of heavy metals in tropical soils by modified Neubauer method (organic extractor).

    NASA Astrophysics Data System (ADS)

    Mellis, E. V.; Rodella, A. A.; Levy, C. C. B.

    2012-04-01

    Nowadays authors discuss the use of metal content phytoavailable in replacement of the total content to establish regulatory limits for metals in soils. However, there is still no patterning in the method to be used to estimate the phytoavailability of metals present in soils and is usually used extraction solutions such as: DTPA, Mehlich 3 and HCl. Although the use of these solutions is an alternative, these extractors have large efficacy variation according to the metal concentration in soil, soil type, the presence of other chemical species, plant species and the metal in question. An alternative would be to use biological methods, with the use of plants to assess the availability of metals that could be used in routine laboratories. The aim of this study was to determine the phytoavailability of Cd, Cu, Ni and Zn by the method of Neubauer, correlating levels of soluble metals determined by DTPA in soil treated with sewage sludge, and its absorption by rice plants. In this experiment it was used the modification proposed by Catani and Bergamin (1960) of the original procedure established by Neubauer and Schneider (1923). Studies were conducted on samples of a Rhodic soil (clayey), obtained in experiments in which sewage sludge was applied in corn, located in the Experimental Field of Embrapa Environment, Jaguariúna (SP), latitude 22o41 'south, longitude W. 47th Gr and altitude of 570 m. The sewage sludge were generated in the Stations of Sewage Treatment of Barueri (State of São Paulo, Brazil), which treats domestic and industrial sludge (Sludge Barueri - SB) and Stations of Sewage Treatment of Franca (State of São Paulo, Brazil), which deals mainly with domestic sludge (Sludge Franca - SF). The applications of sewage sludge were made from 1999 for five consecutive years and on average, it was applied the following amounts of sludge per year: 0, 5, 10, 20 and 40 t ha-1. It was evaluated the dry matter production, nutrient concentrations in the plant and the

  13. Discrimination of cloud and aerosol in the Stratospheric Aerosol and Gas Experiment III occultation data.

    PubMed

    Kent, G S; Wang, P H; Skeens, K M

    1997-11-20

    The Stratospheric Aerosol and Gas Experiment (SAGE) III, scheduled for a first launch in mid-1998, will be making measurements of the extinction that is due to aerosols and gases at many wavelengths between 385 and 1550 nm. In the troposphere and wintertime polar stratosphere, extinction will also occur because of the presence of cloud along the optical path from the Sun to the satellite instrument. We describe a method for separating the effects of aerosol and cloud using the extinction at 525, 1020, and 1550 nm and present the results of simulation studies. These studies show that the new method will work well under background nonvolcanic aerosol conditions in the upper troposphere and lower stratosphere. Under conditions of severe volcanic contamination, the error rate for the separation of aerosol and cloud may rise as high as 30%.

  14. Aerosol Transmission of Filoviruses

    PubMed Central

    Mekibib, Berhanu; Ariën, Kevin K.

    2016-01-01

    Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013–2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses. PMID:27223296

  15. Aerosol Transmission of Filoviruses.

    PubMed

    Mekibib, Berhanu; Ariën, Kevin K

    2016-01-01

    Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013-2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses. PMID:27223296

  16. Compound Specific Extraction of Camptothecin from Nothapodytes nimmoniana and Piperine from Piper nigrum Using Accelerated Solvent Extractor.

    PubMed

    Upadhya, Vinayak; Pai, Sandeep R; Sharma, Ajay K; Hegde, Harsha V; Kholkute, Sanjiva D; Joshi, Rajesh K

    2014-01-01

    Effects of varying temperatures with constant pressure of solvent on extraction efficiency of two chemically different alkaloids were studied. Camptothecin (CPT) from stem of Nothapodytes nimmoniana (Grah.) Mabb. and piperine from the fruits of Piper nigrum L. were extracted using Accelerated Solvent Extractor (ASE). Three cycles of extraction for a particular sample cell at a given temperature assured complete extraction. CPT and piperine were determined and quantified by using a simple and efficient UFLC-PDA (245 and 343 nm) method. Temperature increased efficiency of extraction to yield higher amount of CPT, whereas temperature had diminutive effect on yield of piperine. Maximum yield for CPT was achieved at 80°C and for piperine at 40°C. Thus, the study determines compound specific extraction of CPT from N. nimmoniana and piperine from P. nigrum using ASE method. The present study indicates the use of this method for simple, fast, and accurate extraction of the compound of interest.

  17. Aerosol retrieval experiments in the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; de Leeuw, G.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-03-01

    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013) algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components and their mixing ratios. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data qualitatively by visible analysis of monthly mean AOD maps and quantitatively by comparing global daily gridded satellite data against daily

  18. Bacterial aerosols in the dental clinic: a review.

    PubMed

    Leggat, P A; Kedjarune, U

    2001-02-01

    A number of sources of bacterial aerosols exist within and outside the dental clinic. The concentration of bacterial aerosols and splatters appears to be highest during dental procedures, especially those generated by some procedures such as ultrasonic scaling, or using a high speed drill. Several infectious diseases could be transmitted to staff and patients by airborne bacterial and other contaminants in the dental clinic. Air-conditioning and ventilation systems should be regularly maintained to reduce environmental contaminants and to prevent recirculation of bacterial aerosols. Pre-procedural rinsing by patients with mouthwashes as well as vacuum and electrostatic extraction of aerosols during dental procedures could also be employed. Dental staff should also consider appropriate immunizations and continue to use personal protective measures, which reduce contact with bacterial aerosols and splatters in the dental clinic.

  19. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  20. Retrieving Aerosol in a Cloudy Environment: Aerosol Availability as a Function of Spatial and Temporal Resolution

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Mattoo, Shana; Levy, Robert C.; Heidinger, Andrew; Pierce, R. Bradley; Chin, Mian

    2011-01-01

    The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions, using the standard MODIS aerosol cloud mask applied to MODIS data and a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol availability is not the same as the cloud free fraction and takes into account the technqiues used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5x0.5 km for MODIS and 1x1 km for GOES, is systematically degraded to 1x1 km, 2x2 km, 4x4 km and 8x8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8x8 km. The results show that as pixel size increases, availability decreases until at 8x8 km 70% to 85% of the retrievals available at 0.5 km have been lost. The diurnal pattern of aerosol retrieval availability examined for one day in the summer suggests that coarse resolution sensors (i.e., 4x4 km or 8x8 km) may be able to retrieve aerosol early in the morning that would otherwise be missed at the time of current polar orbiting satellites, but not the diurnal aerosol properties due to cloud cover developed during the day. In contrast finer resolution sensors (i.e., 1x1 km or 2x2 km) have much better opportunity to retrieve aerosols in the partly cloudy scenes and better chance of returning the diurnal aerosol properties. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and that a generic cloud mask

  1. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  2. An analysis of global aerosol type as retrieved by MISR

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph A.; Gaitley, Barbara J.

    2015-05-01

    In addition to aerosol optical depth (AOD), aerosol type is required globally for climate forcing calculations, constraining aerosol transport models and other applications. However, validating satellite aerosol-type retrievals is more challenging than testing AOD results, because aerosol type is a more complex quantity, and ground truth data are far less numerous and generally not as robust. We evaluate the Multiangle Imaging Spectroradiometer (MISR) Version 22 aerosol-type retrievals by assessing product self-consistency on a regional basis and by making comparisons with general expectation and with the Aerosol Robotic Network aerosol-type climatology, as available. The results confirm and add detail to the observation that aerosol-type discrimination improves dramatically where midvisible AOD exceeds about 0.15 or 0.2. When the aerosol-type information content of the observations is relatively low, increased scattering-angle range improves particle-type sensitivity. The MISR standard, operational product discriminates among small, medium, and large particles and exhibits qualitative sensitivity to single-scattering albedo (SSA) under good aerosol-type retrieval conditions, providing a categorical aerosol-type classification. MISR Ångström exponent deviates systematically from ground truth where particle types missing from the algorithm climatology are present, or where cloud contamination is likely to occur, and SSA tends to be overestimated where absorbing particles are found. We determined that the number of mixtures passing the algorithm acceptance criteria (#SuccMix) represents aerosol-type retrieval quality effectively, providing a useful aerosol-type quality flag.

  3. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  4. Aerosol retrieval experiments in the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; de Leeuw, G.; Griesfeller, J.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-08-01

    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013), algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun photometer

  5. Aerosol effects and corrections in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Hervig, Mark E.; Russell, James M., III; Gordley, Larry L.; Daniels, John; Drayson, S. Roland; Park, Jae H.

    1995-01-01

    The eruptions of Mt. Pinatubo in June 1991 increased stratospheric aerosol loading by a factor of 30, affecting chemistry, radiative transfer, and remote measurements of the stratosphere. The Halogen Occultation Experiment (HALOE) instrument on board Upper Atmosphere Research Satellite (UARS) makes measurements globally for inferring profiles of NO2, H2O, O3, HF, HCl, CH4, NO, and temperature in addition to aerosol extinction at five wavelengths. Understanding and removing the aerosol extinction is essential for obtaining accurate retrievals from the radiometer channels of NO2, H2O and O3 in the lower stratosphere since these measurements are severely affected by contaminant aerosol absorption. If ignored, aerosol absorption in the radiometer measurements is interpreted as additional absorption by the target gas, resulting in anomalously large mixing ratios. To correct the radiometer measurements for aerosol effects, a retrieved aerosol extinction profile is extrapolated to the radiometer wavelengths and then included as continuum attenuation. The sensitivity of the extrapolation to size distribution and composition is small for certain wavelength combinations, reducing the correction uncertainty. The aerosol corrections extend the usable range of profiles retrieved from the radiometer channels to the tropopause with results that agree well with correlative measurements. In situations of heavy aerosol loading, errors due to aerosol in the retrieved mixing ratios are reduced to values of about 15, 25, and 60% in H2O, O3, and NO2, respectively, levels that are much less than the correction magnitude.

  6. Aerosols of Mongolian arid area

    NASA Astrophysics Data System (ADS)

    Golobokova, L.; Marinayte, I.; Zhamsueva, G.

    2012-04-01

    Sampling was performed in July-August 2005-2010 at Station Sain Shand (44°54'N, 110°07'E) in the Gobi desert (1000 m a.s.l.), West Mongolia. Aerosol samples were collected with a high volume sampler PM 10 (Andersen Instruments Inc., USA) onto Whatman-41 filters. The substance was extracted from the filters by de-ionized water. The solution was screened through an acetate-cellulose filter with 0.2 micron pore size. Ions of ammonium, sodium, potassium, magnesium, and calcium, as well as sulphate ions, nitrate ions, hydrocarbonate, chloride ions were determined in the filtrate by means of an atomic adsorption spectrometer Carl Zeiss Jena (Germany), a high performance liquid chromatographer «Milichrome A-02» (Russia), and an ionic chromatographer ICS-3000 (Dionex, USA). The PAH fraction was separated from aerosol samples using hexane extraction at room temperature under UV environment. The extract was concentrated to 0.1-0.2 ml and analysed by a mass-spectrometer "Agilent, GC 6890, MSD 5973 Network". Analysis of concentrations of aerosols components, their correlation ratios, and meteorological modeling show that the main factor affecting chemical composition of aerosols is a flow of contaminants transferred by air masses to the sampling area mainly from the south and south-east, as well as wind conditions of the area, dust storms in particular. Sulphate, nitrate, and ammonium are major ions in aerosol particles at Station Sain Shand. Dust-borne aerosol is known to be a sorbent for both mineral and organic admixtures. Polycyclic aromatic hydrocarbons (PAH) being among superecotoxicants play an important role among resistant organic substances. PAH concentrations were determined in the samples collected in 2010. All aerosol samples contained dominant PAHs with 5-6 benzene rings ( (benze(k)fluoranthen, benze(b)flouranthen, benze(a)pyren, benze(?)pyren, perylene, benze(g,h,i)perylene, and indene(1,2,3-c,d)pyrene). Their total quantity varied between 42 and 90

  7. Toward fewer EEG channels and better feature extractor of non-motor imagery mental tasks classification for a wheelchair thought controller.

    PubMed

    Chai, Rifai; Ling, Sai Ho; Hunter, Gregory P; Nguyen, Hung T

    2012-01-01

    This paper presents a non-motor imagery tasks classification electroencephalography (EEG) based brain computer interface (BCI) for wheelchair control. It uses only two EEG channels and a better feature extractor to improve the portability and accuracy in the practical system. In addition, two different features extraction methods, power spectral density (PSD) and Hilbert Huang Transform (HHT) energy are compared to find a better method with improved classification accuracy using a Genetic Algorithm (GA) based neural network classifier. The results from five subjects show that using the original eight channels with three tasks, accuracy between 76% and 85% is achieved. With only two channels in combination with the best chosen task using a PSD feature extractor, the accuracy is reduced to between 65% and 79%. However, the HHT based method provides an improved accuracy between 70% and 84% for the classification of three discriminative tasks using two EEG channels.

  8. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  9. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  10. Aerosols and environmental pollution

    NASA Astrophysics Data System (ADS)

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues; ranging from the Earth’s radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  11. Aerosols and environmental pollution.

    PubMed

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth's atmosphere and are central to many environmental issues; ranging from the Earth's radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  12. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  13. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  14. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  15. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  16. Design considerations for a higher-order-mode dielectric-loaded power extractor set for millimeter-wave generation.

    SciTech Connect

    Gai, W.; Liu, W.; Gao, F.; Wong, T.; Jing, C.; High Energy Physics; Illinois Inst. of Tech.; Euclid Techlabs LLC

    2009-10-11

    The design of an electron-beam excited device for millimeter-wave generation is presented. Referred to as a dielectric-loaded power extractor, it is based on the higher-order-mode operation of a dielectric-loaded waveguide. With a matching transition, the unit can deliver power to the output waveguide at one of two frequencies, 20.8 and 35.1 GHz, corresponding to the TM{sub 02} and TM{sub 03} modes, respectively. By properly choosing the thickness of the dielectric lining, both modes are tuned to synchronize with an ultra-relativistic electron beam traversing the unit so that the wakefield generated by the beam is excited at these modes, chosen to be at 20.8 and 35.1 GHz, respectively, both corresponding to a harmonic of the 1.3 GHz operating frequency at an accelerator facility. Power generated in the unintended TM{sub 01} mode is effectively suppressed for bunch train operation by a novel technique. The device consists of a dielectric-loaded decelerating structure and two changeable output couplers to deliver the millimeter-wave power to a standard waveguide. For a drive beam with 50 nC of charge per bunch, power levels of 90.4 and 8.68 MW are expected to be delivered by the device at 20.8 and 35.1 GHz, respectively.

  17. Summary report on the design of the retained gas sampler system (retained gas sampler, extruder and extractor)

    SciTech Connect

    Wootan, D.W.; Bolden, R.C.; Bridges, A.E.; Cannon, N.S.; Chastain, S.A.; Hey, B.E.; Knight, R.C.; Linschooten, C.G.; Pitner, A.L.; Webb, B.J.

    1994-09-29

    This document summarizes work performs in Fiscal Year 1994 to develop the three main components of Retained Gas Sampler System (RGSS). These primary components are the Retained Gas Sampler (RGS), the Retained Gas Extruder (RGE), and the Retained Gas Extractor (RGEx). The RGS is based on the Westinghouse Hanford Company (WHC) Universal Sampler design, and includes modifications to reduce gas leakage. The primary data priorities for the RGSS are to measure the void fraction and the flammable gas concentration in the waste sample. Significant progress has been made in developing the RGSS. The RGSS is being developed by WHC to extract a representative waste sample from a Flammable Gas Watch List Tanks and to measure both the amount and composition of free and {open_quotes}bound{close_quotes} gases. Sudden releases of flammable gas mixtures are a safety concern for normal waste storage operations and eventual waste retrieval. Flow visualization testing was used to identify important fluid dynamic issues related to the sampling process. The primary data priorities for the RGSS are to measure the void fraction and the flammable gas concentration in the waste sample. The safety analysis for the RGSS is being performed by Los Alamos National Laboratory and is more than sixty percent (60%) complete.

  18. Dysfunction Screening in Experimental Arteriovenous Grafts for Hemodialysis Using Fractional-Order Extractor and Color Relation Analysis.

    PubMed

    Wu, Ming-Jui; Chen, Wei-Ling; Kan, Chung-Dann; Yu, Fan-Ming; Wang, Su-Chin; Lin, Hsiu-Hui; Lin, Chia-Hung

    2015-12-01

    In physical examinations, hemodialysis access stenosis leading to dysfunction occurs at the venous anastomosis site or the outflow vein. Information from the inflow stenosis, such as blood pressure, pressure drop, and flow resistance increases, allows dysfunction screening from the stage of early clots and thrombosis to the progression of outflow stenosis. Therefore, this study proposes dysfunction screening model in experimental arteriovenous grafts (AVGs) using the fractional-order extractor (FOE) and the color relation analysis (CRA). A Sprott system was designed using an FOE to quantify the differences in transverse vibration pressures between the inflow and outflow sites of an AVG. Experimental analysis revealed that the degree of stenosis (DOS) correlated with an increase in fractional-order dynamic errors (FODEs). Exponential regression was used to fit a non-linear curve and can be used to quantify the relationship between the FODEs and DOS (R (2) = 0.8064). The specific ranges were used to evaluate the stenosis degree, such as DOS: <50, 50-80, and >80%. A CRA-based screening method was derived from the hue angle-saturation-value color model, which describes perceptual color relationships for the DOS. It has a flexibility inference manner with color visualization to represent the different stenosis degrees, which has average accuracy >90% superior to the traditional methods. This in vitro experimental study demonstrated that the proposed model can be used for dysfunction screening in stenotic AVGs.

  19. Does the Madden-Julian Oscillation Influence Aerosol Variability?

    NASA Astrophysics Data System (ADS)

    Tian, B.; Waliser, D. E.; Kahn, R. A.; Li, Q.; Yung, Y. L.; Tyranowski, T.; Geogdzhayev, I. V.; Mishchenko, M. I.; Torres, O.; Smirnov, A.

    2007-12-01

    We investigate the modulation of aerosols by the Madden-Julian Oscillation (MJO) using satellite-based global aerosol products, including aerosol index (AI) from the Total Ozone Mapping Spectrometer (TOMS) on Nimbus-7, and aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Advanced Very High Resolution Radiometer (AVHRR) on NOAA satellites. A composite analysis is performed for boreal winter, and the global pentad rainfall data from the NOAA Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) are used to identify MJO events. The MJO composites exhibit large variations in the TOMS AI and MODIS/AVHRR AOT over the equatorial Indian and western Pacific Oceans where MJO convection is active, as well as the tropical Africa and Atlantic Ocean where MJO convection is relatively weak but the background aerosol level is relatively high. A strong inverse linear relationship between the TOMS AI and rainfall anomalies, but a weaker, less coherent positive correlation between the MODIS/AVHRR AOT and rainfall anomalies, were found. The Aerosol Robotic Network AOT pattern at Kaashidoo (73.5°E, 4.9°N) and Nauru (167°E, 0.5°S) is more consistent with MODIS and AVHRR. These results indicate a connection between the MJO, its associated rainfall and circulation variability, and the observed aerosol variations. Several physical and non-physical factors that may contribute to the observed aerosol-rainfall relationship, such as aerosol humidification effect, wet deposition, surface wind speed, phytoplankton, different sensor sensitivities (absorbing versus non-absorbing aerosols and upper versus lower tropospheric aerosols), sampling issue, and cloud contamination, are discussed. However, a clear causal explanation for the observed patterns remains elusive. Further investigation is needed to unravel this complex aerosol-rainfall relationship.

  20. The reactive bed plasma system for contamination control

    NASA Technical Reports Server (NTRS)

    Birmingham, Joseph G.; Moore, Robert R.; Perry, Tony R.

    1990-01-01

    The contamination control capabilities of the Reactive Bed Plasma (RBP) system is described by delineating the results of toxic chemical composition studies, aerosol filtration work, and other testing. The RBP system has demonstrated its capabilities to decompose toxic materials and process hazardous aerosols. The post-treatment requirements for the reaction products have possible solutions. Although additional work is required to meet NASA requirements, the RBP may be able to meet contamination control problems aboard the Space Station.

  1. Simulations of the Aerosol Index and the Absorption Aerosol Optical Depth and Comparisons with OMI Retrievals During ARCTAS-2008 Campaign

    NASA Technical Reports Server (NTRS)

    2010-01-01

    We have computed the Aerosol Index (AI) at 354 nm, useful for observing the presence of absorbing aerosols in the atmosphere, from aerosol simulations conducted with the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module running online the GEOS-5 Atmospheric GCM. The model simulates five aerosol types: dust, sea salt, black carbon, organic carbon and sulfate aerosol and can be run in replay or data assimilation modes. In the assimilation mode, information's provided by the space-based MODIS and MISR sensors constrains the model aerosol state. Aerosol optical properties are then derived from the simulated mass concentration and the Al is determined at the OMI footprint using the radiative transfer code VLIDORT. In parallel, model derived Absorption Aerosol Optical Depth (AAOD) is compared with OMI retrievals. We have focused our study during ARCTAS (June - July 2008), a period with a good sampling of dust and biomass burning events. Our ultimate goal is to use OMI measurements as independent validation for our MODIS/MISR assimilation. Towards this goal we document the limitation of OMI aerosol absorption measurements on a global scale, in particular sensitivity to aerosol vertical profile and cloud contamination effects, deriving the appropriate averaging kernels. More specifically, model simulated (full) column integrated AAOD is compared with model derived Al, this way identifying those regions and conditions under which OMI cannot detect absorbing aerosols. Making use of ATrain cloud measurements from MODIS, C1oudSat and CALIPSO we also investigate the global impact on clouds on OMI derived Al, and the extent to which GEOS-5 clouds can offer a first order representation of these effects.

  2. Universal RF-Powered Aqueous Extractor-on-a-Chip Instrument for Identification of Chemical Signatures of Life on Mars

    NASA Astrophysics Data System (ADS)

    Amashukeli, X.; Manohara, H.; Chattopadhyay, G.; Urgiles, E.; Lin, R.; Peralta, A.; Fisher, A.

    2009-12-01

    The prospect of finding chemical signatures of present or past life on Mars is one of the important drivers behind Mars exploration program (MEP). One of the technical challenges facing MEP is the lack of compact and universal sample processing technology that enables the cataloging of organic molecules in Martian crustal materials. In the past year, we have been developing a super-compact, lightweight and low power-consumption microfluidic extractor-on-a-chip (μEX) instrument that will address this challenge for in situ Mars exploration missions and Mars Sample Return sample analysis. The core operational principle of μEX is based on a unique property of water - the ability to change its permittivity (i.e., dielectric constant) as a function of frequency to match the dielectric constants of organic solvents. In our instrument, the dielectric constant of water decreases when 180 GHz RF radiation interacts with translational modes in a solution by disrupting orientation of the water molecules’ individual molecular dipoles. Since “like dissolves like”, μEX can then extract biomarkers from soil samples by simply applying 180 GHz radiation to water, without the use of any other chemicals. Consequently, target biomarkers that are characterized by very different properties (e.g., size, charge, volatility, polarity, etc.), and which are typically only soluble in organic solvents, can now be easily extractable from the solid matrices and soluble in water. Here we present our research results, which include characterization of μEX operation and data on organics extracted from Mars-analog soil samples.

  3. Contamination Control.

    PubMed

    Akers, Michael J

    2015-01-01

    There are serious consequences if contamination control is not enforced and contaminated products/preparations are released to the market. The greatest risk of microbial contamination is exposure of sterile (also termed "critical") sites to potential sources of contamination. Contamination control basically involves at least fourteen entities to control or that help to determine the extent (quality) of control. Some of these entities are covered in this article; others will be covered in subsequent articles by the author.

  4. Aerosol MTF revisited

    NASA Astrophysics Data System (ADS)

    Kopeika, Norman S.; Zilberman, Arkadi; Yitzhaky, Yitzhak

    2014-05-01

    Different views of the significance of aerosol MTF have been reported. For example, one recent paper [OE, 52(4)/2013, pp. 046201] claims that the aerosol MTF "contrast reduction is approximately independent of spatial frequency, and image blur is practically negligible". On the other hand, another recent paper [JOSA A, 11/2013, pp. 2244-2252] claims that aerosols "can have a non-negligible effect on the atmospheric point spread function". We present clear experimental evidence of common significant aerosol blur and evidence that aerosol contrast reduction can be extremely significant. In the IR, it is more appropriate to refer to such phenomena as aerosol-absorption MTF. The role of imaging system instrumentation on such MTF is addressed too.

  5. Evaluation of liquid aerosol transport through porous media.

    PubMed

    Hall, R; Murdoch, L; Falta, R; Looney, B; Riha, B

    2016-07-01

    Application of remediation methods in contaminated vadose zones has been hindered by an inability to effectively distribute liquid- or solid-phase amendments. Injection as aerosols in a carrier gas could be a viable method for achieving useful distributions of amendments in unsaturated materials. The objectives of this work were to characterize radial transport of aerosols in unsaturated porous media, and to develop capabilities for predicting results of aerosol injection scenarios at the field-scale. Transport processes were investigated by conducting lab-scale injection experiments with radial flow geometry, and predictive capabilities were obtained by developing and validating a numerical model for simulating coupled aerosol transport, deposition, and multi-phase flow in porous media. Soybean oil was transported more than 2m through sand by injecting it as micron-scale aerosol droplets. Oil saturation in the sand increased with time to a maximum of 0.25, and decreased with radial distance in the experiments. The numerical analysis predicted the distribution of oil saturation with only minor calibration. The results indicated that evolution of oil saturation was controlled by aerosol deposition and subsequent flow of the liquid oil, and simulation requires including these two coupled processes. The calibrated model was used to evaluate field applications. The results suggest that amendments can be delivered to the vadose zone as aerosols, and that gas injection rate and aerosol particle size will be important controls on the process.

  6. Evaluation of liquid aerosol transport through porous media

    NASA Astrophysics Data System (ADS)

    Hall, R.; Murdoch, L.; Falta, R.; Looney, B.; Riha, B.

    2016-07-01

    Application of remediation methods in contaminated vadose zones has been hindered by an inability to effectively distribute liquid- or solid-phase amendments. Injection as aerosols in a carrier gas could be a viable method for achieving useful distributions of amendments in unsaturated materials. The objectives of this work were to characterize radial transport of aerosols in unsaturated porous media, and to develop capabilities for predicting results of aerosol injection scenarios at the field-scale. Transport processes were investigated by conducting lab-scale injection experiments with radial flow geometry, and predictive capabilities were obtained by developing and validating a numerical model for simulating coupled aerosol transport, deposition, and multi-phase flow in porous media. Soybean oil was transported more than 2 m through sand by injecting it as micron-scale aerosol droplets. Oil saturation in the sand increased with time to a maximum of 0.25, and decreased with radial distance in the experiments. The numerical analysis predicted the distribution of oil saturation with only minor calibration. The results indicated that evolution of oil saturation was controlled by aerosol deposition and subsequent flow of the liquid oil, and simulation requires including these two coupled processes. The calibrated model was used to evaluate field applications. The results suggest that amendments can be delivered to the vadose zone as aerosols, and that gas injection rate and aerosol particle size will be important controls on the process.

  7. Bedding disposal cabinet for containment of aerosols generated by animal cage cleaning procedures.

    PubMed

    Baldwin, C L; Sabel, F L; Henke, C B

    1976-02-01

    Laboratory tests with aerosolized spores and animal room tests with uranine dye indicate the effectiveness of a prototype bedding disposal cabinet in reducing airborne contamination generated by cage cleaning procedures. PMID:826219

  8. Bedding disposal cabinet for containment of aerosols generated by animal cage cleaning procedures.

    PubMed Central

    Baldwin, C L; Sabel, F L; Henke, C B

    1976-01-01

    Laboratory tests with aerosolized spores and animal room tests with uranine dye indicate the effectiveness of a prototype bedding disposal cabinet in reducing airborne contamination generated by cage cleaning procedures. Images PMID:826219

  9. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  10. Thermoluminescent aerosol analysis

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Long, E. R., Jr. (Inventor)

    1977-01-01

    A method for detecting and measuring trace amounts of aerosols when reacted with ozone in a gaseous environment was examined. A sample aerosol was exposed to a fixed ozone concentration for a fixed period of time, and a fluorescer was added to the exposed sample. The sample was heated in a 30 C/minute linear temperature profile to 200 C. The trace peak was measured and recorded as a function of the test aerosol and the recorded thermoluminescence trace peak of the fluorescer is specific to the aerosol being tested.

  11. Aerosol climate time series from ESA Aerosol_cci (Invited)

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.

    2013-12-01

    Within the ESA Climate Change Initiative (CCI) the Aerosol_cci project (mid 2010 - mid 2013, phase 2 proposed 2014-2016) has conducted intensive work to improve algorithms for the retrieval of aerosol information from European sensors AATSR (3 algorithms), PARASOL, MERIS (3 algorithms), synergetic AATSR/SCIAMACHY, OMI and GOMOS. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Angstrom coefficient were retrieved from the other sensors. Global datasets for 2008 were produced and validated versus independent ground-based data and other satellite data sets (MODIS, MISR). An additional 17-year dataset is currently generated using ATSR-2/AATSR data. During the three years of the project, intensive collaborative efforts were made to improve the retrieval algorithms focusing on the most critical modules. The team agreed on the use of a common definition for the aerosol optical properties. Cloud masking was evaluated, but a rigorous analysis with a pre-scribed cloud mask did not lead to improvement for all algorithms. Better results were obtained using a post-processing step in which sudden transitions, indicative of possible occurrence of cloud contamination, were removed. Surface parameterization, which is most critical for the nadir only algorithms (MERIS and synergetic AATSR / SCIAMACHY) was studied to a limited extent. The retrieval results for AOD, Ångström exponent (AE) and uncertainties were evaluated by comparison with data from AERONET (and a limited amount of MAN) sun photometer and with satellite data available from MODIS and MISR. Both level2 and level3 (gridded daily) datasets were validated. Several validation metrics were used (standard statistical quantities such as bias, rmse, Pearson correlation, linear regression, as well as scoring approaches to quantitatively evaluate the spatial and temporal correlations against AERONET), and in some cases

  12. Effect of CALIPSO Cloud Aerosol Discrimination (CAD) Confidence Levels on Observations of Aerosol Properties near Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Liu, Zhaoyan

    2012-01-01

    CALIPSO aerosol backscatter enhancement in the transition zone between clouds and clear sky areas is revisited with particular attention to effects of data selection based on the confidence level of cloud-aerosol discrimination (CAD). The results show that backscatter behavior in the transition zone strongly depends on the CAD confidence level. Higher confidence level data has a flatter backscatter far away from clouds and a much sharper increase near clouds (within 4 km), thus a smaller transition zone. For high confidence level data it is shown that the overall backscatter enhancement is more pronounced for small clear-air segments and horizontally larger clouds. The results suggest that data selection based on CAD reduces the possible effects of cloud contamination when studying aerosol properties in the vicinity of clouds.

  13. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    CERES is systematically larger than the model calculations by -3 W M-2. In the equatorial region, the CERES-derived net downward solar flux is even larger than the model calculations without including aerosols. It is possible that the CERES incorrectly identified regions of high humidity and high aerosol concentration as being cloud contaminated and, hence, overestimated the clear sky net downward solar flux.

  14. Whole-body nanoparticle aerosol inhalation exposures.

    PubMed

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-01-01

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 (5). The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M

  15. Speech recognition in reverberant and noisy environments employing multiple feature extractors and i-vector speaker adaptation

    NASA Astrophysics Data System (ADS)

    Alam, Md Jahangir; Gupta, Vishwa; Kenny, Patrick; Dumouchel, Pierre

    2015-12-01

    The REVERB challenge provides a common framework for the evaluation of feature extraction techniques in the presence of both reverberation and additive background noise. State-of-the-art speech recognition systems perform well in controlled environments, but their performance degrades in realistic acoustical conditions, especially in real as well as simulated reverberant environments. In this contribution, we utilize multiple feature extractors including the conventional mel-filterbank, multi-taper spectrum estimation-based mel-filterbank, robust mel and compressive gammachirp filterbank, iterative deconvolution-based dereverberated mel-filterbank, and maximum likelihood inverse filtering-based dereverberated mel-frequency cepstral coefficient features for speech recognition with multi-condition training data. In order to improve speech recognition performance, we combine their results using ROVER (Recognizer Output Voting Error Reduction). For two- and eight-channel tasks, to get benefited from the multi-channel data, we also use ROVER, instead of the multi-microphone signal processing method, to reduce word error rate by selecting the best scoring word at each channel. As in a previous work, we also apply i-vector-based speaker adaptation which was found effective. In speech recognition task, speaker adaptation tries to reduce mismatch between the training and test speakers. Speech recognition experiments are conducted on the REVERB challenge 2014 corpora using the Kaldi recognizer. In our experiments, we use both utterance-based batch processing and full batch processing. In the single-channel task, full batch processing reduced word error rate (WER) from 10.0 to 9.3 % on SimData as compared to utterance-based batch processing. Using full batch processing, we obtained an average WER of 9.0 and 23.4 % on the SimData and RealData, respectively, for the two-channel task, whereas for the eight-channel task on the SimData and RealData, the average WERs found were 8

  16. Global Aerosol Observations

    Atmospheric Science Data Center

    2013-04-19

    ... atmosphere, directly influencing global climate and human health. Ground-based networks that accurately measure column aerosol amount and ... being used to improve Air Quality Models and for regional health studies. To assess the human-health impact of chronic aerosol exposure, ...

  17. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  18. Ganges valley aerosol experiment.

    SciTech Connect

    Kotamarthi, V.R.; Satheesh, S.K.

    2011-08-01

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  19. Detection of chemical agent aerosols

    NASA Astrophysics Data System (ADS)

    Fox, Jay A.; Ahl, Jeffrey L.; D'Amico, Francis M.; Vanderbeek, Richard G.; Moon, Raphael; Swim, Cynthia R.

    1999-05-01

    One of the major threats presented by a chemical agent attack is that of a munition exploding overhead and 'raining' aerosols which can contaminate surfaces when they impact. Since contact with these surfaces can be fatal, it is imperative to know when such an attack has taken place and the likely threat density and location. We present the results of an experiment designed to show the utility of a CO2 lidar in detecting such an attack. Testing occurred at Dugway Proving Grounds, Utah and involved the simulation of an explosive airburst chemical attack. Explosions occurred at a height of 30 m and liquid droplets from two chemicals, PEG-200 (polyethylene glycol 200) and TEP (triethylphosphate), were expelled and fell to the ground. The munition was the U.S. Army M9 Simulator, Projectile, Airburst, Liquid (SPAL) system that is designed for chemical warfare training exercises. The instrument that was used to detect the presence of the aerosols was the Laser Standoff Chemical Detector (LSCD) which is a light detection and ranging (LIDAR) system that utilizes a rapidly tunable, pulsed CO2 laser. The LIDAR scanned a horizontal path approximately 5 - 8 m above the ground in order to measure the concentration of liquid deposition. The LIDAR data were later correlated with card data to determine how well the system could predict the location and quantity of liquid deposition on the ground.

  20. Analysis of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Prather, Kimberly A.; Hatch, Courtney D.; Grassian, Vicki H.

    2008-07-01

    Aerosols represent an important component of the Earth's atmosphere. Because aerosols are composed of solid and liquid particles of varying chemical complexity, size, and phase, large challenges exist in understanding how they impact climate, health, and the chemistry of the atmosphere. Only through the integration of field, laboratory, and modeling analysis can we begin to unravel the roles atmospheric aerosols play in these global processes. In this article, we provide a brief review of the current state of the science in the analysis of atmospheric aerosols and some important challenges that need to be overcome before they can become fully integrated. It is clear that only when these areas are effectively bridged can we fully understand the impact that atmospheric aerosols have on our environment and the Earth's system at the level of scientific certainty necessary to design and implement sound environmental policies.

  1. Design and Fabrication of a Dielectric Total Internal Reflecting Solar Concentrator and Associated Flux Extractor for Extreme High Temperature (2500K) Applications

    NASA Technical Reports Server (NTRS)

    Soules, Jack A.; Buchele, Donald R.; Castle, Charles H.; Macosko, Robert P.

    1997-01-01

    The Analex Corporation, under contract to the NASA Lewis Research Center (LeRC), Cleveland, Ohio, recently evaluated the feasibility of utilizing refractive secondary concentrators for solar heat receivers operating at temperatures up to 2500K. The feasibility study pointed out a number of significant advantages provided by solid single crystal refractive devices over the more conventional hollow reflective compound parabolic concentrators (CPCs). In addition to the advantages of higher concentration ratio and efficiency, the refractive concentrator, when combined with a flux extractor rod, provides for flux tailoring within the heat receiver cavity. This is a highly desirable, almost mandatory, feature for solar thermal propulsion engine designs presently being considered for NASA and Air Force thermal applications. Following the feasibility evaluation, the NASA-LeRC, NASA-Marshall Space Flight Center (MSFC), and Analex Corporation teamed up to design, fabricate, and test a refractive secondary concentrator/flux extractor system for potential use in the NASA-MSFC "Shooting Star" flight experiment. This paper describes the advantages and technical challenges associated with the design methodologies developed and utilized and the material and fabrication limitations encountered.

  2. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE PAGES

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; Vitalis, Elizabeth A.; Thomas, Cynthia B.; Jones, A. Daniel; Day, James A.; Tur-Rojas, Vincent R.; Jorgensen, Trond; Herchert, Edwin; et al

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  3. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  4. Validation of MODIS Aerosol Optical Depth Retrieval Over Land

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Ichoku, C.; Remer, L. A.; Tanre, D.; Holben, B. N.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Aerosol optical depths are derived operationally for the first time over land in the visible wavelengths by MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the EOSTerra spacecraft. More than 300 Sun photometer data points from more than 30 AERONET (Aerosol Robotic Network) sites globally were used in validating the aerosol optical depths obtained during July - September 2000. Excellent agreement is found with retrieval errors within (Delta)tau=+/- 0.05 +/- 0.20 tau, as predicted, over (partially) vegetated surfaces, consistent with pre-launch theoretical analysis and aircraft field experiments. In coastal and semi-arid regions larger errors are caused predominantly by the uncertainty in evaluating the surface reflectance. The excellent fit was achieved despite the ongoing improvements in instrument characterization and calibration. This results show that MODIS-derived aerosol optical depths can be used quantitatively in many applications with cautions for residual clouds, snow/ice, and water contamination.

  5. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions. PMID:24601011

  6. Ball valve extractor

    DOEpatents

    Herndon, Charles; Brown, Roger A.

    2002-01-01

    An apparatus and process for removing a ball valve is provided. The ball valve removal tool provides a handle sliding along the length of a shaft. One end of the shaft is secured within an interior cavity of a ball valve while the opposite end of the shaft defines a stop member. By providing a manual sliding force to the handle, the handle impacts the stop member and transmits the force to the ball valve. The direction of the force is along the shaft of the removal tool and disengages the ball valve from the ball valve housing.

  7. Core sample extractor

    NASA Technical Reports Server (NTRS)

    Akins, James; Cobb, Billy; Hart, Steve; Leaptrotte, Jeff; Milhollin, James; Pernik, Mark

    1989-01-01

    The problem of retrieving and storing core samples from a hole drilled on the lunar surface is addressed. The total depth of the hole in question is 50 meters with a maximum diameter of 100 millimeters. The core sample itself has a diameter of 60 millimeters and will be two meters in length. It is therefore necessary to retrieve and store 25 core samples per hole. The design utilizes a control system that will stop the mechanism at a certain depth, a cam-linkage system that will fracture the core, and a storage system that will save and catalogue the cores to be extracted. The Rod Changer and Storage Design Group will provide the necessary tooling to get into the hole as well as to the core. The mechanical design for the cam-linkage system as well as the conceptual design of the storage device are described.

  8. IMS - MS Data Extractor

    SciTech Connect

    2015-10-20

    An automated drift time extraction and computed associated collision cross section software tool for small molecule analysis with ion mobility spectrometry-mass spectrometry (IMS-MS). The software automatically extracts drift times and computes associated collision cross sections for small molecules analyzed using ion mobility spectrometry-mass spectrometry (IMS-MS) based on a target list of expected ions provided by the user.

  9. Environmentally safe fluid extractor

    DOEpatents

    Sungaila, Zenon F.

    1993-07-06

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  10. Environmentally safe fluid extractor

    DOEpatents

    Sungaila, Zenon F.

    1993-01-01

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  11. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    NASA Technical Reports Server (NTRS)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  12. Merging the SAGE II and OSIRIS Stratospheric Aerosol Records

    NASA Astrophysics Data System (ADS)

    Rieger, Landon; Bourassa, Adam; Degenstein, Doug

    2016-04-01

    The Optical Spectrograph and InfraRed Imaging System (OSIRIS) instrument on the Odin satellite, launched in 2001 and currently operational, measures limb-scattered sunlight from which profiles of stratospheric aerosol extinction at 750nm are retrieved. The Stratospheric Aerosol and Gas (SAGE) II instrument was operational from 1985 to 2005, and provided aerosol extinction at several visible and near infrared wavelengths. This work compares the SAGE II and OSIRIS aerosol extinction measurements during the four years of instrument overlap by interpolating the SAGE II data to 750nm using the 525 and 1020nm channels. Agreement is generally favourable in the tropics and mid-latitudes with differences less than 10% for the majority of the aerosol layer. However, near the UTLS and outside of the tropics agreement is poorer and reasons for this are investigated. Comparisons between the OSIRIS and SAGE II aerosol extinction measurements at 750nm are used to develop a merged aerosol climatology as a function of time, latitude and altitude at the native SAGE II wavelength of 525nm. Error due to assumptions in the OSIRIS retrieval and wavelength conversion are explored through simulation studies over a range of particle size distributions and is found to be approximately 20% for the majority of low-to-moderate volcanic loading conditions and OSIRIS geometries. Other sources of error such as cloud contamination in the UTLS are also explored.

  13. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  14. Aerosol climatology using a tunable spectral variability cloud screening of AERONET data

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Gobbi, Gian Paolo; Koren, Ilan

    2005-01-01

    Can cloud screening of an aerosol data set, affect the aerosol optical thickness (AOT) climatology? Aerosols, humidity and clouds are correlated. Therefore, rigorous cloud screening can systematically bias towards less cloudy conditions, underestimating the average AOT. Here, using AERONET data we show that systematic rejection of variable atmospheric optical conditions can generate such bias in the average AOT. Therefore we recommend (1) to introduce more powerful spectral variability cloud screening and (2) to change the philosophy behind present aerosol climatologies: Instead of systematically rejecting all cloud contaminations, we suggest to intentionally allow the presence of cloud contamination, estimate the statistical impact of the contamination and correct for it. The analysis, applied to 10 AERONET stations with approx. 4 years of data, shows almost no change for Rome (Italy), but up to a change in AOT of 0.12 in Beijing (PRC). Similar technique may be explored for satellite analysis, e.g. MODIS.

  15. Environmental contaminants

    USGS Publications Warehouse

    Custer, T.W.; Kushlna, J.A.; Hafner, H.

    2000-01-01

    Throughout the world, individuals and populations of herons are affected by environmental contaminants, leading to direct mortality, decreased reproductive success, or degradation of feeding habitat. Contaminants suspected or known to affect herons include organochlorine compounds, organophosphorus insecticides, trace elements, and petroleum (Parnell et al. 1988).General reviews on the effects of pesticides on birds (Risebrough 1986, 1991) and colonial water birds (Nisbet 1980) are presented elsewhere. The objective of this chapter is to review toxic effects of contaminants on herons. Unless otherwise noted, contaminant concentrations are presented as parts per million (ppm) on a wet weight (ww) basis.

  16. Gas-phase removal of biofilms from various surfaces using carbon dioxide aerosols.

    PubMed

    Cha, Minju; Hong, Seongkyeol; Kang, Min-Yeong; Lee, Jin-Won; Jang, Jaesung

    2012-01-01

    The present study evaluated the removal of Escherichia coli XL1-blue biofilms using periodic jets of carbon dioxide aerosols (a mixture of solid and gaseous CO(2)) with nitrogen gas. The aerosols were generated by the adiabatic expansion of high-pressure CO(2) gas through a nozzle and used to remove air-dried biofilms. The areas of the biofilms were measured from scanning electron micrographs before and after applying the aerosols. The removal efficiency of the aerosol treatment was measured with various air-drying times of the biofilms before the treatment, surface materials, and durations of CO(2) aerosols in each 8-s aerosol-nitrogen cleaning cycle. Nearly 100% of the fresh biofilms were removed from the various surfaces very reliably within 90 s. This technique can be useful for removing unsaturated biofilms on solid surfaces and has potential applications for cleaning bio-contaminated surfaces.

  17. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  18. Palaeoclimate: Aerosols and rainfall

    NASA Astrophysics Data System (ADS)

    Partin, Jud

    2015-03-01

    Instrumental records have hinted that aerosol emissions may be shifting rainfall over Central America southwards. A 450-year-long precipitation reconstruction indicates that this shift began shortly after the Industrial Revolution.

  19. Emergency Protection from Aerosols

    SciTech Connect

    Cristy, G.A.

    2001-11-13

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  20. Emergency protection from aerosols

    SciTech Connect

    Cristy, G.A.; Chester, C.V.

    1981-07-01

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  1. Monodisperse aerosol generator

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  2. MISR Aerosol Typing

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2014-01-01

    AeroCom is an open international initiative of scientists interested in the advancement of the understanding of global aerosol properties and aerosol impacts on climate. A central goal is to more strongly tie and constrain modeling efforts to observational data. A major element for exchanges between data and modeling groups are annual meetings. The meeting was held September 20 through October 2, 1014 and the organizers would like to post the presentations.

  3. Retrieval of Aerosol Microphysical Properties from MFRSR Observations

    SciTech Connect

    Kassianov, Evgueni I; Barnard, James C; Ackerman, Thomas P

    2006-05-01

    Aerosols can have significant impact on the radiative and heat balance of the Earth-atmosphere system by absorbing and scattering solar radiation (direct aerosol effect) and altering cloud optical properties and suppressing precipitation (indirect aerosol effect). However, both the sign and magnitude of the aerosol impact has proven difficult to determine due to incomplete knowledge of aerosol properties and their strong temporal and spatial variations. Reduction of these uncertainties requires an accurate global inventory of aerosol microphysical properties, such as size distribution and the refractive index. Multi-filter Rotating Shadowband Radiometers (MFRSRs) are widely deployed over the world (e.g., the surface radiation budget network). These radiometers provide measurements of the direct and the diffuse solar irradiances at six wavelengths (0.415, 0.5, 0.615, 0.673, 0.870 and 0.94 ). Currently, the direct irradiance observations are used to derive routinely spectral values of the aerosol optical depth only. We propose a simple retrieval technique that significantly extends the capability of the MFRSR to study atmospheric aerosols. In our retrieval, we assume the shape of aerosol size distribution (e.g., combination of three lognormal distributions) and the value of the real refractive index. The technique consists of three steps that compose an iterative scheme. The first step obtains the aerosol size distribution from the spectral measurements of the direct irradiance (for a given complex refractive index). To reduce the effect of ozone and water vapor contamination, we use wavelengths where ozone and water vapor weakly affect the direct irradiance (0.415 mu and 0.870 mu). The second step determines the effective value of the imaginary refractive index from the diffuse irradiance (for the aerosol size distribution determined during the first step). To reduce the effect of the surface albedo on the retrievals, we select a wavelength where the surface albedo

  4. PLUTONIUM CONTAMINATION VALENCE STATE DETERMINATION USING X-RAY ABSORPTION FINE STRUCTURE PERMITS CONCRETE RECYCLE

    SciTech Connect

    Ervin, P. F.; Conradson, S. D.

    2002-02-25

    This paper describes the determination of the speciation of plutonium contamination present on concrete surfaces at the Rocky Flats Environmental Technology Site (RFETS). At RFETS, the plutonium processing facilities have been contaminated during multiple events over their 50 year operating history. Contamination has resulted from plutonium fire smoke, plutonium fire fighting water, milling and lathe operation aerosols, furnace operations vapors and plutonium ''dust'' diffusion.

  5. Prediction of Asbestos Exposure Resulting From Asbestos Aerosolization Determined Using the Releasable Asbestos Field Sampler (RAFS)

    EPA Science Inventory

    Activity-based sampling (ABS) used to evaluate breathing zone exposure to a contaminant present in soil resulting from various activities, involves breathing zone sampling for contaminants while that activity is performed. A probabilistic model based upon aerosol physics and flui...

  6. A systematic analysis of PCR contamination.

    PubMed

    Scherczinger, C A; Ladd, C; Bourke, M T; Adamowicz, M S; Johannes, P M; Scherczinger, R; Beesley, T; Lee, H C

    1999-09-01

    In light of the strict legal scrutiny surrounding DNA typing at this time, it has become necessary to systematically address the issue of PCR contamination. To precisely define the parameters affecting PCR contamination under casework analysis conditions, PCR amplification reactions were intentionally compromised by employing sub-standard laboratory technique and by introducing secondary sources of DNA. The PCR parameters considered for potential sources of contamination include amplification set-up, amplification product handling, aerosol DNA and storage. In addition, analyst technique was evaluated by modifying or eliminating standard safeguards. Under the circumstances normally encountered during casework analysis, PCR contamination was never noted. Significantly, using the dot blot detection method, contamination was never observed when nanogram quantities of genomic DNA were mishandled or aerosolized. Contamination occurred only when amplification product was carelessly manipulated or purposefully sprayed near or directly into open tubes containing water or genomic DNA. Although standard precautions should be employed during PCR-based DNA typing, our data indicates that contamination during amplification procedures is not prevalent when detected by dot blot analysis. PMID:10486955

  7. Ground-based Network and Supersite Measurements for Studying Aerosol Properties and Aerosol-Cloud Interactions

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations contain large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. The development and deployment of AERONET (AErosol RObotic NETwork) sunphotometer network and SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile supersite are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To characterize the regional natural and anthropogenic aerosols, AERONET is an internationally federated network of unique sunphotometry that contains more than 250 permanent sites worldwide. Since 1993, there are more than 480 million aerosol optical depth observations and about 15 sites have continuous records longer than 10 years for annual/seasonal trend analyses. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instrument into three categories: flux radiometer, radiance sensor and in-situ probe. Through participation in many satellite remote-sensing/retrieval and validation projects over eight years, SMART-COMMIT have gradually refine( and been proven vital for field deployment. In this paper, we will demonstrate the

  8. Optimal dose of an anesthetic in epidural anesthesia and its effect on labor duration and administration of vacuum extractor and forceps.

    PubMed

    Cutura, N; Soldo, V; Milovanović, S R; Orescanin-Dusić, Z; Curković, A; Tomović, B; Janković-Raznatović, S

    2011-01-01

    This study examined the factors that influence the optimal dose of epidural anesthesia (EA), its effect on labor duration, and the frequency of vacuum and forceps administration at the end of delivery. The study group included 100 women who underwent vaginal delivery with EA with administration of 0.125% bupivacaine. A control group included 100 vaginally delivered women, without EA administration. In both groups delivery was stimulated by syntocinon. The level of labor pain influenced the optimal bolus dose of EA more than the body mass. However, the maintenance dose was influenced by both of these factors equally. Labor in the study group was somewhat shorter. In the group with EA the percentage of forceps and vacuum extractor application was twice that in the control group. There was no difference in average value of 5-minute Apgar scor in newborns.

  9. Extraction kinetics of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester using a hollow fiber membrane extractor

    SciTech Connect

    Kubota, Fukiko; Goto, Masahiro; Nakashio, Fumiyuki; Hano, Tadashi

    1995-03-01

    A kinetic study concerning chemical complexation-based solvent extraction of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester dissolved as an extractant in n-heptane was carried out using a microporous hydrophobic hollow fiber membrane extractor. The effects of concentration of chemical species in aqueous and organic feed solutions on the apparent permeabilities of metal species for extraction and stripping, respectively, were investigated to clarify the permeation mechanism. From the experimental results it was predicted that the permeation rate is controlled by diffusion of the chemical species in aqueous and organic phases and by interfacial chemical reaction. The experimental data were analyzed by the diffusion model accompanied with an interfacial reaction, taking into account the velocity distributions of the aqueous and organic phases through the inner and outer sides of the hollow fiber.

  10. Retrieval of Aerosol Within Cloud Fields Using the MODIS Airborne Simulator (MAS)

    NASA Astrophysics Data System (ADS)

    Munchak, L. A.; Levy, R. C.; Mattoo, S.; Patadia, F.; Wilcox, E. M.; Marshak, A.

    2015-12-01

    Passive satellite remote sensing has become essential for obtaining global information about aerosol properties, including aerosol optical depth (AOD) and aerosol fine mode fraction (FMF). However, due to the spatial resolution of satellite aerosol products (typically 3 km and larger), observing aerosol within dense partly cloudy fields is difficult from space. Here, we apply an adapted version of the MODIS Collection 6 dark target algorithm to the 50-meter MODIS airborne simulator retrieved reflectances measured during the SEAC4RS campaign during 2013 to robustly retrieve aerosol with a 500 m resolution. We show good agreement with AERONET and MODIS away from cloud, suggesting that the algorithm is working as expected. However, closer to cloud, significant AOD increases are observed. We investigate the cause of these AOD increases, including examining the potential for undetected cloud contamination, reflectance increases due to unconsidered 3D radiative effects, and the impact of humidification on aerosol properties. In combination with other sensors that flew in SEAC4RS, these high-resolution observations of aerosol in partly cloudy fields can be used to characterize the radiative impact of the "twilight zone" between cloud and aerosol which is typically not considered in current estimates of direct aerosol radiative forcing.

  11. Development of aerosol retrieval algorithm for Geostationary Environmental Monitoring Spectrometer (GEMS)

    NASA Astrophysics Data System (ADS)

    Kim, Mijin; Kim, Jhoon; Park, Sang Seo; Jeong, Ukkyo; Ahn, Changwoo; Bhartia, Pawan. K.; Torres, Omar; Song, Chang-Keun; Han, Jin-Seok

    2014-05-01

    current algorithm, but advanced cloud removal method such as spectral ratio test can be applied to reduce cloud contamination error and improve retrieval accuracy. Also, simultaneous retrieval of aerosol height with AOD is required. In this study, O4 algorithm was adopted to retrieve aerosol height. The O4 algorithm retrieves aerosol height by using the O4 slant column densities at 477 nm from the DOAS fitting method. The aerosol effective height is proposed for the parameter of aerosol height. Theoretically, the error, which is caused by the variation of aerosol optical properties and instrument condition, ranges from 28% to 57%. Those error values also showed in the several case studies from the OMI observation.

  12. Physical and Chemical Characterization of Carbonaceous Aerosols in Korea

    NASA Astrophysics Data System (ADS)

    Choung, S.; Jin, J. S.; Hwang, G. S.; Jang, K. S.; Han, W. S.; OH, J.; Kwon, Y.

    2014-12-01

    Atmospheric aerosols have been recently paid attention more in environmental research due to their negative effects on air quality, public health, and climate change. The aerosols contain approximately >20-50% carbonaceous components such as organic carbon (OC) and black carbon (BC) (or elemental carbon [EC]) derived from organic compounds, biomass burning, and incomplete combustion of fossil fuels. The physical, chemical, and biological properties of atmospheric aerosols are strongly dependent on the carbonaceous components. In particular, the BC could significantly affect the regional air quality in the northeastern Asia, because China is one of the foremost BC emission country in the world. Previous studies have mainly focused on the quantification and source identification for carbonaceous aerosols. However, understanding of physical and chemical properties for the carbonaceous aerosols related to environmental contamination and toxicity was still incomplete due to analytical difficulties. This study is addressed to evaluate the contribution of carbonaceous aerosols to air pollution through the surface, mass spectroscopic, and electron microscopic analyses, and determination of chemical composition and structure using the air particulate matter (PM2.5 and >PM2.5) samples.

  13. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  14. MISR UAE2 Aerosol Versioning

    Atmospheric Science Data Center

    2013-03-21

    ... the MISR aerosol microphysical properties are "Beta." Uncertainty envelopes for the aerosol optical depths are given in  Kahn et ... particle microphysical property validation is in progress, uncertainty envelopes on particle size distribution, shape, and ...

  15. Atmospheric Chemistry: Nature's plasticized aerosols

    NASA Astrophysics Data System (ADS)

    Ziemann, Paul J.

    2016-01-01

    The structure of atmospheric aerosol particles affects their reactivity and growth rates. Measurements of aerosol properties over the Amazon rainforest indicate that organic particles above tropical rainforests are simple liquid drops.

  16. Hazardous particle binder, coagulant and re-aerosolization inhibitor

    DOEpatents

    Krauter, Paula; Zalk, David; Hoffman, D. Mark

    2011-04-12

    A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.

  17. Hazardous particle binder, coagulant and re-aerosolization inhibitor

    DOEpatents

    Krauter, Paula; Zalk, David; Hoffman, D. Mark

    2012-07-10

    A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.

  18. Contamination Control

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Upjohn Company sought a solution to their problem of potential particulate contamination of sterile injectable drugs. Contamination was caused by dust particles attracted by static electrical charge, which clung to plastic curtains in clean rooms. Upjohn found guidance in NASA Tech Briefs which provided detailed information for reducing static electricity. Guidelines for setting up static free work stations, materials and equipment needed to maintain antistatic protection.

  19. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  20. Solder Contamination

    SciTech Connect

    Vianco, P.T.

    1999-02-22

    There are two sources of contamination in solder alloys. The first source is trace elements from the primary metals used in the as-manufactured product, be that product in ingot, wire, or powder form. Their levels in the primary metal are determined by the refining process. While some of these trace elements are naturally occurring materials, additional contamination can result from the refining and/or forming processes. Sources include: furnace pot liners, debris on the cutting edges of shears, rolling mill rollers, etc. The types and levels of contaminants per solder alloy are set by recognized industrial, federal, military, and international specifications. For example, the 63Sn-37Pb solder purchased to the ASTM B 32 standard can have maximum levels of contamination for the following metals: 0.08(wt.)%Cu, 0.001 %Cd, 0.005%Al, 0.25%Bi, 0.03%As, 0.02%Fe, and 0.005 %Zn. A second cause of contamination in solders, and solder baths in particular, is their actual use in soldering operations. Each time a workpiece is introduced into the bath, some dissolution of the joint base metal(s), protective or solderable coatings, and fixture metal takes place which adds to contamination levels in the solder. The potential impurities include Cu; Ni; Au or other noble metals used as protective finishes and Al; Fe; and Zn to name a few. Even dissolution of the pot wall or liner is a source of impurities, typically Fe.

  1. Aerosol Quality Monitor (AQUAM)

    NASA Astrophysics Data System (ADS)

    Liang, X.; Ignatov, A.

    2011-12-01

    The Advanced Clear-Sky Processor for Oceans (ACSPO) developed at NESDIS generates three products from AVHRR, operationally: clear sky radiances in all bands, and sea surface temperature (SST) derived from clear-sky brightness temperatures (BT) in Ch3B (centered at 3.7 μm), Ch4 (11 μm) and Ch5 (12 μm), and aerosol optical depths (AOD) derived from clear-sky reflectances in Ch1 (0.63), Ch2 (0.83) and Ch3A (1.61 μm). An integral part of ACSPO is the fast Community Radiative Transfer Model (CRTM), which calculates first-guess clear-sky BTs using global NCEP forecast atmospheric and Reynolds SST fields. Simulated BTs are employed in ACSPO for improved cloud screening, physical (RTM-based) SST inversions, and to monitor and validate satellite BTs. The model minus observation biases are monitored online in near-real time using the Monitoring IR Clear-sky radiances over Oceans for SST (MICROS; http://www.star.nesdis.noaa.gov/sod/sst/micros/). A persistent positive M-O bias is observed in MICROS, partly attributed to missing aerosol in CRTM input, causing "M" to be warmer than "O". It is thus necessary to include aerosols in CRTM and quantify their effects on AVHRR BTs and SSTs. However, sensitivity of thermal bands to aerosol is only minimal, and use of solar reflectance bands is preferable to evaluate the accuracy of CRTM modeling, with global aerosol fields as input (from e.g. Goddard Chemistry Aerosol Radiation and Transport, GOCART, or Navy Aerosol Analysis and Prediction System, NAAPS). Once available, the corresponding M-O biases in solar reflectance bands will be added to MICROS. Also, adding CRTM simulated reflectances in ACSPO would greatly improve cloud detection, help validate CRTM in the solar reflectance bands, and assist aerosol retrievals. Running CRTM with global aerosol as input is very challenging, computationally. While CRTM is being optimized to handle such global scattering computations, a near-real time web-based Aerosol Quality Monitor (AQUAM

  2. Cantera Aerosol Dynamics Simulator

    SciTech Connect

    Moffat, Harry

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkin formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.

  3. Aerosol penetration through respirator exhalation valves.

    PubMed

    Bellin, P; Hinds, W C

    1990-10-01

    Exhalation valves are a critical component of industrial respirators. They are designed to permit minimal inward leakage of air contaminants during inhalation and provide low resistance during exhalation. Under normal conditions, penetration of aerosol through exhalation valves is minimal. The exhalation valve is, however, a vulnerable component of a respirator and under actual working conditions may become dirty or damaged to the point of causing significant leakage. Aerosol penetration was measured for normal exhalation valves and valves compromised by paint or fine copper wires on the valve seat. Penetration increased with increasing wire diameter. A wire 250 microns in diameter allowed greater than 1% penetration into the mask cavity. Dirt or paint accumulated on the exhalation valve allowed a similar level of penetration. Work rate had little effect on observed penetration. Penetration decreased significantly with increasing aerosol particle size. The amount of material on the valve or valve seat necessary for significant (greater than 0.5%) inward leakage in a half-mask respirator could be readily observed by careful inspection of the exhalation valve and its seat in good lighting conditions.

  4. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions. PMID:12492171

  5. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions.

  6. Easy Volcanic Aerosol

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Stevens, Bjorn; Schmidt, Hauke; Timmreck, Claudia

    2016-04-01

    Radiative forcing by stratospheric sulfate aerosol of volcanic origin is one of the strongest drivers of natural climate variability. Transient model simulations attempting to match observed climate variability, such as the CMIP historical simulations, rely on volcanic forcing reconstructions based on observations of a small sample of recent eruptions and coarse proxy data for eruptions before the satellite era. Volcanic forcing data sets used in CMIP5 were provided either in terms of optical properties, or in terms of sulfate aerosol mass, leading to significant inter-model spread in the actual volcanic radiative forcing produced by models and in their resulting climate responses. It remains therefore unclear to what degree inter-model spread in response to volcanic forcing represents model differences or variations in the forcing. In order to isolate model differences, Easy Volcanic Aerosol (EVA) provides an analytic representation of volcanic stratospheric aerosol forcing, based on available observations and aerosol model results, prescribing the aerosol's radiative properties and primary modes of spatial and temporal variability. In contrast to regriddings of observational data, EVA allows for the production of physically consistent forcing for historic and hypothetical eruptions of varying magnitude, source latitude, and season. Within CMIP6, EVA will be used to reconstruct volcanic forcing over the past 2000 years for use in the Paleo-Modeling Intercomparison Project (PMIP), and will provide forcing sets for VolMIP experiments aiming to quantify model uncertainty in the response to volcanic forcing. Here, the functional form of EVA will be introduced, along with illustrative examples including the EVA-based reconstruction of volcanic forcing over the historical period, and that of the 1815 Tambora eruption.

  7. simplified aerosol representations in global modeling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Peters, Karsten; Stevens, Bjorn; Rast, Sebastian; Schutgens, Nick; Stier, Philip

    2015-04-01

    The detailed treatment of aerosol in global modeling is complex and time-consuming. Thus simplified approaches are investigated, which prescribe 4D (space and time) distributions of aerosol optical properties and of aerosol microphysical properties. Aerosol optical properties are required to assess aerosol direct radiative effects and aerosol microphysical properties (in terms of their ability as aerosol nuclei to modify cloud droplet concentrations) are needed to address the indirect aerosol impact on cloud properties. Following the simplifying concept of the monthly gridded (1x1 lat/lon) aerosol climatology (MAC), new approaches are presented and evaluated against more detailed methods, including comparisons to detailed simulations with complex aerosol component modules.

  8. The efficacy of rubber dam isolation in reducing atmospheric bacterial contamination.

    PubMed

    Samaranayake, L P; Reid, J; Evans, D

    1989-01-01

    A study was made to ascertain the efficacy of rubber dam isolation in controlling atmospheric bacterial contamination, when conservative pedodontic procedures are performed. There was a highly significant (p less than 0.001) reduction in bacterial contamination of the atmosphere, perioperatively, when rubber dam isolation was used. As the reduction in bacterial aerosols was greatest at 1 m from the headrest, the use of rubber dam would minimize significantly the inhalation of infective aerosols by dental personnel.

  9. Highly stable aerosol generator

    SciTech Connect

    DeFord, Henry S.; Clark, Mark L.

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  10. Highly stable aerosol generator

    DOEpatents

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  11. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  12. Aerosol Characterization and New Instrumentation for Better Understanding Snow Radiative Properties

    NASA Astrophysics Data System (ADS)

    Beres, N. D.

    2015-12-01

    Snow albedo is determined by snowpack thickness and grain size, but also affected by contamination with light-absorbing, microscopic (e.g., mineral dust, combustion aerosols, bio-aerosols) and macroscopic (e.g., microalgae, plant debris, sand, organisms) compounds. Most currently available instruments for measuring snow albedo utilize the natural, downward flux of solar radiation and the reflected upward flux. This reliance on solar radiation (and, thus, large zenith angles and clear-sky conditions) leads to severe constraints, preventing characterization of detailed diurnal snow albedo cycles. Here, we describe instrumentation and methodologies to address these limitations with the development and deployment of new snow radiation sensors for measuring surface spectral and in-snow radiative properties. This novel instrumentation will be tested at the CRREL/UCSB Eastern Sierra (CUES) Snow Study Site at Mammoth Mountain, which is extensively instrumented for characterizing snow properties including snow albedo and surface morphology. However, it has been lacking instrumentation for the characterization of aerosols that can be deposited on the snow surface through dry and wet deposition. Currently, we are installing aerosol instrumentation at the CUES site, which are also described. This includes instruments for the multi-wavelength measurement of aerosol scattering and absorption coefficients and for the characterization of aerosol size distribution. Knowledge of aerosol concentration and physical and optical properties will allow for the study of aerosol deposition and modification of snow albedo and for establishing an aerosol climatology for the CUES site.

  13. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through

  14. Geometrical Optics of Dense Aerosols

    SciTech Connect

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

  15. Bacterial Communities in Aerosols and Manure Samples from Two Different Dairies in Central and Sonoma Valleys of California

    PubMed Central

    Ravva, Subbarao V.; Sarreal, Chester Z.; Mandrell, Robert E.

    2011-01-01

    Aerosols have been suspected to transport food pathogens and contaminate fruits and vegetables grown in close proximity to concentrated animal feeding operations, but studies are lacking that substantiate such transport. To monitor the potential transport of bacteria originated from fresh or dry manure through aerosols on a dairy, we identified by 16S rRNA sequencing, bacteria in aerosols collected within 2 to 3 meters from dairy cows at two dairies. Gram-positive Firmicutes were predominant in aerosols from a dairy in Sonoma, California, and surrounded by vineyards, in contrast to sequences of Gram-negative Proteobacteria predominant in aerosols from a dairy in Modesto, California, also surrounded by other dairies. Although Firmicutes represented approximately 50% of the 10 most abundant sequences, aerosols from the Sonoma dairy also contained sequences of Bacteriodetes and Actinobacteria, identified previously with animal feces. While none of the top 10 sequences from fresh or dry manure from Modesto dairy were detected in aerosols, two of the sequences from the phylum Bacteriodetes and one from class Clostridia from fresh manure were detected in aerosols from Sonoma. Interestingly, none of the sequences from dry manure were in the top 10 sequences in aerosols from both dairies. The 10 most abundant sequences in aerosols from the Modesto dairy were all from Proteobacteria and nearly half of them were from genus Massilia, which have been isolated previously from immune-compromised people and aerosols. We conclude that the predominant bacteria in aerosols are diverse among locations and that they do not reflect the predominant species of bacteria present in cow feces and/or in close proximity to cows. These results suggest that the aerosol sequences did not originate from manure. Large volumes of aerosols would be required to determine if bacterial sequences from aerosols could be used to track bacteria in manure to crops grown in proximity. PMID:21364996

  16. Mesospheric aerosol sampling spectrometer

    NASA Astrophysics Data System (ADS)

    Knappmiller, Scott; Robertson, Scott; Sternovsky, Zoltan; Horanyi, Mihaly; Kohnert, Rick

    . The Mesospheric Aerosol Sampling Spectrometer (MASS) instrument has been launched on two sounding rockets in August, 2007 from Andoya, Norway to detect charged sub-visible aerosol particles in the polar mesosphere. The MASS instrument is designed to collect charged aerosols, cluster ions, and electrons on four pairs of graphite electrodes, three of which are biased with increasing voltage. The design of the MASS instrument was complicated by the short mean free path in the mesosphere. The opening to MASS was deliberately built to increase the mean free path and to reduce the shock wave within the instrument. The design procedure began with aerodynamics simulations of the flow through the instrument using Direct Simulation Monte Carlo (DSMC) in 3-D. The electric fields within the instrument were calculated using a Laplace solver in 3-D. With the aerodynamic and electric field simulations completed, an algorithm was created to find the trajectories of charged aerosols including collisions within MASS. Using this algorithm the collection efficiencies for each electrode was calculated as a function of the charge to mass ratio of the incoming particle. The simulation results have been confirmed experimentally using an Argon RF ion beam. The data from the August launches have been analyzed and the initial results show the MASS instrument operated as expected. Additional studies are underway to determine if there were effects from payload charging or spurious charge generation within the instrument. This project is supported by NASA.

  17. Environmental contaminants

    USGS Publications Warehouse

    Hoffman, D.J.; Rattner, B.A.; Scheunert, I.; Korte, F.; Shore, Richard F.; Rattner, Barnett A.

    2001-01-01

    The purpose of this chapter is to provide an overview of the ecotoxicology of major classes of environmental contaminants, with respect to sources, environmental chemistry, most likely routes of exposure, potential bioaccumulation and biomagification, mechanisms of toxicity, and effects on potentially vulnerable species of mammalian wildlife. Major contaminants reviewed were selected on the basis of their use patterns, availability and potential toxicity to wild mammals. These included pesticides used in agroecosystems (organochlorines, organophosphorus and carbamate compounds, anticoagulants, herbicides and fungicides), various organic pollutants (chlorobenzenes, chlorophenols, polychlorinated biphenyls, dibenzodioxins and dibenzofurans, and polycyclic aromatic hydrocarbons), heavy metals (lead, mercury, and cadmium), agricultural drainwater mixtures, leachates and radionuclides. Many of the above aspects of ecotoxicology and contaminants will be expanded upon in subsequent chapters of this book as they relate to distinct mammalian species and potential risk.

  18. Mercury Contamination

    PubMed Central

    Thompson, Marcella R.

    2013-01-01

    IN BRIEF A residential elemental mercury contamination incident in Rhode Island resulted in the evacuation of an entire apartment complex. To develop recommendations for improved response, all response-related documents were examined; personnel involved in the response were interviewed; policies and procedures were reviewed; and environmental monitoring data were compiled from specific phases of the response for analysis of effect. A significant challenge of responding to residential elemental mercury contamination lies in communicating risk to residents affected py a HazMat spill. An ongoing, open and honest dialogue is emphasized where concerns of the public are heard and addressed, particularly when establishing and/or modifying policies and procedures for responding to residential elemental mercury contamination. PMID:23436951

  19. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    NASA Technical Reports Server (NTRS)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case

  20. Contamination study

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry; Herren, Kenneth A.

    1990-01-01

    The time dependence of the angular reflectance from molecularly contaminated optical surfaces in the Vacuum Ultraviolet (VUV) is measured. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using non-coherent VUV sources with the predominant wavelengths being the Krypton resonance lines at 1236 and 1600 A. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (Bidirectional Reflectance Distribution Functions) experiment is described and details of the ongoing program to characterize optical materials exposed to the space environment is reported.

  1. (Contaminated soil)

    SciTech Connect

    Siegrist, R.L.

    1991-01-08

    The traveler attended the Third International Conference on Contaminated Soil, held in Karlsruhe, Germany. The Conference was a status conference for worldwide research and practice in contaminated soil assessment and environmental restoration, with more than 1500 attendees representing over 26 countries. The traveler made an oral presentation and presented a poster. At the Federal Institute for Water, Soil and Air Hygiene, the traveler met with Dr. Z. Filip, Director and Professor, and Dr. R. Smed-Hildmann, Research Scientist. Detailed discussions were held regarding the results and conclusions of a collaborative experiment concerning humic substance formation in waste-amended soils.

  2. Surgical smoke - a health hazard in the operating theatre: a study to quantify exposure and a survey of the use of smoke extractor systems in UK plastic surgery units.

    PubMed

    Hill, D S; O'Neill, J K; Powell, R J; Oliver, D W

    2012-07-01

    Surgeons and operating theatre personnel are routinely exposed to the surgical smoke plume generated through thermal tissue destruction. This represents a significant chemical and biological hazard and has been shown to be as mutagenic as cigarette smoke. It has previously been reported that ablation of 1 g of tissue produces a smoke plume with an equivalent mutagenicity to six unfiltered cigarettes. We studied six human and 78 porcine tissue samples to find the mass of tissue ablated during 5 min of monopolar diathermy. The total daily duration of diathermy use in a plastic surgery theatre was electronically recorded over a two-month period. On average the smoke produced daily was equivalent to 27-30 cigarettes. Our survey of smoke extractor use in UK plastic surgery units revealed that only 66% of units had these devices available. The Health and Safety Executive recommend specialist smoke extractor use, however they are not universally utilised. Surgical smoke inhalation is an occupational hazard in the operating department. Our study provides data to quantify this exposure. We hope this evidence can be used together with current legislation to make the use of surgical smoke extractors mandatory to protect all personnel in the operating theatre.

  3. Destiny of microbial aerosol in confined habitat

    NASA Astrophysics Data System (ADS)

    Viacheslav, Ilyin; Tikhomirov, Alexander A.; Novikova, Nataliya; Nickolay Manukovsky, D..; Kharin, Sergey; Pasanen, Pertti

    Biomodeling experiment was performed at the Institute of Biophysics in Krasnoyarsk dedicated to modeling the bacterial aerosol behavior in airtight chamber. The experiment was perform an one of workpackages of FP-7 project BIOSMHARS. Bacterial aerosol included particles of bacteria and fungi: Staphylococcus epidermidis, Bacillus licheniformis and Penicillium expansum The experiments allowed the following conclusions: 1. The major trend in air and surface contamination is permanent presence of the microbial factor throughout the time of generation. In the course of generation, level of contamination was gradually dropping except for the upward trend at the end of generation. These patterns were confirmed equally by the results of sedimentation studies and measurements using the Andersen impact 2. Sedimentation of airborne particles containing microbes went on at least two hours after the generation had been finished. However, level of this late sedimentation was approximately 10 folds less as compared with that in the course of generation. 3. Horizontal surfaces appear to be particularly vulnerable loci in airtight rooms. Their contamination was the highest. Levels of their contamination were higher than elsewhere. The closer is the source, the higher the level of contamination. 4. Walls were least contaminated. The ceiling was essentially clean. Air in the vicinity of the ceiling contained microbiota little if any. To summarize, the modeling experiments showed that the microbial component is a permanent resident of airtight rooms no matter decontamination effort (HEPA filters). The gravitational forces ensure that air cleans from microbiota by way of sedimentation. At the same time, together with microparticles microflora accumulates on horizontal surfaces which become the loci of microbes deposition and development. Therefore, despite the system of microbial control, risks of infection still raises the major concern for those who work in airtight facilities

  4. Study of organic contamination induced by outgassing materials. Application to the Laser MégaJoule optics

    NASA Astrophysics Data System (ADS)

    Favrat, O.; Mangote, B.; Tovena-Pécault, I.; Néauport, J.

    2014-02-01

    Organic contamination may decrease the targeted performances of coated surfaces. To study the contamination induced by surrounding materials, a method using a thermal extractor is presented in the first part of this work. Besides its normal operation (analyses of outgassing compounds from a material), this device is used in an original way to contaminate and decontaminate samples. Efficiency of contamination and decontamination protocols are assessed by automated thermal desorption and gas chromatography coupled with mass spectrometry and by secondary ion mass spectrometry coupled with a time of flight mass analyzer. This enables to study the contamination induced by a bulk material outgassing and to take in consideration the possible competition between outgassed species. This method is then applied to investigate contamination of Laser MégaJoule sol-gel coated optics by a retractable sheath. The impact of the temperature on the outgassing of the sheath has been highlighted. Increasing temperature from 30 to 50 °C enables the outgassing of organophosphorous compounds and increases the outgassing of oxygenated compounds and phthalates. Chemical analyses of contaminated optics have highlighted affinities between the sol-gel coating and phthalates and organophosphorous, and low affinities with aromatics and terpens. Finally, samples with increasing levels of contamination have been realized. However a saturation phenomenon is observed at 90 ng cm-2.

  5. Anthropogenic Aerosols and Tropical Precipitation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Kim, D.; Ekman, A. M. L.; Barth, M. C.; Rasch, P. J.

    2009-04-01

    Anthropogenic aerosols can affect the radiative balance of the Earth-atmosphere system and precipitation by acting as cloud condensation nuclei (CCN) or ice nuclei (IN) and thus modifying the optical and microphysical properties as well as lifetimes of clouds. Recent studies have also suggested that the direct radiative effect of anthropogenic aerosols, particularly absorbing aerosols, can perturb the large-scale circulation and cause a significant change in both quantity and distribution of critical tropical precipitation systems ranging from Pacific and Indian to Atlantic Oceans. This effect of aerosols on precipitation often appears in places away from aerosol-concentrated regions and current results suggest that the precipitation changes caused by it could be much more substantial than that by the microphysics-based aerosol effect. To understand the detailed mechanisms and strengths of such a "remote impact" and the climate response/feedback to anthropogenic aerosols in general, an interactive aerosol-climate model has been developed based on the Community Climate System Model (CCSM) of NCAR. Its aerosol module describes size, chemical composition, and mixing states of various sulfate and carbonaceous aerosols. Several model processes are derived based on 3D cloud-resolving model simulations. We have conducted a set of long integrations using the model driven by radiative effects of different combinations of various carbonaceous and sulfate aerosols and their mixtures. The responses of tropical precipitation systems to the forcing of these aerosols are analyzed using both model and observational data. Detailed analyses on the aerosol-precipitation causal relations of two systems: i.e., the Indian summer monsoon and Pacific ITCZ will be specifically presented.

  6. Ceilometer calibration for retrieval of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Jin, Yoshitaka; Kai, Kenji; Kawai, Kei; Nagai, Tomohiro; Sakai, Tetsu; Yamazaki, Akihiro; Uchiyama, Akihiro; Batdorj, Dashdondog; Sugimoto, Nobuo; Nishizawa, Tomoaki

    2015-03-01

    Ceilometers are durable compact backscatter lidars widely used to detect cloud base height. They are also useful for measuring aerosols. We introduced a ceilometer (CL51) for observing dust in a source region in Mongolia. For retrieving aerosol profiles with a backscatter lidar, the molecular backscatter signal in the aerosol free heights or system constant of the lidar is required. Although the system constant of the ceilometer is calibrated by the manufacturer, it is not necessarily accurate enough for the aerosol retrieval. We determined a correction factor, which is defined as the ratio of true attenuated backscattering coefficient to the measured attenuated backscattering coefficient, for the CL51 ceilometer using a dual-wavelength Mie-scattering lidar in Tsukuba, Japan before moving the ceilometer to Dalanzadgad, Mongolia. The correction factor determined by minimizing the difference between the ceilometer and lidar backscattering coefficients was approximately 1.2±0.1. Applying the correction to the CL51 signals, the aerosol optical depth (AOD) agreed well with the sky-radiometer AOD during the observation period (13-17 February 2013) in Tsukuba (9 ×10-3 of mean square error). After moving the ceilometer to Dalanzadgad, however, the AOD observed with the CL51 (calibrated by the correction factor determined in Tsukuba) was approximately 60% of the AErosol RObotic NETwork (AERONET) sun photometer AOD. The possible causes of the lower AOD results are as follows: (1) the limited height range of extinction integration (< 3 km); (2) change in the correction factor during the ceilometer transportation or with the window contamination in Mongolia. In both cases, on-site calibrations by dual-wavelength lidar are needed. As an alternative method, we showed that the backward inversion method was useful for retrieving extinction coefficients if the AOD was larger than 1.5. This retrieval method does not require the system constant and molecular backscatter signals

  7. Observations of the Interaction and/or Transport of Aerosols with Cloud or Fog during DRAGON Campaigns from AERONET Ground-Based Remote Sensing

    NASA Astrophysics Data System (ADS)

    Eck, Thomas; Holben, Brent; Schafer, Joel; Giles, David; Kim, Jhoon; Kim, Young; Sano, Itaru; Reid, Jeffrey; Pickering, Kenneth; Crawford, James; Sinyuk, Alexander; Trevino, Nathan

    2014-05-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. AERONET has established Distributed Regional Aerosol Gridded Observation Networks (DRAGON) during field campaigns that are short-term (~2-3 months) relatively dense spatial networks of ~15 to 45 sun and sky scanning photometers. Recent major DRAGON field campaigns in Japan and South Korea (Spring 2012) and California (Winter 2013) have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth signal for these cases of persistent and extensive cloud cover. Additionally, extensive fog that was coincident with aerosol layer height on some days in both Korea and California resulted in large increases in fine mode aerosol radius, with a mode of cloud-processed or residual aerosol of radius ~0.4-0.5 micron sometimes observed. Cloud processed aerosol may occur much more frequently than AERONET data suggest due to inherent difficulty in observing aerosol properties near clouds from remote sensing observations. These biases of aerosols associated with clouds would likely be even greater for satellite remote sensing retrievals of aerosol properties near clouds due to 3-D effects and sub-pixel cloud contamination issues.

  8. Fast and Online Determination of Five Avermectin Residues in Foodstuffs of Plant and Animal Origin Using Reusable Polymeric Monolithic Extractor Coupled with LC-MS/MS.

    PubMed

    Li, Xin; Wang, Man-Man; Zheng, Guo-Ying; Ai, Lian-Feng; Wang, Xue-Sheng

    2015-04-29

    A hydrophobic monolith (10 mm × 2.1 mm i.d.) was developed as a reusable online solid-phase extraction (SPE) sorbent coupled with LC-MS/MS for the rapid determination of five avermectin residues in foodstuffs of both plant and animal origin. The online SPE was achieved using a 10 mmol/L ammonium acetate solution as the loading solvent, and acetonitrile (MeCN) was selected for the washing step. After being transferred from the monolith into a C18 analytical column using MeCN, the analytes were analyzed by LC-MS/MS using MeCN/0.1% NH4OH (10:90, v/v) as the mobile phase. The detection limit was 2 μg/kg for five avermectins, and the recoveries in fresh pear, chili seed, bovine muscle, and milk ranged from 71.8% to 101.3% with relative standard deviations of less than 8.94%. The online SPE and determination were achieved within 15 min, and the monolithic extractor was reusable for more than 500 experiments. PMID:25865176

  9. Determination of dissolved-phase pesticides in surface water from the Yakima River basin, Washington, using the Goulden large-sample extractor and gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Foster, G.D.; Gates, Paul M.; Foreman, W.T.; McKenzie, S.W.; Rinella, F.A.

    1993-01-01

    Concentrations of pesticides in the dissolved phase of surface water samples from the Yakima River basin, WA, were determined using preconcentration in the Goulden large-sample extractor (GLSE) and gas chromatography/ mass spectrometry (GC/MS) analysis. Sample volumes ranging from 10 to 120 L were processed with the GLSE, and the results from the large-sample analyses were compared to those derived from 1-L continuous liquid-liquid extractions. Few of the 40 target pesticides were detected in 1-L samples, whereas large-sample preconcentration in the GLSE provided detectable levels for many of the target pesticides. The number of pesticides detected in GLSE processed samples was usually directly proportional to sample volume, although the measured concentrations of the pesticides were generally lower at the larger sample volumes for the same water source. The GLSE can be used to provide lower detection levels relative to conventional liquid-liquid extraction in GC/MS analysis of pesticides in samples of surface water. ?? 1993 American Chemical Society.

  10. Determination of dissolved-phase pesticides in surface water from the Yakima River basin, Washington, using the Goulden large-sample extractor and gas chromatography/mass spectrometer

    USGS Publications Warehouse

    Foster, Gregory D.; Gates, Paul M.; Foreman, William T.; McKenzie, Stuart W.; Rinella, Frank A.

    1993-01-01

    Concentrations of pesticides in the dissolved phase of surface water samples from the Yakima River basin, WA, were determined using preconcentration in the Goulden large-sample extractor (GLSE) and gas chromatography/mass spectrometry (GC/MS) analysis. Sample volumes ranging from 10 to 120 L were processed with the GLSE, and the results from the large-sample analyses were compared to those derived from 1-L continuous liquid-liquid extractions Few of the 40 target pesticides were detected in 1-L samples, whereas large-sample preconcentration in the GLSE provided detectable levels for many of the target pesticides. The number of pesticides detected in GLSE processed samples was usually directly proportional to sample volume, although the measured concentrations of the pesticides were generally lower at the larger sample volumes for the same water source. The GLSE can be used to provide lower detection levels relative to conventional liquid-liquid extraction in GC/MS analysis of pesticides in samples of surface water.

  11. Fast and Online Determination of Five Avermectin Residues in Foodstuffs of Plant and Animal Origin Using Reusable Polymeric Monolithic Extractor Coupled with LC-MS/MS.

    PubMed

    Li, Xin; Wang, Man-Man; Zheng, Guo-Ying; Ai, Lian-Feng; Wang, Xue-Sheng

    2015-04-29

    A hydrophobic monolith (10 mm × 2.1 mm i.d.) was developed as a reusable online solid-phase extraction (SPE) sorbent coupled with LC-MS/MS for the rapid determination of five avermectin residues in foodstuffs of both plant and animal origin. The online SPE was achieved using a 10 mmol/L ammonium acetate solution as the loading solvent, and acetonitrile (MeCN) was selected for the washing step. After being transferred from the monolith into a C18 analytical column using MeCN, the analytes were analyzed by LC-MS/MS using MeCN/0.1% NH4OH (10:90, v/v) as the mobile phase. The detection limit was 2 μg/kg for five avermectins, and the recoveries in fresh pear, chili seed, bovine muscle, and milk ranged from 71.8% to 101.3% with relative standard deviations of less than 8.94%. The online SPE and determination were achieved within 15 min, and the monolithic extractor was reusable for more than 500 experiments.

  12. Graphical aerosol classification method using aerosol relative optical depth

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Xiang; Yuan, Yuan; Shuai, Yong; Tan, He-Ping

    2016-06-01

    A simple graphical method is presented to classify aerosol types based on a combination of aerosol optical thickness (AOT) and aerosol relative optical thickness (AROT). Six aerosol types, including maritime (MA), desert dust (DD), continental (CO), sub-continental (SC), urban industry (UI) and biomass burning (BB), are discriminated in a two dimensional space of AOT440 and AROT1020/440. Numerical calculations are performed using MIE theory based on a multi log-normal particle size distribution, and the AROT ranges for each aerosol type are determined. More than 5 years of daily observations from 8 representative aerosol sites are applied to the method to confirm spatial applicability. Finally, 3 individual cases are analyzed according to their specific aerosol status. The outcomes indicate that the new graphical method coordinates well with regional characteristics and is also able to distinguish aerosol variations in individual situations. This technique demonstrates a novel way to estimate different aerosol types and provide information on radiative forcing calculations and satellite data corrections.

  13. Exposures to acidic aerosols.

    PubMed

    Spengler, J D; Keeler, G J; Koutrakis, P; Ryan, P B; Raizenne, M; Franklin, C A

    1989-02-01

    Ambient monitoring of acid aerosols in four U.S. cities and in a rural region of southern Ontario clearly show distinct periods of strong acidity. Measurements made in Kingston, TN, and Steubenville, OH, resulted in 24-hr H+ ion concentrations exceeding 100 nmole/m3 more than 10 times during summer months. Periods of elevated acidic aerosols occur less frequently in winter months. The H+ determined during episodic conditions in southern Ontario indicates that respiratory tract deposition can exceed the effects level reported in clinical studies. Observed 12-hr H+ concentrations exceeded 550 nmole/m3 (approximately 27 micrograms/m3 H2SO4). The maximum estimated 1-hr concentration exceeded 1500 nmole/m3 for H+ ions. At these concentrations, an active child might receive more than 2000 nmole of H+ ion in 12 hr and in excess of 900 nmole during the hour when H2SO4 exceeded 50 micrograms/m3.

  14. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  15. Cantera Aerosol Dynamics Simulator

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkinmore » formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.« less

  16. The role of Saharan dust in determining the first aerosol indirect effect

    NASA Astrophysics Data System (ADS)

    Shao, H.; Liu, G.

    2007-12-01

    Anthropogenic aerosols acting as cloud condensation nuclei affect Earth's radiative balance indirectly by changing cloud radiative properties. This so-called first aerosol indirect effect (AIE) has a potentially large but poorly quantified cooling effect. In modeling the aerosol indirect forcing, because the aerosol-cloud interaction is not resolved in global climate models (GCMs), cloud droplet number concentration is typically parameterized using an empirical relationship that directly relates droplet number concentration to aerosol number concentration based on the measurements between polluted and clean clouds. It is realized that the first AIE obtained in this way can be contaminated by the coherent variation in the pertinent variables such as cloud liquid water and the degree of entrainment mixing. However, the influence from changes in aerosol properties themselves has not received a deserved attention. Using satellite observations over eastern subtropical oceans, we show that over the north-eastern Atlantic the aerosols properties are distinct from the other regions due to the dust particles originating from Sahara desert. These dust particles may significantly reduce the efficiency of aerosols to act as cloud condensation nuclei. As a result, the locally observed first AIE from this region can be significantly deviated from global mean, even resulting in positive values. Because of the large areal fraction of this region, ignoring the influence from the northern Africa dust particles will underestimate the globally averaged first AIE approximately by half.

  17. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  18. Volcanic aerosols and lunar eclipses.

    PubMed

    Keen, R A

    1983-12-01

    The moon is visible during total lunar eclipses due to sunlight refracted into the earth's shadow by the atmosphere. Stratospheric aerosols can profoundly affect the brightness of the eclipsed moon. Observed brightnesses of 21 lunar eclipses during 1960-1982 are compared with theoretical calculations based on refraction by an aerosol-free atmosphere to yield globally averaged aerosol optical depths. Results indicate the global aerosol loading from the 1982 eruption of El Chichón is similar in magnitude to that from the 1963 Agung eruption.

  19. Volcanic aerosols and lunar eclipses.

    PubMed

    Keen, R A

    1983-12-01

    The moon is visible during total lunar eclipses due to sunlight refracted into the earth's shadow by the atmosphere. Stratospheric aerosols can profoundly affect the brightness of the eclipsed moon. Observed brightnesses of 21 lunar eclipses during 1960-1982 are compared with theoretical calculations based on refraction by an aerosol-free atmosphere to yield globally averaged aerosol optical depths. Results indicate the global aerosol loading from the 1982 eruption of El Chichón is similar in magnitude to that from the 1963 Agung eruption. PMID:17776243

  20. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.

    1978-01-01

    Stratospht1ic sulfuric acid particles scatter and absorb sunlight and they scatter, absorb and emit terrestrial thermal radiation. These interactions play a role in the earth's radiation balance and therefore affect climate. The stratospheric aerosols are perturbed by volcanic injection of SO2 and ash, by aircraft injection of SO2, by rocket exhaust of Al2O3 and by tropospheric mixing of particles and pollutant SO2 and COS. In order to assess the effects of these perturbations on climate, the effects of the aerosols on the radiation balance must be understood and in order to understand the radiation effects the properties of the aerosols must be known. The discussion covers the aerosols' effect on the radiation balance. It is shown that the aerosol size distribution controls whether the aerosols will tend to warm or cool the earth's surface. Calculations of aerosol properties, including size distribution, for various perturbation sources are carried out on the basis of an aerosol model. Calculations are also presented of the climatic impact of perturbed aerosols due to volcanic eruptions and Space Shuttle flights.

  1. Sensitivity of spectral reflectance to aerosol optical properties in UV and visible wavelength range: Preparatory study for aerosol retrieval from Geostationary Environmental Monitoring Spectrometer (GEMS)

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Lee, J.

    2011-12-01

    Asia, with its rapid increase in industrialization and population, has been receiving great attention as one of important source regions of pollutants including aerosols and trace gases. Since the spatio-temporal distribution of the pollutants varies rapidly, demands to monitor air quality in a geostationary satellite have increased recently. In these perspectives, the Ministry of Environment of Korea initiated a geostationary satellite mission to launch the Geostationary Environmental Monitoring Spectrometer (GEMS) onboard the GEO-KOMPSAT in 2017-2018 timeframe. From the Ozone Monitoring Instrument (OMI) measurements, it has been found that the low surface reflectance and strong interaction between aerosol absorption and molecular scattering in UV wavelength range can be advantageous in retrieving aerosol optical properties, such as aerosol optical thickness (AOT) and optical type (or single scattering albedo), over the source regions as well as ocean areas. In addition, GEMS is expected to have finer spatial resolution compared to OMI (13 x 24 km2 at nadir), thereby less affected by sub-pixel clouds. In this study, we present sensitivity of spectral reflectance to aerosol optical properties in ultraviolet (UV) and visible wavelength range for a purpose to retrieve aerosol optical properties from GEMS. The so called UV-VIS algorithm plans to use spectral reflectance in 350-650 nm. The algorithm retrieves AOT and aerosol type using an inversion method, which adopts pre-calculated lookup table (LUT) for a set of assumed aerosol models. For the aerosol models optimized in Asia areas, the inversion data of Aerosol Robotic Network (AERONET) located in the target areas are selectively used to archive aerosol optical properties. As a result, major aerosol types representing dust, polluted dust, and absorbing/non-absorbing anthropogenic aerosols are constructed and used for the LUT calculations. We analyze the effect of cloud contamination on the retrieved AOT by

  2. Contamination Analyzer

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Measurement of the total organic carbon content in water is important in assessing contamination levels in high purity water for power generation, pharmaceutical production and electronics manufacture. Even trace levels of organic compounds can cause defects in manufactured products. The Sievers Model 800 Total Organic Carbon (TOC) Analyzer, based on technology developed for the Space Station, uses a strong chemical oxidizing agent and ultraviolet light to convert organic compounds in water to carbon dioxide. After ionizing the carbon dioxide, the amount of ions is determined by measuring the conductivity of the deionized water. The new technique is highly sensitive, does not require compressed gas, and maintenance is minimal.

  3. Aerosols at a mountaintop observatory in Arizona

    NASA Astrophysics Data System (ADS)

    Shaw, Glenn E.

    2007-04-01

    This paper discusses physics of aerosols measured at the summit of Mt. Lemmon, Arizona (2790 m), from February to May 2002, where "clean" air representative of the free troposphere sometimes occurs. We confirmed Marti's findings of a persistent daily variation in the number concentration of condensation nuclei (diameter > 10 nm), with a strong maximum occurring in the afternoon and minimum in the early morning. These particles show evidence of growth at rates of 10-23 nm per hour. The diurnal variation was present even on days when the planetary boundary layer remained below the mountain. From the rate of growth and Maxwellian diffusion theory, we deduce that precursor condensable species are present in daytime concentrations of 107-108 cm-3, and that these are produced at a rate of 105-106 cm-3 s-1. Increased convection caused by solar heating of the mountain often carries contaminated air to the summit. Yet only a small (factor of 1.5) diurnal pattern was found for accumulation mode (diameter ˜ 130 nm) particles on days where the convective boundary layer passed well above the station. We hypothesize that these long-lived (e.g., several days) aerosols are pumped into the free troposphere and remain behind at night in a residual layer. The free tropospheric aerosol size distribution measured at Mt. Lemmon was similar in shape but higher in magnitude (by around 50%) than at Jungfraujoch in the Swiss Alps (3580 m). There is much greater diurnal variation in Aitken-sized particles (daily factor of from 7 to 10) at Mt. Lemmon than observed at Jungfraujoch (factor of from 1.0 to 1.6), evidently arising from stronger photochemical rate of productions of precursor gases.

  4. INDOOR AEROSOLS AND EXPOSURE ASSESSMENT

    EPA Science Inventory

    This chapter provides an overview of both indoor aerosol concentration measurements, and the considerations for assessment of exposure to aerosols in non-occupational settings. The fixed-location measurements of concentration at an outdoor location, while commuting inside an a...

  5. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  6. Mount Saint Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  7. Aerosol optical depth increase in partly cloudy conditions

    SciTech Connect

    Chand, Duli; Wood, R.; Ghan, Steven J.; Wang, Minghuai; Ovchinnikov, Mikhail; Rasch, Philip J.; Miller, Steven D.; Schichtel, Bret; Moore, Tom

    2012-09-14

    Remote sensing observations of aerosol from surface and satellite instruments are extensively used for atmospheric and climate research. From passive sensors, the apparent cloud-free atmosphere in the vicinity of clouds often appears to be brighter then further away from the clouds, leading to an enhancement in the retrieved aerosol optical depth. Mechanisms contributing to this enhancement, including contamination by undetected clouds, hygroscopic growth of aerosol particles, and meteorological conditions, have been debated in recent literature, but an extent to which each of these factors influence the observed enhancement is poorly known. Here we used 11 years of daily global observations at 10x10 km2 resolution from the MODIS on the NASA Terra satellite to quantify as a function of cloud fraction (CF). Our analysis reveals that, averaged over the globe, the clear sky is enhanced by ? = 0.05 which corresponds to relative enhancements of 25% in cloudy conditions (CF=0.8-0.9) compared with relatively clear conditions (CF=0.1-0.2). Unlike the absolute enhancement ?, the relative increase in ? is rather consistent in all seasons and is 25-35% in the subtropics and 15-25% at mid and higher latitudes. Using a simple Gaussian probability density function model to connect cloud cover and the distribution of relative humidity, we argue that much of the enhancement is consistent with aerosol hygroscopic growth in the humid environment surrounding clouds. Consideration of these cloud-dependent effects will facilitate understanding aerosol-cloud interactions and reduce the uncertainty in estimates of aerosol radiative forcing by global climate models.

  8. Retrieval of Aerosol Optical Properties under Thin Cirrus from MODIS

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Sayer, Andrew Mark.

    2014-01-01

    Retrieval of aerosol optical properties using shortwave bands from passive satellite sensors, such as MODIS, is typically limited to cloud-free areas. However, if the clouds are thin enough (i.e. thin cirrus) such that the satellite-observed reflectance contains signals under the cirrus layer, and if the optical properties of this cirrus layer are known, the TOA reflectance can be corrected for the cirrus layer to be used for retrieving aerosol optical properties. To this end, we first correct the TOA reflectances in the aerosol bands (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 micron for ocean algorithm and 0.412, 0.47, and 0.65 micron for deep blue algorithm) for the effects of thin cirrus using 1.38 micron reflectance and conversion factors that convert cirrus reflectance in 1.38 micron band to those in aerosol bands. It was found that the conversion factors can be calculated by using relationships between reflectances in 1.38 micron band and minimum reflectances in the aerosol bands (Gao et al., 2002). Refer to the example in the figure. Then, the cirrus-corrected reflectance can be calculated by subtracting the cirrus reflectance from the TOA reflectance in the optically thin case. A sensitivity study suggested that cloudy-sky TOA reflectances can be calculated with small errors in the form of simple linear addition of cirrus-only reflectances and clear-sky reflectances. In this study, we correct the cirrus signals up to TOA reflectance at 1.38 micron of 0.05 where the simple linear addition is valid without extensive radiative transfer simulations. When each scene passes the set of tests shown in the flowchart, the scene is corrected for cirrus contamination and passed into aerosol retrieval algorithms.

  9. Aerosol Remote Sensing

    NASA Technical Reports Server (NTRS)

    Lenoble, Jacqueline (Editor); Remer, Lorraine (Editor); Tanre, Didier (Editor)

    2012-01-01

    This book gives a much needed explanation of the basic physical principles of radia5tive transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. For the first time, an easy path from theory to practical algorithms is available in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing. In addition, the specifics and intercomparison of all current and historical methods are explained and clarified.

  10. Thermophoretically Dominated Aerosol Coagulation

    NASA Astrophysics Data System (ADS)

    Rosner, Daniel E.; Arias-Zugasti, Manuel

    2011-01-01

    A theory of aerosol coagulation due to size-dependent thermophoresis is presented. This previously overlooked effect is important when local temperature gradients are large, the sol population is composed of particles of much greater thermal conductivity than the carrier gas, with mean diameters much greater than the prevailing gas mean free path, and an adequate “spread” in sizes (as in metallurgical mists or fumes). We illustrate this via a population-balance analysis of the evolution of an initially log-normal distribution when this mechanism dominates ordinary Brownian diffusion.

  11. Contaminant treatment method

    DOEpatents

    Shapiro, Andrew Philip; Thornton, Roy Fred; Salvo, Joseph James

    2003-01-01

    The present invention provides a method for treating contaminated media. The method comprises introducing remediating ions consisting essentially of ferrous ions, and being peroxide-free, in the contaminated media; applying a potential difference across the contaminated media to cause the remediating ions to migrate into contact with contaminants in the contaminated media; chemically degrading contaminants in the contaminated media by contact with the remediating ions; monitoring the contaminated media for degradation products of the contaminants; and controlling the step of applying the potential difference across the contaminated media in response to the step of monitoring.

  12. Using High-Resolution Airborne Remote Sensing to Study Aerosol Near Clouds

    NASA Technical Reports Server (NTRS)

    Levy, Robert; Munchak, Leigh; Mattoo, Shana; Marshak, Alexander; Wilcox, Eric; Gao, Lan; Yorks, John; Platnick, Steven

    2016-01-01

    The horizontal space in between clear and cloudy air is very complex. This so-called twilight zone includes activated aerosols that are not quite clouds, thin cloud fragments that are not easily observable, and dying clouds that have not quite disappeared. This is a huge challenge for satellite remote sensing, specifically for retrieval of aerosol properties. Identifying what is cloud versus what is not cloud is critically important for attributing radiative effects and forcings to aerosols. At the same time, the radiative interactions between clouds and the surrounding media (molecules, surface and aerosols themselves) will contaminate retrieval of aerosol properties, even in clear skies. Most studies on aerosol cloud interactions are relevant to moderate resolution imagery (e.g. 500 m) from sensors such as MODIS. Since standard aerosol retrieval algorithms tend to keep a distance (e.g. 1 km) from the nearest detected cloud, it is impossible to evaluate what happens closer to the cloud. During Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), the NASA ER-2 flew with the enhanced MODIS Airborne Simulator (eMAS), providing MODIS-like spectral observations at high (50 m) spatial resolution. We have applied MODIS-like aerosol retrieval for the eMAS data, providing new detail to characterization of aerosol near clouds. Interpretation and evaluation of these eMAS aerosol retrievals is aided by independent MODIS-like cloud retrievals, as well as profiles from the co-flying Cloud Physics Lidar (CPL). Understanding aerosolcloud retrieval at high resolution will lead to better characterization and interpretation of long-term, global products from lower resolution (e.g.MODIS) satellite retrievals.

  13. Mexico City aerosol study

    SciTech Connect

    Falcon, Y.I. ); Ramirez, C.R. )

    1988-01-01

    Mexico City is located in a valley at high elevation (2,268 m) and is subject to atmospheric inversion related problems similar to those found in Denver, Colorado. In addition, Mexico City has a tropical climate (latitude 19{degrees} 25 minutes N), and therefore has more sunlight available for production of photochemical smog. There are approximately 9.5 million people spread in a 1,500 km{sup 2} (25 sq. mi) urban area, and more than two million automobiles (D.G.P.T. 1979) which use leaded gasoline. Furthermore, Mexico City is the principal industrial center in the country with more than 131,000 industries. The growth of the city has led to a serious air pollution problem, and there is concern over the possible pollutant effects on human health. The authors discuss work done to characterize the chemical composition of the aerosol. It is shown that many of the organic compounds which have been detected in urban aerosols are carcinogens.

  14. How Important Is Organic Aerosol Hygroscopicity to Aerosol Indirect Forcing?

    SciTech Connect

    Liu, Xiaohong; Wang, Jian

    2010-12-07

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation and yield of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR Community Atmospheric Model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (“κ” value) of POA and SOA. Our model simulation indicates that in the present-day condition changing “κ” value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S=0.1% by 40-60% over the POA source regions, while changing “κ” value of SOA by ±50% (from 0.14 to 0.07 and 0.21) changes the CCN within 30%. Changes in the in-cloud droplet number concentrations (CDNC) are within 20% in most locations on the globe with the above changes in “κ” value of POA and SOA. Global annual mean anthropogenic aerosol indirect forcing (AIF) between present-day (PD) and pre-industrial (PI) conditions change by 0.4 W m-2 with the control run of -1.3 W m-2. AIF reduces with the increase hygroscopicity of organic aerosol, indicating the important role of natural organic aerosol in buffering the relative change of CDNC from PI to PD.

  15. PMSE dependence on aerosol charge number density and aerosol size

    NASA Astrophysics Data System (ADS)

    Rapp, Markus; Lübken, Franz-Josef; Hoffmann, Peter; Latteck, Ralph; Baumgarten, Gerd; Blix, Tom A.

    2003-04-01

    It is commonly accepted that the existence of polar mesosphere summer echoes (PMSEs) depends on the presence of charged aerosols since these are comparatively heavy and reduce the diffusion of free electrons due to ambipolar forces. Simple microphysical modeling suggests that this diffusivity reduction is proportional to rA2 (rA = aerosol radius) but only if a significant amount of charges is bound on the aerosols such that NA∣ZA∣/ne > 1.2 (NA = number of aerosols, ZA = aerosol charge, ne = number of free electrons). The fact that the background electron profile frequently shows large depletions ("biteouts") at PMSE altitudes is taken as a support for this idea since within biteouts a major fraction of free electrons is missing, i.e., bound on aerosols. In this paper, we show from in situ measurements of electron densities and from radar and lidar observations that PMSEs can also exist in regions where only a minor fraction of free electrons is bound on aerosols, i.e., with no biteout and with NA∣ZA∣/ne ≪ 1. We show strong experimental evidence that it is instead the product NA∣ZA∣rA2 that is crucial for the existence of PMSEs. For example, small aerosol charge can be compensated by large aerosol radius. We show that this product replicates the main features of PMSEs, in particular the mean altitude distribution and the altitude of PMSEs in the presence of noctilucent clouds (NLCs). We therefore take this product as a "proxy" for PMSE. The agreement between this proxy and the main characteristics of PMSEs implies that simple microphysical models do not satisfactorily describe PMSE physics and need to be improved. The proxy can easily be used in models of the upper atmosphere to better understand seasonal and geographical variations of PMSEs, for example, the long debated difference between Northern and Southern hemisphere PMSEs.

  16. Inorganic Components of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Wexler, Anthony Stein

    The inorganic components comprise 15% to 50% of the mass of atmospheric aerosols. For about the past 10 years the mass of these components was predicted assuming thermodynamic equilibrium between the volatile aerosol -phase inorganic species NH_4NO _3 and NH_4Cl and their gas-phase counterparts NH_3, HNO_3, and HCl. In this thesis I examine this assumption and prove that (1) the time scales for equilibration between the gas and aerosol phases are often too long for equilibrium to hold, and (2) even when equilibrium holds, transport considerations often govern the size distribution of these aerosol components. Water can comprise a significant portion of atmospheric aerosols under conditions of high relative humidity, whereas under conditions of sufficiently low relative humidity atmospheric aerosols tend to be dry. The deliquescence point is the relative humidity where the aerosol goes from a solid dry phase to an aqueous or mixed solid-aqueous phase. In this thesis I derive the temperature dependence of the deliquescence point and prove that in multicomponent solutions the deliquescence point is lower than for corresponding single component solutions. These theories of the transport, thermodynamic, and deliquescent properties of atmospheric aerosols are integrated into an aerosol inorganics model, AIM. The predictions of AIM compare well to fundamental thermodynamic measurements. Comparison of the prediction of AIM to those of other aerosol equilibrium models shows substantial disagreement in the predicted water content at lower relative humidities. The disagreement is due the improved treatment in AIM of the deliquescence properties of multicomponent solutions. In the summer and fall of 1987 the California Air Resources Board conducted the Southern California Air Quality Study, SCAQS, during which atmospheric aerosols were measured in Los Angeles. The size and composition of the aerosol and the concentrations of their gas phase counterparts were measured. When the

  17. Evaluating the aerosol first indirect effect using satellite data

    NASA Astrophysics Data System (ADS)

    Shao, Hongfei

    First proposed by Twomey, the aerosol first indirect effect hypothesizes that increased aerosol concentration leads to a larger number of cloud condensation nuclei, and therefore smaller but more numerous cloud droplets, which results in greater reflection of incoming solar radiation. It is known that this phenomenon has a net effect to cool the Earth radiatively and offset a substantial amount of the warming caused by the increasing of greenhouse gases. However, the magnitude of this effect has been very uncertain. For example, discrepancies of more than a factor of 2 have been reported among various observational results. This uncertainty is a major hurdle in advancing our understanding of how humans have altered, and may in the future alter the Earth's climate. One of the difficulties in deriving the magnitude of this effect from observational data arises from the fact that the aerosol abundance often varies coherently with meteorological conditions, which makes it extremely hard to distinguish between the changes in cloud microphysical parameters caused by varying aerosol concentration and by varying meteorological conditions. Therefore, the goal of this study is to find a reliable method to extract the real strength and to narrow the uncertainty in the estimates of the indirect radiative effect of aerosols. To achieve this goal, first, a satellite visible/near-infrared algorithm is developed to retrieve cloud optical depth and effective radius simultaneously at solar wavelengths (0.63 and 1.61 mum), and a satellite microwave algorithm is developed to retrieve liquid water path in the microwave range (19 and 37 GHz). Using these algorithm we derive cloud microphysical variables in relation to the aerosol first indirect effect. Second, a drizzle index is introduced to discriminate the drizzle clouds from non-drizzle clouds from satellite, which ensures our estimation of the first indirect effect not being contaminated by precipitation related processes. Third

  18. New Concepts In Retrieving Aerosol Properties Using MISR

    NASA Astrophysics Data System (ADS)

    Martonchik, J.; Diner, D.; Kahn, R.; Bull, M.; Paradise, S.; Gaitley, B.; Garay, M.

    2006-12-01

    Since March 2000 the nine camera Multi-angle Imaging SpectroRadiometer (MISR) aboard NASA's EOS Terra platform has been providing information about aerosols over both land and ocean. During this period many incremental improvements to the individual ocean and land aerosol retrieval algorithms have been made but the fundamental ideas behind each have remained essentially unchanged. Here we explore some new algorithmic concepts, multiangular in nature, which may provide a considerable increase in the accuracy of retrieved aerosol properties from space. The current MISR retrieval algorithm over ocean nominally utilizes only the red (672 nm) and near IR (866 nm) spectral bands, assuming that neither band has any significant contamination from water-leaving radiance (WLR). This approach provides a good determination of aerosol optical depth but the retrieved Angstrom exponent is subject to much more uncertainty because of the relatively small wavelength separation of the red and near IR bands. The concept being explored for improving the ocean algorithm is to also include the remaining blue (446 nm) and green (558 nm) MISR bands under the assumptions that 1) only the near IR band has near-zero WLR and 2) the WLR in the remaining three bands is isotropic. An algorithm with these conditions should provide a more accurate retrieval of aerosol properties and, simultaneously, the retrieval of WLR (ocean color). Over land the current aerosol retrieval algorithm is composed of two parts. The first is an angular shape comparison of the directional surface reflectance among the four MISR spectral bands, testing for similarity, a constraint that filters out the least probable aerosol models in the retrieval process. This procedure is then followed by a principal component analysis of the change in surface contrast with view angle and the final selection of retrieved aerosol models. This algorithm has produced high quality retrievals of aerosol optical depth over a wide variety of

  19. International Cooperative for Aerosol Prediction Workshop on Aerosol Forecast Verification

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.

    2011-01-01

    The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.

  20. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  1. AERONET: The Aerosol Robotic Network

    DOE Data Explorer

    The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and is greatly expanded by collaborators from national agencies, institutes, universities, individual scientists, and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, mircrophysical and radiative properties for aerosol research and characterization, validation of satellite retrievals, and synergism with other databases. The network imposes standardization of instruments, calibration, processing and distribution. AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  2. Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data

    NASA Technical Reports Server (NTRS)

    Su, Wenying; Schuster, Gregory L.; Loeb, Norman G.; Rogers, Raymond R.; Ferrare, Richard A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.

    2008-01-01

    Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these limitations do not exist in High Spectral Resolution Lidar (HSRL) observations; for instance, HSRL observations are not a ected by cloud adjacency effects, are less prone to cloud contamination, and offer accurate aerosol property measurements (backscatter coefficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,and aerosol optical depth) at a neospatial resolution (less than 100 m) in the vicinity of clouds. Hence, the HSRL provides an important dataset for studying aerosol and cloud interaction. In this study, we statistically analyze aircraft-based HSRL profiles according to their distance from the nearest cloud, assuring that all profile comparisons are subject to the same large-scale meteorological conditions. Our results indicate that AODs from HSRL are about 17% higher in the proximity of clouds (approximately 100 m) than far away from clouds (4.5 km), which is much smaller than the reported cloud 3D effect on AOD retrievals. The backscatter and extinction coefficients also systematically increase in the vicinity of clouds, which can be explained by aerosol swelling in the high relative humidity (RH) environment and/or aerosol growth through in cloud processing (albeit not conclusively). On the other hand, we do not observe a systematic trend in lidar ratio; we hypothesize that this is caused by the opposite effects of aerosol swelling and aerosol in-cloud processing on the lidar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does not show a consistent trend because of the complicated relationship between BAE and RH. We demonstrate that BAE should not be used as a surrogate for Angstrom

  3. Fungi contamination of drinking water.

    PubMed

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2014-01-01

    Aquatic fungi commonly infest various aqueous environments and play potentially crucial roles in nutrient and carbon cycling. Aquatic fungi also interact with other organisms to influence food web dynamics. In recent decades, numerous studies have been conducted to address the problem of microorganism contamination of water. The major concern has been potential effects on human health from exposure to certain bacteria, viruses, and protozoa that inhabit water and the microbial metabolites,pigments, and odors which are produced in the water, and their effects on human health and animals. Fungi are potentially important contaminants because they produce certain toxic metabolites that can cause severe health hazards to humans and animals. Despite the potential hazard posed by fungi, relatively few studies on them as contaminants have been reported for some countries.A wide variety of fungi species have been isolated from drinking water, and some of them are known to be strongly allergenic and to cause skin irritation, or immunosuppression in immunocompromised individuals (e.g., AIDS, cancer, or organ transplant patients). Mycotoxins are naturally produced as secondary metabolites by some fungi species, and exposure of humans or animals to them can cause health problems. Such exposure is likely to occur from dietary intake of either food,water or beverages made with water. However, mycotoxins, as residues in water,may be aerosolized when showering or when being sprayed for various purposes and then be subject to inhalation. Mycotoxins, or at least some of them, are regarded to be carcinogenic. There is also some concern that toxic mycotoxins or other secondary metabolites of fungi could be used by terrorists as a biochemical weapon by adding amounts of them to drinking water or non drinking water. Therefore, actions to prevent mycotoxin contaminated water from affecting either humans or animals are important and are needed. Water treatment plants may serve to partially

  4. Niamey Aerosol Optical Depths

    DOE Data Explorer

    Flynn, Connor

    2008-10-01

    MFRSR irradiance data collected during the ACRF AMF deployment in Niamey, Niger have been used to derive AOD for five wavelength channels of the MFRSR. These data have been corrected to adjust for filter drift over the course of the campaign and contamination due to forward scattering as a result of large dust particles in the atmosphere around Niamey.

  5. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  6. eDPS Aerosol Collection

    SciTech Connect

    Venzie, J.

    2015-10-13

    The eDPS Aerosol Collection project studies the fundamental physics of electrostatic aerosol collection for national security applications. The interpretation of aerosol data requires understanding and correcting for biases introduced from particle genesis through collection and analysis. The research and development undertaken in this project provides the basis for both the statistical correction of existing equipment and techniques; as well as, the development of new collectors and analytical techniques designed to minimize unwanted biases while improving the efficiency of locating and measuring individual particles of interest.

  7. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data: Part III. Using Combined PCA to Compare Spatiotemporal Variability of MODIS, MISR and OMI Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    Satellite measurements of global aerosol properties are very useful in constraining aerosol parameterization in climate models. The reliability of different data sets in representing global and regional aerosol variability becomes an essential question. In this study, we present the results of a comparison using combined principal component analysis (CPCA), applied to monthly mean, mapped (Level 3) aerosol optical depth (AOD) product from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Ozone Monitoring Instrument (OMI). This technique effectively finds the common space-time variability in the multiple data sets by decomposing the combined AOD field. The results suggest that all of the sensors capture the globally important aerosol regimes, including dust, biomass burning, pollution, and mixed aerosol types. Nonetheless, differences are also noted. Specifically, compared with MISR and OMI, MODIS variability is significantly higher over South America, India, and the Sahel. MODIS deep blue AOD has a lower seasonal variability in North Africa, accompanied by a decreasing trend that is not found in either MISR or OMI AOD data. The narrow swath of MISR results in an underestimation of dust variability over the Taklamakan Desert. The MISR AOD data also exhibit overall lower variability in South America and the Sahel. OMI does not capture the Russian wild fire in 2010 nor the phase shift in biomass burning over East South America compared to Central South America, likely due to cloud contamination and the OMI row anomaly. OMI also indicates a much stronger (boreal) winter peak in South Africa compared with MODIS and MISR.

  8. Application of spectral analysis techniques in the intercomparison of aerosol data: Part III. Using combined PCA to compare spatiotemporal variability of MODIS, MISR, and OMI aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-04-01

    Satellite measurements of global aerosol properties are very useful in constraining aerosol parameterization in climate models. The reliability of different data sets in representing global and regional aerosol variability becomes an essential question. In this study, we present the results of a comparison using combined principal component analysis (CPCA), applied to monthly mean, mapped (Level 3) aerosol optical depth (AOD) product from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Ozone Monitoring Instrument (OMI). This technique effectively finds the common space-time variability in the multiple data sets by decomposing the combined AOD field. The results suggest that all of the sensors capture the globally important aerosol regimes, including dust, biomass burning, pollution, and mixed aerosol types. Nonetheless, differences are also noted. Specifically, compared with MISR and OMI, MODIS variability is significantly higher over South America, India, and the Sahel. MODIS deep blue AOD has a lower seasonal variability in North Africa, accompanied by a decreasing trend that is not found in either MISR or OMI AOD data. The narrow swath of MISR results in an underestimation of dust variability over the Taklamakan Desert. The MISR AOD data also exhibit overall lower variability in South America and the Sahel. OMI does not capture the Russian wild fire in 2010 nor the phase shift in biomass burning over East South America compared to Central South America, likely due to cloud contamination and the OMI row anomaly. OMI also indicates a much stronger (boreal) winter peak in South Africa compared with MODIS and MISR.

  9. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  10. Stratospheric aerosol geoengineering

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2015-03-01

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5-10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  11. Aerosols over Eastern Asia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Sea-viewing Wide Field-of-view Sensor (SeaWiFS) image of eastern Asia from October 14, 2001, shows large amounts of aerosol in the air. A few possible point sources of smoke, probably fires, are visible north of the Amur River at the very top of the image. One of the larger of these plumes can be seen down river of the confluence of the Songhua and Amur rivers. At lower left, the Yangtze River plume in the East China Sea is also very prominent. Sediment suspended in the ocean water is quite brown near the shore, but becomes much greener as it diffuses into the water. The increasing greenness of the river plume is probably an indication of enhanced phytoplankton growth driven by the nutrients in the river runoff. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  12. Stratospheric aerosol geoengineering

    SciTech Connect

    Robock, Alan

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  13. Aerosol lidar ``M4``

    SciTech Connect

    Shelevoy, C.D.; Andreev, Y.M. |

    1994-12-31

    Small carrying aerosol lidar in which is used small copper vapor laser ``Malachite`` as source of sounding optical pulses is described. The advantages of metal vapor laser and photon counting mode in acquisition system of lidar gave ability to get record results: when lidar has dimensions (1 x .6 x .3 m) and weight (65 kg), it provides the sounding of air industrial pollutions at up to 20 km range in scanning sector 90{degree}. Power feed is less than 800 Wt. Lidar can be disposed as stationary so on the car, helicopter, light plane. Results of location of smoke tails and city smog in situ experiments are cited. Showed advantages of work of acquisition system in photon counting mode when dynamic range of a signal is up to six orders.

  14. Enhancement factors for resuspended aerosol radioactivity: Effects of topsoil disturbance

    SciTech Connect

    Shinn, J.H.

    1991-11-01

    The enhancement factor for airborne radionuclides resuspended by wind is defined as the ratio of the activity density (Bq g{sup {minus}1}) in the aerosol to the activity density in the underlying surface of contaminated soil. Enhancement factors are useful for assessment of worst-case exposure scenarios and transport conditions, and are one of the criteria for setting environmental standards for radioactivity in soil. This paper presents results of experimental studies where resuspension of {sup 239}Pu was measured when air concentrations were equilibrated to the soil surface. Enhancement factors were observed for several types of man-made disturbances (bulldozer-blading, soil raking, vacuum-cleaning) and natural disturbances (springtime thaw, soil-drying, wildfire). For some cases, enhancement factors are compared over range of geographical locations (Bikini Atoll, California, Nevada, and South Carolina). The particle-size distributions of aerosol activity are compared to particle-size distributions of the underlying soil.

  15. Residual oil aerosol measurements on refrigerators and liquefiers

    NASA Astrophysics Data System (ADS)

    Pflueckhahn, D.; Anders, W.; Hellwig, A.; Knobloch, J.; Rotterdam, S.

    2014-01-01

    The purity of the process gas is essential for the reliability of refrigerators and liquefiers. Filtration and adsorption of impurities like water, nitrogen, and oil result in a major effort, cost, and maintenance in the helium process. Expensive impurity monitors for moisture, nitrogen, and hydrocarbon contents are required to identify filter failures and leakage immediately during the operation. While water and nitrogen contaminants can be detected reliably, the measurement of oil aerosols at the ppb-level is challenging. We present a novel diagnostic oil aerosol measurement system able to measure particles in the sub-μm range. This unit enabled us to evaluate and improve the oil separation system on a LINDE TCF 50 helium liquefier.

  16. Aerosol and nucleation research in support of NASA cloud physics experiments in space. [ice nuclei generator for the atmospheric cloud physics laboratory on Spacelab

    NASA Technical Reports Server (NTRS)

    Vali, G.; Rogers, D.; Gordon, G.; Saunders, C. P. R.; Reischel, M.; Black, R.

    1978-01-01

    Tasks performed in the development of an ice nucleus generator which, within the facility concept of the ACPL, would provide a test aerosol suitable for a large number and variety of potential experiments are described. The impact of Atmospheric Cloud Physics Laboratory scientific functional requirements on ice nuclei generation and characterization subsystems was established. Potential aerosol generating systems were evaluated with special emphasis on reliability, repeatability and general suitability for application in Spacelab. Possible contamination problems associated with aerosol generation techniques were examined. The ice nucleating abilities of candidate test aerosols were examined and the possible impact of impurities on the nucleating abilities of those aerosols were assessed as well as the relative merits of various methods of aerosol size and number density measurements.

  17. Background stratospheric aerosol reference model

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Wang, P.

    1989-01-01

    In this analysis, a reference background stratospheric aerosol optical model is developed based on the nearly global SAGE 1 satellite observations in the non-volcanic period from March 1979 to February 1980. Zonally averaged profiles of the 1.0 micron aerosol extinction for the tropics and the mid- and high-altitudes for both hemispheres are obtained and presented in graphical and tabulated form for the different seasons. In addition, analytic expressions for these seasonal global zonal means, as well as the yearly global mean, are determined according to a third order polynomial fit to the vertical profile data set. This proposed background stratospheric aerosol model can be useful in modeling studies of stratospheric aerosols and for simulations of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  18. Mycobacterial Aerosols and Respiratory Disease

    PubMed Central

    2003-01-01

    Environmental opportunistic mycobacteria, including Mycobacterium avium, M. terrae, and the new species M. immunogenum, have been implicated in outbreaks of hypersensitivity pneumonitis or respiratory problems in a wide variety of settings. One common feature of the outbreaks has been exposure to aerosols. Aerosols have been generated from metalworking fluid during machining and grinding operations as well as from indoor swimming pools, hot tubs, and water-damaged buildings. Environmental opportunistic mycobacteria are present in drinking water, resistant to disinfection, able to provoke inflammatory reactions, and readily aerosolized. In all outbreaks, the water sources of the aerosols were disinfected. Disinfection may select for the predominance and growth of mycobacteria. Therefore, mycobacteria may be responsible, in part, for many outbreaks of hypersensitivity pneumonitis and other respiratory problems in the workplace and home. PMID:12890314

  19. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Baldwin, B.; Pollack, J. B.; Summers, A.; Toon, O. B.; Sagan, C.; Van Camp, W.

    1976-01-01

    Generated primarily by volcanic explosions, a layer of submicron silicate particles and particles made of concentrated sulfuric acids solution is present in the stratosphere. Flights through the stratosphere may be a future source of stratospheric aerosols, since the effluent from supersonic transports contains sulfurous gases (which will be converted to H2SO4) while the exhaust from Space Shuttles contains tiny aluminum oxide particles. Global heat balance calculations have shown that the stratospheric aerosols have made important contributions to some climatic changes. In the present paper, accurate radiative transfer calculations of the globally-averaged surface temperature (T) are carried out to estimate the sensitivity of the climate to changes in the number of stratospheric aerosols. The results obtained for a specified model atmosphere, including a vertical profile of the aerosols, indicate that the climate is unlikely to be affected by supersonic transports and Space Shuttles, during the next decades.

  20. Satellite measurements of tropospheric aerosols

    NASA Technical Reports Server (NTRS)

    Griggs, M.

    1981-01-01

    This investigation uses LANDSAT 2 radiance data and ground-truth measurements of the aerosol optical thickness, obtained previously from five inland sites, to study the usefulness and limitations of the near infrared radiance over inland bodies of water. The linear relationship between LANDSAT 2 MSS7 and aerosol content found in this study can be used to estimate the aerosol content with a standard deviation of 0.42N. Analysis of the data for MSS6 and MSS7 suggest that the larger uncertainty is mostly due to water turbidity, with little contribution from the adjacency effect. The relationship found is best applied to determine an average aerosol content over a period of time at a given target, or an area average at a given time over several targets close together.

  1. Metalworking fluid-related aerosols in machining plants.

    PubMed

    Gilbert, Yan; Veillette, Marc; Meriaux, Anne; Lavoie, Jacques; Cormier, Yvon; Duchaine, Caroline

    2010-05-01

    Respiratory problems are observed in machinists using soluble metalworking fluid (MWF). Evidences suggest that these problems could be related to the aerosolized microorganisms and their byproducts from MWF. To establish MWF aerosol exposure thresholds and to better understand their effect on human health, these aerosols must be fully characterized. This article evaluates airborne microorganisms and aerosols from soluble MWF in the working environment. Air quality parameters (endotoxin levels, culturable airborne microorganisms, fluid mist, inhalable dust and air exchange rates) were evaluated at 44 sites, in 25 shops in Quebec, Canada. Microorganism concentrations were also measured in MWF. Culturable airborne bacteria concentrations were low, ranging from 1.2 x 10(1) to 1.5 x 10(3) CFU (colony forming units) m(-3), even for metalworking fluid highly contaminated by bacteria (up to 2.4 x 10(9) CFU mL(-1)). Inhalable dust varied between < 0.1 to 2.6 mg m(-3), while air exchange rates were mostly below the standard (4 h(-1)) for this type of workplace, between 0.6 to 14.2 h(-1). Only nine of 44 sites respected the suggested minimum value for air exchange rates. Fluid mist ranged from 0.02 to 0.89 mg m(-3), which is below the threshold limit value (TLV) (ACGIH) of 5 mg m(-3). Airborne endotoxin concentrations ranged from undetectable to 183 EU m(-3) (endotoxin units), showing no correlation with airborne microorganisms or inhalable dust. Most workstations respected the suggested minimum values for fluid mist and showed low concentrations of airborne endotoxin, culturable microorganisms and inhalable dust despite fluid contamination, even when air exchange rates were below the recommendations. Airborne Pseudomonas pseudoalcaligenes was recovered from many sites at significant concentrations. Health-associated risks following exposure to this microorganism should be further investigated. PMID:20229391

  2. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect

    SCHWARTZ, S.E.

    2005-09-01

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  3. Method for producing monodisperse aerosols

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  4. Aerosol transmission of foot-and-mouth disease virus Asia-1 under experimental conditions.

    PubMed

    Colenutt, C; Gonzales, J L; Paton, D J; Gloster, J; Nelson, N; Sanders, C

    2016-06-30

    Foot-and-mouth disease virus (FMDV) control measures rely on understanding of virus transmission mechanisms. Direct contact between naïve and infected animals or spread by contaminated fomites is prevented by quarantines and rigorous decontamination procedures during outbreaks. Transmission of FMDV by aerosol may not be prevented by these control measures and this route of transmission may allow infection of animals at distance from the infection source. Understanding the potential for aerosol spread of specific FMDV strains is important for informing control strategies in an outbreak. Here, the potential for transmission of an FMDV Asia 1 strain between pigs and cattle by indirect aerosol exposure was evaluated in an experimental setting. Four naïve calves were exposed to aerosols emitted from three infected pigs in an adjacent room for a 10h period. Direct contact between pigs and cattle and fomite transfer between rooms was prevented. Viral titres in aerosols emitted by the infected pigs were measured to estimate the dose that calves were exposed to. One of the calves developed clinical signs of FMD, whilst there was serological evidence for spread to cattle by aerosol transmission in the remaining three calves. This highlights the possibility that this FMDV Asia 1 strain could be spread by aerosol transmission given appropriate environmental conditions should an outbreak occur in pigs. Our estimates suggest the exposure dose required for aerosol transmission was higher than has been previously quantified for other serotypes, implying that aerosols are less likely to play a significant role in transmission and spread of this FMDV strain. PMID:27259825

  5. Aerosols How Dangerous They Are in Clinical Practice

    PubMed Central

    Venugopal, Sanjay; Babu, Girish R.J.; Garg, Aarti; Mathew, Melwin; Yadav, Manoj; Gupta, Bharat; Tripathi, Shashank

    2015-01-01

    Background and Objectives The purpose of the present study was to determine the microbial atmospheric contamination during initial periodontal treatment using a modern piezoelectric scaler and to evaluate the efficacy of two commercially available mouth rinses (0.2% Chlorhexidine mouth rinse and Listerine) in reducing bacterial contamination when used as a pre-procedural rinse, with and without high volume evacuation (Aerosol reduction device). Materials and Methods Subjects for the study were selected from the outpatient Department of Periodontics, Sri Siddhartha Dental College and Hospital, Tumkur, India. Total 60 patients were taken for the study and on the basis of inclusion and exclusion criteria’s they were divided into three groups. The sampling was carried out in two stages before and after implementing a set protocol. Total duration of study was four months. Microbiological Evaluation The samples (blood agar plates) were transported immediately to the Department of Microbiology, Sri Siddhartha Medical College, Tumkur for: Identification of microorganisms as per standard procedures (Gram stain, Biochemical Test, Species Identification). Counting the number of colonies formed on blood agar plates using colony counter unit. Results Out of all the three pre-procedural rinses 0.2% w/v Chlorhexidine is the best in reducing aerobic bacteria (CFU) followed by Listerine and then Water. Conclusion The following conclusion was drawn that the use of pre-procedural rinses along with the use of high volume suction apparatus significantly reduced the aerosol contamination and hence chances of cross-infection in the dental units. PMID:26023644

  6. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  7. Climate forcing by anthropogenic aerosols.

    PubMed

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  8. Climate Forcing by Anthropogenic Aerosols

    NASA Astrophysics Data System (ADS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  9. Passive Remote Sensing of Aerosols

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    Remote sensing of aerosol optical and microphysical properties got a resurgence in the 1970s when John Reagan and Ben Herman initiated a program to develop and implement a surface-based sunphotometer system to monitor spectral aerosol optical thickness at the University of Arizona. In this presentation I will review the state of the technology used to monitor aerosol optical and microphysical properties, including the determination of spectral aerosol optical thickness and total ozone content. This work continued with John Reagan developed a surface-based spectral flux radiometer to implement Ben Herman's idea to determine the imaginary part of the complex refractive index of aerosols using the recently developed diffuse-direct technique. Progress made both in surface-based instrumentation, inversion theory for analyzing such data, and in satellite observations of aerosol optical and microphysical properties will be reviewed to highlight the state of knowledge after 30 years of expanded capability and introduction of novel new capabilities, both from the ground and from spacecraft.

  10. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  11. Real Effect or Artifact of Cloud Cover on Aerosol Optical Thickness?

    SciTech Connect

    Jeong, M-J.; Li, Z.

    2005-03-18

    Aerosol measurements over the Southern Great Plains (SGP) Cloud And Radiation Test bed (CART) site under Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program characterize the temporal variability, vertical distribution, and optical properties of aerosols in the region. They were made by the Cimel sunphotometer and Multifilter Rotating Shadow-band Radiometer (MFRSR), Raman Lidar, In situ Aerosol Profiling (IAP) flights, and the Aerosol Observing System (AOS). The spatial variability of aerosols relies a network of MFRSR at the Central Facility (CF) and Extended Facilities (EF), together with satellite remote sensing. The current state-of-art satellite-based estimates over land--e.g., MODerate resolution Imaging Scanner (MODIS) aerosol optical thickness--still suffer from large uncertainties. Contamination due to sub-pixel and/or thin cirrus clouds is believed to be one of the major sources of uncertainties. Retrievals near clouds are discouraged to use, which reduces considerably the amount of useful data. In this regard, cloud is considered as an artifact. However, cloud could have a real impact on AOT by changing humidity, which affects aerosol through the aerosol swelling effect. As a preliminary study, we first investigate the effects of cloud cover and humidity on the retrievals of AOT from ground-based Cimel sunphotometer measurements, in order to help us sort out the real influence and artifact. In general, it is very difficult to verify and quantify the effects of cloud on satellite retrieval of aerosol quantities. Speculation and warning of cloud contamination have been made whenever there is a correlation between the retrieved AOT and cloud fraction or their spatial variabilities, while it has also been argued that aerosol humidification effect (AHE) might be at work. The ample measurements available from ARM over the SGP region may allow us to unravel this complex issue. Our ultimate goals are to (1) evaluate various effects on the

  12. Particulate contamination spectrometer. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Schmitt, R. J.; Boyd, B. A.; Linford, R. M. F.

    1975-01-01

    A laser particulate spectrometer (LPS) system was developed to measure the size and speed distributions of particulate (dusts, aerosols, ice particles, etc.) contaminants. Detection of the particulates was achieved by means of light scattering and extinction effects using a single laser beam to cover a size range of 0.8 to 275 microns diameter and a speed range of 0.2 to 20 meter/second. The LPS system was designed to operate in the high vacuum environment of a space simulation chamber with cold shroud temperatures ranging from 77 to 300 K.

  13. Contamination risk of the surgical team through ROBODOC's high-speed cutter.

    PubMed

    Nogler, M; Wimmer, C; Lass-Flörl, C; Mayr, E; Trobos, S; Gegenhuber, C

    2001-06-01

    During cutting of the femoral cavity in the ROBODOC procedure, an aerosol cloud of irrigation fluid, blood, and tissue debris was seen. This cloud potentially is contaminated with bacterial and viral vectors, which is an infection risk for the surgical team. A flat and a ball cutter were tested in four standard situations macroscopically with a colored solution. In a second experiment, the cutter was exposed to a fluid contaminated with Staphylococcus aureus, and bacterial room contamination was detected using standard cultures. The aerosol cloud was seen in a 6 x 3.6-m area. Extension and concentration varied, depending on the irrigation situation. ROBODOC's high-speed cutter produces an aerosol cloud in an area in which all members of the surgical team are affected. Sufficient protection is necessary for everyone in the operating room.

  14. Holistic aerosol evaluation using synthesized aerosol aircraft measurements

    NASA Astrophysics Data System (ADS)

    Watson-Parris, Duncan; Reddington, Carly; Schutgens, Nick; Stier, Philip; Carslaw, Ken; Liu, Dantong; Allan, James; Coe, Hugh

    2016-04-01

    Despite ongoing efforts there are still large uncertainties in aerosol concentrations and loadings across many commonly used GCMs. This in turn leads to large uncertainties in the contributions of the direct and indirect aerosol forcing on climate. However, constraining these fields using earth observation data, although providing global coverage, is problematic for many reasons, including the large uncertainties in retrieving aerosol loadings. Additionally, the inability to retrieve aerosols in or around cloudy scenes leads to further sampling biases (Gryspeerdt 2015). Many in-situ studies have used regional datasets to attempt to evaluate the model uncertainties, but these are unable to provide an assessment of the models ability to represent aerosols properties on a global scale. Within the Global Aerosol Synthesis and Science Project (GASSP) we have assembled the largest collection of quality controlled, in-situ aircraft observations ever synthesized to a consistent format. This provides a global set of in-situ measurements of Cloud Condensation Nuclei (CCN) and Black Carbon (BC), amongst others. In particular, the large number of vertical profiles provided by this aircraft data allows us to investigate the vertical structure of aerosols across a wide range of regions and environments. These vertical distributions are particularly valuable when investigating the dominant processes above or below clouds where remote sensing data is not available. Here we present initial process-based assessments of the BC lifetimes and vertical distributions of CCN in the HadGEM-UKCA and ECHAM-HAM models using this data. We use point-by-point based comparisons to avoid the sampling issues associated with comparing spatio-temporal aggregations.

  15. Test-Aerosol Generator For Calibrating Particle Counters

    NASA Technical Reports Server (NTRS)

    Mogan, Paul A.; Adams, Alois J.; Schwindt, Christian J.; Hodge, Timothy R.; Mallow, Tim J.; Duong, Anh A.; Bukauskas, Vyto V.

    1996-01-01

    Apparatus generates clean, stable aerosol stream for use in testing and calibrating laser-based aerosol-particle counter. Size and concentration of aerosol particles controlled to ensure accurate calibration. Cheap, widely available medical nebulizers used to generate aerosols.

  16. Bacterial contamination of dental unit waterlines.

    PubMed

    Szymańska, Jolanta; Sitkowska, Jolanta

    2013-05-01

    Safety of patients and dental personnel requires the appropriate microbiological water quality in dental units. During treatment, patients and dental workers are exposed both to direct contact with bacteria-contaminated water in the form of splatter and with contaminated water aerosol emitted during work by unit handpieces, including rotating and ultrasonic instruments. The aim of the study was to determine the qualitative and quantitative contamination of water in dental unit reservoirs with aerobic and facultative anaerobic bacteria. The study material included water sampled from 107 dental unit reservoirs located in dental surgeries of public health centres. Conventional microbiological methods were used to identify microorganisms. The study shows that the contamination of water in dental unit reservoirs with aerobic and facultative anaerobic bacteria is commonplace. The mean concentration of mesophile bacteria in dental unit reservoir water exceeded 1.1 × 10(5) cfu/ml. The prevailing species were Gram-negative bacteria of the families Burkholderiaceae, Pseudomonadaceae, Ralstoniaceae and Sphingomonadaceae. The most numerous bacteria were Ralstonia pickettii, constituting 49.33 % of all the identified aerobic and facultative anaerobic bacteria. Among Gram-positive rods, the most numerous were bacteria of the genus Brevibacterium (5.83 %), while the highest percentage shares (13.25 %) of all Gram-positive microorganisms were found for Actinomyces spp. The study confirms the necessity of regular monitoring of microbial contamination of dental unit waterlines (DUWL) and use of various water treatment procedures available to disinfect DWUL.

  17. Are anthropogenic aerosols affecting rainfall?

    NASA Astrophysics Data System (ADS)

    Junkermann, Wolfgang; Hacker, Jorg

    2013-04-01

    Modification of cloud microphysics by anthropogenic aerosols is well known since several decades. Whether the underlying processes leads to changes in precipitation is by far less confirmed. Several different factors affect the production of rain in a way that a causality between increasing aerosol load in the atmosphere and a change of annual rainfall is very difficult to confirm. What would be expected as an effect of additional cloud condensation nuclei is a shift in the spatial and temporal rainfall distribution towards a lower number of days with low rain intensity and more frequent or more vigorous single events. In fact such a shift has been observed in several locations worldwide and has been suggested to be caused by increasing aerosol load, however, without further specification of the nature and number of the aerosols involved. Measurements of aerosols which might be important for cloud properties are extremely sparse and no long term monitoring data sets are available up to now. The problem of missing long term aerosol data that could be compared to available long term meteorological data sets can possibly be resolved in certain areas where well characterized large anthropogenic aerosol sources were installed in otherwise pristine areas without significant changes in land use over several decades. We investigated aerosol sources and current aerosol number, size and spatial distributions with airborne measurements in the planetary boundary layer over two regions in Australia that are reported to suffer from extensive drought despite the fact that local to regional scale water vapor in the atmosphere is slowly and constantly increasing. Such an increase of the total water in the planetary boundary layer would imply also an increase in annual precipitation as observed in many other locations elsewhere. The observed decline of rainfall in these areas thus requires a local to regional scale physical process modifying cloud properties in a way that rain

  18. Hydrogen bonding at the aerosol interface

    SciTech Connect

    Zhang, J.X.; Aiello, D.; Aker, P.M. )

    1995-01-12

    Morphology-dependent stimulated Raman scattering (MDSRS) has been used to monitor the degree of hydrogen bonding in water aerosols generated by a vibrating orifice aerosol generator (VOAG). The results show that aerosols created by a VOAG suffer extensive structural disruption and that the disruption is most pronounced at the aerosol surface. Laboratory aerosols prepared in this way do not appropriately mimic those found in the atmosphere, and the mass accommodation coefficients measured using such aerosols should not be used in global climate modeling calculations. 25 refs., 10 figs.

  19. Validation and Application of Models to Predict Facemask Influenza Contamination in Healthcare Settings

    PubMed Central

    Fisher, Edward M.; Noti, John D.; Lindsley, William G.; Blachere, Francoise M.; Shaffer, Ronald E.

    2015-01-01

    Facemasks are part of the hierarchy of interventions used to reduce the transmission of respiratory pathogens by providing a barrier. Two types of facemasks used by healthcare workers are N95 filtering facepiece respirators (FFRs) and surgical masks (SMs). These can become contaminated with respiratory pathogens during use, thus serving as potential sources for transmission. However, because of the lack of field studies, the hazard associated with pathogen-exposed facemasks is unknown. A mathematical model was used to calculate the potential influenza contamination of facemasks from aerosol sources in various exposure scenarios. The aerosol model was validated with data from previous laboratory studies using facemasks mounted on headforms in a simulated healthcare room. The model was then used to estimate facemask contamination levels in three scenarios generated with input parameters from the literature. A second model estimated facemask contamination from a cough. It was determined that contamination levels from a single cough (≈19 viruses) were much less than likely levels from aerosols (4,473 viruses on FFRs and 3,476 viruses on SMs). For aerosol contamination, a range of input values from the literature resulted in wide variation in estimated facemask contamination levels (13–202,549 viruses), depending on the values selected. Overall, these models and estimates for facemask contamination levels can be used to inform infection control practice and research related to the development of better facemasks, to characterize airborne contamination levels, and to assist in assessment of risk from reaerosolization and fomite transfer because of handling and reuse of contaminated facemasks. PMID:24593662

  20. AERONET - Aerosol Climatology From Megalopolis Aerosol Source Regions

    NASA Astrophysics Data System (ADS)

    Holben, B. N.; Eck, T. F.; Dubovik, O.; Smirnov, A.; Slutsker, I.; Artaxo, P.; Leyva, A.; Lu, D.; Sano, I.; Singh, R. P.; Quel, E.; Tanre, D.; Zibordi, G.

    2002-05-01

    AERONET is a globally distributed network of ~170 identical sun and sky scanning spectral radiometers expanded by federation with collaborating investigators that contribute to the AERONET public domain data-base. We will detail the current distribution and plans for expanded collaboration. Recent products available through the project database are important for assessment of human health as well as climate forcing issues. We will illustrate a summary of aerosol optical properties measured in Indian, East Asian, North American, South American and European megalopolis source regions. We will present monthly mean fine and coarse particle aerosol optical depth, particle size distributions and single scattering albedos. Each region represents a population in excess of 10 million inhabitants within a 200 km radius of the observation site that dictate the anthropogenic aerosol sources contributing to significantly diverse aerosol properties as a function of economic development and seasonally dependent meteorological processes. The diversity of the measured optical properties of urban aerosols illustrates the need for long-term regional monitoring that contribute to comparative assessments for health and climate change investigations.

  1. Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization

    SciTech Connect

    Friedman, Beth; Herich, Hanna; Kammermann, Lukas; Gross, Deborah S.; Ameth, Almut; Holst, Thomas; Lohmann, U.; Cziczo, Daniel J.

    2009-07-10

    Sub-Arctic aerosol was sampled during July 2007 at the Abisko Research Station Stordalen field site operated by the Royal Swedish Academy of Sciences. Located in northern Sweden at 68º latitude and 385 meters above sea level (msl), this site is classified as a semi-continuous permafrost mire. Number density, size distribution, cloud condensation nucleus properties, and chemical composition of the ambient aerosol were determined. Backtrajectories showed that three distinct airmasses were present over Stordalen during the sampling period. Aerosol properties changed and correlated with airmass origin to the south, northeast, or west. We observe that Arctic aerosol is not compositionally unlike that found in the free troposphere at mid-latitudes. Internal mixtures of sulfates and organics, many on insoluble biomass burning and/or elemental carbon cores, dominate the number density of particles from ~200 to 2000 nm aerodynamic diameter. Mineral dust which had taken up gas phase species was observed in all airmasses. Sea salt, and the extent to which it had lost volatile components, was the aerosol type that most varied with airmass.

  2. YAG aerosol lidar

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1988-01-01

    The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

  3. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  4. Dual-aureole and sun spectrometer system for airborne measurements of aerosol optical properties.

    PubMed

    Zieger, Paul; Ruhtz, Thomas; Preusker, Rene; Fischer, Jürgen

    2007-12-10

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct sun irradiance and the aureole radiance in two different solid angles. The high-resolution spectral radiation measurements are used to derive vertical profiles of aerosol optical properties. Combined measurements in two solid angles provide better information about the aerosol type without additional and elaborate measuring geometries. It is even possible to discriminate between absorbing and nonabsorbing aerosol types. Furthermore, they allow to apply additional calibration methods and simplify the detection of contaminated data (e.g., by thin cirrus clouds). For the characterization of the detected aerosol type a new index is introduced that is the slope of the aerosol phase function in the forward scattering region. The instrumentation is a flexible modular setup, which has already been successfully applied in airborne and ground-based field campaigns. We describe the setup as well as the calibration of the instrument. In addition, example vertical profiles of aerosol optical properties--including the aureole measurements--are shown and discussed.

  5. Elemental composition of aerosols in fourteen experiments of the Cloud Condensation Nuclei Workshop

    NASA Technical Reports Server (NTRS)

    Mach, W. H.; Hucek, R. R.

    1981-01-01

    Aeosols were collected with two Ci impactors and analyzed with proton induced X-ray emission (PIXE) for chemical composition and to detect if contamination was present. One of the impactors sampled the generated aerosols; the other impactor sampled droplets from a diffusion cloud chamber. The purpose of the experiments was to test the feasibility of a study of the transfer of chemical elements from the fine particle sizes to the coarse particle sizes, after CCN are activated and cloud droplets are formed. The data indicated that sulfur-containing aerosols did exhibit the expected transfer.

  6. The effectiveness of an air cleaner in controlling droplet/aerosol particle dispersion emitted from a patient's mouth in the indoor environment of dental clinics.

    PubMed

    Chen, Chun; Zhao, Bin; Cui, Weilin; Dong, Lei; An, Na; Ouyang, Xiangying

    2010-07-01

    Dental healthcare workers (DHCWs) are at high risk of occupational exposure to droplets and aerosol particles emitted from patients' mouths during treatment. We evaluated the effectiveness of an air cleaner in reducing droplet and aerosol contamination by positioning the device in four different locations in an actual dental clinic. We applied computational fluid dynamics (CFD) methods to solve the governing equations of airflow, energy and dispersion of different-sized airborne droplets/aerosol particles. In a dental clinic, we measured the supply air velocity and temperature of the ventilation system, the airflow rate and the particle removal efficiency of the air cleaner to determine the boundary conditions for the CFD simulations. Our results indicate that use of an air cleaner in a dental clinic may be an effective method for reducing DHCWs' exposure to airborne droplets and aerosol particles. Further, we found that the probability of droplet/aerosol particle removal and the direction of airflow from the cleaner are both important control measures for droplet and aerosol contamination in a dental clinic. Thus, the distance between the air cleaner and droplet/aerosol particle source as well as the relative location of the air cleaner to both the source and the DHCW are important considerations for reducing DHCWs' exposure to droplets/aerosol particles emitted from the patient's mouth during treatments.

  7. The effectiveness of an air cleaner in controlling droplet/aerosol particle dispersion emitted from a patient's mouth in the indoor environment of dental clinics

    PubMed Central

    Chen, Chun; Zhao, Bin; Cui, Weilin; Dong, Lei; An, Na; Ouyang, Xiangying

    2010-01-01

    Dental healthcare workers (DHCWs) are at high risk of occupational exposure to droplets and aerosol particles emitted from patients' mouths during treatment. We evaluated the effectiveness of an air cleaner in reducing droplet and aerosol contamination by positioning the device in four different locations in an actual dental clinic. We applied computational fluid dynamics (CFD) methods to solve the governing equations of airflow, energy and dispersion of different-sized airborne droplets/aerosol particles. In a dental clinic, we measured the supply air velocity and temperature of the ventilation system, the airflow rate and the particle removal efficiency of the air cleaner to determine the boundary conditions for the CFD simulations. Our results indicate that use of an air cleaner in a dental clinic may be an effective method for reducing DHCWs' exposure to airborne droplets and aerosol particles. Further, we found that the probability of droplet/aerosol particle removal and the direction of airflow from the cleaner are both important control measures for droplet and aerosol contamination in a dental clinic. Thus, the distance between the air cleaner and droplet/aerosol particle source as well as the relative location of the air cleaner to both the source and the DHCW are important considerations for reducing DHCWs' exposure to droplets/aerosol particles emitted from the patient's mouth during treatments. PMID:20031985

  8. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  9. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  10. MISR Level 2 Aerosol and Land Versioning

    Atmospheric Science Data Center

    2013-04-01

    ... Current F12_0022 (aerosol), F07_0022 (land) 12/01/2007 Data Product Specification Rev Q ... AEROSOL: Revised Dark Water algorithm to use a common subregion location across all channels. Revised ...

  11. Satellite remote sensing of nonspherical tropospheric aerosols

    SciTech Connect

    Mishchenko, M.I.; Travis, L.D.; Lacis, A.A.; Carlson, B.E.

    1995-12-31

    In this paper the authors discuss the possible effect of nonsphericity of solid tropospheric aerosols on the accuracy of aerosol optical thickness retrievals from reflectance measurements over the ocean surface. To model light-scattering properties of nonspherical aerosols, they use a shape mixture of moderately aspherical, randomly oriented polydisperse spheroids. They assume that the size distribution and refractive index of aerosols are known and use the aerosol optical thickness 0.2 to compute the reflectivity for an atmosphere-ocean model similar to that used in the AVHRR aerosol retrieval algorithms. They then use analogous computations for volume-equivalent spherical aerosols with varying optical thickness to invert the simulated nonspherical reflectance. The computations demonstrate that the use of the spherical model to retrieve the optical thickness of actually nonspherical aerosols can result in errors which, depending on the scattering geometry, can well exceed 100%.

  12. Harvesting contaminants from liquid

    DOEpatents

    Simpson, John T.; Hunter, Scott R.

    2016-05-31

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a vessel for storing the contaminated fluid. The vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus allowing the contaminants to be harvested.

  13. Aerosol Climate Time Series in ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  14. MDIs: physics of aerosol formation.

    PubMed

    Clark, A R

    1996-03-01

    The aerosol clouds produced by metered dose inhalers are very dynamic and dramatic changes in both droplet size and velocity take place within the first few centimeters of the spray plume. It is the interaction of this dynamic cloud with the geometry of the mouth and oropharynx that controls the extent of oral deposition and hence the ability of the MDI to deliver a respiratory therapeutic to the lung. Oral deposition is controlled by inertial mechanisms and in order to develop meaningful in-vitro test methods consideration must be given to both the velocity and droplet size distribution of the cloud. The correct design of the inlet ports used to convey MDI clouds in aerosol sizing instruments is therefore crucial to the development of successful in-vitro methodologies. The use of large sampling chambers or the characterization of residual aerosol droplets is unlikely to produce meaning product comparisons or satisfactory product control data.

  15. Wind reduction by aerosol particles

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.; Kaufman, Yoram J.

    2006-12-01

    Aerosol particles are known to affect radiation, temperatures, stability, clouds, and precipitation, but their effects on spatially-distributed wind speed have not been examined to date. Here, it is found that aerosol particles, directly and through their enhancement of clouds, may reduce near-surface wind speeds below them by up to 8% locally. This reduction may explain a portion of observed ``disappearing winds'' in China, and it decreases the energy available for wind-turbine electricity. In California, slower winds reduce emissions of wind-driven soil dust and sea spray. Slower winds and cooler surface temperatures also reduce moisture advection and evaporation. These factors, along with the second indirect aerosol effect, may reduce California precipitation by 2-5%, contributing to a strain on water supply.

  16. Air ions and aerosol science

    NASA Astrophysics Data System (ADS)

    Tammet, Hannes

    1996-03-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4-1.8 nm.

  17. Laser-Assisted Analysis of Aerosol Particles

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Giffin, C. E.; Norris, D. D.; Friedlander, S. K.

    1985-01-01

    Proposed instrument makes rapid mass-spectrometric analyses of individual particles in aerosols. Each particle vaporized and ionized by intense laser pulse, which creates ions of minimum complexity. Ability to analyze single aerosol particles continuously makes technique suitable for detection of toxic aerosol particles on real-time basis and for identification of their sources.

  18. ATI TDA 5A aerosol generator evaluation

    SciTech Connect

    Gilles, D.A.

    1998-07-27

    Oil based aerosol ``Smoke`` commonly used for testing the efficiency and penetration of High Efficiency Particulate Air filters (HEPA) and HEPA systems can produce flammability hazards that may not have been previously considered. A combustion incident involving an aerosol generator has caused an investigation into the hazards of the aerosol used to test HEPA systems at Hanford.

  19. Chemical Properties of Combustion Aerosols: An Overview

    EPA Science Inventory

    A wide variety of pyrogenic and anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is remarkably complex. ...

  20. Surface-active organics in atmospheric aerosols.

    PubMed

    McNeill, V Faye; Sareen, Neha; Schwier, Allison N

    2014-01-01

    Surface-active organic material is a key component of atmospheric aerosols. The presence of surfactants can influence aerosol heterogeneous chemistry, cloud formation, and ice nucleation. We review the current state of the science on the sources, properties, and impacts of surfactants in atmospheric aerosols. PMID:23408277

  1. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  2. Aerosol Transport Over Equatorial Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  3. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations.

    PubMed

    Csavina, Janae; Field, Jason; Taylor, Mark P; Gao, Song; Landázuri, Andrea; Betterton, Eric A; Sáez, A Eduardo

    2012-09-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport.

  4. A Review on the Importance of Metals and Metalloids in Atmospheric Dust and Aerosol from Mining Operations

    PubMed Central

    Csavina, Janae; Field, Jason; Taylor, Mark P.; Gao, Song; Landázuri, Andrea; Betterton, Eric A.; Sáez, A. Eduardo

    2012-01-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. PMID:22766428

  5. Numerical Modelling of Gelating Aerosols

    SciTech Connect

    Babovsky, Hans

    2008-09-01

    The numerical simulation of the gel phase transition of an aerosol system is an interesting and demanding task. Here, we follow an approach first discussed in [6, 8] which turns out as a useful numerical tool. We investigate several improvements and generalizations. In the center of interest are coagulation diffusion systems, where the aerosol dynamics is supplemented with diffusive spreading in physical space. This leads to a variety of scenarios (depending on the coagulation kernel and the diffusion model) for the spatial evolution of the gelation area.

  6. Generation of a monodispersed aerosol

    NASA Technical Reports Server (NTRS)

    Schenck, H.; Mikasa, M.; Devicariis, R.

    1974-01-01

    The identity and laboratory test methods for the generation of a monodispersed aerosol are reported on, and are subjected to the following constraints and parameters; (1) size distribution; (2) specific gravity; (3) scattering properties; (4) costs; (5) production. The procedure called for the collection of information from the literature, commercial available products, and experts working in the field. The following topics were investigated: (1) aerosols; (2) air pollution -- analysis; (3) atomizers; (4) dispersion; (5) particles -- optics, size analysis; (6) smoke -- generators, density measurements; (7) sprays; (8) wind tunnels -- visualization.

  7. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  8. Analysis of the Interaction and Transport of Aerosols with Cloud or Fog during DRAGON Campaigns in Asia from AERONET and Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Eck, Thomas; Holben, Brent; Reid, Jeffrey; Lynch, Peng; Schafer, Joel; Giles, David; Kim, Jhoon; Kim, Young; Sano, Itaru; Platnick, Steven; Arnold, George; Lyapustin, Alexei; Pickering, Kenneth; Crawford, James; Siniuk, Alexander; Smirnov, Alexander; Wang, Pucai; Xia, Xiangao; Li, Zhanqing

    2015-04-01

    -processed or residual aerosol of radius ~0.4-0.5 micron sometimes observed. Cloud processed aerosol may occur much more frequently than AERONET data suggest due to inherent difficulty in observing aerosol properties near clouds from remote sensing observations. These biases of aerosols associated with clouds are even greater for passive satellite remote sensing retrievals of aerosol properties near clouds due to sub-pixel cloud contamination and 3-D radiation scattering effects.

  9. Characterization of a hooded human exposure apparatus for inhalation of gases and aerosols.

    PubMed

    O'Shaughnessy, Patrick T; Mehaffy, John; Watt, Janet; Sigurdarson, Sigurdur; Kline, Joel N

    2004-03-01

    A human exposure apparatus was designed to administer a gas and/or aerosol directly to the subject's face. This apparatus utilized a hood associated with a powered air-purifying respirator. The design criteria included the need to maximize subject comfort, maintain consistent atmospheres of a gas or dust within the hood, and the accurate use of direct-reading instruments to monitor exposure levels. An 83-L drum was used to pre-mix the gas or aerosol with the main dilution air prior to entering the hood worn by the subject. A clear plastic oxygen tent, ventilated with room exhaust air, was used to contain contaminants exiting the hood. Bypass valves were added to allow for a startup period during which contaminant concentration levels were allowed to stabilize prior to exposing the human subject. Results from characterization studies demonstrated that the system adequately contained contaminants within the oxygen tent, provided adequate mixing of contaminant and dilution air, produced stable contaminant concentrations over time, and was responsive to sudden changes in contaminant generation rate. PMID:15204873

  10. Scanning Mobile Lidar for Aerosol Tracking and Biological Aerosol Identification

    NASA Astrophysics Data System (ADS)

    He, Tingyao; Bergant, Klemen; Filipčič, Andrej; Forte, Biagio; Gao, Fei; Stanič, Samo; Veberič, Darko; Zavrtanik, Marko

    2010-05-01

    Optical properties of non-biological aerosols containing aromatic hydrocarbons, such as industrial chemicals and engine exhausts, have already been thoroughly studied using remote sensing techniques. However, because of their complex composition and characteristics, the identification of biological aerosols, such as fungi, pollen and bacteria that are present in the environment remains a rather difficult task. The collection of information on both non-biological and biological aerosols is of great importance for understanding their interrelation, physical and chemical properties and their influence on human health and the environment. Biological and non-biological aerosols can be simultaneously detected, tracked and identified by a scanning mobile Mie-fluorescence lidar. The device developed at the University of Nova Gorica can perform azimuth and zenith angle scans with an angular resolution of 0.1°, as well as operate in both day and night-time conditions. Aerosols of biological origin are identified through the detection of the fluorescence of the amino acid tryptophan which is present in almost all substances of biological origin. In our system, the transmitter is a solid state Nd:YAG laser which is capable of simultaneous emission of light at a base wavelength of 1064 nm (IR) and its quadrupled wavelength of 266 nm (UV) at a maximum repetition rate of 10 Hz. Tryptophan contained in biological aerosols is excited by the 266 nm laser pulses and the returning fluorescence signals are detected in the spectral band centered at 295 nm. The receiver is a Newtonian telescope which uses a 300 mm parabolic mirror to direct received light into three detection channels - two elastic backscatter channels (IR and UV) and a fluorescence channel. First experiments show that the detection range of the lidar reaches 10 km in the IR channel and 3 km in the UV channel. Based on the preliminary simulations of the signal-to-noise ratio, the detection range for biological

  11. Control of indoor air contaminants. Progress report

    SciTech Connect

    Ayer, H.E.

    1988-01-01

    Efforts were made to determine the probability of air contaminants within 1 meter reaching the nose from either a point-source thermal generation of an aerosol or from generations of vapor by evaporation. The study also attempted to define the objective criteria for evaluation of mixing (K) factors between 1 and 10 meters of individual contaminant spaces or in an entire room. Small, thermally generated plumes were able to move with little dilution through spaces of 1 meter and more. Concentrations of acrolein and formaldehyde in side-stream cigarette smoke were tens to hundreds of times the acceptable limits. Between one and two thirds of these concentrations were associated with the particulate phase of the smoke, suggesting that aldehydes may be deposited in the respiratory system rather than absorbed in the nose and trachea, perhaps providing a pathway for bronchial cancer. Concentrations of irritants in contaminant streams sufficient to cause eye or nose/throat irritation may be measured by sampling close enough to the source to trap the entire contaminant stream.

  12. CALIPSO and MODIS Observations of Increases in Aerosol Optical Depths near Marine Stratocumulus

    NASA Astrophysics Data System (ADS)

    Coakley, J. A.; Tahnk, W. R.

    2009-12-01

    the MODIS aerosol retrievals decreases as clouds are approached. Cloud contamination of the aerosol retrievals for the 5-km CALIPSO and 10-km MODIS observations adjacent the cloud might explain the observed changes. The fall in the 532-nm aerosol optical depth between cloud-free regions 7.5 and 12.5 km from the cloud boundaries, however, is statistically significant for the daytime CALIPSO observations, suggesting that the changes are caused by factors other than cloud contamination. These findings are placed in context with estimates of the changes in aerosol properties based on aircraft measurements and analyses of satellite observations reported by others.

  13. Fatty acids on continental sulfate aerosol particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Vaida, V.; Tuck, A. F.; Niemi, J. V.; Kupiainen, K.; Kulmala, M.; VehkamäKi, H.

    2005-03-01

    Surface analyses of atmospheric aerosols from different continental sources, such as forest fires and coal and straw burning, show that organic surfactants are found on such aerosols. The predominant organic species detected by time-of-flight secondary ion mass spectrometry on the sulfate aerosols are fatty acids of different carbon chain length up to the C32 acid. These observations are consistent with literature accounts of functional group analysis of bulk samples, but this is the first direct evidence of fatty acid films on the surface of sulfate aerosols. Surface analysis leads to the conclusion that fatty acid films on continental aerosols may be more common than has been previously suggested.

  14. Contribution of methane to aerosol carbon mass

    NASA Astrophysics Data System (ADS)

    Bianchi, F.; Barmet, P.; Stirnweis, L.; El Haddad, I.; Platt, S. M.; Saurer, M.; Lötscher, C.; Siegwolf, R.; Bigi, A.; Hoyle, C. R.; DeCarlo, P. F.; Slowik, J. G.; Prévôt, A. S. H.; Baltensperger, U.; Dommen, J.

    2016-09-01

    Small volatile organic compounds (VOC) such as methane (CH4) have long been considered non-relevant to aerosol formation due to the high volatility of their oxidation products. However, even low aerosol yields from CH4, the most abundant VOC in the atmosphere, would contribute significantly to the total particulate carbon budget. In this study, organic aerosol (OA) mass yields from CH4 oxidation were evaluated at the Paul Scherrer Institute (PSI) smog chamber in the presence of inorganic and organic seed aerosols. Using labeled 13C methane, we could detect its oxidation products in the aerosol phase, with yields up to 0.09

  15. A thermoluminescent method for aerosol characterization

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.; Rogowski, R. S.

    1976-01-01

    A thermoluminescent method has been used to study the interactions of aerosols with ozone. The preliminary results show that ozone reacts with many compounds found in aerosols, and that the thermoluminescence curves obtained from ozonated aerosols are characteristic of the aerosol. The results suggest several important applications of the thermoluminescent method: development of a detector for identification of effluent sources; a sensitive experimental tool for study of heterogeneous chemistry; evaluation of importance of aerosols in atmospheric chemistry; and study of formation of toxic, electronically excited species in airborne particles.

  16. Exploring the Radiative Effect and Climate Impact of Contaminated Contrails

    NASA Astrophysics Data System (ADS)

    Yi, B.; Yang, P.; Minnis, P.; Duda, D. P.

    2015-12-01

    As an impact of human aviation activities, contrails have drawn a great deal of attention. There have been numerous investigations into the contrail properties, radiative effects, and climate impact. However, very little effort has been focused on the impact of contaminated contrails. Generated by the combustion process within the aircraft engine, the aerosols and exhaust gases frequently influence contrail formation. Contrail ice crystals contaminated by soot particles have been found to exhibit dramatically different light scattering properties from those of pristine crystals. In this study, we employ state-of-the-art light scattering computational capabilities to calculate the single-scattering properties of soot-contaminated contrails. The contaminated contrail particle is assumed to be a hexagonal ice column containing several soot particles. The invariant imbedding T-matrix method and the Ray-by-Ray geometry optics method are combined to construct a simplified yet novel set of contaminated contrail optical properties. The bulk optical properties are calculated based on the data set and are parameterized for use in the Community Atmospheric Model. Using global contrail retrievals from satellite remote sensing observations in 2006 and 2012, simulations are conducted using the general circulation model to analyze contaminated contrail radiative effects as well as their climatic sensitivities. Our results show that the contaminated contrail is significantly more absorbing than pristine contrail in the shortwave spectrum. As a result, much stronger contrail radiative impact and climate feedback are found. Several sensitivity studies are also implemented to quantify the effect of contrail contamination.

  17. On relationship between aerosols and PM2.5

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko

    2015-04-01

    Since aerosol optical thickness (AOT) is a key parameter of aerosols and description of the Earth's radiation budget, it is widely measured from ground sun photometer network NASA/AERONET [Holben et al., 1998] and from satellite. Fine and surface level aerosol particle called PM2.5, whose diameter is 2.5 μ m or less, is a well-known parameter for understanding polluted level of air. Smirnov et al. reported a good agreement between ground based AERONET AOT (870 nm) and dust concentrations at Barbados [Smirnov et al., 2000]. Wang and Christopher founded a good correlation between satellite based MODIS AOT product and PM2.5 in Alabama area [Wang and 2003]. Long range transported dusts, particularly Asian dust events, are easy to change the vertical profile of aerosol extinction. The vertical profile is important to estimate PM information because both AOT information measured from ground or satellite are integrated value of aerosol extinction from ground to space, i.e. columnar AOT. Thus, we have also proposed correlations between ground level PM2.5 and AERONET AOT (670 nm) in two cases of ordinary air condition and dusty days [Sano et al., 2010]. In this work, we investigate the relationship between PM2.5 and AERONET AOT considering LIDAR measurements. Note that all of instruments are set up at the roof of the University building (50 m) and collocated in 10 m area. Surface-level AOT is derived from AERONET AOT multiplied by an averaged vertical aerosol extinction given by LIDAR. Note that the definition of surface-level AOT in this work is assumed as AOT up to 500 m height. Introduction of surface-level AOT enables to avoid the contamination of dusty aerosol signal existing at high altitude from columnar AOT. The cloud aerosol imager (CAI) on GOSAT satellite has four observing wavelengths, 380, 670, 870 nm, and 1.6 μ m. In this work three channels are selected to estimate aerosol information. Look-up table (LUT) method is applied to estimate the optical properties

  18. Influence of daylight and noise current on cloud and aerosol observations by spaceborne elastic scattering lidar.

    PubMed

    Nakajima, T Y; Imai, T; Uchino, O; Nagai, T

    1999-08-20

    The influence of daylight and noise current on cloud and aerosol observations by realistic spaceborne lidar was examined by computer simulations. The reflected solar radiations, which contaminate the daytime return signals of lidar operations, were strictly and explicitly estimated by accurate radiative transfer calculations. It was found that the model multilayer cirrus clouds and the boundary layer aerosols could be observed during the daytime and the nighttime with only a few laser shots. However, high background noise and noise current make it difficult to observe volcanic aerosols in middle and upper atmospheric layers. Optimal combinations of the laser power and receiver field of view are proposed to compensate for the negative influence that is due to these noises. For the computer simulations, we used a realistic set of lidar parameters similar to the Experimental Lidar in-Space Equipment of the National Space Development Agency of Japan.

  19. Effects of acid-washing filter treatment on quantification of aerosol organic compounds

    NASA Astrophysics Data System (ADS)

    Yang, Liming; Lim, Jaehyun; Yu, Liya E.

    The tests of standard mixtures and four sets of atmospheric particulate samples showed that an acid-wash (AW) pretreatment of fluorocarbon-coated glass fiber filters prior to aerosol sampling enhanced the quantifiable organic compounds for more than 29% (or 66 ng m -3); in particular, 47-273 ng m -3 (21-366%) more water-soluble organic compounds (WSOCs) were measured. When the acid-pretreated filters were employed, up to nine more organic species were measured in the individual daily samples. Because the acid pretreatment reduced the metal contaminants in the glass fiber filters, using the AW filters for aerosol sampling allows higher extraction recoveries of organic compounds. Since the fingerprinting compounds were more accurately determined when the aerosol samples were collected on the AW filters, better assessment of emission sources and toxicity of air pollutants can be obtained.

  20. Evaluating global atmospheric transport of plutonium with dust aerosols

    NASA Astrophysics Data System (ADS)

    Velarde, R.; Arimoto, R.; Gill, T. E.; Kang, C.; Goodell, P.

    2009-12-01

    The resuspension of soils contaminated with radionuclides from nuclear weapons tests is a mechanism by which plutonium can be re-distributed throughout the environment. To better understand the global atmospheric transport of plutonium, we measured the activity of Pu in aerosol samples from four widely separated sites that receive dust from distant sources in both Asia and Africa. High-volume aerosol samples were collected from Barbados (2005 - 2006); Gosan, South Korea (2005 - 2006); Izaña, Canary Islands (1989 - 1996); and Mauna Loa Observatory, Hawaii (2005 - 2006) to evaluate the relationship between Pu activity and mineral dust concentrations (using crustal elements such as aluminum as a dust proxy). The activity of 239,240Pu (239Pu + 240Pu) in the aerosol samples was determined by alpha spectrometry following a series of chemical separations. Concentrations of other elements were determined by a variety of techniques. Pu activity was below the detection limit in many samples. In those samples where it was detected, the Gosan site had the highest dust concentrations and highest total plutonium activity, while Mauna Loa Observatory had the lowest dust concentrations and lowest 239,240Pu activity. The Izaña samples had the second highest concentrations of dust and plutonium activity, while Barbados had the third highest levels of both crustal aerosols and plutonium activity. The dust concentrations are consistent with previous observations at these remote sites, and we propose that the plutonium (primarily from past atmospheric nuclear weapons testing, much of which took place in arid lands) was deposited on erodible soil surfaces and subsequently transported as part of the overall mineral dust load. The results of this study have implications for the global transport and fate of Pu through its association with dust, the biogeochemical and environmental impacts of other substances associated with dust, and the workings of the dust cycle itself.

  1. Stratospheric Aerosol Extinction Retrieval for SCIAMACHY Measurements in Limb Geometry

    NASA Astrophysics Data System (ADS)

    Dörner, S.; Pukite, J.; Penning de Vries, M.; Beirle, S.; Wagner, T.

    2015-12-01

    Techniques for retrieving height resolved information on stratospheric aerosol improved significantly in the past decade with the availability of satellites measurements in limb geometry. Instruments like OMPS, OSIRIS and SCIAMACHY provide height resolved radiance spectra with global coverage. Long term data sets of stratospheric aerosol extinction profiles are important for a detailed investigation of spatial and temporal variation and formation processes (e.g. after volcanic eruptions or in polar stratospheric clouds). Resulting data sets contain vital information for climate models (radiative effect) or chemistry models (reaction surface for heterogeneous chemistry). This study focuses on the SCIAMACHY instrument which measured scattered sunlight in the ultra violet, visible and near infra red spectral range between 2002 and 2012. SCIAMACHY's unique method of alternating measurements in limb and nadir geometry provides co-located profile and column information respectively that can be used to characterize plumes with small horizontal extents. The covered wavelength range potentially provides information on effective micro-physical properties of the aerosol particles. However, scattering on background aerosol constitutes only a small fraction of detected radiance and assumptions on particle characteristics (e.g., size distribution) have to be made which results in potential uncertainties especially for wavelengths below 700 nm and for measurements in backscatter geometry. Methods to reduce these uncertainties are investigated and applied to our newly developed retrieval algorithm. In addition, so called spatial straylight contamination of the measured signal was identified as a significant error source and an empirical correction scheme was developed. Comparisons with SAGE II measurement in occultation geometry and balloon borne measurements with an optical particle counter confirm the viability of our retrieval algorithm.

  2. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  3. Active and passive smoking - New insights on the molecular composition of different cigarette smoke aerosols by LDI-FTICRMS

    NASA Astrophysics Data System (ADS)

    Schramm, Sébastien; Carré, Vincent; Scheffler, Jean-Luc; Aubriet, Frédéric

    2014-08-01

    The aerosol generated when a cigarette is smoked is a significant indoor contaminant. Both smokers and non-smokers can be exposed to this class of pollutants. Nevertheless, they are not exposed to the same kind of smoke. The active smoker breathes in the mainstream smoke (MSS) during a puff, whereas the passive smoker inhales not only the smoke generated by the lit cigarette between two puffs (SSS) but also the smoke exhaled by active smokers (EXS). The aerosol fraction of EXS has until now been poorly documented; its composition is expected to be different from MSS. This study aims to investigate the complex composition of aerosol from EXS to better understand the difference in exposure between active and passive smokers. To address this, the in-situ laser desorption ionisation Fourier transform ion cyclotron mass spectrometry (LDI-FTICRMS) was used to characterise the aerosol composition of EXS from two different smokers. Results clearly indicated many similarities between EXS samples but also significant differences with MSS and SSS aerosol. The comparison of MSS and EXS aerosol allowed the chemicals retained by the active smoker's lungs to be identified, whereas the convolution of the EXS and SSS aerosol compositions were considered relevant to the exposition of a passive smoker. As a consequence, active smokers are thought to be mainly exposed to polar and poorly unsaturated oxygenated and nitrogenated organics, compared with poorly oxygenated but highly unsaturated compounds in passive smokers.

  4. Review of models applicable to accident aerosols

    SciTech Connect

    Glissmeyer, J.A.

    1983-07-01

    Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

  5. Global modeling of tropospheric iodine aerosol

    NASA Astrophysics Data System (ADS)

    Sherwen, Tomás. M.; Evans, Mat J.; Spracklen, Dominick V.; Carpenter, Lucy J.; Chance, Rosie; Baker, Alex R.; Schmidt, Johan A.; Breider, Thomas J.

    2016-09-01

    Natural aerosols play a central role in the Earth system. The conversion of dimethyl sulfide to sulfuric acid is the dominant source of oceanic secondary aerosol. Ocean emitted iodine can also produce aerosol. Using a GEOS-Chem model, we present a simulation of iodine aerosol. The simulation compares well with the limited observational data set. Iodine aerosol concentrations are highest in the tropical marine boundary layer (MBL) averaging 5.2 ng (I) m-3 with monthly maximum concentrations of 90 ng (I) m-3. These masses are small compared to sulfate (0.75% of MBL burden, up to 11% regionally) but are more significant compared to dimethyl sulfide sourced sulfate (3% of the MBL burden, up to 101% regionally). In the preindustrial, iodine aerosol makes up 0.88% of the MBL burden sulfate mass and regionally up to 21%. Iodine aerosol may be an important regional mechanism for ocean-atmosphere interaction.

  6. Aerosol Behavior Log-Normal Distribution Model.

    2001-10-22

    HAARM3, an acronym for Heterogeneous Aerosol Agglomeration Revised Model 3, is the third program in the HAARM series developed to predict the time-dependent behavior of radioactive aerosols under postulated LMFBR accident conditions. HAARM3 was developed to include mechanisms of aerosol growth and removal which had not been accounted for in the earlier models. In addition, experimental measurements obtained on sodium oxide aerosols have been incorporated in the code. As in HAARM2, containment gas temperature, pressure,more » and temperature gradients normal to interior surfaces are permitted to vary with time. The effects of reduced density on sodium oxide agglomerate behavior and of nonspherical shape of particles on aerosol behavior mechanisms are taken into account, and aerosol agglomeration due to turbulent air motion is considered. Also included is a capability to calculate aerosol concentration attenuation factors and to restart problems requiring long computing times.« less

  7. Aerosol generation by raindrop impact on soil

    NASA Astrophysics Data System (ADS)

    Joung, Young Soo; Buie, Cullen R.

    2015-01-01

    Aerosols are investigated because of their significant impact on the environment and human health. To date, windblown dust and sea salt from sea spray through bursting bubbles have been considered the chief mechanisms of environmental aerosol dispersion. Here we investigate aerosol generation from droplets hitting wettable porous surfaces including various classifications of soil. We demonstrate that droplets can release aerosols when they influence porous surfaces, and these aerosols can deliver elements of the porous medium to the environment. Experiments on various porous media including soil and engineering materials reveal that knowledge of the surface properties and impact conditions can be used to predict when frenzied aerosol generation will occur. This study highlights new phenomena associated with droplets on porous media that could have implications for the investigation of aerosol generation in the environment.

  8. Aerosol generation by raindrop impact on soil.

    PubMed

    Joung, Young Soo; Buie, Cullen R

    2015-01-01

    Aerosols are investigated because of their significant impact on the environment and human health. To date, windblown dust and sea salt from sea spray through bursting bubbles have been considered the chief mechanisms of environmental aerosol dispersion. Here we investigate aerosol generation from droplets hitting wettable porous surfaces including various classifications of soil. We demonstrate that droplets can release aerosols when they influence porous surfaces, and these aerosols can deliver elements of the porous medium to the environment. Experiments on various porous media including soil and engineering materials reveal that knowledge of the surface properties and impact conditions can be used to predict when frenzied aerosol generation will occur. This study highlights new phenomena associated with droplets on porous media that could have implications for the investigation of aerosol generation in the environment.

  9. Characterization of aerosols containing microcystin.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Irvin, C Mitch; Kirkpatrick, Barbara; Backer, Lorraine C

    2007-01-01

    Toxic blooms of cyanobacteria are ubiquitous in both freshwater and brackish water sources throughout the world. One class of cyanobacterial toxins, called microcystins, is cyclic peptides. In addition to ingestion and dermal, inhalation is a likely route of human exposure. A significant increase in reporting of minor symptoms, particularly respiratory symptoms was associated with exposure to higher levels of cyanobacteria during recreational activities. Algae cells, bacteria, and waterborne toxins can be aerosolized by a bubble-bursting process with a wind-driven white-capped wave mechanism. The purposes of this study were to: evaluate sampling and analysis techniques for microcystin aerosol, produce aerosol droplets containing microcystin in the laboratory, and deploy the sampling instruments in field studies. A high-volume impactor and an IOM filter sampler were tried first in the laboratory to collect droplets containing microcystins. Samples were extracted and analyzed for microcystin using an ELISA method. The laboratory study showed that cyanotoxins in water could be transferred to air via a bubble-bursting process. The droplets containing microcystins showed a bimodal size distribution with the mass median aerodynamic diameter (MMAD) of 1.4 and 27.8 mum. The sampling and analysis methods were successfully used in a pilot field study to measure microcystin aerosol in situ. PMID:18463733

  10. Immunization by a bacterial aerosol.

    PubMed

    Garcia-Contreras, Lucila; Wong, Yun-Ling; Muttil, Pavan; Padilla, Danielle; Sadoff, Jerry; Derousse, Jessica; Germishuizen, Willem Andreas; Goonesekera, Sunali; Elbert, Katharina; Bloom, Barry R; Miller, Rich; Fourie, P Bernard; Hickey, Anthony; Edwards, David

    2008-03-25

    By manufacturing a single-particle system in two particulate forms (i.e., micrometer size and nanometer size), we have designed a bacterial vaccine form that exhibits improved efficacy of immunization. Microstructural properties are adapted to alter dispersive and aerosol properties independently. Dried "nanomicroparticle" vaccines possess two axes of nanoscale dimensions and a third axis of micrometer dimension; the last one permits effective micrometer-like physical dispersion, and the former provides alignment of the principal nanodimension particle axes with the direction of airflow. Particles formed with this combination of nano- and micrometer-scale dimensions possess a greater ability to aerosolize than particles of standard spherical isotropic shape and of similar geometric diameter. Here, we demonstrate effective application of this biomaterial by using the live attenuated tuberculosis vaccine bacille Calmette-Guérin (BCG). Prepared as a spray-dried nanomicroparticle aerosol, BCG vaccine exhibited high-efficiency delivery and peripheral lung targeting capacity from a low-cost and technically simple delivery system. Aerosol delivery of the BCG nanomicroparticle to normal guinea pigs subsequently challenged with virulent Mycobacterium tuberculosis significantly reduced bacterial burden and lung pathology both relative to untreated animals and to control animals immunized with the standard parenteral BCG.

  11. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  12. Zero-gravity aerosol behavior

    NASA Technical Reports Server (NTRS)

    Edwards, H. W.

    1981-01-01

    The feasibility and scientific benefits of a zero gravity aerosol study in an orbiting laboratory were examined. A macroscopic model was devised to deal with the simultaneous effects of diffusion and coagulation of particles in the confined aerosol. An analytical solution was found by treating the particle coagulation and diffusion constants as ensemble parameters and employing a transformation of variables. The solution was used to carry out simulated zero gravity aerosol decay experiments in a compact cylindrical chamber. The results demonstrate that the limitations of physical space and time imposed by the orbital situation are not prohibitive in terms of observing the history of an aerosol confined under zero gravity conditions. While the absence of convective effects would be a definite benefit for the experiment, the mathematical complexity of the problem is not greatly reduced when the gravitational term drops out of the equation. Since the model does not deal directly with the evolution of the particle size distribution, it may be desirable to develop more detailed models before undertaking an orbital experiment.

  13. Aerosol backscatter studies supporting LAWS

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1989-01-01

    Optimized Royal Signals and Radar Establishment (RSRE), Laser True Airspeed System (LATAS) algorithm for low backscatter conditions was developed. The algorithm converts backscatter intensity measurements from focused continuous-wave (CW) airborne Doppler lidar into backscatter coefficients. The performance of optimized algorithm under marginal backscatter signal conditions was evaluated. The 10.6 micron CO2 aerosol backscatter climatologies were statistically analyzed. Climatologies reveal clean background aerosol mode near 10(exp -10)/kg/sq m/sr (mixing ratio units) through middle and upper troposhere, convective mode associated with planetary boundary layer convective activity, and stratospheric mode associated with volcanically-generated aerosols. Properties of clean background mode are critical to design and simulation studies of Laser Atmospheric Wind Sounder (LAWS), a MSFC facility Instrument on the Earth Observing System (Eos). Previous intercomparisons suggested correlation between aerosol backscatter at CO2 wavelength and water vapor. Field measurements of backscatter profiles with MSFC ground-based Doppler lidar system (GBDLS) were initiated in late FY-88 to coincide with independent program of local rawinsonde releases and overflights by Multi-spectral Atmospheric Mapping Sensor (MAMS), a multi-channel infrared radiometer capable of measuring horizontal and vertical moisture distributions. Design and performance simulation studies for LAWS would benefit from the existence of a relationship between backscatter and water vapor.

  14. Standard aerosols for particle velocimeters

    NASA Technical Reports Server (NTRS)

    Deepark, A.; Ozarski, R.; Thomson, J. A. L.

    1976-01-01

    System consists of laser-scattering counter (LSC) and photographic system. Photographic system provides absolute method of measuring aerosol size-distribution independently of their light scattering properties. LSC comprises 1-mW He/Ne laser, input optics, collecting optics, photodetector, and signal-processing electronics.

  15. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  16. Improvement of Aerosol Optical Depth Retrieval over Hong Kong from a Geostationary Meteorological Satellite Using Critical Reflectance with Background Optical Depth Correction

    NASA Technical Reports Server (NTRS)

    Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim

    2014-01-01

    Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0

  17. The MODIS Aerosol Algorithm, Products and Validation

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Mattoo, S.; Chu, D. A.; Martins, J. V.; Li, R.-R.; Ichoku, C.; Levy, R. C.; Kleidman, R. G.

    2003-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range. These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickness at three visible wavelengths, a measure of the fraction of aerosol optical thickness attributed to the fine mode and several derived parameters including reflected spectral solar flux at top of atmosphere. Over ocean, the aerosol optical thickness is provided in seven wavelengths from 0.47 microns to 2.13 microns. In addition, quantitative aerosol size information includes effective radius of the aerosol and quantitative fraction of optical thickness attributed to the fine mode. Spectral aerosol flux, mass concentration and number of cloud condensation nuclei round out the list of available aerosol products over the ocean. The spectral optical thickness and effective radius of the aerosol over the ocean are validated by comparison with two years of AERONET data gleaned from 133 AERONET stations. 8000 MODIS aerosol retrievals colocated with AERONET measurements confirm that one-standard deviation of MODIS optical thickness retrievals fall within the predicted uncertainty of delta tauapproximately equal to plus or minus 0.03 plus or minus 0.05 tau over ocean and delta tay equal to plus or minus 0.05 plus or minus 0.15 tau over land. 271 MODIS aerosol retrievals co-located with AERONET inversions at island and coastal sites suggest that one-standard deviation of MODIS effective radius retrievals falls within delta r_eff approximately equal to 0.11 microns. The accuracy of the MODIS retrievals suggests that the product can be used to help narrow the uncertainties associated with aerosol radiative forcing of global climate.

  18. Experiences with groundwater contamination

    SciTech Connect

    Not Available

    1984-01-01

    This book discusses developments in combating groundwater contamination. The papers include: Regulation of Groundwater; Utility Experiences Related to Existing and Proposed Drinking Water Regulations; Point-of-Use Treatment Technology to Control Organic and Inorganic Contamination; Hazardous Waste Disposal Practices and Groundwater Contamination; Reverse Osmosis Treatment to Control Inorganic and Volatile Organic Contamination; The Dilemma of New Wells Versus Treatment; Characteristics and Handling of Wastes From Groundwater Treatment Systems; and Removing Solvents to Restore Drinking Water at Darien, Connecticut.

  19. Analysis of the Interaction and Transport of Aerosols with Cloud or Fog during Dragon Campaigns from Aeronet and Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Schafer, J.; Giles, D. M.; Kim, J.; Kim, Y. J.; Sano, I.; Lynch, P.; Pickering, K. E.; Crawford, J. H.; Sinyuk, A.; Smirnov, A.; Trevino, N.

    2014-12-01

    data suggest due to inherent difficulty in observing aerosol properties near clouds from remote sensing observations. These biases of aerosols associated with clouds are even greater for passive satellite remote sensing retrievals of aerosol properties near clouds due to sub-pixel cloud contamination and 3-D effects issues.

  20. Extraction of Aerosol-Deposited Yersinia pestis from Indoor Surfaces To Determine Bacterial Environmental Decay

    PubMed Central

    Bartlett, Ryan A.; Yeager, John J.; Leroux, Brian; Ratnesar-Shumate, Shanna; Dabisch, Paul

    2016-01-01

    ABSTRACT Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies, Yersinia pestis persistence as a function of surface type at 21°C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. IMPORTANCE Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have

  1. Anticandidal activity of pomegranate peel extract aerosol as an applicable sanitizing method.

    PubMed

    Tayel, Ahmed A; El-Tras, Wael F

    2010-03-01

    Pomegranate is a wonderful fruit from the paradise which contains a wide variety of precious phytochemical compounds applicable in the fields of therapeutics and health care. Candida albicans is the most common etiological agent for many clinical mycoses which could lead to human and animal death. Determination of the anticandidal activity of pomegranate peel extracts (PPE), and application of PPE aerosol as sanitizer agent against C. albicans contamination were investigated. Agar diffusion assay and broth microdilution susceptibility test were applied for qualitative and quantitative determining the PPE anticandidal activity, respectively, versus commonly used fungicides. Aerosolization of PPE using an experimentally designed sanitizer room was applied for examining C. albicans sanitation potentiality of extract. PPE exhibited potent anticandidal activity against C. albicans strains comparing with standard fungicides in both used susceptibility techniques. Methanol, ethanol and water extracts were the most effective for inhibiting C. albicans growth. PPE aerosol was an efficient method for complete sanitizing of semi-closed places against C. albicans growth. Application of PPE aerosol is a proper sanitizing method for preventing C. albicans contamination and growth in suspected places. PMID:19207830

  2. Improved simulation of aerosol, cloud, and density measurements by shuttle lidar

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. W.

    1981-01-01

    Data retrievals are simulated for a Nd:YAG lidar suitable for early flight on the space shuttle. Maximum assumed vertical and horizontal resolutions are 0.1 and 100 km, respectively, in the boundary layer, increasing to 2 and 2000 km in the mesosphere. Aerosol and cloud retrievals are simulated using 1.06 and 0.53 microns wavelengths independently. Error sources include signal measurement, conventional density information, atmospheric transmission, and lidar calibration. By day, tenuous clouds and Saharan and boundary layer aerosols are retrieved at both wavelengths. By night, these constituents are retrieved, plus upper tropospheric, stratospheric, and mesospheric aerosols and noctilucent clouds. Density, temperature, and improved aerosol and cloud retrievals are simulated by combining signals at 0.35, 1.06, and 0.53 microns. Particlate contamination limits the technique to the cloud free upper troposphere and above. Error bars automatically show effect of this contamination, as well as errors in absolute density nonmalization, reference temperature or pressure, and the sources listed above. For nonvolcanic conditions, relative density profiles have rms errors of 0.54 to 2% in the upper troposphere and stratosphere. Temperature profiles have rms errors of 1.2 to 2.5 K and can define the tropopause to 0.5 km and higher wave structures to 1 or 2 km.

  3. Aerosol classification by airborne high spectral resolution lidar observations

    NASA Astrophysics Data System (ADS)

    Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A.

    2012-10-01

    During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE), 2006 (SAMUM-1) and 2008 (SAMUM-2 and EUCAARI), airborne High Spectral Resolution Lidar (HSRL) and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures - Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning aerosol, anthropogenic pollution aerosol, and marine aerosol have been studied. On the basis of this extensive HSRL data set, we present an aerosol classification scheme which is also capable to identify mixtures of different aerosol types. We calculated mixing lines that allowed us to determine the contributing aerosol types. The aerosol classification scheme was validated with in-situ measurements and backward trajectory analyses. Our results demonstrate that the developed aerosol mask is capable to identify complex stratifications with different aerosol types throughout the atmosphere.

  4. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  5. Statement of contamination problem

    NASA Technical Reports Server (NTRS)

    Hoffler, W.

    1985-01-01

    Space station contamination information is given. There are five major areas in which there are task requirements: (1) potential contaminants need to be identified, i.e., both the sources and types of contaminants, (2) the scope and magnitude of contaminant effects need to be determined, i.e., toxicological effects, microbacteriological effects and impurities, (3) mathematical models for predictive methods need to be developed. (4) state-of-the-art and advanced technologies for monitoring contaminants and for methods of decontamination need to be identified, and (5) automated monitoring and control systems need to be designed.

  6. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  7. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G

    2010-05-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction.

  8. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H.; Henry, Mike; Baden, Daniel G.

    2009-01-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1 h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5–10 μg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m3. The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. PMID:19879288

  9. A New Raman DIAL Technique for Measuring Stratospheric Ozone in the Presence of Volcanic Aerosols

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Mcgee, Thomas J.; Gross, Michael; Heaps, William S.; Ferrare, Richard

    1992-01-01

    This paper describes a new lidar scheme to measure stratospheric ozone in the presence of heavy volcanic aerosol loading. The eruptions of the Philippine volcano Pinatubo during June 1991 ejected large amounts of sulfur dioxide into the atmosphere to altitudes of at least 30 km. The resulting aerosols have severely affected the measurements of stratospheric ozone when using traditional Rayleigh differential absorption lidar (DIAL) technique, in which the scattering mechanism is almost entirely Rayleigh and which assumes a small amount or no aerosols. In order to extract an ozone profile in the regions below about 30 km where the Rayleigh lidar returns are contaminated by aerosol scattering from Mt. Pinatubo cloud, we have used a Raman lidar technique, where the scattering mechanism depends solely on molecular nitrogen. In this scheme there is no aerosol scattering component to the backscattered lidar return. Using this technique in conjunction with the Rayleigh DIAL measurement, the GSFC stratospheric ozone lidar has measured ozone profiles between 15 and 50 km during the recently held UARS correlative measurement campaign (February-March 1992) at JPL's Table Mountain Facility in California.

  10. Effect of Aerosols on Cloud Field with Satellite-Derived Data and GCM Simulation

    NASA Technical Reports Server (NTRS)

    Suzuki, Kentaroh; Nakajima, Teruyuki; Numagati, Atusi; Takemura, Toshihiko; Kawamoto, Kazuaki; Higurashi, Akiko

    2001-01-01

    Numerical experiment was performed using an general circulation model (GCM) including aerosol indirect effect into water cloud and the simulated global distribution of cloud droplet radii was compared with the global distribution of cloud effective radii retrieved from Advanced Very High Resolution Radiometer (AVHRR). Comparisons of GCM calculation with AVHRR retrieval showed that our GCM generally can simulate the global characteristics of cloud droplet radii such as a land-sea contrast associated with difference of aerosol abundance and coastal region feature due to aerosol injection from adjacent continental area. AVHRR retrieval and GCM simulation, however, are turned out to show disagreement over tropical region. AVHRR retrieval may tend to overestimate droplet radii due to the contamination of signal by drizzles and ice particles, whereas our GCM does not treat aerosol indirect effect in deep convective clouds predominant over tropics. Over equatorial central Pacific, where satellite retrieval may suffer from statistical biases, satellite retrieval and GCM simulation are also found to be different. Keywords: aerosol indirect effect

  11. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  12. Deriving High Resolution UV Aerosol Optical Depth over East Asia using CAI-OMI Joint Retrieval

    NASA Astrophysics Data System (ADS)

    Go, S.; Kim, J.; KIM, M.; Lee, S.

    2015-12-01

    Monitoring aerosols using near UV spectral region have been successfully performed over decades by Ozong Monitoring Instruments (OMI) with benefit of strong aerosol signal over continuous dark surface reflectance, both land and ocean. However, because of big foot print of OMI, the cloud contamination error was a big issue in the UV aerosol algorithm. In the present study, high resolution UV aerosol optical depth (AOD) over East Asia was derived by collaborating the Greenhouse gases Observing SATellite/Thermal And Near infrared Sensor for carbon Observation (GOSAT/TANSO)-Cloud and Aerosol Imager (CAI) and OMI together. AOD of 0.1 degree grid resolution was retrieved using CAI band 1 (380nm) by bring OMI lv.2 aerosol type, single scattering albedo, and aerosol layer peak height in 1 degree grid resolution. Collocation of the two dataset within the 0.5 degree grid with time difference of OMI and CAI less than 5 minute was selected. Selected region becomes wider as it goes to the higher latitude. Also, calculated degradation factor of 1.57 was applied to CAI band1 (380nm) by comparing normalized radiance and Lambertian Equivalent Reflectivity (LER) of both sensors. The calculated degradation factor was reasonable over dark scene, but inconsistent over cirrus cloud and bright area. Then, surface reflectance was developed by compositing CAI LER minimum data over three month period, since the infrequent sampling rate associated with the three-day recursion period of GOSAT and the narrow CAI swath of 1000 km. To retrieve AOD, look up table (LUT) was generated using radiative transfer model VLIDORT NGST. Finally, the retrieved AOD was validated with AERONET ground based measurement data during the Dragon-NE Asia campaign in 2012.

  13. A new method for assessing the aerosol to rain chemical composition relationships

    NASA Astrophysics Data System (ADS)

    Bourcier, L.; Masson, O.; Laj, P.; Chausse, P.; Pichon, J. M.; Paulat, P.; Bertrand, G.; Sellegri, K.

    2012-11-01

    Measurements were conducted at three sampling sites located at different altitudes in the centre of France during two years, both in the rain and aerosol phases. The rain was sampled at a boundary layer site while the aerosol particles were collected at two different altitudes, which allow a better characterization of the vertical atmospheric column being washed out. Various chemical analyses were performed to characterize reactive (NO3-, SO42-, NH4+ and K+) and inert (7Be, 210Pb and 137Cs) species transfer from the aerosol to the rain phase. This set-up was ideal to calculate the washout ratio (WR) using different concentrations of the aerosol phase. Using the classical WR calculated with the aerosol concentration sampled at the same altitude than the rain collectors, we observed a seasonality of WR, with higher value in winter and lower value in summer for radionuclides. At the higher altitude site, local contaminations do not influence the aerosol concentration, which then should be representative of the whole atmospheric column. The annual variability is high at this site maybe because aerosol concentrations can be less concentrated than the whole atmospheric column when this later one is not well mixed. In order to increase the reliability of the WR, we propose a new method for calculating washout ratio from measurements at the rain collector level. This new calculation takes into account the height of the boundary layer, we observed that it decreased the variability of the washout ratio (for 7Be, 210Pb and NO3-), with less dependence to the season.

  14. Evaluating soil contamination

    SciTech Connect

    Beyer, W.

    1990-07-01

    The compilation was designed to help U.S. Fish and Wildlife Service contaminant specialists evaluate the degree of contamination of a soil, based on chemical analyses. Included are regulatory criteria, opinions, brief descriptions of scientific articles, and miscellaneous information that might be useful in making risk assessments. The intent was to make hard-to-obtain material readily available to contaminant specialists, but not to critique the material or develop new criteria. The compilation is to be used with its index, which includes about 200 contaminants. Entries include soil contaminant criteria from other countries, contaminant guidelines for applying sewage sludge to soil, guidelines for evaluating sediments, background soil concentrations for various elements, citations to scientific articles that may help estimate the potential movement of soil contaminants into wildlife food chains, and a few odds and ends. Articles on earthworms were emphasized because they are a natural bridge between soil and many species of wildlife.

  15. Characterization of the 3D distribution of ozone and coarse aerosols in the Troposphere using IASI thermal infrared satellite observations

    NASA Astrophysics Data System (ADS)

    Cuesta, J.; Eremenko, M.; Dufour, G.; Hoepfner, M.; Orphal, J.

    2012-04-01

    Both tropospheric ozone and aerosols significantly affect air quality in megacities during pollution events. Moreover, living conditions may be seriously aggravated when such agglomerations are affected by wildfires (e.g. Russian fires over Moscow in 2010), which produce smoke and pollutant precursors, or even during dense desert dust outbreaks (e.g. recurrently over Beijing or Cairo). Moreover, since aerosols diffuse and absorb solar radiation, they have a direct impact on the photochemical production of tropospheric ozone. These interactions during extreme events of high aerosol loads are nowadays poorly known, even though they may significantly affect the tropospheric photochemical equilibrium. In order to address these issues, we have developed a new retrieval technique to jointly characterize the 3D distribution of both tropospheric ozone and coarse aerosols, using spaceborne observations of the infrared spectrometer IASI onboard MetOp-A satellite. Our methodology is based on the inversion of Earth radiance spectra in the atmospheric window from 8 to 12 μm measured by IASI and a «Tikhonov-Philipps»-type regularisation with constraints varying in altitude (as in [Eremenko et al., 2008, GRL; Dufour et al., 2010 ACP]) to simultaneously retrieve ozone profiles, aerosol optical depths at 10 μm and aerosol layer effective heights. Such joint retrieval prevents biases in the ozone profile retrieval during high aerosol load conditions. Aerosol retrievals using thermal infrared radiances mainly account for desert dust and the coarse fraction of biomass burning aerosols. We use radiances from 15 micro-windows within the 8-12 μm atmospheric window, which were carefully chosen (following [Worden et al., 2006 JGR]) for extracting the maximum information on aerosols and ozone and minimizing contamination by other species. We use the radiative transfer code KOPRA, including line-by-line calculations of gas absorption and single scattering for aerosols [Hoepfner et al

  16. Aerosol resuspension from fabric: implications for personal monitoring in the beryllium industry.

    PubMed

    Bohne, J E; Cohen, B S

    1985-02-01

    The fabric used for work clothing at an industrial site can significantly influence personal monitor (PM) exposure estimates because dust resuspension from clothing can increase the concentration at the sampler inlet. The magnitude of the effect depends on removal forces and on the interaction of the contaminant particles with work garments. Aerosol deposition and resuspension on cotton and Nomex aramid fabrics was evaluated at a beryllium refinery. Electrostatically charged cotton backdrops collected more beryllium than neutral controls, but electronegative Nomex backdrops did not. Moving fabrics collected more beryllium than did stationary controls. When contaminated fabrics were agitated, PMs mounted 2.5 cm in front of the fabric collected more beryllium than monitors above the fabric, positioned to simulate the nose or mouth. The difference between the air concentrations measured by these PMs increased with Be loading and tended to level off for highly contaminated fabric. Cotton resuspended a larger fraction of its contaminant load than Nomex. These results are consistent with current knowledge of the behavior of particles on fabric fibers. Aerosol resuspension from garments is an important consideration in assessing inhalation exposure to toxic dusts. A garment may attract and retain toxic particles. This contamination is then available for later resuspension.

  17. Aerosol resuspension from fabric: implications for personal monitoring in the beryllium industry

    SciTech Connect

    Bohne, J.E. Jr.; Cohen, B.S.

    1985-02-01

    The fabric used for work clothing at an industrial site can significantly influence personal monitor (PM) exposure estimates because dust resuspension from clothing can increase the concentration at the sampler inlet. The magnitude of the effect depends on removal forces and on the interaction of the contaminant particles with work garments. Aerosol deposition and resuspension on cotton and Nomex aramid fabrics was evaluated at a beryllium refinery. Electrostatically charged cotton backdrops collected more beryllium than neutral controls, but electronegative Nomex backdrops did not. Moving fabrics collected more beryllium than did stationary controls. When contaminated fabrics were agitated, PMs mounted 2.5 cm in front of the fabric collected more beryllium than monitors above the fabric, positioned to simulate the nose or mouth. The difference between the air concentrations measured by these PMs increased with Be loading and tended to level off for highly contaminated fabric. Cotton resuspended a larger fraction of its contaminant load than Nomex. These results are consistent with current knowledge of the behavior of particles on fabric fibers. Aerosol resuspension from garments is an important consideration in assessing inhalation exposure to toxic dusts. A garment may attract and retain toxic particles. This contamination is then available for later resuspension.

  18. Aerosol resuspension from fabric: implications for personal monitoring in the beryllium industry.

    PubMed

    Bohne, J E; Cohen, B S

    1985-02-01

    The fabric used for work clothing at an industrial site can significantly influence personal monitor (PM) exposure estimates because dust resuspension from clothing can increase the concentration at the sampler inlet. The magnitude of the effect depends on removal forces and on the interaction of the contaminant particles with work garments. Aerosol deposition and resuspension on cotton and Nomex aramid fabrics was evaluated at a beryllium refinery. Electrostatically charged cotton backdrops collected more beryllium than neutral controls, but electronegative Nomex backdrops did not. Moving fabrics collected more beryllium than did stationary controls. When contaminated fabrics were agitated, PMs mounted 2.5 cm in front of the fabric collected more beryllium than monitors above the fabric, positioned to simulate the nose or mouth. The difference between the air concentrations measured by these PMs increased with Be loading and tended to level off for highly contaminated fabric. Cotton resuspended a larger fraction of its contaminant load than Nomex. These results are consistent with current knowledge of the behavior of particles on fabric fibers. Aerosol resuspension from garments is an important consideration in assessing inhalation exposure to toxic dusts. A garment may attract and retain toxic particles. This contamination is then available for later resuspension. PMID:3976498

  19. 8. Atmospheric, water, and soil contamination after Chernobyl.

    PubMed

    Yablokov, Alexey V; Nesterenko, Vassily B; Nesterenko, Alexey V

    2009-11-01

    Air particulate activity over all of the Northern Hemisphere reached its highest levels since the termination of nuclear weapons testing--sometimes up to 1 million times higher than before the Chernobyl contamination. There were essential changes in the ionic, aerosol, and gas structure of the surface air in the heavily contaminated territories, as measured by electroconductivity and air radiolysis. Many years after the catastrophe aerosols from forest fires have dispersed hundreds of kilometers away. The Chernobyl radionuclides concentrate in sediments, water, plants, and animals, sometimes 100,000 times more than the local background level. The consequences of such a shock on aquatic ecosystems is largely unclear. Secondary contamination of freshwater ecosystems occurs as a result of Cs-137 and Sr-90 washout by the high waters of spring. The speed of vertical migration of different radionuclides in floodplains, lowland moors, peat bogs, etc., is about 2-4 cm/year. As a result of this vertical migration of radionuclides in soil, plants with deep root systems absorb them and carry the ones that are buried to the surface again. This transfer is one of the important mechanisms, observed in recent years, that leads to increased doses of internal irradiation among people in the contaminated territories. PMID:20002050

  20. 8. Atmospheric, water, and soil contamination after Chernobyl.

    PubMed

    Yablokov, Alexey V; Nesterenko, Vassily B; Nesterenko, Alexey V

    2009-11-01

    Air particulate activity over all of the Northern Hemisphere reached its highest levels since the termination of nuclear weapons testing--sometimes up to 1 million times higher than before the Chernobyl contamination. There were essential changes in the ionic, aerosol, and gas structure of the surface air in the heavily contaminated territories, as measured by electroconductivity and air radiolysis. Many years after the catastrophe aerosols from forest fires have dispersed hundreds of kilometers away. The Chernobyl radionuclides concentrate in sediments, water, plants, and animals, sometimes 100,000 times more than the local background level. The consequences of such a shock on aquatic ecosystems is largely unclear. Secondary contamination of freshwater ecosystems occurs as a result of Cs-137 and Sr-90 washout by the high waters of spring. The speed of vertical migration of different radionuclides in floodplains, lowland moors, peat bogs, etc., is about 2-4 cm/year. As a result of this vertical migration of radionuclides in soil, plants with deep root systems absorb them and carry the ones that are buried to the surface again. This transfer is one of the important mechanisms, observed in recent years, that leads to increased doses of internal irradiation among people in the contaminated territories.

  1. Fibrous-glass aerosols: a literature review. Special report. [On nuclear submarines

    SciTech Connect

    Laverty, B.R.

    1987-10-02

    The submarine atmospheric is a topic of interest, considering that once submerged, the craft relies on its own electrostatic precipitators (ESP's), scrubbers, and filters to create, ideally, an environment with minimal aerosolized toxic materials and other by-products. Historically, atmosphere sampling aboard nuclear submarines has shown contaminants. Other contaminants include: ozone, (major source: by-product of the ESP's); freon, (major source: ship's refrigeration system and air-conditioning plants); hydrogen, (major source: ship's batteries); carbon dioxide, (major source: human respiration); and carbon monoxide, (major source: cigarette smoking). Contaminants tested for but not found were elemental mercury and asbestos. Considering that asbestos is no longer recommended for use, secondary to its carcinogenic and co-carcinogenic qualities, fibrous glass has become a common substitute. One use of fibrous glass aboard the Ohio class submarine is acoustic and thermal insulation around perforated ducting, which runs through many exposed, high traffic spaces, i.e. crew's berthing spaces. Although the raw fibrous glass is protected from the environment it is possible, through natural wear and tear of the housing material, that at some time the insulating material may become exposed and mechanically aerosolized. Obvious questions then are: a) do submarine aerosols contain fiber glass, and b) are there health hazards related to the inhalation of these fibers. This paper reviews the current knowledge as to the health hazard of exposure.

  2. How We Can Constrain Aerosol Type Globally

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    2016-01-01

    In addition to aerosol number concentration, aerosol size and composition are essential attributes needed to adequately represent aerosol-cloud interactions (ACI) in models. As the nature of ACI varies enormously with environmental conditions, global-scale constraints on particle properties are indicated. And although advanced satellite remote-sensing instruments can provide categorical aerosol-type classification globally, detailed particle microphysical properties are unobtainable from space with currently available or planned technologies. For the foreseeable future, only in situ measurements can constrain particle properties at the level-of-detail required for ACI, as well as to reduce uncertainties in regional-to-global-scale direct aerosol radiative forcing (DARF). The limitation of in situ measurements for this application is sampling. However, there is a simplifying factor: for a given aerosol source, in a given season, particle microphysical properties tend to be repeatable, even if the amount varies from day-to-day and year-to-year, because the physical nature of the particles is determined primarily by the regional environment. So, if the PDFs of particle properties from major aerosol sources can be adequately characterized, they can be used to add the missing microphysical detail the better sampled satellite aerosol-type maps. This calls for Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM). We are defining a relatively modest and readily deployable, operational aircraft payload capable of measuring key aerosol absorption, scattering, and chemical properties in situ, and a program for characterizing statistically these properties for the major aerosol air mass types, at a level-of-detail unobtainable from space. It is aimed at: (1) enhancing satellite aerosol-type retrieval products with better aerosol climatology assumptions, and (2) improving the translation between satellite-retrieved aerosol optical properties and

  3. CCN activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-01-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3), contains less volatile compounds than the primary aliphatic amine (BA) aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. Higher CCN activity (κ > 0.3) was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2), as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3). Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss) settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that

  4. Satellite stratospheric aerosol measurement validation

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.

    1984-01-01

    The validity of the stratospheric aerosol measurements made by the satellite sensors SAM II and SAGE was tested by comparing their results with each other and with results obtained by other techniques (lider, dustsonde, filter, and impactor). The latter type of comparison required the development of special techniques that convert the quantity measured by the correlative sensor (e.g., particle backscatter, number, or mass) to that measured by the satellite sensor (extinction) and quantitatively estimate the uncertainty in the conversion process. The results of both types of comparisons show agreement within the measurement and conversion uncertainties. Moreover, the satellite uncertainty is small compared to aerosol natural variability (caused by seasonal changes, volcanoes, sudden warmings, and vortex structure). It was concluded that the satellite measurements are valid.

  5. Satellite stratospheric aerosol measurement validation

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.

    1984-01-01

    The validity of the stratospheric aerosol measurements made by the satellite sensors SAM II and SAGE was tested by comparing their results with each other and with results obtained by other techniques (lider, dustsonde, filter, and impactor). The latter type of comparison required the development of special techniques that convert the quantity measured by the correlative sensor (e.g. particle backscatter, number, or mass) to that measured by the satellite sensor (extinction) and quantitatively estimate the uncertainty in the conversion process. The results of both types of comparisons show agreement within the measurement and conversion uncertainties. Moreover, the satellite uncertainty is small compared to aerosol natural variability (caused by seasonal changes, volcanoes, sudden warmings, and vortex structure). It was concluded that the satellite measurements are valid.

  6. Aerosol Modeling for the Global Model Initiative

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.

    2001-01-01

    The goal of this project is to develop an aerosol module to be used within the framework of the Global Modeling Initiative (GMI). The model development work will be preformed jointly by the University of Michigan and AER, using existing aerosol models at the two institutions as starting points. The GMI aerosol model will be tested, evaluated against observations, and then applied to assessment of the effects of aircraft sulfur emissions as needed by the NASA Subsonic Assessment in 2001. The work includes the following tasks: 1. Implementation of the sulfur cycle within GMI, including sources, sinks, and aqueous conversion of sulfur. Aerosol modules will be added as they are developed and the GMI schedule permits. 2. Addition of aerosol types other than sulfate particles, including dust, soot, organic carbon, and black carbon. 3. Development of new and more efficient parameterizations for treating sulfate aerosol nucleation, condensation, and coagulation among different particle sizes and types.

  7. Aerosol properties in Titan's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Lavvas, Panayotis; Koskinen, Tommi; Royer, Emilie; Rannou, Pascal; West, Robert

    2016-06-01

    Multiple Cassini observations reveal that the abundant aerosol particles in Titan's atmosphere are formed at high altitudes, particularly in the thermosphere. They subsequently fall towards the lower atmosphere and in their path their size, shape, and population change in reflection to the variable atmospheric condition. Although multiple observations can help us retrieve information for the aerosol properties in the lower atmosphere, we have limited information for the aerosol properties between their formation region in the thermosphere and the upper region of the main haze layer or the detached aerosol layer. Observations at UV wavelengths are the only way to probe this part of the atmosphere and help us retrieve the aerosol properties. The presentation will provide an overview of the available observations, and discuss their implications for the production and evolution of Titan's aerosols.

  8. Aerosol volatility in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  9. Validation of MODIS Aerosol Retrieval Over Ocean

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Mattoo, Shana; Levy, Robert; Chu, D. Allen; Holben, Brent N.; Dubovik, Oleg; Ahmad, Ziauddin; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) algorithm for determining aerosol characteristics over ocean is performing with remarkable accuracy. A two-month data set of MODIS retrievals co-located with observations from the AErosol RObotic NETwork (AERONET) ground-based sunphotometer network provides the necessary validation. Spectral radiation measured by MODIS (in the range 550 - 2100 nm) is used to retrieve the aerosol optical thickness, effective particle radius and ratio between the submicron and micron size particles. MODIS-retrieved aerosol optical thickness at 660 nm and 870 nm fall within the expected uncertainty, with the ensemble average at 660 nm differing by only 2% from the AERONET observations and having virtually no offset. MODIS retrievals of aerosol effective radius agree with AERONET retrievals to within +/- 0.10 micrometers, while MODIS-derived ratios between large and small mode aerosol show definite correlation with ratios derived from AERONET data.

  10. Ice-condenser aerosol tests

    SciTech Connect

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K. )

    1991-09-01

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between {approximately}0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m{sup 3}/s resulted in stable thermal stratification whereas flows less than 0.1 m{sup 3}/s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs.

  11. Initial steps of aerosol growth

    NASA Astrophysics Data System (ADS)

    Kulmala, M.; Laakso, L.; Lehtinen, K. E. J.; Riipinen, I.; Dal Maso, M.; Anttila, T.; Kerminen, V.-M.; Hõrrak, U.; Vana, M.; Tammet, H.

    2004-12-01

    The formation and growth of atmospheric aerosols depend on several steps, namely nucleation, initial steps of growth and subsequent - mainly condensational - growth. This work focuses on the initial steps of growth, meaning the growth right after nucleation, where the interplay of curvature effects and thermodynamics has a significant role on the growth kinetics. More specifically, we investigate how ion clusters and aerosol particles grow from 1.5 nm to 20 nm (diameter) in atmospheric conditions using experimental data obtained by air ion and aerosol spectrometers. The measurements have been performed at a boreal forest site in Finland. The observed trend that the growth rate seems to increase as a function of size can be used to investigate possible growth mechanisms. Such a growth rate is consistent with a recently suggested nano-Köhler mechanism, in which growth is activated at a certain size with respect to condensation of organic vapors. The results also imply that charge-enhanced growth associated with ion-mediated nucleation plays only a minor role in the initial steps of growth, since it would imply a clear decrease of the growth rate with size. Finally, further evidence was obtained on the earlier suggestion that atmospheric nucleation and the subsequent growth of fresh nuclei are likely to be uncoupled phenomena via different participating vapors.

  12. Initial steps of aerosol growth

    NASA Astrophysics Data System (ADS)

    Kulmala, O.; Laakso, L.; Lehtinen, K. E. J.; Riipinen, I.; Dal Maso, M.; Anttila, T.; Kerminen, V.-M.; Hõrrak, U.; Vana, M.; Tammet, H.

    2004-09-01

    The formation and growth of atmospheric aerosols depend on several steps, namely nucleation, initial steps of growth and subsequent - mainly condensational - growth. This work focuses on the initial steps of growth, meaning the growth right after nucleation, where the interplay of curvature effects and thermodynamics has a significant role on the growth kinetics. More specifically, we investigate how ion clusters and aerosol particles grow from 1.5 nm to 20 nm in atmospheric conditions using experimental data obtained by air ion and aerosol spectrometers. The measurements have been performed at a boreal forest site in Finland. The observed trend that the growth rate seems to increase as a function of size can be used to investigate possible growth mechanisms. Such a growth rate is consistent with a recently suggested nano-Köhler mechanism, in which growth is activated at a certain size with respect to condensation of organic vapors. The results also imply that charge-enhance growth associated with ion-mediated nucleation plays only a minor role in the initial steps of growth, since it would imply a clear decrease of the growth rate with size. Finally, further evidence was obtained on the earlier suggestion that atmospheric nucleation and the subsequent growth of fresh nuclei are likely to be uncoupled phenomena via different participating vapors.

  13. The European aerosol budget in 2006

    NASA Astrophysics Data System (ADS)

    Aan de Brugh, J. M. J.; Schaap, M.; Vignati, E.; Dentener, F.; Kahnert, M.; Sofiev, M.; Huijnen, V.; Krol, M. C.

    2011-02-01

    This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension). We model that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95%) and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%). We model transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we underestimate the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match), while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional) aerosol budgets, as presented in the current study.

  14. The European aerosol budget in 2006

    NASA Astrophysics Data System (ADS)

    Aan de Brugh, J. M. J.; Schaap, M.; Vignati, E.; Dentener, F.; Kahnert, M.; Sofiev, M.; Huijnen, V.; Krol, M. C.

    2010-09-01

    This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension). We observe that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95%) and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%). We observe transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we observe an underestimation of the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match), while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional) aerosol budgets, as presented in the current study.

  15. Aerosol extinction measurements with CO2-lidar

    NASA Technical Reports Server (NTRS)

    Hagard, Arne; Persson, Rolf

    1992-01-01

    With the aim to develop a model for infrared extinction due to aerosols in slant paths in the lower atmosphere we perform measurements with a CO2-lidar. Earlier measurements with a transmissometer along horizontal paths have been used to develop relations between aerosol extinction and meteorological parameters. With the lidar measurements we hope to develop corresponding relations for altitude profiles of the aerosol extinction in the infrared. An important application is prediction of detection range for infrared imaging systems.

  16. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  17. Aerosol classification by airborne high spectral resolution lidar observations

    NASA Astrophysics Data System (ADS)

    Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A.

    2013-03-01

    During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE), 2006 (SAMUM-1) and 2008 (SAMUM-2 and EUCAARI), airborne High Spectral Resolution Lidar (HSRL) and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures - Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning mixture, anthropogenic pollution aerosol, and marine aerosol have been studied. On the basis of this extensive HSRL data set, we present an aerosol classification scheme which is also capable to identify mixtures of different aerosol types. We calculated mixing lines that allowed us to determine the contributing aerosol types. The aerosol classification scheme was supported by backward trajectory analysis and validated with in-situ measurements. Our results demonstrate that the developed aerosol mask is capable to identify complex stratifications with different aerosol types throughout the atmosphere.

  18. Aerosol from Organic Nitrogen in the Southeast United States

    EPA Science Inventory

    Biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosol in the southeastern United States. During the Southern Oxidant and Aerosol Study (SOAS), a portion of ambient organic aerosol was attributed to isoprene oxidation and organic nitrogen from BVO...

  19. Physical and Chemical Properties of Anthropogenic Aerosols: An Overview

    EPA Science Inventory

    Aerosol chemical composition is complex. Combustion aerosols can comprise tens of thousands of organic compounds, refractory brown and black carbon, heavy metals, cations, anions, salts, and other inorganic phases. Aerosol organic matter normally contains semivolatile material th...

  20. What is the "Clim-Likely" aerosol product?

    Atmospheric Science Data Center

    2014-12-08

    ... model were medium and coarse mode mineral dust, sulfate, sea salt, black carbon, and carbonaceous aerosols. Five aerosol air mass "Mixing ... component particles in the column for climatologically common aerosol air masses. Each sub-group identifies the dominant particles ...

  1. NASA GES DISC Level 2 Aerosol Analysis and Visualization Services

    NASA Technical Reports Server (NTRS)

    Wei, Jennifer; Petrenko, Maksym; Ichoku, Charles; Yang, Wenli; Johnson, James; Zhao, Peisheng; Kempler, Steve

    2015-01-01

    Overview of NASA GES DISC Level 2 aerosol analysis and visualization services: DQViz (Data Quality Visualization)MAPSS (Multi-sensor Aerosol Products Sampling System), and MAPSS_Explorer (Multi-sensor Aerosol Products Sampling System Explorer).

  2. AEROSOL INDUSTRY SUCCESS IN REDUCING CFC PROPELLANT USAGE

    EPA Science Inventory

    Part I of this report discusses the U.S. aerosol industry's experience in converting from chlorofluorocarbon (CFC) propellants to alternative aerosol formulations. Detailed examples of non-CFC formulations are provided for 28 categories of aerosol products. ydrocarbon propellants...

  3. Spatial variation of aerosol optical properties in North China Plain

    NASA Astrophysics Data System (ADS)

    Fan, Xuehua

    2013-04-01

    The column-integrated optical properties of aerosol in Beijing and Xianghe situated at North China Plain were investigated based on Sun/sky radiometer measurements made at Aerosol Robotic Network (AERONET) sites. Only version 2 and level 2 quality-assured data were presented and analyzed in this paper. Time intervals differ for the two sites, with Beijing having 9 years of data (Mar.-May, 2001; Apr., 2002-Dec., 2011),while Xianghe having 6 years of data (Mar.-Apr., 2001;Sep., 2004-Dec.,2011). Monthly mean 500 nm AOT values reach a maximum in June (0.95) and exceed 0.55 from March through September, and the minimum values occur during the late fall and winter months of November through February at Beijing. The monthly mean AOT values at Xianghe are very close to those measured at Beijing. The absolute differences of AOT between the two sites are less than 0.1 except in June and July. The reason of large difference in June and July is the frequently cloud contamination in summer result in the monthly means over the two sites computed from a large number of measurements of different date. The monthly averaged AOT with the same date in June and July are re-computed and the absolute difference of AOT between Beijing and Xianghe reduced to 0.01 and 0.03 in June and July respectively. The monthly mean Angstrom Exponent (AE) in Beijing and Xianghe sites are very close, with the absolute difference less than 0.075. The monthly mean AE in the two sites varied between ~1.0 and ~1.3 except in spring (March-May), therefore clearly dominated by fine mode aerosol for most of the year. All monthly averaged SSA at Beijing showed much lower value as compared to Xianghe though the seasonal variations are similar for the two sites, which indicates that aerosol absorption is greater in Beijing. All monthly averaged imaginary part of refractive index at Beijing has much higher value than Xianghe. The absolute differences of SSA between the two sites range from 0.016 to 0.037 except that

  4. Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim

    2006-01-01

    Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.

  5. The boiling point of stratospheric aerosols.

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  6. Assessing new remote sensing aerosol detection algorithms

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-02-01

    Atmospheric aerosols affect the weather and climate by changing cloud formation and the energy balance and, depending on their type and concentration, can negatively affect air quality. Important atmospheric aerosols include dust, ash, volcanic sulfate aerosols, sea salt, biogenic particles, urban/industrial pollution, and smoke. For more than a decade, the twin Moderate Resolution Imaging Spectroradiometers (MODIS) aboard NASA's Aqua and Terra satellites have provided regular global assessments of aerosol loading, and now, following its 2011 launch, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite is ready to contribute to that assessment.

  7. Photochemistry of Model Organic Aerosol Systems

    NASA Astrophysics Data System (ADS)

    Mang, S. A.; Bateman, A. P.; Dailo, M.; Do, T.; Nizkorodov, S. A.; Pan, X.; Underwood, J. S.; Walser, M. L.

    2007-05-01

    Up to 90 percent of urban aerosol particles have been shown to contain organic molecules. Reactions of these particles with atmospheric oxidants and/or sunlight result in large changes in their composition, toxicity, and ability to act as cloud condensation nuclei. For this reason, chemistry of model organic aerosol particles initiated by oxidation and direct photolysis is of great interest to atmospheric, climate, and health scientists. Most studies in this area have focused on identifying the products of oxidation of the organic aerosols, while the products of direct photolysis of the resulting molecules remaining in the aerosol particle have been left mostly unexplored. We have explored direct photolytic processes occurring in selected organic aerosol systems using infrared cavity ringdown spectroscopy to identify small gas phase products of photolysis, and mass-spectrometric and photometric techniques to study the condensed phase products. The first model system was secondary organic aerosol formed from the oxidation of several monoterpenes by ozone in the presence and absence of NOx, under different humidities. The second system modeled after oxidatively aged primary organic aerosol particles was a thin film of either alkanes or saturated fatty acids oxidized in several different ways, with the oxidation initiated by ozone, chlorine atom, or OH. In every case, the general conclusion was that the photochemical processing of model organic aerosols is significant. Such direct photolysis processes are believed to age organic aerosol particles on time scales that are short compared to the particles' atmospheric lifetimes.

  8. The Aerosol/Cloud/Ecosystems Mission (ACE)

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    2008-01-01

    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  9. Separating Cloud Forming Nuclei from Interstitial Aerosol

    SciTech Connect

    Kulkarni, Gourihar R.

    2012-09-12

    It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

  10. Multi-Sensor Aerosol Products Sampling System

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  11. Detailed Aerosol Characterization using Polarimetric Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, Otto; di Noia, Antonio; Stap, Arjen; Rietjens, Jeroen; Smit, Martijn; van Harten, Gerard; Snik, Frans

    2016-04-01

    Anthropogenic aerosols are believed to cause the second most important anthropogenic forcing of climate change after greenhouse gases. In contrast to the climate effect of greenhouse gases, which is understood relatively well, the negative forcing (cooling effect) caused by aerosols represents the largest reported uncertainty in the most recent assessment of the International Panel on Climate Change (IPCC). To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. There is growing consensus in the aerosol remote sensing community that multi-angle measurements of intensity and polarization are essential to unambiguously determine all relevant aerosol properties. This presentations adresses the different aspects of polarimetric remote sensing of atmospheric aerosols, including retrieval algorithm development, validation, and data needs for climate and air quality applications. During past years, at SRON-Netherlands Instite for Space Research retrieval algorithms have been developed that make full use of the capabilities of polarimetric measurements. We will show results of detailed aerosol properties from ground-based- (groundSPEX), airborne- (NASA Research Scanning Polarimeter), and satellite (POLDER) measurements. Also we will discuss observational needs for future instrumentation in order to improve our understanding of the role of aerosols in climate change and air quality.

  12. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M. J. M.; Beirle, S.; Hörmann, C.; Kaiser, J. W.; Stammes, P.; Tilstra, L. G.; Tuinder, O. N. E.; Wagner, T.

    2015-09-01

    Detecting the optical properties of aerosols using passive satellite-borne measurements alone is a difficult task due to the broadband effect of aerosols on the measured spectra and the influences of surface and cloud reflection. We present another approach to determine aerosol type, namely by studying the relationship of aerosol optical depth (AOD) with trace gas abundance, aerosol absorption, and mean aerosol size. Our new Global Aerosol Classification Algorithm, GACA, examines relationships between aerosol properties (AOD and extinction Ångström exponent from the Moderate Resolution Imaging Spectroradiometer (MODIS), UV Aerosol Index from the second Global Ozone Monitoring Experiment, GOME-2) and trace gas column densities (NO2, HCHO, SO2 from GOME-2, and CO from MOPITT, the Measurements of Pollution in the Troposphere instrument) on a monthly mean basis. First, aerosol types are separated based on size (Ångström exponent) and absorption (UV Aerosol Index), then the dominating sources are identified based on mean trace gas columns and their correlation with AOD. In this way, global maps of dominant aerosol type and main source type are constructed for each season and compared with maps of aerosol composition from the global MACC (Monitoring Atmospheric Composition and Climate) model. Although GACA cannot correctly characterize transported or mixed aerosols, GACA and MACC show good agreement regarding the global seasonal cycle, particularly for urban/industrial aerosols. The seasonal cycles of both aerosol type and source are also studied in more detail for selected 5° × 5° regions. Again, good agreement between GACA and MACC is found for all regions, but some systematic differences become apparent: the variability of aerosol composition (yearly and/or seasonal) is often not well captured by MACC, the amount of mineral dust outside of the dust belt appears to be overestimated, and the abundance of secondary organic aerosols is underestimated in comparison

  13. Ventilating-air change rate versus particulate contaminant spread

    SciTech Connect

    Langer, G.; Deitesfeld, C.A.

    1987-11-13

    This study provides information on the spread of particulate contamination from glovebox leaks in plutonium manufacturing facilities, with emphasis on the effect of ventilating-air change rate on contaminated spread. A new, very sensitive aerosol tracer technique was developed to simulate plutonium aerosol leaks and its dispersion in a room. The tracer, a submicron aerosol of phloroglucinol, does not interfere with work activity and is detected by its ability to form ice crystals in a supercooled cloud. This technique was applied in Buildings 371 and 707 plutonium production areas. The tracer spread throughout the rooms in a few minutes and reached its equilibrium concentration in 10 to 25 min. Also, to clear the room of all tracer took about the same time. In one room, tracer concentration decreased proportionally to the air change rate, while in the second one, air change rate had no effect. This points out the need for air velocity data. Also, future work must include simultaneous particle concentration measurements at several points. 4 refs., 9 figs., 2 tabs.

  14. Contamination analysis unit

    DOEpatents

    Gregg, Hugh R.; Meltzer, Michael P.

    1996-01-01

    The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.

  15. Contamination analysis unit

    DOEpatents

    Gregg, H.R.; Meltzer, M.P.

    1996-05-28

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

  16. JPL Contamination Control Engineering

    NASA Technical Reports Server (NTRS)

    Blakkolb, Brian

    2013-01-01

    JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.

  17. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  18. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  19. Organic contaminant separator

    DOEpatents

    Del Mar, Peter; Hemberger, Barbara J.

    1991-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the tube, (b) passing a solvent through the tube, said solvent capable of separating the adhered organic contaminant from the tube. Further, a chromatographic apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the tube is disclosed.

  20. SMEAT atmosphere trace contaminants.

    NASA Technical Reports Server (NTRS)

    Schornick, J. L.; Heinrich, C. T.; Garcia, G. S., Jr.; Verostko, C. E.

    1973-01-01

    The atmosphere trace contaminant analysis support provided for the Skylab Medical Experiments Altitude Test (SMEAT) which was conducted from July 26 through September 20, 1972, at the JSC Crew Systems Division facility is discussed. Sample acquisition techniques and analytical instrumentation methodology utilized for identification and quantification of the trace contaminants are described. Emphasis is placed on the contaminants found, their occurrence patterns, and possible sources.

  1. Iron-containing atmospheric aerosols in the Chernobyl fallout

    NASA Astrophysics Data System (ADS)

    Rusanov, V.; Gushterov, V.; Winkler, H.; Trautwein, A. X.

    2005-11-01

    Mössbauer spectroscopy was applied to determine the composition and the iron concentration in the atmospheric aerosols contaminated in Sofia, Bulgaria after the Chernobyl accident. The results confirm the major conclusion of the Kopcewiczs for Poland, i.e. that in the initial filters, collected during the contaminating fallout (30.04 05.05.1986), the iron concentration was highest, 3.69 μg/m3 and that magnetite Fe3O4 was present. For the following days a change in the chemical composition including the presence of α-Fe2O3, α-FeOOH and γ-FeOOH as well as the absence of magnetite, was detected. Input of industrial iron contamination was negligible since the nearby steel plant had worked at minimum power due to official holidays. Unfortunately, Mössbauer spectroscopy studies only, do not allow a definite conclusion about an increase of the isotope abundance of 57Fe in the Chernobyl fallout.

  2. Aerosol Optical Depths over Oceans: a View from MISR Retrievals and Collocated MAN and AERONET in Situ Observations

    NASA Technical Reports Server (NTRS)

    Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Smirnov, Alexander

    2013-01-01

    In this study, aerosol optical depths over oceans are analyzed from satellite and surface perspectives. Multiangle Imaging SpectroRadiometer (MISR) aerosol retrievals are investigated and validated primarily against Maritime Aerosol Network (MAN) observations. Furthermore, AErosol RObotic NETwork (AERONET) data from 19 island and coastal sites is incorporated in this study. The 270 MISRMAN comparison points scattered across all oceans were identified. MISR on average overestimates aerosol optical depths (AODs) by 0.04 as compared to MAN; the correlation coefficient and root-mean-square error are 0.95 and 0.06, respectively. A new screening procedure based on retrieval region characterization is proposed, which is capable of substantially reducing MISR retrieval biases. Over 1000 additional MISRAERONET comparison points are added to the analysis to confirm the validity of the method. The bias reduction is effective within all AOD ranges. Setting a clear flag fraction threshold to 0.6 reduces the bias to below 0.02, which is close to a typical ground-based measurement uncertainty. Twelve years of MISR data are analyzed with the new screening procedure. The average over ocean AOD is reduced by 0.03, from 0.15 to 0.12. The largest AOD decrease is observed in high latitudes of both hemispheres, regions with climatologically high cloud cover. It is postulated that the screening procedure eliminates spurious retrieval errors associated with cloud contamination and cloud adjacency effects. The proposed filtering method can be used for validating aerosol and chemical transport models.

  3. Asian industrial lead inputs to the North Pacific evidenced by lead concentrations and isotopic compositions in surface waters and aerosols.

    PubMed

    Gallon, Céline; Ranville, Mara A; Conaway, Christopher H; Landing, William M; Buck, Clifton S; Morton, Peter L; Flegal, A Russell

    2011-12-01

    Recent trends of atmospheric lead deposition to the North Pacific were investigated with analyses of lead in aerosols and surface waters collected on the fourth Intergovernmental Oceanographic Commission Contaminant Baseline Survey from May to June, 2002. Lead concentrations of the aerosols varied by 2 orders of magnitude (0.1-26.4 pmol/m(3)) due in part to variations in dust deposition during the cruise. The ranges in lead aerosol enrichment factors relative to iron (1-119) and aluminum (3-168) were similar, evidencing the transport of Asian industrial lead aerosols across the North Pacific. The oceanic deposition of some of those aerosols was substantiated by the gradient of lead concentrations of North Pacific waters, which varied 3-fold (32.7-103.5 pmol/kg), were highest along with the Asian margin of the basin, and decreased eastward. The hypothesized predominance of Asian industrial lead inputs to the North Pacific was further corroborated by the lead isotopic composition of ocean surface waters ((206)Pb/(207)Pb = 1.157-1.169; (208)Pb/(206)Pb = 2.093-2.118), which fell within the range of isotopic ratios reported in Asian aerosols that are primarily attributed to Chinese industrial lead emissions.

  4. Retrieval of the columnar aerosol phase function and single-scattering albedo from sky radiance over the ocean - Simulations

    NASA Technical Reports Server (NTRS)

    Wang, Menghua; Gordon, Howard R.

    1993-01-01

    Based on the fact that the part of downward radiance that depends on the optical properties of the aerosol in the atmosphere can be extracted from the measured sky radiance, a new scheme for retrieval of the aerosol phase function and the single-scattering albedo over the ocean is developed. This retrieval algorithm is tested with simulations for several cases. It is found that the retrieved aerosol phase function and the single-scattering albedo are virtually error-free if the vertical structure of the atmosphere is known and if the sky radiance and the aerosol optical thickness can be measured accurately. The robustness of the algorithm in realistic situations, in which the measurements are contaminated by calibration errors or noise, is examined. It is found that the retrieved value of omega(0) is usually in error by less than about 10 percent, and the phase function is accurately retrieved for theta less than about 90 deg. However, as the aerosol optical thickness becomes small, e.g., less than about 0.1, errors in the sky radiance measurement can lead to serious problems with the retrieval algorithm, especially in the blue. The use of the retrieval scheme should be limited to the red and near IR when the aerosol optical thickness is small.

  5. Heterogeneous Chemistry: Understanding Aerosol/Oxidant Interactions

    SciTech Connect

    Joyce E. Penner

    2005-03-14

    Global radiative forcing of nitrate and ammonium aerosols has mostly been estimated from aerosol concentrations calculated at thermodynamic equilibrium or using approximate treatments for their uptake by aerosols. In this study, a more accurate hybrid dynamical approach (DYN) was used to simulate the uptake of nitrate and ammonium by aerosols and the interaction with tropospheric reactive nitrogen chemistry in a three-dimensional global aerosol and chemistry model, IMPACT, which also treats sulfate, sea salt and mineral dust aerosol. 43% of the global annual average nitrate aerosol burden, 0.16 TgN, and 92% of the global annual average ammonium aerosol burden, 0.29 TgN, exist in the fine mode (D<1.25 {micro}m) that scatters most efficiently. Results from an equilibrium calculation differ significantly from those of DYN since the fraction of fine-mode nitrate to total nitrate (gas plus aerosol) is 9.8%, compared to 13% in DYN. Our results suggest that the estimates of aerosol forcing from equilibrium concentrations will be underestimated. We also show that two common approaches used to treat nitrate and ammonium in aerosol in global models, including the first-order gas-to-particle approximation based on uptake coefficients (UPTAKE) and a hybrid method that combines the former with an equilibrium model (HYB), significantly overpredict the nitrate uptake by aerosols especially that by coarse particles, resulting in total nitrate aerosol burdens higher than that in DYN by +106% and +47%, respectively. Thus, nitrate aerosol in the coarse mode calculated by HYB is 0.18 Tg N, a factor of 2 more than that in DYN (0.086 Tg N). Excessive formation of the coarse-mode nitrate in HYB leads to near surface nitrate concentrations in the fine mode lower than that in DYN by up to 50% over continents. In addition, near-surface HNO{sub 3} and NO{sub x} concentrations are underpredicted by HYB by up to 90% and 5%, respectively. UPTAKE overpredicts the NO{sub x} burden by 56% and near

  6. Global aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Wagner, Till; Stier, Philip

    2013-04-01

    Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.

  7. Characterization of aerosols produced by surgical procedures

    SciTech Connect

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K.; Turner, R.S.

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  8. Modulation of aerosol clouds produced by pressurised inhalation aerosols.

    PubMed

    Brambilla, G; Ganderton, D; Garzia, R; Lewis, D; Meakin, B; Ventura, P

    1999-09-10

    The inclusion of non-volatile components such as glycerol or polyethylene glycol in hydrofluoralkane (HFA) solution formulations for pressurised metered dose inhalers (pMDIs), greatly increases the particle size of the aerosol. Cloud characteristics can be further modulated by permuting this factor with the choice of propellant and the dimensions of the actuator, to give a chosen fine particle dose and particle diameter. This principle has been used to design solutions which closely match the performance of chlorofluorocarbon based suspension formulations containing beclomethasone dipropionate, budesonide and ipratropium bromide as assessed for pharmaceutical equivalence using the Andersen Cascade impactor.

  9. Contamination monitoring of snow cover in the vicinity of Tomsk petrochemical plant

    NASA Astrophysics Data System (ADS)

    Talovskaya, Anna V.; Filimonenko, Ekaterina A.; Yazikov, Egor G.; Nadeina, Luisa V.

    2014-11-01

    Petroleum refineries may emit large quantities of pollutants. Tomsk Petrochemical plant impact on the air quality. Most elements associated with the emitted aerosols that are sometimes under-reported or even not cataloged. Because snow is an efficient scavenger of the emitted aerosols, it offers for identifying contaminants. Herein, we present the element concentrations in the insoluble fraction of aerosols in snow samples collected between March 2009 and March 2013. We also develop strategies to identify the marker elements for snow cover contamination in the plant vicinity. In addition, the aerosols transfer was indicated at the distances. Samples were measured using instrumental neutron activation analysis and flameless atomic absorption method. Results show that As, Hg, Br, Sb and Zn were found to be the predominated elements alone with traces of other analyzed elements. Burning gas in flare's plant could be proved to be a source for the toxic and mobile elements Hg, Sb and Br. It is identified that aerosols fallouts degrease away from the plant at a distance from 300 to 1500 m. This study revealed that element concentration did not significant changed between 2009 and 2013.

  10. Satellite observation of aerosol - cloud interactions over semi-arid and arid land regions

    NASA Astrophysics Data System (ADS)

    Klüser, L.; Holzer-Popp, T.

    2012-04-01

    Satellite observations from three different sources are used to study the interactions between aerosol and ice clouds in five semi-arid and arid land regions over Africa and Asia, reaching from the South-African Kalahari to the Taklimakan and Gobi in Mongolia. (1) Six years of Aqua MODIS cloud and aerosol observations (including "Deep Blue" retrievals) which contain a qualitative separation into coarse and fine mode aerosol are analysed. (2) Five years of APOLLO cloud observations and SYNAER aerosol retrievals which allow discriminating between mineral dust and soot dominated cases from AATSR and SCIAMACHY on ENVISAT are exploited. (3) Moreover IASI provides one year of ice cloud and mineral dust observations over land retrieved with a newly developed method based on singular vector decomposition. Cloud top temperature observations are used to asses the state of convection and to statistically re-project observation distributions of cloud properties to background conditions. Then the difference between observation density distributions of background and re-projected aerosol-contaminated samples can be evaluated. By such way of analysis the influence of different cloud development stages, which also manifest in seasonal cycles of cloud properties, can be minimised. The analysis of the various observation density distributions shows that liquid water and ice effective radius is mainly decreased for increased total aerosol content for both aerosol types, biomass burning aerosols and mineral dust, separately. Two different modes of aerosol impacts on cloud optical depth can be shown. Optical depth is mainly increased, directly following the theory of the so-called "Twomey effect". In the West African Sahel a decrease of cloud water path (for both liquid water and ice) under the influence of absorbing aerosols results also in decreased optical depth. As at the same time the cloud fraction does not decrease under aerosol influence, the statistical decrease of mean

  11. Aerosol effects on deep convection in a multi-scale aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Wang, M.; Ghan, S. J.; Morrison, H.

    2012-12-01

    Aerosols have been demonstrated to affect convective clouds and precipitation in observations, process models, and regional climate models. However, examining aerosol effects on convective clouds and precipitation in global climate models has been extremely challenging, as until recently the treatments in the few global climate models that include aerosol effects on convective clouds have used conventional cumulus parameterizations and hence have been quite crude. We have recently built a multi-scale aerosol-climate model, PNNL-MMF, which is an extension of a multi-scale modeling framework (MMF) model. The extended model explicitly treats aerosol effects on deep convection using a two-moment cloud microphysics scheme in the cloud-resolving model component of the MMF. In this presentation, we examine aerosol effects on convective clouds at the global scale using the PNNL-MMF model. Our results show that the frequency of precipitation occurrence at a given liquid water path increases with increasing aerosol loading for deep clouds with surface precipitation rate larger than 10 mm/day. This relationship is particularly evident during the summer time, when convection activity is strong, and may indicate invigoration of deep convection by aerosols. The modeled relationship of aerosols, clouds and precipitation is further compared with observations from the ARM long-term sites (e.g., SGP). The causes of the modeled relationship of aerosols, clouds and precipitations are examined by using a pair of 5-year MMF simulations with and without anthropogenic aerosols.

  12. Remote sensing of aerosol in the terrestrial atmosphere from space: "AEROSOL-UA" mission

    NASA Astrophysics Data System (ADS)

    Yatskiv, Yaroslav; Milinevsky, Gennadi; Degtyarev, Alexander

    2016-07-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project AEROSOL-UA that will obtain the data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The mission is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  13. Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing.

    PubMed

    Wang, Menghua

    2006-12-10

    The current ocean color data processing system for the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and the moderate resolution imaging spectroradiometer (MODIS) uses the Rayleigh lookup tables that were generated using the vector radiative transfer theory with inclusion of the polarization effects. The polarization effects, however, are not accounted for in the aerosol lookup tables for the ocean color data processing. I describe a study of the aerosol polarization effects on the atmospheric correction and aerosol retrieval algorithms in the ocean color remote sensing. Using an efficient method for the multiple vector radiative transfer computations, aerosol lookup tables that include polarization effects are generated. Simulations have been carried out to evaluate the aerosol polarization effects on the derived ocean color and aerosol products for all possible solar-sensor geometries and the various aerosol optical properties. Furthermore, the new aerosol lookup tables have been implemented in the SeaWiFS data processing system and extensively tested and evaluated with SeaWiFS regional and global measurements. Results show that in open oceans (maritime environment), the aerosol polarization effects on the ocean color and aerosol products are usually negligible, while there are some noticeable effects on the derived products in the coastal regions with nonmaritime aerosols.

  14. Thermal Infrared Radiative Forcing By Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    Adhikari, Narayan

    The work mainly focuses on the study of thermal infrared (IR) properties of atmospheric greenhouse gases and aerosols, and the estimation of the aerosol-induced direct longwave (LW) radiative forcing in the spectral region 5-20 mum at the Earth's surface (BOA; bottom of the atmosphere) and the top of the atmosphere (TOA) in cloud-free atmospheric conditions. These objectives were accomplished by conducting case studies on clear sky, smoky, and dusty conditions that took place in the Great Basin of the USA in 2013. Both the solar and thermal IR measurements and a state-of-the-science radiative transfer model, the LBLDIS, a combination of the Line-By-Line Radiative Transfer Model and the Discrete Ordinate Radiative Transfer (DISORT) solver were employed for the study. The LW aerosol forcing is often not included in climate models because the aerosol effect on the LW is often assumed to be negligible. We lack knowledge of aerosol characteristics in the LW region, and aerosol properties exhibit high variability. We have found that the LW TOA radiative forcing due to fine mode aerosols, mainly associated with small biomass burning smoke particles, is + 0.4 W/m2 which seems to be small, but it is similar to the LW radiative forcing due to increase in CO2 concentration in the Earth's atmosphere since the preindustrial era of 1750 (+ 1.6 W/m 2). The LW radiative forcing due to coarse mode aerosols, associated with large airborne mineral dust particles, was found to be as much as + 5.02 W/m2 at the surface and + 1.71 W/m2 at the TOA. All of these significant positive values of the aerosol radiative forcing both at the BOA and TOA indicate that the aerosols have a heating effect in the LW range, which contributes to counterbalancing the cooling effect associated with the aerosol radiative forcing in the shortwave (SW) spectral region. In the meantime, we have found that LW radiative forcing by aerosols is highly sensitive to particle size and complex refractive indices of

  15. Aerosol mass spectrometry: particle-vaporizer interactions and their consequences for the measurements

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.-M.; Faber, P.; Borrmann, S.

    2015-09-01

    The Aerodyne aerosol mass spectrometer (AMS) is a frequently used instrument for on-line measurement of the ambient sub-micron aerosol composition. With the help of calibrations and a number of assumptions on the flash vaporization and electron impact ionization processes, this instrument provides robust quantitative information on various non-refractory ambient aerosol components. However, when measuring close to certain anthropogenic or marine sources of semi-refractory aerosols, several of these assumptions may not be met and measurement results might easily be incorrectly interpreted if not carefully analyzed for unique ions, isotope patterns, and potential slow vaporization associated with semi-refractory species. Here we discuss various aspects of the interaction of aerosol particles with the AMS tungsten vaporizer and the consequences for the measurement results: semi-refractory components - i.e., components that vaporize but do not flash-vaporize at the vaporizer and ionizer temperatures, like metal halides (e.g., chlorides, bromides or iodides of Al, Ba, Cd, Cu, Fe, Hg, K, Na, Pb, Sr, Zn) - can be measured semi-quantitatively despite their relatively slow vaporization from the vaporizer. Even though non-refractory components (e.g., NH4NO3 or (NH4)2SO4) vaporize quickly, under certain conditions their differences in vaporization kinetics can result in undesired biases in ion collection efficiency in thresholded measurements. Chemical reactions with oxygen from the aerosol flow can have an influence on the mass spectra for certain components (e.g., organic species). Finally, chemical reactions of the aerosol with the vaporizer surface can result in additional signals in the mass spectra (e.g., WO2Cl2-related signals from particulate Cl) and in conditioning or contamination of the vaporizer, with potential memory effects influencing the mass spectra of subsequent measurements. Laboratory experiments that investigate these particle-vaporizer interactions are

  16. Modeling of the dispersion of depleted uranium aerosol.

    PubMed

    Mitsakou, C; Eleftheriadis, K; Housiadas, C; Lazaridis, M

    2003-04-01

    Depleted uranium is a low-cost radioactive material that, in addition to other applications, is used by the military in kinetic energy weapons against armored vehicles. During the Gulf and Balkan conflicts concern has been raised about the potential health hazards arising from the toxic and radioactive material released. The aerosol produced during impact and combustion of depleted uranium munitions can potentially contaminate wide areas around the impact sites or can be inhaled by civilians and military personnel. Attempts to estimate the extent and magnitude of the dispersion were until now performed by complex modeling tools employing unclear assumptions and input parameters of high uncertainty. An analytical puff model accommodating diffusion with simultaneous deposition is developed, which can provide a reasonable estimation of the dispersion of the released depleted uranium aerosol. Furthermore, the period of the exposure for a given point downwind from the release can be estimated (as opposed to when using a plume model). The main result is that the depleted uranium mass is deposited very close to the release point. The deposition flux at a couple of kilometers from the release point is more than one order of magnitude lower than the one a few meters near the release point. The effects due to uncertainties in the key input variables are addressed. The most influential parameters are found to be atmospheric stability, height of release, and wind speed, whereas aerosol size distribution is less significant. The output from the analytical model developed was tested against the numerical model RPM-AERO. Results display satisfactory agreement between the two models.

  17. EVIDENCE FOR ORGANOSULFATES IN SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    Recent work has shown that particle-phase reactions contribute to the formation of secondary organic aerosol (SOA), with enhancements of SOA yields in the presence of acidic seed aerosol. In this study, the chemical composition of SOA from the photooxidations of α-pinene and isop...

  18. Waterspout - an Atmospheric Aerosol Dusty Plasma

    SciTech Connect

    Rantsev-Kartinov, V.A.

    2005-10-31

    An aerosol -- capillary electrostatic model of a waterspout is submitted. The waterspout is treated as a long-living filament of aerosol plasma, which is formed at electric breakdown of interval between a charged cloud and a vertically floating cylinder, which is individual block of ocean's skeletal structures of revealed recently by author.

  19. Evaluation of MERRAero (MERRA Aerosol Reanalysis)

    NASA Technical Reports Server (NTRS)

    Buchard, Virginie; da Silva, Arlindo; Randles, Cynthia; Colarco, Peter; Darmenov, Anton; Govindaraju, Ravi

    2016-01-01

    This presentation focuses on MERRA Aerosol Reanalysis (MERRAero) which is the first aerosol reanalysis produced at GMAO. This presentation involve an overview of MERRAero. The evaluation of MERRAero absorption and the evaluation of MERRAero Surface PM 2.5 will also be discussed.

  20. Longwave radiative forcing by aqueous aerosols

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1995-01-01

    Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

  1. Unexpected Benefits of Reducing Aerosol Cooling Effects

    EPA Science Inventory

    Impacts of aerosol cooling are not limited to changes in surface temperature since modulation of atmospheric dynamics resulting from the increased stability can deteriorate local air quality and impact human health. Health impacts from two manifestations of the aerosol direct eff...

  2. Aerosol feed direct methanol fuel cell

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    Improvements to fuel cells include introduction of the fuel as an aerosol of liquid fuel droplets suspended in a gas. The particle size of the liquid fuel droplets may be controlled for optimal fuel cell performance by selection of different aerosol generators or by separating droplets based upon size using a particle size conditioner.

  3. Contamination Control Techniques

    SciTech Connect

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  4. Evaluating soil contamination

    USGS Publications Warehouse

    Beyer, W.N.

    1990-01-01

    This compilation was designed to help U.S. Fish and Wildlife Service contaminant specialists evaluate the degree of contamination of a soil, based on chemical analyses. Included are regulatory criteria, opinions, brief descriptions of scientific articles, and miscellaneous information that might be useful in making risk assessments. The intent was to make hard-to-obtain material readily available to contaminant specialists, but not to critique the material or develop new criteria. The compilation is to be used with its index, which includes about 200 contaminants. There are several entries for a few of the most thoroughly studied contaminants, but for most of them the information available is meager. Entries include soil contaminant criteria from other countries, contaminant guidelines for applying sewage sludge to soil, guidelines for evaluating sediments, background soil concentrations for various elements, citations to scientific articles that may help estimate the potential movement of soil contaminants into wildlife food chains, and a few odds and ends. Articles on earthworms were emphasized because they are a natural bridge between soil and many species of wildlife.

  5. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  6. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  7. Mechanics of plutonium metal aerosolization

    SciTech Connect

    Alvis, J.M.

    1996-06-01

    Reliable estimates of hazards posed by a plutonium release are contingent on the availability of technical data to define the source term for aerosolization of plutonium oxide particles and the resulting size distribution. The release of aerosols from the oxidation of plutonium metal depends partly on the forces acting on the particles while they remain attached to the bulk material and partly on the ability of the airstream around the metal ingot to transport the particles when they detach. The forces that attach or detach the plutonium oxide particles can be described as binding of the particle to the metal or oxide layer around it and expansion and contraction stresses and external vibration. Experimental data forms the basis for defining size distributions and release fractions for plutonium oxide. The relevance of the data must be evaluated in the light of the chemical and physical properties of plutonium metal, plutonium oxide, and intermediate Plutonium compounds. The effects of temperature on reaction kinetics must also be understood when evaluating experimental data. Size distribution functions are remarkably similar for products of all Pu+gas reactions. The distributions are all bimodal. Marked differences are seen in the sizes of large particles depending on reaction temperature and reaction rate. However, the size distributions of small particles are very similar. The bimodal distribution of small particles vanishes as the sizes of the large particles decrease to the point of equal dimensions with the small particles. This is the situation realized for the fine plutonium oxide powder produced by air oxidation at room temperature. This report addresses important factors for defining the formation of an aerosol from the oxidation of plutonium metal. These factors are oxidation kinetics of plutonium metal and plutonium hydride, the particle distribution of products formed by the reactions, and the kinetics of processes limiting entrainment of particles.

  8. Aerosol dynamics in ship tracks

    NASA Astrophysics Data System (ADS)

    Russell, Lynn M.; Seinfeld, John H.; Flagan, Richard C.; Ferek, Ronald J.; Hegg, Dean A.; Hobbs, Peter V.; Wobrock, Wolfram; Flossmann, Andrea I.; O'Dowd, Colin D.; Nielsen, Kurt E.; Durkee, Phillip A.

    1999-01-01

    Ship tracks are a natural laboratory to isolate the effect of anthropogenic aerosol emissions on cloud properties. The Monterey Area Ship Tracks (MAST) experiment in the Pacific Ocean west of Monterey, California, in June 1994, provides an unprecedented data set for evaluating our understanding of the formation and persistence of the anomalous cloud features that characterize ship tracks. The data set includes conditions in which the marine boundary layer is both clean and continentally influenced. Two case studies during the MAST experiment are examined with a detailed aerosol microphysical model that considers an external mixture of independent particle populations. The model allows tracking individual particles through condensational and coagulational growth to identify the source of cloud condensation nuclei (CCN). In addition, a cloud microphysics model was employed to study specific effects of precipitation. Predictions and observations reveal important differences between clean (particle concentrations below 150 cm-3) and continentally influenced (particle concentrations above 400 cm-3) background conditions: in the continentally influenced conditions there is a smaller change in the cloud effective radius, drop number and liquid water content in the ship track relative to the background than in the clean marine case. Predictions of changes in cloud droplet number concentrations and effective radii are consistent with observations although there is significant uncertainty in the absolute concentrations due to a lack of measurements of the plume dilution. Gas-to-particle conversion of sulfur species produced by the combustion of ship fuel is predicted to be important in supplying soluble aerosol mass to combustion-generated particles, so as to render them available as CCN. Studies of the impact of these changes on the cloud's potential to precipitate concluded that more complex dynamical processes must be represented to allow sufficiently long drop

  9. Molecular Characterization of Secondary Aerosol from Oxidation of Cyclic Methylsiloxanes

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Johnston, Murray V.

    2016-03-01

    Cyclic volatile methylsiloxanes (cVMS) have been identified as important gas-phase atmospheric contaminants, but knowledge of the molecular composition of secondary aerosol derived from cVMS oxidation is incomplete. Here, the chemical composition of secondary aerosol produced from the OH-initiated oxidation of decamethylcyclopentasiloxane (D5, C10H30O5Si5) is characterized by high performance mass spectrometry. ESI-MS reveals a large number of monomeric (300 < m/z < 470) and dimeric (700 < m/z < 870) oxidation products. With the aid of high resolution and MS/MS, it is shown that oxidation leads mainly to the substitution of a CH3 group by OH or CH2OH, and that a single molecule can undergo many CH3 group substitutions. Dimers also exhibit OH and CH2OH substitutions and can be linked by O, CH2, and CH2CH2 groups. GC-MS confirms the ESI-MS results. Oxidation of D4 (C8H24O4Si4) exhibits similar substitutions and oligomerizations to D5, though the degree of oxidation is greater under the same conditions and there is direct evidence for the formation of peroxy groups (CH2OOH) in addition to OH and CH2OH.

  10. Molecular Characterization of Secondary Aerosol from Oxidation of Cyclic Methylsiloxanes.

    PubMed

    Wu, Yue; Johnston, Murray V

    2016-03-01

    Cyclic volatile methylsiloxanes (cVMS) have been identified as important gas-phase atmospheric contaminants, but knowledge of the molecular composition of secondary aerosol derived from cVMS oxidation is incomplete. Here, the chemical composition of secondary aerosol produced from the OH-initiated oxidation of decamethylcyclopentasiloxane (D5, C10H30O5Si5) is characterized by high performance mass spectrometry. ESI-MS reveals a large number of monomeric (300 < m/z < 470) and dimeric (700 < m/z < 870) oxidation products. With the aid of high resolution and MS/MS, it is shown that oxidation leads mainly to the substitution of a CH3 group by OH or CH2OH, and that a single molecule can undergo many CH3 group substitutions. Dimers also exhibit OH and CH2OH substitutions and can be linked by O, CH2, and CH2CH2 groups. GC-MS confirms the ESI-MS results. Oxidation of D4 (C8H24O4Si4) exhibits similar substitutions and oligomerizations to D5, though the degree of oxidation is greater under the same conditions and there is direct evidence for the formation of peroxy groups (CH2OOH) in addition to OH and CH2OH. PMID:26729452

  11. Discrete-element modeling of particulate aerosol flows

    SciTech Connect

    Marshall, J.S.

    2009-03-20

    A multiple-time step computational approach is presented for efficient discrete-element modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates are found in numerous dust and smoke contamination problems, including smoke particle transport in the lungs, particle clogging of heat exchangers in construction vehicles, industrial nanoparticle transport and filtration systems, and dust fouling of electronic systems and MEMS components. Dust fouling of equipment is of particular concern for potential human occupation on dusty planets, such as Mars. The discrete-element method presented in this paper can be used for prediction of aggregate structure and breakup, for prediction of the effect of aggregate formation on the bulk fluid flow, and for prediction of the effects of small-scale flow features (e.g., due to surface roughness or MEMS patterning) on the aggregate formation. After presentation of the overall computational structure, the forces and torques acting on the particles resulting from fluid motion, particle-particle collision, and adhesion under van der Waals forces are reviewed. The effect of various parameters of normal collision and adhesion of two particles are examined in detail. The method is then used to examine aggregate formation and particle clogging in pipe and channel flow.

  12. Inland Transport of Aerosolized Florida Red Tide Toxins.

    PubMed

    Kirkpatrick, Barbara; Pierce, Richard; Cheng, Yung Sung; Henry, Michael S; Blum, Patricia; Osborn, Shannon; Nierenberg, Kate; Pederson, Bradley A; Fleming, Lora E; Reich, Andrew; Naar, Jerome; Kirkpatrick, Gary; Backer, Lorraine C; Baden, Daniel

    2010-02-01

    Florida red tides, an annual event off the west coast of Florida, are caused by the toxic dinoflagellate, Karenia brevis. K. brevis produces a suite of potent neurotoxins, brevetoxins, which kill fish, sea birds, and marine mammals, as well as sickening humans who consume contaminated shellfish. These toxins become part of the marine aerosol, and can also be inhaled by humans and other animals. Recent studies have demonstrated a significant increase in symptoms and decrease lung function in asthmatics after only one hour of beach exposure during an onshore Florida red tide bloom.This study constructed a transect line placing high volume air samplers to measure brevetoxins at sites beginning at the beach, moving approximately 6.4 km inland. One non-exposure and 2 exposure studies, each of 5 days duration, were conducted. No toxins were measured in the air during the non-exposure period. During the 2 exposure periods, the amount of brevetoxins varied considerably by site and by date. Nevertheless, brevetoxins were measured at least 4.2 kilometers from the beach and/or 1.6 km from the coastal shoreline. Therefore, populations sensitive to brevetoxins (such as asthmatics) need to know that leaving the beach may not discontinue their environmental exposure to brevetoxin aerosols.

  13. Applications of the charged aerosol detector in compound management.

    PubMed

    Sinclair, Ian; Charles, Isabel

    2009-06-01

    Recent literature has described the exciting development of a new universal detection technology for high-performance liquid chromatography (HPLC), as well as some exploratory work on its application to quantitative measurement of solutes at millimolar concentrations. The new methodology, known as charged aerosol detection (CAD), has been recognized as a viable alternative to evaporative light-scattering detection and refractive index detection that, like CAD, respond to molecular structures independently of their absorbance, or lack thereof, in the ultraviolet region of the electromagnetic spectrum. In this article, the authors exemplify their use of CAD in-line with HPLC and mass spectrometry (MS) to provide both stand-alone and complementary information that aids decision making for sample storage and processing practices in the compound management setting. Illustrations include monitoring contaminants leached from different plate materials into the solvent dimethyl sulphoxide (DMSO) and profiling the concentrations of solutions destined for liquid storage and dispensing to assays, with the aim of improving processes.

  14. Occupational Exposure Assessment of Airborne Chemical Contaminants Among Professional Ski Waxers

    PubMed Central

    Freberg, Baard Ingegerdsson; Olsen, Raymond; Daae, Hanne Line; Hersson, Merete; Thorud, Syvert; Ellingsen, Dag G.; Molander, Paal

    2014-01-01

    Background: Ski waxes are applied onto the skis to improve the performance. They contain different chemical substances, e.g. perfluoro-n-alkanes. Due to evaporation and sublimation processes as well as mechanically generated dust, vapours, fumes, and particulates can contaminate the workroom atmosphere. The number of professional ski waxers is increasing, but occupational exposure assessments among professional ski waxers are lacking. Objectives: The aim was to assess exposure to airborne chemical contaminants among professional ski waxers. It was also a goal to construct a ventilation system designed for ski waxing work operations. Methods: Forty-five professional ski waxers were included. Personal measurements of the inhalable and the respirable aerosol mass fractions were executed in 36 different waxing cabins using Conical Inhalable Sampler cassettes equipped with 37-mm PVC filters (5 µm) and Casella respirable cyclones equipped with 37-mm PVC filters (0.8 µm), respectively. Volatile organic components were collected using Anasorb CSC charcoal tubes. To examine time trends in exposure patterns, stationary real-time measurements of the aerosol mass fractions were conducted using a direct-reading Respicon® sampler. Results: Mean aerosol particle mass concentrations of 3.1 mg·m−3 (range: 0.2–12.0) and 6.2 mg·m−3 (range: 0.4–26.2) were measured in the respirable and inhalable aerosol mass fractions, respectively. Real-time aerosol sampling showed large variations in particle concentrations, with peak exposures of ~10 and 30 mg·m−3 in the respirable and the inhalable aerosol particle mass fractions, respectively. The custom-made ventilation system reduced the concentration of all aerosol mass fractions by more than 90%. PMID:24607772

  15. Organic Aerosol Nucleation and Growth at the CERN CLOUD chamber

    NASA Astrophysics Data System (ADS)

    Tröstl, Jasmin; Lethipalo, Katrianne; Bianchi, Federico; Sipilä, Mikko; Nieminen, Tuomo; Wagner, Robert; Frege, Carla; Simon, Mario; Weingartner, Ernest; Gysel, Martin; Dommen, Josef; Baltensperger, Urs

    2014-05-01

    It is well known that atmospheric aerosols influence the climate by changing Earth's radiation balance (IPCC 2007 and 2013). Recent models have shown (Merikanto et al. 2009) that aerosol nucleation is one of the biggest sources of low level cloud condensation nuclei. Still, aerosol nucleation and growth are not fully understood. The driving force of nucleation and growth is sulfuric acid. However ambient nucleation and growth rates cannot be explained by solely sulfuric acid as precursor. Recent studies have shown that only traces of precursors like ammonia and dimethylamine enhance the nucleation rates dramatically (Kirkby et al. 2011, Almeida et al., 2013). Thus the role of different aerosol precursor needs to be studied not only in ambient but also in very well controlled chamber experiments. The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment enables conducting experiments very close to atmospheric conditions and with a very low contaminant background. The latest CLOUD experiments focus on the role of organics in aerosol nucleation and growth. For this purpose, numerous experiments with alpha-pinene have been conducted at the CERN CLOUD chamber. Several state-of-the-art instruments were used to cover the whole complexity of the experiment. Chamber conditions were set to 40% relative humidity and 5° C. Atmospheric concentrations of SO2, O3, HONO, H2O and alpha-pinene were injected to the chamber. Different oxidation conditions were used, yielding different levels of oxidized organics: (1) OH radicals, (2) Ozone with the OH scavenger H2 (pure ozonolysis) and (3) both. SO2 was injected to allow for sulfuric acid production. Optical UV fibers were used to enable photochemical reactions. A high field cage (30 kV) can be turned on to remove all charged particles in the chamber to enable completely neutral conditions. Comparing neutral conditions to the beam conditions using CERN's proton synchrotron, the fraction of ion-induced nucleation can be studied. Using

  16. Advances in post AFM repair cleaning of photomask with CO2 cryogenic aerosol technology

    NASA Astrophysics Data System (ADS)

    Bowers, Charles; Varghese, Ivin; Balooch, Mehdi; Brandt, Werner

    2009-04-01

    As the mask technology matures, critical printing features and sub-resolution assist features (SRAF) shrink below 100 nm, forcing critical cleaning processes to face significant challenges. These challenges include use of new materials, oxidation, chemical contamination sensitivity, proportionally decreasing printable defect size, and a requirement for a damage-free clean. CO2 cryogenic aerosol cleaning has the potential to offer a wide process window for meeting these new challenges, if residue adder issues and damage can be eliminated. Some key differentiations of CO2 cryogenic aerosol cleaning are the non-oxidizing and non-etching properties compared to conventional chemical wet clean processes with or without megasonics. In prior work, the feasibility of CO2 cryogenic aerosol in post AFM repair photomask cleaning was demonstrated. In this paper, recent advancements of CO2 cryogenic aerosol cleaning technology are presented, focusing on the traditional problem areas of particle adders, electrostatic discharge (ESD), and mask damage mitigation. Key aspects of successful CO2 cryogenic aerosol cleaning include the spray nozzle design, CO2 liquid purity, and system design. The design of the nozzle directly controls the size, density, and velocity of the CO2 snow particles. Methodology and measurements of the solid CO2 particle size and velocity distributions will be presented, and their responses to various control parameters will be discussed. Adder control can be achieved only through use of highly purified CO2 and careful materials selection. Recent advances in CO2 purity will be discussed and data shown. The mask cleaning efficiency by CO2 cryogenic aerosol and damage control is essentially an optimization of the momentum of the solid CO2 particles and elimination of adders. The previous damage threshold of 150 nm SRAF structures has been reduced to 70nm and data will be shown indicating 60 nm is possible in the near future. Data on CO2 tribocharge mitigation

  17. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Kojima, T.; Amato, F.; Lucarelli, F.; de la Rosa, J.; Calzolai, G.; Nava, S.; Chiari, M.; Alastuey, A.; Querol, X.; Gibbons, W.

    2013-02-01

    The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Mass Spectrometry (ICP-MS), and hourly Streaker with Particle Induced X-ray Emission (PIXE) samples collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa") and metalliferous sulphatic pollutants arriving in western Japan during spring 2011. The main aerosol sources recognised by Positive Matrix Factorization (PMF) analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5-10), As-bearing sulphatic aerosol (PM0.1-2.5), metalliferous sodic particulate matter (PM) interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.

  18. Comparing regional modeling (CHIMERE) and satellite observations of aerosols (PARASOL): Methodology and case study over Mexico

    NASA Astrophysics Data System (ADS)

    Stromatas, Stavros

    2010-05-01

    S. Stromatas (1), S. Turquety (1), H. Chepfer (1), L. Menut (1), B. Bessagnet (2), JC Pere (2), D. Tanré (3) . (1) Laboratoire de Météorologie Dynamique, CNRS/IPSL, École Polytechnique, 91128 Palaiseau Cedex, France, (2) INERIS, Institut National de l'Environnement Industriel et des Risques, Parc technologique ALATA, 60550 Verneuil en Halatte, FRANCE, (3) Laboratoire d'Optique Atmosphérique/CNRS Univ. des Sciences et Tech. de Lille, 59650 - Villeneuve d'Ascq, France. Atmospheric suspended particles (aerosols) have significant radiative and environmental impacts, affecting human health, visibility and climate. Therefore, they are regulated by air quality standards worldwide, and monitored by regional observation networks. Satellite observations vastly improve the horizontal and temporal coverage, providing daily distributions. Aerosols are currently estimated using aerosol optical depth (AOD) retrievals, a quantitative measure of the extinction of solar radiation by aerosol scattering and absorption between the point of observation and the top of the atmosphere. Even though remarkable progresses in aerosol modeling by chemistry-transport models (CTM) and measurement experiments have been made in recent years, there is still a significant divergence between the modeled and observed results. However, AOD retrievals from satellites remains a highly challenging task mostly because it depends on a variety of different parameters such as cloud contamination, surface reflectance contributions and a priori assumptions on aerosol types, each one of them incorporating its own difficulties. Therefore, comparisons between CTM and observations are often difficult to interpret. In this presentation, we will discuss comparisons between regional modeling (CHIMERE CTM) over Mexico and satellite observations obtained by the POLDER instrument embarked on PARASOL micro-satellite. After a comparison of the model AOD with the retrieved L2 AOD, we will present an alternative

  19. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Kojima, T.; Amato, F.; Lucarelli, F.; Nava, S.; de la Rosa, J.; Calzolai, G.; Chiari, M.; Alastuey, A.; Querol, X.; Gibbons, W.

    2012-09-01

    The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a~pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples (ICP-AES and ICP-MS) and hourly Streaker (PIXE) samples of particulate matter collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa") and metalliferous sulphatic pollutants arriving in Western Japan during spring 2011. The main aerosol sources recognised by PMF analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5-10), As-bearing sulphatic aerosol (PM0.1-2.5), metalliferous sodic PM interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the more undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.

  20. Cleaning up underground contaminants

    SciTech Connect

    Not Available

    1994-05-01

    At hundreds of industrial and government sites across the United States, environmental consulting firms are designing permanent containment systems for underground contaminants such as hydrocarbon fuels, cleaning solvents, and industrial chemicals. In quantities of thousands of liters or more, these chemicals threaten to contaminate drinking water supplies for hundreds of years. Typical containment systems (e.g., deep wells of cement or clay, or hydraulic pumping to control groundwater movement) can keep the chemicals from further contaminating groundwater if they are properly maintained for many years, but they do not remove the contaminants. Clearly, removing the contaminants from the soil is a much preferable solution than containing them and attempting to prevent their spread. A dynamic underground stripping process that combines steam and electrical heating of underground soils with vacuum extraction of vapors and fluids and guiding these processes by real-time monitoring methods is described.

  1. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  2. Contaminated water treatment

    NASA Technical Reports Server (NTRS)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  3. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  4. Influence of aerosol vertical distribution on radiative budget and climate

    NASA Astrophysics Data System (ADS)

    Nabat, Pierre; Michou, Martine; Saint-Martin, David; Watson, Laura

    2016-04-01

    Aerosols interact with shortwave and longwave radiation with ensuing consequences on radiative budget and climate. Aerosols are represented in climate models either using an interactive aerosol scheme including prognostic aerosol variables, or using climatologies, such as monthly aerosol optical depth (AOD) fields. In the first case, aerosol vertical distribution can vary rapidly, at a daily or even hourly scale, following the aerosol evolution calculated by the interactive scheme. On the contrary, in the second case, a fixed aerosol vertical distribution is generally imposed by climatological profiles. The objective of this work is to study the impact of aerosol vertical distribution on aerosol radiative forcing, with ensuing effects on climate. Simulations have thus been carried out using CNRM-CM, which is a global climate model including an interactive aerosol scheme representing the five main aerosol species (desert dust, sea-salt, sulfate, black carbon and organic matter). Several multi-annual simulations covering the past recent years are compared, including either the prognostic aerosol variables, or monthly AOD fields with different aerosol vertical distributions. In the second case, AOD fields directly come from the first simulation, so that all simulations have the same integrated aerosol loads. The results show that modifying the aerosol vertical distribution has a significant impact on radiative budget, with consequences on global climate. These differences, highlighting the importance of aerosol vertical distribution in climate models, probably come from the modification of atmospheric circulation induced by changes in the heights of the different aerosols. Besides, nonlinear effects in the superposition of aerosol and clouds reinforce the impact of aerosol vertical distribution, since aerosol radiative forcing depends highly upon the presence of clouds, and upon the relative vertical position of aerosols and clouds.

  5. Properties of aerosol processed by ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Adler, G.; Moise, T.; Erlick-Haspel, C.

    2012-12-01

    We suggest that highly porous aerosol (HPA) can form in the upper troposphere/lower stratosphere when ice particles encounter sub-saturation leading to ice sublimation similar to freeze drying. This process can occur at the lower layers of cirrus clouds (few km), at anvils of high convective clouds and thunderstorms, in clouds forming in atmospheric gravitational waves, in contrails and in high convective clouds injecting to the stratosphere. A new experimental system that simulates freeze drying of proxies for atmospheric aerosol at atmospheric pressure was constructed and various proxies for atmospheric soluble aerosol were studied. The properties of resulting HPA were characterized by various methods. It was found that the resulting aerosol have larger sizes (extent depends on substance and mixing), lower density (largevoid fraction), lower optical extinction and higher CCN activity and IN activity. Implication of HPA's unique properties and their atmospheric consequences to aerosol processing in ice clouds and to cloud cycles will be discussed.

  6. Direct observations of atmospheric aerosol nucleation.

    PubMed

    Kulmala, Markku; Kontkanen, Jenni; Junninen, Heikki; Lehtipalo, Katrianne; Manninen, Hanna E; Nieminen, Tuomo; Petäjä, Tuukka; Sipilä, Mikko; Schobesberger, Siegfried; Rantala, Pekka; Franchin, Alessandro; Jokinen, Tuija; Järvinen, Emma; Äijälä, Mikko; Kangasluoma, Juha; Hakala, Jani; Aalto, Pasi P; Paasonen, Pauli; Mikkilä, Jyri; Vanhanen, Joonas; Aalto, Juho; Hakola, Hannele; Makkonen, Ulla; Ruuskanen, Taina; Mauldin, Roy L; Duplissy, Jonathan; Vehkamäki, Hanna; Bäck, Jaana; Kortelainen, Aki; Riipinen, Ilona; Kurtén, Theo; Johnston, Murray V; Smith, James N; Ehn, Mikael; Mentel, Thomas F; Lehtinen, Kari E J; Laaksonen, Ari; Kerminen, Veli-Matti; Worsnop, Douglas R

    2013-02-22

    Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub-2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation--more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.

  7. Global Analysis of Aerosol Properties Above Clouds

    NASA Technical Reports Server (NTRS)

    Waquet, F.; Peers, F.; Ducos, F.; Goloub, P.; Platnick, S. E.; Riedi, J.; Tanre, D.; Thieuleux, F.

    2013-01-01

    The seasonal and spatial varability of Aerosol Above Cloud (AAC) properties are derived from passive satellite data for the year 2008. A significant amount of aerosols are transported above liquid water clouds on the global scale. For particles in the fine mode (i.e., radius smaller than 0.3 m), including both clear sky and AAC retrievals increases the global mean aerosol optical thickness by 25(+/- 6%). The two main regions with man-made AAC are the tropical Southeast Atlantic, for biomass burning aerosols, and the North Pacific, mainly for pollutants. Man-made AAC are also detected over the Arctic during the spring. Mineral dust particles are detected above clouds within the so-called dust belt region (5-40 N). AAC may cause a warming effect and bias the retrieval of the cloud properties. This study will then help to better quantify the impacts of aerosols on clouds and climate.

  8. Paint spray tests for respirators: aerosol characteristics.

    PubMed

    Ackley, M W

    1980-05-01

    Liquid paint is sprayed from an atomizing nozzle to form an aerosol for testing paint spray respirators. The generated aerosol conditions are dependent upon liguid properties, spray-nozzle flow conditions and droplet evaporation. A technique was developed for controlling the aerosol concentrations reliably. Particle-size distributions of lacquer and enamel have been measured. The lacquer distribution was found to be multi-modal. Aerosol concentration dradients arise when the nozzle is not properly positioned. Filter loading resistance is significantly affected by these concentration variations. With regard to selection of standard aerosol test be improved by modifying the current NIOSH criteria to include a description of the particle-size distribution, a more precise definition of the paint and paint thinner chemical compositions, and a narrower concentration range. PMID:6932174

  9. Characterization of Cooking-Related Aerosols

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Blanc, L. E.

    2010-12-01

    The temperatures at which food is cooked are usually high enough to drive oils and other organic compounds out of materials which are being prepared for consumption. As these compounds move away from the hot cooking surface and into the atmosphere, they can participate in chemical reactions or condense to form particles. Given the high concentration of cooking in urban areas, cooking-related aerosols likely contribute to the overall amount of particulate matter on a local scale. Reported here are results for the mid-infrared optical characterization of aerosols formed during the cooking of several meat and vegetable samples in an inert atmosphere. The samples were heated in a novel aerosol generator that is designed to collect particles formed immediately above the cooking surface and inject them into a laminar aerosol flow cell. Preliminary results for the chemical processing of cooking-related aerosols in synthetic air will also be presented.

  10. Infrared refractive index of atmospheric aerosol substances.

    PubMed

    Volz, F E

    1972-04-01

    The optical constants in the ir from lambda2.5 microm to 40 microm (4000-250 cm(-1)) of dry natural aerosol substances and of sea salt are presented. The aerosol substances were obtained from rain and snow water: dust and soot by sedimentation, and water soluble salts by evaporation. The spectra of the absorption index n' were derived from our published transmittance measurements of potassium bromide disks. The real part n of the refractive index was calculated from the specular reflectance at near normal incidence of disks of pure aerosol substance. The observed spectral features are being related to chemical constituents, notably sulfates and alcohol soluble organics. Optical constants of composite and wet aerosol are discussed. A simple model confirms the measured transmission of a coarse dry powder of water solubles and shows that the extinction by natural aerosol should have a minimum near 8 microm and a strong maximum near 9 microm.

  11. Modulation of Atlantic Aerosols by the Madden-Julian Oscillation

    NASA Technical Reports Server (NTRS)

    Tian, B.; Waliser, D. E.; Kahn, Ralph A.; Wong, S.

    2010-01-01

    Much like the better-known EI Nino-Southern Oscillation, the Madden-Julian Oscillation (MJO) is a global-scale atmospheric phenomenon. The MJO involves periodic, systematic changes in the distribution of clouds and precipitation over the western Pacific and Indian oceans, along with differences in wind intensity over even more extensive areas, including the north and subtropical Atlantic Ocean. The lead authors of this paper developed a sophisticated mathematical technique for mapping the spatial and temporal behavior of changes in the atmosphere produced by the MJO. In a previous paper, we applied this technique to search for modulation of airborne particle amount in the eastern hemisphere associated with the "wet" (cloudy) vs. "dry" phases of the MJO. The study used primarily AVHRR, MODIS, and TOMS satellite-retrieved aerosol amount, but concluded that other factors, such as cloud contamination of the satellite signals, probably dominated the observed variations. The current paper looks at MJO modulation of desert dust transport eastward across the Atlantic from northern Africa, a region much less subject to systematic cloud contamination than the eastern hemisphere areas studied previously. In this case, a distinct aerosol signal appears, showing that dust is transported westward much more effectively during the MJO phase that favors westward-flowing wind, and such transport is suppressed when the MJO reduces these winds. Aside form the significant achievement in identifying such an effect, the result implies that an important component of global dust transport can be predicted based on the phase of the MJO. As a consequence, the impact of airborne dust on storm development in the Atlantic, and on dust deposition downwind of the desert sources, can also be predicted and more accurately modeled.

  12. Application of silica fume as a new SP-extractor for trace determination of Zn(II) and Cd(II) in pharmaceutical and environmental samples by square-wave anodic stripping voltammetry

    NASA Astrophysics Data System (ADS)

    Ahmed, Salwa A.; Gaber, Ahmed A. Abdel; Rahim, Asmaa M. Abdel

    2015-04-01

    In this work, silica fume (SF) is used as a solid-phase extractor for extraction of Zn(II) and Cd(II) from aqueous solutions. Characterization of SF is performed by Fourier transform infrared, X-ray diffraction, transmission and scanning electron microscopy. The optimum experimental conditions for the two metal ions are investigated using batch and column techniques. The maximum adsorption capacity values are found to be 54.13 and 121.28 mg g-1 at the optimum pH 6.0 and 8.0 for Zn(II) and Cd(II), respectively. The equilibrium data are analyzed using the Langmuir, Freundlich, and Temkin isotherms by nonlinear regression analysis. Also, the kinetics analysis revealed that the overall adsorption process is successfully fitted with the pseudo-second-order model. The method is applied for determination of the target metal ions in pharmaceutical and environmental samples using square-wave anodic stripping voltammetry. The limit of detection (LOD) values are 0.102 and 1.43 × 10-3 mg L-1 for Zn(II) and Cd(II), respectively. The percentage recovery values are 98.8-100.5 % which indicate the success of the proposed method for determination of Zn(II) and Cd(II) without interfering effects.

  13. Radiative forcing under mixed aerosol conditions

    NASA Astrophysics Data System (ADS)

    GarcíA, O. E.; Expósito, F. J.; DíAz, J. P.; DíAz, A. M.

    2011-01-01

    The mixture of mineral dust with biomass burning or urban-industrial aerosols presents significant differences in optical properties when compared to those of the individual constituents, leading to different impacts on solar radiation levels. This effect is assessed by estimating the direct radiative forcing (ΔF) of these aerosols from solar flux models using the radiative parameters derived from the Aerosol Robotic Network (AERONET). These data reveal that, in oceanic and vegetative covers (surface albedo (SA) < 0.30), the aerosol effect at the top of atmosphere (TOA) is always cooling the Earth-atmosphere system, regardless of the aerosol type. The obtained average values of ΔF range between -27 ± 15 Wm-2 (aerosol optical depth (AOD) at 0.55 μm, 0.3 ± 0.3) for mineral dust mixed with urban-industrial aerosols, registered in the East Asia region, and -34 ± 18 Wm-2 (AOD = 0.8 ± 0.4) for the mixture of the mineral dust and biomass burning particles, observed in the Central Africa region. In the intermediate SA range (0.30-0.50) the TOA radiative effect depends on the aerosol absorption properties. Thus, aerosols with single scattering albedo at 0.55 μm lower than ˜0.88 lead to a warming of the system, with ΔF of 10 ± 11 Wm-2 for the mixture of mineral dust and biomass burning. Cases with SA > 0.30 are not present in East Asia region. At the bottom of atmosphere (BOA) the maximum ΔF values are associated with the highest AOD levels obtained for the mixture of mineral dust and biomass burning aerosols (-130 ± 44 Wm-2 with AOD = 0.8 ± 0.4 for SA < 0.30).

  14. A case of atmospheric contamination at the slopes of the Los Andes mountain range

    NASA Astrophysics Data System (ADS)

    Romo-Kröger, Carlos M.; Llona, Felipe

    High heavy element contents were found in the aerosol in part of the Chilean central Los Andes mountain range. An important contamination source was found to be the copper mine, El Teniente. Samples were taken with battery-powered Stacked Filter Units (SFU), and sites were reached by using mules. The analysis was done by the PIXE system at the University of Chile. A very definite relation between the distance to El Teniente and the aerosol content of heavy metals (Cu, Zn and As) and sulfur was found. Some discussion about the peculiarity of this sampling and the implications of the results is carried out.

  15. Microbial air contamination in indoor environment of a university library.

    PubMed

    Kalwasińska, Agnieszka; Burkowska, Aleksandra; Wilk, Iwona

    2012-01-01

    The present study was aimed at evaluating the number of bacteria and mould fungi in the indoor and outdoor environment of Toruń University Library. The sampling sites were located in the rooms serving the functions typical of libraries (i.e. in the Main Reading Room, Current Periodicals Reading Room, Collections Conservation Laboratory, Old Prints Storeroom, in rooms serving other (non-library) functions (i.e. main hall, cafeteria, and toilet) as well as outside the library building. The analyses reveal that the concentrations of bacterial as well as fungal aerosols estimated with the use of the impaction method ranged between 10(1)-10(3) CFU·m(-3), which corresponds to the concentrations normally observed in areas of this kind. Evaluation of the hygienic condition of the studied areas was based on the criteria for microbiological cleanliness in interiors submitted by the European Commission in 1993. According to this classification, the air was considered to be heavily or moderately contaminated with bacteria, while the air contamination with mould fungi was described as low or moderate. The air in the Old Prints Storeroom was considered the least contaminated with microbial aerosol.

  16. Biological aerosol warner and analyser

    NASA Astrophysics Data System (ADS)

    Schlemmer, Harry; Kürbitz, Gunther; Miethe, Peter; Spieweck, Michael

    2006-05-01

    The development of an integrated sensor device BiSAM (Biological Sampling and Analysing Module) is presented which is designed for rapid detection of aerosol or dust particles potentially loaded with biological warfare agents. All functional steps from aerosol collection via immuno analysis to display of results are fully automated. The core component of the sensor device is an ultra sensitive rapid analyser PBA (Portable Benchtop Analyser) based on a 3 dimensional immuno filtration column of large internal area, Poly HRP marker technology and kinetic optical detection. High sensitivity despite of the short measuring time, high chemical stability of the micro column and robustness against interferents make the PBA an ideal tool for fielded sensor devices. It is especially favourable to combine the PBA with a bio collector because virtually no sample preparation is necessary. Overall, the BiSAM device is capable to detect and identify living micro organisms (bacteria, spores, viruses) as well as toxins in a measuring cycle of typically half an hour duration. In each batch up to 12 different tests can be run in parallel together with positive and negative controls to keep the false alarm rate low.

  17. Physical characterization of incense aerosols.

    PubMed

    Mannix, R C; Nguyen, K P; Tan, E W; Ho, E E; Phalen, R F

    1996-12-20

    Experiments were performed to study the physical characteristics of smoke aerosols generated by burning three types of stick incense in a 4 m3 clean room. Sidestream cigarette smoke was also examined under the same conditions to provide a comparison. Among the parameters measured were (a) masses of aerosol, carbon monoxide and nitrogen oxides generated by burning the incense or cigarettes, (b) rates of decay of the particles from the air, and (c) estimates of count median particle size during a 7 h period post-burning. There was variability among the types of incense studied with respect to many of the parameters. Also, as a general trend, the greater the initial particulate mass concentration, the more rapid the rate of decay of the smoke. In relation to the quantity of particulate generated, cigarette smoke was found to produce proportionally larger quantities of carbon monoxide and nitrogen oxides than did incense. Due to the fact that burning incense was found to generate large quantities of particulate (an average of greater than 45 mg/g burned, as opposed to about 10 mg/g burned for the cigarettes), it is likely, in cases in which incense is habitually burned in indoor settings, that such a practice would produce substantial airborne particulate concentrations.

  18. Blood culture contaminants.

    PubMed

    Dawson, S

    2014-05-01

    Blood cultures are an essential diagnostic tool. However, contamination may impact on patients' care and lead to increased patient stay, additional tests, and inappropriate antibiotic use. The aim of this study was to review the literature for factors that influence the rate of blood culture contamination. A comprehensive literature search was performed using Medline and CINAHL on blood culture contamination. Hospitals/units should have in place a protocol for staff on how to take blood cultures, incorporating use of an aseptic technique. Studies have shown that several key factors in the process may lower contamination rates such as adherence to a protocol, sampling by peripheral venepuncture route rather than via an intravascular catheter, use of sterile gloves, cleaning tops of blood culture bottles with antiseptics and inoculating blood culture bottles before other blood tubes, samples being taken by a phlebotomy team, monitoring contamination rates, and providing individual feedback and retraining for those with contaminants. Although skin antisepsis is advocated there is still debate on which antiseptic is most effective, as there is no conclusive evidence, only that there is benefit from alcohol-containing preparations. In conclusion, hospitals should aim to minimize their blood culture contamination rates. They should monitor their rate regularly and aim for a rate of ≤3%. PMID:24768211

  19. Blood culture contaminants.

    PubMed

    Dawson, S

    2014-05-01

    Blood cultures are an essential diagnostic tool. However, contamination may impact on patients' care and lead to increased patient stay, additional tests, and inappropriate antibiotic use. The aim of this study was to review the literature for factors that influence the rate of blood culture contamination. A comprehensive literature search was performed using Medline and CINAHL on blood culture contamination. Hospitals/units should have in place a protocol for staff on how to take blood cultures, incorporating use of an aseptic technique. Studies have shown that several key factors in the process may lower contamination rates such as adherence to a protocol, sampling by peripheral venepuncture route rather than via an intravascular catheter, use of sterile gloves, cleaning tops of blood culture bottles with antiseptics and inoculating blood culture bottles before other blood tubes, samples being taken by a phlebotomy team, monitoring contamination rates, and providing individual feedback and retraining for those with contaminants. Although skin antisepsis is advocated there is still debate on which antiseptic is most effective, as there is no conclusive evidence, only that there is benefit from alcohol-containing preparations. In conclusion, hospitals should aim to minimize their blood culture contamination rates. They should monitor their rate regularly and aim for a rate of ≤3%.

  20. Subsurface contaminants focus area

    SciTech Connect

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  1. Aerosol Enhancements in the Upper Troposphere Over The Amazon Forest: Do Amazonian Clouds Produce Aerosols?

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Afchine, A.; Albrecht, R. I.; Artaxo, P.; Borrmann, S.; Cecchini, M. A.; Costa, A.; Dollner, M.; Fütterer, D.; Järvinen, E.; Klimach, T.; Konemann, T.; Kraemer, M.; Krüger, M. L.; Machado, L.; Mertes, S.; Pöhlker, C.; Poeschl, U.; Sauer, D. N.; Schnaiter, M.; Schneider, J.; Schulz, C.; Spanu, A.; Walser, A.; Weinzierl, B.; Wendisch, M.

    2015-12-01

    The German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) on the German research aircraft HALO took place over the Amazon Basin in September/October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with trace gases, aerosol particles, and atmospheric radiation. The aircraft was equipped with about 30 remote sensing and in-situ instruments for meteorological, trace gas, aerosol, cloud, precipitation, and solar radiation measurements. Fourteen research flights were conducted during this campaign. Observations during ACRIDICON-CHUVA showed high aerosol concentrations in the upper troposphere (UT) over the Amazon Basin, with concentrations after normalization to standard conditions often exceeding those in the boundary layer (BL). This behavior was consistent between several aerosol metrics, including condensation nuclei (CN), cloud condensation nuclei (CCN), and chemical species mass concentrations. These UT aerosols were different in their composition and size distribution from the aerosol in the BL, making convective transport of particles unlikely as a source. The regions in the immediate outflow of deep convective clouds were found to be depleted in aerosol particles, whereas enhanced aerosol number and mass concentrations were found in UT regions that had experienced outflow from deep convection in the preceding 24-48 hours. This suggests that aerosol production takes place in the UT based on volatile and condensable material brought up by deep convection. Subsequently, downward mixing and transport of upper tropospheric aerosol may be a source of particles to the BL, where they increase in size by the condensation of biogenic volatile organic carbon (BVOC) oxidation products. This may be an important source of aerosol particles in the Amazonian BL, where aerosol nucleation and new

  2. Radiative Effects of Aerosol in the Marine Environment: Tales from the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Barnard, J.; Chand, D.; Chapman, E. G.; Comstock, J. M.; Ferrare, R. A.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Johnson, R.; Kassianov, E.; Kluzek, C.; Laskin, A.; Lee, Y.; Mei, F.; Michalsky, J. J.; Redemann, J.; Rogers, R. R.; Russell, P. B.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Springston, S. R.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2013-12-01

    There is still uncertainty associated with the direct radiative forcing by atmospheric aerosol and its representation in atmospheric models. This is particularly true in marine environments near the coast where the aerosol loading is a function of both naturally occurring and anthropogenic aerosol. These regions are also subject to variable synoptic and thermally driven flows (land-sea breezes) that transport aerosol between the continental and marine environments. The situation is made more complicated due to seasonal changes in aerosol emissions. Given these differences in emissions, we expect significant differences in the aerosol intensive and extensive properties between summer and winter and data is needed to evaluate models over the wide range of conditions. To address this issue, the recently completed Two Column Aerosol Project (TCAP) was designed to measure the key aerosol parameters in two atmospheric columns, one located over Cape Cod, Massachusetts and another approximately 200 km from the coast over the Atlantic Ocean. Measurements included aerosol size distribution, chemical composition, optical properties and vertical distribution. Several aspects make TCAP unique, including the year-long deployment of a suite of surface-based instruments by the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility and two aircraft intensive operations periods supported by the ARM Airborne Facility, one conducted in July 2012 and a second in February 2013. The presentation will include a discussion of the impact of the aerosol optical properties and their uncertainty on simulations of the radiation budget within the TCAP domain in the context of both single column and regional scale models. Data from TCAP will be used to highlight a number of important factors, including diurnal variation in aerosol optical depth measured at the surface site, systematic changes in aerosol optical properties (including scattering, absorption, and

  3. An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties

    PubMed Central

    Sorooshian, Armin; Wonaschütz, Anna; Jarjour, Elias G.; Hashimoto, Bryce I.; Schichtel, Bret A.; Betterton, Eric A.

    2014-01-01

    This study reports a comprehensive characterization of atmospheric aerosol particle properties in relation to meteorological and back trajectory data in the southern Arizona region, which includes two of the fastest growing metropolitan areas in the United States (Phoenix and Tucson). Multiple data sets (MODIS, AERONET, OMI/TOMS, MISR, GOCART, ground-based aerosol measurements) are used to examine monthly trends in aerosol composition, aerosol optical depth (AOD), and aerosol size. Fine soil, sulfate, and organics dominate PM2.5 mass in the region. Dust strongly influences the region between March and July owing to the dry and hot meteorological conditions and back trajectory patterns. Because monsoon precipitation begins typically in July, dust levels decrease, while AOD, sulfate, and organic aerosol reach their maximum levels because of summertime photochemistry and monsoon moisture. Evidence points to biogenic volatile organic compounds being a significant source of secondary organic aerosol in this region. Biomass burning also is shown to be a major contributor to the carbonaceous aerosol budget in the region, leading to enhanced organic and elemental carbon levels aloft at a sky-island site north of Tucson (Mt. Lemmon). Phoenix exhibits different monthly trends for aerosol components in comparison with the other sites owing to the strong influence of fossil carbon and anthropogenic dust. Trend analyses between 1988 and 2009 indicate that the strongest statistically significant trends are reductions in sulfate, elemental carbon, and organic carbon, and increases in fine soil during the spring (March–May) at select sites. These results can be explained by population growth, land-use changes, and improved source controls. PMID:24707452

  4. Aerosol Size Distribution in the marine regions

    NASA Astrophysics Data System (ADS)

    Markuszewski, Piotr; Petelski, Tomasz; Zielinski, Tymon; Pakszys, Paulina; Strzalkowska, Agata; Makuch, Przemyslaw; Kowalczyk, Jakub

    2014-05-01

    We would like to present the data obtained during the regular research cruises of the S/Y Oceania over a period of time between 2009 - 2012. The Baltic Sea is a very interesting polygon for aerosol measurements, however, also difficult due to the fact that mostly cases of a mixture of continental and marine aerosols are observed. It is possible to measure clear marine aerosol, but also advections of dust from southern Europe or even Africa. This variability of data allows to compare different conditions. The data is also compared with our measurements from the Arctic Seas, which have been made during the ARctic EXperiment (AREX). The Arctic Seas are very suitable for marine aerosol investigations since continental advections of aerosols are far less frequent than in other European sea regions. The aerosol size distribution was measured using the TSI Laser Aerosol Spectrometer model 3340 (99 channels, measurement range 0.09 μm to 7 μm), condensation particle counter (range 0.01 μm to 3 μm) and laser particle counter PMS CSASP-100-HV-SP (range 0.5 μm to 47 μm in 45 channels). Studies of marine aerosol production and transport are important for many Earth sciences such as cloud physics, atmospheric optics, environmental pollution studies and interaction between ocean and atmosphere. All equipment was placed on one of the masts of S/Y Oceania. Measurements using the laser aerosol spectrometer and condensation particle counter were made on one level (8 meters above sea level). Measurements with the laser particle counter were performed at five different levels above the sea level (8, 11, 14, 17 and 20 m). Based on aerosol size distribution the parameterizations with a Log-Normal and a Power-Law distributions were made. The aerosol source functions, characteristic for the region were also determined. Additionally, poor precision of the sea spray emission determination was confirmed while using only the aerosol concentration data. The emission of sea spray depends

  5. A pathway analysis of global aerosol processes

    NASA Astrophysics Data System (ADS)

    Schutgens, Nick; Stier, Philip

    2014-05-01

    Although budgets for aerosol emission and deposition (macrophysical fluxes) have been studied before, much less is known about the budgets of processes e.g. nucleation, coagulation and condensation. A better understanding of their relative importance would improve our understanding of the aerosol system and help model development and evaluation. Aerosols are not only emitted from and deposited to the Earth's surface but are modified during their transport. The processes for these modifications include nucleation of H2SO4 gas into new aerosol, coagulation with other aerosol and condensation of H2SO4 unto existing aerosol. As a result of these processes, aerosol grow in size and change their chemical composition, often becoming hydrophilic where they were hydrophobic before. This affects their characteristics for various deposition processes (sedimentation, dry or wet deposition) as well as their radiative properties and hence climate forcing by aerosol. We present a complete budget of all aerosol processes in the aerosol-climate model ECHAM-HAM including the M7 microphysics. This model treats aerosol as 7 distinct but interacting two-moment modes of mixed species (soot, organic carbons, sulfate, sea salt and dust). We will show both global budgets as well as regional variations in dominant processes. Some of our conclusions are: condensation of H2SO4 gas onto pre-existing particles is an important process, dominating the growth of small particles in the nucleation mode to the Aitken mode and the ageing of hydrophobic matter. Together with in-cloud production of H2SO4, it significantly contributes to (and often dominates) the mass burden (and hence composition) of the hydrophilic Aitken and accumulation mode particles. Particle growth itself is the leading source of number densities in the hydrophilic Aitken and accumulation modes, with their hydrophobic counterparts contributing (even locally) relatively little. However, the coarse mode is mostly decoupled from the

  6. ELECTRICAL AEROSOL DETECTOR (EAD) MEASUREMENTS AT THE ST. LOUIS SUPERSITE

    EPA Science Inventory

    The Model 3070A Electrical Aerosol Detector (EAD) measures a unique aerosol parameter called total aerosol length. Reported as mm/cm3, aerosol length can be thought of as a number concentration times average diameter, or simply as d1 weighting. This measurement falls between nu...

  7. Physical and Chemical Properties of Anthropogenic Aerosols: An overview

    EPA Science Inventory

    A wide variety of anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is complex. Combustion aerosols can c...

  8. The effect of aerosol optical depth on rainfall with reference to meteorology over metro cities in India.

    PubMed

    Gunaseelan, Indira; Bhaskar, B Vijay; Muthuchelian, K

    2014-01-01

    Rainfall is a key link in the global water cycle and a proxy for changing climate; therefore, proper assessment of the urban environment's impact on rainfall will be increasingly important in ongoing climate diagnostics and prediction. Aerosol optical depth (AOD) measurements on the monsoon seasons of the years 2008 to 2010 were made over four metro regional hotspots in India. The highest average of AOD was in the months of June and July for the four cities during 3 years and lowest was in September. Comparing the four regions, Kolkata was in the peak of aerosol contamination and Chennai was in least. Pearson correlation was made between AOD with climatic parameters. Some changes in the parameters were found during drought year. Temperature, cloud parameters, and humidity play an important role for the drought conditions. The role of aerosols, meteorological parameters, and their impacts towards the precipitation during the monsoon was studied.

  9. The occupational exposure limit for fluid aerosol generated in metalworking operations: limitations and recommendations.

    PubMed

    Park, Donguk

    2012-03-01

    The aim of this review was to assess current knowledge related to the occupational exposure limit (OEL) for fluid aerosols including either mineral or chemical oil that are generated in metalworking operations, and to discuss whether their OEL can be appropriately used to prevent several health risks that may vary among metalworking fluid (MWF) types. The OEL (time-weighted average; 5 mg/m(3), short-term exposure limit ; 15 mg/m(3)) has been applied to MWF aerosols without consideration of different fluid aerosol-size fractions. The OEL, is also based on the assumption that there are no significant differences in risk among fluid types, which may be contentious. Particularly, the health risks from exposure to water-soluble fluids may not have been sufficiently considered. Although adoption of The National Institute for Occupational Safety and Health's recommended exposure limit for MWF aerosol (0.5 mg/m(3)) would be an effective step towards minimizing and evaluating the upper respiratory irritation that may be caused by neat or diluted MWF, this would fail to address the hazards (e.g., asthma and hypersensitivity pneumonitis) caused by microbial contaminants generated only by the use of water-soluble fluids. The absence of an OEL for the water-soluble fluids used in approximately 80-90 % of all applicants may result in limitations of the protection from health risks caused by exposure to those fluids. PMID:22953224

  10. [Release of radioactive aerosols from the object "shelter" during strong winds].

    PubMed

    Ogorodnikov, B I; Budyka, A K; Pavliuchenko, N I

    2005-01-01

    Results of measurements of radionuclide and disperse compositions of aerosols in ventilation system "Bypass" of the object "Shelter" of the Chernobyl NPP are presented. The Bypass is used for releasing contaminated air from the destroyed reactor of Block-IV to the atmosphere. In aerosols, the experimentally found ratio of 137Cs concentration to the sum of beta-emitting radionuclides more than 1.5 times exceeds the calculated ratio for nuclear fuel (in December, 2003). Using the data of meteorological station "Chornobyl", which situated 15 km SE from the Chernobyl NPP, we found that the wind with mean velocity of 4-5 m/sec or more and gusts of 10-11 m/sec led to increasing the aerosol concentration in the Bypass by more than power of magnitude. With the help of filter pack technique sizes of aerosol particles--the carriers of Chernobyl's radioactivity--were measured. It was found that the range of activity median aerodynamical diameter (AMAD) is 2-5 microns.

  11. Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident.

    PubMed

    Kaneyasu, Naoki; Ohashi, Hideo; Suzuki, Fumie; Okuda, Tomoaki; Ikemori, Fumikazu

    2012-06-01

    To date, areas contaminated by radionuclides discharged from the Fukushima Dai-ichi nuclear power plant accident have been mapped in detail. However, size of the radionuclides and their mixing state with other aerosol components, which are critical in their removal from the atmosphere, have not yet been revealed. We measured activity size distributions of (134)Cs and (137)Cs in aerosols collected 47 days after the accident at Tsukuba, Japan, and found that the activity median aerodynamic diameters of (134)Cs and (137)Cs in the first sample (April 28-May 12) were 0.54 and 0.53 μm, respectively, and those in the second sample (May 12-26) were both 0.63 μm. The activity size distributions of these radiocesium were within the accumulation mode size range and almost overlapped with the mass size distribution of non-sea-salt sulfate aerosol. From the analysis of other aerosol components, we found that sulfate was the potential transport medium for these radionuclides, and resuspended soil particles that attached radionuclides were not the major airborne radioactive substances at the time of measurement. This explains the relatively similar activity sizes of radiocesium measured at various sites during the Chernobyl accident. Our results can serve as basic data for modeling the transport/deposition of radionuclides.

  12. The Occupational Exposure Limit for Fluid Aerosol Generated in Metalworking Operations: Limitations and Recommendations

    PubMed Central

    2012-01-01

    The aim of this review was to assess current knowledge related to the occupational exposure limit (OEL) for fluid aerosols including either mineral or chemical oil that are generated in metalworking operations, and to discuss whether their OEL can be appropriately used to prevent several health risks that may vary among metalworking fluid (MWF) types. The OEL (time-weighted average; 5 mg/m3, short-term exposure limit ; 15 mg/m3) has been applied to MWF aerosols without consideration of different fluid aerosol-size fractions. The OEL, is also based on the assumption that there are no significant differences in risk among fluid types, which may be contentious. Particularly, the health risks from exposure to water-soluble fluids may not have been sufficiently considered. Although adoption of The National Institute for Occupational Safety and Health's recommended exposure limit for MWF aerosol (0.5 mg/m3) would be an effective step towards minimizing and evaluating the upper respiratory irritation that may be caused by neat or diluted MWF, this would fail to address the hazards (e.g., asthma and hypersensitivity pneumonitis) caused by microbial contaminants generated only by the use of water-soluble fluids. The absence of an OEL for the water-soluble fluids used in approximately 80-90 % of all applicants may result in limitations of the protection from health risks caused by exposure to those fluids. PMID:22953224

  13. Radiographic solution contamination.

    PubMed

    Hardman, P K; Tilmon, M F; Taylor, T S

    1987-06-01

    Contamination of processor solutions adversely affects the image quality of radiographic films. The purpose of this study was to determine the amount of developer or fixer contaminant that was necessary to produce a significant densitometric change in the base plus fog, speed, or contrast optical density readings for panoramic film. Significant differences in base plus fog (after 16 mL of fixer contaminant was added to developer), speed index (after 4 mL), and contrast index (after 8 mL) were observed in comparison with control values. PMID:3473399

  14. Evaluating potential groundwater contamination from contaminated soils

    SciTech Connect

    Pratt, J.R.; McCormick, P.V.; Pontasch, K.W.; Cairns, J.

    1987-01-01

    Contamination of soils at toxic and hazardous-waste sites can adversely affect groundwater and surface water. Water-soluble materials can move in soil by leaching and percolation and by runoff. The project evaluated the toxicity of leachable toxicants from seven soils, five of which were obtained from designated toxic or hazardous-waste sites. Acidified, dechlorinated tap water was used to extract toxic materials from surface soils. Extracts were used as complex mixtures in acute-toxicity tests using Daphnia and in chronic-effect tests using microcosms. Three classes of effects were observed. Some leachates (including control soils) showed no toxicity. Some soil leachates had moderate acute toxicity (50-80% diluted leachate) and no chronic toxicity. Very toxic soils showed both acute and chronic toxicity at <3% leachate. Toxicological evaluations of contaminants in waste-site soils can provide information not available from chemical analyses and may be useful in verifying the effectiveness of cleanup effort.

  15. Forensic Application of Microbiological Culture Analysis To Identify Mail Intentionally Contaminated with Bacillus anthracis Spores†

    PubMed Central

    Beecher, Douglas J.

    2006-01-01

    The discovery of a letter intentionally filled with dried Bacillus anthracis spores in the office of a United States senator prompted the collection and quarantine of all mail in congressional buildings. This mail was subsequently searched for additional intentionally contaminated letters. A microbiological sampling strategy was used to locate heavy contamination within the 642 separate plastic bags containing the mail. Swab sampling identified 20 bags for manual and visual examination. Air sampling within the 20 bags indicated that one bag was orders of magnitude more contaminated than all the others. This bag contained a letter addressed to Senator Patrick Leahy that had been loaded with dried B. anthracis spores. Microbiological sampling of compartmentalized batches of mail proved to be efficient and relatively safe. Efficiency was increased by inoculating culture media in the hot zone rather than transferring swab samples to a laboratory for inoculation. All mail sampling was complete within 4 days with minimal contamination of the sampling environment or personnel. However, physically handling the intentionally contaminated letter proved to be exceptionally hazardous, as did sorting of cross-contaminated mail, which resulted in generation of hazardous aerosol and extensive contamination of protective clothing. Nearly 8 × 106 CFU was removed from the most highly cross-contaminated piece of mail found. Tracking data indicated that this and other heavily contaminated envelopes had been processed through the same mail sorting equipment as, and within 1 s of, two intentionally contaminated letters. PMID:16885280

  16. Geochemical and Isotopic Composition of Aerosols in Tucson

    NASA Astrophysics Data System (ADS)

    Riha, K. M.; Michalski, G. M.; Lohse, K. A.; Gallo, E. L.; Brooks, P. D.; Meixner, T.

    2010-12-01

    Atmospheric nitrogen input to soils and surfaces in arid environments is of growing concern due to increased urbanization. Atmospheric nitrogen can be deposited as wet (rain or snow) or dry (dust or aerosols) deposition, and can lead to water eutrophication, soil acidification, and groundwater contamination through leaching of excess nitrate. Urbanization increases imperviousness which increases the magnitude of runoff and subsequently enhances groundwater recharge in arid and semi-arid regions. Following a rain pulse, nitrate deposited on impervious surfaces during dry periods is mobilized into ephemeral channels, where it can potentially infiltrate and reach groundwater. Anthropogenic nitrate sources include fertilizer from agriculture practices or lawn application, septic systems, and animal waste disposal. One way to determine the sources of nitrogen input to these environments is through the use of multiple isotope analysis (δ15N, δ18O and Δ17O ). The δ15N of nitrate can be used to distinguish between sources and when used in conjunction with δ18O better separation can be obtained due to distinct signatures (i.e. fertilizer is unique from septic). It has been shown that atmospheric nitrate is anomalously enriched in 17O (denoted Δ17O) (Michalski et al., 2003), while nitrate produced from nitrification, denitrification and assimilation have a Δ17O = 0. Using the Δ17O measurement can therefore allow us to determine the proportion of atmospheric nitrate in a sample. The objective of this research is to characterize the δ15N and δ18O values of atmospheric nitrate in Tucson. During 2006, daily PM10 and PM2.5 aerosol filters were collected from The Pima County Department of Environmental Quality. Aerosols show a seasonal mass trend with increased mass in the winter relative to spring, summer and fall. Anion concentrations (Cl-, NO3-, and SO42-) analyzed by ion chromatography, show similar seasonal variation that was present in the aerosol mass. Multiple

  17. Smoke and pollution aerosol effect on cloud cover.

    PubMed

    Kaufman, Yoram J; Koren, Ilan

    2006-08-01

    Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.

  18. Smoke and Pollution Aerosol Effect on Cloud Cover

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Koren, Ilan

    2006-01-01

    Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.

  19. Impact of Aerosol Processing on Orographic Clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al

  20. Impact of clouds and precipitation on atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Andronache, Constantin

    2015-04-01

    Aerosols have a significant impact on the dynamics and microphysics of continental mixed-phase convective clouds. High aerosol concentrations provide enhanced cloud condensation nuclei that can lead to the invigoration of convection and increase of surface rainfall. Such effects are dependent on environmental conditions and aerosol properties. Clouds are not only affected by aerosol, they also alter aerosol properties by various processes. Cloud processing of aerosol includes: convective redistribution, modification in the number and size of aerosol particles, chemical processing, new particle formation around clouds, and aerosol removal by rainfall to the surface. Among these processes, the wet removal during intense rain events, in polluted continental regions, can lead to spikes in acidic deposition into environment. In this study, we address the effects of clouds and precipitation on the aerosol distribution in cases of convective precipitation events in eastern US. We examine the effects of clouds and precipitation on various aerosol species, as well as their temporal and spatial variability.