Science.gov

Sample records for aerosol cooling effect

  1. Unexpected Benefits of Reducing Aerosol Cooling Effects.

    PubMed

    Xing, Jia; Wang, Jiandong; Mathur, Rohit; Pleim, Jonathan; Wang, Shuxiao; Hogrefe, Christian; Gan, Chuen-Meei; Wong, David C; Hao, Jiming

    2016-07-19

    Impacts of aerosol cooling are not limited to changes in surface temperature since modulation of atmospheric dynamics resulting from the increased stability can deteriorate local air quality and impact human health. Health impacts from two manifestations of the aerosol direct effects (ADE) are estimated in this study: (1) the effect on surface temperature and (2) the effect on air quality through atmospheric dynamics. Average mortalities arising from the enhancement of surface PM2.5 concentration due to ADE in East Asia, North America and Europe are estimated to be 3-6 times higher than reduced mortality from decreases of temperature due to ADE. Our results suggest that mitigating aerosol pollution is beneficial in decreasing the impacts of climate change arising from these two manifestations of ADE health impacts. Thus, decreasing aerosol pollution gets direct benefits on health, and indirect benefits on health through changes in local climate and not offsetting changes associated only with temperature modulations as traditionally thought. The modulation of air pollution due to ADE also translates into an additional human health dividend in regions (e.g., U.S. Europe) with air pollution control measures but a penalty for regions (e.g., Asia) witnessing rapid deterioration in air quality. PMID:27310144

  2. Unexpected Benefits of Reducing Aerosol Cooling Effects

    EPA Science Inventory

    Impacts of aerosol cooling are not limited to changes in surface temperature since modulation of atmospheric dynamics resulting from the increased stability can deteriorate local air quality and impact human health. Health impacts from two manifestations of the aerosol direct eff...

  3. Effect of tropospheric aerosols upon atmospheric infrared cooling rates

    NASA Technical Reports Server (NTRS)

    Harshvardhan, MR.; Cess, R. D.

    1978-01-01

    The effect of tropospheric aerosols on atmospheric infrared cooling rates is investigated by the use of recent models of infrared gaseous absorption. A radiative model of the atmosphere that incorporates dust as an absorber and scatterer of infrared radiation is constructed by employing the exponential kernel approximation to the radiative transfer equation. Scattering effects are represented in terms of a single scattering albedo and an asymmetry factor. The model is applied to estimate the effect of an aerosol layer made of spherical quartz particles on the infrared cooling rate. Calculations performed for a reference wavelength of 0.55 microns show an increased greenhouse effect, where the net upward flux at the surface is reduced by 10% owing to the strongly enhanced downward emission. There is a substantial increase in the cooling rate near the surface, but the mean cooling rate throughout the lower troposphere was only 10%.

  4. ECOLOGICAL EFFECTS OF AEROSOL DRIFT FROM A SALTWATER COOLING SYSTEM

    EPA Science Inventory

    The local terrestrial effects of salt aerosol drift from powered spray modules and a mechanical draft cooling tower at Turkey Point, Florida were evaluated through field and controlled exposure studies. Indigenous vegetation, soil and fresh water were sampled over a year long per...

  5. Black carbon reduction will weaken the aerosol net cooling effect

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2014-12-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  6. Effect of tropospheric aerosols upon atmospheric infrared cooling rates

    NASA Technical Reports Server (NTRS)

    Harshvardhan, MR.; Cess, R. D.

    1978-01-01

    An investigation has been made of the impact of wind-blown dust particles upon local climate of arid regions. The case of Northwest India is specifically considered, where a dense layer of dust persists for several months during the summer. In order to examine the effect of this dust layer on the infrared radiative flux and cooling rates, a method is presented for calculating the IR flux within a dusty atmosphere which allows the use of gaseous band models and is applicable in the limit of small single scattering albedo and pronounced forward scattering. The participating components of the atmosphere are assumed to be water vapor and spherical quartz particles only. The atmospheric window is partially filled by including the water vapor continuum bands for which empirically obtained transmission functions have been used. It is shown that radically different conclusions may be drawn on dust effects if the continuum absorption is not considered. The radiative transfer model, when applied to a dusty atmosphere, indicates that there is a moderate enhancement in the atmospheric greenhouse and a 10% increase in the mean IR radiative cooling rate, relative to the dust free case, within the lower troposphere. These results have been compared with previous work by other authors in the context of the possibility of dust layers inhibiting local precipitation.

  7. Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2015-04-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in the short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate atmosphere-only model BCC_AGCM2.0.1_CUACE/Aero with prescribed sea surface temperature and sea ice cover, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with recent past year 2000 levels if the emissions of only BC are reduced to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial~for the mitigation of global warming. However, both aerosol negative direct and indirect radiative effects are weakened when BC and its co-emitted species (sulfur dioxide and organic carbon) are simultaneously reduced. Relative to year 2000 levels, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 if the emissions of all these aerosols are decreased to the levels projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  8. Gas-phase saturation and evaporative cooling effects during wet compression of a fuel aerosol under RCM conditions

    SciTech Connect

    Goldsborough, S.S.; Johnson, M.V.; Zhu, G.S.; Aggarwal, S.K.

    2011-01-15

    Wet compression of a fuel aerosol has been proposed as a means of creating gas-phase mixtures of involatile diesel-representative fuels and oxidizer + diluent gases for rapid compression machine (RCM) experiments. The use of high concentration aerosols (e.g., {proportional_to}0.1 mL{sub fuel}/L{sub gas}, {proportional_to}1 x 10{sup 9} droplets/L{sub gas} for stoichiometric fuel loading at ambient conditions) can result in droplet-droplet interactions which lead to significant gas-phase fuel saturation and evaporative cooling during the volumetric compression process. In addition, localized stratification (i.e., on the droplet scale) of the fuel vapor and of temperature can lead to non-homogeneous reaction and heat release processes - features which could prevent adequate segregation of the underlying chemical kinetic rates from rates of physical transport. These characteristics are dependent on many factors including physical parameters such as overall fuel loading and initial droplet size relative to the compression rate, as well as fuel and diluent properties such as the boiling curve, vaporization enthalpy, heat capacity, and mass and thermal diffusivities. This study investigates the physical issues, especially fuel saturation and evaporative cooling effects, using a spherically-symmetric, single-droplet wet compression model. n-Dodecane is used as the fuel with the gas containing 21% O{sub 2} and 79% N{sub 2}. An overall compression time and compression ratio of 15.3 ms and 13.4 are used, respectively. It is found that smaller droplets (d{sub 0}{proportional_to} 2-3 {mu}m) are more affected by 'far-field' saturation and cooling effects, while larger droplets (d{sub 0}{proportional_to} 14 {mu}m) result in greater localized stratification of the gas-phase due to the larger diffusion distances for heat and mass transport. Vaporization of larger droplets is more affected by the volumetric compression process since evaporation requires more time to be completed

  9. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  10. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  11. Evaluating aerosol indirect effect through marine stratocumulus clouds

    SciTech Connect

    Kogan, Z.N.; Kogan, Y.L.; Lilly, D.K.

    1996-04-01

    During the last decade much attention has been focused on anthropogenic aerosols and their radiative influence on the global climate. Charlson et al. and Penner et al. have demonstrated that tropospheric aerosols and particularly anthropogenic sulfate aerosols may significantly contribute to the radiative forcing exerting a cooling influence on climate (-1 to -2 W/m{sup 2}) which is comparable in magnitude to greenhouse forcing, but opposite in sign. Aerosol particles affect the earth`s radiative budget either directly by scattering and absorption of solar radiation by themselves or indirectly by altering the cloud radiative properties through changes in cloud microstructure. Marine stratocumulus cloud layers and their possible cooling influence on the atmosphere as a result of pollution are of special interest because of their high reflectivity, durability, and large global cover. We present an estimate of thet aerosol indirect effect, or, forcing due to anthropogenic sulfate aerosols.

  12. Observed holiday aerosol reduction and temperature cooling over East Asia

    NASA Astrophysics Data System (ADS)

    Gong, Dao-Yi; Wang, Wenshan; Qian, Yun; Bai, Wenbing; Guo, Yuanxi; Mao, Rui

    2014-06-01

    The air pollution in Chinese Spring Festival (CSF) period over eastern China was investigated using the long-term observations from 2001 to 2012 over 323 stations. The dominant feature of the pollutants around the CSF holidays is the significant reduction of concentration. During the 10day period around the CSF (but excluding the Lunar New Year's Day, LNYD), PM10 experiences a reduction of -9.24%. In association with the aerosol reduction, temperature significantly drops over eastern China. From the third day before the LNYD to the second day after, the daily mean temperature anomaly is -0.81°C, and for no-rain days the anomaly is -0.85°C. The simultaneous anomalies of the daily maximum and minimum temperatures are -0.79°C and -0.82°C, respectively. From the third day to seventh day after the LNYD, the significant negative temperature anomalies move out of China, extending to a broad area from the South China Sea to the western North Pacific. Between the 8th and the 12th days, the significant temperature anomalies can still be found over 140°E-160°E and 15°N-25°N. The reduced downward longwave flux might play an important role in holiday cooling. The possible atmospheric feedback is discernable. The thermal and circulation configuration accompanying the cooling favors baroclinic interaction between upper and lower troposphere for the midlatitude cyclone. The anomalous cyclone becomes mature during the third to the seventh day after the LNYD and disappears 12 days later. The anomalous northern winds in association with the cyclone decrease the temperature and also help disperse the holiday aerosols over eastern China.

  13. Experiments on aerosol-induced cooling in the nocturnal boundary layer

    NASA Astrophysics Data System (ADS)

    Sreenivas, K.; Singh, D. K.; Vk, P.; Mukund, V.; Subramanian, G.

    2012-12-01

    In the nocturnal boundary layer (NBL), under calm & clear-sky conditions, radiation is the principal mode of heat transfer & it determines the temperature distribution close to the ground. Radiative processes thus influence the surface energy budget, & play a decisive role in many micro-meteorological processes including the formation of radiation-fog & inversion layer. Here, we report hyper-cooling of air layers close to the ground that has a radiative origin. Resulting vertical temperature distribution has an anomalous profile with an elevated minimum few decimetres above the ground (known as Lifted Temperature Minimum; LTM). Even though the first observation of this type of profile dates back to 1930s, its origin has not been explained till recently. We report field experiments to elucidate effects of emissivity and other physical properties of the ground on the LTM profile. Field observations clearly indicate that LTM-profiles are observed as a rule in the lowest meter of the NBL. We also demonstrate that the air-layer near the ground, rather than the ground itself, leads the post sunset cooling. This fact changes the very nature of the sensible heat-flux boundary condition. A laboratory experimental setup has been developed that can reproduce LTM. Lab-experiments demonstrate that the high cooling rates observed in the field experiments arise from the presence of aerosols & the intensity of cooling is proportional to aerosol concentration (Fig-1). We have also captured penetrative convection cells in the field experiments (Fig-2). Results presented here thus help in parameterizing transport processes in the NBL.

  14. Research on cooling effectiveness in stepped slot film cooling vane

    NASA Astrophysics Data System (ADS)

    Li, Yulong; Wu, Hong; Zhou, Feng; Rong, Chengjun

    2016-06-01

    As one of the most important developments in air cooling technology for hot parts of the aero-engine, film cooling technology has been widely used. Film cooling hole structure exists mainly in areas that have high temperature, uneven cooling effectiveness issues when in actual use. The first stage turbine vanes of the aero-engine consume the largest portion of cooling air, thereby the research on reducing the amount of cooling air has the greatest potential. A new stepped slot film cooling vane with a high cooling effectiveness and a high cooling uniformity was researched initially. Through numerical methods, the affecting factors of the cooling effectiveness of a vane with the stepped slot film cooling structure were researched. This paper focuses on the cooling effectiveness and the pressure loss in different blowing ratio conditions, then the most reasonable and scientific structure parameter can be obtained by analyzing the results. The results show that 1.0 mm is the optimum slot width and 10.0 is the most reasonable blowing ratio. Under this condition, the vane achieved the best cooling result and the highest cooling effectiveness, and also retained a low pressure loss.

  15. Delay in convection in nocturnal boundary layer due to aerosol-induced cooling

    NASA Astrophysics Data System (ADS)

    Singh, Dhiraj Kumar; Ponnulakshmi, V. K.; Subramanian, G.; Sreenivas, K. R.

    2012-11-01

    Heat transfer processes in the nocturnal boundary layer (NBL) influence the surface energy budget, and play an important role in many micro-meteorological processes including the formation of inversion layers, radiation fog, and in the control of air-quality near the ground. Under calm clear-sky conditions, radiation dominates over other transport processes, and as a result, the air layers just above ground cool the fastest after sunset. This leads to an anomalous post-sunset temperature profile characterized by a minimum a few decimeters above ground (Lifted temperature minimum). We have designed a laboratory experimental setup to simulate LTM, involving an enclosed layer of ambient air, and wherein the boundary condition for radiation is decoupled from those for conduction and convection. The results from experiments involving both ambient and filtered air indicate that the high cooling rates observed are due to the presence of aerosols. Calculated Rayleigh number of LTM-type profiles is of the order 105-107 in the field and of order 103-105 in the laboratory. In the LTM region, there is convective motion when the Rayleigh number is greater than 104 rather than the critical Rayleigh number (Rac = 1709). The diameter of convection rolls is a function of height of minimum of LTM-type profiles. The results obtained should help in the parameterization of transport process in the nocturnal boundary layer, and highlight the need to accounting the effects of aerosols and ground emissivity in climate models.

  16. Direct and semidirect aerosol effects of Southern African biomass burning aerosol

    SciTech Connect

    Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

    2011-06-21

    The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the

  17. Global profiles of the direct aerosol effect using vertically resolved aerosol data

    NASA Astrophysics Data System (ADS)

    Korras Carraca, Marios Bruno; Pappas, Vasilios; Matsoukas, Christos; Hatzianastassiou, Nikolaos; Vardavas, Ilias

    2014-05-01

    Atmospheric aerosols, both natural and anthropogenic, can cause climate change through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. In general, aerosols cause cooling of the surface and the planet, while they warm the atmosphere due to scattering and absorption of incoming solar radiation. The importance of vertically resolved direct radiative effect (DRE) and heating/cooling effects of aerosols is strong, while large uncertainties still lie with their magnitudes. In order to be able to quantify them throughout the atmosphere, a detailed vertical profile of the aerosol effect is required. Such data were made available recently by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. CALIOP is the first polarization lidar to fly in space and has been acquiring unique data on aerosols and clouds since June 2006. The aim of this study is to investigate both the vertically resolved geographic and seasonal variation of the DRE due to aerosols. The vertical profile of DRE under all-sky and clear-sky conditions is computed using the deterministic spectral radiative transfer model FORTH. From the DRE, the effect on atmospheric heating/cooling rate profiles due to aerosols can also be derived. We use CALIOP Level 2-Version 3 Layer aerosol optical depth data as input to our radiation transfer model, for a period of 3 complete years (2007-2009). These data are provided on a 5 km horizontal resolution and in up to 8 vertical layers and have been regridded on our model horizontal and vertical resolutions. We use cloud data from the International Satellite Cloud Climatology Project (ISCCP), while the aerosol asymmetry factor and single scattering albedo are taken from the Global Aerosol Data Set (GADS). The model computations are performed on a monthly, 2.5°× 2.5° resolution on global scale, at 40

  18. Observed Holiday Aerosol Reduction and Temperature Cooling over East Asia

    SciTech Connect

    Gong, Daoyi; Wang, Wenshan; Qian, Yun; Bai, Wenbing; Guo, Yuanxi; Mao, Rui

    2014-06-16

    The Spring Festival air pollution in China was investigated using the long-term observations from 2001-2012 over 323 stations. During the Spring Festival with nearly half of urban population leaving the cities for holidays, the particulate matter (PM10) concentration is about 24.5μgm-3 (23%) lower than normal days. Associated with the national-wide burning of firework, the PM10 concentration sharply increases to 123.8μgm-3 at Chinese New Year Day (increment of 35%). Similar to PM10, the SO2 and NO2 decrease from high values in normal days to a holiday minimum with reduction of 23.3% and 30.6%, respectively. The NO2 has no peak in New Year Day because of the different emission source. The night mean and minimum temperature co-vary with PM10. Both nighttime mean and minimum temperature decrease by about 2.1°C during the holidays. And in association with the pollution jump at New Year Day the night temperature simultaneously increase by about 0.89°C. The in-phase co-variations between PM10 and night temperature suggest an overall warming effect of holiday aerosol during winter in China.

  19. Ice nucleation in the upper troposphere: Sensitivity to aerosol number density, temperature, and cooling rate

    SciTech Connect

    Jensen, E.J.; Toon, O.B.

    1994-09-01

    We have investigated the processes that control ice crystal nucleation in the upper troposphere using a numerical model. Nucleation of ice resulting from cooling was simulated for a range of aerosol number densities, initial temperatures, and cooling rates. In contrast to observations of stratus clouds, we find that the number of ice crystals that nucleate in cirrus is relatively insensitive to the number of aerosols present. The ice crystal size distribution at the end of the nucleation process is unaffected by the assumed initial aerosol number density. Essentially, nucleation continues until enough ice crystals are present such that their deposition growth rapidly depletes the vapor and shuts off any further nucleation. However, the number of ice crystals nucleated increases rapidly with decreasing initial temperature and increasing cooling rate. This temperature dependence alone could explain the large ice crystal number density observed in very cold tropical cirrus.

  20. Combustion effects on film cooling

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Ewen, R. L.

    1977-01-01

    The effects of: (1) a reactive environment on film cooling effectiveness, and (2) film cooling on rocket engine performance were determined experimentally in a rocket thrust chamber assembly operating with hydrogen and oxygen propellants at 300 psi chamber pressure. Tests were conducted using hydrogen, helium, and nitrogen film coolants in an instrumented, thin walled, steel thrust chamber. The film cooling, performance loss, and heat transfer coefficient data were correlated with the ALRC entrainment film cooling model which relates film coolant effectiveness and mixture ratio at the wall to the amount of mainstream gases entrained with the film coolant in a mixing layer. In addition, a comprehensive thermal analysis computer program, HOCOOL, was prepared from previously existing ALRC computer programs and analytical techniques.

  1. Estimation of Aerosol Direct Radiative Effects from Satellite and In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Schmid, Beat; Redemann, Jens; McIntosh, Dawn

    2000-01-01

    Ames researchers have combined measurements from satellite, aircraft, and the surface to estimate the effect of airborne particles (aerosols) on the solar radiation over the North Atlantic region. These aerosols (which come from both natural and pollution sources) can reflect solar radiation, causing a cooling effect that opposes the warming caused by carbon dioxide. Recently, increased attention has been paid to aerosol effects to better understand the Earth climate system.

  2. Effects of Aerosols over the Indian Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Aerosols that contain black carbon both absorb and reflect incoming sunlight. Even as these atmospheric particles reduce the amount of sunlight reaching the surface, they increase the amount of solar energy absorbed in the atmosphere, thus making it possible to both cool the surface and warm the atmosphere. The images above show satellite measurements of the region studied during the Indian Ocean Experiment (INDOEX)a vast region spanning the Arabian Sea and Bay of Bengal (west to east), and from the foot of the Himalayan Mountains, across the Indian subcontinent to the southern Indian Ocean (north to south). The Aerosol images show aerosol pollution (brownish pixels) in the lower atmosphere over the INDOEX study area, as measured by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard Terra. These were composited from March 14-21, 2001. The Albedo images show the total solar energy reflected back to space, as measured by Clouds and Earth's Radiant Energy System (CERES) aboard Terra. White pixels show high values, greens are intermediate values, and blues are low. Note how the aerosols, particularly over the ocean, increase the amount of energy reflected back to space. The Atmospheric Warming images show the absorption of the black carbon aerosols in the atmosphere. Where the aerosols are most dense, the absorption is highest. Red pixels indicate the highest levels of absorption, blues are low. The Surface Cooling images show that the aerosol particles reduce the amount of sunlight reaching the surface. Dark pixels show where the aerosols exert their cooling influence on the surface (or a high magnitude of negative radiative forcing). The bright pixels show where there is much less aerosol pollution and the incoming sunlight is relatively unaffected.

  3. Global fine-mode aerosol radiative effect, as constrained by comprehensive observations

    NASA Astrophysics Data System (ADS)

    Chung, Chul E.; Chu, Jung-Eun; Lee, Yunha; van Noije, Twan; Jeoung, Hwayoung; Ha, Kyung-Ja; Marks, Marguerite

    2016-07-01

    Aerosols directly affect the radiative balance of the Earth through the absorption and scattering of solar radiation. Although the contributions of absorption (heating) and scattering (cooling) of sunlight have proved difficult to quantify, the consensus is that anthropogenic aerosols cool the climate, partially offsetting the warming by rising greenhouse gas concentrations. Recent estimates of global direct anthropogenic aerosol radiative forcing (i.e., global radiative forcing due to aerosol-radiation interactions) are -0.35 ± 0.5 W m-2, and these estimates depend heavily on aerosol simulation. Here, we integrate a comprehensive suite of satellite and ground-based observations to constrain total aerosol optical depth (AOD), its fine-mode fraction, the vertical distribution of aerosols and clouds, and the collocation of clouds and overlying aerosols. We find that the direct fine-mode aerosol radiative effect is -0.46 W m-2 (-0.54 to -0.39 W m-2). Fine-mode aerosols include sea salt and dust aerosols, and we find that these natural aerosols result in a very large cooling (-0.44 to -0.26 W m-2) when constrained by observations. When the contribution of these natural aerosols is subtracted from the fine-mode radiative effect, the net becomes -0.11 (-0.28 to +0.05) W m-2. This net arises from total (natural + anthropogenic) carbonaceous, sulfate and nitrate aerosols, which suggests that global direct anthropogenic aerosol radiative forcing is less negative than -0.35 W m-2.

  4. An investigation of Raman lidar aerosol measurements and their application to the study of the aerosol indirect effect

    NASA Astrophysics Data System (ADS)

    Russo, Felicita

    The problem of the increasing global atmospheric temperature has motivated a large interest in studying the mechanisms that can influence the radiative balance of the planet. Aerosols are responsible for several radiative effects in the atmosphere: an increase of aerosol loading in the atmosphere increases the reflectivity of the atmosphere and has an estimated cooling effect and is called the aerosol direct effect. Another process involving aerosols is the effect that an increase in their concentration in the atmosphere has on the formation of clouds and is called the aerosol indirect effect. In the latest IPCC report, the aerosol indirect effect was estimated to be responsible for a radiative forcing ranging between -0.3 W/m2 to -1.8 W/m2, which can be as large as, but opposite in sign to, the radiative forcing due to greenhouse gases. The main goal of this dissertation is to study the Raman lidar measurements of quantities relevant for the investigation of the aerosol indirect effect and ultimately to apply these measurements to a quantification of the aerosol indirect effect. In particular we explore measurements of the aerosol extinction from both the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) and the US Department of Energy (DOE) ARM Climate Research Facility Raman Lidar (CARL). An algorithm based on the chi-squared technique to calculate the aerosol extinction, which was introduced first by Whiteman (1999), is here validated using both simulated and experimental data. It has been found as part of this validation that the aerosol extinction uncertainty retrieved with this technique is on average smaller that the uncertainty calculated with the technique traditionally used. This algorithm was then used to assess the performance of the CARL aerosol extinction retrieval for low altitudes. Additionally, since CARL has been upgraded with a channel for measuring Raman liquid water scattering, measurements of cloud liquid water content, droplet

  5. The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States

    NASA Astrophysics Data System (ADS)

    Chen, D.; Liu, Z.; Schwartz, C. S.; Lin, H.-C.; Cetola, J. D.; Gu, Y.; Xue, L.

    2014-11-01

    The Gridpoint Statistical Interpolation three-dimensional variational data assimilation (DA) system coupled with the Weather Research and Forecasting/Chemistry (WRF/Chem) model was utilized to improve aerosol forecasts and study aerosol direct and semi-direct radiative feedbacks during a US wild fire event. Assimilation of MODIS total 550 nm aerosol optical depth (AOD) retrievals clearly improved WRF/Chem forecasts of surface PM2.5 and organic carbon (OC) compared to the corresponding forecasts without aerosol data assimilation. The scattering aerosols in the fire downwind region typically cooled layers both above and below the aerosol layer and suppressed convection and clouds, which led to an average of 2% precipitation decrease during the fire week. This study demonstrated that, even with no input of fire emissions, AOD DA improved the aerosol forecasts and allowed a more realistic model simulation of aerosol radiative effects.

  6. The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States

    NASA Astrophysics Data System (ADS)

    Chen, D.; Liu, Z.; Schwartz, C. S.; Lin, H.-C.; Cetola, J. D.; Gu, Y.; Xue, L.

    2014-06-01

    The Gridpoint Statistical Interpolation three-dimensional variational data assimilation (DA) system coupled with the Weather Research and Forecasting/Chemistry (WRF/Chem) model was utilized to improve aerosol forecasts and study aerosol direct and semi-direct radiative feedbacks during a US wild fire event. Assimilation of MODIS total 550 nm aerosol optical depth (AOD) retrievals clearly improved WRF/Chem forecasts of surface PM2.5 and organic carbon (OC) compared to the corresponding forecasts without aerosol data assimilation. The scattering aerosols in the fire downwind region typically cooled layers both above and below the aerosol layer and suppressed convection and clouds, which led to an average 2% precipitation decease during the fire week. This study demonstrated that even with no input of fire emissions, AOD DA improved the aerosol forecasts and allowed a more realistic model simulation of aerosol radiative effects.

  7. The effect of aerosol on radiation fog life-cycle

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, Sami; Maalick, Zubair; Tonttila, Juha; Kuhn, Thomas; Kokkola, Harri

    2016-04-01

    Radiation fog is formed during the night under clear skies when emission of long wave radiation cools the surface and air above it. After formation, the development of fog is further influenced by longwave cooling and turbulence entrainment-detrainment at the top of the fog layer, and microphysical processes through droplet activation and sedimentation. After sunrise, the fog is dissipated due heating of the surface and the air above it. Like in the case of clouds, atmospheric aerosol particles also affect the properties of fog and together with meteorological conditions determine their life cycle from formation to dissipation. To explore how aerosols are affecting radiation fog properties and lifetime, we have used a Large Eddy Model with explicit representation of aerosol particles and aerosol-fog droplet interactions. Our results show that the fog droplet concentration increases with increasing aerosol concentration. In the early stages of fog formation the radiative cooling at the top of the fog controls the maximum water supersaturation and droplet formation in a similar manner than the updraft velocity does at the base of a cloud. The liquid water content in the fog is mainly determined by the droplet concentration as large droplets are efficiently removed through sedimentation. Thus, with increasing aerosol particle concentration, the more numerous, but smaller fog droplets increase the fog's optical depth and thereby delay the fog dissipation after sunrise, because the surface warms more slowly. This effect is further enhanced if turbulence inside the fog leads to secondary activation of droplets. Overall, the radiation fog dissipation in polluted conditions can be delayed up to hours when compared to clean conditions.

  8. Estimates of the Spectral Aerosol Single Sea Scattering Albedo and Aerosol Radiative Effects during SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.

    2003-01-01

    Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).

  9. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE PAGESBeta

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; Hengartner, Nicholas; Higdon, Dave; Lesins, Glen; Dubey, Manvendra K.

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  10. Effects of Aerosol on Atmospheric Dynamics and Hydrologic Processes during Boreal Spring and Summer

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, M. K.; Chin, Mian; Kim, K. M.

    2005-01-01

    Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and.black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol

  11. Effects of Aerosol on Atmospheric Dynamics and Hydrologic Processes During Boreal Spring and Summer

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, M. K.; Kim, K. M.; Chin, Mian

    2005-01-01

    Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol

  12. Evidence for a Glaciation Aerosol Indirect Effect from Ship Tracks

    NASA Astrophysics Data System (ADS)

    Christensen, M.; Suzuki, K.; Stephens, G. L.

    2013-12-01

    Ship tracks are a prominent manifestation of the aerosol indirect effect that provides a unique opportunity to study aerosol interactions in both warm and mixed-phase clouds. While ample evidence supports that an increase in aerosol concentration generally suppresses warm phase precipitation leading to longer cloud lifetime and more reflected sunlight (Albrecht, 1989) there is less understood about these effects in mixed-phase clouds. Lohmann, (2002) propose that an increase in IN (Ice Nuclei) may cause a glaciation indirect effect which results in more frequent glaciation of super-cooled droplets via the Bergeron process thereby increasing the amount of precipitation, which could decrease cloud cover, cloud longevity, and reflected sunlight. In this study, over 200 ship tracks are identified in mixed phase clouds using MODIS (MODerate resolution Imaging Spectroradiometer) imagery. Retrievals of the ice phase are obtained using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations). These measurements provide evidence that glaciation is more frequent in polluted clouds compared to the unpolluted clouds that lie adjacent to ship tracks. Larger ice fractions may result from the increased IN emitted from the ship or by other processes (e.g., immersion/contact freezing) that lead to faster ice multiplication in polluted clouds with smaller and more numerous supercooled droplets. Observations from the profiling radar on CloudSat show that aerosol suppresses warm phase precipitation but enhances the cold phase precipitation. For mixed-phase clouds, these differences roughly cancel resulting in small changes in precipitation between polluted and unpolluted clouds. When cloud tops are warm, aerosol decreases precipitation rates and cloud water paths due to the entrainment effect but the differences in cloud water amount are considerably smaller than those found in cold phase clouds. These results provide the first glance of ship tracks in mixed

  13. Impacts of emission reductions on aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Pietikainen, J.-P.; Kupiainen, K.; Klimont, Z.; Makkonen, R.; Korhonen, H.; Karinkanta, R.; Hyvarinen, A.-P.; Karvosenoja, N.; Laaksonen, A.; Lihavainen, H.; Kerminen, V.-M.

    2015-05-01

    The global aerosol-climate model ECHAM-HAMMOZ was used to investigate changes in the aerosol burden and aerosol radiative effects in the coming decades. Four different emissions scenarios were applied for 2030 (two of them applied also for 2020) and the results were compared against the reference year 2005. Two of the scenarios are based on current legislation reductions: one shows the maximum potential of reductions that can be achieved by technical measures, and the other is targeted to short-lived climate forcers (SLCFs). We have analyzed the results in terms of global means and additionally focused on eight subregions. Based on our results, aerosol burdens show an overall decreasing trend as they basically follow the changes in primary and precursor emissions. However, in some locations, such as India, the burdens could increase significantly. The declining emissions have an impact on the clear-sky direct aerosol effect (DRE), i.e. the cooling effect. The DRE could decrease globally 0.06-0.4 W m-2 by 2030 with some regional increases, for example, over India (up to 0.84 W m-2). The global changes in the DRE depend on the scenario and are smallest in the targeted SLCF simulation. The aerosol indirect radiative effect could decline 0.25-0.82 W m-2 by 2030. This decrease takes place mostly over the oceans, whereas the DRE changes are greatest over the continents. Our results show that targeted emission reduction measures can be a much better choice for the climate than overall high reductions globally. Our simulations also suggest that more than half of the near-future forcing change is due to the radiative effects associated with aerosol-cloud interactions.

  14. Confirmation of shutdown cooling effects

    NASA Astrophysics Data System (ADS)

    Sato, Kotaro; Tabuchi, Masato; Sugimura, Naoki; Tatsumi, Masahiro

    2015-12-01

    After the Fukushima accidents, all nuclear power plants in Japan have gradually stopped their operations and have long periods of shutdown. During those periods, reactivity of fuels continues to change significantly especially for high-burnup UO2 fuels and MOX fuels due to radioactive decays. It is necessary to consider these isotopic changes precisely, to predict neutronics characteristics accurately. In this paper, shutdown cooling (SDC) effects of UO2 and MOX fuels that have unusual operation histories are confirmed by the advanced lattice code, AEGIS. The calculation results show that the effects need to be considered even after nuclear power plants come back to normal operation.

  15. Confirmation of shutdown cooling effects

    SciTech Connect

    Sato, Kotaro Tabuchi, Masato; Sugimura, Naoki; Tatsumi, Masahiro

    2015-12-31

    After the Fukushima accidents, all nuclear power plants in Japan have gradually stopped their operations and have long periods of shutdown. During those periods, reactivity of fuels continues to change significantly especially for high-burnup UO{sub 2} fuels and MOX fuels due to radioactive decays. It is necessary to consider these isotopic changes precisely, to predict neutronics characteristics accurately. In this paper, shutdown cooling (SDC) effects of UO{sub 2} and MOX fuels that have unusual operation histories are confirmed by the advanced lattice code, AEGIS. The calculation results show that the effects need to be considered even after nuclear power plants come back to normal operation.

  16. Improved representation of stratocumulus clouds and the anthropogenic aerosol effect

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna; Frontoso, Grazia M.

    2014-05-01

    Stratocumulus clouds are important for future climate predictions as they have a strong cooling effect and the feedback of low clouds is believed to be a major cause of the model spread in climate sensitivity. Stratocumulus clouds are difficult to represent in a general circulation model because of their small vertical extent. Stratocumulus regions are also areas of a strong anthropogenic aerosol effect. Simulations of the anthropogenic aerosol effect can be expected to depend on the representation of stratocumulus clouds in climate models. We address the representation of several of the physical processes that have to be accounted for when modeling stratocumuli in the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM2 (Zhang et al., 2012). As a 'long tail' stability function can lead to excessive mixing at high stabilities we replaced it with a 'sharp' stability function. The stratocumulus cloud cover and liquid water path increase, similar to previous studies, with the 'sharp' stability function in ECHAM6-HAM2. We also study the impact of increased vertical resolution in the lower troposphere in ECHAM6-HAM2 on stratocumulus clouds. First results show improvements for the cloud height and thickness with increased vertical resolution. To simulate a realistic mixing state and size of particles released by evaporation of clouds and precipitation we include aerosol processing in stratiform clouds. First results from multi-year simulations show that using a 'sharp' stability function decreases the anthropogenic aerosol effect from -1.5 W/m2 to -1.2 W/m2 and in-cloud aerosol processing to -0.8 W/m2. This strong decrease is due to an increase in the background aerosol load. Increased vertical resolution doesn't seem to affect the anthropogenic aerosol effect in the global average. Further results on the impact of changing the vertical resolution, a different stability function and in-cloud aerosol processing in ECHAM6-HAM2 on the

  17. Global aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Wagner, Till; Stier, Philip

    2013-04-01

    Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.

  18. Radiative effects of aerosols on the environment in China

    NASA Astrophysics Data System (ADS)

    Yu, Hongbin

    Anthropogenic emissions and concentrations of aerosol precursors and aerosols over China are among the highest in major countries of the world. Due to large emissions of soot and dust, aerosol absorption is high. Based on the observed direct and diffuse irradiance, a single scattering albedo of about 0.8 is derived for two large agri/eco/industrial areas. Aerosol direct effect can exert various environmental impacts in China. Photochemical activities in the atmospheric boundary layer (ABL) are significantly reduced because of reductions in photolysis rates and in emissions of biogenic hydrocarbons. Crop yields under optimal conditions can be reduced due to the reduction in surface solar irradiance. The most significant aerosol radiative perturbation is in changing the air-surface interaction and diurnal evolution of ABL. Reductions in various surface heat fluxes due to aerosols depend on soil moisture. Over a relatively dry surface, the evaporation has a small change, leading to the largest decrease of surface skin temperature at noon. Over a relatively wet surface, a substantial reduction in evaporation results in the largest surface cooling in the early morning. The diurnal temperature range (DTR) can be reduced by an amount comparable to the observed decrease of DTR. The longwave absorption of aerosols can lead to an increase of the daily minimum temperature and contributes to about 20% of the decrease in the DTR. The near-surface air temperature has the largest cooling in the early morning because the ABL is shallow and the temperature is sensitive to the radiative perturbation. As a result of the reduced sensible heat flux, the surface layer becomes more stable. Moreover, the aerosol heating enhances the stabilization of surface layer and in turn further reduces the sensible heat flux. As a result the ABL height can be reduced substantially. This will have many important ramifications, including trapping/accumulation of air pollutants, and perturbing the water

  19. Reflective "Cool" Roofs Under Aerosol-Burdened Skies: Radiative Benefits Across Selected Indian Cities

    NASA Astrophysics Data System (ADS)

    Millstein, D.; Fischer, M. L.

    2014-12-01

    The use of reflective surfaces offers one low-cost solution for reducing solar loading to urban environments and the Earth that should be considered as part of sustainable urban design. Here, we characterize the radiative benefits, i.e. the additional shortwave radiation leaving the atmosphere, from the installation of highly reflective "cool" roofs in urban areas in India that face relatively large local aerosol burdens. We use a previously tested column radiative transfer model to estimate the energy per unit area reflected to space from increasing the surface albedo at six cities within India. The model is used to characterize radiative transfer each day over five years (2008-2012) based on mid-day satellite retrievals of MODIS aerosol depth, cloud water path, and average surface albedo and MERRA atmospheric profiles of temperature and composition. Compared against 10 months of field observations in two cities, the model derived incoming surface shortwave radiation estimates relative to observations show small biases (0.5% and -2.6%, at Pantnagar and Nainital, respectively). Despite the high levels of local aerosols we found cool roofs provided significant radiative benefits at all locations. Averaged over the five year period we found that increasing the albedo of 1 m-2 of roof area by 0.5 would reflect to space 0.9 - 1.2 kWh daily from 08:30 - 15:30 LST, depending on location. This is equivalent to a constant forcing of 37 - 50 W m-2 (equivalent to reducing CO2 emissions by 74 to 101 kg CO2 m-2 roof area). Last, we identify a co-benefit of improving air quality, in that removing aerosols from the atmosphere could increase the radiative benefits from cool roofs by 23 - 74%, with the largest potential increase found at Delhi and the smallest change found at Nainital.

  20. Aerosol radiative forcing over land: effect of surface and cloud reflection

    NASA Astrophysics Data System (ADS)

    Satheesh, S. K.

    2002-12-01

    It is now clearly understood that atmospheric aerosols have a significant impact on climate due to their important role in modifying the incoming solar and outgoing infrared radiation. The question of whether aerosol cools (negative forcing) or warms (positive forcing) the planet depends on the relative dominance of absorbing aerosols. Recent investigations over the tropical Indian Ocean have shown that, irrespective of the comparatively small percentage contribution in optical depth ( ~ 11%), soot has an important role in the overall radiative forcing. However, when the amount of absorbing aerosols such as soot are significant, aerosol optical depth and chemical composition are not the only determinants of aerosol climate effects, but the altitude of the aerosol layer and the altitude and type of clouds are also important. In this paper, the aerosol forcing in the presence of clouds and the effect of different surface types (ocean, soil, vegetation, and different combinations of soil and vegetation) are examined based on model simulations, demonstrating that aerosol forcing changes sign from negative (cooling) to positive (warming) when reflection from below (either due to land or clouds) is high.

  1. Oxygen isotopes in western Australian coral reveal Pinatubo aerosol-induced cooling in the Western Pacific Warm Pool

    SciTech Connect

    Gagan, M.K.; Chivas, A.R.

    1995-05-01

    The authors report a 12 year record study of oxygen 18 isotope signals in a coral (Ningaloo Reef), which is situated so as to give an ideal measure of the sea-surface temperature variation of the local Leeuwin Current. This record consists of nearly weekly readings from 1981 to 1993, and brackets the period following the June 1991 eruption of Mt. Pinatubo. Extended study shows a strong correlation of sea-surface temperature on this coral with changes in the Western Pacific Warm Pool (WPWP), with a lag of 2.5 years. A distinct cooling signal was seen in the inferred sea-surface temperatures from coral measurements, in 1992 and 1993, which suggests the WPWP was cooled roughly 0.5{degrees}C by aerosol induced effects.

  2. Rotational effects on impingement cooling

    NASA Astrophysics Data System (ADS)

    Epstein, A. H.; Kerrebrock, J. L.; Koo, J. J.; Preiser, U. Z.

    The present consideration of rotation effects on heat transfer in a radially exhausted, impingement-cooled turbine blade model gives attention to experimental results for Reynolds and Rossby numbers and blade/coolant temperature ratio values that are representative of small gas turbine engines. On the basis of a model that encompasses the effects of Coriolis force and buoyancy on heat transfer, bouyancy is identified as the cause of an average Nusselt number that is 20-30 percent lower than expected from previous nonrotating data. A heuristic model is proposed which predicts that the impingement jets nearest the blade roots should deflect inward, due to a centripetal force generated by their tangential velocity counter to the blade motion. Potentially serious thermal stresses must be anticipated from rotation effects in the course of blade design.

  3. Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect

    SciTech Connect

    Wang, J. X.; Lee, Y.- N.; Daum, Peter H.; Jayne, John T.; Alexander, M. L.

    2008-11-03

    Abstract. Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/ Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at 0.2% supersaturation to those predicted based on size distribution and chemical composition using K¨ohler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization.

  4. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  5. Opposing forces of aerosol cooling and El Nino drive coral bleaching on Caribbean reefs.

    PubMed

    Gill, Jennifer A; Watkinson, Andrew R; McWilliams, John P; Côté, Isabelle M

    2006-12-01

    Bleaching of corals as a result of elevated sea surface temperatures (SST) is rapidly becoming a primary source of stress for reefs globally; the scale and extent of this threat will depend on how the drivers of SST interact to influence bleaching patterns. We demonstrate how the opposing forces of the El Niño-Southern Oscillation (ENSO) and levels of atmospheric aerosols drive regional-scale patterns of coral bleaching across the Caribbean. When aerosol levels are low, bleaching is largely determined by El Niño strength, but high aerosol levels mitigate the effects of a severe El Niño. High aerosol levels, resulting principally from recent volcanic activity, have thus protected Caribbean reefs from more frequent widespread bleaching events but cannot be relied on to provide similar protection in the future. PMID:17116861

  6. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    SciTech Connect

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  7. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    NASA Astrophysics Data System (ADS)

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-01

    is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  8. Can Aerosol Offset Urban Heat Island Effect?

    NASA Astrophysics Data System (ADS)

    Jin, M. S.; Shepherd, J. M.

    2009-12-01

    The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.

  9. Climatic effects of 1950-2050 changes in US anthropogenic aerosols - Part 2: Climate response

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-04-01

    We investigate the climate response to changing US anthropogenic aerosol sources over the 1950-2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970-1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5-1.0 °C on average during 1970-1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960-1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010-2050). We find that most of the warming from aerosol source controls in the US has already been realized over the 1980-2010 period.

  10. Climatic effects of 1950-2050 changes in US anthropogenic aerosols - Part 2: Climate response

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2011-08-01

    We investigate the climate response to US anthropogenic aerosol sources over the 1950 to 2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970-1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5-1.0 °C on average during 1970-1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960-1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010-2050). We find that most of the potential warming from aerosol source controls in the US has already been realized over the 1980-2010 period.

  11. Model Intercomparison of Indirect Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Penner, J. E.; Quaas, J.; Storelvmo, T.; Takemura, T.; Boucher, O.; Guo, H.; Kirkevag, A.; Kristjansson, J. E.; Seland, O.

    2006-01-01

    Modeled differences in predicted effects are increasingly used to help quantify the uncertainty of these effects. Here, we examine modeled differences in the aerosol indirect effect in a series of experiments that help to quantify how and why model-predicted aerosol indirect forcing varies between models. The experiments start with an experiment in which aerosol concentrations, the parameterization of droplet concentrations and the autoconversion scheme are all specified and end with an experiment that examines the predicted aerosol indirect forcing when only aerosol sources are specified. Although there are large differences in the predicted liquid water path among the models, the predicted aerosol first indirect effect for the first experiment is rather similar, about -0.6 W/sq m to -0.7 W/sq m. Changes to the autoconversion scheme can lead to large changes in the liquid water path of the models and to the response of the liquid water path to changes in aerosols. Adding an autoconversion scheme that depends on the droplet concentration caused a larger (negative) change in net outgoing shortwave radiation compared to the 1st indirect effect, and the increase varied from only 22% to more than a factor of three. The change in net shortwave forcing in the models due to varying the autoconversion scheme depends on the liquid water content of the clouds as well as their predicted droplet concentrations, and both increases and decreases in the net shortwave forcing can occur when autoconversion schemes are changed. The parameterization of cloud fraction within models is not sensitive to the aerosol concentration, and, therefore, the response of the modeled cloud fraction within the present models appears to be smaller than that which would be associated with model "noise". The prediction of aerosol concentrations, given a fixed set of sources, leads to some of the largest differences in the predicted aerosol indirect radiative forcing among the models, with values of

  12. Effects of stratospheric sulfate aerosol geo-engineering on cirrus clouds

    NASA Astrophysics Data System (ADS)

    Kuebbeler, Miriam; Lohmann, Ulrike; Feichter, Johann

    2012-12-01

    Cooling the Earth through the injection of sulphate into the stratosphere is one of the most discussed geo-engineering (GE) schemes. Stratospheric aerosols can sediment into the troposphere, modify the aerosol composition and thus might impact cirrus clouds. We use a global climate model with a physically based parametrization for cirrus clouds in order to investigate possible microphysical and dynamical effects. We find that enhanced stratospheric aerosol loadings as proposed by several GE approaches will likely lead to a reduced ice crystal nucleation rate and thus optically thinner cirrus clouds. These optically thinner cirrus clouds exert a strong negative cloud forcing in the long-wave which contributes by 60% to the overall net GE forcing. This shows that indirect effects of stratospheric aerosols on cirrus clouds may be important and need to be considered in order to estimate the maximum cooling derived from stratospheric GE.

  13. Investigation of multiple scattering effects in aerosols

    NASA Technical Reports Server (NTRS)

    Deepak, A.

    1980-01-01

    The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.

  14. Aerosol-cloud interactions: effect on precipitation

    NASA Astrophysics Data System (ADS)

    Takle, Jasmine; Maheskumar, R.

    2016-05-01

    Aerosols are tiny suspended particle in the atmosphere with high variability in time and space, play a major role in modulating the cloud properties and thereby precipitation. To understand the aerosol induced Invigoration effect predictors like aerosol optical depth, cloud optical depth, cloud top temperature, cloud effective radii, ice water path, retrieved from the Moderate resolution Imaging Spectroradiometer (MODIS) level-3 aqua satellite data were analysed for pre monsoon April-May and post monsoon October-November months over the Indian subcontinent 8 ° N to 33° N, 65 °E to 100 °E during the period 2003-2013. Apart from the above data, mesoscale dynamical parameters such as vertical wind shear of horizontal wind, relative humidity, were also considered to understand their role in invigoration. Case studies have been carried out for the regions having heavy rainfall events & minimal rainfall events during high Aerosol optical depths occasions respectively. Analysis revealed that the heavy rainfall which occurred in this region with higher optical depths might be due to invigoration effect of aerosols wherein the dynamical as well as thermodynamical parameters were also found favourable. Minimal rainfall events were also observed most probably due to the suppression of rain formation/delay in precipitation due to high amount of aerosol concentration in these regions. Prominent 36 such cases were studied all over India during Pre & Post monsoon months.

  15. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  16. Smoke and Pollution Aerosol Effect on Cloud Cover

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Koren, Ilan

    2006-01-01

    Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.

  17. Comprehensive tool for calculation of radiative fluxes: illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics

    NASA Astrophysics Data System (ADS)

    Derimian, Yevgeny; Dubovik, Oleg; Huang, Xin; Lapyonok, Tatyana; Litvinov, Pavel; Kostinski, Alex B.; Dubuisson, Philippe; Ducos, Fabrice

    2016-05-01

    The evaluation of aerosol radiative effect on broadband hemispherical solar flux is often performed using simplified spectral and directional scattering characteristics of atmospheric aerosol and underlying surface reflectance. In this study we present a rigorous yet fast computational tool that accurately accounts for detailed variability of both spectral and angular scattering properties of aerosol and surface reflectance in calculation of direct aerosol radiative effect. The tool is developed as part of the GRASP (Generalized Retrieval of Aerosol and Surface Properties) project. We use the tool to evaluate instantaneous and daily average radiative efficiencies (radiative effect per unit aerosol optical thickness) of several key atmospheric aerosol models over different surface types. We then examine the differences due to neglect of surface reflectance anisotropy, nonsphericity of aerosol particle shape and accounting only for aerosol angular scattering asymmetry instead of using full phase function. For example, it is shown that neglecting aerosol particle nonsphericity causes mainly overestimation of the aerosol cooling effect and that magnitude of this overestimate changes significantly as a function of solar zenith angle (SZA) if the asymmetry parameter is used instead of detailed phase function. It was also found that the nonspherical-spherical differences in the calculated aerosol radiative effect are not modified significantly if detailed BRDF (bidirectional reflectance distribution function) is used instead of Lambertian approximation of surface reflectance. Additionally, calculations show that usage of only angular scattering asymmetry, even for the case of spherical aerosols, modifies the dependence of instantaneous aerosol radiative effect on SZA. This effect can be canceled for daily average values, but only if sun reaches the zenith; otherwise a systematic bias remains. Since the daily average radiative effect is obtained by integration over a range

  18. Effect of Increasing Temperature on Carbonaceous Aerosol Direct Radiative Effect over Southeastern US

    NASA Astrophysics Data System (ADS)

    Mielonen, Tero; Kokkola, Harri; Hienola, Anca; Kühn, Thomas; Merikanto, Joonas; Korhonen, Hannele; Arola, Antti; Kolmonen, Pekka; Sogacheva, Larisa; de Leeuw, Gerrit

    2016-04-01

    Aerosols are an important regulator of the Earth's climate. They scatter and absorb incoming solar radiation and thus cool the climate by reducing the amount of energy reaching the atmospheric layers and the surface below (direct effect). A certain subset of the particles can also act as initial formation sites for cloud droplets and thereby modify the microphysics, dynamics, radiative properties and lifetime of clouds (indirect effects). The magnitude of aerosol radiative effects remains the single largest uncertainty in current estimates of anthropogenic radiative forcing. One of the key quantities needed for accurate estimates of anthropogenic radiative forcing is an accurate estimate of the radiative effects from natural unperturbed aerosol. The dominant source of natural aerosols over Earth's vast forested regions are biogenic volatile organic compounds (BVOC) which, following oxidation in the atmosphere, can condense onto aerosol particles to form secondary organic aerosol (SOA) and significantly modify the particles' properties. In accordance with the expected positive temperature dependence of BVOC emissions, several previous studies have shown that some aerosol properties, such as mass concentration and ability to act as cloud condensation nuclei (CCN), also correlate positively with temperature at many forested sites. There is conflicting evidence as to whether the aerosol direct effects have a temperature dependence due to increased BVOC emissions. The main objective of this study is to investigate the causes of the observed effect of increasing temperatures on the aerosol direct radiative effect, and to provide a quantitative estimate of this effect and of the resulting negative feedback in a warming climate. More specifically, we will investigate the causes of the positive correlation between aerosol optical depth (AOD) and land surface temperature (LST) over southeastern US where biogenic emissions are a significant source of atmospheric particles. In

  19. The major species of heavy metal aerosol resulting from water cooling systems and spray dryer systems during incineration processes

    PubMed

    Wey; Yang; Wei

    1998-11-01

    Trace toxic metals in municipal solid waste may escape from the incineration process in flue gas, in dry collected ash, in wet scrubbed ash, or as a suspended aerosol. Therefore, understanding the behavior of heavy metals in the flue gas and the best controls in the air pollution control equipment are important and necessary. The control conditions of water cooling and spray dryer systems during incineration processes significantly influence the formation of heavy metal compounds. The formation of chromium (Cr), lead (Pb), and cadmium (Cd) species under various control conditions (water cooling tower and spray dryer reactor) was investigated in this study. The object of the experiment is to understand the effects of water cooling and spray dryer systems individually on the formation of heavy metal species. The operating parameters that are evaluated include different control systems, control temperatures, and chlorine content. A thermodynamic equilibrium model was also used to evaluate experimental data. In order to match real incineration conditions, a two-stage simulation was performed in this experiment. The results showed that the relationship of speciation between the simulation prediction and X-ray diffraction (XRD) analysis is consistent for Cr compounds; both indicated that Cr2O3 is the major species. The relationship is almost the same for Cd compounds, but not for Pb compounds. PMID:9846130

  20. Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor

    PubMed Central

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-01-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20th century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. “warming hole”). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the “warming hole”. We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed “warming hole” can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin. PMID:25373416

  1. Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor

    NASA Astrophysics Data System (ADS)

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-11-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20th century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. ``warming hole''). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the ``warming hole''. We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed ``warming hole'' can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin.

  2. Attribution of the United States "warming hole": aerosol indirect effect and precipitable water vapor.

    PubMed

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-01-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20(th) century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. "warming hole"). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the "warming hole". We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed "warming hole" can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin. PMID:25373416

  3. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  4. Observational Constraint of Aerosol Effects on the CMIP5 Inter-model Spread of Adjusted Forcings

    NASA Astrophysics Data System (ADS)

    Chen, J.; Wennberg, P. O.; Jiang, J. H.; Su, H.; Bordoni, S.

    2013-12-01

    The simulated global-mean temperature (GMT) change over the past 150 years is quite consistent across CMIP5 climate models and also consistent with the observations. However, the predicted future GMT under the identical CO2 forcing is divergent. This paradox is partly due to the errors in the predicted GMT produced by historical greenhouse gas (GHG) forcing being compensated by the parameterization of aerosol cloud radiative forcing. Historical increases in anthropogenic aerosols exert an overall (but highly uncertain) cooling effect in the climate system, which partially offsets the warming due to well mixed greenhouse gases (WMGHGs). Because aerosol concentrations are predicted to eventually decrease in future scenarios, climate change becomes dominated by warming due to the WMGHG. This change in the relative importance of forcing by aerosol versus WMGHG makes apparent the substantial differences in prediction of climate by WMGHG forcing. Here we investigate the role of aerosols in the context of adjusted forcing changes in the historical runs and the effect of aerosols on the cloud feedback. Our preliminary results suggest that models which are more sensitive to the increase in concentration of CO2 have a larger aerosol radiative cooling effect. By comparing the historicalMisc runs and historicalGHG runs, we find that aerosols exert a potential impact on the cloud adjusted forcings, especially shortwave cloud adjusted forcings. We use the CLIPSO, MISR and CERES data as the benchmark to evaluate the present aerosol simulations. Using satellite observations to assess the relative reliability of the different model responses and to constrain the simulated aerosol radiative forcing will contribute significantly to reducing the across model spread in future climate simulations and identifying some missing physical processes.

  5. Radiation and temperature effects of the intensive injection of dust aerosol into the atmosphere

    NASA Astrophysics Data System (ADS)

    Gorchakova, I. A.; Mokhov, I. I.; Rublev, A. N.

    2015-03-01

    Based on the measurements at the AERONET station (Ilorin, Nigeria), quantitative estimates of radiation and temperature effects of dust aerosol during the intensive sand storm in the Sahara Desert from January 28 to February 6, 2000, are obtained. The model used in calculations implies particles of dust aerosol being no more than 15 μm in radius (according to the data from AERONET station); another model takes into account large particles (LPs) up to 60 μm in radius and involves a spectral variation in the OPAC refraction index. In the short infrared region, the optical thickness of aerosol weakening increases with LPs taken into account in the aerosol model; the albedo of aerosol single scattering reduces in comparison to the respective optical parameters of the first model. Dust aerosol cools the earth's surface. In the presence of LPs in dust aerosol, the surface-atmosphere system can both cool and warm, while if LPs less than 15 μm in size are not taken into account, the surface cools. The rate of cooling of the 10-m near-surface atmospheric layer Δ T/Δ t changes in the interval of -(4-21)°C/day without the influence of LPs over 15 μm in size on solar radiation transfer taken into account; if this influence is taken into account, the rate is -(6-36)°C/day. In the long infrared region, the surface-atmosphere system warms more intensively if LPs are taken into account by the aerosol model. The heating rate of the 10-m near-surface atmospheric layer does not exceed ~0.5°C/day during the entire period of dust emission without LPs taken into account (AERONET algorithm); if LPs are taken into account (modeling results), heating rate reaches a maximal value of ~0.6°C/day.

  6. Indirect Radiative Warming Effect in the Winter and Spring Arctic Associated with Aerosol Pollution from Mid-latitude Regions

    NASA Astrophysics Data System (ADS)

    Zhao, Chuanfeng; Garrett, Timothy

    2016-04-01

    Different from global cooling effects of aerosols and aerosol-cloud interactions, anthropogenic aerosols from mid-latitude are found to play an increased warming effect in the Arctic in later winter and early spring. Using four-year (2000-2003) observation of aerosol, cloud and radiation at North Slope of Alaska, it is found that the aerosols can increase cloud droplet effective radius 3 um for fixed liquid water path, and increase cloud thermal emissivity about 0.05-0.08. In other words, aerosols are associated with a warming of 1-1.6 degrees (3-5 W/m2) in the Arctic during late winter and early spring solely due to their first indirect effect. Further analysis indicates that total aerosol climate effects are even more significant (8-10 W/m2), with about 50% contribution from aerosol first indirect effect and another 50% contribution from complicated feedbacks. It also shows strong seasonal distribution of the aerosol indirect radiative effects, with warming effects in seasons other than in summer. However, only the significant warming effect in winter and spring passes through the significance test. The strong warming effect due to aerosol indirect effect could be further strengthened through following feedbacks involving the surface albedo (early ice melting).

  7. Aerosol properties and associated radiative effects over Cairo (Egypt)

    NASA Astrophysics Data System (ADS)

    El-Metwally, M.; Alfaro, S. C.; Wahab, M. M. Abdel; Favez, O.; Mohamed, Z.; Chatenet, B.

    2011-02-01

    , and 4.0 K/d, respectively. Outside these extreme events, the distributions of the radiative forcing values at BOA and TOA are Gaussian with means and standard deviations of - 58(± 27), and - 19(± 11)W/m 2, respectively. These two negative values indicate a cooling effect at the 2 atmospheric levels but the largest absolute value at BOA corresponds to a trapping of solar radiation inside the atmosphere. The averages of the instantaneous forcing efficiencies (FE) derived from measurements performed at solar zenith angles between 50 and 76° are - 195(± 42) and - 62(± 17)W/m 2.AOD 550 for BOA and TOA, respectively. The value at TOA is larger than in other urban environments, which could be due to the desert dust component backscattering more solar radiation to space than absorbing urban aerosols. The lower absorption of solar light by desert dust also explains qualitatively the lower than usual value of FE BOA. A more precise study of the effects of the desert dust and biomass burning aerosols shows that fluctuations of their monthly-averaged concentrations explain the departures of the TOA and BOA radiative forcings from the background situation. In April, the contributions of DD to the month averages of the instantaneous radiative forcing are as high as 53% at BOA, and 66% at TOA. In October, the biomass burning mode contributes 33 and 27% of these forcings, respectively. Noteworthy is that the contribution of DD to RF is never less than 17% (at BOA) and 27% (at TOA), emphasizing the importance of the mineral dust component on the transfer of solar radiation above Cairo, and this even in months when no major dust storm is observed.

  8. Impact of aerosol vertical distribution on aerosol direct radiative effect and heating rate in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias

    2015-04-01

    It is now well-established that aerosols cause an overall cooling effect at the surface and a warming effect within the atmosphere. At the top of the atmosphere (TOA), both positive and negative forcing can be found, depending on a number of other factors, such as surface albedo and relative position of clouds and aerosols. Whilst aerosol surface cooling is important due to its relation with surface temperature and other bio-environmental reasons, atmospheric heating is of special interest as well having significant impacts on atmospheric dynamics, such as formation of clouds and subsequent precipitation. The actual position of aerosols and their altitude relative to clouds is of major importance as certain types of aerosol, such as black carbon (BC) above clouds can have a significant impact on planetary albedo. The vertical distribution of aerosols and clouds has recently drawn the attention of the aerosol community, because partially can account for the differences between simulated aerosol radiative forcing with various models, and therefore decrease the level of our uncertainty regarding aerosol forcing, which is one of our priorities set by IPCC. The vertical profiles of aerosol optical and physical properties have been studied by various research groups around the world, following different methodologies and using various indices in order to present the impact of aerosols on radiation on different altitudes above the surface. However, there is still variability between the published results as to the actual effect of aerosols on shortwave radiation and on heating rate within the atmosphere. This study uses vertical information on aerosols from the Max Planck Aerosol Climatology (MAC-v1) global dataset, which is a combination of model output with quality ground-based measurements, in order to provide useful insight into the vertical profile of atmospheric heating for the Mediterranean region. MAC-v1 and the science behind this aerosol dataset have already

  9. Aerosol Effects on Radiation and Climate: Column Closure Experiments with Towers, Aircraft, and Satellites

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.

    1994-01-01

    Many theoretical studies have shown that anthropogenic aerosol particles can change the radiation balance in an atmospheric column and might thereby exert a significant effect on the Earth's climate. In particular, recent calculations have shown that sulfate particles from anthropogenic combustion may already exert a cooling influence on the Earth that partially offsets the warming caused by the greenhouse gases from the same combustion. Despite the potential climatic importance of anthropogenic aerosols, simultaneous measurements of anthropogenic aerosol properties and their effect on atmospheric radiation have been very rare. Successful comparisons of measured radiation fields with those calculated from aerosol measurements - now referred to as column closure comparisons - are required to improve the accuracy and credibility of climate predictions. This paper reviews the column closure experiment performed at the Mt. Sutro Tower in San Francisco in 1975, in which elevated radiometers measured the change in Earth-plus-atmosphere albedo caused by an aerosol layer, while a lidar, sunphotometer, nephelometer, and other radiometers measured properties of the responsible aerosol. The time-dependent albedo calculated from the measured aerosol properties agreed with that measured by the tower radiometers. Also presented are designs for future column closure studies using radiometers and aerosol instruments on the ground, aircraft, and satellites. These designs draw upon algorithms and experience developed in the Sutro Tower study, as well as more recent experience with current measurement and analysis capabilities.

  10. Combined observational and modeling based study of the relationship between aerosols and super-cooled cloud fraction

    NASA Astrophysics Data System (ADS)

    Storelvmo, T.; Lohmann, U.; Choi, Y.

    2011-12-01

    Recent observational and modeling studies indicate that aerosols may have a strong effect on Earth's energy budget via their influence on mixed-phase clouds. Global climate studies have predicted aerosol interaction with mixed-phase clouds to warm the current climate, but estimates are uncertain because mixed-phase cloud processes in GCMs are highly parameterized and have to date been poorly constrained by satellite data. Here, we present global and regional distributions of the frequency of supercooled cloud water and its link to aerosols from two global climate models (GCMs), compared to a new satellite data set. Both GCMs link ice formation at temperatures between -40 and 0 degrees C to the simulated concentrations of aerosols with ice nucleating ability (IN), assigning different freezing efficiencies to the different insoluble aerosol species (mineral dust, bio-aerosols and soot). Consequently, both models generally simulate an anti-correlation between aerosol abundance and supercooled liquid water in clouds, a finding that was recently qualitatively confirmed by satellite observations. By studying the relationship between aerosols and the supercooled cloud fraction (SCF) from the GCMs and from the NASA spaceborne lidar instrument CALIOP (cloud-aerosol lidar with orthogonal polarization), we get strong indications of how aerosols may influence mixed-phase clouds. Furthermore, based on the guidance from the satellite data, we perform global sensitivity simulations of the radiative effects associated with aerosol influence on mixed-phase clouds. We argue that with the new validation of SCF and its link to aerosols, GCM estimates of aerosol effects on climate via their influence on mixed-phase clouds may become more reliable.

  11. Volcanic aerosols: Chemistry, evolution, and effects

    NASA Technical Reports Server (NTRS)

    Turco, Richard

    1991-01-01

    Stratospheric aerosols have been the subject of scientific speculation since the 1880s, when the powerful eruption of Krakatoa attracted worldwide attention to the upper atmosphere through spectacular optical displays. The presence of a permanent tenuous dust layer in the lower stratosphere was postulated in the 1920s following studies of the twilight glow. Junge collected the first samples of these 'dust' particles and demonstrated that they were actually composed of sulfates, most likely concentrated sulfuric acid (Junge and Manson, 1961; Junge, 1963). Subsequent research has been spurred by the realization that stratospheric particles can influence the surface climate of earth through their effects on atmospheric radiation. Such aerosols can also influence, through chemical and physical effects, the trace composition of the atmosphere, ozone concentrations, and atmospheric electrical properties. The properties of stratospheric aerosols (both the background particles and those enhanced by volcanic eruptions) were measured in situ by balloon ascents and high altitude aircraft sorties. The aerosols were also observed remotely from the ground and from satellites using both active (lidar) and passive (solar occultation) techniques (remote sensing instruments were carried on aircraft and balloon platforms as well). In connection with the experimental work, models were developed to test theories of particle formation and evolution, to guide measurement strategies, to provide a means of connecting laboratory and field data, and to apply the knowledge gained to answer practical questions about global changes in climate, depletion of the ozone layer, and related environmental problems.

  12. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.

    2015-09-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (all anthropogenic, biomass burning and non-biomass burning) are investigated by performing sensitivity experiments. On the global scale, our results show that land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ~ 9 %. At the regional scale, plant productivity (GPP) and isoprene emission show a robust but opposite sensitivity to pollution aerosols, in regions where complex canopies dominate. In eastern North America and Europe, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +8-12 % on an annual average, with a stronger increase during the growing season (> 12 %). In the Amazon basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the Amazon basin during the dry-fire season (+5-8 %). In Europe and China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on the annual average. Anthropogenic aerosols affect land carbon fluxes via different mechanisms and we suggest that the dominant mechanism varies across regions: (1) light scattering dominates in the eastern US; (2) cooling in the Amazon basin; and (3) reduction in direct radiation in Europe and China.

  13. Microphysical Effects Determine Macrophysical Response for Aerosol Impacts on Deep Convective Clouds

    SciTech Connect

    Fan, Jiwen; Leung, Lai-Yung R.; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation and energy and hydrological cycle of our climate system. Anthropogenic and natural aerosol particles can influence DCCs through changes in cloud properties, precipitation regimes, and radiation balance. Modeling studies have reported both invigoration and suppression of DCCs by aerosols, but none has fully quantified aerosol impacts on convection life cycle and radiative forcing. By conducting multiple month-long cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macro- and micro-physical properties of summer convective clouds in the tropics and mid-latitudes, this study provides the first comprehensive look at how aerosols affect cloud cover, cloud top height (CTH), and radiative forcing. Observations validate these simulation results. We find that microphysical aerosol effects contribute predominantly to increased cloud cover and CTH by inducing larger amount of smaller but longer lasting ice particles in the stratiform/anvils of DCCs with dynamical aerosol effects contributing at most ~ 1/4 of the total increase of cloud cover. The overall effect is a radiative warming in the atmosphere (3 to 5 W m-2) with strong surface cooling (-5 to -8 W m-2). Herein we clearly identified mechanisms more important than and additional to the invigoration effects hypothesized previously that explain the consistent signatures of increased cloud tops area and height by aerosols in DCCs revealed by observations.

  14. Model simulations of the first aerosol indirect effect and comparison of cloud susceptibility fo satellite measurements

    SciTech Connect

    Chuang, C; Penner, J E; Kawamoto, K

    2002-03-08

    Present-day global anthropogenic emissions contribute more than half of the mass in submicron particles primarily due to sulfate and carbonaceous aerosol components derived from fossil fuel combustion and biomass burning. These anthropogenic aerosols modify the microphysics of clouds by serving as cloud condensation nuclei (CCN) and enhance the reflectivity of low-level water clouds, leading to a cooling effect on climate (the Twomey effect or first indirect effect). The magnitude of the first aerosol indirect effect is associated with cloud frequency as well as a quantity representing the sensitivity of cloud albedo to changes in cloud drop number concentration. This quantity is referred to as cloud susceptibility [Twomey, 1991]. Analysis of satellite measurements demonstrates that marine stratus clouds are likely to be of higher susceptibility than continental clouds because of their lower number concentrations of cloud drops [Platnick and Twomey, 1994]. Here, we use an improved version of the fully coupled climate/chemistry model [Chuang et al., 1997] to calculate the global concentrations Of sulfate, dust, sea salt, and carbonaceous aerosols (biomass smoke and fossil fuel organic matter and black carbon). We investigated the impact of anthropogenic aerosols on cloud susceptibility and calculated the associated changes of shortwave radiative fluxes at the top of the atmosphere. We also examined the correspondence between the model simulation of cloud susceptibility and that inferred from satellite measurements to test whether our simulated aerosol concentrations and aerosol/cloud interactions give a faithful representation of these features.

  15. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  16. A Simple Model of Global Aerosol Indirect Effects

    SciTech Connect

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, K. J.; Carslaw, K. S.; Pierce, Jeffrey; Bauer, Susanne E.; Adams, P. J.

    2013-06-28

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth’s energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically-based model expresses the aerosol indirect effect using analytic representations of droplet nucleation, cloud and aerosol vertical structure, and horizontal variability in cloud water and aerosol concentration. Although the simple model is able to produce estimates of aerosol indirect effects that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates are found to be sensitive to several uncertain parameters, including the preindustrial cloud condensation nuclei concentration, primary and secondary anthropogenic emissions, the size of the primary particles, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Aerosol indirect effects are surprisingly linear in emissions. This simple model provides a much stronger physical basis for representing aerosol indirect effects than previous representations in integrated assessment models designed to quickly explore the parameter space of emissions-climate interactions. The model also produces estimates that depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models.

  17. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  18. Effect of aerosol concentration and absorbing aerosol on the radiation fog life cycle

    NASA Astrophysics Data System (ADS)

    Maalick, Z.; Kühn, T.; Korhonen, H.; Kokkola, H.; Laaksonen, A.; Romakkaniemi, S.

    2016-05-01

    Analogous to cloud formation, the formation and life cycle of fogs is largely influenced by aerosol particles. The objective of this work is to analyze how changes in aerosol properties affect the fog life cycle, with special emphasis on how droplet concentrations change with cloud condensation nuclei (CCN) concentrations and on the effect that absorbing black carbon (BC) particles have on fog dissipation. For our simulation case study, we chose a typical fall time radiation fog at mid-latitudes (45° north) in fairly highly polluted conditions. Our results show that CCN concentrations have a strong influence on the fog lifetime. This is because the immediate effect of CCN on cloud droplet number concentrations (CDNC) is enhanced through two positive feedback loops: (1) Higher CDNC leads to more radiative cooling at the fog top, which leads to even stronger activation and (2) if CDNC is higher, the average droplet size is smaller, which slows down droplet removal through sedimentation. The effect that radiation fogs have on solar surface irradiation is large - the daily mean can change by 50% if CCN concentrations are doubled or halved (considering a reference CCN mixing ratio of 800 #/mg). With the same changes in CCN, the total fog lifetime increases 160 min or decreases 65 min, respectively. Although BC has a noticeable effect on fog height and dissipation time, its relative effect compared to CCN is small, even if BC concentrations are high. The fog formation is very sensitive to initial meteorological conditions which may be altered considerably if fog was present the previous day. This effect was neglected here, and future simulations, which span several days, may thus be a valuable extension of this study.

  19. Cloud Cover Increase with Increasing Aerosol Absorptivity: A Counterexample to the Conventional Semidirect Aerosol Effect

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Miller, Ron L.

    2010-01-01

    We reexamine the aerosol semidirect effect using a general circulation model and four cases of the single-scattering albedo of dust aerosols. Contrary to the expected decrease in low cloud cover due to heating by tropospheric aerosols, we find a significant increase with increasing absorptivity of soil dust particles in regions with high dust load, except during Northern Hemisphere winter. The strongest sensitivity of cloud cover to dust absorption is found over land during Northern Hemisphere summer. Here even medium and high cloud cover increase where the dust load is highest. The cloud cover change is directly linked to the change in relative humidity in the troposphere as a result of contrasting changes in specific humidity and temperature. More absorption by aerosols leads to larger diabatic heating and increased warming of the column, decreasing relative humidity. However, a corresponding increase in the specific humidity exceeds the temperature effect on relative humidity. The net effect is more low cloud cover with increasing aerosol absorption. The higher specific humidity where cloud cover strongly increases is attributed to an enhanced convergence of moisture driven by dust radiative heating. Although in some areas our model exhibits a reduction of low cloud cover due to aerosol heating consistent with the conventional description of the semidirect effect, we conclude that the link between aerosols and clouds is more varied, depending also on changes in the atmospheric circulation and the specific humidity induced by the aerosols. Other absorbing aerosols such as black carbon are expected to have a similar effect.

  20. Aerosol radiative effects over BIMSTEC regions

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Kar, S. C.; Mupparthy, Raghavendra S.

    Aerosols can have variety of shapes, composition, sizes and other properties that influence their optical characteristics and thus the radiative impact. The visible impact of aerosol is the formation of haze, a layer of particles from vehicular, industrial emissions and biomass burning. The characterization of these fine particles is important for regulators and researchers because of their potential impact on human health, their ability to travel thousands of kilometers crossing international borders, and their influence on climate forcing and global warming. The Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) with Member Countries Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand has emerged as an important regional group for technical and economic Cooperation. Continuing the quest for a deeper understanding of BIMSTEC countries weather and climate, in this paper we focused on aerosols and their direct radiative effects. Because of various contrasts like geophysical, agricultural practices, heterogeneous land/ocean surface, population etc these regions present an excellent natural laboratory for studying aerosol-meteorology interactions in tropical to sub-tropical environments. We exploited data available on multiple platforms (such as MISR, MODIS etc) and models (OPAC, SBDART etc) to compute the results. Ten regions were selected with different surface characteristics, also having considerable differences in the long-term trends and seasonal distribution of aerosols. In a preliminary analysis pertaining to pre-monsoon (March-April-May) of 2013, AOD _{555nm} is found to be maximum over Bangladesh (>0.52) and minimum over Bhutan (0.22), whereas other regions have intermediate values. Concurrent to these variability of AOD we found a strong reduction in incoming flux at surface of all the regions (> -25 Wm (-2) ), except Bhutan and Sri Lanka (< -18Wm (-2) ). The top of the atmosphere (TOA) forcing values are

  1. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  2. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  3. Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing

    SciTech Connect

    Ghan, Steven J.

    2013-10-09

    Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

  4. Effect of aerosols on evapo-transpiration

    NASA Astrophysics Data System (ADS)

    Murthy, B. S.; Latha, R.; Manoj, Kumar; Mahanti, N. C.

    2014-06-01

    Aerosol direct radiative forcing (ARF) at surface is estimated from instantaneous, simultaneous observations of global radiation and aerosol optical depth (AOD) during winter, pre-monsoon and monsoon seasons over a tropical Indian station at the south-eastern end of Indo Gangetic basin. A comparison of observed and model derived ARFs is made and possible reasons for mismatch are discussed. Aerosol-induced reduction in solar visible (0.4-0.7 μm) spectrum energy (SWvis), contributing 44% to total broad band (0.3-3.0 μm) energy (SW), and its effect on surface energy fluxes are discussed in this study. Aerosols on an average reduce SWvis at surface by ˜27%. SWvis reduces by 14.5 W m-2 for a 0.1 increase in AOD when single scattering albedo (SSA) is 0.979 where as it reduces by 67.5 W m-2 when SSA is 0.867 indicating the significant effect of absorbing aerosols. Effect of ARF on net radiation, Rn, sensible heat flux, H and latent heat flux/evapo-transpiration, LE are estimated using the observed ratios of Rn/SW, H/Rn and LE/Rn, having reasonably good correlation. Observed Rn/SW varies between 0.59 and 0.75 with a correlation of 0.99 between them. LE, calculated by energy balance method, varies from 56% to 74% of Rn but with a lesser correlation, the possible reasons are discussed. For a given ARF, LE decreases by ˜14% and Rn by ˜15% with respect to observed LE and Rn respectively. The reduction in LE increases from 37% to 54% of ARF when LE increases from 220 W m-2 to 440 W m-2, suggesting that wet soil induces relatively larger reduction in evaporation. The results agree with earlier model sensitivity studies that Rn reduces more with increase in aerosol absorption which is compensated by proportionate reductions in H and LE depending on soil and atmospheric conditions.

  5. Ground-based remote sensing of aerosol climatology in China: Aerosol optical properties, direct radiative effect and its parameterization

    NASA Astrophysics Data System (ADS)

    Xia, X.; Che, H.; Zhu, J.; Chen, H.; Cong, Z.; Deng, X.; Fan, X.; Fu, Y.; Goloub, P.; Jiang, H.; Liu, Q.; Mai, B.; Wang, P.; Wu, Y.; Zhang, J.; Zhang, R.; Zhang, X.

    2016-01-01

    Spatio-temporal variation of aerosol optical properties and aerosol direct radiative effects (ADRE) are studied based on high quality aerosol data at 21 sunphotometer stations with at least 4-months worth of measurements in China mainland and Hong Kong. A parameterization is proposed to describe the relationship of ADREs to aerosol optical depth at 550 nm (AOD) and single scattering albedo at 550 nm (SSA). In the middle-east and south China, the maximum AOD is always observed in the burning season, indicating a significant contribution of biomass burning to AOD. Dust aerosols contribute to AOD significantly in spring and their influence decreases from the source regions to the downwind regions. The occurrence frequencies of background level AOD (AOD < 0.10) in the middle-east, south and northwest China are very limited (0.4%, 1.3% and 2.8%, respectively). However, it is 15.7% in north China. Atmosphere is pristine in the Tibetan Plateau where 92.0% of AODs are <0.10. Regional mean SSAs at 550 nm are 0.89-0.90, although SSAs show substantial site and season dependence. ADREs at the top and bottom of the atmosphere for solar zenith angle of 60 ± 5° are -16--37 W m-2 and -66--111 W m-2, respectively. ADRE efficiency shows slight regional dependence. AOD and SSA together account for more than 94 and 87% of ADRE variability at the bottom and top of the atmosphere. The overall picture of ADRE in China is that aerosols cool the climate system, reduce surface solar radiation and heat the atmosphere.

  6. Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect.

    PubMed

    Mishra, Amit Kumar; Koren, Ilan; Rudich, Yinon

    2015-10-01

    This study presents a theoretical investigation of the effect of the aerosol vertical distribution on the aerosol radiative effect (ARE). Four aerosol composition models (dust, polluted dust, pollution and pure scattering aerosols) with varying aerosol vertical profiles are incorporated into a radiative transfer model. The simulations show interesting spectral dependence of the ARE on the aerosol layer height. ARE increases with the aerosol layer height in the ultraviolet (UV: 0.25-0.42 μm) and thermal-infrared (TH-IR: 4.0-20.0 μm) regions, whereas it decreases in the visible-near infrared (VIS-NIR: 0.42-4.0 μm) region. Changes in the ARE with aerosol layer height are associated with different dominant processes for each spectral region. The combination of molecular (Rayleigh) scattering and aerosol absorption is the key process in the UV region, whereas aerosol (Mie) scattering and atmospheric gaseous absorption are key players in the VIS-NIR region. The longwave emission fluxes are controlled by the environmental temperature at the aerosol layer level. ARE shows maximum sensitivity to the aerosol layer height in the TH-IR region, followed by the UV and VIS-NIR regions. These changes are significant even in relatively low aerosol loading cases (aerosol optical depth ∼0.2-0.3). Dust aerosols are the most sensitive to altitude followed by polluted dust and pollution in all three different wavelength regions. Differences in the sensitivity of the aerosol type are explained by the relative strength of their spectral absorption/scattering properties. The role of surface reflectivity on the overall altitude dependency is shown to be important in the VIS-NIR and UV regions, whereas it is insensitive in the TH-IR region. Our results indicate that the vertical distribution of water vapor with respect to the aerosol layer is an important factor in the ARE estimations. Therefore, improved estimations of the water vapor profiles are needed for the further reduction in

  7. Stratospheric aerosol properties and their effects on infrared radiation.

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.

    1973-01-01

    This paper presents a stratospheric aerosol model and infers its effects on terrestrial radiation. Composition of the aerosol is assumed to be concentrated sulfuric acid. An appropriate size distribution has been determined from available size distribution measurements of other investigators. Aerosols composed of concentrated sulfuric acid emit energy in the atmospheric window region of the infrared spectrum, 8-13 microns. Laboratory measurements of optical constant data obtained at room temperature are presented for 75 and 90% aqueous sulfuric acid. Calculations of an aerosol extinction coefficient are then performed by using the above data. Effects of changes in aerosol phase and temperature are discussed but not resolved.

  8. Effectiveness-weighted control of cooling system components

    SciTech Connect

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simmons, Robert E.

    2015-12-22

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  9. Effectiveness-weighted control method for a cooling system

    DOEpatents

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.

    2015-12-15

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  10. Size distribution of heavy metal aerosols in cooling and spray dryer system

    SciTech Connect

    Wey, M.Y.; Yang, J.T.; Peng, C.Y.; Chiang, B.C.

    1999-11-01

    The cooling process prior to treating flue gas and the spray dryer process that removes acid components in flue gas are believed to influence the mass and elemental size distributions of heavy metal in fly ash. The main objective of this study was to investigate the effects of operating parameters on the mass and elemental size distributions of heavy metals in fly ash produced from a fluidized bed incineration and a water cooling or spray dryer flue gas treatment system. The operating parameters investigated included (1) the controlling temperature in the gas cooling system; (2) the controlling temperature in the spray dryer system; (3) the addition of organic chlorides; and (4) the addition of inorganic chloride. The experimental results indicated that the water cooling process and spray dryer process increase the amount of coarse fly ash and increase the total concentration of metal in fly ash. The amounts of fine fly ash and the total concentration of metal in fine fly ash increase with decreasing temperature during the water cooling process. However, the amounts of fine fly ash and the total concentration of metal in fine fly ash decrease with decreasing temperature during the spray dryer process.

  11. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  12. A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation

    SciTech Connect

    Jiang, Yiquan; Liu, Xiaohong; Yang, Xiuqun; Wang, Minghuai

    2013-05-01

    The impact of anthropogenic aerosol on the East Asian summer monsoon (EASM) is investigated with NCAR CAM5, a state-of-the-art climate model with aerosol’s direct and indirect effects. Results indicate that anthropogenic aerosol tends to cause a weakened EASM with a southward shift of precipitation in East Asia mostly by its radiative effect. Anthropogenic aerosol induced surface cooling stabilizes the boundary layer, suppresses the convection and latent heat release in northern China, and reduces the tropospheric temperature over land and land-sea thermal contrast, thus leading to a weakened EASM. Meanwhile, acting as cloud condensation nuclei (CCN), anthropogenic aerosol can significantly increase the cloud droplet number concentration but decrease the cloud droplet effective radius over Indochina and Indian Peninsulas as well as over southwestern and northern China, inhibiting the precipitation in these regions. Thus, anthropogenic aerosol tends to reduce Southeast and South Asian summer monsoon precipitation by its indirect effect.

  13. FY 2011 4th Quarter Metric: Estimate of Future Aerosol Direct and Indirect Effects

    SciTech Connect

    Koch, D

    2011-09-21

    The global and annual mean aerosol direct and indirect effects, relative to 1850 conditions, estimated from CESM simulations are 0.02 W m-2 and -0.39 W m-2, respectively, for emissions in year 2100 under the IPCC RCP8.5 scenario. The indirect effect is much smaller than that for 2000 emissions because of much smaller SO2 emissions in 2100; the direct effects are small due to compensation between warming by black carbon and cooling by sulfate.

  14. Anthropogenic Aerosol Effects on Sea Surface Temperatures: Mixed-Layer Ocean Experiments with Explicit Aerosol Representation

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Wild, Martin; Knutti, Reto

    2014-05-01

    Anthropogenic aerosols affect the Earth's radiative balance both through direct and indirect effects. These effects can lead to a reduction of the incoming solar radiation at the surface, i.e. dimming, which may lead to a change in sea surface temperatures (SST) or SST pattern. This, in turn, may affect precipitation patterns. The goal of the present work is to achieve an estimate of the equilibrium SST changes under anthropogenic aerosol forcing since industrialisation. We show preliminary results from mixed-layer ocean (MLO) experiments with explicit aerosol representation performed with ECHAM6-HAM. The (fixed) MLO heat flux into the deep ocean was derived from atmosphere only runs with fixed climatological SSTs (1961-1990 average) and present day (year 2000) aerosols and GHG burdens. Some experiments we repeated with an alternative MLO deep ocean heat flux (based on pre-industrial conditions) to test the robustness of our results with regard to this boundary condition. The maximum surface temperature responses towards anthropogenic aerosol and GHG forcing (separately and combined) were derived on a global and regional scale. The same set of experiments was performed with aerosol and GHG forcings representative of different decades over the past one and a half centuries. This allows to assess how SST patterns at equilibrium changed with changing aerosol (and GHG) forcing. Correlating SST responses with the change in downward clear-sky and all-sky shortwave radiation provides a first estimate of the response to anthropogenic aerosols. Our results show a clear contrast in hemispheric surface temperature response, as expected from the inter-hemispheric asymmetry of aerosol forcing The presented work is part of a project aiming at quantifying the effect of anthropogenic aerosol forcing on SSTs and the consequences for global precipitation patterns. Results from this study will serve as a starting point for further experiments involving a dynamic ocean model, which

  15. Evaporative cooling and the Mpemba effect

    NASA Astrophysics Data System (ADS)

    Vynnycky, M.; Mitchell, S. L.

    2010-10-01

    The Mpemba effect is popularly summarized by the statement that “hot water can freeze faster than cold”, and has been observed experimentally since the time of Aristotle; however, there exist almost no theoretical models that predict the effect. With a view to initiating rigorous modelling activity on this topic, this paper analyzes in some depth the only available model in literature, which considers the potential role of evaporative cooling and treats the cooling water as a lumped mass. Certain omissions in the original work are highlighted and corrected, and results are obtained for a wide range of operating conditions—in particular, initial liquid temperature and cooling temperature. The implications and importance of the results of the model for experimental design are discussed, as are extensions of the model to handle more realistic 1-, 2- and 3-dimensional configurations.

  16. Disentangling greenhouse warming and aerosol cooling to reveal Earth’s climate sensitivity

    NASA Astrophysics Data System (ADS)

    Storelvmo, T.; Leirvik, T.; Lohmann, U.; Phillips, P. C. B.; Wild, M.

    2016-04-01

    Earth’s climate sensitivity has long been subject to heated debate and has spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of its most likely range. Recent observational studies have produced estimates of transient climate sensitivity, that is, the global mean surface temperature increase at the time of CO2 doubling, as low as 1.3 K (refs ,), well below the best estimate produced by global climate models (1.8 K). Here, we present an observation-based study of the time period 1964 to 2010, which does not rely on climate models. The method incorporates observations of greenhouse gas concentrations, temperature and radiation from approximately 1,300 surface sites into an energy balance framework. Statistical methods commonly applied to economic time series are then used to decompose observed temperature trends into components attributable to changes in greenhouse gas concentrations and surface radiation. We find that surface radiation trends, which have been largely explained by changes in atmospheric aerosol loading, caused a cooling that masked approximately one-third of the continental warming due to increasing greenhouse gas concentrations over the past half-century. In consequence, the method yields a higher transient climate sensitivity (2.0 +/- 0.8 K) than other observational studies.

  17. Disentangling Aerosol Cooling and Greenhouse Warming to Reveal Earth's Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Storelvmo, Trude; Leirvik, Thomas; Phillips, Petter; Lohmann, Ulrike; Wild, Martin

    2015-04-01

    Earth's climate sensitivity has been the subject of heated debate for decades, and recently spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of the most likely range of climate sensitivities. Here, we present a study based on the time period 1964 to 2010, which is unique in that it does not rely on global climate models (GCMs) in any way. The study uses surface observations of temperature and incoming solar radiation from approximately 1300 surface sites, along with observations of the equivalent CO2 concentration (CO2,eq) in the atmosphere, to produce a new best estimate for the transient climate sensitivity of 1.9K (95% confidence interval 1.2K - 2.7K). This is higher than other recent observation-based estimates, and is better aligned with the estimate of 1.8K and range (1.1K - 2.5K) derived from the latest generation of GCMs. The new estimate is produced by incorporating the observations in an energy balance framework, and by applying statistical methods that are standard in the field of Econometrics, but less common in climate studies. The study further suggests that about a third of the continental warming due to increasing CO2,eq was masked by aerosol cooling during the time period studied.

  18. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    PubMed

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments. PMID:24218569

  19. Radiative Effects of Aerosols Generated from Biomass Burning, Dust Storms, and Forest Fires

    NASA Technical Reports Server (NTRS)

    Christopher Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1996-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance. They scatter the incoming solar radiation and modify the shortwave reflective properties of clouds by acting as Cloud Condensation Nuclei (CCN). Although it has been recognized that aerosols exert a net cooling influence on climate (Twomey et al. 1984), this effect has received much less attention than the radiative forcings due to clouds and greenhouse gases. The radiative forcing due to aerosols is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign (Houghton et al. 1990). Atmospheric aerosol particles generated from biomass burning, dust storms and forest fires are important regional climatic variables. A recent study by Penner et al. (1992) proposed that smoke particles from biomass burning may have a significant impact on the global radiation balance. They estimate that about 114 Tg of smoke is produced per year in the tropics through biomass burning. The direct and indirect effects of smoke aerosol due to biomass burning could add up globally to a cooling effect as large as 2 W/sq m. Ackerman and Chung (1992) used model calculations and the Earth Radiation Budget Experiment (ERBE) data to show that in comparison to clear days, the heavy dust loading over the Saudi Arabian peninsula can change the Top of the Atmosphere (TOA) clear sky shortwave and longwave radiant exitance by 40-90 W/sq m and 5-20 W/sq m, respectively. Large particle concentrations produced from these types of events often are found with optical thicknesses greater than one. These aerosol particles are transported across considerable distances from the source (Fraser et al. 1984). and they could perturb the radiative balance significantly. In this study, the regional radiative effects of aerosols produced from biomass burning, dust storms and forest fires are examined using the Advanced Very High Resolution Radiometer (AVHRR) Local Area

  20. Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the northern South China Sea during the 7-SEAS/Dongsha Experiment

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-05-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500 nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (ω) ≈ 0.92 at 440 nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the ω (≈0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6 W m-2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  1. The effect of pre-cooling intensity on cooling efficiency and exercise performance.

    PubMed

    Bogerd, Nina; Perret, Claudio; Bogerd, Cornelis P; Rossi, René M; Daanen, Hein A M

    2010-05-01

    Although pre-cooling is known to enhance exercise performance, the optimal cooling intensity is unknown. We hypothesized that mild cooling opposed to strong cooling circumvents skin vasoconstriction and thermogenesis, and thus improves cooling efficiency reflected in improved time to exhaustion. Eight males undertook three randomized trials, consisting of a pre-cooling and an exercise session. During the pre-cooling, performed in a room of 24.6 +/- 0.4 degrees C and 24 +/- 6% relative humidity, participants received either 45 min of mild cooling using an evaporative cooling shirt or strong cooling using an ice-vest. A no-cooling condition was added as a control. Subsequent cycling exercise was performed at 65%[Vdot]O(2peak) in a climatic chamber of 29.3 +/- 0.2 degrees C and 80 +/- 3% relative humidity. During the pre-cooling session, mild and strong cooling decreased the skin blood flow compared with the control. However, no differences were observed between mild and strong cooling. No thermogenesis was observed in any conditions investigated. The reduction of body heat content after pre-cooling was two times larger with strong cooling (39.5 +/- 8.4 W . m(-2)) than mild cooling (21.2 +/- 5.1 W . m(-2)). This resulted in the greatest improvement in time to exhaustion with strong cooling. We conclude that the cooling intensities investigated had a similar effect on cooling efficiency (vasoconstriction and thermogenesis) and that the improved performance after strong cooling is attributable to the greater decrease in body heat content. PMID:20496225

  2. Organic aerosol effects on fog droplet spectra

    NASA Astrophysics Data System (ADS)

    Ming, Yi; Russell, Lynn M.

    2004-05-01

    Organic aerosol alters cloud and fog properties through surface tension and solubility effects. This study characterizes the role of organic compounds in affecting fog droplet number concentration by initializing and comparing detailed particle microphysical simulations with two field campaigns in the Po Valley. The size distribution and chemical composition of aerosol were based on the measurements made in the Po Valley Fog Experiments in 1989 and 1998-1999. Two types of aerosol with different hygroscopicity were considered: the less hygroscopic particles, composed mainly of organic compounds, and the more hygroscopic particles, composed mainly of inorganic salts. The organic fraction of aerosol mass was explicitly modeled as a mixture of seven soluble compounds [, 2001] by employing a functional group-based thermodynamic model [, 2002]. Condensable gases in the vapor phase included nitric acid, sulfuric acid, and ammonia. The maximum supersaturation in the simulation is 0.030% and is comparable to the calculation by [1992] inferred from measured residual particle fractions. The minimum activation diameters of the less and more hygroscopic particles are 0.49 μm and 0.40 μm, respectively. The predicted residual particle fractions are in agreement with measurements. The organic components of aerosol account for 34% of the droplet residual particle mass and change the average droplet number concentration by -10-6%, depending on the lowering of droplet surface tension and the interactions among dissolving ions. The hygroscopic growth of particles due to the presence of water-soluble organic compounds enhances the condensation of nitric acid and ammonia due to the increased surface area, resulting in a 9% increase in the average droplet number concentration. Assuming ideal behavior of aqueous solutions of water-soluble organic compounds overestimates the hygroscopic growth of particles and increases droplet numbers by 6%. The results are sensitive to microphysical

  3. The aerosol radiative effects of uncontrolled combustion of domestic waste

    NASA Astrophysics Data System (ADS)

    Kodros, John K.; Cucinotta, Rachel; Ridley, David A.; Wiedinmyer, Christine; Pierce, Jeffrey R.

    2016-06-01

    Open, uncontrolled combustion of domestic waste is a potentially significant source of aerosol; however, this aerosol source is not generally included in many global emissions inventories. To provide a first estimate of the aerosol radiative impacts from domestic-waste combustion, we incorporate the Wiedinmyer et al. (2014) emissions inventory into GEOS-Chem-TOMAS, a global chemical-transport model with online aerosol microphysics. We find domestic-waste combustion increases global-mean black carbon and organic aerosol concentrations by 8 and 6 %, respectively, and by greater than 40 % in some regions. Due to uncertainties regarding aerosol optical properties, we estimate the globally averaged aerosol direct radiative effect to range from -5 to -20 mW m-2; however, this range increases from -40 to +4 mW m-2 when we consider uncertainties in emission mass and size distribution. In some regions with significant waste combustion, such as India and China, the aerosol direct radiative effect may exceed -0.4 W m-2. Similarly, we estimate a cloud-albedo aerosol indirect effect of -13 mW m-2, with a range of -4 to -49 mW m-2 due to emission uncertainties. In the regions with significant waste combustion, the cloud-albedo aerosol indirect effect may exceed -0.4 W m-2.

  4. Direct radiative effects of anthropogenic aerosols on Indian summer monsoon circulation

    NASA Astrophysics Data System (ADS)

    Das, Sushant; Dey, Sagnik; Dash, S. K.

    2016-05-01

    The direct radiative impacts of anthropogenic aerosols on the dynamics of Indian summer monsoon circulation are examined using the regional climate model version 4.1 (RegCM4.1). High anthropogenic aerosol optical depth (AAOD >0.1) and surface shortwave cooling (<-6 W m-2) are simulated over the Indo-Gangetic Basin (IGB), northeast India, east coast of India, and its outflow to the Bay of Bengal (BoB) during the monsoon season (June to September) in the period 2001 to 2010. The analysis reveals a decrease in near surface air temperature at 2 m over the IGB and east coast of India by >0.2 °C due to the dimming effect of anthropogenic aerosols. The aerosol-induced cooling leads to an increase in surface pressure over the local hotspots in the Indian landmass, which reduces the land-sea pressure contrast resulting in weakening of summer monsoon circulation. The simulated surface pressure anomaly also inhibits moisture transport from the BoB towards Indian landmass thereby enhancing precipitation over the BoB and parts of the east coast of India. The impacts are interpreted as conservative estimates because of the underestimation of AAOD by the model due to uncertainties in emission inventory and biases in simulated meteorology. Our results demonstrate the direct radiative impacts of anthropogenic aerosols on the Indian monsoon circulation and call for future studies combining the dynamical and microphysical impacts, which are not considered in this study.

  5. Quantifying the aerosol semi-direct effect in the NASA GEOS-5 AGCM

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Colarco, P. R.; da Silva, A.

    2011-12-01

    Aerosols such as black carbon, dust, and some organic carbon species both scatter and absorb incoming solar radiation. This direct aerosol radiative forcing (DARF) redistributes solar energy both by cooling the surface and warming the atmosphere. As a result, these aerosols affect atmospheric stability and cloud cover (the semi-direct effect, or SDE). Furthermore, in regions with persistent high loadings of absorbing aerosols (e.g. Asia), regional circulation patterns may be altered, potentially resulting in changes in precipitation patterns. Here we investigate aerosol-climate coupling using the NASA Goddard Earth Observing System model version 5 (GEOS-5) atmospheric general circulation model (AGCM), in which we have implemented an online version of the Goddard Chemistry, Aerosol, Radiation and Transport (GOCART) model. GOCART includes representations of the sources, sinks, and chemical transformation of externally mixed dust, sea salt, sulfate, and carbonaceous aerosols. We examine a series of free-running ensemble climate simulations of the present-day period (2000-2009) forced by observed sea surface temperatures to determine the impact of aerosols on the model climate. The SDE and response of each simulation is determined by differencing with respect to the control simulation (no aerosol forcing). In a free-running model, any estimate of the SDE includes changes in clouds due both to atmospheric heating from aerosols and changes in circulation. To try and quantify the SDE without these circulation changes we then examine the DARF and SDE in GEOS-5 with prescribed meteorology introduced by the MERRA analysis. By doing so, we are able to examine changes in model clouds that occur on shorter scales (six hours). In the GEOS-5 data assimilation system (DAS), the analysis is defined as the best estimate of the atmospheric state at any given time, and it is determined by optimally combining a first-guess short-term GCM forecast with all available observations. The

  6. Quantifying the Aerosol Semi-Direct Effect in the NASA GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Randles, Cynthia A.; Colarco, Peter R.; daSilva, Arlindo

    2011-01-01

    Aerosols such as black carbon, dust, and some organic carbon species both scatter and absorb incoming solar radiation. This direct aerosol radiative forcing (DARF) redistributes solar energy both by cooling the surface and warming the atmosphere. As a result, these aerosols affect atmospheric stability and cloud cover (the semi-direct effect, or SDE). Furthermore, in regions with persistent high loadings of absorbing aerosols (e.g. Asia), regional circulation patterns may be altered, potentially resulting in changes in precipitation patterns. Here we investigate aerosol-climate coupling using the NASA Goddard Earth Observing System model version 5 (GEOS-5) atmospheric general circulation model (AGCM), in which we have implemented an online version of the Goddard Chemistry, Aerosol, Radiation and Transport (GOCART) model. GOCART includes representations of the sources, sinks, and chemical transformation of externally mixed dust, sea salt, sulfate, and carbonaceous aerosols. We examine a series of free-running ensemble climate simulations of the present-day period (2000-2009) forced by observed sea surface temperatures to determine the impact of aerosols on the model climate. The SDE and response of each simulation is determined by differencing with respect to the control simulation (no aerosol forcing). In a free-running model, any estimate of the SDE includes changes in clouds due both to atmospheric heating from aerosols and changes in circulation. To try and quantify the SDE without these circulation changes we then examine the DARF and SDE in GEOS-5 with prescribed meteorological analyses introduced by the MERRA analysis. By doing so, we are able to examine changes in model clouds that occur on shorter scales (six hours). In the GEOS-5 data assimilation system (DAS), the analysis is defined as the best estimate of the atmospheric state at any given time, and it is determined by optimally combining a first-guess short-term GCM forecast with all available

  7. An Overview of the 2010 Carbonaceous Aerosol and Radiative Effects Study (CARES) Field Campaign

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.

    2010-12-01

    The primary objective of the DOE Carbonaceous Aerosol and Radiative Effects Study (CARES) in June 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume. Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been shown to play a major role in the direct and indirect radiative forcing of climate. However, significant knowledge gaps and uncertainties still exist in the process-level understanding of: 1) SOA formation, 2) BC mixing state evolution, and 3) the optical and hygroscopic properties of fresh and aged carbonaceous aerosols. The CARES 2010 field study was designed to address several specific science questions under these three topics. During summer the Sacramento-Blodgett Forest corridor effectively serves as a mesoscale daytime flow reactor in which the urban aerosols undergo significant aging as they are transported to the northeast by upslope flow. The CARES campaign observation strategy consisted of the DOE G-1 aircraft sampling upwind, within, and outside of the evolving Sacramento urban plume in the morning and again in the afternoon. The G-1 payload consisted of a suite of instruments to measure trace gases, aerosol size distribution, composition, and optical properties. The NASA B-200 aircraft carrying a High Spectral Resolution Lidar (HSRL) and a Research Scanning Polarimeter (RSP) was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties. The aircraft measurements were complemented by heavily-instrumented ground sites within the Sacramento urban area and at a downwind site in Cool, California, to characterize the diurnal evolution of meteorological variables, trace gases, aerosol precursors, aerosol

  8. Revisiting Aerosol Effects in Global Climate Models Using an Aerosol Lidar Simulator

    NASA Astrophysics Data System (ADS)

    Ma, P. L.; Chepfer, H.; Winker, D. M.; Ghan, S.; Rasch, P. J.

    2015-12-01

    Aerosol effects are considered a major source of uncertainty in global climate models and the direct and indirect radiative forcings have strong model dependency. These forcings are routinely evaluated (and calibrated) against observations, among them satellite retrievals are greatly used for their near-global coverage. However, the forcings calculated from model output are not directly comparable with those computed from satellite retrievals since sampling and algorithmic differences (such as cloud screening, noise reduction, and retrieval) between models and observations are not accounted for. It is our hypothesis that the conventional model validation procedures for comparing satellite observations and model simulations can mislead model development and introduce biases. Hence, we have developed an aerosol lidar simulator for global climate models that simulates the CALIOP lidar signal at 532nm. The simulator uses the same algorithms as those used to produce the "GCM-oriented CALIPSO Aerosol Product" to (1) objectively sample lidar signal profiles; and (2) derive aerosol fields (e.g., extinction profile, aerosol type, etc) from lidar signals. This allows us to sample and derive aerosol fields in the model and real atmosphere in identical ways. Using the Department of Energy's ACME model simulations, we found that the simulator-retrieved aerosol distribution and aerosol-cloud interactions are significantly different from those computed from conventional approaches, and that the model is much closer to satellite estimates than previously believed.

  9. The contribution of aerosol hygroscopic growth to the modeled aerosol radiative effect

    NASA Astrophysics Data System (ADS)

    Kokkola, Harri; Kühn, Thomas; Kirkevåg, Alf; Romakkaniemi, Sami; Arola, Antti

    2016-04-01

    The hygroscopic growth of atmospheric aerosols can have a significant effect on the direct radiative effect of atmospheric aerosol. However, there are significant uncertainties concerning how much of the radiative forcing is due to different chemical compounds, especially water. For example, modeled optical depth of water in global aerosol-climate models varies by more than a factor of two. These differences can be attributed to differences in modeled 1) hygroscopicity, 2) ambient relative humidity, and/or 3) aerosol size distribution. In this study, we investigate which of these above-mentioned factors cause the largest variability in the modeled optical depth of water. In order to do this, we have developed a tool that calculates aerosol extinction using interchangeable global 3D data of aerosol composition, relative humidity, and aerosol size distribution fields. This data is obtained from models that have taken part in the open international initiative AeroCom (Aerosol Comparisons between Observations and Models). In addition, we use global 3D data for relative humidity from the Atmospheric Infrared Sounder (AIRS) flying on board NASA's Aqua satellite and the National Centers for Environmental Prediction (NCEP) reanalysis data. These observations are used to evaluate the modeled relative humidity fields. In the first stage of the study, we made a detailed investigation using the aerosol-chemistry-climate model ECHAM-HAMMOZ in which most of the aerosol optical depth is caused by water. Our results show that the model significantly overestimates the relative humidity over the oceans while over land, the overestimation is lower or it is underestimated. Since this overestimation occurs over the oceans, the water optical depth is amplified as the hygroscopic growth is very sensitive to changes in high relative humidities. Over land, error in modeled relative humidity is unlikely to cause significant errors in water optical depth as relative humidities are generally

  10. Aerosol Absorption Effects in the TOMS UV Algorithm

    NASA Technical Reports Server (NTRS)

    Torres, O.; Krotkov, N.; Bhartia, P. K.

    2004-01-01

    The availability of global long-term estimates of surface UV radiation is very important, not only for preventive medicine considerations, but also as an important tool to monitor the effects of the stratospheric ozone recovery expected to occur in the next few decades as a result of the decline of the stratospheric chlorine levels. In addition to the modulating effects of ozone and clouds, aerosols also affect the levels of UV-A and W-B radiation reaching the surface. Oscillations in surface W associated with the effects of aerosol absorption may be comparable in magnitude to variations associated with the stratospheric ozone recovery. Thus, the accurate calculation of surface W radiation requires that both the scattering and absorption effects of tropospheric aerosols be taken into account. Although absorption effects of dust and elevated carbonaceous aerosols are already accounted for using Aerosol Index technique, this approach does not work for urban/industrial aerosols in the planetary boundary layer. The use of the new TOMS long-term global data record on UV aerosol absorption optical depth, can improve the accuracy of TOMS spectral UV products, by properly including the spectral attenuation effects of carbonaceous, urban/industrial and mineral aerosols. The TOMS data set on aerosol properties will be discussed, and results of its use in the TOMS surface W algorithm will be presented.

  11. Aerosol transport in the coastal environment and effects on extinction

    NASA Astrophysics Data System (ADS)

    Vignati, Elizabetta; de Leeuw, Gerrit; Berkowicz, Ruwim

    1998-11-01

    The aerosol in the coastal environment consists of a complicated mixture of anthropogenic and rural aerosol generated over land, and sea spray aerosol. Also, particles are generate dover sea by physical and chemical processes and the chemical composition may change due to condensation/evaporation of gaseous materials. The actual composition is a function of air mass history and fetch. At the land-sea transition the continental sources cease to exist, and thus the concentrations of land-based particles and gases will gradually decrease. At the same time, sea spray is generated due to the interaction between wind and waves in a developing wave field. A very intense source for sea spray aerosol is the surf zone. Consequently, the aerosol transported over sea in off-shore winds will abruptly charge at the land-sea transition and then gradually loose its continental character, while also the contribution of the surf-generated aerosol will decrease. The latter will be compensated, at least in part, by the production of sea spray aerosol. A Coastal Aerosol Transport model is being developed describing the evolution of the aerosol size distribution in an air column advected from the coast line over sea in off-shore winds. Both removal and production are taken into account. The result are applied to estimate the effect of the changing size distribution on the extinction coefficients. In this contribution, preliminary results are presented from a study of the effects of the surf-generated aerosol and the surface production.

  12. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  13. Quantifying the temperature-independent effect of stratospheric aerosol geoengineering on global-mean precipitation in a multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Ferraro, Angus J.; Griffiths, Hannah G.

    2016-03-01

    The reduction in global-mean precipitation when stratospheric aerosol geoengineering is used to counterbalance global warming from increasing carbon dioxide (CO2) concentrations has been mainly attributed to the temperature-independent effect of CO2 on atmospheric radiative cooling. We demonstrate here that stratospheric sulphate aerosol itself also acts to reduce global-mean precipitation independent of its effects on temperature. The temperature-independent effect of stratospheric aerosol geoenginering on global-mean precipitation is calculated by removing temperature-dependent effects from climate model simulations of the Geoengineering Model Intercomparison Project (GeoMIP). When sulphate aerosol is injected into the stratosphere at a rate of 5 Tg SO2 per year the aerosol reduces global-mean precipitation by approximately 0.2 %, though multiple ensemble members are required to separate this effect from internal variability. For comparison, the precipitation reduction from the temperature-independent effect of increasing CO2 concentrations under the RCP4.5 scenario of the future is approximately 0.5 %. The temperature-independent effect of stratospheric sulphate aerosol arises from the aerosol’s effect on tropospheric radiative cooling. Radiative transfer calculations show this is mainly due to increasing downward emission of infrared radiation by the aerosol, but there is also a contribution from the stratospheric warming the aerosol causes. Our results suggest climate model simulations of solar dimming can capture the main features of the global-mean precipitation response to stratospheric aerosol geoengineering.

  14. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  15. Aerosol effects and corrections in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Hervig, Mark E.; Russell, James M., III; Gordley, Larry L.; Daniels, John; Drayson, S. Roland; Park, Jae H.

    1995-01-01

    The eruptions of Mt. Pinatubo in June 1991 increased stratospheric aerosol loading by a factor of 30, affecting chemistry, radiative transfer, and remote measurements of the stratosphere. The Halogen Occultation Experiment (HALOE) instrument on board Upper Atmosphere Research Satellite (UARS) makes measurements globally for inferring profiles of NO2, H2O, O3, HF, HCl, CH4, NO, and temperature in addition to aerosol extinction at five wavelengths. Understanding and removing the aerosol extinction is essential for obtaining accurate retrievals from the radiometer channels of NO2, H2O and O3 in the lower stratosphere since these measurements are severely affected by contaminant aerosol absorption. If ignored, aerosol absorption in the radiometer measurements is interpreted as additional absorption by the target gas, resulting in anomalously large mixing ratios. To correct the radiometer measurements for aerosol effects, a retrieved aerosol extinction profile is extrapolated to the radiometer wavelengths and then included as continuum attenuation. The sensitivity of the extrapolation to size distribution and composition is small for certain wavelength combinations, reducing the correction uncertainty. The aerosol corrections extend the usable range of profiles retrieved from the radiometer channels to the tropopause with results that agree well with correlative measurements. In situations of heavy aerosol loading, errors due to aerosol in the retrieved mixing ratios are reduced to values of about 15, 25, and 60% in H2O, O3, and NO2, respectively, levels that are much less than the correction magnitude.

  16. Aerosol speckle effects on atmospheric pulsed lidar backscattered signals

    NASA Technical Reports Server (NTRS)

    Murty, S. R.

    1989-01-01

    Lidar systems using atmospheric aerosols as targets exhibit return signal amplitude and power fluctuations which indicate speckle effects. The effects of refractive turbulence along the path on the aerosol speckle field propagation and on the decorrelation time are studied for coherent pulsed lidar systems.

  17. How Do Aerosol Radiative Effects Influence Wind? a Sensitivity Study of the Aerosol Impact on the Spatially-Distributed Wind over Europe

    NASA Astrophysics Data System (ADS)

    Baro Esteban, R.; Lorente-Plazas, R.; Jerez, S.; Montavez, J. P.; Jimenez-guerrero, P.

    2014-12-01

    Atmospheric aerosols affect the Earth's climate through their radiative effects, being one of the most uncertain areas in climate modeling. Radiative effects depend mainly on the aerosol optical properties and can be divided into direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. Aerosols are widely known to affect radiation, temperature, stability, clouds, and precipitation. However, scientific literature about their effects on wind is scarce. In this sense, the effects of aerosol particles on spatially-distributed winds over Europe are examined. The methodology carried out consists of two WRF-Chem simulations for Europe for the entire year 2010 differing only in the inclusion (or not) of aerosol radiative feedbacks. These simulations have been carried out under the umbrella of the second phase of the AQMEII (Air Quality Model Evaluation International Initiative, http://aqmeii.jrc.ec.europa.eu/). A Euro-CORDEX compliant domain at 0.22º and 23 km resolution has been used. The first simulation does not take into account any aerosol feedbacks (NFB) and the second simulation differs from the base case by the inclusion of direct and indirect radiative feedbacks (FB). Results show that the presence of aerosol generally reduces the wind over Europe. The absorption and scattering of solar radiation by the aerosol particles heat the air and cool the ground temperature leading to an atmospheric stability. This increases the atmospheric stability and decreases the turbulence, as consequence the vertical transfer of momentum diminishes and the surface winds are slower. In addition, the decrease of solar radiation to the ground weakens the thermal circulations, such as land-sea breezes which is more noticeable in the southern of Europe in summer. On the other hand, the indirect effect of the aerosols through their enhancement of clouds also favors a decline of winds

  18. Effects of aerosols and relative humidity on cumulus clouds

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Zhang, Renyi; Li, Guohui; Tao, Wei-Kuo

    2007-07-01

    The influences of the aerosol type and concentration and relative humidity (RH) on cumulus clouds have been investigated using a two-dimensional spectral-bin cloud model. Three simulations are conducted to represent the polluted continental, clean continental, and marine aerosol types. Under the same initial dynamic and thermodynamic conditions, the maritime aerosol case results in more intensive radar reflectivity in both developing and mature stages than the continental aerosol cases, because of enhanced warm rain by collisions and ice processes by deposition growth due to larger droplet sizes and higher supersaturation, respectively. The considerable delay in convective development due to reduced droplet condensation is responsible for the longer cloud lifetime in the marine aerosol case. For the continental case, the most noticeable effects of increasing aerosol number concentrations (with 15 different initial values) are the increases of the cloud droplet number concentration and cloud water content but a decrease in the effective droplet radius. More latent heat release from increasing condensation results in stronger convection and more melting precipitation at the higher aerosol concentrations. Melting precipitation and secondary clouds primarily contribute to enhanced precipitation with increasing aerosols. The precipitation, however, decreases with increasing aerosol in the extremely high aerosol cases (over 5 × 104 cm-3) due to suppression of convection from depleted water vapor and inefficient coalescence. When the initial aerosol concentration exceeds a critical level, most of the cloud properties become less sensitive to aerosols, implying that the aerosol effect on deep convection is more pronounced in relatively clean air than in heavily polluted air. The aerosol effect on the cloud properties is strongly dependent on RH. As the surface RH increases from 40 to 70%, the cloud changes from shallow warm to deep convective types due to a significant

  19. Estimation of the direct aerosol radiative effect over China based on satellite remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Sundström, A.-M.; Huttunen, J.; Arola, A.; Kolmonen, P.; Sogacheva, L.; de Leeuw, G.

    2012-04-01

    Aerosols influence the radiative budget of the Earth-atmosphere system directly by scattering and absorbing solar and thermal infrared radiation, and indirectly by modifying the microphysical, and hence the radiative properties and lifetimes of clouds. However, the quantification of aerosol radiative effects is complex and large uncertainties still exist, mainly due to the high spatial and temporal variation of the aerosol concentration and mass, as well as their relatively short lifetime in the atmosphere. The clear-sky direct aerosol radiative effect at the top of the atmosphere (TOA) is defined as the difference between the net solar flux ΔFTOA (difference between downward and upward fluxes) defined with (F) and without (F0) aerosols. The negative values of ΔFTOA correspond to planetary cooling, whereas positive values correspond to increased atmospheric warming. Satellites offer an opportunity to observe the spatial distribution of aerosol properties with adequate resolution and coverage from regional to global scales. In this work multisensor satellite observations are used to estimate the direct aerosol radiative effect at the top of the atmosphere over China within the shortwave (SW, 0.3-5 microns) region. The Moderate Imaging Spectroradiometer onboard (MODIS) NASA's Terra and Aqua platforms offer global observations of aerosol and cloud optical properties nearly on a daily basis, whereas the Clouds and the Earth's Radian Energy System (CERES) instruments measure simultaneously TOA broadband fluxes e.g. in the shortwave region. Hence, the instantaneous aerosol direct radiative effect for a month at TOA can be estimated using the MODIS aerosol optical depth (AOD) and coincident broadband flux from the CERES instrument. The values for F and F0 are obtained by performing a linear regression between MODIS AOD at 0.55 microns wavelength and CERES SW flux. The instantaneous values are converted to monthly means by using a radiative transfer code. Preliminary

  20. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  1. Opposing forces of aerosol cooling and El Niño drive coral bleaching on Caribbean reefs

    PubMed Central

    Gill, Jennifer A.; Watkinson, Andrew R.; McWilliams, John P.; Côté, Isabelle M.

    2006-01-01

    Bleaching of corals as a result of elevated sea surface temperatures (SST) is rapidly becoming a primary source of stress for reefs globally; the scale and extent of this threat will depend on how the drivers of SST interact to influence bleaching patterns. We demonstrate how the opposing forces of the El Niño–Southern Oscillation (ENSO) and levels of atmospheric aerosols drive regional-scale patterns of coral bleaching across the Caribbean. When aerosol levels are low, bleaching is largely determined by El Niño strength, but high aerosol levels mitigate the effects of a severe El Niño. High aerosol levels, resulting principally from recent volcanic activity, have thus protected Caribbean reefs from more frequent widespread bleaching events but cannot be relied on to provide similar protection in the future. PMID:17116861

  2. Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Bergstrom, Robert W.; Redemann, Jens

    2002-01-01

    This report is the final report for "Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects". It is a bibliographic compilation of 29 peer-reviewed publications (published, in press or submitted) produced under this Cooperative Agreement and 30 first-authored conference presentations. The tasks outlined in the various proposals are listed below with a brief comment as to the research performed. Copies of title/abstract pages of peer-reviewed publications are attached.

  3. Aerosol effect on Umkehr ozone profiles using Stratospheric Aerosol and Gas Experiment II measurements

    NASA Technical Reports Server (NTRS)

    Newchurch, M. J.; Cunnold, D. M.

    1994-01-01

    This study examines 1211 cases of coincident ozone profiles derived from 1164 Umkehrs and 928 Stratospheric Aerosol and Gas Experiment II (SAGE II) profiles within 1000 km and 12 hours between October 1984 and April 1989 to study the stratospheric-aerosol effect on Umkehr ozone profiles. Because of the close correspondence of stratospheric aerosol optical depth at the SAGE II-measured 0.525-micrometer wavelength and the extrapolated 0.32 Umkehr wavelength determined in this study we use the 0.525-micrometer data to determine the aerosol effect on Umkehr profiles. At the 95% confidence level, we find the following errors to the Umkehr ozone amounts: in Umkehr layer 9 (-2.9 +/- 2.1), layer 8 (-2.3 +/- 1.1), layer 7 (0.1 +/- 1.1), layer 6 (2.2 +/- 1.0), layer 5 (-1.5 +/- 0.8), and layer 4 (-2.4 +/- 1.7) in percent ozone amount per 0.01 stratospheric aerosol optical depth. These results agree with previous theoretical and empirical studies within their respective error bounds in layers 9, 8, and 7. The results in layers 6, 5, and 4 differ significantly from those in previous works. Using only those eight stations with more than 47 coincidences results in mean aerosol effects that are not significantly different from the 14-station results. Because SAGE II and Umkehr produce different ozone retrievals in layer 9 and because the intralayer correlation of SAGE II ozone and aerosol in layer 9 is nonzero, one must exercise some caution in attributing the entire SAGE II-Umkehr difference in this layer to an aerosol effect.

  4. Urban aerosol effects on surface insolation and surface temperature

    NASA Astrophysics Data System (ADS)

    Jin, M.; Burian, S. J.; Remer, L. A.; Shepherd, M. J.

    2007-12-01

    Urban aerosol particulates may play a fundamental role in urban microclimates and city-generated mesoscale circulations via its effects on energy balance of the surface. Key questions that need to be addressed include: (1) How do these particles affect the amount of solar energy reaching the surface and resulting surface temperature? (2) Is the effect the same in all cities? and (3) How does it vary from city to city? Using NASA AERONET in-situ observations, a radiative transfer model, and a regional climate mode (MM5), we assess aerosol effects on surface insolation and surf ace temperature for dense urban-polluted regions. Two big cities, one in a developing country (Beijing, P.R. China) and another in developed country (New York City, USA), are selected for inter-comparison. The study reveals that aerosol effects on surface temperature depends largely on aerosols' optical and chemical properties as well as atmosphere and land surface conditions, such as humidity and land cover. Therefore, the actual magnitudes of aerosol effects differ from city to city. Aerosol measurements from AERONET show both average and extreme cases for aerosol impacts on surface insolation. In general, aerosols reduce surface insolation by 30Wm-2. Nevertheless, in extreme cases, such reduction can exceed 100 Wm-2. Consequently, this reduces surface skin temperature 2-10C in an urban environment.

  5. Hypersonic film cooling effectiveness and aero-optical effects

    NASA Astrophysics Data System (ADS)

    Swigart, R. J.; Shih, W. C. L.; Wang, J. H.; Snow, R.; Trolier, J. W.

    A correlation parameter for film-cooling efficiency has been developed that removes the low-energy outer-flow restriction on which earlier parameters were based. The parameter is shown to collapse a large body of film-cooling efficiency data over a broad range of coolant-injectant and external-flow conditions embodying all speed ranges. The validity and accuracy of the parameter is independently validated using state-of-the-art CFD techniques. The correlation is extremely useful for the design of film-cooling systems, and should be applicable to a broad range of film-cooling applications. Computational algorithms for calculating film-cooling flow-field-induced boresight error and image-blur aerooptical effects are presented. These algorithms should be extremely useful for the prediction of flow-field effects on optical sensor performance.

  6. Direct Radiative Forcing and Regional Climatic Effects of Anthropogenic Aerosols Over East Asia: A Regional Coupled Climate-Chemistry/Aerosol Model Study

    SciTech Connect

    Giorgi, Filippo; Bi, Xunqiang; Qian, Yun )

    2002-09-01

    We present a series of regional climate model simulations aimed at assessing the radiative forcing and surface climatic effects of anthropogenic sulfate and fossil fuel soot over east Asia. The simulations are carried out with a coupled regional climate-chemistry/aerosol model for the 5-year period of 1993-1997 using published estimates of sulfur emissions for the period. Anthropogenic sulfate induces a negative radiative forcing spatially varying from -1 to -8 W/m2 in the winter to -1 to -15 W/m2 in the summer, with maxima over the Sichan Basin of southwest China and over some areas of east and northeast China. This forcing induces a surface cooling in the range of -0.1 to -0.7 K. Fossil fuel soot exerts a positive atmospheric radiative forcing of 0.5 to 2 W/m2 and enhances the surface cooling by a few tenths of K due to increased surface shielding from solar radiation. Doubling of sulfur emissions induces a substantial increase in radiative forcing (up to -7 to -8 W/m2) and associated surface cooling. With doubled sulfur emissions, the surface cooling exceeds -1 K and is statistically significant at the 90% confidence level over various areas of China. The aerosol forcing and surface cooling tend to inhibit precipitation over the region, although this effect is relatively small in the simulations. Some features of the simulated aerosol-induced cooling are consistent with temperature trends observed in recent decades over different regions of China.

  7. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  8. Modeling Trends in Tropospheric Aerosol Burden & Its Radiative Effects

    EPA Science Inventory

    Large changes in emissions of aerosol precursors have occurred across the southeast U.S., North America, as well as the northern hemisphere. The spatial heterogeneity and contrasting trends in the aerosol burden is resulting in differing effects on regional radiative balance. Mul...

  9. Impact of Cloud-Borne Aerosol Representation on Aerosol Direct and Indirect Effects

    SciTech Connect

    Ghan, Steven J.; Easter, Richard C.

    2006-09-21

    Aerosol particles attached to cloud droplets are much more likely to be removed from the atmosphere and are much less efficient at scattering sunlight than if unattached. Models used to estimate direct and indirect effects of aerosols employ a variety of representations of such cloud-borne particles. Here we use a global aerosol model with a relatively complete treatment of cloud-borne particles to estimate the sensitivity of simulated aerosol, cloud and radiation fields to various approximations to the representation of cloud-borne particles. We find that neglecting transport of cloud-borne particles introduces little error, but that diagnosing cloud-borne particles produces global mean biases of 20% and local errors of up to 40% for many variables of interest. A treatment that predicts the total mass concentration of cloud-borne particles for each mode yields smaller errors and runs 20% faster than the complete treatment.

  10. EFFECTS OF SULFURIC ACID AEROSOLS ON VEGETATION

    EPA Science Inventory

    A continuous flow system for exposing plants to submicron aerosols of sulfuric acid has been developed and an operational model has been constructed. Exposure chambers have been designed to allow simultaneous exposures of the same plant to aerosol and control environments. All su...

  11. Characterization of Mojave Desert aerosols: Their effect on radiometer performance

    SciTech Connect

    Mathews, L.A.; Salgado, D.P.; Walker, P.L.

    1994-12-31

    The Antelope Valley is part of the southwestern Mojave Desert lying fifty miles north of Los Angeles International Airport. The Antelope Valley is separated from the Los Angeles and San Fernando Valley air basins by the San Gabriel Mountains. The Tehachapi Mountains, to the west, separate the Antelope Valley from the San Joaquin Valley. Combustion aerosols are transported from the San Joaquin Valley through the Tehachapi Pass and through the Soledad and Cajun passes from the Los Angeles air basin. Thus the valley`s atmosphere contains a spatially and temporally complex mixture of aerosols of urban, industrial and desert origin. The Visibility Impact Summer Study held from July to September 1990 was an intense, comprehensive study intended to measure aerosol size and chemical composition and to ascertain their optical effects. Size distributions for particle diameters from 0.01 to 10 {micro} were measured at hourly intervals and particle samplers were used to obtain chemical compositions at daily intervals at Tehachapi Pass and Edwards AFB, California. The extracted aerosol characteristics are discussed and compared to the desert aerosol model in LOWTRAN and the size and estimated composition of aerosols at China Lake reported upon earlier. The authors obtain relationships between aerosol mass and wind speed, diurnal size changes, and meteorological effects. Secondarily, extinction was calculated and used with LOWTRAN and radiosonde data for examination of aerosol effects on narrow band 3--5 and 8--12 {micro} imaging radiometer performance.

  12. Direct radiative effect by multicomponent aerosol over China

    SciTech Connect

    Huang, Xin; Song, Yu; Zhao, Chun; Cai, Xuhui; Zhang, Hongsheng; Zhu, Tong

    2015-05-01

    The direct radiative effect (DRE) of multiple aerosol species (sulfate, nitrate, ammonium, black carbon (BC), organic carbon (OC), and mineral aerosol) and their spatiotemporal variations over China were investigated using a fully coupled meteorology–chemistry model (WRF-Chem) for the entire year of 2006. We made modifications to improve model performance, including updating land surface parameters, improving the calculation of transition metal-catalyzed oxidation of SO2, and adding in heterogeneous reactions between mineral aerosol and acid gases. The modified model well reproduced the magnitude, seasonal pattern, and spatial distribution of the measured meteorological conditions, concentrations of PM10 and its components, and aerosol optical depth (AOD). A diagnostic iteration method was used to estimate the overall DRE of aerosols and contributions from different components. At the land surface, all kinds of aerosol species reduced the incident net radiation flux with a total DRE of 10.2 W m-2 over China. Aerosols significantly warm the atmosphere with the national mean DRE of +10.8 W m-2. BC was the leading radiative-heating component (+8.7 W m-2), followed by mineral aerosol (+1.1 W m-2). At the top of the atmosphere (TOA), BC introduced the largest radiative perturbation (+4.5 W m-2), followed by sulfate (-1.4 W m-2). The overall perturbation of aerosols on radiation transfer is quite small over China, demonstrating the counterbalancing effect between scattering and adsorbing aerosols. Aerosol DRE at the TOA had distinct seasonality, generally with a summer maximum and winter minimum, mainly determined by mass loadings, hygroscopic growth, and incident radiation flux.

  13. Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Korhola, T.; Kokkola, H.; Korhonen, H.; Partanen, A.-I.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.

    2014-01-01

    Atmospheric models often represent the aerosol particle size distribution with a modal approach, in which particles are described with log-normal modes within predetermined size ranges. This approach reallocates particles numerically from one mode to another for example during particle growth, potentially leading to artificial changes in the aerosol size distribution. In this study we analysed how the modal reallocation affects climate-relevant variables: cloud droplet number concentration (CDNC), aerosol-cloud interaction parameter (ACI) and light extinction coefficient (qext). The ACI parameter gives the response of CDNC to a change in total aerosol number concentration. We compared these variables between a modal model (with and without reallocation routines) and a high resolution sectional model, which was considered a reference model. We analysed the relative differences in the chosen variables in four experiments designed to assess the influence of atmospheric aerosol processes. We find that limiting the allowed size ranges of the modes, and subsequent remapping of the distribution, leads almost always to an underestimation of cloud droplet number concentrations (by up to 100%) and an overestimation of light extinction (by up to 20%). On the other hand, the aerosol-cloud interaction parameter can be either over- or underestimated by the reallocating model, depending on the conditions. For example, in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause on average a 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.

  14. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  15. A Simple Model of Global Aerosol Indirect Effects

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  16. Effects of biomass burning aerosols on CO2 fluxes on Amazon Region

    NASA Astrophysics Data System (ADS)

    Soares Moreira, Demerval; Freitas, Saulo; Longo, Karla; Rosario, Nilton

    2015-04-01

    During the dry season in Central Brazil and Southern Amazon, there is an usually high concentration of aerosol particles associated with intense human activities, with extensive biomass burning. It has been observed through remote sensing that the smoke clouds in these areas often cover an area of about 4 to 5 million km2. Thus, the average aerosol optical depth of these regions at 500 ηm, is usually below 0.1 during the rainy season and can exceed 0.9 in the fire season. Aerosol particles act as condensation nuclei and also increase scattering and absorption of the incident radiation. Therefore, the layer of the aerosol alters the precipitation rate; reduces the amount of solar energy that reaches the surface, producing a cooling; and causes an increase of diffuse radiation. These factors directly and indirectly affect the CO2 fluxes at the surface. In this work, the chemical-atmospheric model CCATT-BRAMS (Coupled Chemistry-Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System) coupled to the surface model JULES (Joint UK Land Environment Simulator) was used to simulate the effects of biomass burning aerosols in CO2 fluxes in the Amazon region. Both the total effect of the aerosols and the contribution related only to the increase of the diffuse fraction caused by the their presence were analyzed. The results show that the effect of the scattered fraction is dominant over all other effects. It was also noted that the presence of aerosols from fires can substantially change biophysiological processes of the carbon cycle. In some situations, it can lead to a sign change in the net ecosystem exchange (NEE), turning it from a source of CO2 to the atmosphere, when the aerosol is not considered in the simulations, to a sink, when it is considered. Thus, this work demonstrates the importance of considering the presence of aerosols in numerical simulations of weather and climate, since carbon dioxide is a major

  17. Effects of Chemical Aging on the Heterogeneous Freezing of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Collier, K.; Brooks, S. D.

    2014-12-01

    Organic aerosols are emitted into the atmosphere from a variety of sources and display a wide range of effectiveness in promoting the nucleation of ice in clouds. Soot and polycyclic aromatic hydrocarbons (PAHS) arise from incomplete combustion and other pollutant sources. Hydrocarbon compounds in diesel motor oil and other fuel blends include compounds such as octacosane (a straight saturated alkane), squalane (a branched saturated alkane) and squalene (an unsaturated branched alkene). At temperatures above -36°C, the formation of ice crystals in the atmosphere is facilitated by heterogeneous freezing processes in which atmospheric aerosols act as ice nuclei (IN). The variability in ability of organic particles to facilitate heterogeneous ice nucleation causes major uncertainties in predictions of aerosol effects on climate. Further, atmospheric aerosol composition and ice nucleation ability can be altered via chemical aging and reactions with atmospheric oxidants such as ozone. In this study, we take a closer look at the role of chemical oxidation on the efficiency of specific IN during contact freezing laboratory experiments. The freezing temperatures of droplets in contact with representative organic aerosols are determined through the use of an optical microscope apparatus equipped with a cooling stage and a digital camera. Chemical changes at the surface of aerosols due to ozone exposure are characterized using Raman Microspectroscopy and Fourier Transform Infrared Spectroscopy with Horizontal Attenuated Total Reflectance. Our results indicate that oxidation of certain atmospheric organics (soot and PAHS) enhances their ice nucleation ability. In this presentation, results of heterogeneous nucleation on various types of organic aerosols will be presented, and the role of structure in promoting freezing will be discussed.

  18. Clinical side effects during aerosol therapy: cutaneous and ocular effects.

    PubMed

    Geller, David E

    2007-01-01

    Aerosolized medications maximize clinical benefit by targeting the airways and minimize side effects by reducing (though not eliminating) systemic exposure. Aerosolized drugs delivered with a facemask may inadvertently deposit on the face and in the eyes, raising concerns about cutaneous and ocular side effects with these drugs. Cases of anisocoria have been reported from exposure of the eyes to aerosol bronchodilators. Whether inhaled corticosteroids (ICS) can cause skin and eye problems like those seen with systemic or topical steroids is more difficult to answer. Patients who take ICS may have other corticosteroid exposures, or have other conditions that predispose them to side effects, making the analysis of the ICS risk challenging. Also, many studies were not designed to search for cutaneous or ocular effects, or may have been too short to detect these effects. Nevertheless, ICS have been associated with an increased risk of skin thinning, bruising, cataracts and possibly glaucoma in adults, but not in children. The risks increase with advanced age, higher doses, and longer duration of use. In children, the risks of cataracts and glaucoma were negligible with ICS, whether a mouthpiece or a mask interface was used. Side effects like skin rash and conjunctivitis occurred at low frequencies similar to placebo or comparator drugs. We do not know whether exposed children will have increased risks from ICS later in life. Therefore, it is wise to avoid face and eye deposition when possible, and to use the minimally effective dose. PMID:17411401

  19. Effect of Dust and Anthropogenic Aerosols on Columnar Aerosol Optical Properties over Darjeeling (2200 m asl), Eastern Himalayas, India

    PubMed Central

    Chatterjee, Abhijit; Ghosh, Sanjay K.; Adak, Anandamay; Singh, Ajay K.; Devara, Panuganti C. S.; Raha, Sibaji

    2012-01-01

    Background The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. Methodology/Principal Findings An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca2+) during pre-monsoon (Apr – May) which was higher by 162% than its annual mean whereas during winter (Dec – Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO42− and black carbon) were higher (76% for black carbon and 96% for fine mode SO42−) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. Conclusion/Significance The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas. PMID:22792264

  20. Decadal scale, seasonal climate effects of aerosols in China

    NASA Astrophysics Data System (ADS)

    Folini, Doris; Wild, Martin

    2014-05-01

    China is a hot spot in terms of population growth and industrialization. This development is accompanied by a substantial increase in aerosol emissions. We investigate associated impacts of different aerosol emissions on surface solar radiation (SSR), surface air temperature (SAT), and precipitation by means of the global atmosphere only climate model ECHAM5-HAM (aerosol emission data from NIES, the National Institute of Environmental Studies, Japan; prescribed, observation based sea surface temperatures (SSTs) from the Hadley Center). Ensembles of transient (1870 - 2005) sensitivity experiments are performed and analyzed on a seasonal basis. We discuss corresponding findings, among them that inclusion of aerosol emissions leads to a decrease of modeled SSR of around -7 W/m2 in eastern parts of China in recent decades, in good agreement with in situ observations of SSR changes. The associated cooling leads to better agreement between modeled and measures SAT time series, especially in summer. By contrast, the precipitation reduction brought about by aerosols in the model is rather strong compared to observations.

  1. Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.

    2010-01-01

    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.

  2. Effect of Chord Size on Weight and Cooling Characteristics of Air-Cooled Turbine Blades

    NASA Technical Reports Server (NTRS)

    Esgar, Jack B; Schum, Eugene F; Curren, Arthur N

    1958-01-01

    An analysis has been made to determine the effect of chord size on the weight and cooling characteristics of shell-supported, air-cooled gas-turbine blades. In uncooled turbines with solid blades, the general practice has been to design turbines with high aspect ratio (small blade chord) to achieve substantial turbine weight reduction. With air-cooled blades, this study shows that turbine blade weight is affected to a much smaller degree by the size of the blade chord.

  3. Effect of CALIPSO Cloud Aerosol Discrimination (CAD) Confidence Levels on Observations of Aerosol Properties near Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Liu, Zhaoyan

    2012-01-01

    CALIPSO aerosol backscatter enhancement in the transition zone between clouds and clear sky areas is revisited with particular attention to effects of data selection based on the confidence level of cloud-aerosol discrimination (CAD). The results show that backscatter behavior in the transition zone strongly depends on the CAD confidence level. Higher confidence level data has a flatter backscatter far away from clouds and a much sharper increase near clouds (within 4 km), thus a smaller transition zone. For high confidence level data it is shown that the overall backscatter enhancement is more pronounced for small clear-air segments and horizontally larger clouds. The results suggest that data selection based on CAD reduces the possible effects of cloud contamination when studying aerosol properties in the vicinity of clouds.

  4. Investigation on cooling effectiveness and aerodynamic loss of a turbine cascade with film cooling

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Lin, Xiaochun; Zhang, Xiaodong; An, Baitao

    2016-02-01

    This paper describes the numerical study on film cooling effectiveness and aerodynamic loss due to coolant and main stream mixing for a turbine guide vane. The effects of blowing ratio, mainstream Mach number, surface curvature on the cooling effectiveness and mixing loss were studied and discussed. The numerical results show that the distributions of film cooling effectiveness on the suction surface and pressure surface at the same blowing ratio (BR) are different due to local surface curvature and pressure gradient. The aerodynamic loss features for film holes on the pressure surface are also different from film holes on the suction surface.

  5. Airborne minerals and related aerosol particles: Effects on climate and the environment

    PubMed Central

    Buseck, Peter R.; Pósfai, Mihály

    1999-01-01

    Aerosol particles are ubiquitous in the troposphere and exert an important influence on global climate and the environment. They affect climate through scattering, transmission, and absorption of radiation as well as by acting as nuclei for cloud formation. A significant fraction of the aerosol particle burden consists of minerals, and most of the remainder— whether natural or anthropogenic—consists of materials that can be studied by the same methods as are used for fine-grained minerals. Our emphasis is on the study and character of the individual particles. Sulfate particles are the main cooling agents among aerosols; we found that in the remote oceanic atmosphere a significant fraction is aggregated with soot, a material that can diminish the cooling effect of sulfate. Our results suggest oxidization of SO2 may have occurred on soot surfaces, implying that even in the remote marine troposphere soot provided nuclei for heterogeneous sulfate formation. Sea salt is the dominant aerosol species (by mass) above the oceans. In addition to being important light scatterers and contributors to cloud condensation nuclei, sea-salt particles also provide large surface areas for heterogeneous atmospheric reactions. Minerals comprise the dominant mass fraction of the atmospheric aerosol burden. As all geologists know, they are a highly heterogeneous mixture. However, among atmospheric scientists they are commonly treated as a fairly uniform group, and one whose interaction with radiation is widely assumed to be unpredictable. Given their abundances, large total surface areas, and reactivities, their role in influencing climate will require increased attention as climate models are refined. PMID:10097046

  6. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  7. Nonlinear effects of anthropogenic aerosol and urban land surface forcing on spring climate in eastern China

    NASA Astrophysics Data System (ADS)

    Deng, Jiechun; Xu, Haiming; Zhang, Leying

    2016-05-01

    Anthropogenic aerosols and urban land cover change induce opposite thermal effects on the atmosphere near surface as well as in the troposphere. One can think of these anthropogenic effects as composed of two parts: the individual effect due to an individual anthropogenic forcing and the nonlinear effects resulting from the coexistence of two forcing factors. In this study, we explored the role of such nonlinear effects in affecting East Asian climate, as well as individual forcing effects, using the Community Atmosphere Model version 5.1 coupled with the Community Land Model version 4. Atmospheric responses were simulated by including anthropogenic aerosol emission only, urban cover only, or the combination of the two, over eastern China. Results showed that nonlinear responses were different from any effects by an individual forcing or the linear combination of individual responses. The nonlinear interaction could generate cold horizontal temperature advection to cool the troposphere, which induced anomalous subsidence along the Yangtze River Valley (YRV). This anomalous vertical motion, together with a weakened low-level southwesterly, favored below-normal (above-normal) rainfall over the YRV (southern China), shifting the spring rain belt southward. The resultant diabatic cooling, in turn, amplified the anomalous descent and further decreased tropospheric temperature over the YRV, forming a positive feedback loop to maintain the nonlinear effects. Consequently, the nonlinear effects acted to reduce the climate anomalies from a simple linear combination of two individual effects and played an important role in regional responses to one anthropogenic forcing when the other is prescribed.

  8. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  9. Simultaneous retrieval of aerosol properties and clear-sky direct radiative effect over the global ocean from MODIS

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwa; Kim, Jhoon; Lee, Yun Gon

    2014-08-01

    A unified satellite algorithm is presented to simultaneously retrieve aerosol properties (aerosol optical depth; AOD and aerosol type) and clear-sky shortwave direct radiative effect (hereafter, DREA) over ocean. The algorithm is applied to Moderate Resolution Imaging spectroradiometer (MODIS) observations for a period from 2003 to 2010 to assess the DREA over the global ocean. The simultaneous retrieval utilizes lookup table (LUT) containing both spectral reflectances and solar irradiances calculated using a single radiative transfer model with the same aerosol input data. This study finds that aerosols cool the top-of-atmosphere (TOA) and bottom-of-atmosphere (BOA) by 5.2 ± 0.5 W/m2 and 8.3 W/m2, respectively, and correspondingly warm the atmosphere (hereafter, ATM) by 3.1 W/m2. These quantities, solely based on the MODIS observations, are consistent with those of previous studies incorporating chemical transport model simulations and satellite observations. However, the DREAs at BOA and ATM are expected to be less accurate compared to that of TOA due to low sensitivity in retrieving aerosol type information, which is related with the atmospheric heating by aerosols, particularly in low AOD conditions; consequently, the uncertainties could not be quantified. Despite the issue in the aerosol type information, the present method allows us to confine the DREA attributed only to fine-mode dominant aerosols, which are expected to be mostly anthropogenic origin, in the range from -1.1 W/m2 to -1.3 W/m2 at TOA. Improvements in size-resolved AOD and SSA retrievals from current and upcoming satellite instruments are suggested to better assess the DREA, particularly at BOA and ATM, where aerosol absorptivity induces substantial uncertainty.

  10. Effects of sulfate aerosol forcing on East Asian summer monsoon for 1985-2010

    NASA Astrophysics Data System (ADS)

    Kim, Minjoong J.; Yeh, Sang-Wook; Park, Rokjin J.

    2016-02-01

    We examine the effect of anthropogenic aerosol forcing on the East Asian summer monsoon (EASM) using the Community Atmosphere Model version 5.1.1. One control and two sensitivity model experiments were conducted in order to diagnose the separate roles played by sea surface temperature (SST) variations and anthropogenic sulfate aerosol forcing changes in East Asia. We find that the SST variation has been a major driver for the observed weakening of the EASM, whereas the effect of the anthropogenic aerosol forcing has been opposite and has slightly intensified the EASM over the recent decades. The reinforcement of the EASM results from radiative cooling by the sulfate aerosol forcing, which decelerates the jet stream around the jet's exit region. Subsequently, the secondary circulation induced by such a change in the jet stream leads to the increase in precipitation around 18-23°N. This result indicates that the increase in anthropogenic emissions over East Asia may play a role in compensating for the weakening of the EASM caused by the SST forcing.

  11. Effects of aerosol from biomass burning on the global radiation budget

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.; Dickinson, Robert E.; O'Neill, Christine A.

    1992-01-01

    An analysis is made of the likely contribution of smoke particles from biomass burning to the global radiation balance. These particles act to reflect solar radiation directly; they also can act as cloud condensation nuclei, increasing the reflectivity of clouds. Together these effects, although uncertain, may add up globally to a cooling effect as large as 2 watts per square meter, comparable to the estimated contribution to sulfate aerosols. Anthropogenic increases of smoke emission thus may have helped weaken the net greenhouse warming from anthropogenic trace gases.

  12. New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; Peng, Yiran

    2016-02-01

    Aerosol indirect effects suffer from large uncertainty in climate models and among observations. This study focuses on two plausible factors: regime dependence of aerosol-cloud interactions and the effect of cloud droplet spectral shape. We show, using a new parcel model, that combined consideration of droplet number concentration (Nc) and relative dispersion (ɛ, ratio of standard deviation to mean radius of the cloud droplet size distribution) better characterizes the regime dependence of aerosol-cloud interactions than considering Nc alone. Given updraft velocity (w), ɛ increases with increasing aerosol number concentration (Na) in the aerosol-limited regime, peaks in the transitional regime, and decreases with further increasing Na in the updraft-limited regime. This new finding further reconciles contrasting observations in literature and reinforces the compensating role of dispersion effect. The nonmonotonic behavior of ɛ further quantifies the relationship between the transitional Na and w that separates the aerosol- and updraft-limited regimes.

  13. Aerosol-radiation-cloud interactions in a regional coupled model: the effects of convective parameterisation and resolution

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, Scott; Lowe, Douglas; Schultz, David M.; McFiggans, Gordon

    2016-05-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) has been used to simulate a region of Brazil heavily influenced by biomass burning. Nested simulations were run at 5 and 1 km horizontal grid spacing for three case studies in September 2012. Simulations were run with and without fire emissions, convective parameterisation on the 5 km domain, and aerosol-radiation interactions in order to explore the differences attributable to the parameterisations and to better understand the aerosol direct effects and cloud responses. Direct aerosol-radiation interactions due to biomass burning aerosol resulted in a net cooling, with an average short-wave direct effect of -4.08 ± 1.53 Wm-2. However, around 21.7 Wm-2 is absorbed by aerosol in the atmospheric column, warming the atmosphere at the aerosol layer height, stabilising the column, inhibiting convection, and reducing cloud cover and precipitation. The changes to clouds due to radiatively absorbing aerosol (traditionally known as the semi-direct effects) increase the net short-wave radiation reaching the surface by reducing cloud cover, producing a secondary warming that counters the direct cooling. However, the magnitude of the semi-direct effect was found to be extremely sensitive to the model resolution and the use of convective parameterisation. Precipitation became organised in isolated convective cells when not using a convective parameterisation on the 5 km domain, reducing both total cloud cover and total precipitation. The SW semi-direct effect varied from 6.06 ± 1.46 with convective parameterisation to 3.61 ± 0.86 Wm-2 without. Convective cells within the 1 km domain are typically smaller but with greater updraft velocity than equivalent cells in the 5 km domain, reducing the proportion of the domain covered by cloud in all scenarios and producing a smaller semi-direct effect. Biomass burning (BB) aerosol particles acted as cloud condensation nuclei (CCN), increasing the droplet number

  14. Effects of Aerosol PSD on Precipitation in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Bracho, S. M.; Hosannah, N.

    2013-12-01

    The influence of aerosols on clouds and on the climate remains an uncertainty, however, it is of great importance to determine their effects on the formation of clouds and on precipitation. The objective is to study the effects of aerosol particle concentrations on precipitation. The is goal is, by using the aerosols particle size distribution (PSD) data from the Island of Puerto Rico (PR) located in the Caribbean, to better predict precipitation in PR and other Caribbean regions that are heavily exposed to naturally occurring maritime and continental aerosols (ex. Sea Salt, Saharan Dust). The aerosol PSD, and precipitation data values for the study was collected, respectively, from the Aerosol Robotic Network (AERONET) and the National Climatic Data Center (NCDC). The data from three sites, Mayaguez (Western Region), La Parguera (Southwestern Region) and San Juan (Northeastern Region), was analyzed to determine and formulate seasonal and intra-seasonal relationships. PSD's were analyzed for fine and coarse mode size distributions and seasonal concentrations. Correlations between these variables with precipitation climatologies were identified. Correlations of concentrations of fine/course modes with suppression/enhancement of Caribbean precipitation in early rainfall, mid-summer droughts and rainfall seasons are formulated and hypotheses are established to comprehend these effects. Episodic and mean events are analyzed to justify these observations.

  15. A satellite view of aerosols in the climate system

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Boucher, Olivier

    2002-01-01

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  16. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2014-08-01

    Aerosol particles were characterized by an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) along with various collocated instruments in Beijing, China to investigate the aerosol composition and sources during the Chinese Spring Festival, 2013. Three fireworks (FW) events exerting significant and short-term impacts on fine particles (PM2.5) were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW showed major impacts on non-refractory potassium, chloride, sulfate, and organics in PM1, of which the FW organics appeared to be mainly secondary with its mass spectrum resembling to that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated PM1 accounting for 63-82% during the nine PEs observed. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than that during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impacts of reduced anthropogenic emissions on aerosol chemistry in the city. The primary species showed ubiquitous reductions during the holiday period with the largest reduction for cooking OA (69%), nitrogen monoxide (54%), and coal combustion OA (28%). The secondary sulfate, however, remained minor change, and the SOA and the total PM2.5 even slightly increased. These results have significant implications that controlling local primary source emissions, e.g., cooking and traffic activities, might have limited effects on improving air quality during PEs when SPM that is formed over regional scales dominates aerosol particle composition.

  17. Effect of tropospheric aerosols on environment

    SciTech Connect

    Indira, K.

    1995-12-31

    The primary mechanism by which aerosols influences the environment is through changes in the amount of energy reaching the ground and the energy diffusing back to space. Keeping the above in view, a study has been undertaken to observe the effect of fire from an oil well at Pasarlapudi near Amalapuram, situated almost in the middle of the coastal Andhra belt, on environment. Fire started from an oil well at Pasarlapudi (16{degrees}N 82{degrees}E) near Amalapuram in Andhra Pradesh on 8 January 1995 and continues till today. For the above study daily maximum and minimum temperatures in celsius and rainfall in mm were collected from India Meteorological Department for two stations Kakinada and Machilipatnam from 19 January 1995 to 1 March 1995. It is seen from the above data at both Kakinada and Machilipatnam from 19 January to 1 February 1995 a decrease in minimum temperature from 0.5{degrees}C to 1.0{degrees}C. There is not much change in maximum temperature. 35 mm of excess rainfall was reported in coastal Andhra Pradesh from 1 Jan. to 25 Jan 1995 when the fire from the oil well was at maximum intensity. Some places near the Pasarlapudi reported rain with black carbon particles during third week of January. Pictures of the raging fire show a jet of burning gas extending into the atmosphere. The accompanying heat and smoke from the oil well fire could have led to cloud formation and rain containing black carbon particles in coastal belt of Andhra Pradesh.

  18. Simulation of bulk aerosol direct radiative effects and its climatic feedbacks in South Africa using RegCM4

    NASA Astrophysics Data System (ADS)

    Tesfaye, M.; Botai, J.; Sivakumar, V.; Mengistu Tsidu, G.; Rautenbach, C. J. deW.; Moja, Shadung J.

    2016-05-01

    In this study, 12 year runs of the Regional Climate Model (RegCM4) have been used to analyze the bulk aerosol radiative effects and its climatic feedbacks in South Africa. Due to the geographical locations where the aerosol potential source regions are situated and the regional dynamics, the South African aerosol spatial-distribution has a unique feature. Across the west and southwest areas, desert dust particles are dominant. However, sulfate and carbonaceous aerosols are primarily distributed over the east and northern regions of the country. Analysis of the Radiative Effects (RE) shows that in South Africa the bulk aerosols play a role in reducing the net radiation absorbed by the surface via enhancing the net radiative heating in the atmosphere. Hence, across all seasons, the bulk aerosol-radiation-climate interaction induced statistically significant positive feedback on the net atmospheric heating rate. Over the western and central parts of South Africa, the overall radiative feedbacks of bulk aerosol predominantly induces statistically significant Cloud Cover (CC) enhancements. Whereas, over the east and southeast coastal areas, it induces minimum reductions in CC. The CC enhancement and RE of aerosols jointly induce radiative cooling at the surface which in turn results in the reduction of Surface Temperature (ST: up to -1 K) and Surface Sensible Heat Flux (SSHF: up to -24 W/m2). The ST and SSHF decreases cause a weakening of the convectively driven turbulences and surface buoyancy fluxes which lead to the reduction of the boundary layer height, surface pressure enhancement and dynamical changes. Throughout the year, the maximum values of direct and semi-direct effects of bulk aerosol were found in areas of South Africa which are dominated by desert dust particles. This signals the need for a strategic regional plan on how to reduce the dust production and monitoring of the dust dispersion as well as it initiate the need of further research on different

  19. The effect of aerosols on northern hemisphere wintertime stationary waves

    NASA Astrophysics Data System (ADS)

    Lewinschal, Anna; Ekman, Annica M. L.

    2010-05-01

    Aerosol particles have a considerable impact on the energy budget of the atmosphere because of their ability to scatter and absorb incoming solar radiation. Since the beginning of the industrialisation a large increase has been seen mainly in the concentrations of sulphate and black carbon as a result of combustion of fossil fuel and biomass burning. Aerosol particles have a relatively short residence time in the atmosphere why the aerosol concentration shows a large variation spatially as well as in time where high concentrations are found close to emission sources. This leads to a highly varying radiative forcing pattern which modifies temperature gradients which in turn can alter the pressure distribution and lead to changes in the circulation in the atmosphere. In this study, the effect on the wintertime planetary scale waves on the northern hemisphere is specifically considered together with the regional climate impact due to changes in the stationary waves. To investigate the effect of aerosols on the circulation a global general circulation model based on the ECMWF operational forecast model is used (EC-Earth). The aerosol description in EC-Earth consists of prescribed monthly mean mass concentration fields of five different types of aerosols: sulphate, black carbon, organic carbon, dust and sea salt. Only the direct radiative effect is considered and the different aerosol types are treated as external mixtures. Changes in the stationary wave pattern are determined by comparing model simulations using present-day and pre-industrial concentrations of aerosol particles. Since the planetary scale waves largely influence the storm tracks and are an important part of the meridional heat transport, changes in the wave pattern may have substantial impact on the climate globally and locally. By looking at changes in the model simulations globally it can be found that the aerosol radiative forcing has the potential to change the stationary wave pattern. Furthermore

  20. Aerosol Microphysical and Macrophysical Effects on Deep Convective Clouds

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Li, Z.; Wilcox, E. M.; Oreopoulos, L.; Remer, L. A.; Yu, H.; Platnick, S. E.; Posselt, D. J.; Zhang, Z.; Martins, J. V.

    2014-12-01

    We illustrate a conceptual model of hydrometeor vertical development inside a convective cloud and its utility in studying of aerosol-DCC interactions. Both case studies and ensemble means are used to investigate aerosol-DCC interactions. We identify a few scenarios where possible signal of aerosol effect on DCC may be extracted. The results show a consistent and physically sound picture of aerosols affecting DCC microphysics as well as macrophysical properties. Specifically, pollutions and smokes are shown to consistently decrease ice particle size. On the contrary, dust particles close to source regions are shown to make cloud ice particle size more maritime like. We postulate that dust may achieve this by acting as either heterogeneous ice nuclei or giant cloud condensation nuclei. This contrast between smoke or pollution and dust also exists for their effects on cloud glaciation temperature. Smoke and pollution aerosols are shown to decrease glaciation temperature while dust particles do the opposite. Possible Implications of our results for studying aerosol indirect forcing, cirrus cloud properties, troposphere-stratosphere water vapor exchange and cloud latent heating are discussed.

  1. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    PubMed Central

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-01-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol’s thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3–5 W⋅m−2) and a surface cooling (−5 to −8 W⋅m−2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments. PMID:24218569

  2. Rotational effects on turbine blade cooling

    SciTech Connect

    Govatzidakis, G.J.; Guenette, G.R.; Kerrebrock, J.L.

    1995-10-01

    An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.

  3. Local cooling, plasma reheating and thermal pinching induced by single aerosol droplets injected into an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2016-07-01

    The injection of a single micrometer-sized droplet into an analytical inductively coupled plasma (ICP) perturbs the plasma and involves three sequential effects: local cooling, thermal pinching and plasma reheating. Time-resolved two-dimensional monochromatic imaging of the load-coil region of an ICP was used to monitor this sequence of plasma perturbations. When a microdroplet enters the plasma, it acts as a local heat sink and cools the nearby plasma region. The cooling effect is considered local, although the cooling volume can be large and extends 6 mm from the physical location of the vaporizing droplet. The liberated hydrogen, from decomposition of water, causes a thermal pinch effect by increasing the thermal conductivity of the bulk plasma and accelerating heat loss at the plasma periphery. As a response to the heat loss, the plasma shrinks in size, which increases its power density. Plasma shrinkage starts around the same time when the microdroplet enters the plasma and lasts at least 2 ms after the droplet leaves the load-coil region. Once the vaporizing droplet passes through a particular plasma volume, that volume is reheated to an even higher temperature than under steady-state conditions. Because of the opposing effects of plasma cooling and reheating, the plasma conditions are different upstream (downward) and downstream (upward) from a vaporizing droplet - cooling dominates the downstream region whereas reheating controls in the upstream domain. The boundary between the local cooling and reheating zones is sharp and is only ~ 1 mm thick. The reheating effect persists a relatively long time in the plasma, at least up to 4 ms after the droplet moves out of the load-coil region. The restoration of plasma equilibrium after the perturbation induced by microdroplet injection is slow. Microdroplet injection also induces a momentary change in plasma impedance, and the impedance change was found to correlate qualitatively with the different stages of plasma

  4. Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS Observations

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Smith, N. M.

    2004-01-01

    The direct radiative effect of aerosols (DREA) is defined as the difference between radiative fluxes in the absence and presence of aerosols. In this study, the direct radiative effect of aerosols is estimated for 46 months (March, 2000 to December, 2003) of merged CERES and MODIS Terra global measurements over ocean. This analysis includes the contribution from clear regions in both clear and partly cloudy CERES footprints. MODIS-CERES narrow-to-broadband regressions are developed to convert clear-sky MODIS narrowband radiances to broadband SW radiances, and CERES clear-sky Angular Distribution Models (ADMs) are used to estimate the corresponding TOA radiative fluxes needed to determine the DREA. Clear-sky MODIS pixels are identified using two independent cloud masks: (i) the NOAA-NESDIS algorithm used for inferring aerosol properties from MODIS on the CERES Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product (NOAA-SSF); and (ii) the standard algorithm used by the MODIS aerosol group to produce the MODO4 product (MODO4). Over global oceans, direct radiative cooling by aerosols for clear scenes identified from MODO4 is estimated to be 5.5 W m-2, compared to 3.8 W m-2 for clear scenes from NOAA-SSF. Regionally, differences are largest in areas affected by dust aerosol, such as oceanic regions adjacent to the Saharan and Saudi Arabian deserts, and in northern Pacific Ocean regions influenced by dust transported from Asia. The net total-sky (clear and cloudy) DREA is negative (cooling) and is estimated to be -2.0 W m-2 from MOD04, and -1.6 W m-2 from NOAA-SSF. The DREA is shown to have pronounced seasonal cycles in the Northern Hemisphere and large year-to-year fluctuations near deserts. However, no systematic trend in deseasonalized anomalies of the DREA is observed over the 46-month time series considered.

  5. Impacts of emission reductions on aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Pietikäinen, J.-P.; Kupiainen, K.; Klimont, Z.; Makkonen, R.; Korhonen, H.; Karinkanta, R.; Hyvärinen, A.-P.; Karvosenoja, N.; Laaksonen, A.; Lihavainen, H.; Kerminen, V.-M.

    2014-12-01

    The global aerosol-climate model ECHAM-HAMMOZ is used to study the aerosol burden and forcing changes in the coming decades. Four different emissions scenarios are applied for 2030 (two of them applied also for 2020) and the results are compared against reference year 2005. Two of the scenarios are based on current legislation reductions, one shows the maximum potential of reductions that can be achieved by technical measures, and the last one is targeted to short-lived climate forcers (SLCFs). We have analysed the results in terms of global means and additionally focused on 8 sub-regions. Based on our results, aerosol burdens overall show decreasing trend, but in some locations, such as India, the burdens could increase significantly. This has impact on the direct aerosol effect (DRE), which could reduce globally 0.06-0.4 W m-2 by 2030, but can increase over India (up to 0.84 W m-2). The global values depend on the scenario and are lowest with the targeted SLCF simulation. The cloud radiative effect could decline 0.25-0.82 W m-2 by 2030 and occurs mostly over oceans, whereas the DRE effect is mostly over land. Our results show that targeted emission reduction measures can be a~much better choice for the climate than overall high reductions globally. Our simulations also suggest that more than half of the near-future forcing change is due to the radiative effects associated with aerosol-cloud interactions.

  6. Cooling of gas turbines IX : cooling effects from use of ceramic coatings on water-cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Brown, W Byron; Livingood, John N B

    1948-01-01

    The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.

  7. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect

    Tao, Wei-Kuo

    2014-05-19

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd

  8. Effects of anthropogenic aerosols on temperature changes in China during the twentieth century based on CMIP5 models

    NASA Astrophysics Data System (ADS)

    Li, Chunxiang; Zhao, Tianbao; Ying, Kairan

    2016-08-01

    Using three models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we compare the direct and other effects of anthropogenic aerosols on observed and simulated annual, winter, and summer temperature changes. Three regions, namely, arid-semiarid area, humid-semiarid area, and the whole of China, are studied. The temperature changes caused by other effects of anthropogenic aerosol (OE) are calculated from the difference between the anthropogenic aerosol forcing run (AA) and the anthropogenic aerosol direct effect forcing run (DE). When the combined effects are considered, a significant area-averaged cooling rate varies in the range of -0.86 to -0.76 °C per century throughout China. Meanwhile, the isolated direct and other effects lower the temperature nationwide by -0.66 to -0.55 °C per century, and -0.31 to -0.11 °C per century, respectively. From a nonlinear perspective, the aerosol-induced temperature experiences a cooling trend, with AA having the largest cooling trend changes both annually and in the summer, while DE has the greatest reduction in the winter. Additionally, the influence of OE cannot be detected in observed annual changes over the arid-semiarid area and the whole of China, while the others are clearly detectable in all cases. AA (DE, OE) reduces the observational temperature mainly over the humid-semihumid region, where the contribution to the observed warming ranges from -515.2 % (-298.7 %, -198.9 %) to -173.6 % (-130.3 %, -66.4 %).

  9. Effects of anthropogenic aerosols on temperature changes in China during the twentieth century based on CMIP5 models

    NASA Astrophysics Data System (ADS)

    Li, Chunxiang; Zhao, Tianbao; Ying, Kairan

    2015-06-01

    Using three models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we compare the direct and other effects of anthropogenic aerosols on observed and simulated annual, winter, and summer temperature changes. Three regions, namely, arid-semiarid area, humid-semiarid area, and the whole of China, are studied. The temperature changes caused by other effects of anthropogenic aerosol (OE) are calculated from the difference between the anthropogenic aerosol forcing run (AA) and the anthropogenic aerosol direct effect forcing run (DE). When the combined effects are considered, a significant area-averaged cooling rate varies in the range of -0.86 to -0.76 °C per century throughout China. Meanwhile, the isolated direct and other effects lower the temperature nationwide by -0.66 to -0.55 °C per century, and -0.31 to -0.11 °C per century, respectively. From a nonlinear perspective, the aerosol-induced temperature experiences a cooling trend, with AA having the largest cooling trend changes both annually and in the summer, while DE has the greatest reduction in the winter. Additionally, the influence of OE cannot be detected in observed annual changes over the arid-semiarid area and the whole of China, while the others are clearly detectable in all cases. AA (DE, OE) reduces the observational temperature mainly over the humid-semihumid region, where the contribution to the observed warming ranges from -515.2 % (-298.7 %, -198.9 %) to -173.6 % (-130.3 %, -66.4 %).

  10. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    m, PM10=1.1 μg m-3; estimated coefficient of light scattering by particulate matter, σep, at 570 nm=12 Mm-1). (b) High aerosol concentration (PM2.5=43.9 μg m-3; PM10=83.4 μg m-3; estimated σep at 570 nm=245 Mm-1) (reproduced by permission of National Park Service, 2002). Although comprising only a small fraction of the mass of Earth's atmosphere, aerosol particles are highly important constituents of the atmosphere. Special interest has focused on aerosols in the troposphere, the lowest part of the atmosphere, extending from the land or ocean surface typically to ˜8 km at high latitudes, ˜12 km in mid-latitudes, and ˜16 km at low latitudes. That interest arises in large part because of the importance of aerosol particles in geophysical processes, human health impairment through inhalation, environmental effects through deposition, visibility degradation, and influences on atmospheric radiation and climate.Anthropogenic aerosols are thought to exert a substantial influence on Earth's climate, and the need to quantify this influence has sparked much of the current interest in and research on tropospheric aerosols. The principal mechanisms by which aerosols influence the Earth radiation budget are scattering and absorbing solar radiation (the so-called "direct effects") and modifying clouds and precipitation, thereby affecting both radiation and hydrology (the so-called "indirect effects"). Light scattering by aerosols increases the brightness of the planet, producing a cooling influence. Light-absorbing aerosols such as black carbon exert a warming influence. Aerosols increase the reflectivity of clouds, another cooling influence. These radiative influences are quantified as forcings, where a forcing is a perturbation to the energy balance of the atmosphere-Earth system, expressed in units of watts per square meter, W m-2. A warming influence is denoted a positive forcing, and a cooling influence, negative. The radiative direct and indirect forcings by

  11. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    SciTech Connect

    Phillips, Vaughan T. J.

    2013-10-18

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition

  12. Assessing aerosol indirect effect through ice clouds in CAM5

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Liu, Xiaohong; Yoon, Jin-Ho; Wang, Minghuai; Comstock, Jennifer M.; Barahona, Donifan; Kooperman, Gabriel

    2013-05-01

    Ice clouds play an important role in regulating the Earth's radiative budget and influencing the hydrological cycle. Aerosols can act as solution droplets or ice nuclei for ice crystal formation, thus affecting the physical properties of ice clouds. Because the related dynamical and microphysical processes happen at very small spatial and temporal scales, it is a great challenge to accurately represent them in global climate models. Consequently, the aerosol indirect effect through ice clouds (ice AIE) estimated by global climate models is associated with large uncertainties. In order to better understand these processes and improve ice cloud parameterization in the Community Atmospheric Model, version 5 (CAM5), we analyze in-situ measurements from various research campaigns, and use the derived statistical information to evaluate and constrain the model [1]. We also make use of new model capabilities (prescribed aerosols and nudging) to estimate the aerosol indirect effect through ice clouds, and quantify the uncertainties associated with ice nucleation processes. In this study, a new approach is applied to separate the impact of aerosols on warm and cold clouds by using the prescribed-aerosol capability in CAM5 [2]. This capability allows a single simulation to simultaneously include up to three aerosol fields: online calculated, as well as prescribed pre-industrial (PI) and present-day conditions (PD). In a set of sensitivity simulations, we use the same aerosol fields to drive droplet activation in warm clouds, and different (PD and PI) conditions for different components of the ice nucleation parameterization in pure ice clouds, so as to investigate various ice nucleation mechanisms in an isolated manner. We also applied nudging in our simulations, which helps to increase the signal-to-noise ratio in much shorter simulation period [3] and isolate the impact of aerosols on ice clouds from other factors, such as temperature and relative humidity change. The

  13. Effects of aerosol optical properties on deep convective clouds and radiative forcing

    SciTech Connect

    Fan, Jiwen; Zhang, Renyi; Tao, Wei-Kuo; Mohr, Karen I

    2008-04-23

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case without ARE, the cloud fraction and optical depth decrease by about 18% and 20%, respectively. Ice particle number concentrations, liquid water path, ice water path, and droplet size decrease by more than 15% when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6 K day-1 higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection explains the less cloudiness, lower cloud optical depth, less LWP and IWP, smaller droplet size, and less precipitation resulting from the ARE. The daytime-mean direct forcing induced by black carbon is about 2.2 W m-2 at the top of atmosphere (TOA) and -17.4 W m-2 at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W m-2 at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA when aerosol optical depth is high. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable atmosphere due to enhanced

  14. Effects of aerosol optical properties on deep convective clouds and radiative forcing

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Zhang, Renyi; Tao, Wei-Kuo; Mohr, Karen I.

    2008-04-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case without ARE, the cloud fraction and optical depth decrease by about 18% and 20%, respectively. Ice particle number concentrations, liquid water path, ice water path, and droplet size decrease by more than 15% when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6 K day-1 higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection explains the less cloudiness, lower cloud optical depth, less LWP and IWP, smaller droplet size, and less precipitation resulting from the ARE. The daytime-mean direct forcing induced by black carbon is about 2.2 W m-2 at the top of atmosphere (TOA) and -17.4 W m-2 at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W m-2 at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA when aerosol optical depth is high. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable atmosphere due to enhanced surface cooling and atmospheric heating.

  15. Susceptibility of Tribolium confusum (Coleoptera: Tenebrionidae) to pyrethrin aerosol: effects of aerosol particle size, concentration, and exposure conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of laboratory studies were conducted to assess effect of droplet size on efficacy of pyrethrin aerosol against adults of Tribolium confusum Jacqueline DuVal, the confused flour beetle. A vertical flow aerosol exposure chamber that generated a standardized particle size diameter was used for...

  16. Aerosol Indirect effect on Stratocumulus Organization

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Heus, T.; Kollias, P.

    2015-12-01

    Large-eddy simulations are used to investigate the role of aerosol loading on organized Stratocumulus. We prescribed the cloud droplet number concentration (Nc) and considered it as the proxy for different aerosol loading. While the presence of drizzle amplifies the mesoscale variability as is in Savic-Jovcic and Stevens (JAS, 2008), two noticeable findings are discussed here: First, the scale of marine boundary layer circulation appears to be independent of aerosol loading, suggesting a major role of the turbulence. The precise role of the turbulence in stratocumulus organization is studied by modifying the large scale fluctuations from the LES domain. Second, while it is commonly thought that the whole circulation needs to be represented for robust cloud development, we find that stratocumulus dynamics, including variables like w'w' and w'w'w', are remarkably robust even if large scales are ignored by simply reducing the domain sizes. The only variable that is sensitive to the change of the scale is the amount of cloudiness. Despite their smaller cloud thickness and inhomogeneous macroscopic structure for low Nc, individual drizzling clouds have sizes that are commensurate with circulation scale. We observe an Nc threshold below which stratocumulus is thin enough so that a little decrease of Nc would lead to great change of cloud fraction. The simulated cloud albedo is more sensitive to in-cloud liquid water content than to the amount of cloudiness since the former decreases at least three times faster than the latter due to drizzle. The main impact of drizzle evaporation is observed to keep the sub-cloud layer moist and as a result to extend the lifetime of stratocumulus by a couple of hours.

  17. Effect of hydrophilic organic seed aerosols on secondary organic aerosol formation from ozonolysis of α-pinene.

    PubMed

    Song, Chen; Zaveri, Rahul A; Shilling, John E; Alexander, M Lizabeth; Newburn, Matt

    2011-09-01

    Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized volatile organic compound product will increase as the mass loading of preexisting organic aerosol increases. In a previous work, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the SOA yields from ozonolysis of α-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, a substantial faction of atmospheric aerosol is composed of polar, hydrophilic organic compounds. In this work, we investigate the effects of model hydrophilic organic aerosol (OA) species such as fulvic acid, adipic acid, and citric acid on the gas-particle partitioning of SOA from α-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of α-pinene SOA into the particle-phase. The other two seed particles have a negligible effect on the α-pinene SOA yields, suggesting that α-pinene SOA forms a well-mixed organic aerosol phase with citric acid and a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted OA species. PMID:21790137

  18. Dust aerosol radiative effect and influence on urban atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Chen, M.; Li, L.

    2007-11-01

    An 1.5-level-closure and 3-D non-stationary atmospheric boundary layer (ABL) model and a radiation transfer model with the output of Weather Research and Forecast (WRF) Model and lidar AML-1 are employed to simulate the dust aerosol radiative effect and its influence on ABL in Beijing for the period of 23-26 January 2002 when a dust storm occurred. The simulation shows that daytime dust aerosol radiative effect heats up the ABL at the mean rate of about 0.68 K/h. The horizontal wind speed from ground to 900 m layer is also overall increased, and the value changes about 0.01 m/s at 14:00 LT near the ground. At night, the dust aerosol radiative effect cools the ABL at the mean rate of -0.21 K/h and the wind speed lowers down at about -0.19 m/s at 02:00 LT near the ground.

  19. Delineating the effect of El-Nino Southern Oscillations using oxygen and sulfur isotope anomalies of sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Abaunza Quintero, M. M.; Jackson, T.; McCabe, J.; Savarino, J. P.; Thiemens, M. H.

    2013-12-01

    Sulfate aerosols, unlike greenhouse gases, contribute to global cooling by acting as cloud condensation nuclei in the troposphere and by directly reflecting solar radiation in the stratosphere. To understand the long-term effect of natural and anthropogenic sulfate aerosol on the climate cycle, it is critical to obtain a clear picture of the factors controlling the transport and transformation of sulfate aerosols. We have employed both oxygen triple isotopes and sulfur quadruple isotopes on sulfates from Antarctic ice samples to define the oxidation history, long range transport dynamics, and sources of sulfate aerosols over time. The measurements are used to deconvolve the impact of natural and anthropogenic aerosols on the stratospheric sulfate aerosol composition. Sulfate aerosols were extracted from a snow pit at the South Pole (1979-2002) with a high resolution temporal (6 month) record of the winter and summer seasons covering two largest volcanic events, Pinatubo and El-chichon and three largest ENSO events of the century. All three oxygen and four sulfur isotopes were measured on the extracted sulfate (Shaheen et al., 2013). The high temperature pyrolysis (1000oC) of silver sulfate yielded O2 and SO2. The oxygen triple isotopic composition of the O2 gas was used to determine the oxidation history of sulfate aerosol and SO2 gas obtained during this reaction was utilized to measure sulfur quadruple isotopes following appropriate reaction chemistry (Farquhar et al., 2001). The data revealed that oxygen isotope anomalies in Antarctic aerosols (Δ17O = 0.8-3.7‰) from 1990 to 2001 are strongly linked to the variation in ozone levels in the upper stratosphere/lower stratosphere. The variations in ozone levels are reflective of the intensity of the ENSO events and changes in relative humidity in the atmosphere during this time period. Sulfate concentrations and sulfur quadruple isotopic composition and associated anomalies were used to elucidate the sources of

  20. Compare Cooling Effect of Different Working Fluid in Thermosyphon

    NASA Astrophysics Data System (ADS)

    Hrabovský, P.; Nemec, P.; Malcho, M.

    2015-05-01

    This work examines cooling effect of various working fluids types, which are used in thermosyphon at cooling electrical component, it's connected to power supply. Measurement is realized at various heat output, which maximal value is limited with maximal operating value of electrical component.

  1. The Effect of Changes in Polar Sea Ice on Emissions of Marine Aerosols

    NASA Astrophysics Data System (ADS)

    Matrai, P.; Gabric, A. J.

    2015-12-01

    Cloud radiative effects remain a major weakness in our understanding of the climate system and consequently in developing accurate climate projections. This is mainly true for Arctic low-level clouds in their key role of regulating surface energy fluxes which affect the freezing and melting of sea ice. The radiative properties of clouds are strongly dependent on the number concentration of airborne water-soluble particles, known as cloud condensation nuclei (CCN). In the Arctic, the aerosol-cloud-radiation relationship is more complex than elsewhere and the clouds constitute a warming factor for climate, rather than cooling, most of the year. This is due to the semi-permanent ice cover, which raises the albedo of the surface, and the clean Arctic air, which decreases the albedo of the clouds. There has been much discussion on the relative magnitude of the biogenic source of polar CCN: Primary organic marine aerosols and/or sulfate-containing aerosols, derived from marine emissions. Regional field measurements and pan- (Ant)Arctic model simulations don't necessarily agree. Arctic CCN are formed primarily by aggregates of marine organic material and may grow in mass by condensation. Southern Ocean aerosols may be dominated by sulfate particles and organic particles at lower and higher Antarctic latitudes, respectively. The interaction of polar marine microorganisms, seasonality, sea ice cover, presence or absence of sea spray, and atmospheric heterogeneous processes combine to control natural aerosol concentrations and mass, thus modulating the sensitivity of cloud properties, including their reflectivity and the resulting regional radiation budget. We discuss Arctic and Antarctic field and satellite observations and establish a strong and fundamental link between the biology at the ocean/sea ice interface, clouds and climate over polar regions.

  2. Aerosol Climate Effects: Local Radiative Forcing and Column Closure Experiments

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, Robert W.; Kinne, S. A.

    2000-01-01

    In an effort to reduce uncertainties in climate change predictions, experiments are being planned and conducted to measure anthropogenic aerosol properties and effects, including effects on radiative fields. The global average, direct anthropogenic aerosol effect on upwelling shortwave fluxes is estimated to be about +1/2 W/sq m, whereas errors in flux changes measured with airborne and spaceborne radiometers are 2 to 8 W/sq m or larger. This poses the question of whether flux changes expected in field experiments will be large enough to measure accurately. This paper obtains a new expression for the aerosol-induced change in upwelling flux, compares it to two-stream and adding-doubling (AD) results, and uses all three methods to estimate expected flux changes. The new expression accounts for the solar zenith angle dependences of aerosol transmission and reflection, as well as of surface albedo, all of which can have a strong effect in determining flux changes measured in field experiments. Despite its relative simplicity, the new expression gives results similar to previous two-stream results. Relative to AD results, it agrees within a few watts per square meter for the intermediate solar elevation angles where the flux changes peak (roughly 10 to 30 degrees), but it has negative errors for higher Sun and positive errors for lower Sun. All three techniques yield aerosol-induced changes in upwelling flux of +8 to +50 W/sq m for aerosol midvisible optical depths of 0.1 to 0.5. Because such aerosol optical depths occur frequently off the U.S. and European Atlantic coasts in summer, the flux changes they induce should be measurable by airborne, and possibly by spaceborne, radiometers, provided sufficient care is taken in experiment design (including measurements to separate aerosol radiative effects from those of absorbing gases). The expected flux changes are about 15 to 100 times larger than the global average flux change expected for the global average

  3. BAECC Biogenic Aerosols - Effects on Clouds and Climate

    SciTech Connect

    Petäjä, Tuukka; Moisseev, Dmitri; Sinclair, Victoria; O'Connor, Ewan J.; Manninen, Antti J.; Levula, Janne; Väänänen, Riikka; Heikkinen, Liine; Äijälä, Mikko; Aalto, Juho; Bäck, Jaana

    2015-11-01

    “Biogenic Aerosols - Effects on Clouds and Climate (BAECC)”, featured the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program’s 2nd Mobile Facility (AMF2) in Hyytiälä, Finland. It operated for an 8-month intensive measurement campaign from February to September 2014. The main research goal was to understand the role of biogenic aerosols in cloud formation. One of the reasons to perform BAECC study in Hyytiälä was the fact that it hosts SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), which is one of the world’s most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. The BAECC enables combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations and allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. With the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations of AMF2 and SMEAR-II provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes. The BAECC dataset will initiate new opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures.

  4. Quantifying Aerosol influences on the Cloud Radiative Effect

    NASA Astrophysics Data System (ADS)

    Feingold, Graham; McComiskey, Allison; Sena, Elisa; Yamaguchi, Takanobu

    2016-04-01

    Although evidence of aerosol influences on the microphysical properties of shallow liquid cloud fields abounds, a rigorous assessment of aerosol effects on the radiative properties of these clouds has proved to be elusive because of adjustments in the evolving cloud system. We will demonstrate through large numbers of idealized large eddy simulation and 14 years of surface-based remote sensing at a continental US site that the existence of a detectable cloud microphysical response to aerosol perturbations is neither a necessary, nor a sufficient condition for detectability of a radiative response. We will use a new framework that focuses on the cloud field properties that most influence shortwave radiation, e.g., cloud fraction, albedo, and liquid water path. In this framework, scene albedo is shown to be a robust function of cloud fraction for a variety of cloud systems, and appears to be insensitive to averaging scale. The albedo-cloud fraction framework will be used to quantify the cloud radiative effect of shallow liquid clouds and to demonstrate (i) the primacy of cloud field properties such as cloud fraction and liquid water path for driving the cloud radiative effect; and (ii) that the co-variability between meteorological and aerosol drivers has a strong influence on the detectability of the cloud radiative effect, regardless of whether a microphysical response is detected. A broad methodology for systematically quantifying the cloud radiative effect will be presented.

  5. Effects of aerosol phase and water uptake for understanding organic aerosol oxidation

    NASA Astrophysics Data System (ADS)

    Fitzgerald, C.; Gallimore, P. J.; Fuller, S.; Lee, J.; Garrascon, V.; Achakulwisut, P.; Björkegren, A.; Spring, D. R.; Pope, F. D.; Kalberer, M.

    2012-04-01

    Oxidation reactions of atmospheric organic aerosols strongly influence many important processes in the atmosphere such as aerosol-cloud interactions or heterogeneous chemistry. We present results of an experimental laboratory study with three organic model aerosol systems (maleic, arachidonic and oleic acid) investigating the effect of particle phase and humidity on the oxidative processing of the particle. Two experimental techniques are combined in this investigation. An electrodynamic balance is used to levitate single particles and assess changes in particle size and mass (due to water uptake and/or loss of volatile oxidation products) and phase (liquid or solid) during and after chemical processing with ozone. An aerosol flow tube was used to investigate the detailed chemical composition of the oxidized aerosol with offline ultra-high resolution mass spectrometry. The role of water (i.e., relative humidity) in the oxidation scheme of the three carboxylic acids is very compound specific and the particle phase has a strong effect on the particle processing. Relative humidity was observed to have a major influence on the oxidation scheme of maleic acid and arachidonic acid, whereas no dependence was observed for the oxidation of oleic acid. In both, maleic acid and arachidonic acid, an evaporation of volatile oxidation products could only be observed when the particle was exposed to high relative humidities. Maleic and arachidonic acid change their phase from liquid to solid upon oxidation or upon changes in humidity and efficient oxidative processing of the particle bulk can only occur when the particle is in liquid form. A detailed oxidation mechanism for maleic acid is presented taking the strong effects of water into account. In contrast, oleic acid is liquid under all conditions at room temperature (dry or elevated humidity, pure or oxidized particle). Thus ozone can easily diffuse into the bulk of the particle irrespective of the oxidation conditions. In

  6. North Atlantic Aerosol Radiative Effects Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.

  7. Encapsulation effects on carbonaceous aerosol light absorption

    SciTech Connect

    Sedlacek, A.J.; Onasch, T.; Davidovits, P.; Cross, E.; Mazzoleni, C.

    2010-03-15

    The contribution of aerosol absorption on direct radiative forcing is still an active area of research, in part, because aerosol extinction is dominated by light scattering and, in part, because the primary absorbing aerosol of interest, soot, exhibits complex aging behavior that alters its optical properties. The consequences of this can be evidenced by the work of Ramanathan and Carmichael (2008) who suggest that incorporating the atmospheric heating due to brown clouds (plumes containing soot byproducts from automobiles, biomass burning, wood-burning kitchen stoves, and coal-fired power plants) will increase black carbon (BC) radiative forcing from the Intergovernmental Panel on Climate Change best estimate of 0.34 Wm-2 (±0.25 Wm-2) (IPCC 2007) to 0.9 Wm-2. This noteworthy degree of uncertainty is due largely to the interdependence of BC optical properties on particle mixing state and aggregate morphology, each of which changes as the particle ages in the atmosphere and becomes encapsulated within a coating of inorganic and/or organic substances. In July 2008, a laboratory-based measurement campaign, led by Boston College and Aerodyne, was initiated to begin addressing this interdependence. To achieve insights into the interdependence of BC optical properties on particle mixing state and aggregate morphology, measurements of both the optical and physical properties of flame-generated soot under nascent, coated, and denuded conditions were conducted. This poster presents data on black carbon (BC) light absorption measured by Photothermal Interferometry (Sedlacek and Lee 2007). In addition to examining nascent BC—to provide a baseline measurement—encapsulation with varying thicknesses of either dioctyl sebacate (DOS) or sulfuric acid was conducted to glean insights into the interplay between particle mixing state and optical properties. Additionally, some experiments were carried out where BC was coated and then denuded. In the case of DOS-coated soot, a

  8. The cooling-rate effect on microwave archeointensity estimates

    NASA Astrophysics Data System (ADS)

    Poletti, Wilbor; Hartmann, Gelvam A.; Hill, Mimi J.; Biggin, Andrew J.; Trindade, Ricardo I. F.

    2013-08-01

    microwave (MW) paleointensity data on historical bricks from Northeast Brazil presented a bias toward higher fields when compared to previous cooling-rate corrected double-heating paleointensity estimates; the same relates to the previously reported values for pottery from Southwestern Pacific islands. A simple theoretical approach suggests that the MW bias in both collections is due to a cooling-rate effect on MW estimates. We then experimentally corrected the MW cooling-rate effect on Brazilian fragments, increasing the degree of consistency between the previous and new results (reducing discrepancies from 25% to 8%). Results indicate similar experimental behavior between microwave and thermal procedures despite the different ways in which the energy is transferred into the spin system. Finally, they allow cooling times of less than 90 s to be empirically estimated in most of these MW experiments highlighting the need for systematic cooling-rate corrections to be applied in similar MW paleointensity studies in the future.

  9. Cooling effectiveness of cutting fluid in creep feed grinding

    SciTech Connect

    Wang, S.B.; Kou, H.S.

    1997-10-01

    In this study, the heat transfer paths among the grinding fluid, the grains and the workpiece are investigated for the creep feed grinding. As heat enters the workpiece, the majority of heat is carried away by the fluid. Thus, the cooling effectiveness of the grinding fluid is defined and calculated through the application of the numerical method to illustrate how much the fraction of the heat is carried away by the grinding fluid. The results reveal that water has higher cooling effectiveness than oil. In addition, the cooling effect of the grinding fluid becomes more significant at lower workpiece speed, higher grinding depth and greater wheel speed.

  10. Direct aerosol effects during periods of solar dimming and brightening hidden in the regression residuals: Evidence from Potsdam measurements

    NASA Astrophysics Data System (ADS)

    Vetter, Tobias; Wechsung, Frank

    2015-11-01

    A recent empirical study of Stanhill et al. (2014), which was based on the Angstrom-Prescott relationship between global radiation and sunshine duration, was evaluated. The parameters of this relationship seemed to be rather stable across the dimming and brightening periods. Thus, the authors concluded that the variation in global radiation is more influenced by changes in cloud cover and sunshine duration than by the direct aerosol effects. In our study, done for the Potsdam station (one of six globally distributed stations, the source of one of the longest observational records and closely located to former hot spots of aerosol emission), we tested and rejected the hypothesis that the dimming of global radiation directly caused by aerosols is negligible. The residuals of the Angstrom-Prescott regression reveal a statistically significant positive temporal trend and a temporal level segmentation. The latter was consistent with the temporal emission patterns around Potsdam. The trend in the residuals only disappeared when the model intercept varied according to the temporal level segmentation. The magnitude of the direct aerosol effect on the level changes in global radiation derived from the modified Angstrom-Prescott relationship was in the range indicated in previous studies. Thus, from here, a specific request cannot be made for a revision of current climate models state-of-the-art representation of both the cooling effect directly caused by aerosols and the temperature sensitivity to the increase of greenhouse gases.

  11. HYGROSCOPIC GROWTH: ITS EFFECT ON AEROSOL THERAPY AND INHALATION TOXICOLOGY

    EPA Science Inventory

    The success of an aerosol therapy protocol is contingent upon a proper quantity of drug being delivered to an appropriate site within the respiratory tract to elicit a therapeutic effect. Likewise, an accurate risk assessment of the threat to human health presented by airborne po...

  12. Spray Cooling Modeling: Droplet Sub-Cooling Effect on Heat Transfer

    SciTech Connect

    Johnston, Joseph E.; Selvam, R. P.; Silk, Eric A.

    2008-01-21

    Spray cooling has become increasingly popular as a thermal management solution for high-heat flux (>100 W/cm{sup 2}) applications such as laser diodes and radars. Research has shown that using sub-cooled liquid can increase the heat flux from the hot surface. The objective of this study was to use a multi-phase numerical model to simulate the effect of a sub-cooled droplet impacting a growing vapor bubble in a thin (<100 {mu}m) liquid film. The two-phase model captured the liquid-vapor interface using the level set method. The effects of surface tension, viscosity, gravity and phase change were accounted for by using a modification to the incompressible Navier-Stokes equations, which were solved using the finite difference method. The computed liquid-vapor interface and temperature distributions were visualized for better understanding of the heat removal process. To understand the heat transfer mechanisms of sub-cooled droplet impact on a growing vapor bubble, various initial droplet temperatures were modeled (from 20 deg. C below saturation temperature to saturation temperature). This may provide insights into how to improve the heat transfer in future spray cooling systems.

  13. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    NASA Technical Reports Server (NTRS)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  14. Effect of aerosol particles generated by ultrasonic humidifiers on the lung in mouse

    PubMed Central

    2013-01-01

    Background Ultrasonic humidifiers silently generate water droplets as a cool fog and produce most of the dissolved minerals in the fog in the form of an aerosolized “white dust.” However, the health effect of these airborne particles is largely unknown. This study aimed to characterize the aerosol particles generated by ultrasonic humidifiers and to investigate their effect on the lung tissue of mice. Methods An ultrasonic humidifier was operated with tap water, high-silica water, ultrapure water, or other water types. In a chamber (0.765 m3, ventilation ratio 11.5 m3/hr), male ICR mice (10-week-old) were exposed by inhalation to an aerosol-containing vapor generated by the humidifier. After exposure for 7 or 14 days, lung tissues and bronchoalveolar lavage fluid (BALF) were collected from each mouse and examined by microarray, quantitative reverse transcription-polymerase chain reaction, and light and electron microscopy. Results Particles generated from the humidifier operated with tap water had a mass concentration of 0.46 ± 0.03 mg/m3, number concentration of (5.0 ± 1.1) × 104/cm3, and peak size distribution of 183 nm. The particles were phagocytosed by alveolar macrophages in the lung of mice. Inhalation of particles caused dysregulation of genes related to mitosis, cell adhesion molecules, MHC molecules and endocytosis, but did not induce any signs of inflammation or tissue injury in the lung. Conclusion These results indicate that aerosol particles released from ultrasonic humidifiers operated with tap water initiated a cellular response but did not cause severe acute inflammation in pulmonary tissue. Additionally, high mineral content tap water is not recommended and de-mineralized water should be recommended in order to exclude any adverse effects. PMID:24359587

  15. Improved thermoelectric cooling based on the Thomson effect

    NASA Astrophysics Data System (ADS)

    Snyder, G. Jeffrey; Khanna, Raghav; Toberer, Eric S.; Heinz, Nicholas A.; Seifert, Wolfgang

    2016-05-01

    Traditional thermoelectric cooling relies on the Peltier effect which produces a temperature drop limited by the figure of merit, zT. This cooling limit is not required from classical thermodynamics but can be traced to problems of thermoelectric compatibility. Alternatively, if a thermoelectric cooler can be designed to achieve full thermoelectric compatibility, lower temperature can be achieved even if the zT is low. In such a device the Thomson effect plays an important role. We present the theoretical concept of a "Thomson cooler," for cryogenic cooling which is designed to maintain thermoelectric compatibility and we derive the requirements for the Seebeck coefficient.

  16. Effect of weak swirling flow on film cooling performance

    NASA Astrophysics Data System (ADS)

    Gau, C.; Hwang, W. B.

    1990-10-01

    Experiments have been performed in a large circular pipe to study and obtain the film cooling effectivenesses with the presence of weak swirling flow in the mainstream. The swirling flow is generated by a flat vane swirler situated upstream. Cooling film is injected from an annular slot formed by the pipe wall and the circular cover plate. The radial temperature distribution measurements at several axial locations were used to infer the rate of mixing of film jet with swirling flow. The swirl number, which increases with turbulence intensity and swirl velocity in the mainstream, can significantly increase the mixing rate of film jet with swirl flow and decrease the film cooling effectiveness. During the course of the experiments, the blowing ratio ranged from 0.5 to 1.75 and the swirl number ranged from 0 to 0.6. Correlation equations for the film cooling effectiveness, which account for the effect of swirling flow, are obtained.

  17. Effect of Hydrophilic Organic Seed Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of α-Pinene

    SciTech Connect

    Song, Chen; Zaveri, Rahul A.; Shilling, John E.; Alexander, M. L.; Newburn, Matthew K.

    2011-07-26

    Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized VOC product will increase as the mass loading of preexisting organic aerosol increases. In a previous study, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the secondary organic aerosol (SOA) yields from ozonolysis of {alpha}-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, non-polar, hydrophobic POA may gradually become polar and hydrophilic as it undergoes oxidative aging while POA formed from biomass burning is already somewhat polar and hydrophilic. In this study, we investigate the effects of model hydrophilic POA such as fulvic acid, adipic acid and citric acid on the gas-particle partitioning of SOA from {alpha}-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of {alpha}-pinene SOA into the particle-phase. The other two POA seed particles have negligible effect on the {alpha}-pinene SOA yields, suggesting that {alpha}-pinene SOA forms a well-mixed organic aerosol phase with citric acid while a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted POA.

  18. Distinct effects of anthropogenic aerosols on the East Asian summer monsoon between multi-decadal strong and weak monsoon stages: Effects of aerosols on EASM

    DOE PAGESBeta

    Xie, Xiaoning; Wang, Hongli; Liu, Xiaodong; Li, Jiandong; Wang, Zhaosheng; Liu, Yangang

    2016-06-18

    Industrial emissions of anthropogenic aerosols over East Asia have greatly increased in recent decades, and so the interactions between atmospheric aerosols and the East Asian summer monsoon (EASM) have attracted enormous attention. In order to further understand the aerosol-EASM interaction, we investigate the impacts of anthropogenic aerosols on the EASM during the multidecadal strong (1950–1977) and weak (1978–2000) EASM stages using the Community Atmospheric Model 5.1. Numerical experiments are conducted for the whole period, including the two different EASM stages, with present day (PD, year 2000) and preindustrial (PI, year 1850) aerosol emissions, as well as the observed time-varying aerosolmore » emissions. A comparison of the results from PD and PI shows that, with the increase in anthropogenic aerosols, the large-scale EASM intensity is weakened to a greater degree (-9.8%) during the weak EASM stage compared with the strong EASM stage (-4.4%). The increased anthropogenic aerosols also result in a significant reduction in precipitation over North China during the weak EASM stage, as opposed to a statistically insignificant change during the strong EASM stage. Because of greater aerosol loading and the larger sensitivity of the climate system during weak EASM stages, the aerosol effects are more significant during these EASM stages. Moreover, these results suggest that anthropogenic aerosols from the same aerosol emissions have distinct effects on the EASM and the associated precipitation between the multidecadal weak and strong EASM stages.« less

  19. Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.

    2007-01-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and

  20. Surface-cooling effects on compressible boundary-layer instability

    NASA Technical Reports Server (NTRS)

    Seddougui, Sharon O.; Bowles, R. I.; Smith, F. T.

    1990-01-01

    The influence of surface cooling on compressible boundary layer instability is discussed theoretically for both viscous and inviscid modes, at high Reynolds numbers. The cooling enhances the surface heat transfer and shear stress, creating a high heat transfer sublayer. This has the effect of distorting and accentuating the viscous Tollmien-Schlichting modes to such an extent that their spatial growth rates become comparable with, and can even exceed, the growth rates of inviscid modes, including those found previously. This is for moderate cooling, and it applies at any Mach number. In addition, the moderate cooling destabilizes otherwise stable viscous or inviscid modes, in particular triggering outward-traveling waves at the edge of the boundary layer in the supersonic regime. Severe cooling is also discussed as it brings compressible dynamics directly into play within the viscous sublayer. All the new cooled modes found involve the heat transfer sublayer quite actively, and they are often multi-structured in form and may be distinct from those observed in previous computational and experimental investigations. The corresponding nonlinear processes are also pointed out with regard to transition in the cooled compressible boundary layer. Finally, comparisons with Lysenko and Maslov's (1984) experiments on surface cooling are presented.

  1. Interpretation of Aerosol Optical and Morphological Properties during the Carbonaceous Aerosols and Radiative Effects Study in Sacramento, June 2010

    NASA Astrophysics Data System (ADS)

    Gorkowski, K.; Mazzoleni, C.; China, S.; Sharma, N.; Flowers, B. A.; Dubey, M. K.; Gyawali, M. S.; Arnott, W. P.; Zaveri, R. A.

    2010-12-01

    The Sacramento Carbonaceous Aerosols and Radiative Effects Study (CARES) utilized two ground sites T0 and T1 along with an aircraft platform to characterize carbonaceous aerosol chemical and physical properties and their evolution. The T0 site was chosen within the Sacramento metropolitan area for measuring primary and secondary aerosols generated in the city. The T1 site was chosen East of Sacramento on the Sierra foothill to study the evolution and processing of the Sacramento aerosol plume and to assess the characteristics of the background air. To reach T1, the Sacramento aerosols traveled often over the Blodgett Forest resulting in significant aging due coagulation, condensation, and photochemical processes. The ground sites were chosen for this unique and reoccurring transport pattern of the aerosols. The campaign took place in June 2010. Six Integrated Photoacoustic/Nephelometer Spectrometers (IPNSs) were installed at the sites to simultaneously record aerosol light scattering and absorption data. The optical properties of the aerosols were measured at 355nm (ultraviolet), 375nm (ultraviolet), 405nm (blue), 532nm (green), and 781nm (red). In conjugation with the IPNSs, aerosol filters for electron microscopy analysis were collected at each site; these were examined using a field emission scanning electron microscope to study the aerosol morphology. The origins of the air masses did vary daily, but a few general trends emerged. The processing of the IPNS data with a wavelet denoising technique greatly enhanced the signal to noise ratio of the measurements enabling a better understanding of the aerosol optical properties for various airmasses with different characteristics. Typically signals at both sites were lower than expected, however the processed signals from T0 clearly showed a daily rise and dilution of the Sacramento plume. Using the processed signals from both sites the transportation of the Sacramento plume was detectable. The IPNS data were

  2. Emulation of Cloud-Aerosol Indirect Radiative Effects (ECLAIRE)

    NASA Astrophysics Data System (ADS)

    Dunne, E. M.; Korhonen, H.; Kokkola, H.; Lee, L.; Romakkaniemi, S.

    2014-12-01

    Resolving sub-grid-scale interactions between clouds and aerosols is one of the biggest challenges facing climate models in the 21st century. By carefully selecting boundary conditions to represent grid boxes in larger-scale models, an emulator of a cloud-resolving model can be created and implemented in a regional or global model. Emulators can estimate the output of a model, based on a statistical analysis of outputs from simulations with known inputs. This method may reduce uncertainties in a range of cloud-scale processes, including calculations of aerosol indirect radiative effects, precipitation rates, and wet removal rates of aerosol. The Finnish Academy has recently funded the Emulation of Cloud-Aerosol Indirect Radiative Effects (ECLAIRE) project, whose aim is to construct emulators of cloud-scale processes from the WRF-Chem model and implement them into the ECHAM climate model. This poster will describe the goals and proposed methods of the project, together with any initial results.

  3. Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010

    NASA Astrophysics Data System (ADS)

    Chubarova, N.; Nezval', Y.; Sviridenkov, M.; Smirnov, A.; Slutsker, I.

    2011-10-01

    Different microphysical, optical and radiative properties of aerosol were analyzed during the severe fires in summer 2010 over Central Russia using ground measurements at two AERONET sites in Moscow and Zvenigorod (Moscow suburb) and radiative measurements in Moscow. Volume aerosol size distribution in smoke conditions was shown to have a bimodal character with the significant prevalence of fine mode aerosol particles which effective radius shifted to higher values (reff-fine = 0.24 μm against approximately 0.15 μm in typical conditions). Imaginary part of refractive index in visible region was characterized by lower values compared with typical conditions (REFI = 0.006 against REFI = 0.01) and single scattering albedo (SSA) was significantly higher (SSAλ=675nm = 0.95 against SSAλ=675nm ~ 0.9). Extremely high daily average AOT's were observed on 6-8 August reaching the absolute maximum on 7 August up to AOT500 = 6.4 in Moscow and AOT500 = 5.9 at Zvenigorod. A dramatic attenuation of solar irradiance at ground in cloudless but smoky conditions was also observed. Maximum irradiance loss has reached 64% for global shortwave irradiance, 91% for UV radiation 300-380 nm and 97% for erythemally-weighted UV irradiance even at relatively high solar elevation due to extremely high AOT and smaller SSA values in UV (0.8-0.9) compared with SSA in visible region of spectrum. The assessments of radiative forcing effect (RFE) at the TOA indicated a significant cooling of the smoky atmosphere. Instant RFE reached -167 Wm-2 at AOT500 = 6.4 while climatological RFE calculated for monthly mean AOT in August 2010 was about -65 Wm-2 compared with -20 Wm-2 for typical aerosol conditions according to the 10 year period of measurements in Moscow.

  4. Direct and Semi-direct Effects of Aerosol on the Climate System

    NASA Astrophysics Data System (ADS)

    Mahajan, S.; Evans, K. J.; Hack, J. J.; Truesdale, J.

    2011-12-01

    High-resolution (1x1 degree) global tropospheric aerosol datasets are generated using the atmospheric component of CESM1.0 coupled to an active bulk aerosol model for the 1850's and the period 1960-2000. The interactive aerosol module incorporates surface and elevated emissions of anthropogenic and natural aerosol precursors and oxidants. Experiments performed with the new aerosol datasets in atmosphere only GCM runs reveal that current level of aerosols can cause significant surface cooling and shift precipitation when compared to pre-industrial levels of aerosols. Experiments performed with the atmosphere component coupled to a slab ocean model reveal that aerosols can enhance the land-sea contrast, and cross-equatorial SST gradient leading to enhanced reduction in monsoon and shift in the ITCZ over the tropical Atlantic as compared to the atmosphere only runs. AMIP style experiments with the new aerosol dataset further reveal that aerosols could have had a significant impact on the trends in regional surface temperature and precipitation in the later part of the 20th century.

  5. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    DOE PAGESBeta

    Meskhidze, Nicholas; Nenes, Athanasios

    2010-01-01

    Using smore » atellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between − 0.2 and − 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less

  6. Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010

    NASA Astrophysics Data System (ADS)

    Chubarova, N.; Nezval', Ye.; Sviridenkov, I.; Smirnov, A.; Slutsker, I.

    2012-03-01

    Different microphysical, optical and radiative properties of aerosol were analyzed during the severe fires in summer 2010 over Central Russia using ground measurements at two AERONET sites in Moscow (Meteorological Observatory of Moscow State University - MSU MO) and Zvenigorod (Moscow Region) and radiative measurements at the MSU MO. Volume aerosol size distribution in smoke conditions had a bimodal character with the significant prevalence of fine mode particles, for which effective radius was shifted to higher values (reff-fine = 0.24 μm against approximately 0.15 μm in typical conditions). For smoke aerosol, the imaginary part of refractive index (REFI) in the visible spectral region was lower than that for typical aerosol (REFIλ =675 nm = 0.006 against REFIλ =675 nm = 0.01), while single scattering albedo (SSA) was significantly higher (SSAλ =675 nm = 0.95 against SSAλ =675 nm ~ 0.9). Extremely high aerosol optical thickness at 500 nm (AOT500) was observed on 6-8 August reaching the absolute maximum on 7 August in Moscow (AOT500 = 6.4) and at Zvenigorod (AOT500 = 5.9). A dramatic attenuation of solar irradiance at ground was also recorded. Maximum irradiance loss had reached 64% for global shortwave irradiance, 91% for UV radiation 300-380 nm, and 97% for erythemally-weighted UV irradiance at relatively high solar elevation 47°. Significant spectral dependence in attenuation of solar irradiance in smoky conditions was mainly explained by higher AOT and smaller SSA in UV (0.8-0.9) compared with SSA in the visible region of spectrum. The assessments of radiative forcing effect (RFE) at the TOA indicated a significant cooling of the smoky atmosphere. Instant RFE reached -167 Wm-2 at AOT500 = 6.4, climatological RFE calculated with August 2010 monthly mean AOT was about -65 Wm-2, compared with -20 Wm-2 for typical aerosol according to the 10 yr period of measurements in Moscow.

  7. Overview of Aerosolized Florida Red Tide Toxins: Exposures and Effects

    PubMed Central

    Fleming, Lora E.; Backer, Lorraine C.; Baden, Daniel G.

    2005-01-01

    Florida red tide is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red tide toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red tide toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red tide toxins. PMID:15866773

  8. In situ observations of aerosol and chlorine monoxide after the 1991 eruption of Mount Pinatubo - Effect of reactions on sulfate aerosol

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Jonsson, H. H.; Brock, C. A.; Toohey, D. W.; Avallone, L. M.; Baumgardner, D.; Dye, J. E.; Poole, L. R.; Woods, D. C.; Decoursey, R. J.

    1993-01-01

    Highly resolved aerosol size distributions measured from high-altitude aircraft can be used to describe the effect of the 1991 eruption of Mount Pinatubo on the stratospheric aerosol. In some air masses, aerosol mass mixing ratios increased by factors exceeding 100 and aerosol surface area concentrations increased by factors of 30 or more. Increases in aerosol surface area concentration were accompanied by increases in chlorine monoxide at mid-latitudes when confounding factors were controlled. This observation supports the assertion that reactions occurring on the aerosol can increase the fraction of stratospheric chlorine that occurs in ozone-destroying forms.

  9. The impact of the direct effects of sulfate and black carbon aerosols on the subseasonal march of the East Asian subtropical summer monsoon

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Zhu, Bin; Jiang, Zhihong; Yang, Xiu-Qun; Zhu, Tong

    2016-03-01

    Aerosol emissions have rapidly increased in East Asia since the late 1970s. During the same period, the East Asian summer monsoon has shown a weakening trend. In this work, the direct effects (DE) of sulfate and black carbon (BC) aerosols on the subseasonal (pentad mean) march of the East Asian subtropical summer monsoon (EASSM) are investigated using an interactive global climate-chemistry model. The simulation results suggest that the DE of sulfate aerosols have a notable effect on the cooling of the low troposphere across the continent in spring and autumn, hence, changing the time of the seasonal transition of the zonal land-sea thermal contrast (ZTC). The DE of BC result in cooling of the low troposphere and heating of the middle troposphere, leading to a different impact than that caused by sulfates. The cooling of the surface and troposphere by sulfates leads to a delay in the warming of East Asian continent in spring and the EASSM onset time; it also accelerates the process of the continent turning colder and advances the retreat of the EASSM. The deeper heating in the middle-upper troposphere than the cooling in the low troposphere due to the DE of BC or the combination of both lead to an advance in the onset time of the monsoon caused by the continent turning warmer earlier in spring. In autumn, the same cooling effect by sulfates leads to the continent turning colder earlier, resulting in an advance in the retreat time.

  10. Improving bulk microphysics parameterizations in simulations of aerosol effects

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, L. Ruby; Franklin, Charmaine

    2013-06-01

    To improve the microphysical parameterizations for simulations of the aerosol effects in regional and global climate models, the Morrison double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting model is modified by replacing the prescribed aerosols in the original bulk scheme (Bulk-OR) with a prognostic double-moment aerosol representation to predict both aerosol number concentration and mass mixing ratio (Bulk-2M). Sensitivity modeling experiments are performed for two distinct cloud regimes: maritime warm stratocumulus clouds (Sc) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds in the southeast of China. The results from Bulk-OR and Bulk-2M are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). The prescribed aerosol approach (Bulk-OR) produces unreliable aerosol and cloud properties throughout the simulation period, when compared to the results from those using Bulk-2M and SBM, although all of the model simulations are initiated by the same initial aerosol concentration on the basis of the field observations. The impacts of the parameterizations of diffusional growth and autoconversion of cloud droplets and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated by comparing the results from the modified Bulk-2M with those from SBM simulations. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm stratocumulus clouds. An embryonic raindrop size of 40 µm is determined as a more realistic setting in the autoconversion parameterization. The saturation adjustment employed in calculating condensation/evaporation in the bulk scheme is identified as the main factor responsible for the large

  11. Spatial distributions and seasonal cycles of aerosol climate effects in India seen in a global climate-aerosol model

    NASA Astrophysics Data System (ADS)

    Henriksson, S. V.; Pietikäinen, J.-P.; Hyvärinen, A.-P.; Räisänen, P.; Kupiainen, K.; Tonttila, J.; Hooda, R.; Lihavainen, H.; O'Donnell, D.; Backman, L.; Klimont, Z.; Laaksonen, A.

    2014-09-01

    Climate-aerosol interactions in India are studied by employing the global climate-aerosol model ECHAM5-HAM and the GAINS inventory for anthropogenic aerosol emissions. Model validation is done for black carbon surface concentrations in Mukteshwar and for features of the monsoon circulation. Seasonal cycles and spatial distributions of radiative forcing and the temperature and rainfall responses are presented for different model setups. While total aerosol radiative forcing is strongest in the summer, anthropogenic forcing is considerably stronger in winter than in summer. Local seasonal temperature anomalies caused by aerosols are mostly negative with some exceptions, e.g., parts of northern India in March-May. Rainfall increases due to the elevated heat pump (EHP) mechanism and decreases due to solar dimming mechanisms (SDMs) and the relative strengths of these effects during different seasons and for different model setups are studied. Aerosol light absorption does increase rainfall in northern India, but effects due to solar dimming and circulation work to cancel the increase. The total aerosol effect on rainfall is negative for northern India in the months of June-August, but during March-May the effect is positive for most model setups. These differences between responses in different seasons might help converge the ongoing debate on the EHPs and SDMs. Due to the complexity of the problem and known or potential sources for error and bias, the results should be interpreted cautiously as they are completely dependent on how realistic the model is. Aerosol-rainfall correlations and anticorrelations are shown not to be a reliable sole argument for deducing causality.

  12. The Effects of Aerosols on Intense Convective Precipitation in the Northeastern U.S.

    SciTech Connect

    Ntelekos, Alexandros A.; Smith, James S.; Donner, Leo J.; Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Krajewski, Witold F.

    2009-08-03

    A fully coupled meteorology-chemistry-aerosol mesoscale model (WRF-Chem) is used to assess the effects of aerosols on intense convective precipitation over the northeastern United States. Numerical experiments are performed for three intense convective storm days and for two scenarios representing “typical” and “low” aerosol conditions. The results of the simulations suggest that increasing concentrations of aerosols can lead to either enhancement or suppression of precipitation. Quantification of the aerosol effect is sensitive to the metric used due to a shift of rainfall accumulation distribution when realistic aerosol concentrations are included in the simulations. Maximum rainfall accumulation amounts and areas with rainfall accumulations exceeding specified thresholds provide robust metrics of the aerosol effect on convective precipitation. Storms developing over areas with medium to low aerosol concentrations showed a suppression effect on rainfall independent of the meteorologic environment. Storms developing in areas of relatively high particulate concentrations showed enhancement of rainfall when there were simultaneous high values of CAPE, relative humidity and wind shear. In these cases, elevated aerosol concentrations resulted in stronger updrafts and downdrafts and more coherent organization of convection. For the extreme case, maximum rainfall accumulation differences exceeded 40 mm. The modeling results suggest that areas of the northeastern U.S. urban corridor that are close or downwind of intense sources of aerosols, could be more favorable for rainfall enhancement due to aerosols for the aerosol concentrations typical of this area.

  13. Global Aerosol Direct Radiative Effect from CALIOP and C3M

    NASA Astrophysics Data System (ADS)

    Winker, Dave; Kato, Seiji; Tackett, Jason

    2016-06-01

    Aerosols are responsible for the largest uncertainties in current estimates of climate orcing. These uncertainties are due in part to the limited abilities of passive sensors to retrieve aerosols in cloudy skies. We use a dataset which merges CALIOP observations together with other A-train observations to estimate aerosol radiative effects in cloudy skies as well as in cloud-free skies. The results can be used to quantify the reduction of aerosol radiative effects in cloudy skies relative to clear skies and to reduce current uncertainties in aerosol radiative effects.

  14. Global Aerosol Direct Radiative Effect From CALIOP and C3M

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Kato, Seiji; Tackett, Jason

    2015-01-01

    Aerosols are responsible for the largest uncertainties in current estimates of climate forcing. These uncertainties are due in part to the limited abilities of passive sensors to retrieve aerosols in cloudy skies. We use a dataset which merges CALIOP observations together with other A-train observations to estimate aerosol radiative effects in cloudy skies as well as in cloud-free skies. The results can be used to quantify the reduction of aerosol radiative effects in cloudy skies relative to clear skies and to reduce current uncertainties in aerosol radiative effects.

  15. Observations of the first aerosol indirect effect in shallow cumuli

    SciTech Connect

    Berg, Larry K.; Berkowitz, Carl M.; Barnard, James C.; Senum, Gunar; Springston, Stephen R.

    2011-02-08

    Data from the Cumulus Humilis Aerosol Processing Study (CHAPS) are used to estimate the impact of both aerosol indirect effects and cloud dynamics on the microphysical and optical properties of shallow cumuli observed in the vicinity of Oklahoma City, Oklahoma. Not surprisingly, we find that the amount of light scattered by the clouds is dominated by their liquid water content (LWC), which in turn is driven by cloud dynamics. However, removing the effect of cloud dynamics by examining the scattering normalized by LWC shows a strong sensitivity of scattering to pollutant loading. These results suggest that even moderately sized cities, like Oklahoma City, can have a measureable impact on the optical properties of shallow cumuli.

  16. New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects

    DOE PAGESBeta

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; Peng, Yiran

    2016-02-28

    In this study, aerosol indirect effects suffer from large uncertainty in climate models and among observations. This study focuses on two plausible factors: regime dependence of aerosol-cloud interactions and the effect of cloud droplet spectral shape. We show, using a new parcel model, that combined consideration of droplet number concentration (Nc) and relative dispersion (ε, ratio of standard deviation to mean radius of the cloud droplet size distribution) better characterizes the regime dependence of aerosol-cloud interactions than considering Nc alone. Given updraft velocity (w), ε increases with increasing aerosol number concentration (Na) in the aerosol-limited regime, peaks in the transitionalmore » regime, and decreases with further increasing Na in the updraft-limited regime. This new finding further reconciles contrasting observations in literature and reinforces the compensating role of dispersion effect. The nonmonotonic behavior of ε further quantifies the relationship between the transitional Na and w that separates the aerosol- and updraft-limited regimes.« less

  17. Air cooling : an experimental method of evaluating the cooling effect of air streams on air-cooled cylinders

    NASA Technical Reports Server (NTRS)

    Alcock, J F

    1927-01-01

    In this report is described an experimental method which the writer has evolved for dealing with air-cooled engines, and some of the data obtained by its means. Methods of temperature measurement and cooling are provided.

  18. Aerosol effects over China investigated with a high resolution convection permitting weather model

    NASA Astrophysics Data System (ADS)

    Pagh Nielsen, Kristian; Mahura, Alexander; Yang, Xiaohua

    2016-04-01

    We investigate aerosol effects in the operational high resolution (2.5 km) convection permitting non-hydrostatical weather model HARMONIE (HIRLAM-ALADIN Regional Mesoscale Operational NWP in Euromed). Aerosol input from the global C-IFS model is downscaled and used. The impact of using realistic aerosols on both the direct and the indirect aerosol effects is studied and compared with default simulations that include only the direct aerosol effect of climatological aerosols. The study is performed as a part of the MarcoPolo FP7 project for a selected region of China during the months January and July 2010, where in particular January 2010 saw several cases of high anthropogenic aerosol loads. We also investigate the impact of accounting for realistic aerosol single scattering albedos and asymmetry factors in the simulations of the direct aerosol forcing. In many studies only variations in the aerosol optical depth are accounted for. We show this to be inadequate, when the assumed aerosol types have different optical properties than the actual aerosols.

  19. Discernible signals of aerosol effects on the diurnal, weekly and decadal variations in thunderstorm activities

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2015-12-01

    Aerosol can affect atmospheric convection, cloud and precipitation in a variety of means by altering energy balance at the surface and in the atmospheric column, and by altering cloud micro- and macro-physical properties. The effects are often contingent upon meteorological variables and aerosol properties. By reducing surface energy budget, aerosol tends to suppress convection, but aerosol-induced heating in the lower atmosphere can destabilize the upper atmosphere and strengthen convection. Aerosol-induced altering cloud microphysics may also suppress or invigorate cloud development pending on various factors. In this talk, I will illustrate how aerosols likely contribute to the thunderstorm variability on three distinct time scales from diurnal, weekly to decadal and how different types of aerosols and varying meteorological conditions may affect with the observed trends. I will first demonstrate the opposite effects of conservative scattering and hygroscopic aerosols versus absorbing and hydrophobic aerosol on the long-term trends of thunderstorms. I will then illustrate that aerosol can have a discernible effect on the weekly cycle of thunderstorms and there is the dependence of the phase of the weekly cycle on aerosol types. Last, I will show how aerosol delays the occurrence of thunderstorms. Of course, the plausible connections are subject to various uncertainties that should be tackled with more rigorous modeling and extensive observation studies.

  20. From nuclear power to coal power: Aerosol-induced health and radiative effects

    NASA Astrophysics Data System (ADS)

    Mielonen, Tero; Laakso, Anton; Karhunen, Anni; Kokkola, Harri; Partanen, Antti-Ilari; Korhonen, Hannele; Romakkaniemi, Sami; Lehtinen, Kari E. J.

    2015-12-01

    We have investigated what would be the climate and PM-induced air quality consequences if all nuclear reactors worldwide were closed down and replaced by coal combustion. In a way, this presents a "worst-case scenario" since less polluting energy sources are available. We studied simultaneously the radiative and health effects of coal power emissions using a global 3-D aerosol-climate model (ECHAM-HAMMOZ). This approach allowed us to estimate the effects of a major global energy production change from low carbon source to a high carbon one using detailed spatially resolved population density information. We included the radiative effects of both CO2 and PM2.5 but limited the study of health effects to PM2.5 only. Our results show that the replacement of nuclear power with coal power would have globally caused an average of 150,000 premature deaths per year during the period 2005-2009 with two thirds of them in Europe. For 37 years the aerosol emissions from the additional coal power plants would cool the climate but after that the accumulating CO2 emissions would accelerate the warming of the climate.

  1. Can anthropogenic aerosol concentrations effect the snowfall rate?

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Zhang, J.; Pi, J.

    2003-04-01

    The mesoscale model GESIMA is used to simulate microphysical properties of Arctic clouds and their effect on radiation. Different case studies during the FIRE.ACE/SHEBA project show that GESIMA is able to simulate the cloud boundaries, ice and liquid water content and effective radii in good agreement with observations. For two different aerosol scenarios, the simulation results show that the anthropogenic aerosol can alter microphysical properties of Arctic clouds, and consequently modify surface precipitation. Borys et al. (2000) proposed that anthropogenically-induced decreases in cloud droplet size inhibit the riming process. On the contrary, we find that the accretion of snow crystals with cloud droplets is increased in the polluted cloud due to its higher cloud droplet number concentration. Instead the autoconversion rate of cloud droplets and accretion of drizzle by snow decreases caused by the shut-down of the collision-coalescence process in the polluted cloud. The amount of precipitation reaching the surface as snow depends crucially on the crystal shape. If aggregates are assumed, then a 10-fold increase in aerosol concentration leads to an increase in accumulated snow by 40% after 7 hours of simulation whereas the snow amount decreases by 30% when planar crystals are assumed because of the larger accretion efficiency of snow crystals with cloud droplets in case of aggregates. We will also perform climate model simulations to estimate the importance of this effect globally.

  2. Radiative Effects of Aerosol in the Marine Environment: Tales from the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Barnard, J.; Chand, D.; Chapman, E. G.; Comstock, J. M.; Ferrare, R. A.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Johnson, R.; Kassianov, E.; Kluzek, C.; Laskin, A.; Lee, Y.; Mei, F.; Michalsky, J. J.; Redemann, J.; Rogers, R. R.; Russell, P. B.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Springston, S. R.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2013-12-01

    There is still uncertainty associated with the direct radiative forcing by atmospheric aerosol and its representation in atmospheric models. This is particularly true in marine environments near the coast where the aerosol loading is a function of both naturally occurring and anthropogenic aerosol. These regions are also subject to variable synoptic and thermally driven flows (land-sea breezes) that transport aerosol between the continental and marine environments. The situation is made more complicated due to seasonal changes in aerosol emissions. Given these differences in emissions, we expect significant differences in the aerosol intensive and extensive properties between summer and winter and data is needed to evaluate models over the wide range of conditions. To address this issue, the recently completed Two Column Aerosol Project (TCAP) was designed to measure the key aerosol parameters in two atmospheric columns, one located over Cape Cod, Massachusetts and another approximately 200 km from the coast over the Atlantic Ocean. Measurements included aerosol size distribution, chemical composition, optical properties and vertical distribution. Several aspects make TCAP unique, including the year-long deployment of a suite of surface-based instruments by the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility and two aircraft intensive operations periods supported by the ARM Airborne Facility, one conducted in July 2012 and a second in February 2013. The presentation will include a discussion of the impact of the aerosol optical properties and their uncertainty on simulations of the radiation budget within the TCAP domain in the context of both single column and regional scale models. Data from TCAP will be used to highlight a number of important factors, including diurnal variation in aerosol optical depth measured at the surface site, systematic changes in aerosol optical properties (including scattering, absorption, and

  3. Effect of Exhaust Pressure on the Cooling Characteristics of a Liquid-Cooled Engine

    NASA Technical Reports Server (NTRS)

    Doyle, Ronald B.; Desmon, Leland G.

    1947-01-01

    Data for a liquid-cooled engine with a displacement volume of 1710 cubic inches were analyzed to determine the effect of exhaust pressure on the engine cooling characteristics. The data covered a range of exhaust pressures from 7 to 62 inches of mercury absolute, inlet-manifold pressures from 30 to 50 inches of mercury absolute, engine speeds from 1600 to 3000 rpm, and fuel-air ratios from 0.063 to 0.100. The effect of exhaust pressure on engine cooling was satisfactorily incorporated in the NACA cooling-correlation method as a variation in effective gas temperature with exhaust pressure. Large variations of cylinder-head temperature with exhaust pressure were obtained for operation at constant charge flow. At a constant charge flow of 2 pounds per second (approximately 1000 bhp) and a fuel-air ratio of 0.085, an increase in exhaust pressure from 10 to 60 inches of mercury absolute resulted in an increase of 40 F in average cylinder-head temperature. For operation at constant engine speed and inlet-manifold pressure and variable exhaust pressure (variable charge flow), however, the effect of exhaust pressure on cylinder-head temperature is small. For example, at an inlet-manifold pressure of 40 inches of mercury absolute, an engine speed of 2400 rpm.- and a fuel-air ratio of 0.085, the average cylinder-head temperature was about the same at exhaust pressures of 10 and 60 inches of,mercury absolute; a rise and a subsequent decrease of about 70 occurred between these extremes.

  4. Wet scavenging limits the detection of aerosol effects on precipitation

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, E.; Stier, P.; White, B. A.; Kipling, Z.

    2015-07-01

    Satellite studies of aerosol-cloud interactions usually make use of retrievals of both aerosol and cloud properties, but these retrievals are rarely spatially co-located. While it is possible to retrieve aerosol properties above clouds under certain circumstances, aerosol properties are usually only retrieved in cloud-free scenes. Generally, the smaller spatial variability of aerosols compared to clouds reduces the importance of this sampling difference. However, as precipitation generates an increase in spatial variability of aerosols, the imperfect co-location of aerosol and cloud property retrievals may lead to changes in observed aerosol-cloud-precipitation relationships in precipitating environments. In this work, we use a regional-scale model, satellite observations and reanalysis data to investigate how the non-coincidence of aerosol, cloud and precipitation retrievals affects correlations between them. We show that the difference in the aerosol optical depth (AOD)-precipitation relationship between general circulation models (GCMs) and satellite observations can be explained by the wet scavenging of aerosol. Using observations of the development of precipitation from cloud regimes, we show how the influence of wet scavenging can obscure possible aerosol influences on precipitation from convective clouds. This obscuring of aerosol-cloud-precipitation interactions by wet scavenging suggests that even if GCMs contained a perfect representation of aerosol influences on convective clouds, the difficulty of separating the "clear-sky" aerosol from the "all-sky" aerosol in GCMs may prevent them from reproducing the correlations seen in satellite data.

  5. Effects of 'Cooled' Cooling Air on Pre-Swirl Nozzle Design

    NASA Technical Reports Server (NTRS)

    Scricca, J. A.; Moore, K. D.

    2006-01-01

    It is common practice to use Pre-Swirl Nozzles to facilitate getting the turbine blade cooling air onboard the rotating disk with minimum pressure loss and reduced temperature. Higher engine OPR's and expanded aircraft operating envelopes have pushed cooling air temperatures to the limits of current disk materials and are stressing the capability to cool the blade with practical levels of cooling air flow. Providing 'Cooled' Cooling Air is one approach being considered to overcome these limitations. This presentation looks at how the introduction of 'Cooled' Cooling Air impacts the design of the Pre-Swirl Nozzles, specifically in relation to the radial location of the nozzles.

  6. Water-lithium bromide double-effect absorption cooling analysis

    NASA Astrophysics Data System (ADS)

    Vliet, G. C.; Lawson, M. B.; Lithgow, R. A.

    1980-12-01

    A numerical model was developed for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine and was used to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The variables considered include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicates that the distribution of heat exchanger area among the various (seven) heat exchange components is a very important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy.

  7. Aerosol Indirect Effects on Stratocumulus Clouds in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Adams, A.; Toohey, D. W.; Anderson, J.; Shank, L.; Howell, S.; Clarke, A. D.; Wood, R.

    2009-12-01

    The southeast Pacific Ocean is covered by the world’s largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. Anthropogenic sources of aerosol particles such as smelters, power plants and urban pollution are expected to impact properties of the eastern portion of the stratocumulus deck. During the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field experiment, aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer, an aerosol mass spectrometer, and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties along an E-W track from near the Chilean coast to remote areas offshore. Mean statistics from seven flights and about forty individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud aerosol and droplet number concentration generally decreased from near shore to offshore. This applied for particles larger than 0.05 and 0.1 µm in diameter, but not for total particles larger than 0.01 µm diameter. This suggests pollution contributed aged accumulation-mode aerosols to the stratocumulus layer, but fresher nuclei-mode particles were generated from other sources as well. Liquid water content and drizzle concentration tended to increase with distance from shore, but exhibited much greater variability. Aerosol number concentration in the >0.05 and >0.1 µm size range was correlated with droplet number concentration, and anti-correlated with droplet effective radius. These variables were especially well correlated on individual flights with near constant liquid water content (LWC), but were also statistically significant for the data set as a whole. When data were stratified into different LWC

  8. Meteorological and aerosol effects on marine cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Corrigan, C. E.; Roberts, G. C.; Hawkins, L. N.; Schroder, J. C.; Bertram, A. K.; Zhao, R.; Lee, A. K. Y.; Lin, J. J.; Nenes, A.; Wang, Z.; Wonaschütz, A.; Sorooshian, A.; Noone, K. J.; Jonsson, H.; Toom, D.; Macdonald, A. M.; Leaitch, W. R.; Seinfeld, J. H.

    2016-04-01

    Meteorology and microphysics affect cloud formation, cloud droplet distributions, and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets studies provided measurements in six case studies of cloud thermodynamic properties, initial particle number distribution and composition, and cloud drop distribution. In this study, we use simulations from a chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce observed cloud droplet distributions of the case studies. Four cases had subadiabatic lapse rates, resulting in fewer activated droplets, lower liquid water content, and higher cloud base height than an adiabatic lapse rate. A weighted ensemble of simulations that reflect measured variation in updraft velocity and cloud base height was used to reproduce observed droplet distributions. Simulations show that organic hygroscopicity in internally mixed cases causes small effects on cloud reflectivity (CR) (<0.01), except for cargo ship and smoke plumes, which increased CR by 0.02 and 0.07, respectively, owing to their high organic mass fraction. Organic hygroscopicity had larger effects on droplet concentrations for cases with higher aerosol concentrations near the critical diameter (namely, polluted cases with a modal peak near 0.1 µm). Differences in simulated droplet spectral widths (k) caused larger differences in CR than organic hygroscopicity in cases with organic mass fractions of 60% or less for the cases shown. Finally, simulations from a numerical parameterization of cloud droplet activation suitable for general circulation models compared well with the ACP model, except under high organic mass fraction.

  9. Aerosol effect on the mobility of cloud droplets

    NASA Astrophysics Data System (ADS)

    Koren, Ilan; Altaratz, Orit; Dagan, Guy

    2015-10-01

    Cloud droplet mobility is referred to here as a measure of the droplets’ ability to move with ambient air. We claim that an important part of the aerosol effect on convective clouds is driven by changes in droplet mobility. We show that the mass-weighted average droplet terminal velocity, defined here as the ‘effective terminal velocity’ (η) and its spread ({σ }η ) serve as direct measures of this effect. Moreover, we develop analytical estimations for η and {σ }η to show that changes in the relative dispersion of η ({\\varepsilon }η ={σ }η /η ) can serve as a sensitive predictor of the onset of droplet-collection processes.

  10. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, Tyler J.; Fu, Qiang

    2015-12-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e., the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically resolved aerosol retrievals over all surface types and over cloud. In this study, uncertainties in CALIPSO-inferred aerosol DRE are estimated using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars at midlatitude and tropical sites. We find that CALIPSO is unable to detect all radiatively significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50% at the two ARM sites. The undetected aerosol is likely the consequence of random noise in CALIPSO measurements and therefore will affect global observations as well. This suggests that the global aerosol DRE inferred from CALIPSO observations are likely too weak. Also examined is the impact of the ratio of extinction-to-backscatter (i.e., the lidar ratio) whose value CALIPSO retrievals must assume to obtain the aerosol extinction profile. It is shown that if CALIPSO can reproduce the climatological value of the lidar ratio at a given location, then the aerosol DRE there can be accurately calculated (within about 3%).

  11. Effects of rotation on impingement cooling of turbine blades

    NASA Technical Reports Server (NTRS)

    Kreatsoulas, J. C.; Kerrebrock, J. L.; Epstein, A. H.; Rogo, C.

    1985-01-01

    The effects of rotation on impingement cooling of turbine blades were studied experimentally as a specialized facility at M.I.T. A foil heated resistively was cooled by a jet flow on one side and temperature monitored on the other. Rotating the blade limits the heat transfer path to conduction through the support structure and radiation. IR radiometry furnishes the temperature distributions on the chamber wall, permitting the internal heat transfer coefficient to be measured. The heat transfer efficiency has been found to fall as much as 30 percent as rotational speed increases. The conditions observed confirm the significance of rotational effects, particularly with regard to potential early blade failure.

  12. Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Schmid, Beat

    2005-01-01

    The Bay Area Environmental Research Institute (BAER) scientists have worked with the NASA Ames Research Center sunphotometer group led by Dr. Philip Russell for many years researching the climatic effects of aerosol particles in the stratosphere and troposphere. We have continued to work with the NASA Ames sunphotometer group in research activities representing funded, peer-reviewed proposals to NASA, NOAA and DOE. The activities are described in those proposals and also in the documents provided to the Grants Office earlier. This is the final report from January 1,2002 - June 30, 2005. The report consists of a compilation of 41 peer-reviewed publications (published, in press or submitted) produced under this Cooperative Agreement and 43 first-authored conference presentations. To save paper, reprints are not included but will, of course, be provided upon request.

  13. Effects of cooling time on a closed LWR fuel cycle

    SciTech Connect

    Arnold, R. P.; Forsberg, C. W.; Shwageraus, E.

    2012-07-01

    In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing. (authors)

  14. Secondary Organic Aerosol Formation from Glyoxal: Effects of Seed Aerosol on Particle Composition

    NASA Astrophysics Data System (ADS)

    Slowik, Jay; Waxman, Eleanor; Coburn, Sean; Klein, Felix; Koenig, Theodore; Krapf, Manuel; Kumar, Nivedita; Wang, Siyuan; Baltensperger, Urs; Dommen, Josef; Prévôt, Andre; Volkamer, Rainer

    2014-05-01

    Conventional models of secondary organic aerosol (SOA) production neglect aqueous-phase processing mechanisms, thereby excluding potentially important SOA formation pathways. These missing pathways may be an important factor in the inability of current models to fully explain SOA yields and oxidation states. Molecules identified as important precursors to SOA generated through aqueous-phase include glyoxal, which is an oxidation product of numerous organic gases. Glyoxal SOA formation experiments were conducted in the PSI smog chamber as a function of seed composition, relative humidity (RH, 60 to 85%), and the presence/absence of gaseous ammonia, affecting particle acidity. In a typical experiment, the chamber was filled with the selected seed aerosol (NaCl, (NH4)2SO4, NaNO3, or K2SO4), after which glyoxal was generated by the brief (i.e. a few minutes) exposure of acetylene to UV light. The experiment was then allowed to proceed undisturbed for several hours. Each experiment consisted of several UV exposures, followed by a dilution phase at constant RH to investigate the gas/particle partitioning behavior of the generated SOA. Gas-phase glyoxal was monitored by an LED-CE-DOAS system, while the particle composition was measured using online aerosol mass spectrometry (Aerodyne HR-ToF-AMS) and offline analysis of collected filter samples. SOA composition was observed to depend strongly on seed type, with increased imidazole formation evident during experiments with (NH4)2SO¬4 and K2SO4 seeds relative to those with NaCl and NaNO3. Additionally, experiments conducted in the presence of ammonia showed large enhancements in both imidazole content and total SOA yield. Analysis of mass spectral markers indicates reversible uptake of glyoxal but irreversible particle-phase production of the imidazole-containing SOA. Positive matrix factorization (PMF) using the Multilinear Engine (ME-2) was applied to the AMS mass spectral time series to quantify factors related to

  15. Effect of Aerosol Size and Hygroscopicity on Aerosol Optical Depth in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Brock, Charles; Wagner, Nick; Gordon, Timothy

    2016-04-01

    Aerosol optical depth (AOD) is affected by the size, optical characteristics, and hygroscopicity of particles, confounding attempts to link remote sensing observations of AOD to measured or modeled aerosol mass concentrations. In situ airborne observations of aerosol optical, chemical, microphysical and hygroscopic properties were made in the southeastern United States in the daytime in summer 2013. We use these observations to constrain a simple model that is used to test the sensitivity of AOD to the various measured parameters. As expected, the AOD was found to be most sensitive to aerosol mass concentration and to aerosol water content, which is controlled by aerosol hygroscopicity and the ambient relative humidity. However, AOD was also fairly sensitive to the mean particle diameter and the width of the size distribution. These parameters are often prescribed in global models that use simplified modal parameterizations to describe the aerosol, suggesting that the values chosen could substantially bias the calculated relationship between aerosol mass and optical extinction, AOD, and radiative forcing.

  16. Effects of aerosol on evaporation, freezing and precipitation in a multiple cloud system

    NASA Astrophysics Data System (ADS)

    Lee, Seoung Soo; Kim, Byung-Gon; Yum, Seong Soo; Seo, Kyong-Hwan; Jung, Chang-Hoon; Um, Jun Shik; Li, Zhanqing; Hong, JinKyu; Chang, Ki-Ho; Jeong, Jin-Yim

    2016-04-01

    Aerosol effects on clouds and precipitation account for a large portion of uncertainties in the prediction of the future course of global hydrologic circulations and climate. As a process of a better understanding of interactions between aerosol, clouds and precipitation, simulations are performed for a mixed-phase convective multiple-cloud system over the tropics. Studies on single-cloud systems have shown that aerosol-induced increases in freezing, associated increases in parcel buoyancy and thus the intensity of clouds (or updrafts) are a main mechanism which controls aerosol-cloud-precipitation interactions in convective clouds. However, in the multiple-cloud system that plays much more important roles in global hydrologic circulations and thus climate than single-cloud systems, aerosol effects on condensation play the most important role in aerosol-induced changes in the intensity of clouds and the effects on freezing play a negligible role in those changes. Aerosol-induced enhancement in evaporation intensifies gust fronts and increases the number of subsequently developing clouds, which leads to the substantial increases in condensation and associated intensity of convection. Although aerosol-induced enhancement in freezing takes part in the increases in condensation by inducing stronger convergence around cloud bottom, the increases in condensation are ~one order of magnitude larger than those in freezing. It is found that while aerosol-induced increases in freezing create intermittent extremely heavy precipitation, aerosol-induced increases in evaporation enhance light and medium precipitation in the multiple-cloud system here. This increase in light and medium precipitation makes it possible that cumulative precipitation increases with increasing aerosol concentration, although the increase is small. It is interesting that the altitude of the maximum of the time- and domain-averaged hydrometeor mass densities is quite robust to increases in aerosol

  17. Improving Bulk Microphysics Parameterizations in Simulations of Aerosol Effects

    SciTech Connect

    Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, Lai-Yung R.; Franklin, Charmaine N.

    2013-06-05

    To improve the microphysical parameterizations for simulations of the aerosol indirect effect (AIE) in regional and global climate models, a double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting (WRF) model is modified and the results are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). Rather than using prescribed aerosols as in the original bulk scheme (Bulk-OR), a prognostic doublemoment aerosol representation is introduced to predict both the aerosol number concentration and mass mixing ratio (Bulk-2M). The impacts of the parameterizations of diffusional growth and autoconversion and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated. Sensitivity modeling experiments are performed for two distinct cloud regimes, maritime warm stratocumulus clouds (SC) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds (DCC) in the southeast of China from the Department of Energy/ARM Mobile Facility (DOE/AMF) - China field campaign. The results from Bulk-2M exhibit a much better agreement in the cloud number concentration and effective droplet radius in both the SC and DCC cases with those from SBM and field measurements than those from Bulk-OR. In the SC case particularly, Bulk-2M reproduces the observed drizzle precipitation, which is largely inhibited in Bulk-OR. Bulk-2M predicts enhanced precipitation and invigorated convection with increased aerosol loading in the DCC case, consistent with the SBM simulation, while Bulk-OR predicts the opposite behaviors. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm 2 stratocumulus clouds. An embryonic raindrop size of 40 μm is determined as a more

  18. Aerosol Indirect Effect on Warm Clouds over Eastern China Using Combined CALIOP and MODIS Observations

    NASA Astrophysics Data System (ADS)

    Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen

    2015-04-01

    Aerosol, one of key components of the climate system, is highly variable, both temporally and spatially. It often exerts great influences on the cloud-precipitation chain processes by serving as CCN/IN, altering cloud microphysics and its life cycle. Yet, the aerosol indirect effect on clouds remains largely unknown, because the initial changes in clouds due to aerosols may be enhanced or dampened by such feedback processes as modified cloud dynamics, or evaporation of the smaller droplets due to the competition for water vapor. In this study, we attempted to quantify the aerosol effects on warm cloud over eastern China, based on near-simultaneous retrievals from MODIS/AQUA, CALIOP/CALIPSO and CPR/CLOUDSAT during the period 2006 to 2010. The seasonality of aerosol from ground-based PM10 is quite different from that estimated from MODIS AOD. This result is corroborated by lower level profile of aerosol occurrence frequency from CALIOP, indicating the significant role CALIOP could play in aerosol-cloud interaction. The combined use of CALIOP and CPR facilitate the process to exactly determine the (vertical) position of warm cloud relative to aerosol, out of six scenarios in terms of aerosol-cloud mixing status in terms of aerosol-cloud mixing status, which shows as follows: AO (Aerosol only), CO (Cloud only), SASC (Single aerosol-single cloud), SADC (single aerosol-double cloud), DASC (double aerosol-single cloud), and others. Results shows that about 54% of all the cases belong to mixed status, among all the collocated aerosol-cloud cases. Under mixed condition, a boomerang shape is observed, i.e., reduced cloud droplet radius (CDR) is associated with increasing aerosol at moderate aerosol pollution (AOD<0.4), becoming saturated at AOD of 0.5, followed by an increase in CDR with aerosol. In contrast, there is no such boomerang shape found for (aerosol-cloud) separated cases. We categorize dataset into warm-season and cold-season subsets to figure out how the

  19. Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation and composition

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Tripathi, Sachchida; Gupta, Tarun

    2016-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world, it contains substantial quantity of liquid water and generally seen as a natural cleansing agent but it also has the potential to form highly oxidized secondary organic aerosols (SOA) via aqueous processing of ambient aerosols. On the other hand higher organic aerosols (OA) loading tend to decrease the overall oxidation level (O/C) of the particle phase organics, due to enhanced partitioning of less oxidized organics from gas to particle phase. However, combined impact of these two parameters; aqueous oxidation and OA loading, on the overall oxidation ratio (O/C) of ambient OA has never been studied. To assess this, real time ambient sampling using HR-ToF-AMS was carried out at Kanpur, India from 15 December 2014 - 10 February 2015. In first 3 weeks of this campaign, very high OA loading is (134 ± 42 μg/m3) observed (termed as high loading or HL period) while loading is substantially reduced from 2nd January, 2016 (56 ± 20 μg/m3, termed as low loading or LL period) . However, both the loading period was affected by several fog episodes (10 in HL and 7 in LL), thus providing the opportunity of studying the combined effects of fog and OA loading on OA oxidation. It is found that O/C ratio is very strongly anti-correlated with OA loading in both the loading period, however, slope of this ant-correlation is much steep during HL period than in LL period. Source apportionment of OA revealed that there is drastic change in the types of OA from HL to LL period, clearly indicating difference in OA composition from HL to LL period. During foggy night continuous oxidation of OA is observed from early evening to early morning with 15-20% enhancement in O/C ratio, while the same is absent during non-foggy period, clearly indicating the efficient fog processing of ambient OA. It is also found that night time fog aqueous oxidation can be as effective as daytime photo chemistry in oxidation of OA. Fog

  20. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  1. Biological aerosol effects on clouds and precipitation

    NASA Astrophysics Data System (ADS)

    Hallar, A. Gannet; Huffman, J. Alex; Fridlind, Ann

    2012-12-01

    Bioaerosol Effects on Clouds Workshop;Steamboat Springs, Colorado, 5-6August 2012 Bioaerosols such as bacteria have been proposed as significant contributors to cloud ice nucleation, but too little is known about the properties and impacts of bioaerosol and other ice nuclei to make reliable conclusions about their wide-scale impact on clouds and precipitation. During late summer an international group of 40 participants met at a Steamboat Springs ski resort to share perspectives on bioaerosol sources, activity, and influence on clouds. Participants who were invited collectively spanned a broad range of expertise, including atmospheric chemistry, microbiology, micrometeorology, and cloud physics, as well as a broad range of research approaches, including laboratory measurement, field measurement, and modeling. Tours of Storm Peak Laboratory (http://www.stormpeak.dri.edu) were offered before and after the workshop.

  2. Estimation of Asian Dust Aerosol Effect on Cloud Radiation Forcing Using Fu-Liou Radiative Model and CERES Measurements

    NASA Technical Reports Server (NTRS)

    Su, Jing; Huang, Jianping; Fu, Qiang; Minnis, Patrick; Ge, Jinming; Bi, Jianrong

    2008-01-01

    The impact of Asian dust on cloud radiative forcing during 2003-2006 is studied by using the Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are -138.9, 69.1, and -69.7 Wm(sup -2), which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in more pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm(sup -2), which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm(sup -2), which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.

  3. The direct effect of aerosols on the radiation budget and climate of the Earth-atmosphere system: its variability in space and time

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, N.

    2009-04-01

    Atmospheric aerosols, these tiny particles suspended in the air, play a very important role for the Earth-atmosphere climate system on both global and regional scales through various mechanisms and physical processes. The climatic effects of aerosols are determined by modifications they induce on the various components of the Earth's radiation budget. Despite the progress that has been made lately, there is still much to learn about the climatic role of aerosols in various aspects. One of the most important issues that has to be addressed is the spatial and temporal variability, especially the temporal variability of aerosol properties and their consequent radiative effects. For example, there is uncertainty with regard to aerosol radiative properties and whether or not aerosol loads are increasing or decreasing with time, and what the consequences are. Moreover, the extent to which aerosols cool or warm the planet is not clear, as well as the contribution to this cooling/warming by aerosols of natural and anthropogenic origin. Given that the aerosol radiative effects, especially on radiation reaching the Earth's surface and in the atmosphere, cannot be directly measured/observed, models are necessary to overcome this problem. Specifically, radiative transfer models (RTMs) are able to calculate the radiation fluxes within the entire Earth-atmosphere system from regional to planetary scale, and the flux changes caused by aerosols. Yet, what is more interesting for models is that they allow us to study in detail the space and time resolved aerosol radiative effects and their sensitivity to various physical parameters. Using RTMs the aerosol direct effect on solar radiation can be determined at the top of the atmosphere (DRETOA) in the atmosphere (DREatm) and at the Earth's surface (DREsurf). Using a detailed radiative transfer model together with climatological input data for surface and atmospheric variables, the direct radiative effects of aerosols (DREs) were

  4. Effect of input power on cooling property of a thermoacoustic cooling system with diameter-expanded prime movers

    NASA Astrophysics Data System (ADS)

    Ueno, So; Sakamoto, Shin-ichi; Orino, Yuichiro; Wada, Takahiro; Inui, Yoshitaka; Watanabe, Yoshiaki

    2016-07-01

    We studied a thermoacoustic cooling system driven at low temperatures to make practical use of the system. Aiming to reduce the driving temperature of the thermoacoustic system, we developed a loop-tube-type thermoacoustic system with diameter-expanded two-stage prime movers, i.e., a heat-to-sound transducer. The system drove at 67 °C. Additionally, we developed a prototype for a thermoacoustic cooling system with a diameter-expanded two-stage prime mover. In the experiment, the cooling point temperature was decreased by 4.4 °C from room temperature, i.e., 20 °C. To improve the cooling performance of the prototype thermoacoustic cooling system, we experimentally investigated the effect of increasing the input power on the cooling performance.

  5. Aerosol radiative effects over global arid and semi-arid regions based on MODIS Deep Blue satellite observations

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, Nikolaos; Papadimas, Christos D.; Gkikas, Antonis; Matsoukas, Christos; Sayer, Andrew M.; Hsu, N. Christina; Vardavas, Ilias

    2014-05-01

    effect of aerosols at the top of atmosphere (TOA) fluxes (DRETOA), the atmospheric absorption of solar radiation (DREatmab) and the incoming and absorbed surface solar radiative fluxes (DREsurf and (DREnetsurf, respectively). The results are obtained for the period from January 2003 till December 2009, i.e. seven (7) years, on a monthly mean basis. The RTM results indicate that aerosols significantly enhance the absorbed solar radiation in the atmosphere, especially over the major deserts of Africa and Asia, by amounts ranging from 15 to 55 W/m2 (maximum values in Bodele, Sahara). On the other hand, through scattering and absorption, they decrease the surface absorption of solar radiation, by 10-45 W/m2 over the same areas, thus producing a significant surface radiative cooling. As a result of significant solar atmospheric absorption over the highly reflecting desert surface, aerosols decrease the reflected solar radiation to space, by up to 17 W m-2, producing a decrease of planetary albedo and an important planetary warming. Even larger values are obtained on a seasonal basis, while the average values of DREatmab and DREnetsurf over global land arid and semi-arid regions are equal to 8.9 and -11.3 W/m2, respectively. Significant intra- and inter-annual variations and changes of DREs are also identified.

  6. Attribution of the United States “warming hole”: Aerosol indirect effect andprecipitable water vapor

    EPA Science Inventory

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and /or ice nuclei, thereby modifying cloud optical properties. Observations show a striking cooling trend in summertime daily maximum temperature (Tmax) in the central and...

  7. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, T. J.; Fu, Q.

    2015-12-01

    Observational constraints on the change in radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detection all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE. Therefore, global estimates of the aerosol DRE inferred from CALIPSO are likely too weak.

  8. Magnetic Resonance Imaging Measurements of Film Cooling Effectiveness

    NASA Astrophysics Data System (ADS)

    Elkins, Christopher; Alley, Marcus; Eaton, John

    2009-11-01

    Film cooling through holes and slots is used extensively in gas turbine engines to protect combustor walls, stator vanes, and turbine blades. Film cooling effectiveness has been shown to depend on myriad geometrical and flow parameters. Magnetic Resonance Velocimetry (MRV) and Concentration (MRC) measurements efficiently acquire entire 3D velocity and scalar information making them well suited to investigate the large design parameter space. In addition, MRV and MRC provide information in the film supply plenum and hole which is traditionally unobtainable. Here, MRC is extended to near wall measurements to determine film cooling effectiveness. Measurements are made for a single film hole (d=5.8 mm, l/d=4 and α=30 ) in the wall of a square channel. Velocity and scalar concentration data are presented for multiple blowing ratios. The data show the evolution of vortices around the jets, the coolant mixing, and the 2D film cooling effectiveness distribution. Measurements within the plenum and injection hole show the origin of specific flow structures.

  9. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  10. Effect of Aerosol and Ocean Representation on Simulated Climate Responses

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Knutti, Reto; Wild, Martin

    2016-04-01

    It is still debated to what extent anthropogenic aerosols shaped 20th century surface temperatures, especially sea surface temperatures (SSTs), through alteration of surface solar radiation (SSR). SSTs, in turn, are crucial in the context of atmospheric circulation and ocean heat uptake. Uncertainty considering anthropogenic aerosol forcing thus translates into uncertainty regarding ocean heat uptake and, ultimately, climate responses towards anthropogenic influences. We use the global climate model ECHAM to analyse the 20th century climate response towards either anthropogenic aerosols or well-mixed greenhouse gases or both with different representations of ocean and aerosols: atmosphere-only with prescribed SSTs and interactive aerosols; mixed-layer ocean and interactive or prescribed aerosols; fully coupled with prescribed aerosols. For interactive aerosols we use the Hamburg Aerosol Module (HAM). Our results suggest that up to 15% of global ocean surfaces undergo an SSR reduction of at least -4W/m² in the year 2000, due to anthropogenic aerosols. The area affected depends on how aerosols are represented and whether clear sky or all sky SSR is considered. In MLO equilibria with interactive aerosols, anthropogenic aerosols clearly shape surface temperature response patterns. This is to a lesser degree the case for the transient fully coupled case. Additivity of global mean temperature responses towards single forcings - an assumption often made in the literature - is not fulfilled for the MLO experiments, but for the fully coupled experiments. While some of these differences can be attributed to the differing ocean representation, it is implied that differing aerosol representation may play an even more relevant role. Thus, our results corroborate not only the relevance of anthropogenic aerosols for surface temperature responses, but also highlight the relevance of choice of aerosol representation.

  11. The effect of organic aerosol material on aerosol reactivity towards ozone

    NASA Astrophysics Data System (ADS)

    Batenburg, Anneke; Gaston, Cassandra; Thornton, Joel; Virtanen, Annele

    2015-04-01

    After aerosol particles are formed or emitted into the atmosphere, heterogeneous reactions with gaseous oxidants cause them to 'age'. Aging can change aerosol properties, such as the hygroscopicity, which is an important parameter in how the particles scatter radiation and form clouds. Conversely, heterogeneous reactions on aerosol particles play a significant role in the cycles of various atmospheric trace gases. Organic compounds, a large part of the total global aerosol matter, can exist in liquid or amorphous (semi)solid physical phases. Different groups have shown that reactions with ozone (O3) can be limited by bulk diffusion in organic aerosol, particularly in viscous, (semi)solid materials, and that organic coatings alter the surface interactions between gas and aerosol particles. We aim to better understand and quantify how the viscosity and phase of organic aerosol matter affect gas-particle interactions. We have chosen the reaction of O3 with particles composed of a potassium iodide (KI) core and a variable organic coating as a model system. The reaction is studied in an aerosol flow reactor that consists of a laminar flow tube and a movable, axial injector for the injection of O3. The aerosol-containing air is inserted at the tube's top. The interaction length (and therefore time), between the particles and the O3 can be varied by moving the injector. Alternatively, the production of aerosol particles can be modulated. The remaining O3 concentration is monitored from the bottom of the tube and particle concentrations are measured simultaneously, which allows us to calculate the reactive uptake coefficient γ. We performed exploratory experiments with internally mixed KI and polyethylene glycol (PEG) particles at the University of Washington (UW) in a setup with a residence time around 50 s. Aerosol particles were generated in an atomizer from solutions with varying concentrations of KI and PEG and inserted into the flow tube after they were diluted and

  12. Internally Consistent MODIS Estimate of Aerosol Clear-Sky Radiative Effect Over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.

    2004-01-01

    Modern satellite remote sensing, and in particular the MODerate resolution Imaging Spectroradiometer (MODIS), offers a measurement-based pathway to estimate global aerosol radiative effects and aerosol radiative forcing. Over the Oceans, MODIS retrieves the total aerosol optical thickness, but also reports which combination of the 9 different aerosol models was used to obtain the retrieval. Each of the 9 models is characterized by a size distribution and complex refractive index, which through Mie calculations correspond to a unique set of single scattering albedo, assymetry parameter and spectral extinction for each model. The combination of these sets of optical parameters weighted by the optical thickness attributed to each model in the retrieval produces the best fit to the observed radiances at the top of the atmosphere. Thus the MODIS Ocean aerosol retrieval provides us with (1) An observed distribution of global aerosol loading, and (2) An internally-consistent, observed, distribution of aerosol optical models that when used in combination will best represent the radiances at the top of the atmosphere. We use these two observed global distributions to initialize the column climate model by Chou and Suarez to calculate the aerosol radiative effect at top of the atmosphere and the radiative efficiency of the aerosols over the global oceans. We apply the analysis to 3 years of MODIS retrievals from the Terra satellite and produce global and regional, seasonally varying, estimates of aerosol radiative effect over the clear-sky oceans.

  13. Mechanisms for indirect effects from aerosol pollution on mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Phillips, Vaughan

    2015-04-01

    Aerosol pollution can have various effects on mixed-phase clouds. They can alter coalescence and raindrop-freezing for droplet activation by CCN aerosols. They can alter aggregation of ice crystals and snow formation. This can alter the lifetime of mixed-phase clouds, as well as the reflectivity for solar radiation. Simulations of observed cases of mixed-phase clouds have been performed to examine the mechanisms for effects from aerosol pollution on them. Such mechanisms are discussed in the presentation.

  14. Combined multispectral/hyperspectral remote sensing of tropospheric aerosols for quantification of their direct radiative effect

    NASA Astrophysics Data System (ADS)

    McGarragh, Gregory R.

    Scattering and absorption of solar radiation by aerosols in the atmosphere has a direct radiative effect on the climate of the Earth. Unfortunately, according to the IPCC the uncertainties in aerosol properties and their effect on the climate system represent one of the largest uncertainties in climate change research. Related to aerosols, one of the largest uncertainties is the fraction of the incident radiation that is scattered rather than absorbed, or their single scattering albedo. In fact, differences in single scattering albedo have a significant impact on the magnitude of the cooling effect of aerosols (opposite to that of greenhouse gasses) which can even have a warming effect for strongly absorbing aerosols. Satellites provide a unique opportunity to measure aerosol properties on a global scale. Traditional approaches use multispectral measurements of intensity at a single view angle to retrieve at most two aerosol parameters over land but it is being realized that more detail is required for accurate quantification of the direct effect of aerosols, in particular its anthropogenic component, and therefore more measurement information is required. One approach to more advanced measurements is to use not only intensity measurements but also polarimetric measurements and to use multiple view angles. In this work we explore another alternative: the use of hyperspectral measurements in molecular absorption bands. Our study can be divided into three stages the first of which is the development of a fast radiative transfer model for rapid simulation of measurements. Our approach is matrix operator based and uses the Pade approximation for the matrix exponential to evaluate the homogeneous solution. It is shown that the method is two to four times faster than the standard and efficient discrete ordinate technique and is accurate to the 6th decimal place. The second part of our study forms the core and is divided into two chapters the first of which is a rigorous

  15. THE EFFECT OF AEROSOLIZATION ON SUBSEQUENT BACTERIAL SURVIVAL

    EPA Science Inventory

    To determine whether aerosolization could impair baterial survival, Pseudomonas syringae and Erwinia herbicola were aerosolized in a greenhouse, the aerosol was sampled at various distances from the site of release by using all-glass impingers, and bacterial survival was followed...

  16. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.; Ferrare, R. A.; Browell, E. V.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the "effective" aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar-derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  17. Effectiveness of bromicide against Legionella pneumophila in a cooling tower

    SciTech Connect

    Fliermans, C.B.; Harvey, R.S.

    1983-01-01

    Cooling towers are considered to be man-made amplifiers of Legionella. Thus the proper maintenance and choice of biocides is important. The only biocide that has thus far been shown to be effective in field tests is the judicious use of chlorination. Perturbation studies were conducted on an industrial cooling tower shown to contain Legionella, using 1-bromo-3-chloro-5,5-dimethylhydantoin (Bromicide, Great Lakes Chemical Corp.). At the manufacturer's recommended concentrations neither the density nor the activity of Legionella was affected. At concentrations greater than 2.0 ppM free residual, the Bromicide was not effective in reducing Legionella to source water concentrations, nor was it effective in reducing the INT activity of the bacterium in situ. The data indicate that at concentrations up to 2.0 ppM, Bromicide is not effective in these tower studies. 23 references, 3 tables.

  18. Effects of cryogenic cooling of shell eggs on egg quality.

    PubMed

    Jones, D R; Tharrington, J B; Curtis, P A; Anderson, K E; Keener, K M; Jones, F T

    2002-05-01

    This study was conducted to investigate the effects of cryogenic cooling on shell egg quality. Gaseous nitrogen (GN), liquid nitrogen (LN), and gaseous carbon dioxide (GC) were utilized to rapidly cool eggs in a commercial egg processing facility and were compared to traditional cooling (TC). A modified food freezer was attached to existing egg processing equipment in order to expose eggs to the selected cryogen. In Experiment 1, eggs were treated with GN, LN, and TC then stored and tested over 10 wk. Experiment 2 eggs were treated (GC and TC) and evaluated for 12 wk. Quality factors that were measured included Haugh units, vitelline membrane strength and deformation at rupture, and USDA shell egg grades for quality defects. Haugh unit values were greater for cryogenically treated eggs as compared to traditionally cooled eggs (Experiment 1: 73.27, GN; 72.03, LN; and 71.4, TC and Experiment 2: 74.42, GC and 70.18, TC). The percentage of loss eggs in the GN treatment was significantly (P < 0.01) greater than those of the LN and TC treatments. Vitelline membrane strength was greater for the cryogenically cooled eggs versus traditional processing. Vitelline membrane breaking strength decreased over storage time. Vitelline membrane deformation at rupture was significantly (P < 0.05) greater for the cryogenically cooled eggs compared to the traditional eggs in each experiment. Use of the technology could allow for egg quality to be maintained for a longer time, which could increase international markets and potentially lead to extended shelf lives. PMID:12033425

  19. Coupled Velocity and Cooling Effectiveness Measurements of a Film Cooling Hole With Varied Blowing Rates and Ejection Angles

    NASA Astrophysics Data System (ADS)

    Issakhanian, Emin; Elkins, Chris J.; Eaton, John K.

    2010-11-01

    Film cooling is used to shield turbine blades from combustion gases which are at temperatures above the melting point of the blade's constituent alloy. Maximizing film cooling effectiveness allows higher combustion temperatures and decreases need for bypass air. The present experiment studies flow through a single film cooling hole jetting into a square channel. The momentum thickness Reynolds number of the main flow is 500. The diameter of the cooling flow is 10 times the momentum thickness at the hole exit. The cooling flow Reynolds number varies between 1250 and 5000. Magnetic Resonance Velocimetry (MRV) and Concentration (MRC) are used to measure mean velocity and coolant concentration of the 3-D field both inside the main channel and inside the cooling hole and feed plenum. By marking only the main flow with a passive scalar, the MRC data allow measurement of cooling flow concentration, which by analogy is related to the temperature of the fluid. The velocity data shows the development of a counter-rotating vortex pair downstream of the jet. These vortices transport cooling flow away from the channel floor resulting in a lifted kidney-shaped coolant cross-section and reduced effectiveness. The varying strength of this flow feature and of surface effectiveness due to different ejection angles and blowing ratios is studied.

  20. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean.

    PubMed

    Kaufman, Yoram J; Koren, Ilan; Remer, Lorraine A; Rosenfeld, Daniel; Rudich, Yinon

    2005-08-01

    Clouds developing in a polluted environment tend to have more numerous but smaller droplets. This property may lead to suppression of precipitation and longer cloud lifetime. Absorption of incoming solar radiation by aerosols, however, can reduce the cloud cover. The net aerosol effect on clouds is currently the largest uncertainty in evaluating climate forcing. Using large statistics of 1-km resolution MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data, we study the aerosol effect on shallow water clouds, separately in four regions of the Atlantic Ocean, for June through August 2002: marine aerosol (30 degrees S-20 degrees S), smoke (20 degrees S-5 degrees N), mineral dust (5 degrees N-25 degrees N), and pollution aerosols (30 degrees N- 60 degrees N). All four aerosol types affect the cloud droplet size. We also find that the coverage of shallow clouds increases in all of the cases by 0.2-0.4 from clean to polluted, smoky, or dusty conditions. Covariability analysis with meteorological parameters associates most of this change to aerosol, for each of the four regions and 3 months studied. In our opinion, there is low probability that the net aerosol effect can be explained by coincidental, unresolved, changes in meteorological conditions that also accumulate aerosol, or errors in the data, although further in situ measurements and model developments are needed to fully understand the processes. The radiative effect at the top of the atmosphere incurred by the aerosol effect on the shallow clouds and solar radiation is -11 +/- 3 W/m2 for the 3 months studied; 2/3 of it is due to the aerosol-induced cloud changes, and 1/3 is due to aerosol direct radiative effect. PMID:16076949

  1. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean

    PubMed Central

    Kaufman, Yoram J.; Koren, Ilan; Remer, Lorraine A.; Rosenfeld, Daniel; Rudich, Yinon

    2005-01-01

    Clouds developing in a polluted environment tend to have more numerous but smaller droplets. This property may lead to suppression of precipitation and longer cloud lifetime. Absorption of incoming solar radiation by aerosols, however, can reduce the cloud cover. The net aerosol effect on clouds is currently the largest uncertainty in evaluating climate forcing. Using large statistics of 1-km resolution MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data, we study the aerosol effect on shallow water clouds, separately in four regions of the Atlantic Ocean, for June through August 2002: marine aerosol (30°S–20°S), smoke (20°S–5°N), mineral dust (5°N–25°N), and pollution aerosols (30°N– 60°N). All four aerosol types affect the cloud droplet size. We also find that the coverage of shallow clouds increases in all of the cases by 0.2–0.4 from clean to polluted, smoky, or dusty conditions. Covariability analysis with meteorological parameters associates most of this change to aerosol, for each of the four regions and 3 months studied. In our opinion, there is low probability that the net aerosol effect can be explained by coincidental, unresolved, changes in meteorological conditions that also accumulate aerosol, or errors in the data, although further in situ measurements and model developments are needed to fully understand the processes. The radiative effect at the top of the atmosphere incurred by the aerosol effect on the shallow clouds and solar radiation is –11 ± 3 W/m2 for the 3 months studied; 2/3 of it is due to the aerosol-induced cloud changes, and 1/3 is due to aerosol direct radiative effect. PMID:16076949

  2. SEAC4RS Aerosol Radiative Effects and Heating Rates

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Redemann, J.; Hair, J. W.; Ferrare, R. A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2015-12-01

    We will present (a) aerosol optical properties, (b) aerosol radiative forcing, (c) aerosol and gas absorption and heating rates, and (d) spectral surface albedo for cases from August 19th and 26th of the SEAC4RS mission. This analysis is based on irradiance data from the Solar Spectral Flux Radiometer (SSFR), spectral aerosol optical depth from the Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), and extinction profiles from the DIAL/High Spectral Resolution Lidar (HSRL). We derive spectrally resolved values of single scattering albedo, asymmetry parameter, and surface albedo from the data, and determine profiles of absorption and heating rate segregated by absorber (aerosol and gas).

  3. The Effects of Black Carbon and Sulfate Aerosols in ChinaRegions on East Asia Monsoons

    SciTech Connect

    Yang, Bai; Liu, Yu; Sun, Jiaren

    2009-01-01

    In this paper we examine the direct effects of sulfate and black carbon aerosols in China on East Asia monsoons and its precipitation processes by using the CAM3.0 model. It is demonstrated that sulfate and black carbon aerosols in China both have the effects to weaken East Asia monsoons in both summer and winter seasons. However, they certainly differ from each other in affecting vertical structures of temperature and atmospheric circulations. Their differences are expected because of their distinct optical properties, i.e., scattering vs. absorbing. Even for a single type of aerosol, its effects on temperature structures and atmospheric circulations are largely season-dependent. Applications of T-test on our results indicate that forcing from black carbon aerosols over China is relatively weak and limited. It is also evident from our results that the effects of synthetic aerosols (sulfate and black carbon together) on monsoons are not simply a linear summation between these two types of aerosols. Instead, they are determined by their integrated optical properties. Synthetic aerosols to a large degree resemble effects of sulfate aerosols. This implies a likely scattering property for the integration of black carbon and sulfate aerosols in China.

  4. Effects of land use on the cooling effect of green areas on surrounding urban areas

    NASA Astrophysics Data System (ADS)

    Hamada, S.; Tanaka, T.

    2011-12-01

    The spatial distribution of the cooling effect of the green area on surrounding urban area in Nagoya, central Japan was examined by applying ASTER data. First, we clarified the correlation between surface temperature and land use in a green area. Second, we also examined the extent of the cooling effect of the green area on the surrounding urban area. Third, we extracted the land-use factors that significantly affect the extent of the cooling effect. Finally, we referred to new knowledge about the effect of terrain on the cooling effect. The surface temperature differed with land use in the green area. Surface temperatures for green areas were lower than those for other categories, except ponds. In green areas, the temperature in forest lands was lower than that in lawn and agricultural land, suggesting that the forest contributes strongly to the cooling effect of the green area. The surface temperature differences among the categories were small in October, compared to the other analysed days during summer. The extent of the cooling effect of the green area on the surrounding urban area averaged in all directions reached about 200m in the surrounding urban area from July to October. However, the surface temperature difference between the urban area and the green area decreased in October. This phenomenon indicated that the cooling effect of the green area was weaker during autumn than during summer. By examining the spatial distribution of the surface temperature, the cooling effect was shown to stretch in almost all directions of the urban area, and it appears unlikely that wind direction affected the extent of the cooling effect (Fig.1). The cooling effect of Heiwa Park was affected by the roads and buildings. Their effect on the cooling effect depended on their layout and size. It is desirable to have green areas scattered throughout an urban environment rather than concentrated at one spot because the cooling range of a single green area is limited to a few

  5. Cooling of Gas Turbines. 2; Effectiveness of Rim Cooling of Blades

    NASA Technical Reports Server (NTRS)

    Wolfenstein, Lincoln; Meyer, Gene L.; McCarthy, John S.

    1945-01-01

    An analysis of rim cooling, which cools the blade by condition alone, was conducted. Gas temperatures ranged from 1300 degrees to 1900 degrees F and rim temperatures from 0 degrees to 1000 degrees F below gas temperatures. Results show that gas temperature increases up to 200 degrees F are permissible provided that the blades are cooled by 400 degrees to 500 degrees F below the gas temperature. Relatively small amounts of blade cooling, at constant gas temperature, give large increases in blade life. Dependence of rim cooling on heat-transfer coefficient, blade dimensions, and thermal conductivity is determined by a single parameter.

  6. Sensitivity of aerosol-induced effects on numerically simulated squall lines to the vertical distribution of aerosols

    NASA Astrophysics Data System (ADS)

    Lebo, Z. J.

    2013-12-01

    The sensitivity of aerosol-induced enhancement of convective strength and precipitation to the vertical distribution is analyzed in the context of numerically simulated squall lines. Recent investigations have hypothesized and demonstrated that an increase in an aerosol loading may lead to enhanced vertical updrafts and potentially more precipitation in a variety of deep convective systems. One of the generally accepted hypotheses for such an enhancement in convective strength suggests that the predominant effect of an increase in aerosol loading is related to enhanced latent heat release in the mid to upper levels of the convective cores. This enhancement has been attributed to an increase in supercooled liquid water that tends to exist in clouds formed in more polluted environments and it is suggested that this water is lofted from below the freezing level to the mixed-phase region of the cloud where the latent heating effects are maximized. However, deep convective cores are quite strong and so a reduction in cloud droplet size due to enhanced aerosol number concentration (which reduces the terminal fall speed) ought to have a negligible effect on the trajectory of the droplets (since the updraft velocity is much larger than the terminal fall speed). Thus, it should be expected that low-level aerosol pollution would have little to no effect on latent heating rates aloft since the droplets will end up in the mixed-phase region regardless of size. Moreover, more recent investigations have shown that aerosol perturbations, especially in squall lines, can lead to less intense cold pools and thus a more optimal state according to RKW theory. Numerical simulations of idealized squall lines are performed to specifically analyze the sensitivity of the aforementioned effects to the vertical distribution of aerosols. The simulations suggest that low-level air tends to either be detrained at the bottom of the convective cores or remains in the convective cores throughout

  7. Effect of injector configuration in rocket nozzle film cooling

    NASA Astrophysics Data System (ADS)

    Kumar, A. Lakshya; Pisharady, J. C.; Shine, S. R.

    2016-04-01

    Experimental and numerical investigations are carried out to analyze the effect of coolant injector configuration on overall film cooling performance in a divergent section of a rocket nozzle. Two different injector orientations are investigated: (1) shaped slots with a divergence angle of 15° (semi-divergent injector) (2) fully divergent slot (fully divergent injector). A 2-dimensional, axis-symmetric, multispecies computational model using finite volume formulation has been developed and validated against the experimental data. The experiments provided a consistent set of measurements for cooling effectiveness for different blowing ratios ranging from 3.7 to 6. Results show that the semi divergent configuration leads to higher effectiveness compared to fully divergent slot at all blowing ratios. The spatially averaged effectiveness results show that the difference between the two configurations is significant at higher blowing ratios. The increase in effectiveness was around 2 % at BR = 3.7 whereas it was around 12 % in the case of BR = 6. Numerical results show the presence of secondary flow recirculation zones near the jet exit for both the injectors. An additional recirculation zone present in the case of fully divergent injector caused an increase in mixing of the coolant and mainstream, and a reduction in film cooling performance.

  8. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the 'effective' aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  9. Effect of cooling procedure on final denture base adaptation.

    PubMed

    Ganzarolli, S M; Rached, R N; Garcia, R C M R; Del Bel Cury, A A

    2002-08-01

    Well-fitted dentures prevent hyperplasic lesions, provide chewing efficiency and promote patient's comfort. Several factors may affect final adaptation of dentures, as the type of the acrylic resin, the flask cooling procedure and the water uptake. This investigation evaluated the effect of water storage and two different cooling procedures [bench cooling (BC) for 2 h; running water (RW) at 20 degrees C for 45 min] on the final adaptation of denture bases. A heat-cured acrylic resin (CL, Clássico, Clássico Artigos Odontológicos) and two microwave-cured acrylic resins [Acron MC, (AC) GC Dent. Ind. Corp.; Onda Cryl (OC), Clássico Artigos Odontológicos] were used to make the bases. Adaptation was assessed by measuring the weight of an intervening layer of silicone impression material between the base and the master die. Data was submitted to ANOVA and Tukey's test (0.05). The following means were found: (BC) CL=0.72 +/- 0.03 a; AC=0.70 +/- 0.03 b; OC=0.76 +/- 0.04 c//(RW) CL= 1.00 +/- 0.11 a; AC=1.00 +/- 0.12 a; OC=0.95 +/- 0.10 a. Different labels join groups that are not statistically different (P > 0.05). Comparisons are made among groups submitted to the same cooling procedure (BC or RW). The conclusions are: interaction of type of material and cooling procedure had a statistically significant effect on the final adaptation of the denture bases (P < 0.05); water storage was not detected as a source of variance (P > 0.05) on the final adaptation. PMID:12220348

  10. Top-of-Atmosphere Direct Radiative Effect of Aerosols from the Clouds and the Earth's Radiant Energy System Satellite Instrument (CERES)

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Kato, S.

    2002-01-01

    Nine months of CERES/TRMM broadband fluxes combined with VIRS high-resolution imager measurements are used to estimate the daily average direct radiative effect of aerosols for clear-sky conditions over the tropical oceans. On average, aerosols have a cooling effect over the tropics of 4.6 +/- 1 W/sq m. The magnitude is approx.2 W/sq m smaller over the southern tropical oceans than it is over northern tropical oceans. The direct effect derived from CERES is highly correlated with coincident aerosol optical depth retrievals inferred from 0.63 microns VIRS radiances (correlation coefficient of 0.96). The slope of the regression line is approx. -32 W/sq m/t over the equatorial Pacific Ocean, but changes both regionally and seasonally, depending on the aerosol characteristics. Near sources of biomass burning and desert dust, the aerosol direct effect reaches -25 W sq m to -30 W/sq m. The direct effect from CERES also shows a dependence on wind speed. The reason for this dependence is unclear-it may be due to increased aerosol (e.g. sea-salt or aerosol transport) or increased surface reflection (e.g. due to whitecaps). The uncertainty in the tropical average direct effect from CERES is approx. 1 W/sq m (approx. 20%) due mainly to cloud contamination, the radiance-to-flux conversion, and instrument calibration. By comparison, uncertainties in the direct effect from the ERBE and CERES "ERBE-Like" products are a factor of 3 to 5 larger.

  11. Enhanced photolysis in aerosols: evidence for important surface effects.

    PubMed

    Nissenson, Paul; Knox, Christopher J H; Finlayson-Pitts, Barbara J; Phillips, Leon F; Dabdub, Donald

    2006-10-28

    While there is increasing evidence for unique chemical reactions at interfaces, there are fewer data on photochemistry at liquid-vapor junctions. This paper reports a comparison of the photolysis of molybdenum hexacarbonyl, Mo(CO)(6), in 1-decene either as liquid droplets or in bulk-liquid solutions. Mo(CO)(6) photolysis is faster by at least three orders of magnitude in the aerosols than in bulk-liquids. Two possible sources of this enhancement are considered: (1) increased light intensity due to either Morphology-Dependent Resonances (MDRs) in the spherical aerosol particles and/or to increased pathlengths for light inside the droplet due to refraction, which are termed physical effects in this paper; and (2) interface effects such as an incomplete solvent-cage at the gas-liquid boundary and/or enhanced interfacial concentrations of Mo(CO)(6), which are termed chemical effects. Quantitative calculations of the first possibility were carried out in which the light intensity distribution in the droplets averaged over 215-360 nm was obtained for 1-decene droplets. Calculations show that the average increase in light intensity over the entire droplet is 106%, with an average increase of 51% at the interface. These increases are much smaller than the observed increase in the apparent photolysis rate of droplets compared to the bulk. Thus, chemical effects, i.e., a decreased solvent-cage effect at the interface and/or enhancement in the surface concentration of Mo(CO)(6), are most likely responsible for the dramatic increase in the photolysis rate. Similar calculations were also carried out for broadband (290-600 nm) solar irradiation of water droplets, relevant to atmospheric conditions. These calculations show that, in agreement with previous calculations by Mayer and Madronich [B. Mayer and S. Madronich, Atmos. Chem. Phys., 2004, 4, 2241] MDRs produce only a moderate average intensity enhancement relative to the corresponding bulk-liquid slabs when averaged over a

  12. Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM

    NASA Astrophysics Data System (ADS)

    Peters, K.; Stier, P.; Quaas, J.; Graßl, H.

    2012-07-01

    In this study, we employ the global aerosol-climate model ECHAM-HAM to globally assess aerosol indirect effects (AIEs) resulting from shipping emissions of aerosols and aerosol precursor gases. We implement shipping emissions of sulphur dioxide (SO2), black carbon (BC) and particulate organic matter (POM) for the year 2000 into the model and quantify the model's sensitivity towards uncertainties associated with the emission parameterisation as well as with the shipping emissions themselves. Sensitivity experiments are designed to investigate (i) the uncertainty in the size distribution of emitted particles, (ii) the uncertainty associated with the total amount of emissions, and (iii) the impact of reducing carbonaceous emissions from ships. We use the results from one sensitivity experiment for a detailed discussion of shipping-induced changes in the global aerosol system as well as the resulting impact on cloud properties. From all sensitivity experiments, we find AIEs from shipping emissions to range from -0.32 ± 0.01 W m-2 to -0.07 ± 0.01 W m-2 (global mean value and inter-annual variability as a standard deviation). The magnitude of the AIEs depends much more on the assumed emission size distribution and subsequent aerosol microphysical interactions than on the magnitude of the emissions themselves. It is important to note that although the strongest estimate of AIEs from shipping emissions in this study is relatively large, still much larger estimates have been reported in the literature before on the basis of modelling studies. We find that omitting just carbonaceous particle emissions from ships favours new particle formation in the boundary layer. These newly formed particles contribute just about as much to the CCN budget as the carbonaceous particles would, leaving the globally averaged AIEs nearly unaltered compared to a simulation including carbonaceous particle emissions from ships.

  13. Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM

    NASA Astrophysics Data System (ADS)

    Peters, K.; Stier, P.; Quaas, J.; Graßl, H.

    2012-03-01

    In this study, we employ the global aerosol-climate model ECHAM-HAM to globally assess aerosol indirect effects (AIEs) resulting from shipping emissions of aerosols and aerosol precursor gases. We implement shipping emissions of sulphur dioxide (SO2), black carbon (BC) and particulate organic matter (POM) for the year 2000 into the model and quantify the model's sensitivity towards uncertainties associated with the emission parameterisation as well as with the shipping emissions themselves. Sensitivity experiments are designed to investigate (i) the uncertainty in the size distribution of emitted particles, (ii) the uncertainty associated with the total amount of emissions, and (iii) the impact of reducing carbonaceous emissions from ships. We use the results from one sensitivity experiment for a detailed discussion of shipping-induced changes in the global aerosol system as well as the resulting impact on cloud properties. From all sensitivity experiments, we find AIEs from shipping emissions to range from -0.07 ± 0.01 W m-2 to -0.32 ± 0.01 W m-2 (global mean value and inter-annual variability as a standard deviation). The magnitude of the AIEs depends much more on the assumed emission size distribution and subsequent aerosol microphysical interactions than on the magnitude of the emissions themselves. It is important to note that although the strongest estimate of AIEs from shipping emissions in this study is relatively large, still much larger estimates have been reported in the literature before on the basis of modelling studies. We find that omitting just carbonaceous particle emissions from ships favours new particle formation in the boundary layer. These newly formed particles contribute just about as much to the CCN budget as the carbonaceous particles would, leaving the globally averaged AIEs nearly unaltered compared to a simulation including carbonaceous particle emissions from ships.

  14. Exploring the Longwave Radiative Effects of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Hansell, Richard A., Jr.

    2012-01-01

    Dust aerosols not only affect air quality and visibility where they pose a significant health and safety risk, but they can also play a role in modulating the energy balance of the Earth-atmosphere system by directly interacting with local radiative fields. Consequently, dust aerosols can impact regional climate patterns such as changes in precipitation and the evolution of the hydrological cycle. Assessing the direct effect of dust aerosols at the solar wavelengths is fairly straightforward due in part to the relatively large signal-to-noise ratio in broadband irradiance measurements. The longwave (LW) impacts, on the other hand, are rather difficult to ascertain since the measured dust signal level (10 Wm-2) is on the same order as the instrumental uncertainties. Moreover, compared to the shortwave (SW), limited experimental data on the LW optical properties of dust makes it a difficult challenge for constraining the LW impacts. Owing to the strong absorption features found in many terrestrial minerals (e.g., silicates and clays), the LW effects, although much smaller in magnitude compared to the SW, can still have a sizeable impact on the energetics of the Earth-atmosphere system, which can potentially trigger changes in the heat and moisture surface budgets, and dynamics of the atmosphere. The current endeavor is an integral part of an on-going research study to perform detailed assessments of dust direct aerosol radiative effects (DARE) using comprehensive global datasets from NASA Goddards mobile ground-based facility (cf. http://smartlabs.gsfc.nasa.gov/) during previous field experiments near key dust source regions. Here we examine and compare the results from two of these studies: the 2006 NASA African Monsoon Multidisciplinary Activities and the 2008 Asian Monsoon Years. The former study focused on transported Saharan dust at Sal Island (16.73N, 22.93W), Cape Verde along the west coast of Africa while the latter focused on Asian dust at Zhangye China (39

  15. Dry bottom ash removal -- Ash cooling vs. boiler efficiency effects

    SciTech Connect

    Carrea, E.; Scavizzi, G.C.; Barsin, J.

    1998-07-01

    The current wet method of removing boiler bottom ash from coal fired utility boilers quenches the ash which in turn heats the water, evaporates a portion of it adding to the gas weights moved through the steam generator. The newer dry ash removal systems use a portion of the combustion air to cool ash and thus return some of the otherwise lost latent heat back to the furnace. There has been some debate concerning the overall effect upon boiler efficiency. For example when a large quantity of ash cooling air is required and the resulting decrease in air side air heater mass flow could result in an elevate stack gas temperature thus negating the efficiency enhancing dry bottom ash effect expected. The presentation will present actual data form operating units and provide various heat balances to demonstrate the actual performance conditions that have been achieved.

  16. Effect of Propeller on Engine Cooling System Drag and Performance

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.

    1982-01-01

    The pressure recovery of incoming cooling air and the drag associated with engine cooling of a typical general aviation twin-engine aircraft was Investigated experimentally. The semispan model was mounted vertically in the 40 x 80-Foot Wind Tunnel at Ames Research Center. The propeller was driven by an electric motor to provide thrust with low vibration levels for the cold-now configuration. It was found that the propeller slip-stream reduces the frontal air spillage around the blunt nacelle shape. Consequently, this slip-stream effect promotes flow reattachment at the rear section of the engine nacelle and improves inlet pressure recovery. These effects are most pronounced at high angles of attack; that is, climb condition. For the cruise condition those improvements were more moderate.

  17. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model.

    PubMed

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H; Molina, Mario J

    2014-05-13

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by -2.5 and +1.3 W m(-2), respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors' knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923

  18. Effects of aerosol sources and chemical compositions on cloud drop sizes and glaciation temperatures

    NASA Astrophysics Data System (ADS)

    Zipori, Assaf; Rosenfeld, Daniel; Tirosh, Ofir; Teutsch, Nadya; Erel, Yigal

    2015-09-01

    The effect of aerosols on cloud properties, such as its droplet sizes and its glaciation temperatures, depends on their compositions and concentrations. In order to examine these effects, we collected rain samples in northern Israel during five winters (2008-2011 and 2013) and determined their chemical composition, which was later used to identify the aerosols' sources. By combining the chemical data with satellite-retrieved cloud properties, we linked the aerosol types, sources, and concentrations with the cloud glaciation temperatures (Tg). The presence of dust increased Tg from -26°C to -12°C already at relatively low dust concentrations. This result is in agreement with the conventional wisdom that desert dust serves as good ice nuclei (INs). With higher dust concentrations, Tg saturated at -12°C, even though cloud droplet sizes decreased as a result of the cloud condensation nucleating (CCN) activity of the dust. Marine air masses also encouraged freezing, but in this case, freezing was enhanced by the larger cloud droplet sizes in the air masses (caused by low CCN concentrations) and not by IN concentrations or by aerosol type. An increased fraction of anthropogenic aerosols in marine air masses caused a decrease in Tg, indicating that these aerosols served as poor IN. Anthropogenic aerosols reduced cloud droplet sizes, which further decreased Tg. Our results could be useful in climate models for aerosol-cloud interactions, as we investigated the effects of aerosols of different sources on cloud properties. Such parameterization can simplify these models substantially.

  19. Regional climate effects of aerosols on precipitation and snowpack in California

    NASA Astrophysics Data System (ADS)

    Wu, L.; Su, H.; Jiang, J. H.; Zhao, C.; Qian, Y.; Painter, T. H.

    2015-12-01

    Water sources in California are derived predominantly from precipitation (mostly during the winter time) and storage in the snowpack in the Sierra Nevada. With California facing one of the most severe droughts on record, it is important to understand the factors influencing precipitation and snowpack for water management and hydropower operation. Recent observational and numerical modeling studies have shown that aerosol pollutants can substantially change precipitation and snowpack in the Sierra Nevada. However, previous studies focused only on one of the aerosol effects or just focus on a single event. A complete view on regional climate effects of aerosol on precipitation and snowpack in California is not delivered yet. In this study, we use a fully coupled aerosol-meteorology-snowpack model (WRF-Chem-SNICAR) to investigate aerosol impacts on regional climate in California, with a focus on precipitation and snowpack. We will evaluate the performance of the WRF-Chem-SNICAR model on simulating regional climate in California. Sensitivity experiments will be conducted to disentangle the relative roles of each aerosol effect, such as aerosol radiation interaction vs. aerosol cloud interaction and aerosol snowpack interaction, local emission vs. long-range transport etc.

  20. Effect of cooling water on stability of NLC linac components

    SciTech Connect

    F. Le Pimpec et al.

    2003-02-11

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  1. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-06-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies.

  2. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China.

    PubMed

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M; Jathar, Shantanu H; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  3. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    PubMed Central

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  4. Combined multispectral/hyperspectral remote sensing of tropospheric aerosols for quantification of their direct radiative effect

    NASA Astrophysics Data System (ADS)

    McGarragh, Gregory R.

    Scattering and absorption of solar radiation by aerosols in the atmosphere has a direct radiative effect on the climate of the Earth. Unfortunately, according to the IPCC the uncertainties in aerosol properties and their effect on the climate system represent one of the largest uncertainties in climate change research. Related to aerosols, one of the largest uncertainties is the fraction of the incident radiation that is scattered rather than absorbed, or their single scattering albedo. In fact, differences in single scattering albedo have a significant impact on the magnitude of the cooling effect of aerosols (opposite to that of greenhouse gasses) which can even have a warming effect for strongly absorbing aerosols. Satellites provide a unique opportunity to measure aerosol properties on a global scale. Traditional approaches use multispectral measurements of intensity at a single view angle to retrieve at most two aerosol parameters over land but it is being realized that more detail is required for accurate quantification of the direct effect of aerosols, in particular its anthropogenic component, and therefore more measurement information is required. One approach to more advanced measurements is to use not only intensity measurements but also polarimetric measurements and to use multiple view angles. In this work we explore another alternative: the use of hyperspectral measurements in molecular absorption bands. Our study can be divided into three stages the first of which is the development of a fast radiative transfer model for rapid simulation of measurements. Our approach is matrix operator based and uses the Pade approximation for the matrix exponential to evaluate the homogeneous solution. It is shown that the method is two to four times faster than the standard and efficient discrete ordinate technique and is accurate to the 6th decimal place. The second part of our study forms the core and is divided into two chapters the first of which is a rigorous

  5. Longwave radiative forcing by aqueous aerosols

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1995-01-01

    Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

  6. Effect of Relative Humidity on Dynamic Aerosols of Adenovirus 12

    PubMed Central

    Davis, Gary W.; Griesemer, Richard A.; Shadduck, John A.; Farrell, Robert L.

    1971-01-01

    Dynamic aerosols of adenovirus 12 were generated in the same Henderson apparatus under conditions of high, medium, and low relative humidity. High relative humidities resulted in more recovery of adenovirus 12 from aerosols and lungs of newborn Syrian hamsters. At 89, 51, and 32% relative humidity, the total infectious virus recovered from a 20-min aerosol was 106.7, 106.0, and 104.3 TCD50, respectively. Hamsters exposed to these 20-min aerosols retained measured lung doses of 103.0, 102.4, and 101.0 TCD50, respectively. The measured retained lung doses were compared to calculated inhaled lung doses based on both total virus aerosolized and total virus recovery from the aerosols. PMID:4930277

  7. Effect of aerosol radiative forcing on the seasonal variation of snow over the northern hemisphere

    NASA Astrophysics Data System (ADS)

    Kim, M.; Lau, W. K.; Lee, W.; Kim, K.

    2009-12-01

    In this study, the effect of aerosol radiative forcing on the seasonal variation of snow is studied based on GCM simulation with prescribed aerosols. Numerical experiments are conducted using NASA fvGCM with McRAS. Monthly mean distribution of five aerosol species (black carbon, organic carbon, dust, sulfate, and sea salt) is obtained from GOCART model. In the control run, all five aerosol species are included. For sensitivity test, we carry out an experiment without any aerosol radiative forcing and three additional runs, which are identical to the control run, except for exclusion of black carbon, of dust, and of sulfate, to show the effect of different types of aerosols. The results show that atmospheric warming by absorbing aerosols, dust and black carbon, initiate the elevated heat pump (EHP) and subsequently warm the atmosphere and land surface, especially over Tibetan Plateau (TP). As a results snow over TP reduced greatly in April and May, and the reduction of snow cover decrease surface albedo. Surface energy balance analysis shows that the surface warming due to absorbing aerosol cause early snow melting and further increase surface-atmosphere warming through snow/ice albedo feedback. The similar relations between aerosol radiative forcing and snow melt are also found over other higher latitude region in the Northern Hemisphere. The intensity and duration of earlier snow melt by black carbon aerosol is more significant than that of dust aerosol over the higher latitude in the Northern Hemisphere while over the Tibetan Plateau both black carbon and dust aerosol are important in driving earlier snow melt.

  8. North Atlantic Aerosol Properties and Direct Radiative Effects: Key Results from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Schmid, B.; Bergstrom, R. A.; Hignett, P.; Hobbs, P. V.; Durkee, P. A.; Condon, Estelle (Technical Monitor)

    1998-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative Forcing is a major source of uncertainty in understanding the observed climate change of the past century and in predicting, future climate. To help reduce this uncertainty, the International Global Atmospheric Chemistry Project (IGAC) has endorsed a series of multiplatform aerosol field campaigns. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the second Aerosol Characterization Experiment (ACE-2) were the first IGAC campaigns to address the impact of anthropogenic aerosols. Both TARFOX and ACE-2 gathered extensive data sets on aerosol properties and radiative effects. TARFOX focused on the urban-industrial haze plume flowing from the eastern United States over the western Atlantic Ocean, whereas ACE-2 studied aerosols carried over the eastern Atlantic from both European urban/industrial and African mineral sources. These aerosols often have a marked influence on the top-of-atmosphere radiances measured by satellites, as illustrated in Figure 1. Shown there are contours of aerosol optical depth derived from radiances measured by the AVHRR sensor on the NOAA-11 satellite. The contours readily show that aerosols originating in North America, Europe, and Africa impact the radiative properties of air over the North Atlantic. However, the accurate derivation of flux chances, or radiative forcing, from the satellite-measured radiances or 'etrieved optical depths remains a difficult challenge. In this paper we summarize key Initial results from TARFOX and, to a lesser extent ACE-2, with a focus on those results that allow an improved assessment of the flux changes caused by North Atlantic aerosols at middle and high latitudes.

  9. North Atlantic Aerosol Properties and Direct Radiative Effects: Key Results from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Schmid, B.; Bergstrom, Robert A.; Hignett, P.; Hobbs, P. V.; Durkee, P. A.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate In potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the observed climate change of the past century and in predicting future climate. To help reduce this uncertainty, the International Global Atmospheric Chemistry Project (IGAC) has endorsed a series of multiplatform aerosol field campaigns. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the second Aerosol Characterization Experiment (ACE-2) were the first IGAC campaigns to address the impact of anthropogenic aerosols, Both TARFOX and ACE-2 gathered extensive data sets on aerosol properties and radiative effects, TARFOX focused on the urban-industrial haze plume flowing from the eastern United States over the western Atlantic Ocean, whereas ACE-2 studied aerosols carried over the eastern Atlantic from both European urban/industrial and African mineral sources. These aerosols often have a marked influence on the top-of-atmosphere radiances measured by satellites. Shown there are contours of aerosol optical depth derived from radiances measured by the AVHRR sensor on the NOAA-11 satellite. The contours readily show that aerosols originating in North America, Europe, and Africa impact the radiative properties of air over the North Atlantic. However, the accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved optical depths remains a difficult challenge. In this paper we summarize key initial results from TARFOX and, to a lesser extent, ACE-2, with a focus on those results that allow an improved assessment of the flux changes caused by North Atlantic aerosols at middle latitudes.

  10. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    NASA Astrophysics Data System (ADS)

    Spracklen, D. V.; Carslaw, K. S.; Pöschl, U.; Rap, A.; Forster, P. M.

    2011-09-01

    Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (CCN) so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to CCN has not been evaluated on the global scale. By combining extensive observations of CCN concentrations with the GLOMAP global aerosol model, we find that the model is biased low (normalised mean bias = -77 %) unless carbonaceous combustion aerosol act as CCN. We show that carbonaceous combustion aerosol accounts for more than half (52-64 %) of global CCN with the range due to uncertainty in the emitted size distribution of carbonaceous combustion particles. The model predicts that wildfire and pollution (fossil fuel and biofuel) carbonaceous combustion aerosol causes a global mean cloud albedo aerosol indirect effect of -0.34 W m-2, with stronger cooling if we assume smaller particle emission size. We calculate that carbonaceous combustion aerosol from pollution sources cause a global mean aerosol indirect effect of -0.23 W m-2. The small size of carbonaceous combustion particles from fossil fuel sources means that whilst pollution sources account for only one-third of the emitted mass they cause two-thirds of the cloud albedo aerosol indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for, along with other cloud effects not studied here, to ensure that black carbon emissions controls that reduce the high number concentrations of fossil fuel particles have the desired net effect on climate.

  11. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    NASA Astrophysics Data System (ADS)

    Brindley, H.; Osipov, S.; Bantges, R.; Smirnov, A.; Banks, J.; Levy, R.; Jish Prakash, P.; Stenchikov, G.

    2015-10-01

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m-2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m-2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  12. Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; Tyndall, G.; Aumont, B.; Jimenez, J. L.; Lee-Taylor, J.; Orlando, J.

    2015-08-01

    This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOAs). Typically only photolysis of smaller organic molecules (e.g., formaldehyde) for which explicit data exist is included in chemistry-climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from α-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low and high NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45° (permanent daylight). The results show that after 4 days of chemical aging under those conditions (equivalent to 8 days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields, i.e., ~15 % (low NOx) to ~45 % (high NOx) for α-pinene, ~15 % for toluene, ~25 % for C12 n-alkane, and ~10 % for C16 n-alkane. The small effect of gas-phase photolysis on low-volatility n-alkanes such as C16 n-alkane is due to the rapid partitioning of early-generation products to the particle phase, where they are protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass is increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an empirically estimated SOA photolysis rate of JSOA

  13. Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; Tyndall, G.; Aumont, B.; Jimenez, J. L.; Lee-Taylor, J.; Orlando, J.

    2015-03-01

    This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOA). Typically only photolysis of smaller organic molecules (e.g. formaldehyde) for which explicit data exist is included in chemistry-climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from α-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low- and high-NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45° (permanent daylight). The results show that after four days of chemical aging under those conditions (equivalent to eight days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields i.e ~15% (low-NOx) to ~45% (high-NOx) for α-pinene, ~15% for toluene, ~25% for C12-alkane, and ~10% for C16-alkane. The small effect on low volatility n-alkanes such as C16-alkane is due to the rapid partitioning of early-generation products to the particle phase where they are assumed to be protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass seems increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas-phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an estimated SOA photolysis rate of JSOA=4 x 10-4JNO2. Modeling

  14. Effects of aerosols on clear-sky solar radiation in the ALADIN-HIRLAM NWP system

    NASA Astrophysics Data System (ADS)

    Gleeson, Emily; Toll, Velle; Pagh Nielsen, Kristian; Rontu, Laura; Masek, Jan

    2016-05-01

    The direct shortwave radiative effect of aerosols under clear-sky conditions in the Aire Limitee Adaptation dynamique Developpement InterNational - High Resolution Limited Area Model (ALADIN-HIRLAM) numerical weather prediction system was investigated using three shortwave radiation schemes in diagnostic single-column experiments: the Integrated Forecast System (IFS), acraneb2 and the hlradia radiation schemes. The multi-band IFS scheme was formerly used operationally by the European Centre for Medium Range Weather Forecasts (ECMWF) whereas hlradia and acraneb2 are broadband schemes. The former is a new version of the HIRLAM radiation scheme while acraneb2 is the radiation scheme in the ALARO-1 physics package. The aim was to evaluate the strengths and weaknesses of the numerical weather prediction (NWP) system regarding aerosols and to prepare it for use of real-time aerosol information. The experiments were run with particular focus on the August 2010 Russian wildfire case. Each of the three radiation schemes accurately (within ±4 % at midday) simulates the direct shortwave aerosol effect when observed aerosol optical properties are used. When the aerosols were excluded from the simulations, errors of more than +15 % in global shortwave irradiance were found at midday, with the error reduced to +10 % when standard climatological aerosols were used. An error of -11 % was seen at midday if only observed aerosol optical depths at 550 nm, and not observation-based spectral dependence of aerosol optical depth, single scattering albedos and asymmetry factors, were included in the simulations. This demonstrates the importance of using the correct aerosol optical properties. The dependency of the direct radiative effect of aerosols on relative humidity was tested and shown to be within ±6 % in this case. By modifying the assumptions about the shape of the IFS climatological vertical aerosol profile, the inherent uncertainties associated with assuming fixed vertical

  15. Effect of hypersaline cooling canals on aquifer salinization

    NASA Astrophysics Data System (ADS)

    Hughes, Joseph D.; Langevin, Christian D.; Brakefield-Goswami, Linzy

    2010-02-01

    The combined effect of salinity and temperature on density-driven convection was evaluated in this study for a large (28 km2) cooling canal system (CCS) at a thermoelectric power plant in south Florida, USA. A two-dimensional cross-section model was used to evaluate the effects of hydraulic heterogeneities, cooling canal salinity, heat transport, and cooling canal geometry on aquifer salinization and movement of the freshwater/saltwater interface. Four different hydraulic conductivity configurations, with values ranging over several orders of magnitude, were evaluated with the model. For all of the conditions evaluated, aquifer salinization was initiated by the formation of dense, hypersaline fingers that descended downward to the bottom of the 30-m thick aquifer. Saline fingers reached the aquifer bottom in times ranging from a few days to approximately 5 years for the lowest hydraulic conductivity case. Aquifer salinization continued after saline fingers reached the aquifer bottom and coalesced by lateral movement away from the site. Model results showed that aquifer salinization was most sensitive to aquifer heterogeneity, but was also sensitive to CCS salinity, temperature, and configuration.

  16. Effects of Interstage Cooling on Brayton Cycle Efficiency

    SciTech Connect

    Chang Oh; Robert Barner; Paul Pickard

    2006-06-01

    The US Department of Energy is investigating the use of high-temperature gas-cooled reactors (HTGR) [Oh,2005] to produce electricity and hydrogen. In anticipation of the design, development and procurement of an advanced power conversion system for HTGR, this study was initiated to identify the major design and technology options and their tradeoffs in the evaluation of power conversion system (PCS) options to support future research and procurement decisions. These PCS technology options affect cycle efficiency, capital cost, system reliability and maintainability and technical risk, and therefore the cost of electricity from Generation IV systems. In this study, we investigated the effect of interstage cooling in the PCS and present some results.

  17. Aerosol chemical characterization and role of carbonaceous aerosol on radiative effect over Varanasi in central Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Dumka, U. C.; Kaskaoutis, D. G.; Ram, Kirpa; Panicker, A. S.; Srivastava, M. K.; Tiwari, Shani; Attri, S. D.; Soni, V. K.; Pandey, A. K.

    2016-01-01

    This study investigates the chemical composition of PM10 aerosols at Varanasi, in the central Indo-Gangetic Plain (IGP) during April to July 2011, with emphasis on examining the contribution of elemental carbon (EC) to the estimates of direct aerosol radiative effect (DARE). PM10 samples are analysed for carbonaceous aerosols (Organic Carbon, OC and EC) and water-soluble ionic species (WSIS: Cl-, SO42-, NO3-, PO42- NH4+, Na+, K+, Mg2+ and Ca2+) and several diagnostic ratios (OC/EC, K+/EC, etc) have been also used for studying the aerosol sources at Varanasi. PM10 mass concentration varies between 53 and 310 μg m-3 (mean of 168 ± 73 μg m-3), which is much higher than the National and International air quality standards. The OC mass concentration varies from 6 μg m-3 to 24 μg m-3 (mean of 12 ± 5 μg m-3; 7% of PM10 mass), whereas EC ranges between 1.0 and 14.3 μg m-3 (4.4 ± 3.9 μg m-3; ˜3% of PM10 mass). The relative low OC/EC of 3.9 ± 2.0 and strong correlation (R2 = 0.82) between them suggest the dominance of primary carbonaceous aerosols. The contribution of WSIS to PM10 is found to be ˜12%, out of which ˜57% and 43% are anions and cations, respectively. The composite DARE estimates via SBDART model reveal significant radiative effect and atmospheric heating rates (0.9-2.3 K day-1). Although the EC contributes only ˜3% to the PM10 mass, its contribution to the surface and atmospheric forcing is significantly high (37-63% and 54-77%, respectively), thus playing a major role in climate implications over Varanasi.

  18. Effect of Organic Sea Spray Aerosol on Global and Regional Cloud Condensation Nuclei Concentrations

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Nenes, A.; Moore, R.; Adams, P. J.

    2009-12-01

    Physical processes on the ocean surface (bubble bursting) result in formation of sea spray aerosol. It is now recognized that this aerosol source includes a significant amount of organic matter (O’Dowd et al. 2004). Higher amounts of aerosol lead to higher cloud condensation nuclei (CCN) concentrations, which perturb climate by brightening clouds in what is known as the aerosol indirect effect (Twomey 1977). This work quantifies the marine organic aerosol global emission source as well the effect of the aerosol on CCN by implementing an organic sea spray source function into a series of global aerosol simulations. The new organic sea spray source function correlates satellite retrieved chlorophyll concentrations to fraction of organic matter in sea spray aerosol (O’Dowd et al. 2008). Using this source function, a global marine organic aerosol emission rate of 17.2 Tg C yr-1 is estimated. Effect on CCN concentrations (0.2% supersaturation) is modeled using the Two-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled to a general circulation model (Adams and Seinfeld 2002). Upon including organic sea spray aerosol in global simulations, changes in CCN concentrations are induced by the changed aerosol composition as well as the ability of the organic matter to serve as surfactants. To explore surfactant effects, surface tension depression data from seawater samples taken near the Georgia coast were applied as a function of carbon concentrations (Moore et al. 2008). Preliminary findings suggest that organic sea spray aerosol exerts a localized influence on CCN(0.2%) concentrations. Surfactant effects appear to be the most important impact of marine organic aerosol on CCN(0.2%), as changes in aerosol composition alone have a weak influence, even in regions of high organic sea spray emissions. 1. O’Dowd, C.D., Facchini, M.C. et al., Nature, 431, (2004) 2. Twomey, S., J. Atmos. Sci., 34, (1977) 3. O’Dowd C.D et al. Geophys. Res. Let., 35, (2008) 4

  19. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-08-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing state, and model nucleation and background secondary organic aerosol (SOA). We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include amount, composition, size, and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (homogeneous, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing-state combinations with regional effects in source regions ranging from -0.2 to +0.8 W m-2. The global-mean cloud-albedo aerosol indirect effect (AIE) ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions, and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution, and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol

  20. Sensitivity studies for incorporating the direct effect of sulfate aerosols into climate models

    NASA Astrophysics Data System (ADS)

    Miller, Mary Rawlings Lamberton

    2000-09-01

    Aerosols have been identified as a major element of the climate system known to scatter and absorb solar and infrared radiation, but the development of procedures for representing them is still rudimentary. This study addresses the need to improve the treatment of sulfate aerosols in climate models by investigating how sensitive radiative particles are to varying specific sulfate aerosol properties. The degree to which sulfate particles absorb or scatter radiation, termed the direct effect, varies with the size distribution of particles, the aerosol mass density, the aerosol refractive indices, the relative humidity and the concentration of the aerosol. This study develops 504 case studies of altering sulfate aerosol chemistry, size distributions, refractive indices and densities at various ambient relative humidity conditions. Ammonium sulfate and sulfuric acid aerosols are studied with seven distinct size distributions at a given mode radius with three corresponding standard deviations implemented from field measurements. These test cases are evaluated for increasing relative humidity. As the relative humidity increases, the complex index of refraction and the mode radius for each distribution correspondingly change. Mie theory is employed to obtain the radiative properties for each case study. The case studies are then incorporated into a box model, the National Center of Atmospheric Research's (NCAR) column radiation model (CRM), and NCAR's community climate model version 3 (CCM3) to determine how sensitive the radiative properties and potential climatic effects are to altering sulfate properties. This study found the spatial variability of the sulfate aerosol leads to regional areas of intense aerosol forcing (W/m2). These areas are particularly sensitive to altering sulfate properties. Changes in the sulfate lognormal distribution standard deviation can lead to substantial regional differences in the annual aerosol forcing greater than 2 W/m 2. Changes in the

  1. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    NASA Technical Reports Server (NTRS)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case

  2. Aerosol Azacytidine Inhibits Orthotopic Lung Cancers in Mice through Its DNA Demethylation and Gene Reactivation Effects

    PubMed Central

    Qiu, Xuan; Liang, Yuanxin; Sellers, Rani S.; Perez-Soler, Roman; Zou, Yiyu

    2014-01-01

    We devised an aerosol based demethylation therapy to achieve therapeutic efficacy in premalignant or in situ lesions of lung cancer, without systemic toxicity. Optimum regimens of aerosolized azacytidine (Aza) were designed and used in orthotopic human non-small cell lung cancer xenograft models. The therapeutic efficacy and toxicity of aerosol Aza were compared with intravenously administered Aza. We observed that 80% of the droplets of the aerosol Aza measured ∼0.1–5 microns, which resulted in deposition in the lower bronchial airways. An animal model that phenocopies field carcinogeneisis in humans was developed by intratracheal inoculation of the human lung cancer cells in mice, thus resulting in their distribution throughout the entire airway space. Aerosolized Aza significantly prolonged the survival of mice bearing endo-bronchial lung tumors. The aerosol treatment did not cause any detectable lung toxicity or systemic toxicity. A pre-pharmacokinetic study in mice demonstrated that lung deposition of aerosolized Aza was significantly higher than the intravenous route. Lung tumors were resected after aerosol treatment and the methylation levels of 24 promoters of tumor-suppresser genes related to lung cancer were analyzed. Aerosol Aza significantly reduced the methylation level in 9 of these promoters and reexpressed several genes tested. In conclusion, aerosol Aza at non-cytotoxic doses appears to be effective and results in DNA demethylation and tumor suppressor gene re-expression. The therapeutic index of aerosol Aza is >100-fold higher than that of intravenous Aza. These results provide a preclinical rationale for a phase I clinical trial of aerosol Aza to be initiated at our Institution. PMID:25347303

  3. Potential Aerosol Indirect Effects on Atmospheric Circulation and Radiative Forcing through Deep Convection

    SciTech Connect

    Fan, Jiwen; Rosenfeld, Daniel; Ding, Yanni; Leung, Lai-Yung R.; Li, Zhanqing

    2012-05-10

    Aerosol indirect effects, i.e., the interactions of aerosols with clouds by serving as cloud condensation nuclei (CCN) or ice nuclei (IN), constitute the largest uncertainty in climate forcing and projection. Previous IPCC reported aerosol indirect forcing is negative, which does not account for aerosol-convective cloud interactions because the complex processes involved are poorly understood and represented in climate models. Here we report that aerosol indirect effect on deep convective cloud systems can lead to enhanced regional convergence and a strong top-of atmosphere (TOA) warming. Aerosol invigoration effect on convection can result in a strong radiative warming in the atmosphere (+5.6 W m-2) due to strong night-time warming, a lofted latent heating, and a reduced diurnal temperature difference, all of which could remarkably impact regional circulation and modify weather systems. We further elucidated how aerosols change convective intensity, diabatic heating, and regional circulation under different environmental conditions and concluded that wind shear and cloud base temperature play key roles in determining the significance of aerosol invigoration effect for convective systems.

  4. EXTINCTION STUDIES OF PROPANE/AIR COUNTERFLOW DIFFUSION FLAMES: THE EFFECTIVENESS OF AEROSOLS

    EPA Science Inventory

    The fire suppression effectiveness of solid aerosols as suitable halon replacements has examined. Experiments were performed in a counterflow diffusion burner, consisting of two 1 cm i.d. tubes separated by 1 cm. Aerosols were delivered to propane/air flames in the air flow. Both...

  5. Carbonaceous Aerosols and Radiative Effects Study (CARES), g1-aircraft, sedlacek sp2

    DOE Data Explorer

    Sedlacek, Art

    2011-08-30

    The primary objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume.

  6. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  7. Effects of nature of cooling surface on radiator performance

    NASA Technical Reports Server (NTRS)

    Parsons, S R; Kleinschmidt, R V

    1921-01-01

    This report discusses the effects of roughness, smoothness, and cleanness of cooling surfaces on the performance of aeronautic radiators, as shown by experimental work, with different conditions of surface, on (1) heat transfer from a single brass tube and from a radiator; (2) pressure drop in an air stream in a single brass tube and in a radiator; (3) head resistance of a radiator; and (4) flow of air through a radiator. It is shown that while smooth surfaces are better than rough, the surfaces usually found in commercial radiators do not differ enough to show marked effect on performance, provided the surfaces are kept clean.

  8. A modeling study of the effects of aerosols on clouds and precipitation over East Asia

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Xie, Xiaoning; Yin, Zhi-Yong; Liu, Changhai; Gettelman, Andrew

    2011-12-01

    The National Center for Atmospheric Research Community Atmosphere Model (version 3.5) coupled with the Morrison-Gettelman two-moment cloud microphysics scheme is employed to simulate the aerosol effects on clouds and precipitation in two numerical experiments, one representing present-day conditions (year 2000) and the other the pre-industrial conditions (year 1750) over East Asia by considering both direct and indirect aerosol effects. To isolate the aerosol effects, we used the same set of boundary conditions and only altered the aerosol emissions in both experiments. The simulated results show that the cloud microphysical properties are markedly affected by the increase in aerosols, especially for the column cloud droplet number concentration (DNC), liquid water path (LWP), and the cloud droplet effective radius (DER). With increased aerosols, DNC and LWP have been increased by 137% and 28%, respectively, while DER is reduced by 20%. Precipitation rates in East Asia and East China are reduced by 5.8% and 13%, respectively, by both the aerosol's second indirect effect and the radiative forcing that enhanced atmospheric stability associated with the aerosol direct and first indirect effects. The significant reduction in summer precipitation in East Asia is also consistent with the weakening of the East Asian summer monsoon, resulting from the decreasing thermodynamic contrast between the Asian landmass and the surrounding oceans induced by the aerosol's radiative effects. The increase in aerosols reduces the surface net shortwave radiative flux over the East Asia landmass, which leads to the reduction of the land surface temperature. With minimal changes in the sea surface temperature, hence, the weakening of the East Asian summer monsoon further enhances the reduction of summer precipitation over East Asia.

  9. Cloud-resolving modelling of aerosol indirect effects in idealised radiative-convective equilibrium with interactive and fixed sea surface temperature

    NASA Astrophysics Data System (ADS)

    Khairoutdinov, M. F.; Yang, C.-E.

    2013-04-01

    The study attempts to evaluate the aerosol indirect effects over tropical oceans in regions of deep convection applying a three-dimensional cloud-resolving model run over a doubly-periodic domain. The Tropics are modelled using a radiative-convective equilibrium idealisation when the radiation, turbulence, cloud microphysics and surface fluxes are explicitly represented while the effects of large-scale circulation are ignored. The aerosol effects are modelled by varying the number concentration of cloud condensation nuclei (CCN) at 1% supersaturation, which serves as a proxy for the aerosol amount in the environment, over a wide range, from pristine maritime (50 cm-3) to polluted (1000 cm-3) conditions. No direct effects of aerosol on radiation are included. Two sets of simulations have been run: fixed (non-interactive) sea surface temperature (SST) and interactive SST as predicted by a simple slab-ocean model responding to the surface radiative fluxes and surface enthalpy flux. Both sets of experiments agree on the tendency of increased aerosol concentrations to make the shortwave cloud forcing more negative and reduce the longwave cloud forcing in response to increasing CCN concentration. These, in turn, tend to cool the SST in interactive-SST case. It is interesting that the absolute change of the SST and most other bulk quantities depends only on relative change of CCN concentration; that is, same SST change can be the result of doubling CCN concentration regardless of clean or polluted conditions. It is found that the 10-fold increase of CCN concentration can cool the SST by as much as 1.5 K. This is quite comparable to 2.1-2.3 K SST warming obtained in a simulation for clean maritime conditions, but doubled CO2 concentration. Assuming the aerosol concentration has increased from preindustrial time by 30%, the radiative forcing due to indirect aerosol effects is estimated to be -0.3 W m-2. It is found that the indirect aerosol effect is dominated by the first

  10. Dependence of the effect of aerosols on cirrus clouds on background vertical velocity

    NASA Astrophysics Data System (ADS)

    Lee, Seoung Soo

    2012-07-01

    Cirrus clouds cover approximately 20-25% of the globe and thus play an important role in the Earth's radiation budget. This important role in the radiation budget played by cirrus clouds indicates that aerosol effects on cirrus clouds can have a substantial impact on the variation of global radiative forcing if the ice-water path (IWP) changes. This study examines the aerosol indirect effect (AIE) through changes in the IWP for cirrus cloud cases. This study also examines the dependence of aerosol-cloud interactions in cirrus clouds on the large-scale vertical motion. We use a cloud-system resolving model (CSRM) coupled with a double-moment representation of cloud microphysics. Intensified interactions among the cloud ice number concentration (CINC), deposition and dynamics play a critical role in the IWP increases due to aerosol increases from the preindustrial (PI) level to the present-day (PD) level with a low large-scale vertical velocity. Increased aerosols lead to an increased CINC, providing an increased surface area for water vapor deposition. The increased surface area leads to increased deposition despite decreased supersaturation with increasing aerosols. The increased deposition causes an increased depositional heating which produces stronger updrafts, and these stronger updrafts lead to the increased IWP. However, with a high large-scale vertical velocity, the effect of increased CINC on deposition was not able to offset the effect of decreasing supersaturation with increasing aerosols. The effect of decreasing supersaturation on deposition dominant over that of increasing CINC leads to smaller deposition and IWP at high aerosol with the PD aerosol than at low aerosol with the PI aerosol. The conversion of ice crystals to aggregates through autoconversion and accretion plays a negligible role in the IWP responses to aerosols, as does the sedimentation of aggregates. The sedimentation of ice crystals plays a more important role in the IWP response to

  11. Effects of acute cooling on fish electroretinogram: a comparative study.

    PubMed

    Gačić, Zoran; Milošević, Milena; Mićković, Branislav; Nikčević, Miroslav; Damjanović, Ilija

    2015-06-01

    Temperature dependence of electroretinogram (ERG) was investigated in 3 fish species occupying different habitats--dogfish shark (Scyliorhinus canicula), Prussian carp (Carassius gibelio) and European eel (Anguilla anguilla). Acute cooling of the shark isolated eyecup from 23°C down to 6°C induced suppression of the electroretinographic b-wave--a complete degradation of this component was observed at 6°C. On the other hand, photoreceptor component of the ERG, the negative late receptor potential was not affected by cooling. The fact that the suppression of the dogfish shark b-wave at low temperatures was as a rule irreversible testifies about breakdown of neural retinal function at cold temperature extremes. Although in vivo experiments on immobilized Prussian carps have never resulted in complete deterioration of the b-wave at low temperatures, significant suppression of this ERG component by cooling was detected. Suppressing the effect of low temperatures on Prussian carp ERG might be due to the fact that C. gibelio, as well as other cyprinids, can be characterized as a warmwater species preferring temperatures well above cold extremes. The ERG of the eel, the third examined species, exhibited the strongest resistance to extremely low temperatures. During acute cooling of in situ eyecup preparations of migrating silver eels from 30°C down to 2°C the form of ERG became wider, but the amplitude of the b-wave only slightly decreased. High tolerance of eel b-wave to cold extremes shown in our study complies with ecological data confirming eurythermia in migrating silver eels remarkably adapted to cold-water environment as well. PMID:25759261

  12. Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    O'Donnell, D.; Tsigaridis, K.; Feichter, J.

    2011-08-01

    Secondary organic aerosol (SOA) has been introduced into the global climate-aerosol model ECHAM5/HAM. The SOA module handles aerosols originating from both biogenic and anthropogenic sources. The model simulates the emission of precursor gases, their chemical conversion into condensable gases, the partitioning of semi-volatile condenable species into the gas and aerosol phases. As ECHAM5/HAM is a size-resolved model, a new method that permits the calculation of partitioning of semi-volatile species between different size classes is introduced. We compare results of modelled organic aerosol concentrations against measurements from extensive measurement networks in Europe and the United States, running the model with and without SOA. We also compare modelled aerosol optical depth against measurements from the AERONET network of grond stations. We find that SOA improves agreement between model and measurements in both organic aerosol mass and aerosol optical depth, but does not fully correct the low bias that is present in the model for both of these quantities. Although many models now include SOA, any overall estimate of the direct and indirect effects of these aerosols is still lacking. This paper makes a first step in that direction. The model is applied to estimate the direct and indirect effects of SOA under simulated year 2000 conditions. The modelled SOA spatial distribution indicates that SOA is likely to be an important source of free and upper tropospheric aerosol. We find a negative shortwave (SW) forcing from the direct effect, amounting to -0.31 Wm-2 on the global annual mean. In contrast, the model indicates a positive indirect effect of SOA of +0.23 Wm-2, arising from the enlargement of particles due to condensation of SOA, together with an enhanced coagulation sink of small particles. In the longwave, model results are a direct effect of +0.02 Wm-2 and an indirect effect of -0.03 Wm-2.

  13. Direct and indirect radiative effects of aerosols using the coupled system of aerosol HAM module and the Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Rabab; Irannejad, Parviz; Feichter, Johann; Akbari Bidokhti, Abbas Ali Ali

    2010-05-01

    The fully coupled aerosol-cloud and radiation WRF-HAM modeling system is presented. The aerosol HAM model is implemented within the chemistry version of WRF modeling system. HAM is based on a "pseudo-modal" approach for representation of the particle size distribution. Aerosols are grouped into four geometrical size classes and two types of mixed and insoluble particles. The aerosol components considered are sulfate, black carbon, particulate organic matter, sea salt and mineral dust. Microphysical processes including nucleation, condensation and coagulation of aerosol particles are considered using the microphysics M7 scheme. Horizontal transport of the aerosol particles is simulated using the advection scheme in WRF. Convective transport and vertical mixing of aerosol particles are also considered in the coupled system. A flux-resistance method is used for dry deposition of aerosol particles. Aerosol sizes and chemical compositions are used to determine the aerosol optical properties. Direct effects of aerosols on incoming shortwave radiation flux are simulated by transferring the aerosol optical parameters to the Goddard shortwave radiation scheme. Indirect effects of aerosols are simulated by using a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets. The first and second indirect effects, i.e. the interactions of clouds and incoming solar radiation are implemented in WRF-Chem by linking the simulated cloud droplet number with the Goddard shortwave radiation scheme and the Lin et al. microphysics scheme. The simulations are carried out for a 6-day period from 22 to 28 February 2006 in a domain with 30-km grid spacing, encompassing the south-western Asia, North Africa and some parts of Europe. The results show a negative radiative forcing over most parts of the domain, mainly due to the presence of mineral dust aerosols. The simulations are evaluated using the measured downward radiation in

  14. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model

    PubMed Central

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H.; Molina, Mario J.

    2014-01-01

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol–climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by −2.5 and +1.3 W m−2, respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors’ knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923

  15. Leading edge film cooling effects on turbine blade heat transfer

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, Raymond E.

    1995-01-01

    An existing three dimensional Navier-Stokes code, modified to include film cooling considerations, has been used to study the effect of spanwise pitch of shower-head holes and coolant to mainstream mass flow ratio on the adiabatic effectiveness and heat transfer coefficient on a film-cooled turbine vane. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. It is found that with the coolant to mainstream mass flow ratio fixed, reducing P, the spanwise pitch for shower-head holes, from 7.5 d to 3.0 d, where d is the hole diameter, increases the average effectiveness considerably over the blade surface. However, when P/d= 7.5, increasing the coolant mass flow increases the effectiveness on the pressure surface but reduces it on the suction surface due to coolant jet lift-off. For P/d = 4.5 or 3.0, such an anomaly does not occur within the range of coolant to mainstream mass flow ratios analyzed. In all cases, adiabatic effectiveness and heat transfer coefficient are highly three-dimensional.

  16. Detailed Aerosol Characterization using Polarimetric Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, Otto; di Noia, Antonio; Stap, Arjen; Rietjens, Jeroen; Smit, Martijn; van Harten, Gerard; Snik, Frans

    2016-04-01

    Anthropogenic aerosols are believed to cause the second most important anthropogenic forcing of climate change after greenhouse gases. In contrast to the climate effect of greenhouse gases, which is understood relatively well, the negative forcing (cooling effect) caused by aerosols represents the largest reported uncertainty in the most recent assessment of the International Panel on Climate Change (IPCC). To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. There is growing consensus in the aerosol remote sensing community that multi-angle measurements of intensity and polarization are essential to unambiguously determine all relevant aerosol properties. This presentations adresses the different aspects of polarimetric remote sensing of atmospheric aerosols, including retrieval algorithm development, validation, and data needs for climate and air quality applications. During past years, at SRON-Netherlands Instite for Space Research retrieval algorithms have been developed that make full use of the capabilities of polarimetric measurements. We will show results of detailed aerosol properties from ground-based- (groundSPEX), airborne- (NASA Research Scanning Polarimeter), and satellite (POLDER) measurements. Also we will discuss observational needs for future instrumentation in order to improve our understanding of the role of aerosols in climate change and air quality.

  17. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    NASA Astrophysics Data System (ADS)

    Spracklen, D. V.; Carslaw, K. S.; Pöschl, U.; Rap, A.; Forster, P. M.

    2011-03-01

    Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (particles upon which cloud drops form) so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to cloud drops has not been evaluated on the global scale. By combining extensive observations of cloud condensation nuclei concentrations and a global aerosol model, we show that carbonaceous combustion aerosol accounts for more than half of global cloud condensation nuclei. The evaluated model predicts that wildfire and pollution (fossil fuel and biofuel) carbonaceous combustion aerosol causes a global mean aerosol indirect effect of -0.34 W m-2 due to changes in cloud albedo, with pollution sources alone causing a global mean aerosol indirect effect of -0.23 W m-2. The small size of carbonaceous combustion particles from pollution sources means that whilst they account for only one-third of the emitted mass from these sources they cause two-thirds of the cloud albedo indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for to ensure that black carbon emissions controls that reduce the high number concentrations of small pollution particles have the desired net effect on climate.

  18. Chemical and size effects of hygroscopic aerosols on light scattering coefficients

    NASA Astrophysics Data System (ADS)

    Tang, Ignatius N.

    1996-08-01

    The extensive thermodynamic and optical properties recently reported [Tang and Munkelwitz, 1994a] for sulfate and nitrate solution droplets are incorporated into a visibility model for computing light scattering by hygroscopic aerosols. The following aerosol systems are considered: NH4HSO4, (NH4)2SO4, (NH4)3H(SO4), NaHSO4, Na2SO4, NH4NO3, and NaNO3. In addition, H2SO4 and NaCl are included to represent freshly formed sulfate and background sea-salt aerosols, respectively. Scattering coefficients, based on 1 μg dry salt per cubic meter of air, are calculated as a function of relative humidity for aerosols of various chemical compositions and lognormal size distributions. For a given size distribution the light scattered by aerosol particles per unit dry-salt mass concentration is only weakly dependent on chemical constituents of the hygroscopic sulfate and nitrate aerosols. Sulfuric acid and sodium chloride aerosols, however, are exceptions and scatter light more efficiently than all other inorganic salt aerosols considered in this study. Both internal and external mixtures exhibit similar light-scattering properties. Thus for common sulfate and nitrate aerosols, since the chemical effect is outweighed by the size effect, it follows that observed light scattering by the ambient aerosol can be approximated, within practical measurement uncertainties, by assuming the aerosol being an external mixture. This has a definite advantage for either visibility degradation or climatic impact modeling calculations, because relevant data are now available for external mixtures but only very scarce for internal mixtures.

  19. A case study of the radiative effect of aerosols over Europe: EUCAARI-LONGREX

    NASA Astrophysics Data System (ADS)

    Esteve, Anna R.; Highwood, Eleanor J.; Ryder, Claire L.

    2016-06-01

    The radiative effect of anthropogenic aerosols over Europe during the 2008 European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions Long Range Experiment (EUCAARI-LONGREX) campaign has been calculated using measurements collected by the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft and radiative transfer modelling. The aircraft sampled anthropogenically perturbed air masses across north-western Europe under anticyclonic conditions with aerosol optical depths ranging from 0.047 to 0.357. For one specially designed "radiative closure" flight, simulated irradiances have been compared to radiation measurements for a case of aged European aerosol in order to explore the validity of model assumptions and the degree of radiative closure that can be attained given the spatial and temporal variability of the observations and their measurement uncertainties. Secondly, the diurnally averaged aerosol radiative effect throughout EUCAARI-LONGREX has been calculated. The surface radiative effect ranged between -3.9 and -22.8 W m-2 (mean -11 ± 5 W m-2), whilst top-of-the-atmosphere (TOA) values were between -2.1 and -12.0 W m-2 (mean -5 ± 3 W m-2). We have quantified the uncertainties in our calculations due to the way in which aerosols and other parameters are represented in a radiative transfer model. The largest uncertainty in the aerosol radiative effect at both the surface and the TOA comes from the spectral resolution of the information used in the radiative transfer model (˜ 17 %) and the aerosol description (composition and size distribution) used in the Mie calculations of the aerosol optical properties included in the radiative transfer model (˜ 7 %). The aerosol radiative effect at the TOA is also highly sensitive to the surface albedo (˜ 12 %).

  20. Aerosol effect on climate extremes in Europe under different future scenarios

    NASA Astrophysics Data System (ADS)

    Sillmann, J.; Pozzoli, L.; Vignati, E.; Kloster, S.; Feichter, J.

    2013-05-01

    This study investigates changes in extreme temperature and precipitation events under different future scenarios of anthropogenic aerosol emissions (i.e., SO2 and black and organic carbon) simulated with an aerosol-climate model (ECHAM5-HAM) with focus on Europe. The simulations include a maximum feasible aerosol reduction (MFR) scenario and a current legislation emission (CLEmod) scenario where Europe implements the MFR scenario, but the rest of the world follows the current legislation scenario and a greenhouse gas scenario. The strongest changes relative to the year 2000 are projected for the MFR scenario, in which the global aerosol reduction greatly enforces the general warming effect due to greenhouse gases and results in significant increases of temperature and precipitation extremes in Europe. Regional warming effects can also be identified from aerosol reductions under the CLEmodscenario. This becomes most obvious in the increase of the hottest summer daytime temperatures in Northern Europe.

  1. Have tropospheric aerosol emissions contributed to the recent climate hiatus?

    NASA Astrophysics Data System (ADS)

    Kühn, Thomas; Partanen, Antti-Ilari; Laakso, Anton; Lu, Zifeng; Bergman, Tommi; Mikkonen, Santtu; Kokkola, Harri; Korhonen, Hannele; Räisänen, Petri; Streets, David G.; Romakkaniemi, Sami; Laaksonen, Ari

    2014-05-01

    During the last 15 years global warming has slowed considerably, with the resulting plateau in global temperature records being dubbed the climate hiatus. Apart from variations in solar irradiance and ocean temperature, increased anthropogenic aerosol emissions in South and East Asia have been suggested as possible causes for this hiatus. While European and and North American aerosol emissions have constantly decreased since the 1980's, emissions in China and India have started increasing at the same time and, although total global aerosol emissions have decreased, aerosol effects on the global energy budget are expected to enhance towards the equator due to stronger irradiance there. In this study we used the aerosol-climate model ECHAM5-HAM2 to assess the effect that this re-distribution of anthropogenic aerosol emissions towards the equator may have on climate. To this end, we computed radiative forcing and equilibrium temperature response due to the change in global aerosol emissions (black carbon (BC), organic carbon and sulphur dioxide) between 1996 and 2010, keeping all other anthropogenic influences fixed. Surprisingly we found that the cooling due the increased aerosol emissions in China and India is almost negligible compared to the warming caused by the decreasing aerosol emissions in Europe and North America. The radiative flux perturbation (RFP; includes aerosol indirect effects) was 0.42 W/m2 and the change in global equilibrium 2 m temperature increased by 0.25 °C. The lack of cooling in China and India stems from a cancellation of sulfate cooling and BC warming, especially over China. There, the strong cloud cover leads to both attenuation of sulphate aerosol light scattering and saturation tendency of indirect aerosol effects on clouds. BC levels on the other hand increase also above the clouds (relative increase of BC levels is almost uniform with height), leading to warming through light absorption.

  2. Can Coolness Predict Technology Adoption? Effects of Perceived Coolness on User Acceptance of Smartphones with Curved Screens.

    PubMed

    Kim, Ki Joon; Shin, Dong-Hee; Park, Eunil

    2015-09-01

    This study proposes an acceptance model for curved-screen smartphones, and explores how the sense of coolness induced by attractiveness, originality, subcultural appeal, and the utility of the curved screen promotes smartphone adoption. The results of structural equation modeling analyses (N = 246) show that these components of coolness (except utility) increase the acceptance of the technology by enhancing the smartphones' affectively driven qualities rather than their utilitarian ones. The proposed coolness model is then compared with the original technology acceptance model to validate that the coolness factors are indeed equally effective determinants of usage intention, as are the extensively studied usability factors such as perceived ease of use and usefulness. PMID:26348813

  3. Radiative impact of aerosols generated from biomass burning

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1995-01-01

    Atmospheric aerosol particles play a vital role in the Earth's radiative energy budget. They exert a net cooling influence on climate by directly reflecting the solar radiation to space and by modifying the shortwave reflective properties of clouds. Each year, increasing amounts of aerosol particles are released into the atmosphere due to biomass burning, dust storms, forest fires, and volcanic activity. These particles significantly perturb the radiative balance on local, regional, and global scales. While the detection of aerosols over water is a well established procedure, the detection of aerosols over land is often difficult due to the poor contrast between the aerosols and the underlying terrain. In this study, we use textural measures in order to detect aerosols generated from biomass burning over South America, using AVHRR data. The regional radiative effects are then examined using ERBE data. Preliminary results show that the net radiative forcing of aerosols is about -36 W/sq m.

  4. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-04-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing-state, and model nucleation and background SOA. We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include: amount, composition, size and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (internal, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing state combinations with regional effects in source regions ranging from -0.2 to +1.2 W m-2. The global-mean cloud-albedo aerosol indirect effect ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol effects is unclear due to uncertainties

  5. Comparison of effectiveness of convection-, transpiration-, and film-cooling methods with air as coolant

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Livingood, N B

    1954-01-01

    Various parts of aircraft propulsion engines that are in contact with hot gases often require cooling. Transpiration and film cooling, new methods that supposedly utilize cooling air more effectively than conventional convection cooling, have already been proposed. This report presents material necessary for a comparison of the cooling requirements of these three methods. Correlations that are regarded by the authors as the most reliable today are employed in evaluating each of the cooling processes. Calculations for the special case in which the gas velocity is constant along the cooled wall (flat plate) are presented. The calculations reveal that a comparison of the three cooling processes can be made on quite a general basis. The superiority of transpiration cooling is clearly shown for both laminar and turbulent flow. This superiority is reduced when the effects of radiation are included; for gas-turbine blades, however, there is evidence indicating that radiation may be neglected.

  6. The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2005-01-01

    The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.

  7. Cryogenetically Cooled Field Effect Transistors for Low-Noise Systems

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.; Rabin, Douglas M. (Technical Monitor)

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  8. Cryogenically Cooled Field Effect Transistors for Low-Noise Systems

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  9. A chip scale electrocaloric effect based cooling device

    NASA Astrophysics Data System (ADS)

    Gu, Haiming; Qian, Xiaoshi; Li, Xinyu; Craven, Brent; Zhu, Wenyi; Cheng, Ailan; Yao, S. C.; Zhang, Q. M.

    2013-03-01

    The recent finding of large electrocaloric effect in several ferroelectric polymers creates unique opportunity for developing compact size solid state cooling cycles beyond the traditional mechanical vapor compression cycles. Here, we show that, by employing regeneration process with solid state regenerators, a chip scale Electrocaloric Oscillatory Refrigeration (ECOR) can be realized. A prototype ECOR is fabricated and characterized. More than 6 K temperature span is obtained near room temperature between the hot and cold sides of a 2 cm long device. Finite volume simulation validates the test results and shows the potential high performance of the ECOR.

  10. Electrically heated tube investigation of cooling channel geometry effects

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.

    1995-01-01

    The results of an experimental investigation on the combined effects of cooling channel aspect ratio and curvature for rocket engines are presented. Symmetrically heated tubes with average heat fluxes up to 1.7 MW/m(exp 2) were used. The coolant was gaseous nitrogen at an inlet temperature of 280 K (500 R) and inlet pressures up to 1.0 x 10(exp 7) N/m(exp 2) (1500 psia). Two different tube geometries were tested: a straight, circular cross-section tube, and an aspect-ratio 10 cross-section tube with a 45 deg bend. The circular tube results are compared to classical models from the literature as validation of the system. The curvature effect data from the curved aspect-ratio 10 tube compare favorably to the empirical equations available in the literature for low aspect ratio tubes. This latter results suggest that thermal stratification of the coolant due to diminished curvature effect mixing may not be an issue for high aspect-ratio cooling channels.

  11. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Kloster, S.; Roeckner, E.; Zhang, J.

    2007-07-01

    The double-moment cloud microphysics scheme from ECHAM4 that predicts both the mass mixing ratios and number concentrations of cloud droplets and ice crystals has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass, number concentrations and mixing state. The simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and -35° C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient. The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to -1.9 W m-2 in ECHAM5, when a relative humidity dependent cloud cover scheme and aerosol emissions representative for the years 1750 and 2000 from the AeroCom emission inventory are used. The contribution of the cloud albedo effect amounts to -0.7 W m-2. The total anthropogenic aerosol effect is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed because the cloud lifetime effect increases.

  12. Constraining cloud lifetime effects of aerosols using A-Train satellite observations

    SciTech Connect

    Wang, Minghuai; Ghan, Steven J.; Liu, Xiaohong; Ecuyer, Tristan L.; Zhang, Kai; Morrison, H.; Ovchinnikov, Mikhail; Easter, Richard C.; Marchand, Roger; Chand, Duli; Qian, Yun; Penner, Joyce E.

    2012-08-15

    Aerosol indirect effects have remained the largest uncertainty in estimates of the radiative forcing of past and future climate change. Observational constraints on cloud lifetime effects are particularly challenging since it is difficult to separate aerosol effects from meteorological influences. Here we use three global climate models, including a multi-scale aerosol-climate model PNNL-MMF, to show that the dependence of the probability of precipitation on aerosol loading, termed the precipitation frequency susceptibility (S{sub pop}), is a good measure of the liquid water path response to aerosol perturbation ({lambda}), as both Spop and {lambda} strongly depend on the magnitude of autoconversion, a model representation of precipitation formation via collisions among cloud droplets. This provides a method to use satellite observations to constrain cloud lifetime effects in global climate models. S{sub pop} in marine clouds estimated from CloudSat, MODIS and AMSR-E observations is substantially lower than that from global climate models and suggests a liquid water path increase of less than 5% from doubled cloud condensation nuclei concentrations. This implies a substantially smaller impact on shortwave cloud radiative forcing (SWCF) over ocean due to aerosol indirect effects than simulated by current global climate models (a reduction by one-third for one of the conventional aerosol-climate models). Further work is needed to quantify the uncertainties in satellite-derived estimates of S{sub pop} and to examine S{sub pop} in high-resolution models.

  13. Assessing the Potential Effect of Anthropogenic Aerosol Dimming on Sea Surface Temperatures (SSTs)

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Wild, Martin; Knutti, Reto

    2014-05-01

    It is beyond doubt that anthropogenic aerosols have an impact on the Earth's radiative balance and hydrological cycle through both direct and indirect effects. The focus of this presentation is the statistically robust quantification of anthropogenic aerosol dimming over oceans, using a global climate model (ECHAM5 at T42L19 resolution) combined with a detailed aerosol microphysics module (HAM, the Hamburg Aerosol Module). The long term goal is to quantify consequences of such forcing on sea surface temperatures (SSTs). We use a series of atmosphere only experiments with prescribed observed transient SSTs covering the years 1870-2000. All experimental setups are identical except for anthropogenic aerosol emissions, which are once transient (13 ensemble members) and once held constant at pre-industrial levels (9 ensemble members). On regional scales and in recent decades, anthropogenic aerosol dimming at the sea surface can reach considerable magnitudes, exceeding 20W/m2 in the model. To quantify these findings in more detail, we assume that anthropogenic aerosols spread from the continents in plumes, and introduce identification criteria for said plumes based on statistical testing of changes in aerosol optical thickness and downward short-wave radiation (clear-sky and all-sky). Using the pre-industrial experiment data to construct a reference distribution, the above three variables are tested at each grid point for each month and decade of the transient experiment against the respective reference distribution to identify significant changes in aerosol-induced surface forcing, in the form of changes in downward clearsky shortwave radiation (direct aerosol effect) or in the form or changes of downward allsky shortwave radiation (including also indirect aerosol effects). The resulting aerosol plume regions are analysed for size, intensity and associated surface dimming, persistence, seasonality, and interdecadal trends. The sensitivity of the results towards the

  14. Icehouse Effect: A Polar Autumn and Winter Cooling Trend

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.

    1999-01-01

    The icehouse effect is a hypothesized polar climate trend toward cooling (or lack of warming) in response to greenhouse warming of adjacent lower latitudes. When greenhouse warmed air from lower latitudes moves over ice and snow, it generates a stronger, more stable, cappino, inversion than in a parallel case without greenhouse warming. Because the degree of decoupling between vertically adjacent air masses is directly dependent on the strength of the inversion, the capping inversion acts somewhat analogously to the walls and roof of the icehouse of generations past. What is inside the icehouse, namely the cold polar atmospheric boundary layer (ABL) air, is preserved by the "insulation" or decoupling, provided by the warm air aloft. Observations over the Arctic Ocean have shown an unexpected lack of any detectable surface warming trend over the past 40 years. This finding strongly contradicts climate model predictions that polar regions should show the strongest effect of greenhouse warming. It also stands in contrast to the consensus reached by the Intergovernmental Panel on Climate Change (IPCC), that human caused greenhouse warming is now detectable globally. One might ask: Are these Arctic observations wrong? Or, if right, is there a plausible physical explanation for them? The published observations mentioned above used about 50,000 soundings over the Arctic Ocean. Here I present a novel analysis of ALL available Arctic rawinsonde data north of 65N--a total of more than 1.1 million soundings. The analysis confirms the previously published result: There is indeed a slight climate-cooling trend in the vast majority of the data. Importantly, there are also select conditions (very strong and very weak stability of the ABL) which show a consistent, strong Arctic warming trend. It is the juxtaposition of these warming and cooling trends which defines a unique "icehouse signature" for which an explanation can be sought.

  15. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  16. The Effect of Wake Passing on Turbine Blade Film Cooling

    NASA Technical Reports Server (NTRS)

    Heidmann, James David

    1996-01-01

    The effect of upstream blade row wake passing on the showerhead film cooling performance of a downstream turbine blade has been investigated through a combination of experimental and computational studies. The experiments were performed in a steady-flow annular turbine cascade facility equipped with an upstream rotating row of cylindrical rods to produce a periodic wake field similar to that found in an actual turbine. Spanwise, chordwise, and temporal resolution of the blade surface temperature were achieved through the use of an array of nickel thin-film surface gauges covering one unit cell of showerhead film hole pattern. Film effectiveness and Nusselt number values were determined for a test matrix of various injectants, injectant blowing ratios, and wake Strouhal numbers. Results indicated a demonstratable reduction in film effectiveness with increasing Strouhal number, as well as the expected increase in film effectiveness with blowing ratio. An equation was developed to correlate the span-average film effectiveness data. The primary effect of wake unsteadiness was found to be correlated well by a chordwise-constant decrement of 0.094-St. Measurable spanwise film effectiveness variations were found near the showerhead region, but meaningful unsteady variations and downstream spanwise variations were not found. Nusselt numbers were less sensitive to wake and injection changes. Computations were performed using a three-dimensional turbulent Navier-Stokes code which was modified to model wake passing and film cooling. Unsteady computations were found to agree well with steady computations provided the proper time-average blowing ratio and pressure/suction surface flow split are matched. The remaining differences were isolated to be due to the enhanced mixing in the unsteady solution caused by the wake sweeping normally on the pressure surface. Steady computations were found to be in excellent agreement with experimental Nusselt numbers, but to overpredict

  17. Aerosol optical thickness measurements during FIFE '89

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi N.; Bruegge, Carol J.; Markham, Brian L.

    1990-01-01

    The measurements used for correction and calibration are presented which permit the estimation of atmospheric effects on reflected and transmitted solar radiation. Four sun-photometers are calibrated and used to derive aerosol optical thicknesses that agree with expected uncertainties, and lower values and higher values are associated with cool dry northerly flows and warm humid southerly flows, respectively. The rapid increase in the vertical aerosol optical thickness after sunrise is related to the growth of the mixing layer which can be inferred from the 2D maps of the instantaneous aerosol number densities.

  18. Exploring matrix effects on photochemistry of organic aerosols

    PubMed Central

    Lignell, Hanna; Hinks, Mallory L.; Nizkorodov, Sergey A.

    2014-01-01

    This work explores the effect of the environment on the rate of photolysis of 2,4-dinitrophenol (24-DNP), an important environmental toxin. In stark contrast to the slow photolysis of 24-DNP in an aqueous solution, the photolysis rate is increased by more than an order of magnitude for 24-DNP dissolved in 1-octanol or embedded in secondary organic material (SOM) produced by ozonolysis of α-pinene. Lowering the temperature decreased the photolysis rate of 24-DNP in SOM much more significantly than that of 24-DNP in octanol, with effective activation energies of 53 kJ/mol and 12 kJ/mol, respectively. We discuss the possibility that the increasing viscosity of the SOM matrix constrains the molecular motion, thereby suppressing the hydrogen atom transfer reaction to the photo-excited 24-DNP. This is, to our knowledge, the first report of a significant effect of the matrix, and possibly viscosity, on the rate of an atmospheric photochemical reaction within SOM. It suggests that rates of photochemical processes in organic aerosols will depend on both relative humidity and temperature and thus altitude. The results further suggest that photochemistry in SOM may play a key role in transformations of atmospheric organics. For example, 24-DNP and other nitro-aromatic compounds should readily photodegrade in organic particulate matter, which has important consequences for predicting their environmental fates and impacts. PMID:25201953

  19. Measured effects of coolant injection on the performance of a film cooled turbine

    NASA Technical Reports Server (NTRS)

    Mcdonel, J. D.; Eiswerth, J. E.

    1977-01-01

    Tests have been conducted on a 20-inch diameter single-stage air-cooled turbine designed to evaluate the effects of film cooling air on turbine aerodynamic performance. The present paper reports the results of five test configurations, including two different cooling designs and three combinations of cooled and solid airfoils. A comparison is made of the experimental results with a previously published analytical method of evaluating coolant injection effects on turbine performance.

  20. Effects of stratospheric aerosol surface processes on the LLNL two-dimensional zonally averaged model

    NASA Technical Reports Server (NTRS)

    Connell, Peter S.; Kinnison, Douglas E.; Wuebbles, Donald J.; Burley, Joel D.; Johnston, Harold S.

    1994-01-01

    We have investigated the effects of incorporating representations of heterogeneous chemical processes associated with stratospheric sulfuric acid aerosol into the LLNL two-dimensional, zonally averaged, model of the troposphere and stratosphere. Using distributions of aerosol surface area and volume density derived from SAGE II satellite observations, we were primarily interested in changes in partitioning within the Cl- and N- families in the lower stratosphere, compared to a model including only gas phase photochemical reactions. We have considered the heterogeneous hydrolysis reactions N2O5 + H2O(aerosol) yields 2 HNO3 and ClONO2 + H2O(aerosol) yields HOCl + HNO3 alone and in combination with the proposed formation of nitrosyl sulfuric acid (NSA) in the aerosol and its reaction with HCl. Inclusion of these processes produces significant changes in partitioning in the NO(y) and ClO(y) families in the middle stratosphere.

  1. Aerosol effects on stratocumulus water paths in a PDF-based parameterization

    NASA Astrophysics Data System (ADS)

    Guo, H.; Golaz, J.-C.; Donner, L. J.

    2011-09-01

    Successful simulation of aerosol indirect effects in climate models requires parameterizations that capture the full range of cloud-aerosol interactions, including positive and negative liquid water path (LWP) responses to increasing aerosol concentrations, as suggested by large eddy simulations (LESs). A parameterization based on multi-variate probability density functions with dynamics (MVD PDFs) has been incorporated into the single-column version of GFDL AM3, extended to treat aerosol activation, and coupled with a two-moment microphysics scheme. We use it to explore cloud-aerosol interactions. In agreement with LESs, our single-column simulations produce both positive and negative LWP responses to increasing aerosol concentrations, depending on precipitation and free atmosphere relative humidity. We have conducted sensitivity tests to vertical resolution and droplet sedimentation parameterization. The dependence of sedimentation on cloud droplet size is essential to capture the full LWP responses to aerosols. Further analyses reveal that the MVD PDFs are able to represent changes in buoyancy profiles induced by sedimentation as well as enhanced entrainment efficiency with aerosols comparable to LESs.

  2. Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing-Jin-Ji and its near surrounding region - Part 2: Aerosols' radiative feedback effects

    NASA Astrophysics Data System (ADS)

    Wang, H.; Shi, G. Y.; Zhang, X. Y.; Gong, S. L.; Tan, S. C.; Chen, B.; Che, H. Z.; Li, T.

    2014-11-01

    Two model experiments, namely a control (CTL) experiment without aerosol-radiation feedbacks and a RAD experiment with online aerosol-radiation interactions, were designed to study the radiative feedback on regional radiation budgets, PBL meteorology and haze formation due to aerosols during haze episodes over China Jing-Jin-Ji and its near surroundings (3JNS Region, for Beijing, Tianjin, Hebei Province, East Shanxi Province, West Shandong Province and North Henan Province) with a two-way atmospheric chemical transport model. The impact of aerosols on solar radiation reaching Earth's surface, outgoing longwave emission at the top of the atmosphere, air temperature, PBL turbulence diffusion, PBL height, wind speeds, air pressure pattern and PM2.5 has been studied focusing on a haze episode during the period from 7 to 11 July 2008. The results show that the mean solar radiation flux that reaches the ground decreases about 15% in China 3JNS Region and by 20 to 25% in the region with the highest AOD during the haze episode. The fact that aerosol cools the PBL atmosphere but warms the atmosphere above it leads to a more stable atmospheric stratification over the region, which causes a decrease in about 52% of turbulence diffusion and a decrease in about 33% of the PBL height. This consequently forms a positive feedback on the particle concentration within the PBL and the surface as well as the haze formation. On the other hands, aerosol DRF (direct radiative forcing) increases about 9% of PBL wind speed, weakens the subtropical high by about 14 hPa, which aids the collapse of haze pollution, resulting in a negative feedback to the haze episode. The synthetic impacts from the two opposite feedbacks result in about a 14% increase in surface PM2.5. However, the persistence time of both high PM2.5 and haze pollution is not effected by the aerosol DRF. On the contrary over offshore China, aerosols heat the PBL atmosphere and cause unstable atmospheric stratification, but the

  3. Direct and indirect methods for correcting the aerosol effect on remote sensing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier

    1994-01-01

    Aspects of aerosol studies and remote sensing are reviewed. Aerosol scatters solar radiation before it reaches the surface and scatters and absorbs it again after it is reflected from the surface and before it reaches the satellite sensor. The effect is spectrally and spatially dependent. Therefore atmospheric aerosol (dust, smoke and air pollution particles) has a significant effect on remote sensing. Correction for the aerosol effect was never achieved on an operational basis though several case studies were demonstrated. Correction can be done in a direct way by deriving the aerosol loading from the image itself and correcting for it using the appropriate radiative transfer model or by an indirect way, by defining remote sensing functions that are less dependent on the aerosol loading. To some degree this was already achieved in global remote sensing of vegetation where a composite of several days of NDVI (Normalized Difference Vegetation Index) measurements, choosing the maximal value, was used instead of a single cloud screened value. The Atmospheric Resistant Vegetation Index (ARVI) introduced recently for the NASA Earth Observing System EOS-MODIS is the most appropriate example of indirect correction, where the index is defined in such a way that the atmospheric effect in the blue spectral channel cancels to a large degree the atmospheric in the red channel in computations of a vegetation index. Atmospheric corrections can also use aerosol climatology and ground based instrumentation.

  4. Simulations of aerosols and their effects on photolysis and ozone formation in Mexico City

    NASA Astrophysics Data System (ADS)

    Li, G.; Zavala, M.; Lei, W.; Karydis, V. A.; Tsimpidi, A. P.; Pandis, S.; Molina, L. T.

    2009-04-01

    Atmospheric aerosols, formed from natural and anthropogenic sources, are believed to be associated with adverse human effects at high levels in polluted urban areas. They also play a key role in climate through direct and indirect effects. Therefore, accurate simulations of aerosol composition and distribution in the atmospheric models are important in evaluating their impact on environment and climate. In the present study, a flexible gas phase chemical module with SAPRC mechanism and the CMAQ/models3 aerosol module developed by EPA have been implemented into the WRF-CHEM model. Additionally, to further improve the aerosol, especially the secondary organic aerosol (SOA) simulations, an advanced SOA module [Tsimpidi et al., 2009] has been incorporated into the WRF-CHEM model. The new SOA module is based on the volatility basis-set approach in which both primary and secondary organic components are assumed to be semivolatile and photochemically reactive [Lane et al., 2008]. Gas phase species and aerosol simulation results are compared with the available measurements obtained during the MILAGRO 2006 campaign. When the advanced SOA mechanism is employed, the SOA simulations are significantly improved. Furthermore, the aerosol impacts on the photochemistry in Mexico City have been evaluated using the FTUV [Tie et al., 2005]. Aerosol optical properties are calculated using the Mie theory and compared with available observations in Mexico City [Paredes-Miranda et al., 2008]. Aerosols, principally black carbon, reduce the photolysis frequencies of J[O3(1D)] and J[NO2] in the planetary boundary layer and hence decrease the ground-level ozone concentration. Our study demonstrates that the impact of aerosols on photochemistry is significant in polluted urban atmosphere. References: Lane, T. E., N. M. Donahue, and S. N. Pandis (2008), Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model, PMCAMx, Atmos. Environ

  5. A Case Study of Urbanization Impact on Summer Precipitation in the Greater Beijing Metropolitan Area. Urban Heat Island Versus Aerosol Effects

    SciTech Connect

    Zhong, Shi; Qian, Yun; Zhao, Chun; Leung, Lai-Yung R.; Yang, Xiuqun

    2015-10-23

    Convection-resolving ensemble simulations using the WRF-Chem model coupled with a single-layer Urban Canopy Model (UCM) are conducted to investigate the individual and combined impacts of land use and anthropogenic pollutant emissions from urbanization on a heavy rainfall event in the Greater Beijing Metropolitan Area (GBMA) in China. The simulation with the urbanization effect included generally captures the spatial pattern and temporal variation of the rainfall event. An improvement of precipitation is found in the experiment including aerosol effect on both clouds and radiation. The expanded urban land cover and increased aerosols have an opposite effect on precipitation processes, with the latter playing a more dominant role, leading to suppressed convection and rainfall over the upstream (northwest) area, and enhanced convection and more precipitation in the downstream (southeast) region of the GBMA. In addition, the influence of aerosol indirect effect is found to overwhelm that of direct effect on precipitation in this rainfall event. Increased aerosols induce more cloud droplets with smaller size, which favors evaporative cooling and reduce updrafts and suppress convection over the upstream (northwest) region in the early stage of the rainfall event. As the rainfall system propagates southeastward, more latent heat is released due to the freezing of larger number of smaller cloud drops that are lofted above the freezing level, which is responsible for the increased updraft strength and convective invigoration over the downstream (southeast) area.

  6. A case study of urbanization impact on summer precipitation in the Greater Beijing Metropolitan Area: Urban heat island versus aerosol effects

    NASA Astrophysics Data System (ADS)

    Zhong, Shi; Qian, Yun; Zhao, Chun; Leung, Ruby; Yang, Xiu-Qun

    2015-10-01

    Convection-resolving ensemble simulations using the WRF-Chem model coupled with a single-layer Urban Canopy Model are conducted to investigate the individual and combined impacts of land use and anthropogenic pollutant emissions from urbanization on a heavy rainfall event in the Greater Beijing Metropolitan Area (GBMA) in China. The simulation with the urbanization effect included generally captures the spatial pattern and temporal variation of the rainfall event. An improvement of precipitation is found in the experiment including aerosol effect on both clouds and radiation. The expanded urban land cover and increased aerosols have an opposite effect on precipitation processes, with the latter playing a more dominant role, leading to suppressed convection and rainfall over the upstream (northwest) area, and enhanced convection and more precipitation in the downstream (southeast) region of the GBMA. In addition, the influence of aerosol indirect effect is found to overwhelm that of direct effect on precipitation in this rainfall event. Increased aerosols lead to more cloud droplets with smaller size, which favor evaporative cooling and reduce updrafts and suppress convection over the upstream (northwest) region in the early stage of the rainfall event. As the rainfall system propagates southeastward, more latent heat is released due to the freezing of larger number of smaller cloud drops that are lofted above the freezing level, which is responsible for the increased updraft strength and convective invigoration over the downstream (southeast) area.

  7. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each

  8. Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m2, with the largest contribution from the direct effect (-0.5 W/m2). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m2) and semidirect effects (-0.10 W/m2) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m2), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying

  9. Inelastic scattering in planetary atmospheres. I - The Ring effect, without aerosols

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Young, A. T.; Humphreys, T. J.

    1981-01-01

    The contribution of inelastic molecular scattering (Rayleigh-Brillouin and rotational Raman scattering) to the filling-in of Fraunhofer lines in the light of the blue sky is studied. Aerosol fluorescence is shown to be negligible, and aerosol scattering is ignored. The angular and polarization dependences of the filling-in detail for single scattering are discussed. An approximate treatment of multiple scattering, using a backward Monte Carlo technique, makes it possible to investigate the effects of the ground albedo. As the molecular scatterings alone produce more line-filling than is observed, it seems likely that aerosols dilute the effect by contributing unaltered sunlight to the observed spectra.

  10. Effect of stratospheric aerosol layers on the TOMS/SBUV ozone retrieval

    NASA Technical Reports Server (NTRS)

    Torres, O.; Ahmad, Zia; Pan, L.; Herman, J. R.; Bhartia, P. K.; Mcpeters, R.

    1994-01-01

    An evaluation of the optical effects of stratospheric aerosol layers on total ozone retrieval from space by the TOMS/SBUV type instruments is presented here. Using the Dave radiative transfer model we estimate the magnitude of the errors in the retrieved ozone when polar stratospheric clouds (PSC's) or volcanic aerosol layers interfere with the measurements. The largest errors are produced by optically thick water ice PSC's. Results of simulation experiments on the effect of the Pinatubo aerosol cloud on the Nimbus-7 and Meteor-3 TOMS products are presented.

  11. SAGE II/Umkehr ozone comparisons and aerosols effects: An empirical and theoretical study. Final report

    SciTech Connect

    Newchurch, M.

    1997-09-15

    The objectives of this research were to: (1) examine empirically the aerosol effect on Umkehr ozone profiles using SAGE II aerosol and ozone data; (2) examine theoretically the aerosol effect on Umkehr ozone profiles; (3) examine the differences between SAGE II ozone profiles and both old- and new-format Umkehr ozone profiles for ozone-trend information; (4) reexamine SAGE I-Umkehr ozone differences with the most recent version of SAGE I data; and (5) contribute to the SAGE II science team.

  12. Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters

    SciTech Connect

    Kravitz, Benjamin S.

    2013-02-12

    Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

  13. Measurement-based estimates of direct radiative effects of absorbing aerosols above clouds

    NASA Astrophysics Data System (ADS)

    Feng, Nan; Christopher, Sundar A.

    2015-07-01

    The elevated layers of absorbing smoke aerosols from western African (e.g., Gabon and Congo) biomass burning activities have been frequently observed above low-level stratocumulus clouds off the African coast, which presents an excellent natural laboratory for studying the effects of aerosols above clouds (AAC) on regional energy balance in tropical and subtropical environments. Using spatially and temporally collocated Moderate Resolution Imaging Spectroradiometer, Ozone Monitoring Instrument (OMI), and Clouds and the Earth's Radiant Energy System data sets, the top-of-atmosphere shortwave aerosol direct shortwave radiative effects (ARE) of absorbing aerosols above low-level water clouds in the southeast Atlantic Ocean was examined in this study. The regional averaged instantaneous ARE has been estimated to be 36.7 ± 20.5 Wm-2 (regional mean ± standard deviation) along with a mean positive OMI Aerosol Index at 1.3 in August 2006 based on multisensors measurements. The highest magnitude of instantaneous ARE can even reach 138.2 Wm-2. We assess that the 660 nm cloud optical depth (COD) values of 8-12 is the critical value above (below) which aerosol absorption (scattering) effect dominates and further produces positive (negative) ARE values. The results further show that ARE values are more sensitive to aerosols above lower COD values than cases for higher COD values. This is among the first studies to provide quantitative estimates of shortwave ARE due to AAC events from an observational perspective.

  14. Effects of Carbon Dioxide Aerosols on the Viability of Escherichia coli during Biofilm Dispersal

    PubMed Central

    Singh, Renu; Monnappa, Ajay K.; Hong, Seongkyeol; Mitchell, Robert J.; Jang, Jaesung

    2015-01-01

    A periodic jet of carbon dioxide (CO2) aerosols is a very quick and effective mechanical technique to remove biofilms from various substrate surfaces. However, the impact of the aerosols on the viability of bacteria during treatment has never been evaluated. In this study, the effects of high-speed CO2 aerosols, a mixture of solid and gaseous CO2, on bacteria viability was studied. It was found that when CO2 aerosols were used to disperse biofilms of Escherichia coli, they led to a significant loss of viability, with approximately 50% of the dispersed bacteria killed in the process. By comparison, 75.6% of the biofilm-associated bacteria were viable when gently dispersed using Proteinase K and DNase I. Indirect proof that the aerosols are damaging the bacteria was found using a recombinant E. coli expressing the cyan fluorescent protein, as nearly half of the fluorescence was found in the supernatant after CO2 aerosol treatment, while the rest was associated with the bacterial pellet. In comparison, the supernatant fluorescence was only 9% when the enzymes were used to disperse the biofilm. As such, these CO2 aerosols not only remove biofilm-associated bacteria effectively but also significantly impact their viability by disrupting membrane integrity. PMID:26345492

  15. The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx

    NASA Astrophysics Data System (ADS)

    Chu, Biwu; Hao, Jiming; Takekawa, Hideto; Li, Junhua; Wang, Kun; Jiang, Jingkun

    2012-08-01

    To investigate the effects of Fe(II) and Fe(III) ions on secondary organic aerosol (SOA) formation, we conducted a series of photooxidation experiments with α-pinene and toluene in the presence of nitric oxides (NOx) with/without FeSO4 or Fe2(SO4)3 seed aerosols. The FeSO4 seed aerosols suppressed SOA formation, while Fe2(SO4)3 seed aerosols did not display a noticeable effect on SOA formation. We did not observe effects of FeSO4 and Fe2(SO4)3 seed aerosols on gas phase compounds, including ozone, NOx, and hydrocarbons (HCs). The negative effect of Fe(II)-containing seed aerosols on SOA formation due to the reduction of condensable compounds (CCs) generated from hydrocarbon oxidation is discussed. The mean molecular weight of CCs reduced by Fe(II) is tentatively estimated to be larger than 300, indicating a possibility that many of the CCs reduced by Fe(II) are oligomers. Reduction of oligomer precursors may interrupt the oligomerization of other aldehyde products. If Fe(II) regeneration from photoreduction of Fe(III) is considered, the estimated mean molecular weight of the CCs reduced would be smaller. However, the negligible effect of Fe(III)-containing seed aerosols on SOA formation indicates that Fe(III) photoreduction is negligible in our experiments.

  16. Effects of Aircraft On Aerosol Abundance in the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Ferry, G. V.; Pueschel, R. F.; Strawa, A. W.; Howard, S. D.; Verma, S.; Mahoney, M. J.; Bui, T. P.; Hannan, J. R.; Fuelberg, H. E.; Condon, Estelle P. (Technical Monitor)

    1999-01-01

    A significant increase in sulfuric acid aerosol concentration was detected above 10 km pressure altitude during a cross-corridor flight out of Shannon on October 23, 1997. The source of this aerosol is ascribed to commercial aircraft operations in flight corridors above 10 km, because (1) a stable atmosphere prevented vertical air mass exchanges and thus eliminated surface sources, (2) air mass back trajectories documented the absence of remote continental sources, and (3) temperature profiler data showed the tropopause at least one kilometers above flight altitude throughout the flight. Particle volatility identified 70% H2SO4, 20% (NH4)2SO4 and 10% nonvolatile aerosol in the proximity of flight corridors, and (10-30)% H2SO4, up to 50% (NH4)2SO4, and (40-60)% nonvolatile aerosols in air that was not affected by aircraft operations below 10 km. Only a very small fraction of the nonvolatile particles (determined with a condensation nucleus counter) could be morphologically identified as soot aerosol (validated by scanning electron microscopy of wire impactor samples). The newly formed H2SO4 particles did not measurably affect surface area and volume of the background aerosol due to their small size, hence did not affect radiative transfer directly.

  17. Effects of aerosol emission pathways on future warming and human health

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Matthews, Damon

    2016-04-01

    The peak global temperature is largely determined by cumulative emissions of long-lived greenhouse gases. However, anthropogenic emissions include also so-called short-lived climate forcers (SLCFs), which include aerosol particles and methane. Previous studies with simple models indicate that the timing of SLCF emission reductions has only a small effect on the rate of global warming and even less of an effect on global peak temperatures. However, these simple model analyses do not capture the spatial dynamics of aerosol-climate interactions, nor do they consider the additional effects of aerosol emissions on human health. There is therefore merit in assessing how the timing of aerosol emission reductions affects global temperature and premature mortality caused by elevated aerosol concentrations, using more comprehensive climate models. Here, we used an aerosol-climate model ECHAM-HAMMOZ to simulate the direct and indirect radiative forcing resulting from aerosol emissions. We simulated Representative Concentration Pathway (RCP) scenarios, and we also designed idealized low and high aerosol emission pathways based on RCP4.5 scenario (LOW and HIGH, respectively). From these simulations, we calculated the Effective Radiative Forcing (ERF) from aerosol emissions between 1850 and 2100, as well as aerosol concentrations used to estimate the premature mortality caused by particulate pollution. We then use the University of Victoria Earth System Climate Model to simulate the spatial and temporal pattern of climate response to these aerosol-forcing scenarios, in combination with prescribed emissions of both short and long-lived greenhouse gases according to the RCP4.5 scenario. In the RCP scenarios, global mean ERF declined during the 21st century from ‑1.3 W m‑2 to ‑0.4 W m‑2 (RCP8.5) and ‑0.2 W m‑2 (RCP2.6). In the sensitivity scenarios, the forcing at the end of the 21st century was ‑1.6 W m‑2 (HIGH) and practically zero (LOW). The difference in global

  18. Quantitative analysis of the direct effect of aerosols over decadal scale by using ECHAM6-standalone

    NASA Astrophysics Data System (ADS)

    Muhammad, K.; Bott, A.; Hense, A.

    2013-12-01

    The influence of aerosols on climate is an important but still highly uncertain aspect in climate research. By using atmospheric general circulation model ECHAM6 our objective is to quantify the direct effect of aerosols over decadal time scale in comparison to the variability induced by the varying sea surface temperatures (SST) and sea ice concentrations (SIC) taken by the AMIP-II data base and the inevitable internal and unpredictable climate noise. We integrated the model with prescribed SST/SIC along with observed green house gases and aerosols concentrations for ten year period 1995-2004. Two ensembles with sample size ten, each have been created by starting the integrations on January 1st, 1995 with ten different initial conditions derived from two control runs over 15-years. These ensembles differ for tropospheric aerosols (TA): the non-aerosol case (NAC) is without any TA and aerosol case (AC) is utilizing a time variable data set of aerosols optical properties for input into the solar part of the ECHAM6 radiation code (Kinne et al, 2006). This set-up allows for a quantitative estimation and separation of the stationary and transient aerosol effects, the SST/SIC induced variability and the internal variability due to large scale atmospheric instabilities and non-linearities with the help of a two-way analysis of variance. We analyzed ensemble data for top of atmosphere (TOA) energy balance and temperature at 850 hPa. In the NAC, the ensemble exhibits a global and annual mean 3 W/m2 imbalance of the TOA radiation balance whereas the AC shows only 0.6 W/m2 being much closer in radiative balance over ten year period. The aerosols increase global planetary albedo from 0.29 (non-aerosol) to 0.30 for aerosol case. Extending the analysis to regional values of annual mean TOA radiation balance components, we find that the changes in TOA solar radiation budget are highly significant for static direct aerosol effect with local contributions to the total variability

  19. Aerosols in the Convective Boundary Layer: Radiation Effects on the Coupled Land-Atmosphere System

    NASA Astrophysics Data System (ADS)

    Barbaro, E.; Vila-Guerau Arellano, J.; Ouwersloot, H. G.; Schroter, J.; Donovan, D. P.; Krol, M. C.

    2013-12-01

    We investigate the responses of the surface energy budget and the convective boundary-layer (CBL) dynamics to the presence of aerosols using a combination of observations and numerical simulations. A detailed observational dataset containing (thermo)dynamic variables observed at CESAR (Cabauw Experimental Site for Atmospheric Research) and aerosol information from the European Integrated Project on Aerosol, Cloud, Climate, and Air Quality Interactions (IMPACT/EUCAARI) campaign is employed to design numerical experiments reproducing two prototype clear-sky days characterized by: (i) a well-mixed residual layer above a ground inversion and (ii) a continuously growing CBL. A large-eddy simulation (LES) model and a mixed-layer (MXL) model, both coupled to a broadband radiative transfer code and a land-surface model, are used to study the impacts of aerosol scattering and absorption of shortwave radiation on the land-atmosphere system. We successfully validate our model results using the measurements of (thermo)dynamic variables and aerosol properties for the two different CBL prototypes studied here. Our findings indicate that in order to reproduce the observed surface energy budget and CBL dynamics, information of the vertical structure and temporal evolution of the aerosols is necessary. Given the good agreement between the LES and the MXL model results, we use the MXL model to explore the aerosol effect on the land-atmosphere system for a wide range of optical depths and single scattering albedos. Our results show that higher loads of aerosols decrease irradiance, imposing an energy restriction at the surface. Over the studied well-watered grassland, aerosols reduce the sensible heat flux more than the latent heat flux. As a result, aerosols increase the evaporative fraction. Moreover, aerosols also delay the CBL morning onset and anticipate its afternoon collapse. If also present above the CBL during the morning transition, aerosols maintain a persistent near

  20. Shortwave direct radiative effects of above cloud aerosols over global oceans derived from eight years of CALIOP and MODIS observations

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Meyer, K.; Yu, H.; Platnick, S.; Colarco, P.; Liu, Z.; Oreopoulos, L.

    2015-09-01

    In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DRE) of above-cloud aerosols (ACAs) over global oceans using eight years of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: Southeast (SE) Atlantic region where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over African Savanna; Tropical Northeast Atlantic and Arabian Sea where ACAs are predominantly windblown dust from the Sahara and Arabian desert, respectively; and Northwest Pacific where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in TNE Atlantic and Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m-2 (range of -0.03 to 0.06 W m-2) at TOA. The DREs at surface and within atmosphere are -0.15 W m-2 (range of -0.09 to -0.21 W m-2), and 0.17 W m-2 (range of 0.11 to 0.24 W m-2), respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region the JJA (July ~ August) seasonal mean cloudy-sky DRE is about 0.7 W m-2 (range of 0.2 to 1.2 W m-2) at TOA. The uncertainty in our DRE computations is mainly cause by the uncertainties in the aerosol optical properties, in particular aerosol absorption, and uncertainties in the CALIOP operational aerosol optical thickness retrieval. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions, and improved lidar retrieval algorithm, in particular vertical feature masking, would help reduce the

  1. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage. [aircraft engine blade cooling

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1984-01-01

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  2. Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect.

    PubMed

    Zhang, Jian-Qi; Zhang, Shuo; Zou, Jin-Hua; Chen, Liang; Yang, Wen; Li, Yong; Feng, Mang

    2013-12-01

    We propose an efficient optical electromagnetically induced transparency (EIT) cooling scheme for a cantilever with a nitrogen-vacancy center attached in a non-uniform magnetic field using dynamical Zeeman effect. In our scheme, the Zeeman effect combined with the quantum interference effect enhances the desired cooling transition and suppresses the undesired heating transitions. As a result, the cantilever can be cooled down to nearly the vibrational ground state under realistic experimental conditions within a short time. This efficient optical EIT cooling scheme can be reduced to the typical EIT cooling scheme under special conditions. PMID:24514521

  3. Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Sun, J. Y.; Shen, X. J.; Zhang, Y. M.; Che, H.; Ma, Q. L.; Zhang, Y. W.; Zhang, X. Y.; Ogren, J. A.

    2015-07-01

    Scattering of solar radiation by aerosol particles is highly dependent on relative humidity (RH) as hygroscopic particles take up water with increasing RH. To achieve a better understanding of the effect of aerosol hygroscopic growth on light scattering properties and radiative forcing, the aerosol scattering coefficients at RH in the range of 40 to ~ 90 % were measured using a humidified nephelometer system in the Yangtze River Delta of China in March 2013. In addition, the aerosol size distribution and chemical composition were measured. During the observation period, the mean and standard deviation (SD) of enhancement factors at RH = 85 % for the scattering coefficient (f(85 %)), backscattering coefficient (fb(85 %)), and hemispheric backscatter fraction (fβ(85 %)) were 1.58 ± 0.12, 1.25 ± 0.07, and 0.79 ± 0.04, respectively, i.e., aerosol scattering coefficient and backscattering coefficient increased by 58 and 25 % as the RH increased from 40 to 85 %. Concurrently, the aerosol hemispheric backscatter fraction decreased by 21 %. The relative amount of organic matter (OM) or inorganics in PM1 was found to be a main factor determining the magnitude of f(RH). The highest values of f(RH) corresponded to the aerosols with a small fraction of OM, and vice versa. The relative amount of NO3- in fine particles was strongly correlated with f(85 %), which suggests that NO3- played a vital role in aerosol hygroscopic growth during this study. The mass fraction of nitrate also had a close relationship to the curvature of the humidograms; higher mass fractions of nitrate were associated with humidograms that had the least curvature. Aerosol hygroscopic growth caused a 47 % increase in the calculated aerosol direct radiative forcing at 85 % RH, compared to the forcing at 40 % RH.

  4. The effect of simulated evaporative cooling on thermal entrainment

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Cotel, Aline

    1998-11-01

    The effect of simulated evaporative cooling on the entrainment of a thermal impinging on a stratified interface is investigated experimentally. Evaporative cooling in atmospheric clouds results in buoyancy reversal, where the mixed fluid is denser than either parent parcel. This is realized in the laboratory by using a mixture of ethyl alcohol and ethylene glycohol in aqueous solution. A thermal is formed by releasing a small volume of buoyant fluid from the bottom of a lucite tank. It rises first through a relatively dense lower layer and then impinges on a thin stratified interface, above which is a relatively light layer. The entrainment of upper layer across the interface is measured optically. The entrainment rate is found to obey a Ri-3/2 power law for values of the buoyancy reversal parameter, D*, between 0 and 0.5. The entrainment rate is independent of D* for a certain range of Ri. This is consistent with the behavior of the buoyancy-reversing thermal in an unstratified environment observed by Johari.

  5. Effects of film injection angle on turbine vane cooling

    NASA Technical Reports Server (NTRS)

    Gauntner, J. W.

    1977-01-01

    Film ejection from discrete holes in the suction surface of a turbine vane was studied for hole axes (1) slanted 30 deg to the surface in the streamwise direction and (2) slanted 30 deg to the surface and 45 deg from the streamwise direction toward the hub. The holes were near the throat area in a five-row staggered array with 8-diameter spacing. Mass flux ratios were as high as 1.2. The data were obtained in an annular sector cascade at conditions where both the ratio of the boundary layer momentum thickness-to-hole diameter and the momentum thickness Reynolds number were typical of an advanced turbofan engine at both takeoff and cruise. Wall temperatures were measured downstream of each of the rows of holes. Results of this study are expressed as a comparison of cooling effectiveness between the in-line angle injection and the compound-angle injection as a function of mass flux ratio. These heat transfer results are also compared with the results of a referenced flow visualization study. Also included is a closed-form analytical solution for temperature within the film cooled wall.

  6. Evaluation of aerosol indirect radiative effects on climate in the EMAC model

    NASA Astrophysics Data System (ADS)

    Chang, Dong Yeong; Tost, Holger; Steil, Benedikt; Lelieveld, Jos

    2013-04-01

    Anthropogenic aerosol particles directly and indirectly influence cloud properties and the Earth's radiative energy budget. Several studies have estimated the effects on climate using global circulation models (GCMs), indicating large differences between different models and large uncertainty ranges. These are mostly attributed to different cloud microphysical process parameterizations and uncertainties in the representation of aerosols. Without detailed cloud microphysical processes, using empirical relations between aerosol number or mass and cloud droplet number potentially even large discrepancies may arise. In the present study, a mechanistic aerosol activation scheme, based on double moment cloud microphysics, is used to compute aerosol indirect radiative and cloud effects in the EMAC model. Aerosol activation is linked to the cloud droplet nucleation processes in warm clouds, accounting for the number, size, and chemical composition of particles under ambient meteorological conditions. This approach uses a combination of empirical and semi-empirical parameters to represent aerosol water uptake and hygroscopic growth into cloud droplets. To evaluate the performance of our approach satellite datasets are used; for example, total cloud fraction from MODIS data and cloud radiative forcing at the top of atmosphere from CERES EBAF data.

  7. A satellite view of the direct effect of aerosols on solar radiation at global scale

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, Nikolaos; Papadimas, Christos D.; Matsoukas, Christos; Fotiadi, Aggeliki; Benas, Nikolaos; Vardavas, Ilias

    2016-04-01

    Aerosols are a key parameter for better understanding and predicting current and future climate change. They are determining, apart from clouds, patterns of solar radiation through scattering and absorption processes. Especially, under cloud-free skies, aerosols are the major modulator of the solar radiation budget of the Earth-atmosphere system. Although significant improvement has been made as to better understanding the direct radiative effect (DRE) of aerosols, there is still a need for further improvement in our knowledge of the DRE spatial and temporal patterns, in particular with respect to extended spatial and temporal coverage of relevant information. In an ongoing rapidly evolving era of great satellite-based achievements, concerning the knowledge of solar radiation budget and its modulators, and with the great progress in obtaining significant information on key aerosol optical properties needed for modeling DRE, it is a great challenge to use all this new aerosol information and to see what is the new acquired scientific knowledge. The objective of this study is to obtain an improved view of global aerosol DRE effects using contemporary accurate data for the important atmospheric and surface parameters determining the solar radiation budget, with emphasis to state of the art aerosol data. Thus, a synergy is made of different datasets providing the necessary input data and of a detailed spectral radiative transfer model (RTM) to compute spectral globally distributed aerosol DREs. Emphasis is given on using highly accurate and well-tested aerosol optical properties. Spectral information on aerosol optical depth (AOD) is taken from retrieved products of the MODerate resolution Imaging Spectroradiometer (MODIS) instrument, while similar information is taken from MODIS for the aerosol asymmetry parameter (AP) over ocean. Information from MODIS is also taken for the aerosol single scattering albedo (SSA). All this information comes from the latest Collection

  8. Cooling effects study by considering a turbulence model in injection molding

    NASA Astrophysics Data System (ADS)

    Hsu, Fu-Hung; Wu, Bo-Han; Huang, Chao-Tsai; Chang, Rong-Yeu

    2014-05-01

    Cooling stage is critical in injection molding process. A well designed cooling system can effectively shorten cycle time and improve product quality. Three-dimensional cooling analysis has been embedded in injection molding simulation which provides a useful tool for cooling system design validation. However, the current simulation tool is not perfect yet since it does not consider turbulent flow and pipe surface roughness effect. In the current study, a latest simulation tool was applied which can predict the turbulent flow effect on cooling. Two cooling systems (conventional and conformal) were simulated and compared to each other. Turbulence model and surface roughness effects were also studied. The simulation results show a good agreement with experimental data which is helpful at the design stage of an injection molding cooling system.

  9. Effects of geometry on slot-jet film cooling performance

    SciTech Connect

    Hyams, D.G.; McGovern, K.T.; Leylek, J.H.

    1995-10-01

    The physics of the film cooling process for shaped, inclined slot-jets with realistic slot-length-to-width ratios (L/s) is studied for a range of blowing ratio (M) and density ratio (DR) parameters typical of gas turbine operations. For the first time in the open literature, the effect of inlet and exit shaping of the slot-jet on both flow and thermal field characteristics is isolated, and the dominant mechanisms responsible for differences in these characteristics are documented. A previously documented computational methodology was applied for the study of four distinct configurations: (1) slot with straight edges and sharp corners (reference case); (2) slot with shaped inlet region; (3) slot with shaped exit region; and (4) slot with both shaped inlet and exit regions. Detailed field results as well as surface phenomena involving adiabatic film effectiveness ({eta}) and heat transfer coefficient (h) are presented. It is demonstrated that both {eta} and h results are vital in the proper assessment of film cooling performance. All simulations were carried out using a multi-block, unstructured/adaptive grid, fully explicit, time-marching solver with multi-grid, local time stepping, and residual smoothing type acceleration techniques. Special attention was paid to and full documentation provided for: (1) proper modeling of the physical phenomena; (2) exact geometry and high quality grid generation techniques; (3) discretization schemes; and (4) turbulence modeling issues. The key parameters M and DR were varied from 1.0 to 2.0 and 1.5 to 2.0, respectively, to show their influence. Simulations were repeated for slot length-to-width ratio (L/s) of 3.0 and 4.5 in order to explain the effects of this important parameter. Additionally, the performance of two popular turbulence models, standard k-F, and RNG k-E, were studied to establish their ability to handle highly elliptic jet/crossflow interaction type processes.

  10. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kaufman, Y. J.; Chin, M.; Feingold, G.; Remer, L. A.; Anderson, T. L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; Decola, P.; Kahn, R.; Koch, D.; Loeb, N.; Reddy, M. S.; Schulz, M.; Takemura, T.; Zhou, M.

    2006-02-01

    Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ), direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error from various methods) over the global ocean. Accounting for thin cirrus contamination

  11. Distinct effects of anthropogenic aerosols on the East Asian summer monsoon between multidecadal strong and weak monsoon stages

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoning; Wang, Hongli; Liu, Xiaodong; Li, Jiandong; Wang, Zhaosheng; Liu, Yangang

    2016-06-01

    Because industrial emissions of anthropogenic aerosols over East Asia have greatly increased in recent decades, the interactions between atmospheric aerosols and the East Asian summer monsoon (EASM) have attracted enormous attention. To further understand the aerosol-EASM interaction, we investigate the impacts of anthropogenic aerosols on the EASM during the multidecadal strong (1950-1977) and weak (1978-2000) EASM stages using the Community Atmospheric Model 5.1. Numerical experiments are conducted for the whole period, including the two different EASM stages, with present day (PD, year 2000) and preindustrial (PI, year 1850) aerosol emissions, as well as the observed time-varying aerosol emissions. A comparison of the results from PD and PI shows that, with the increase in anthropogenic aerosols, the large-scale EASM intensity is weakened to a greater degree (-9.8%) during the weak EASM stage compared with the strong EASM stage (-4.4%). The increased anthropogenic aerosols also result in a significant reduction in precipitation over North China during the weak EASM stage, as opposed to a statistically insignificant change during the strong EASM stage. Because of greater aerosol loading and the larger sensitivity of the climate system during weak EASM stages, the aerosol effects are more significant during these EASM stages. These results suggest that anthropogenic aerosols from the same aerosol emissions have distinct effects on the EASM and the associated precipitation between the multidecadal weak and strong EASM stages.

  12. An attempt to quantify aerosol-cloud effects in fields of precipitating trade wind cumuli

    NASA Astrophysics Data System (ADS)

    Seifert, Axel; Heus, Thijs

    2015-04-01

    Aerosol indirect effects are notoriously difficult to understand and quantify. Using large-eddy simulations (LES) we attempt to quantify the impact of aerosols on the albedo and the precipitation formation in trade wind cumulus clouds. Having performed a set of large-domain Giga-LES runs we are able to capture the mesoscale self-organization of the cloud field. Our simulations show that self-organization is intrinsically tied to precipitation formation in this cloud regime making previous studies that did not consider cloud organization questionable. We find that aerosols, here modeled just as a perturbation in cloud droplet number concentration, have a significant impact on the transient behavior, i.e., how fast rain is formed and self-organization of the cloud field takes place. Though, for longer integration times, all simulations approach the same radiative-convective equilibrium and aerosol effects become small. The sensitivity to aerosols becomes even smaller when we include explicit cloud-radiation interaction as this leads to a much faster and more vigorous response of the cloud layer. Overall we find that aerosol-cloud interactions, like cloud lifetime effects etc., are small or even negative when the cloud field is close to equilibrium. Consequently, the Twomey effect does already provide an upper bound on the albedo effects of aerosol perturbations. Our analysis also highlights that current parameterizations that predict only the grid-box mean of the cloud field and do not take into account cloud organization are not able to describe aerosol indirect effects correctly, but overestimate them due to that lack of cloud dynamical and mesoscale buffering.

  13. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  14. How to measure thermal effects of personal cooling systems: human, thermal manikin and human simulator study.

    PubMed

    Bogerd, N; Psikuta, A; Daanen, H A M; Rossi, R M

    2010-09-01

    Thermal effects, such as cooling power and thermophysiological responses initiated upon application of a personal cooling system, can be assessed with (i) humans, (ii) a thermal manikin and (iii) a thermophysiological human simulator. In order to compare these methods, a cooling shirt (mild cooling) and an ice vest (strong cooling) were measured using human participants and a thermal manikin. Under all conditions, cooling was provided for 45 min, while resting at a room temperature of 24.6-25.0 degrees C and a relative humidity of 22-24%. Subsequently, the thermophysiological human simulator was used under the same conditions to provide data on thermophysiological responses such as skin and rectal temperatures. The cooling power determined using the thermal manikin was 2 times higher for the cooling shirt and 1.5 times higher for the ice vest compared to the cooling power determined using human participants. For the thermophysiological human simulator, the cooling power of the cooling shirt was similar to that obtained using human participants. However, it was 2 times lower for the ice vest when using the thermophysiological human simulator. The thermophysiological human simulator is shown to be a useful tool to predict thermophysiological responses, especially upon application of mild cooling intensity. However, the thermophysiological human simulator needs to be further improved for strong cooling intensities under heterogeneous conditions. PMID:20664163

  15. An increase in aerosol burden and radiative effects in a warmer world

    NASA Astrophysics Data System (ADS)

    Allen, Robert J.; Landuyt, William; Rumbold, Steven T.

    2016-03-01

    Atmospheric aerosols are of significant environmental importance, due to their effects on air quality, as well as their ability to alter the planet’s radiative balance. Recent studies characterizing the effects of climate change on air quality and the broader distribution of aerosols in the atmosphere show significant, but inconsistent results, including the sign of the effect. Using a suite of state-of-the-art climate models, we show that climate change is associated with a negative aerosol-climate feedback of -0.02 to -0.09 W m-2 K-1 for direct radiative effects, with much larger values likely for indirect radiative effects. This is related to an increase in most aerosol species, particularly over the tropics and Northern Hemisphere midlatitudes, largely due to a decrease in wet deposition associated with less large-scale precipitation over land. Although simulation of aerosol processes in global climate models possesses uncertainty, we conclude that climate change may increase aerosol burden and surface concentration, which may have implications for future air quality.

  16. Ground Based Remote Sensing of the First Aerosol Indirect Effect: An Update

    NASA Astrophysics Data System (ADS)

    Previdi, M.; Feingold, G.; Veron, D. E.; Eberhard, W. L.

    2003-12-01

    The first aerosol indirect effect can be defined as an increase in the shortwave albedo of clouds due to higher concentrations of atmospheric aerosol, whereby the aerosol acts as cloud condensation nuclei to produce increased cloud droplet concentrations and smaller, more reflective droplets. The current work is one step toward achieving a more complete understanding of the indirect effect, which will consequently allow for a better determination of how changes in cloud induced by aerosol may affect the radiation budget and thus the climate. We utilize a series of continuous ground-based measurements from the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) program to investigate the indirect effect. Days that exhibit ice-free, single layered, nonprecipitating clouds are analyzed, with the indirect effect quantified as the relative change in cloud droplet effective radius for a relative change in aerosol extinction (under conditions of equivalent cloud liquid water path). Several cases from the first six years of our analysis (1998-2003) are described here, and probable reasons for the differences in the cloud response to aerosol among the cases are discussed.

  17. A system for quantifying the cooling effectiveness of bicycle helmets.

    PubMed

    Reid, J; Wang, E L

    2000-08-01

    This article describes the design and development of a system that is capable of quantifying the thermal comfort of bicycle helmets. The motivation for the development of the system stems from the desire both to increase helmet use and to provide the designer with a quantitative method of evaluating the thermal comfort of a helmet. The system consists of a heated mannequin head form, a heated reference sphere, a small wind tunnel, and a data acquisition system. Both the head form and the reference sphere were instrumented with thermocouples. The system is capable of simulating riding speeds ranging from 4.5-15.5 m/s. A cooling effectiveness, C1, that is independent of both ambient conditions and wind velocity is defined as a measure of how well the helmet ventilates as compared to the reference sphere. The system was validated by testing six commercially available bicycle helmets manufactured between approximately 1992 and 1998. PMID:11036573

  18. Film cooling effectiveness and heat transfer with injection through holes

    NASA Technical Reports Server (NTRS)

    Eriksen, V. L.

    1971-01-01

    An experimental investigation of the local film cooling effectiveness and heat transfer downstream of injection of air through discrete holes into a turbulent boundary layer of air on a flat plate is reported. Secondary air is injected through a single hole normal to the main flow and through both a single hole and a row of holes spaced at three diameter intervals with an injection angle of 35 deg to the main flow. Two values of the mainstream Reynolds number are used; the blowing rate is varied from 0.1 to 2.0. Photographs of a carbon dioxide-water fog injected into the main flow at an angle of 90 deg are also presented to show interaction between the jet and mainstream.

  19. CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-07-12

    The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

  20. Evaluating the aerosol indirect effect in WRF-Chem simulations of the January 2013 Beijing air pollution event.

    NASA Astrophysics Data System (ADS)

    Peckham, Steven; Grell, Georg; Xie, Ying; Wu, Jian-Bin

    2015-04-01

    In January 2013, an unusual weather pattern over Northern China produced unusually cool, moist conditions for the region. Recent peer-reviewed scientific manuscripts report that during this time period, Beijing experienced a historically severe haze and smog event with observed monthly average fine particulate matter (PM2.5) concentrations exceeding 225 micrograms per cubic meter. MODIS satellite observations produced AOD values of approximately 1.5 to 2 for the same time. In addition, over eastern and northern China record-breaking hourly average PM2.5 concentrations of more than 700 μg m-3 were observed. Clearly, the severity and persistence of this air pollution episode has raised the interest of the scientific community as well as widespread public attention. Despite the significance of this and similar air pollution events, several questions regarding the ability of numerical weather prediction models to forecast such events remain. Some of these questions are: • What is the importance of including aerosols in the weather prediction models? • What is the current capability of weather prediction models to simulate aerosol impacts upon the weather? • How important is it to include the aerosol feedbacks (direct and indirect effect) in the numerical model forecasts? In an attempt to address these and other questions, a Joint Working Group of the Commission for Atmospheric Sciences and the World Climate Research Programme has been convened. This Working Group on Numerical Experimentation (WGNE), has set aside several events of interest and has asked its members to generate numerical simulations of the events and examine the results. As part of this project, weather and pollution simulations were produced at the NOAA Earth System Research Laboratory using the Weather Research and Forecasting (WRF) chemistry model. These particular simulations include the aerosol indirect effect and are being done in collaboration with a group in China that will produce

  1. Real Effect or Artifact of Cloud Cover on Aerosol Optical Thickness?

    SciTech Connect

    Jeong, M-J.; Li, Z.

    2005-03-18

    Aerosol measurements over the Southern Great Plains (SGP) Cloud And Radiation Test bed (CART) site under Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program characterize the temporal variability, vertical distribution, and optical properties of aerosols in the region. They were made by the Cimel sunphotometer and Multifilter Rotating Shadow-band Radiometer (MFRSR), Raman Lidar, In situ Aerosol Profiling (IAP) flights, and the Aerosol Observing System (AOS). The spatial variability of aerosols relies a network of MFRSR at the Central Facility (CF) and Extended Facilities (EF), together with satellite remote sensing. The current state-of-art satellite-based estimates over land--e.g., MODerate resolution Imaging Scanner (MODIS) aerosol optical thickness--still suffer from large uncertainties. Contamination due to sub-pixel and/or thin cirrus clouds is believed to be one of the major sources of uncertainties. Retrievals near clouds are discouraged to use, which reduces considerably the amount of useful data. In this regard, cloud is considered as an artifact. However, cloud could have a real impact on AOT by changing humidity, which affects aerosol through the aerosol swelling effect. As a preliminary study, we first investigate the effects of cloud cover and humidity on the retrievals of AOT from ground-based Cimel sunphotometer measurements, in order to help us sort out the real influence and artifact. In general, it is very difficult to verify and quantify the effects of cloud on satellite retrieval of aerosol quantities. Speculation and warning of cloud contamination have been made whenever there is a correlation between the retrieved AOT and cloud fraction or their spatial variabilities, while it has also been argued that aerosol humidification effect (AHE) might be at work. The ample measurements available from ARM over the SGP region may allow us to unravel this complex issue. Our ultimate goals are to (1) evaluate various effects on the

  2. Effect of In-Plume Aerosol Processing on the Efficacy of Marine Cloud Albedo Enhancement from Controlled Sea-Spray Injections

    NASA Astrophysics Data System (ADS)

    Stevens, R. G.; Spracklen, D.; Korhonen, H.; Pierce, J. R.

    2010-12-01

    The intentional enhancement of cloud albedo via controlled sea-spray injection from ships has been suggested as a possible means to control anthropogenic global warming (1); however, there remains significant uncertainty in the efficacy of this method due to uncertainties in aerosol and cloud microphysics. Recent analysis showed that more sea-spray may be necessary than previously assumed to reach a desired cooling due to nonlinearities in the aerosol/cloud microphysics (2). A major assumption used in (2) is that all sea-spray was emitted uniformly into some oceanic grid boxes, and thus did not account for sub-grid aerosol microphysics within the sea-spray plumes. However, as a consequnce of the fast sea-spray injection rates which are proposed, in the order of 1x10^17 1/s (1), particle concentrations in these plumes may be quite high and particle coagulation may significantly reduce the number of emitted particles and increase their average size. Therefore, it is possible that the emissions necessary to reach a desired cooling may be even larger than currently assumed. We explore the processing of the freshly emitted sea-spray plumes in the Large-Eddy Simulation (LES)/Cloud Resolving Model (CRM) the System for Atmospheric Modelling (SAM, 3) with the online aerosol microphysics module TOMAS (4). We determine how the final number and size of particles (once well mixed with background air) depends on the emission rate and size distribution of the sea-spray plume and on the pre-existing aerosol concentrations and local atmospheric conditions. Finally, we make suggestions for effective size-resolved emissions for use in climate models. (1) Salter, S. et al., Phil. Trans. R. Soc. A., 2008. (2) Korhonen, H. et al., Atmos. Chem. Phys., 10, 4133-4143, 2010. (3) Khairoutdinov, M., and Randall, D.,. J. Atmos. Sci., 60, 607-625, 2003. (4) Pierce, J. and Adams, P., Atmos. Chem. Phys., 9, 1339-1356, 2009.

  3. COOLING COIL EFFECTS ON BLENDING IN A PILOT SCALE TANK

    SciTech Connect

    Leishear, R.; Poirier, M.; Fowley, M.; Steeper, T.

    2010-08-26

    Blending, or mixing, processes in 1.3 million gallon nuclear waste tanks are complicated by the fact that miles of serpentine, vertical, cooling coils are installed in the tanks. As a step toward investigating blending interference due to coils in this type of tank, a 1/10.85 scale tank and pump model were constructed for pilot scale testing. A series of tests were performed in this scaled tank by adding blue dye to visualize blending, and by adding acid or base tracers to solution to quantify the time required to effectively blend the tank contents. The acid and base tests were monitored with pH probes, which were located in the pilot scale tank to ensure that representative samples were obtained. Using the probes, the hydronium ion concentration [H{sup +}] was measured to ensure that a uniform concentration was obtained throughout the tank. As a result of pilot scale testing, a significantly improved understanding of mixing, or blending, in nuclear waste tanks has been achieved. Evaluation of test data showed that cooling coils in the waste tank model increased pilot scale blending times by 200% in the recommended operating range, compared to previous theoretical estimates of a 10-50% increase. Below the planned operating range, pilot scale blending times were increased by as much as 700% in a tank with coils installed. One pump, rather than two or more, was shown to effectively blend the tank contents, and dual pump nozzles installed parallel to the tank wall were shown to provide optimal blending. In short, experimental results varied significantly from expectations.

  4. New approaches to quantifying aerosol influence on the cloud radiative effect.

    PubMed

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S; Carslaw, Kenneth S; Schmidt, K Sebastian

    2016-05-24

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system. PMID:26831092

  5. Cloud Condensation Nuclei Prediction Error from Application of Kohler Theory: Importance for the Aerosol Indirect Effect

    NASA Technical Reports Server (NTRS)

    Sotiropoulou, Rafaella-Eleni P.; Nenes, Athanasios; Adams, Peter J.; Seinfeld, John H.

    2007-01-01

    In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Koehler theory introduces a 10-20% uncertainty in global average indirect forcing and 2-11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10-20%, and 5-50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Koehler theory (as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.

  6. Comparison of Asian aerosol's radiative effect in Seoul and Gosan, Korea

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Lee, S.; Choi, I.

    2007-05-01

    Seasonal variations of aerosol optical properties as well as their direct radiative effects were investigated using the ground-based aerosol measurements and an optical model calculation in Seoul, a mega city, and Gosan, a background rural island, Korea. From the yearly AERONET dataset, our analysis of seasonal and monthly cycle of aerosol optical depth (AOD) shows that AODs in Seoul are higher than those in Gosan because of the higher concentrations of water soluble ions in Seoul. Especially, seasonal AOD differences of both sites becomes maximum in Summer due to the synoptic meteorological patterns and hygroscopic growth of anthropogenic aerosols. OPAC (Optical Properties of Aerosol and Clouds) model and Fu-Liou RTM (Radiative Transfer Model) were employed for the evaluation of aerosol direct radiative forcing (ADRF) at surface and top of the atmosphere (TOA). A method of determining the values of aerosol optical properties as input parameters was utilized for the ADRF calculation from the AERONET dataset. In each season, the mean ADRF in Seoul turned out to be larger than that of Gosan. The ADRF in Gosan from RTM calculation was compared with the ground-based radiation measurements during the ACE-Asia IOP in 2001 and the ABC-EAREX2005 IOP in 2005. In addition, ADRF contributions by chemical compositions were compared in this study between Seoul and Gosan.

  7. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wang, M.; Ghan, S. J.; Ding, A.; Wang, H.; Zhang, K.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Takeamura, T.; Gettelman, A.; Morrison, H.; Lee, Y. H.; Shindell, D. T.; Partridge, D. G.; Stier, P.; Kipling, Z.; Fu, C.

    2015-09-01

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascend (ω500 < -25 hPa d-1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm d-1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.

  8. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    NASA Astrophysics Data System (ADS)

    Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.; Ding, Aijun; Wang, Hailong; Zhang, Kai; Neubauer, David; Lohmann, Ulrike; Ferrachat, Sylvaine; Takeamura, Toshihiko; Gettelman, Andrew; Morrison, Hugh; Lee, Yunha; Shindell, Drew T.; Partridge, Daniel G.; Stier, Philip; Kipling, Zak; Fu, Congbin

    2016-03-01

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascent (ω500 < -25 hPa day-1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day-1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.

  9. The effects of aerosol on development of thunderstorm electrification: A numerical study

    NASA Astrophysics Data System (ADS)

    Zhao, Pengguo; Yin, Yan; Xiao, Hui

    2015-02-01

    The effects of aerosol on electrification of an idealized supercell storm are investigated using the Weather Research and Forecasting model coupled with electrification and discharge parameterizations and an explicit treatment of aerosol activation. It is found that the microphysical and electric processes of the thunderstorm are distinctly different under different aerosol background. Enhancing aerosol loading increases growth rate of snow and graupel particles, and leads to higher concentration of ice particles. Increasing aerosol concentration also results in enhancement in electrification process, due to more ice particles participating in the electrification process in the polluted case. In the clean case, the charge structure maintained dipolarity throughout the simulation, while in the polluted case the charge structure transformed from dipolarity at the initial stage of charging separation to the structure of a negative charge region above the main positive and the main negative charge centers at the later stage. A detailed analysis of the microphysical processes shows that increasing aerosol loading led to more liquid water content and higher rime accretion rate above the freezing level, which was in favor of graupel charge positively and ice crystal and snow charge negatively in this region. In a word, increasing aerosol loading leads to increased cloud water content, resulting in a new negative charge region developed above the main positive charge center.

  10. A Simple Model for the Cloud Adjacency Effect and the Apparent Bluing of Aerosols Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Wen, Guoyong; Coakley, James A., Jr.; Remer, Lorraine A.; Loeb,Norman G.; Cahalan, Robert F.

    2008-01-01

    In determining aerosol-cloud interactions, the properties of aerosols must be characterized in the vicinity of clouds. Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. The paper provides a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. The enhancement in Rayleigh scattering is estimated using a stochastic cloud model to obtain the radiative flux reflected by broken clouds and comparing this flux with that obtained with the molecules in the atmosphere causing extinction, but no scattering.

  11. Sea-breeze front effects on boundary-layer aerosols at a tropical coastal station

    SciTech Connect

    Moorthy, K.K.; Murthy, B.V.K.; Nair, P.R. )

    1993-07-01

    The effects of sea breeze on optical depth, size distribution, and columnar loading of aerosols at the tropical coastal station of Trivandrum are studied. It has been observed that sea-breeze front activity results in a significant and short-lived enhancement in aerosol optical depth and columnar loading in contrast to the effects seen on normal sea-breeze days. Examination of the changes in columnar aerosol size distribution associated with sea-breeze activity revealed an enhancement of small-particle (size less than 0.28 [mu]m) concentration. The aerosol size distribution deduced from optical depth measurements generally show a pronounced bimodal structure associated with the frontal activity. 22 refs., 12 figs., 1 tab.

  12. Surface-based observation of aerosol indirect effect in the Mid-Atlantic region

    NASA Astrophysics Data System (ADS)

    Nzeffe, Fonya; Joseph, Everette; Min, Qilong

    2008-11-01

    A method for assessing the aerosol indirect effect based on back trajectory analysis and cloud and aerosol properties derived from a combination of observations from the Multifilter Rotating Shadow Band Radiometer and microwave radiometer at a newly established atmospheric measurement field station in the Baltimore-Washington corridor is reported in this article. Six months of aerosol and cloud optical depth data are segregated according to air mass history based on back trajectory analysis. Under stagnant and polluted conditions where air flow across the region is predominantly from west-southwest, aerosol optical depth is on average three to four times greater than in air masses that advect rapidly from north and east. When sorted by mean cloud liquid water path, cloud-droplet effective radius in polluted air masses is on average 0.9 μm smaller than that observed under more pristine conditions. Analysis is presented to confirm the statistical significance of this result.

  13. Radiative cooling II: effects of density and metallicity

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Ferland, G. J.; Lykins, M. L.; Porter, R. L.; van Hoof, P. A. M.; Williams, R. J. R.

    2014-06-01

    This work follows Lykins et al. discussion of classic plasma cooling function at low density and solar metallicity. Here, we focus on how the cooling function changes over a wide range of density (nH <1012 cm-3) and metallicity (Z < 30 Z⊙). We find that high densities enhance the ionization of elements such as hydrogen and helium until they reach local thermodynamic equilibrium. By charge transfer, the metallicity changes the ionization of hydrogen when it is partially ionized. We describe the total cooling function as a sum of four parts: those due to H&He, the heavy elements, electron-electron bremsstrahlung and grains. For the first three parts, we provide a low-density limit cooling function, a density dependence function, and a metallicity-dependent function. These functions are given with numerical tables and analytical fit functions. We discuss grain cooling only in the interstellar medium case. We then obtain a total cooling function that depends on density, metallicity and temperature. As expected, collisional de-excitation suppresses the heavy elements cooling. Finally, we provide a function giving the electron fraction, which can be used to convert the cooling function into a cooling rate.

  14. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    SciTech Connect

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd

  15. Temperature effect on the far infrared absorption features of aromatic-based Titan aerosol analogs

    NASA Astrophysics Data System (ADS)

    Gautier, T.; Trainer, M. G.; Loeffler, M. J.; Sebree, J.; Anderson, C. M.

    2014-12-01

    The detection of benzene at ppm levels in Titan's atmosphere[1] by Cassini's Ion and Neutral Mass Spectrometer (INMS) has enforced the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's atmospheric chemistry, especially in the formation of aerosols. Indeed, Trainer et al.[2] showed that aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. Sebree et al. [3] used such a mixture of low concentration aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) to produce aerosol analogs and then analyzed their far infrared absorption spectra. Their study shows that such aerosols can reproduce some spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared below 500cm-1 [4]. Aerosols absorption at such a low wavenumbers most likely results from lattice resonances within their structure[4,5], and this might be influenced by the temperature of the sample. In this work we investigated the influence of temperature on the absorption spectra of the aerosol samples studied in Sebree et al.[4]. We recorded spectra at 100K and 300K and this revealed variations in the total absorption with temperature, but no new absorption features were observed. Through this investigation we have also found an unexpected strong absorption band of cooled Silicon in the far infrared, which has never been reported in the literature. [1] Waite et al. Science 316 (5826) : 870-875 [2] Trainer et al. ApJL 766: L4, 2013 [3] Sebree et al. Icarus 236: 146-152, 2014 [4] Anderson et al. Icarus 212: 762-778, 2011 [5] Gautier et al. Icarus 221: 320-327, 2012

  16. A review of measurement-based assessment of aerosol direct radiative effect and forcing

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kaufman, Y. J.; Chin, M.; Feingold, G.; Remer, L. A.; Anderson, T. L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; Decola, P.; Kahn, R.; Koch, D.; Loeb, N.; Reddy, M. S.; Schulz, M.; Takemura, T.; Zhou, M.

    2005-08-01

    Aerosols affect the Earth's energy budget ''directly'' by scattering and absorbing radiation and ''indirectly'' by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Here we assess the aerosol optical depth, direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical thickness (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21% is contributed by human activities, as determined by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOT of 0.23 over global land with an uncertainty of ~20% or ± 0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error) over global ocean. Accounting for thin cirrus contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and

  17. Synergistic effects of air pollutants: Ozone plus a respirable aerosol

    SciTech Connect

    Last, J.A. )

    1991-01-01

    Rats were concurrently exposed to mixtures of ozone or nitrogen dioxide and respirable-sized aerosols of sulfuric acid, ammonium sulfate, or sodium chloride, or to each pollutant individually. Their responses to such exposures were evaluated by various quantitative biochemical analyses of lung tissue or lavage fluids, or by morphometric analyses. Such studies were performed in the acute time frame, generally involving exposures of from one to nine days, depending on the assays used. Correlations between the biochemical and morphometric results were examined over a wide range of pollutant concentrations in the exposure chambers. Good correlations were found between the most sensitive biochemical indicators of lung damage--the protein content of lung lavage fluid or whole lung tissue and the rate of lung collagen synthesis--and the morphometric estimation of volume density or volume percent of the centriacinar lung lesion characteristically observed in animals exposed to ozone. Synergistic interaction between ozone and sulfuric acid aerosol was demonstrated to occur at environmentally relevant concentrations of both pollutants by several of the analytical methods used. Such interactions were demonstrated at concentrations of ozone as low as 0.12 parts per million (ppm)2 and of sulfuric acid aerosol at concentrations as low as 5 to 20 micrograms/m3. The acidity of the aerosol is a necessary (and apparently a sufficient) condition for such a synergistic interaction between an oxidant gas and a respirable aerosol to occur. A hitherto unexpected synergistic interaction between nitrogen dioxide and sodium chloride aerosol was found during these studies; it is hypothesized that this was due to formation of their acidic (anhydride) reaction product, nitrosyl chloride, in the chambers during exposure to the mixture.

  18. Implementation of the Missing Aerosol Physics into LLNL IMPACT

    SciTech Connect

    Chuang, C

    2005-02-09

    In recent assessments of climate forcing, the Intergovernmental Panel on Climate Change lists aerosol as one o f the most important anthropogenic agents that influence climate. Atmospheric aerosols directly affect the radiative fluxes at the surface and top of the Earth's atmosphere by scattering and/or absorbing radiation. Further, aerosols indirectly change cloud microphysical properties (such as cloud drop effective radius) that also affect the radiative fluxes. However, the estimate of the magnitude of aerosol climatic effect varies widely, and aerosol/cloud interactions remain one of the most uncertain aspects of climate models today. The Atmospheric Sciences Division has formulated a plan to enhance and expand our modeling expertise in aerosol/cloud/climate interactions. Under previous LDRD support, we successfully developed a computationally efficient version of IMPACT to simulate aerosol climatology. This new version contains a compact chemical mechanism for the prediction of sulfate and also predicts the distributions of organic carbon (OC), black carbon (BC), dust, and sea salt. Furthermore, we implemented a radiation package into IMPACT to calculate the radiative forcing and heating/cooling rates by aerosols. This accomplishment built the foundation of our currently funded projects under the NASA Global Modeling and Analysis Program as well as the DOE Atmospheric Radiation Program. Despite the fact that our research is being recognized as an important effort to quantify the effects of anthropogenic aerosols on climate, the major shortcoming of our previous simulations on aerosol climatic effects is the over simplification of spatial and temporal variations of aerosol size distributions that are shaped by complicated nucleation, growth, transport and removal processes. Virtually all properties of atmospheric aerosols and clouds depend strongly on aerosol size distribution. Moreover, molecular processing on aerosol surfaces alters the hygroscopic

  19. Regional Biases in Droplet Activation Parameterizations: Strong Influence on Aerosol Second Indirect Effect in the Community Atmosphere Model v5.

    NASA Astrophysics Data System (ADS)

    Morales, R.; Nenes, A.

    2014-12-01

    Aerosol-cloud interactions constitute one of the most uncertain aspects of anthropogenic climate change estimates. The magnitude of these interactions as represented in climate models strongly depends on the process of aerosol activation. This process is the most direct physical link between aerosols and cloud microphysical properties. Calculation of droplet number in GCMs requires the computation of new droplet formation (i.e., droplet activation), through physically based activation parameterizations. Considerable effort has been placed in ensuring that droplet activation parameterizations have a physically consistent response to changes in aerosol number concentration. However, recent analyses using an adjoint sensitivity approach showed that parameterizations can exhibit considerable biases in their response to other aerosol properties, such as aerosol modal diameter or to the aerosol chemical composition. This is a potentially important factor in estimating aerosol indirect effects since changes in aerosol properties from pre-industrial times to present day exhibit a very strong regional signature. In this work we use the Community Atmosphere Model (CAM5) to show that the regional imprint of the changes in aerosol properties during the last century interacts with the droplet activation parameterization in a way that these biases are amplified over climatically relevant regions. Two commonly used activation routines, the CAM5 default, Abdul-Razzak and Ghan parameterization, as well as the Fountoukis and Nenes parameterization are used in this study. We further explored the impacts of Nd parameterization biases in the first and second aerosol indirect effects separately, by performing simulations were droplet number was not allowed to intervene in the precipitation initiation process. The simulations performed show that an unphysical response to changes in the diameter of accumulation mode aerosol translates into extremely high Nd concentrations over South

  20. Integration of the Equations of Classical Electrode-Effect Theory with Aerosols

    NASA Astrophysics Data System (ADS)

    Kalinin, A. V.; Leont'ev, N. V.; Terent'ev, A. M.; Umnikov, E. D.

    2016-04-01

    This paper is devoted to an analytical study of the one-dimensional stationary system of equations for modeling of the electrode effect in the Earth's atmospheric layer with aerosols. New integrals of the system are derived. Using these integrals, the expressions for solutions of the system and estimates of the electrode layer's thickness as a function of the aerosol concentration are obtained for numerical parameters close to real.

  1. Aircraft disinsecting: the effectiveness of Freon-based and water-based phenothrin and permethrin aerosols*

    PubMed Central

    Sullivan, W. N.; Cawley, B. M.; Schechter, M. S.; Morgan, N. O.; Pal, R.

    1979-01-01

    In Miami, Florida, USA, passenger compartments of jet aircraft were disinsected at ”blocks away”. An application of a 20 g/litre Freon-based or water-based permethrin formulation at 35 mg of aerosol per 100 m3 was 100% effective against caged mosquitos and flies. The flammability hazard of the sprays from water-based hydrocarbon aerosols was evaluated. PMID:316739

  2. Integration of the Equations of Classical Electrode-Effect Theory with Aerosols

    NASA Astrophysics Data System (ADS)

    Kalinin, A. V.; Leont'ev, N. V.; Terent'ev, A. M.; Umnikov, E. D.

    2016-05-01

    This paper is devoted to an analytical study of the one-dimensional stationary system of equations for modeling of the electrode effect in the Earth's atmospheric layer with aerosols. New integrals of the system are derived. Using these integrals, the expressions for solutions of the system and estimates of the electrode layer's thickness as a function of the aerosol concentration are obtained for numerical parameters close to real.

  3. Amplification of ENSO effects on Indian summer monsoon by absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Kim, Maeng-Ki; Lau, William K. M.; Kim, Kyu-Myong; Sang, Jeong; Kim, Yeon-Hee; Lee, Woo-Seop

    2016-04-01

    In this study, we present observational evidence, based on satellite aerosol measurements and MERRA reanalysis data for the period 1979-2011, indicating that absorbing aerosols can have strong influence on seasonal-to-interannual variability of the Indian summer monsoon rainfall, including amplification of ENSO effects. We find a significant correlation between ENSO (El Nino Southern Oscillation) and aerosol loading in April-May, with La Nina (El Nino) conditions favoring increased (decreased) aerosol accumulation over northern India, with maximum aerosol optical depth over the Arabian Sea and Northwestern India, indicative of strong concentration of dust aerosols transported from West Asia and Middle East deserts. Composite analyses based on a normalized aerosol index (NAI) show that high concentration of aerosol over northern India in April-May is associated with increased moisture transport, enhanced dynamically induced warming of the upper troposphere over the Tibetan Plateau, and enhanced rainfall over northern India and the Himalayan foothills during May-June, followed by a subsequent suppressed monsoon rainfall over all India, consistent with the elevated heat pump (EHP) hypothesis (Lau et al. in Clim Dyn 26:855-864, 2006. doi: 10.1007/s00382-006-0114-z). Further analyses from sub-sampling of ENSO years, with normal (<1-σ), and abnormal (>1-σ) NAI over northern India respectively show that the EHP may lead to an amplification of the Indian summer monsoon response to ENSO forcing, particularly with respect to the increased rainfall over the Himalayan foothills, and the warming of the upper troposphere over the Tibetan Plateau. Our results suggest that absorbing aerosol, particular desert dusts can strongly modulate ENSO influence, and possibly play important roles as a feedback agent in climate change in Asian monsoon regions.

  4. Effect of aerosol particle size on bronchodilatation with nebulised terbutaline in asthmatic subjects.

    PubMed

    Clay, M M; Pavia, D; Clarke, S W

    1986-05-01

    The bronchodilatation achieved by the beta 2 agonist terbutaline sulphate given as nebulised aerosol from different devices has been measured in seven patients with mild asthma (mean FEV1 76% predicted) over two hours after inhalation. The subjects were studied on four occasions. On three visits they received 2.5 mg terbutaline delivered from three different types of nebuliser, selected on the basis of the size distribution of the aerosols generated; and on a fourth (control) visit no aerosol was given. The size distributions of the aerosols expressed in terms of their mass median diameter (MMD) were: A: MMD 1.8 microns; B: 4.6 microns; C: 10.3 microns. The aerosols were given under controlled conditions of respiratory rate and tidal volume to minimise intertreatment variation. Bronchodilator response was assessed by changes in FEV1, forced vital capacity (FVC), peak expiratory flow (PEF), and maximal flow after expiration of 50% and 75% FVC (Vmax50, Vmax25) from baseline (before aerosol) and control run values. For each pulmonary function index all three aerosols gave significantly better improvement over baseline than was seen in the control (p less than 0.05) and had an equipotent effect on FEV1, FVC, and PEF. Aerosol A (MMD 1.8 microns) produced significantly greater improvements in Vmax50 and Vmax25 than did B or C (p less than 0.05). These results suggest that for beta 2 agonists small aerosols (MMD less than 2 microns) might be advantageous in the treatment of asthma. PMID:3750243

  5. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    SciTech Connect

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Ferrare, R. A.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Erickson, M. H.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kassianov, E. I.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Kubátová, A.; Langford, A. O.; Laskin, A.; Laulainen, N.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Suski, K.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Worsnop, D. R.; Yu, X. -Y.; Zelenyuk, A.; Zhang, Q.

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program’s Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and “aged” urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and d) a roadmap of

  6. Effects of Transport and Processing on Aerosol Chemical and Optical Properties Across the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Bates, T.; Baynard, T.; Onasch, T.; Coffman, D.; Covert, D.; Worsnop, D.; Goldan, P.; Kuster, B.; Degouw, J.; Stohl, A.

    2005-12-01

    NEAQS-ITCT 2004 took place in July and August to study natural and anthropogenic emissions from North America including the processing of gas and particle phase species during transport over the North Atlantic and the resulting impact on air quality and climate. During the experiment, measurements were made onboard the NOAA RV Ronald H. Brown with a ship track that extended from the coast along Cape Cod, MA, Boston, MA and Portland, ME, east into the Gulf of Maine and out to Chebogue Point, Nova Scotia. Although measurements on the ship were not made in a true Lagrangian sense, they reveal information about the effects of transport and processing on aerosol chemical and optical properties. Photochemical age based on measured toluene to benzene ratios can be used in this region to indicate 'younger' versus 'older' aerosol. This approach, coupled with FLEXPART estimates of source contributions and age, reveals that continental aerosol becomes more acidic as it ages with transport over the Gulf of Maine. The increasing acidity is due to the conversion of SO2 to SO4= with no further significant input of NH3 in the well-capped marine boundary layer to neutralize the aerosol. In addition, as the aerosol ages, the organic mass fraction decreases while the organics that are present become more oxidized. These same chemical features were observed in aerosol transported from the Ohio River Valley and beyond. In contrast, recently formed aerosol from urban centers along the Eastern Seaboard are neutralized, have a higher organic content, and the organics are less oxidized. The impact of the observed range of aerosol acidity, organic mass fraction, and degree of oxidation of the organic matter on the f(RH) of the aerosol will be described. Here, f(RH) refers to the dependence of light extinction on relative humidity.

  7. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    SciTech Connect

    Zaveri, Rahul A.; Shaw, William J.; Cziczo, D. J.; Schmid, Beat; Ferrare, R.; Alexander, M. L.; Alexandrov, Mikhail; Alvarez, R. J.; Arnott, W. P.; Atkinson, D.; Baidar, Sunil; Banta, Robert M.; Barnard, James C.; Beranek, Josef; Berg, Larry K.; Brechtel, Fred J.; Brewer, W. A.; Cahill, John F.; Cairns, Brian; Cappa, Christopher D.; Chand, Duli; China, Swarup; Comstock, Jennifer M.; Dubey, Manvendra K.; Easter, Richard C.; Erickson, Matthew H.; Fast, Jerome D.; Floerchinger, Cody; Flowers, B. A.; Fortner, Edward; Gaffney, Jeffrey S.; Gilles, Mary K.; Gorkowski, K.; Gustafson, William I.; Gyawali, Madhu S.; Hair, John; Hardesty, Michael; Harworth, J. W.; Herndon, Scott C.; Hiranuma, Naruki; Hostetler, Chris A.; Hubbe, John M.; Jayne, J. T.; Jeong, H.; Jobson, Bertram T.; Kassianov, Evgueni I.; Kleinman, L. I.; Kluzek, Celine D.; Knighton, B.; Kolesar, K. R.; Kuang, Chongai; Kubatova, A.; Langford, A. O.; Laskin, Alexander; Laulainen, Nels S.; Marchbanks, R. D.; Mazzoleni, Claudio; Mei, F.; Moffet, Ryan C.; Nelson, Danny A.; Obland, Michael; Oetjen, Hilke; Onasch, Timothy B.; Ortega, Ivan; Ottaviani, M.; Pekour, Mikhail S.; Prather, Kimberly A.; Radney, J. G.; Rogers, Ray; Sandberg, S. P.; Sedlacek, Art; Senff, Christoph; Senum, Gunar; Setyan, Ari; Shilling, John E.; Shrivastava, ManishKumar B.; Song, Chen; Springston, S. R.; Subramanian, R.; Suski, Kaitlyn; Tomlinson, Jason M.; Volkamer, Rainer M.; Wallace, Hoyt A.; Wang, J.; Weickmann, A. M.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zelenyuk, Alla; Zhang, Qi

    2012-08-22

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and 'aged' urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and d) a roadmap of planned data

  8. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Technical Reports Server (NTRS)

    Zaveri, R. A.; Shaw, W. J.; Cahill, J. F.; Cairns, Brian; Cappa, C. D.; Ottaviani, Matteo; Cziczo, D. J.; Ferrare, Richard A.; Alexander, M. L.; Alexandrov, Mikhail Dmitrievic; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Schmid, B.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Erickson, M. H.; Fast, J. D.; Flowers, B. A.; Fortner, E.; Baidar, S.; Hair, J.; Hostetler, C.; Obland, M. D.; Rogers, R. R.; Floerchinger, C.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climaterelated properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data

  9. Effect of tubing deposition, breathing pattern, and temperature on aerosol mass distribution measured by cascade impactor.

    PubMed

    Gurses, Burak K; Smaldone, Gerald C

    2003-01-01

    Aerosols produced by nebulizers are often characterized on the bench using cascade impactors. We studied the effects of connecting tubing, breathing pattern, and temperature on mass-weighted aerodynamic particle size aerosol distributions (APSD) measured by cascade impaction. Our experimental setup consisted of a piston ventilator, low-flow (1.0 L/min) cascade impactor, two commercially available nebulizers that produced large and small particles, and two "T"-shaped tubes called "Tconnector(cascade)" and "Tconnector(nebulizer)" placed above the impactor and the nebulizer, respectively. Radiolabeled normal saline was nebulized using an airtank at 50 PSIG; APSD, mass balance, and Tconnector(cascade) deposition were measured with a gamma camera and radioisotope calibrator. Flow through the circuit was defined by the air tank (standing cloud, 10 L/min) with or without a piston pump, which superimposed a sinusoidal flow on the flow from the air tank (tidal volume and frequency of breathing). Experiments were performed at room temperature and in a cooled environment. With increasing tidal volume and frequency, smaller particles entered the cascade impactor (decreasing MMAD; e.g., Misty-Neb, 4.2 +/- 0.9 microm at lowest ventilation and 2.7 +/- 0.1 microm at highest, p = 0.042). These effects were reduced in magnitude for the nebulizer that produced smaller particles (AeroTech II, MMAD 1.8 +/- 0.1 to 1.3 +/- 0.1 microm; p = 0.0044). Deposition on Tconnector(cascade) increased with ventilation but was independent of cascade impactor flow. Imaging of the Tconnector(cascade) revealed a pattern of deposition unaffected by cascade impactor flow. These measurements suggest that changes in MMAD with ventilation were not artifacts of tubing deposition in the Tconnector(cascade). At lower temperatures, APSD distributions were more polydisperse. Our data suggest that, during patient inhalation, changes in particle distribution occur that are related to conditions in the tubing and

  10. Climate forcing by anthropogenic aerosols.

    PubMed

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. PMID:17842894

  11. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  12. Global Cooling: Effect of Urban Albedo on Global Temperature

    SciTech Connect

    Akbari, Hashem; Menon, Surabi; Rosenfeld, Arthur

    2007-05-22

    In many urban areas, pavements and roofs constitute over 60% of urban surfaces (roof 20-25%, pavements about 40%). The roof and the pavement albedo can be increased by about 0.25 and 0.10, respectively, resulting in a net albedo increase for urban areas of about 0.1. Many studies have demonstrated building cooling-energy savings in excess of 20% upon raising roof reflectivity from an existing 10-20% to about 60%. We estimate U.S. potential savings in excess of $1 billion (B) per year in net annual energy bills. Increasing albedo of urban surfaces can reduce the summertime urban temperature and improve the urban air quality. Increasing the urban albedo has the added benefit of reflecting more of the incoming global solar radiation and countering the effect of global warming. We estimate that increasing albedo of urban areas by 0.1 results in an increase of 3 x 10{sup -4} in Earth albedo. Using a simple global model, the change in air temperature in lowest 1.8 km of the atmosphere is estimated at 0.01K. Modelers predict a warming of about 3K in the next 60 years (0.05K/year). Change of 0.1 in urban albedo will result in 0.01K global cooling, a delay of {approx}0.2 years in global warming. This 0.2 years delay in global warming is equivalent to 10 Gt reduction in CO2 emissions.

  13. Evaluation of Global Anthropogenic Aerosol Indirect Effects in the GISS Model III

    NASA Astrophysics Data System (ADS)

    Chen, W.; Nenes, A.; Liao, H.; Adams, P. J.; Seinfeld, J. H.

    2008-12-01

    In this study the implementation of the aerosol indirect effect in the 23-layer Goddard Institute for Space Studies (GISS) Global Climate Middle Atmosphere Model III is described. Explicit dependence on cloud droplet number concentrations (Nc) is introduced in the calculations of cloud optical depths and autoconversion rates in liquid-phase stratiform clouds to account for both first and second indirect effects. To diagnose Nc, correlation with concentrations of aerosol soluble ions is developed separately for each model grid and in each month, to reflect seasonal and spatial variations in aerosol-cloud interactions. Based on estimates of pre-industrial, present-day (year 2000), and future (year 2100) concentrations of sulfate, nitrate, ammonium, sea salt, and organic aerosols from the fully coupled Caltech unified model, corresponding offline, monthly averaged Nc were derived and applied to equilibrium climate simulations. Modeled present-day global distributions of Nc, droplet size, cloud cover, and radiative balance are in good agreement with satellite-retrieved climatology. A global anthropogenic indirect forcing of -1.7 W m-2, with a decrease in mean droplet radius of 0.8 μm, and an increase in total liquid water path of 0.2 g cm-2, from pre-industrial to year 2000 is estimated. Future climate responses to aerosol direct and indirect effects are also analyzed and compared to previous studies that consider chemistry- aerosol-climate coupling, revealing the influences of this coupling on climate predictions.

  14. Multiple scattering in cloud layers; some results. [emphasizing aerosol parameters on global basis

    NASA Technical Reports Server (NTRS)

    Vandehulst, H. C.

    1974-01-01

    Theoretical methods are discussed for calculating radiative effects of aerosols. Experimental determination is emphasized for relevant aerosol parameters on a global basis to arrive at realistic estimates of heating and cooling. Internal radiation fields in very thin and very thick slabs are reviewed. Phase functions, polarization, emission by internal sources, and path length distribution are also considered.

  15. Corrigendum to "Impact of cloud-borne aerosol representation on aerosol direct and indirect effects" published in Atmos. Chem. Phys., 6, 4163-4174, 2006

    SciTech Connect

    Ghan, Steven J; Easter, Richard C

    2007-01-19

    Ghan and Easter (2006) (hereafter referred to as GE2006) used a global aerosol model to estimate the sensitivity of aerosol direct and indirect effects to a variety of simplified treatments of the cloud-borne aerosol. They found that neglecting transport of cloud-borne particles introduces little error, but that diagnosing cloud-borne particles produces global mean biases of 20% and local errors of up to 40% for aerosol, droplet number, and direct and indirect radiative forcing However, we have recently found that in those experiments we had inadvertently turned off the first aerosol indirect effect. In the radiation module, the droplet effective radius was prescribed at 10 microns rather than related to the droplet number concentration. The second indirect effect, in which droplet number influences droplet collision and coalescence, was treated, so that the simulations produced an aerosol indirect effect, albeit one that is much smaller (about -0.2Wm-2 for anthropogenic sulfate) than other previous estimates.

  16. Effect of cooling water impurities on deposit control polymer performance

    SciTech Connect

    Amjad, Z.; Zuhl, R.W.; Zibrida, J.F.

    2000-05-01

    The performance of polymeric inhibitors in treating recirculating cooling water systems is influenced by many factors, including pH, temperature, makeup water quality, and heat exchanger metallurgy. Impurities such as metal ions and suspended matter impact the performance of polymeric inhibitors used in phosphate-based treatment cooling water programs.

  17. Effect of cooling on Clostridium perfringens in pea soup.

    PubMed

    de Jong, A E I; Rombouts, F M; Beumer, R R

    2004-02-01

    Foods associated with Clostridium perfringens outbreaks are usually abused after cooking. Because of their short generation times, C. perfringens spores and cells can grow out to high levels during improper cooling. Therefore, the potential of C. perfringens to multiply in Dutch pea soup during different cooling times was investigated. Tubes of preheated pea soup (50 degrees C) were inoculated with cocktails of cells or heat-activated spores of this pathogen. The tubes were linearly cooled to 15 degrees C in time spans of 3, 5, 7.5, and 10 h and were subsequently stored in a refrigerator at 3 or 7 degrees C for up to 84 h. Cell numbers increased by 1-log cycle during the 3-h cooling period and reached their maximum after 10 h of cooling. Subsequent refrigeration hardly reduced cell numbers. Cooling of 3.75 liters of pea soup in an open pan showed that this amount of pea soup cooled from 50 to 15 degrees C in 5 h, which will allow a more than 10-fold increase in cell numbers. These findings emphasize the need of good hygienic practices and quick cooling of heated foods after preparation. PMID:14968969

  18. Combustion chamber struts can be effectively transpiration cooled

    NASA Technical Reports Server (NTRS)

    Palmer, G. H.

    1966-01-01

    Vapor-deposited sintering technique increases the feasible temperature range of transpiration-cooled structural members in combustion chambers. This technique produces a porous mass of refractory metal wires around a combustion chamber structural member. This mass acts as a transpiration-cooled surface for a thick-walled tube.

  19. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    SciTech Connect

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-08

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

  20. Bio-aerosols in indoor environment: composition, health effects and analysis.

    PubMed

    Srikanth, Padma; Sudharsanam, Suchithra; Steinberg, Ralf

    2008-01-01

    Bio-aerosols are airborne particles that are living (bacteria, viruses and fungi) or originate from living organisms. Their presence in air is the result of dispersal from a site of colonization or growth. The health effects of bio-aerosols including infectious diseases, acute toxic effects, allergies and cancer coupled with the threat of bioterrorism and SARS have led to increased awareness on the importance of bio-aerosols. The evaluation of bio-aerosols includes use of variety of methods for sampling depending on the concentration of microorganisms expected. There have been problems in developing standard sampling methods, in proving a causal relationship and in establishing threshold limit values for exposures due to the complexity of composition of bio-aerosols, variations in human response to their exposure and difficulties in recovering microorganisms. Currently bio-aerosol monitoring in hospitals is carried out for epidemiological investigation of nosocomial infectious diseases, research into airborne microorganism spread and control, monitoring biohazardous procedures and use as a quality control measure. In India there is little awareness regarding the quality of indoor air, mould contamination in indoor environments, potential source for transmission of nosocomial infections in health care facilities. There is an urgent need to undertake study of indoor air, to generate baseline data and explore the link to nosocomial infections. This article is a review on composition, sources, modes of transmission, health effects and sampling methods used for evaluation of bio-aerosols, and also suggests control measures to reduce the loads of bio-aerosols. PMID:18974481

  1. Quantification of regional radiative impacts and climate effects of tropical fire aerosols

    NASA Astrophysics Data System (ADS)

    Tosca, M. G.; Zender, C. S.; Randerson, J. T.

    2011-12-01

    Regionally expansive smoke clouds originating from deforestation fires in Indonesia can modify local precipitation patterns via direct aerosol scattering and absorption of solar radiation (Tosca et al., 2010). Here we quantify the regional climate impacts of fire aerosols for three tropical burning regions that together account for about 70% of global annual fire emissions. We use the Community Atmosphere Model, version 5 (CAM5) coupled to a slab ocean model (SOM) embedded within the Community Earth System Model (CESM). In addition to direct aerosol radiative effects, CAM5 also quantifies indirect, semi-direct and cloud microphysical aerosol effects. Climate impacts are determined using regionally adjusted emissions data that produce realistic aerosol optical depths in CAM5. We first analyzed a single 12-year transient simulation (1996-2007) forced with unadjusted emissions estimates from the Global Fire Emissions Database, version 3 (GFEDv3) and compared the resulting aerosol optical depths (AODs) for 4 different burning regions (equatorial Asia, southern Africa, South America and boreal North America) to observed MISR and MODIS AODs for the same period. Based on this analysis we adjusted emissions for each burning region between 150 and 300% and forced a second simulation with the regionally adjusted emissions. Improved AODs from this simulation are compared to AERONET observations available at 15 stations throughout the tropics. We present here two transient simulations--one with the adjusted fire emissions and one without fires--to quantify the cumulative fire aerosol climate impact for three major tropical burning regions (equatorial Asia, southern Africa and South America). Specifically, we quantify smoke effects on radiation, precipitation, and temperature. References Tosca, M.G., J.T. Randerson, C.S. Zender, M.G. Flanner and P.J. Rasch (2010), Do biomass burning aerosols intensify drought in equatorial Asia during El Nino?, Atmos. Chem. Phys., 10, 3515

  2. Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids

    NASA Technical Reports Server (NTRS)

    Haack, Henning; Rasmussen, Kaare L.; Warren, Paul H.

    1990-01-01

    The cooling histories of differentiated asteroids are calculated employing a variety of thermal-conductivity structures to simulate the potential insulating effects of regolith and megaregolith layers on the cooling rate. It was found that a combination of relatively thick megaregolith and regolith can potentially reduce the core cooling rate by more than a factor of 10 below the rate predicted by models with conventional thermal conductivity structure. Thus, differences in cratering (regolith production) histories may have resulted in radically different cooling rates for asteroids of similar radius, or in similar cooling rates from asteroids of different radius.

  3. Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids

    NASA Astrophysics Data System (ADS)

    Haack, H.; Rasmussen, K. L.; Warren, P. H.

    1990-04-01

    The cooling histories of differentiated asteroids are calculated employing a variety of thermal-conductivity structures to simulate the potential insulating effects of regolith and megaregolith layers on the cooling rate. It was found that a combination of relatively thick megaregolith and regolith can potentially reduce the core cooling rate by more than a factor of 10 below the rate predicted by models with conventional thermal conductivity structure. Thus, differences in cratering (regolith production) histories may have resulted in radically different cooling rates for asteroids of similar radius, or in similar cooling rates from asteroids of different radius.

  4. The effects of aging on BWR core isolation cooling systems

    SciTech Connect

    Lee, B.S.

    1994-10-01

    A study was performed to assess the effects of aging on the Reactor Core Isolation Cooling (RCIC) system in commercial Boiling Water Reactors (BWRs). This study is part of the Nuclear Plant Aging Research (NPAR) program sponsored by the US Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. The failure data from national databases, as well as plant specific data were reviewed and analyzed to understand the effects of aging on the RCIC system. This analysis identified important components that should receive the highest priority in terms of aging management. The aging characterization provided information on the effects of aging on component failure frequency, failure modes, and failures causes. Current inspection, surveillance, and monitoring practices were also reviewed.

  5. Different responses of Sea Surface Temperature in the North Pacific to greenhouse gas and aerosol forcing

    NASA Astrophysics Data System (ADS)

    Wang, Liyi; Liu, Qinyu

    2015-12-01

    The responses of Sea Surface Temperature (SST) to greenhouse gas (GHG) and anthropogenic aerosol in the North Pacific are compared based on the historical single and all-forcing simulations with Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). During 1860-2005, the effect of GHG forcing on the North Pacific SST is opposite to that of the aerosol forcing. Specifically, the aerosol cooling effect exceeds the GHG warming effect in the Kuroshio Extension (KE) region during 1950-2004 in the CM3 single forcing. The mid-latitude response of ocean circulation to the GHG (aerosol) forcing is to enhance (weaken) the Subtropical Gyre. Then the SST warming (cooling) lies on the zonal band of 40°N because of the increased (reduced) KE warm advection effect in the GHG (aerosol) forcing simulations, and the cooling effect to SST will surpass the warming effect in the KE region in the historical all-forcing simulations. Besides, the positive feedback between cold SST and cloud can also strengthen the aerosol cooling effect in the KE region during boreal summer, when the mixed layer depth is shallow. In the GHG (aerosol) forcing simulations, corresponding to warming (cooling) SST in the KE region, the weakened (enhanced) Aleutian Low appears in the Northeast Pacific. Consequently, the SST responses to all-forcing in the historical simulations are similar to the responses to aerosol forcing in sign and spatial pattern, hence the aerosol effect is quite important to the SST cooling in the mid-latitude North Pacific during the past 55 years.

  6. Assessment of dust aerosol effect on cloud properties over Northwest China using CERES SSF data

    NASA Astrophysics Data System (ADS)

    Huang, J.; Wang, X.; Wang, T.; Su, J.; Minnis, P.; Lin, B.; Hu, Y.; Yi, Y.

    Dust aerosols not only have direct effects on the climate through reflection and absorption of the short and long wave radiation but also modify cloud properties such as the number concentration and size of cloud droplets indirect effect and contribute to diabatic heating in the atmosphere that often enhances cloud evaporation and reduces the cloud water path In this study indirect and semi-direct effects of dust aerosols are analyzed over eastern Asia using two years June 2002 to June 2004 of CERES Clouds and the Earth s Radiant Energy Budget Scanner and MODIS MODerate Resolution Imaging Spectroradiometer Aqua Edition 1B SSF Single Scanner Footprint data sets The statistical analysis shows evidence for both indirect and semi-direct effect of Asia dust aerosols The dust appears to reduce the ice cloud effective particle diameter and increase high cloud amount On average ice cloud effective particle diameters of cirrus clouds under dust polluted conditions dusty cloud are 11 smaller than those derived from ice clouds in dust-free atmospheric environments The water paths of dusty clouds are also considerably smaller than those of dust-free clouds Dust aerosols could warm clouds thereby increasing the evaporation of cloud droplets resulting in reduced cloud water path semi-direct effect The semi-direct effect may be dominated the interaction between dust aerosols and clouds over arid and semi-arid areas and partly contribute to reduced precipitation

  7. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  8. Common summertime total cloud cover and aerosol optical depth weekly variabilities over Europe: Sign of the aerosol indirect effects?

    NASA Astrophysics Data System (ADS)

    Georgoulias, A. K.; Kourtidis, K. A.; Alexandri, G.; Rapsomanikis, S.; Sanchez-Lorenzo, A.

    2015-02-01

    In this study, the summer total cloud cover (TCC) weekly cycle over Europe is investigated using MODIS and ISCCP satellite data in conjunction with aerosol optical depth (AOD) MODIS data. Spatial weekly patterns are examined at a 1° × 1° (MODIS) and 250 × 250 km2 (ISCCP) resolution. Despite the noise in the TCC weekly cycle patterns, their large-scale features show similarities with the AOD550 patterns. Regions with a positive (higher values during midweek) weekly cycle appear over Central Europe, while a strong negative (higher values during weekend) weekly plume appears over the Iberian Peninsula and the North-Eastern Europe. The TCC weekly variability exhibits a very good agreement with the AOD550 weekly variability over Central, South-Western Europe and North-Eastern Europe and a moderate agreement for Central Mediterranean. The MODIS derived TCC weekly variability shows reasonable agreement with the independent ISCCP observations, thus supporting the credibility of the results. TCC