Science.gov

Sample records for aerosol detector cad

  1. CADS:Cantera Aerosol Dynamics Simulator.

    SciTech Connect

    Moffat, Harry K.

    2007-07-01

    This manual describes a library for aerosol kinetics and transport, called CADS (Cantera Aerosol Dynamics Simulator), which employs a section-based approach for describing the particle size distributions. CADS is based upon Cantera, a set of C++ libraries and applications that handles gas phase species transport and reactions. The method uses a discontinuous Galerkin formulation to represent the particle distributions within each section and to solve for changes to the aerosol particle distributions due to condensation, coagulation, and nucleation processes. CADS conserves particles, elements, and total enthalpy up to numerical round-off error, in all of its formulations. Both 0-D time dependent and 1-D steady state applications (an opposing-flow flame application) have been developed with CADS, with the initial emphasis on developing fundamental mechanisms for soot formation within fires. This report also describes the 0-D application, TDcads, which models a time-dependent perfectly stirred reactor.

  2. Effect of CALIPSO Cloud Aerosol Discrimination (CAD) Confidence Levels on Observations of Aerosol Properties near Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Liu, Zhaoyan

    2012-01-01

    CALIPSO aerosol backscatter enhancement in the transition zone between clouds and clear sky areas is revisited with particular attention to effects of data selection based on the confidence level of cloud-aerosol discrimination (CAD). The results show that backscatter behavior in the transition zone strongly depends on the CAD confidence level. Higher confidence level data has a flatter backscatter far away from clouds and a much sharper increase near clouds (within 4 km), thus a smaller transition zone. For high confidence level data it is shown that the overall backscatter enhancement is more pronounced for small clear-air segments and horizontally larger clouds. The results suggest that data selection based on CAD reduces the possible effects of cloud contamination when studying aerosol properties in the vicinity of clouds.

  3. Review of operating principle and applications of the charged aerosol detector.

    PubMed

    Vehovec, Tanja; Obreza, Ales

    2010-03-01

    Recently a new detection method, based upon aerosol charging (the charged aerosol detector (CAD)) has been introduced as an alternative to evaporative light-scattering detector (ELSD), chemiluminescent nitrogen detector and refractive index detector for detection of non-ultraviolet and weakly ultraviolet active compounds and for UV-absorbing compounds in the absence of standards. The content of this review article includes description of operation principle, advantages and disadvantages of CAD system, and short reports of selected applications of this detector. The main advantages of CAD detector are unique performance characteristics: better sensitivity than ELSD system, a dynamic range of up to 4 orders of magnitude, ease of use and constancy of response factors. Both detectors are mass dependent and the response generated does not depend on the spectral or physicochemical properties of the analyte. This attractive feature of a detection technique generating universal response factors is the potential use of a single, universal standard for calibration against which all other compounds or impurities can be qualified. CAD also has the same limitation as ELSD, namely, the response is affected by mobile-phase composition. This problem has been resolved by using inverse gradient compensation as is done for high pressure liquid chromatography and supercritical fluid chromatography. CAD has been applied for the analysis of structurally diverse compounds used in the pharmaceutical, chemical, food, and consumer products industries and in life science research. They include nonvolatile and semivolatile neutral, acidic, basic, and zwitterionic compounds, both polar and nonpolar (e.g. lipids, proteins, steroids, polymers, carbohydrates, peptides). PMID:20083252

  4. A charged aerosol detector/chemiluminescent nitrogen detector/liquid chromatography/mass spectrometry system for regular and fragment compound analysis in drug discovery.

    PubMed

    Jiang, Yutao; Hascall, Daniel; Li, Delia; Pease, Joseph H

    2015-09-11

    In this paper, we introduce a high throughput LCMS/UV/CAD/CLND system that improves upon previously reported systems by increasing both the quantitation accuracy and the range of compounds amenable to testing, in particular, low molecular weight "fragment" compounds. This system consists of a charged aerosol detector (CAD) and chemiluminescent nitrogen detector (CLND) added to a LCMS/UV system. Our results show that the addition of CAD and CLND to LCMS/UV is more reliable for concentration determination for a wider range of compounds than either detector alone. Our setup also allows for the parallel analysis of each sample by all four detectors and so does not significantly increase run time per sample. PMID:26256922

  5. Role of Computer Aided Diagnosis (CAD) in the detection of pulmonary nodules on 64 row multi detector computed tomography

    PubMed Central

    Prakashini, K; Babu, Satish; Rajgopal, KV; Kokila, K Raja

    2016-01-01

    Aims and Objectives: To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. Materials and Methods: A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Observations and Results: Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4–10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. Conclusion: CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time.

  6. Method for HEPA filter leak scanning with differentiating aerosol detector

    SciTech Connect

    Kovach, B.J.; Banks, E.M.; Wikoff, W.O.

    1997-08-01

    While scanning HEPA filters for leaks with {open_quotes}Off the Shelf{close_quote} aerosol detection equipment, the operator`s scanning speed is limited by the time constant and threshold sensitivity of the detector. This is based on detection of the aerosol density, where the maximum signal is achieved when the scanning probe resides over the pinhole longer than several detector time-constants. Since the differential value of the changing signal can be determined by observing only the first small fraction of the rising signal, using a differentiating amplifier will speed up the locating process. The other advantage of differentiation is that slow signal drift or zero offset will not interfere with the process of locating the leak, since they are not detected. A scanning hand-probe attachable to any NUCON{reg_sign} Aerosol Detector displaying the combination of both aerosol density and differentiated signal was designed. 3 refs., 1 fig.

  7. 10 CFR 30.20 - Gas and aerosol detectors containing byproduct material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Gas and aerosol detectors containing byproduct material... LICENSING OF BYPRODUCT MATERIAL Exemptions § 30.20 Gas and aerosol detectors containing byproduct material... distribution gas and aerosol detectors containing byproduct material, any person is exempt from...

  8. 10 CFR 30.20 - Gas and aerosol detectors containing byproduct material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Gas and aerosol detectors containing byproduct material... LICENSING OF BYPRODUCT MATERIAL Exemptions § 30.20 Gas and aerosol detectors containing byproduct material... distribution gas and aerosol detectors containing byproduct material, any person is exempt from...

  9. 10 CFR 30.20 - Gas and aerosol detectors containing byproduct material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Gas and aerosol detectors containing byproduct material... LICENSING OF BYPRODUCT MATERIAL Exemptions § 30.20 Gas and aerosol detectors containing byproduct material... distribution gas and aerosol detectors containing byproduct material, any person is exempt from...

  10. 10 CFR 30.20 - Gas and aerosol detectors containing byproduct material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Gas and aerosol detectors containing byproduct material... LICENSING OF BYPRODUCT MATERIAL Exemptions § 30.20 Gas and aerosol detectors containing byproduct material... distribution gas and aerosol detectors containing byproduct material, any person is exempt from...

  11. 10 CFR 30.20 - Gas and aerosol detectors containing byproduct material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Gas and aerosol detectors containing byproduct material... LICENSING OF BYPRODUCT MATERIAL Exemptions § 30.20 Gas and aerosol detectors containing byproduct material... distribution gas and aerosol detectors containing byproduct material, any person is exempt from...

  12. 10 CFR 32.26 - Gas and aerosol detectors containing byproduct material: Requirements for license to manufacture...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Gas and aerosol detectors containing byproduct material... CONTAINING BYPRODUCT MATERIAL Exempt Concentrations and Items § 32.26 Gas and aerosol detectors containing... application for a specific license to manufacture, process, or produce gas and aerosol detectors...

  13. Determination of inulin-type fructooligosaccharides in edible plants by high-performance liquid chromatography with charged aerosol detector.

    PubMed

    Li, Jing; Hu, Dejun; Zong, Wanrong; Lv, Guangping; Zhao, Jing; Li, Shaoping

    2014-08-01

    Fructooligosaccharides (FOS), which are regarded as functional ingredients, are commonly classified as dietary fibers in many countries. However, few analytical methods for separation and analysis of individual FOS in plants, crops, and food products have been developed. In this study, a simple, rapid, and sensitive high performance liquid chromatography with charged aerosol detector (HPLC-CAD) method was developed for simultaneous determination of 11 inulin-type FOS with degree of polymerization (DP) 3-13 in different samples. The separation was performed on a Waters XBridge Amide column (4.6 × 250 mm i.d., 3.5 μm) with gradient elution. All calibration curves for investigated analytes showed good linear regression (R(2) > 0.9962). Their limits of detection (LOD) and quantification (LOQ) were in the ranges 0.4-0.6 μg/mL and 1.4-2.3 μg/mL, respectively. The recoveries ranged from 94.0% to 114.4%. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was applied to qualitative analysis of FOS in different samples. The developed method was successfully applied to analysis of 11 FOS in different samples of plants from Compositae, Campanulaceae, and Rubiaceae families. The developed HPLC-CAD nethod with microwave-assisted extraction can be used for quantitative analysis of FOS and is helpful for quality control of plants containing FOS. PMID:25034622

  14. Lipid analysis via HPLC with a charged aerosol detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most lipid extracts are a mixture of saturated and unsaturated molecules. Therefore, the most successful HPLC detectors for the quantitative analysis of lipids have involved the use of “universal” or “mass” detectors such as flame ionization detectors (FID) and evaporative light scattering detectors...

  15. Quantification of pegylated phospholipids decorating polymeric microcapsules of perfluorooctyl bromide by reverse phase HPLC with a charged aerosol detector.

    PubMed

    Díaz-López, R; Libong, D; Tsapis, N; Fattal, E; Chaminade, P

    2008-11-01

    Polyethylene glycol (PEG) chains covalently linked to phospholipids are often used in the preparation of lipid or even polymer colloidal particles to avoid recognition and clearance by the reticuloendothelial system and to increase their plasmatic half-life. To the best of our knowledge, no direct method allows yet to quantify these pegylated phospholipids. The aim of this work was to develop a method for the quantification of a typical pegylated phospholipid, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000], DSPE-PEG2000, associated to polymeric microcapsules of perfluorooctyl bromide (PFOB). Reverse phase high-performance liquid chromatography (HPLC) was used, coupled with a corona charged aerosol detection (HPLC-CAD). Calibrations standards consisted of plain microcapsules and pegylated phospholipids (DSPE-PEG2000) in the concentration range of 2.23-21.36 microg/mL (0.22-2.14 microg injected). Calibration curve was evaluated with two different model, linear and power model. The power model describes experimental values better than the linear model, for pegylated phospholipids with the CAD detector. The correlation coefficient for the power model was 0.996, and limits of detection and quantification obtained were 33 and 100 ng, respectively. This method proved to be selective and sensitive; the accuracy of the method ranged from 90 to 115% and the relative standard deviation was

  16. Immersive CAD

    SciTech Connect

    Ames, A.L.

    1999-02-01

    This paper documents development of a capability for performing shape-changing editing operations on solid model representations in an immersive environment. The capability includes part- and assembly-level operations, with part modeling supporting topology-invariant and topology-changing modifications. A discussion of various design considerations in developing an immersive capability is included, along with discussion of a prototype implementation we have developed and explored. The project investigated approaches to providing both topology-invariant and topology-changing editing. A prototype environment was developed to test the approaches and determine the usefulness of immersive editing. The prototype showed exciting potential in redefining the CAD interface. It is fun to use. Editing is much faster and friendlier than traditional feature-based CAD software. The prototype algorithms did not reliably provide a sufficient frame rate for complex geometries, but has provided the necessary roadmap for development of a production capability.

  17. Development and validation of a hydrophilic interaction chromatography method coupled with a charged aerosol detector for quantitative analysis of nonchromophoric α-hydroxyamines, organic impurities of metoprolol.

    PubMed

    Xu, Qun; Tan, Shane; Petrova, Katya

    2016-01-25

    The European Pharmacopeia (EP) metoprolol impurities M and N are polar, nonchromophoric α-hydroxyamines, which are poorly retained in a conventional reversed-phase chromatographic system and are invisible for UV detection. Impurities M and N are currently analyzed by TLC methods in the EP as specified impurities and in the United States Pharmacopeia-National Formulary (USP-NF) as unspecified impurities. In order to modernize the USP monographs of metoprolol drug substances and related drug products, a hydrophilic interaction chromatography (HILIC) method coupled with a charged aerosol detector (CAD) was explored for the analysis of the two impurities. A comprehensive column screening that covers a variety of HILIC stationary phases (underivatized silica, amide, diol, amino, zwitterionic, polysuccinimide, cyclodextrin, and mixed-mode) and optimization of HPLC conditions led to the identification of a Halo Penta HILIC column (4.6 × 150 mm, 5 μm) and a mobile phase comprising 85% acetonitrile and 15% ammonium formate buffer (100 mM, pH 3.2). Efficient separations of metoprolol, succinic acid, and EP metoprolol impurities M and N were achieved within a short time frame (<8 min). The HILIC-CAD method was subsequently validated per USP validation guidelines with respect to specificity, robustness, linearity, accuracy, and precision, and could be incorporated into the current USP-NF monographs to replace the outdated TLC methods. Furthermore, the developed method was successfully applied to determine organic impurities in metoprolol drug substance (metoprolol succinate) and drug products (metoprolol tartrate injection and metoprolol succinate extended release tablets). PMID:26580821

  18. Multisensor analyzer detector (MSAD) for low cost chemical and aerosol detection and pattern fusion

    NASA Astrophysics Data System (ADS)

    Swanson, David C.; Merdes, Daniel W.; Lysak, Daniel B., Jr.; Curtis, Richard C.; Lang, Derek C.; Mazzara, Andrew F.; Nicholas, Nicholas C.

    2002-08-01

    MSAD is being developed as a low-cost point detection chemical and biological sensor system designed around an information fusion inference engine that also allows additional sensors to be included in the detection process. The MSAD concept is based on probable cause detection of hazardous chemical vapors and aerosols of either chemical or biological composition using a small portable unit containing an embedded computer system and several integrated sensors with complementary capabilities. The configuration currently envisioned includes a Surface-Enhanced Raman Spectroscopy (SERS) sensor of chemical vapors and a detector of respirable aerosols based on Fraunhofer diffraction. Additional sensors employing Ion Mobility Spectrometry (IMS), Surface Acoustic Wave (SAW) detection, Flame Photometric Detection (FPD), and other principles are candidates for integration into the device; also, available commercial detectors implementing IMS, SAW, and FPD will be made accessible to the unit through RS232 ports. Both feature and decision level information fusion is supported using a Continuous Inference Network (CINET) of fuzzy logic. Each class of agents has a unique CINET with information inputs from a number of available sensors. Missing or low confidence sensor information is gracefully blended out of the output confidence for the particular agent. This approach constitutes a plug and play arrangement between the sensors and the information pattern recognition algorithms. We are currently doing simulant testing and developing out CINETs for actual agent testing at Edgewood Chemical and Biological Center (ECBC) later this year.

  19. Comparison of universal detectors for high-temperature micro liquid chromatography.

    PubMed

    Hazotte, A; Libong, D; Matoga, M; Chaminade, P

    2007-11-01

    This study compares, through micro high-temperature liquid chromatography (microHTLC), three commercial universal detectors that allow a direct detection of lipids. The detectors are: the charged aerosol detector (CAD), the evaporative light-scattering detector (ELSD) and the ion trap mass spectrometer with atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) sources (APCI-MS and ESI-MS). This study shows the feasibility to use the high temperature with these detectors and hybrid behavior between concentration and mass flow rate detector in microHTLC. The detectors were compared in terms of response intensity, linearity and limit of detection for different high temperatures. The charged aerosol detector shows a linear response from 5 to 500 microg/mL and the correlation coefficients (r(2)) obtained for squalene, cholesterol and ceramide IIIB exceed 0.99. PMID:17905258

  20. Teaching for CAD Expertise

    ERIC Educational Resources Information Center

    Chester, Ivan

    2007-01-01

    CAD (Computer Aided Design) has now become an integral part of Technology Education. The recent introduction of highly sophisticated, low-cost CAD software and CAM hardware capable of running on desktop computers has accelerated this trend. There is now quite widespread introduction of solid modeling CAD software into secondary schools but how…

  1. CAD/CAM/CNC.

    ERIC Educational Resources Information Center

    Domermuth, Dave; And Others

    1996-01-01

    Includes "Quick Start CNC (computer numerical control) with a Vacuum Filter and Laminated Plastic" (Domermuth); "School and Industry Cooperate for Mutual Benefit" (Buckler); and "CAD (computer-assisted drafting) Careers--What Professionals Have to Say" (Skinner). (JOW)

  2. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  3. The VE/CAD synergism

    SciTech Connect

    Sperling, R.B.

    1993-03-19

    Value Engineering (VE) and Computer-Aided Design (CAD) can be used synergistically to reduce costs and improve facilities designs. The cost and schedule impacts of implementing alternative design ideas developed by VE teams can be greatly reduced when the drawings have been produced with interactive CAD systems. To better understand the interrelationship between VE and CAD, the fundamentals of the VE process are explained; and example of a VE proposal is described and the way CAD drawings facilitated its implementation is illustrated.

  4. A non-derivative method for the quantitative analysis of isosteroidal alkaloids from Fritillaria by high performance liquid chromatography combined with charged aerosol detection.

    PubMed

    Long, Zhen; Guo, Zhimou; Acworth, Ian N; Liu, Xiaoda; Jin, Yan; Liu, Xingguo; Liu, Lvye; Liang, Lina

    2016-05-01

    A non-derivative method was developed for the qualitative and quantitative analysis of isosteroidal alkaloids from Fritillaria thunbergii. During method development the performance of two universal detectors, the charged aerosol detector (CAD) and evaporative light scattering detector (ELSD), were evaluated. The CAD was found to be 30 to 55 times more sensitive than ELSD enabling the measurement of low levels of reference compound impurities that could not be detected by ELSD. The peak area percent of the reference compound, peimisine, obtained by CAD was 50.10%, but 91.66% by ELSD showing that CAD is suitable to estimate the presence of impurities. The CAD showed good reproducibility with overall intra- and inter-day peak area RSD values of less than 1.8% and 2.7%, respectively and had a linear dynamic range of up to 4 orders of magnitude (0.06-44mg/L) for peimine and peiminine. The optimized method was used for the quantitative analysis of peimine and peiminine from F. thunbergii. PMID:26946033

  5. Shape optimization and CAD

    NASA Technical Reports Server (NTRS)

    Rasmussen, John

    1990-01-01

    Structural optimization has attracted the attention since the days of Galileo. Olhoff and Taylor have produced an excellent overview of the classical research within this field. However, the interest in structural optimization has increased greatly during the last decade due to the advent of reliable general numerical analysis methods and the computer power necessary to use them efficiently. This has created the possibility of developing general numerical systems for shape optimization. Several authors, eg., Esping; Braibant & Fleury; Bennet & Botkin; Botkin, Yang, and Bennet; and Stanton have published practical and successful applications of general optimization systems. Ding and Homlein have produced extensive overviews of available systems. Furthermore, a number of commercial optimization systems based on well-established finite element codes have been introduced. Systems like ANSYS, IDEAS, OASIS, and NISAOPT are widely known examples. In parallel to this development, the technology of computer aided design (CAD) has gained a large influence on the design process of mechanical engineering. The CAD technology has already lived through a rapid development driven by the drastically growing capabilities of digital computers. However, the systems of today are still considered as being only the first generation of a long row of computer integrated manufacturing (CIM) systems. These systems to come will offer an integrated environment for design, analysis, and fabrication of products of almost any character. Thus, the CAD system could be regarded as simply a database for geometrical information equipped with a number of tools with the purpose of helping the user in the design process. Among these tools are facilities for structural analysis and optimization as well as present standard CAD features like drawing, modeling, and visualization tools. The state of the art of structural optimization is that a large amount of mathematical and mechanical techniques are

  6. CAD/CAE Integration Enhanced by New CAD Services Standard

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.

    2002-01-01

    A Government-industry team led by the NASA Glenn Research Center has developed a computer interface standard for accessing data from computer-aided design (CAD) systems. The Object Management Group, an international computer standards organization, has adopted this CAD services standard. The new standard allows software (e.g., computer-aided engineering (CAE) and computer-aided manufacturing software to access multiple CAD systems through one programming interface. The interface is built on top of a distributed computing system called the Common Object Request Broker Architecture (CORBA). CORBA allows the CAD services software to operate in a distributed, heterogeneous computing environment.

  7. Use of the electrical aerosol detector as an indicator of the surface area of fine particles deposited in the lung.

    PubMed

    Wilson, William E; Stanek, John; Han, Hee-Siew Ryan; Johnson, Tim; Sakurai, Hiromu; Pui, David Y H; Turner, Jay; Chen, Da-Ren; Duthie, Scott

    2007-02-01

    Because of recent concerns about the health effects of ultrafine particles and the indication that particle toxicity is related to surface area, we have been examining techniques for measuring parameters related to the surface area of fine particles, especially in the 0.003- to 0.5-microm size range. In an earlier study, we suggested that the charge attached to particles, as measured by a prototype of the Electrical Aerosol Detector (EAD, TSI Inc., Model 3070), was related to the 1.16 power of the mobility diameter. An inspection of the pattern of particle deposition in the lung as a function of particle size suggested that the EAD measurement might be a useful indicator of the surface area of particles deposited in the lung. In this study, we calculate the particle surface area (micrometer squared) deposited in the lung per cubic centimeter of air inhaled as a function of particle size using atmospheric particle size distributions measured in Minneapolis, MN, and East St. Louis, IL. The correlations of powers of the mobility diameter, Dx, were highest for X = 1.1-1.6 for the deposited surface area and for X = 1.25 with the EAD signal. This overlap suggested a correspondence between the EAD signal and the deposited surface area. The correlation coefficients of the EAD signal and particle surface area deposited in the alveolar and tracheobronchial regions of the lung for three breathing patterns are in the range of Pearson's r = 0.91-0.95 (coefficient of determination, R2 = 0.82-0.90). These statistical relationships suggest that the EAD could serve as a useful indicator of particle surface area deposited in the lung in exposure and epidemiologic studies of the human health effects of atmospheric particles and as a measure of the potential surface area dose for the characterization of occupational environments. PMID:17355082

  8. CAD/CAM for optomechatronics

    NASA Astrophysics Data System (ADS)

    Zhou, Haiguang; Han, Min

    2003-10-01

    We focus at CAD/CAM for optomechatronics. We have developed a kind of CAD/CAM, which is not only for mechanics but also for optics and electronic. The software can be used for training and education. We introduce mechanical CAD, optical CAD and electrical CAD, we show how to draw a circuit diagram, mechanical diagram and luminous transmission diagram, from 2D drawing to 3D drawing. We introduce how to create 2D and 3D parts for optomechatronics, how to edit tool paths, how to select parameters for process, how to run the post processor, dynamic show the tool path and generate the CNC programming. We introduce the joint application of CAD&CAM. We aim at how to match the requirement of optical, mechanical and electronics.

  9. CAD for small hydro projects

    SciTech Connect

    Bishop, N.A. Jr. )

    1994-04-01

    Over the past decade, computer-aided design (CAD) has become a practical and economical design tool. Today, specifying CAD hardware and software is relatively easy once you know what the design requirements are. But finding experienced CAD professionals is often more difficult. Most CAD users have only two or three years of design experience; more experienced design personnel are frequently not CAD literate. However, effective use of CAD can be the key to lowering design costs and improving design quality--a quest familiar to every manager and designer. By emphasizing computer-aided design literacy at all levels of the firm, a Canadian joint-venture company that specializes in engineering small hydroelectric projects has cut costs, become more productive and improved design quality. This article describes how they did it.

  10. Computerized design of CAD

    NASA Astrophysics Data System (ADS)

    Paul, B. E.; Pham, T. A.

    1982-11-01

    A computerized ballistic design technique for CAD/PAD is described by which a set of ballistic design parameters are determined, all of which satisfy a particular performance requirement. In addition, the program yields the remaining performance predictions, so that only a very few computer runs of the design program can quickly bring the ballistic design within the specification limits prescribed. An example is presented for a small propulsion device, such as a remover or actuator, for which the input specifications define a maximum allowable thrust and minimum end-of-stroke velocity. The resulting output automatically satisfies the input requirements, and will always yield an acceptable ballistic design.

  11. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector.

    PubMed

    Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories. PMID:26133876

  12. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    SciTech Connect

    Kulkarni, A.; Bak, M. S. E-mail: moonsoo@skku.edu; Ha, S.; Joshirao, P.; Manchanda, V.; Kim, T. E-mail: moonsoo@skku.edu

    2015-06-15

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO{sub 3}){sub 4} ⋅ 5H{sub 2}O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  13. Quantification of individual phenolic compounds' contribution to antioxidant capacity in apple: a novel analytical tool based on liquid chromatography with diode array, electrochemical, and charged aerosol detection.

    PubMed

    Plaza, Merichel; Kariuki, James; Turner, Charlotta

    2014-01-15

    Phenolics, particularly from apples, hold great interest because of their antioxidant properties. In the present study, the total antioxidant capacity of different apple extracts obtained by pressurized hot water extraction (PHWE) was determined by cyclic voltammetry (CV), which was compared with the conventional antioxidant assays. To measure the antioxidant capacity of individual antioxidants present in apple extracts, a novel method was developed based on high-performance liquid chromatography (HPLC) with photodiode array (DAD), electrochemical (ECD), and charged aerosol (CAD) detection. HPLC-DAD-ECD-CAD enabled rapid, qualitative, and quantitative determination of antioxidants in the apple extracts. The main advantage of using CAD was that this detector enabled quantification of a large number of phenolics using only a few standards. The results showed that phenolic acids and flavonols were mainly responsible for the total antioxidant capacity of apple extracts. In addition, protocatechuic acid, chlorogenic acid, hyperoside, an unidentified phenolic acid, and a quercetin derivative presented the highest antioxidant capacities. PMID:24345041

  14. Cantera Aerosol Dynamics Simulator

    SciTech Connect

    Moffat, Harry

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkin formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.

  15. TRAD or CAD? A Comparison.

    ERIC Educational Resources Information Center

    Resetarits, Paul J.

    1989-01-01

    Studies whether traditional drafting equipment (TRAD) or computer aided drafting equipment (CAD) is more effective. Proposes that students using only CAD can learn principles of drafting as well as students using only TRAD. Reports no significant difference either on achievement or attitude. (MVL)

  16. CAD/CAM data management

    NASA Technical Reports Server (NTRS)

    Bray, O. H.

    1984-01-01

    The role of data base management in CAD/CAM, particularly for geometric data is described. First, long term and short term objectives for CAD/CAM data management are identified. Second, the benefits of the data base management approach are explained. Third, some of the additional work needed in the data base area is discussed.

  17. Investigating the stability of the nonionic surfactants tocopheryl polyethylene glycol succinate and sucrose laurate by HPLC-MS, DAD, and CAD.

    PubMed

    Christiansen, Anne; Backensfeld, Thomas; Kühn, Silke; Weitschies, Werner

    2011-05-01

    High-performance liquid chromatography (HPLC) methods using a charged aerosol detector (CAD), a mass selective detector (MSD), and a diode array detector (DAD) were developed to characterize the nonionic surfactants d-α-tocopheryl polyethylene glycol (1000) succinate (TPGS) and Surfhope sugar ester D-1216 (sucrose laurate). The molecular structure and the heterogeneous composition resulting from different isomers and various lengths of polyethylene glycol (PEG) chains make it difficult to develop sensitive and specific analytical methods for both surfactants. Hence, there is lack of knowledge about the stability and grade of impurity of these compounds. Sucrose laurate does not possess any chromophore, thus UV detection is not applicable. Therefore, CAD and MSD have been used for determination. The aim of the study was to characterize these nonionic surfactants and to examine chemical stability at pH 1.0 and 37 °C, simulating harsh gastric conditions. It was shown that both compounds are liable to degradation under these conditions. Sucrose monolaurate exhibited a massive degradation within 8 h incubation due to cleavage of the glycosidic bondage. About 50% of sucrose monolaurate broke down, whereas a marginal amount of 3.4% (± 0.4%) of TPGS degraded into d-α-tocopheryl succinate and the associated PEG chain. PMID:21374613

  18. A high-throughput hydrophilic interaction liquid chromatography coupled with a charged aerosol detector method to assess trisulfides in IgG1 monoclonal antibodies using tris(2-carboxyethyl)phosphine reaction products: Tris(2-carboxyethyl)phosphine-oxide and tris(2-carboxyethyl)phosphine-sulfide.

    PubMed

    Cornell, Christopher; Karanjit, Amish; Chen, Yan; Jacobson, Fredric

    2016-07-29

    A robust, high-throughput method using hydrophilic interaction liquid chromatography (HILIC) coupled with a charged aerosol detector (CAD) is reported as a novel approach for trisulfide quantitation in monoclonal antibodies (mAbs). The products of mAb reduction using tris(2-carboxyethyl)phosphine (TCEP) include a species (TCEP(S)) that is stoichiometrically produced from trisulfides. The TCEP reaction products are chromatographically separated, detected, and quantified by the HILICCAD method. The method was qualified to quantify trisulfides across a range of 1-40% (mol trisulfide/mol mAb). In all tested matrix components, assay linearity and intermediate precision were established with correlation coefficients (R(2))>0.99, and relative standard deviations (RSD)<10%. A method comparability study was performed using peptide mapping LC-MS as an orthogonal measurement. For the range of 1-40% trisulfides, the analysis demonstrates that, on average, HILICCAD reads between 0.95 and 1.10 times the value of LC-MS with 95% confidence. Applications of the HILICCAD method include trisulfide determination in purified mAbs to be used in the production of cysteine-linked antibody-drug conjugates, and in cell culture development studies to understand sources of, and strategies for control of, trisulfides. PMID:27345209

  19. Evaluation of Five Microcomputer CAD Packages.

    ERIC Educational Resources Information Center

    Leach, James A.

    1987-01-01

    Discusses the similarities, differences, advanced features, applications and number of users of five microcomputer computer-aided design (CAD) packages. Included are: "AutoCAD (V.2.17)"; "CADKEY (V.2.0)"; "CADVANCE (V.1.0)"; "Super MicroCAD"; and "VersaCAD Advanced (V.4.00)." Describes the evaluation of the packages and makes recommendations for…

  20. CAD Services: an Industry Standard Interface for Mechanical CAD Interoperability

    NASA Technical Reports Server (NTRS)

    Claus, Russell; Weitzer, Ilan

    2002-01-01

    Most organizations seek to design and develop new products in increasingly shorter time periods. At the same time, increased performance demands require a team-based multidisciplinary design process that may span several organizations. One approach to meet these demands is to use 'Geometry Centric' design. In this approach, design engineers team their efforts through one united representation of the design that is usually captured in a CAD system. Standards-based interfaces are critical to provide uniform, simple, distributed services that enable the 'Geometry Centric' design approach. This paper describes an industry-wide effort, under the Object Management Group's (OMG) Manufacturing Domain Task Force, to define interfaces that enable the interoperability of CAD, Computer Aided Manufacturing (CAM), and Computer Aided Engineering (CAE) tools. This critical link to enable 'Geometry Centric' design is called: Cad Services V1.0. This paper discusses the features of this standard and proposed application.

  1. CALIPSO Observations of Aerosol Properties Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas; Yang, Weidong

    2010-01-01

    Clouds are surrounded by a transition zone of rapidly changing aerosol properties. Characterizing this zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects as well as for improving satellite measurements of aerosol properties. We present a statistical analysis of a global dataset of CALIPSO (Cloud-Aerosol Lidar and infrared Pathfinder Satellite Observation) Lidar observations over oceans. The results show that the transition zone extends as far as 15 km away from clouds and it is ubiquitous over all oceans. The use of only high confidence level cloud-aerosol discrimination (CAD) data confirms the findings. However, the results underline the need for caution to avoid biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  2. A Survey of CAD Software.

    ERIC Educational Resources Information Center

    Sisk, Alan

    1987-01-01

    Computer-aided design (CAD) has been around for a number of years. An overview is provided of a number of major computer-aided design programs. A short analysis of each program includes the addresses of the software producers. (MLF)

  3. CAD systems simplify engineering drawings

    SciTech Connect

    Holt, J.

    1986-10-01

    Computer assisted drafting systems, with today's technology, provide high-quality, timely drawings that can be justified by the lower costs for the final product. The author describes Exxon Pipeline Co.'s experience in deciding on hardware and software for a CAD system installation and the benefits effected by this procedure and equipment.

  4. High performance liquid chromatography-charged aerosol detection applying an inverse gradient for quantification of rhamnolipid biosurfactants.

    PubMed

    Behrens, Beate; Baune, Matthias; Jungkeit, Janek; Tiso, Till; Blank, Lars M; Hayen, Heiko

    2016-07-15

    A method using high performance liquid chromatography coupled to charged-aerosol detection (HPLC-CAD) was developed for the quantification of rhamnolipid biosurfactants. Qualitative sample composition was determined by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The relative quantification of different derivatives of rhamnolipids including di-rhamnolipids, mono-rhamnolipids, and their precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) differed for two compared LC-MS instruments and revealed instrument dependent responses. Our here reported HPLC-CAD method provides uniform response. An inverse gradient was applied for the absolute quantification of rhamnolipid congeners to account for the detector's dependency on the solvent composition. The CAD produces a uniform response not only for the analytes but also for structurally different (nonvolatile) compounds. It was demonstrated that n-dodecyl-β-d-maltoside or deoxycholic acid can be used as alternative standards. The method of HPLC-ultra violet (UV) detection after a derivatization of rhamnolipids and HAAs to their corresponding phenacyl esters confirmed the obtained results but required additional, laborious sample preparation steps. Sensitivity determined as limit of detection and limit of quantification for four mono-rhamnolipids was in the range of 0.3-1.0 and 1.2-2.0μg/mL, respectively, for HPLC-CAD and 0.4 and 1.5μg/mL, respectively, for HPLC-UV. Linearity for HPLC-CAD was at least 0.996 (R(2)) in the calibrated range of about 1-200μg/mL. Hence, the here presented HPLC-CAD method allows absolute quantification of rhamnolipids and derivatives. PMID:27283098

  5. CAD Skills Increased through Multicultural Design Project

    ERIC Educational Resources Information Center

    Clemons, Stephanie

    2006-01-01

    This article discusses how students in a college-entry-level CAD course researched four generations of their family histories and documented cultural and symbolic influences within their family backgrounds. AutoCAD software was then used to manipulate those cultural and symbolic images to create the design for a multicultural area rug. AutoCAD was…

  6. Cool-and Unusual-CAD Applications

    ERIC Educational Resources Information Center

    Calhoun, Ken

    2004-01-01

    This article describes several very useful applications of AutoCAD that may lie outside the normal scope of application. AutoCAD commands used in this article are based on AutoCAD 2000I. The author and his students used a Hewlett Packard 750C DesignJet plotter for plotting. (Contains 5 figures and 5 photos.)

  7. Incorporating CAD Instruction into the Drafting Curriculum.

    ERIC Educational Resources Information Center

    Yuen, Steve Chi-Yin

    1990-01-01

    If education is to meet the challenged posed by the U.S. productivity crisis and the large number of computer-assisted design (CAD) workstations forecast as necessary in the future, schools must integrate CAD into the drafting curriculum and become aggressive in providing CAD training. Teachers need to maintain close contact with local industries…

  8. Tropopsheric Aerosol Chemistry via Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Worsnop, Douglas

    2008-03-01

    A broad overview of size resolved aerosol chemistry in urban, rural and remote regions is evolving from deployment of aerosol mass spectrometers (AMS) throughout the northern hemisphere. Using thermal vaporization and electron impact ionization as universal detector of non-refractory inorganic and organic composition, the accumulation of AMS results represent a library of mass spectral signatures of aerosol chemistry. For organics in particular, mass spectral factor analysis provides a procedure for classifying (and simplifying) complex mixtures composed of the hundreds or thousands of individual compounds. Correlations with parallel gas and aerosol measurements (e.g. GC/MS, HNMR, FTIR) supply additional chemical information needed to interpret mass spectra. The challenge is to separate primary and secondary; anthropogenic, biogenic and biomass burning sources - and subsequent - transformations of aerosol chemistry and microphysics.

  9. Using a modified electrical aerosol detector to predict nanoparticle exposures to different regions of the respiratory tract for workers in a carbon black manufacturing industry.

    PubMed

    Wang, Ying-Fang; Tsai, Perng-Jy; Chen, Chun-Wan; Chen, Da-Ren; Hsu, Der-Jen

    2010-09-01

    The present study was set out to characterize nanoparticle exposures in three selected workplaces of the packaging, warehouse, and pelletizing in a carbon black manufacturing plant using a newly developed modified electrical aerosol detector (MEAD). For confirmation purposes, the MEAD results were compared with those simultaneously obtained from a nanoparticle surface area monitor (NSAM) and a scanning mobility particle sizer (SMPS). We found that workplace background nanoparticle concentrations were mainly coming from the outdoor environment. Size distributions of nanoparticles for the three selected process areas during the work hours were consistently in the form of bimodel. Unlike nanoparticles of the second mode (simply contributed by the process emissions), particles of the first mode could be also contributed by the forklift exhaust or fugitive emissions of heaters. The percents of nanoparticles deposited on the alveolar (A) region were much higher than the other two regions of the head airway (H), tracheobronchial (TB) for all selected workplaces in both number and surface area concentrations. However, significant differences were found in percents of nanoparticles deposited on each of the three regions while different exposure metrics were adopted. Both NSAM and MEAD obtained quite comparable results. No significant difference can be found between the results obtained from SMPS and MEAD after being normalized. Considering the MEAD is less expensive, less bulky, and easy to use, our results further support the suitability of using MEAD in the field for nanoparticle exposure assessments. PMID:20704279

  10. Cantera Aerosol Dynamics Simulator

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkinmore » formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.« less

  11. CAD/CAM systems in machine construction

    NASA Astrophysics Data System (ADS)

    Hellwig, H.-E.; Paulus, M.

    1985-09-01

    A description is provided of the present status of Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) technology, taking into account applications, and risks related to the introduction and employment of CAD/CAM methods. The employment of CAD/CAM systems in the area of machine construction is discussed, giving attention to the situation in West Germany. With respect to the system component 'hardware', the transition to a new hardware generation is taking place. In addition to computer centers with large-scale computers, minicomputers and superminicomputers, designed especially for technical applications, have become available. However, existing CAD software does not yet permit the full exploitation of the changes in hardware technology. Attention is given to CAD potential and current utilization in various application areas, developments related to graphics and geometry, advantages of a suitable macro language, the current employment of CAD/CAM technology, and cost considerations.

  12. Viewing CAD Drawings on the Internet

    ERIC Educational Resources Information Center

    Schwendau, Mark

    2004-01-01

    Computer aided design (CAD) has been producing 3-D models for years. AutoCAD software is frequently used to create sophisticated 3-D models. These CAD files can be exported as 3DS files for import into Autodesk's 3-D Studio Viz. In this program, the user can render and modify the 3-D model before exporting it out as a WRL (world file hyperlinked)…

  13. Computing Mass Properties From AutoCAD

    NASA Technical Reports Server (NTRS)

    Jones, A.

    1990-01-01

    Mass properties of structures computed from data in drawings. AutoCAD to Mass Properties (ACTOMP) computer program developed to facilitate quick calculations of mass properties of structures containing many simple elements in such complex configurations as trusses or sheet-metal containers. Mathematically modeled in AutoCAD or compatible computer-aided design (CAD) system in minutes by use of three-dimensional elements. Written in Microsoft Quick-Basic (Version 2.0).

  14. Use of CAD Geometry in MDO

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1996-01-01

    The purpose of this paper is to discuss the use of Computer-Aided Design (CAD) geometry in a Multi-Disciplinary Design Optimization (MDO) environment. Two techniques are presented to facilitate the use of CAD geometry by different disciplines, such as Computational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM). One method is to transfer the load from a CFD grid to a CSM grid. The second method is to update the CAD geometry for CSM deflection.

  15. The Challenging Academic Development (CAD) Collective

    ERIC Educational Resources Information Center

    Peseta, Tai

    2005-01-01

    This article discusses the Challenging Academic Development (CAD) Collective and describes how it came out of a symposium called "Liminality, identity, and hybridity: On the promise of new conceptual frameworks for theorising academic/faculty development." The CAD Collective is and represents a space where people can open up their contexts and…

  16. A CAD interface for GEANT4.

    PubMed

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-09-01

    Often CAD models already exist for parts of a geometry being simulated using GEANT4. Direct import of these CAD models into GEANT4 however, may not be possible and complex components may be difficult to define via other means. Solutions that allow for users to work around the limited support in the GEANT4 toolkit for loading predefined CAD geometries have been presented by others, however these solutions require intermediate file format conversion using commercial software. Here within we describe a technique that allows for CAD models to be directly loaded as geometry without the need for commercial software and intermediate file format conversion. Robustness of the interface was tested using a set of CAD models of various complexity; for the models used in testing, no import errors were reported and all geometry was found to be navigable by GEANT4. PMID:22956356

  17. Impurity profiling of ibandronate sodium by HPLC-CAD.

    PubMed

    Wahl, Oliver; Holzgrabe, Ulrike

    2015-10-10

    The modern bisphosphonate drug ibandronate sodium, a challenging candidate for impurity profiling, was analyzed using high performance liquid chromatography (HPLC) combined with corona charged aerosol detection (CAD). Separation was achieved on a mixed mode column combining hydrophobic C18 and strong anion exchange retention mechanisms using a mass spectrometer compatible volatile mobile phase consisting of trifluoroacetic acid and acetonitrile while gradient elution was applied. The method was validated following the ICH guideline Q2(R1) and found suitable for the assessment of ibandronate's related substances. The observed CAD-response for all identified impurities was linear (R(2)>0.995) over a small concentration range (0.05-0.25) and a quantification limit of at least 0.03% was found. Four batches of two different manufacturers were tested by means of the method. None of the batches contained a single impurity above 0.05%. The major impurities of all batches were the synthesis by-products N-desmethyl- and N-despentyl ibandronate as well as N,N-dimethyl pamidronate. PMID:26092222

  18. Improving the radiologist-CAD interaction: designing for appropriate trust.

    PubMed

    Jorritsma, W; Cnossen, F; van Ooijen, P M A

    2015-02-01

    Computer-aided diagnosis (CAD) has great potential to improve radiologists' diagnostic performance. However, the reported performance of the radiologist-CAD team is lower than what might be expected based on the performance of the radiologist and the CAD system in isolation. This indicates that the interaction between radiologists and the CAD system is not optimal. An important factor in the interaction between humans and automated aids (such as CAD) is trust. Suboptimal performance of the human-automation team is often caused by an inappropriate level of trust in the automation. In this review, we examine the role of trust in the radiologist-CAD interaction and suggest ways to improve the output of the CAD system so that it allows radiologists to calibrate their trust in the CAD system more effectively. Observer studies of the CAD systems show that radiologists often have an inappropriate level of trust in the CAD system. They sometimes under-trust CAD, thereby reducing its potential benefits, and sometimes over-trust it, leading to diagnostic errors they would not have made without CAD. Based on the literature on trust in human-automation interaction and the results of CAD observer studies, we have identified four ways to improve the output of CAD so that it allows radiologists to form a more appropriate level of trust in CAD. Designing CAD systems for appropriate trust is important and can improve the performance of the radiologist-CAD team. Future CAD research and development should acknowledge the importance of the radiologist-CAD interaction, and specifically the role of trust therein, in order to create the perfect artificial partner for the radiologist. This review focuses on the role of trust in the radiologist-CAD interaction. The aim of the review is to encourage CAD developers to design for appropriate trust and thereby improve the performance of the radiologist-CAD team. PMID:25459198

  19. Train effectively for CAD/D

    SciTech Connect

    Not Available

    1983-04-01

    After failing with an unstructured computer-aided drafting/ design CAD/D program, Bechtel changed to a structured training program. Five considerations are presented here: teach CAD/D to engineers, not engineering to CAD/D experts; keep the program flexible enough to avoid rewriting due to fast technology evolution; pace information delivery; and rote learning of sequences only works if the students have a conceptual model first. On the job training is necessary, and better monitoring systems to test the OJT are needed. One such test is presented.

  20. The unstoppable progress of CAD/CAM - Results and prospects

    NASA Astrophysics Data System (ADS)

    Seifert, H.

    1982-08-01

    The state of CAD/CAM technology in the construction and machinery industries is clarified by means of a few examples using PROREN software. The use of CAD in both two-dimensional and three-dimensional design is discussed, and CAD/CAM's potential for determining control information for numerically controlled milling is assessed. The design of parts by CAD is pictorially shown.

  1. The CAD-EGS Project: Using CAD Geometrics in EGS4

    SciTech Connect

    Langeveld, Willy G.J.

    2002-03-28

    The objective of the CAD-EGS project is to provide a way to use a CAD system to create 3D geometries for use within EGS4. In this report, we describe an approach based on an intermediate file, written out by the CAD system, that is read by an EGS4 user code designed for the purpose. A prototype solution was implemented using a commonly used CAD system and the Virtual Reality Modeling Language (VRML) as an intermediate file format. We report results from the prototype, and discuss various problems arising from both the approach and the particular choices made.

  2. AutoCAD-To-NASTRAN Translator Program

    NASA Technical Reports Server (NTRS)

    Jones, A.

    1989-01-01

    Program facilitates creation of finite-element mathematical models from geometric entities. AutoCAD to NASTRAN translator (ACTON) computer program developed to facilitate quick generation of small finite-element mathematical models for use with NASTRAN finite-element modeling program. Reads geometric data of drawing from Data Exchange File (DXF) used in AutoCAD and other PC-based drafting programs. Written in Microsoft Quick-Basic (Version 2.0).

  3. CAD/CAM/CAE reshapes engineering processes

    NASA Astrophysics Data System (ADS)

    Ludwinski, Thomas A.

    1993-06-01

    A development history and development trends evaluation is undertaken for computer-aided design/manufacturing/engineering techniques. Attention is drawn to the failure of the Initial Graphics Exchange Specification for standardized transfer of CAD/CAM data among different data bases to support information concerning solids; it is anticipated that the ability to transfer data transparently among CAD/CAM systems will result in major savings to all users, but this directly impinges on company relations.

  4. CAD/CAM-coupled image processing systems

    NASA Astrophysics Data System (ADS)

    Ahlers, Rolf-Juergen; Rauh, W.

    1990-08-01

    Image processing systems have found wide application in industry. For most computer integrated manufacturing faci- lities it is necessary to adapt these systems thus that they can automate the interaction with and the integration of CAD and CAM Systems. In this paper new approaches will be described that make use of the coupling of CAD and image processing as well as the automatic generation of programmes for the machining of products.

  5. Web-based CAD and CAM for optomechatronics

    NASA Astrophysics Data System (ADS)

    Han, Min; Zhou, Hai-Guang

    2001-10-01

    CAD & CAM technologies are being used in design and manufacturing process, and are receiving increasing attention from industries and education. We have been researching to develop a new kind of software that is for web-course CAD & CAM. It can be used either in industries or in training, it is supported by IE. Firstly, we aim at CAD/CAM for optomechatronics. We have developed a kind of CAD/CAM, which is not only for mechanics but also for optics and electronic. That is a new kind of software in China. Secondly, we have developed a kind of software for web-course CAD & CAM, we introduce the basis of CAD, the commands of CAD, the programming, CAD/CAM for optomechatronics, the joint application of CAD & CAM. We introduce the functions of MasterCAM, show the whole processes of CAD/CAM/CNC by examples. Following the steps showed on the web, the trainer can not miss. CAD & CAM are widely used in many areas, development of web-course CAD & CAM is necessary for long- distance education and public education. In 1992, China raised: CAD technique, as an important part of electronic technology, is a new key technique to improve the national economic and the modernization of national defence. As so for, the education. Of CAD & CAM is mainly involved in manufacturing industry in China. But with the rapidly development of new technology, especially the development of optics and electronics, CAD & CAM will receive more attention from those areas.

  6. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  7. Project CAD as of July 1978: CAD support project, situation in July 1978

    NASA Technical Reports Server (NTRS)

    Boesch, L.; Lang-Lendorff, G.; Rothenberg, R.; Stelzer, V.

    1979-01-01

    The structure of Computer Aided Design (CAD) and the requirements for program developments in past and future are described. The actual standard and the future aims of CAD programs are presented. The developed programs in: (1) civil engineering; (2) mechanical engineering; (3) chemical engineering/shipbuilding; (4) electrical engineering; and (5) general programs are discussed.

  8. An application protocol for CAD to CAD transfer of electronic information

    NASA Technical Reports Server (NTRS)

    Azu, Charles C., Jr.

    1993-01-01

    The exchange of Computer Aided Design (CAD) information between dissimilar CAD systems is a problem. This is especially true for transferring electronics CAD information such as multi-chip module (MCM), hybrid microcircuit assembly (HMA), and printed circuit board (PCB) designs. Currently, there exists several neutral data formats for transferring electronics CAD information. These include IGES, EDIF, and DXF formats. All these formats have limitations for use in exchanging electronic data. In an attempt to overcome these limitations, the Navy's MicroCIM program implemented a project to transfer hybrid microcircuit design information between dissimilar CAD systems. The IGES (Initial Graphics Exchange Specification) format is used since it is well established within the CAD industry. The goal of the project is to have a complete transfer of microelectronic CAD information, using IGES, without any data loss. An Application Protocol (AP) is being developed to specify how hybrid microcircuit CAD information will be represented by IGES entity constructs. The AP defines which IGES data items are appropriate for describing HMA geometry, connectivity, and processing as well as HMA material characteristics.

  9. CAD software lights up the environmental scene

    SciTech Connect

    Basta, N.

    1996-01-01

    There seems to be a natural affinity between the data requirements of environmental work and computer-aided design (CAD) software. Perhaps the best example of this is the famous shots of the ozone hole produced by computer-enhanced satellite imagery in the mid-1980s. Once this image was published, the highly abstract discussion of ozone concentrations and arctic wind patterns suddenly became very real. On ground level, in the day-to-day work of environmental managers and site restorers, CAD software is proving its value over and over. Graphic images are a convenient, readily understandable way of presenting the large volumes of data produced by environmental projects. With the latest CAD systems, the work of specifying process equipment or subsurface conditions can be reused again and again as projects move from the study and design phase to the construction or remediation phases. An important subset of CAD is geographic information systems (GIS), which are used to organize data on a site-specific basis. Like CAD itself, GIS reaches out beyond the borders of the computer screen or printout, in such ways making use of the Geostationary Positioning System (a global method of locating position precisely), and matching current with historical data. Good GIS software can also make use of the large database of geological data produced by government and industry, thus saving on surveying costs and exploratory well construction.

  10. A thermoluminescent method for aerosol characterization

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.; Rogowski, R. S.

    1976-01-01

    A thermoluminescent method has been used to study the interactions of aerosols with ozone. The preliminary results show that ozone reacts with many compounds found in aerosols, and that the thermoluminescence curves obtained from ozonated aerosols are characteristic of the aerosol. The results suggest several important applications of the thermoluminescent method: development of a detector for identification of effluent sources; a sensitive experimental tool for study of heterogeneous chemistry; evaluation of importance of aerosols in atmospheric chemistry; and study of formation of toxic, electronically excited species in airborne particles.

  11. cadDX Operon of Streptococcus salivarius 57.I▿

    PubMed Central

    Chen, Yi-Ywan M.; Feng, C. W.; Chiu, C. F.; Burne, Robert A.

    2008-01-01

    A CadDX system that confers resistance to Cd2+ and Zn2+ was identified in Streptococcus salivarius 57.I. Unlike with other CadDX systems, the expression of the cad promoter was negatively regulated by CadX, and the repression was inducible by Cd2+ and Zn2+, similar to what was found for CadCA systems. The lower G+C content of the S. salivarius cadDX genes suggests acquisition by horizontal gene transfer. PMID:18165364

  12. cadDX operon of Streptococcus salivarius 57.I.

    PubMed

    Chen, Yi-Ywan M; Feng, C W; Chiu, C F; Burne, Robert A

    2008-03-01

    A CadDX system that confers resistance to Cd(2+) and Zn(2+) was identified in Streptococcus salivarius 57.I. Unlike with other CadDX systems, the expression of the cad promoter was negatively regulated by CadX, and the repression was inducible by Cd(2+) and Zn(2+), similar to what was found for CadCA systems. The lower G+C content of the S. salivarius cadDX genes suggests acquisition by horizontal gene transfer. PMID:18165364

  13. Next Generation CAD/CAM/CAE Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1997-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Next Generation CAD/CAM/CAE Systems held at NASA Langley Research Center in Hampton, Virginia on March 18-19, 1997. The presentations focused on current capabilities and future directions of CAD/CAM/CAE systems, aerospace industry projects, and university activities related to simulation-based design. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the potential of emerging CAD/CAM/CAE technology for use in intelligent simulation-based design and to provide guidelines for focused future research leading to effective use of CAE systems for simulating the entire life cycle of aerospace systems.

  14. CAD/CAM integration - The imperatives

    NASA Astrophysics Data System (ADS)

    Jackson, R. H.

    1985-01-01

    The assimilation of CAD/CAM capabilities into the organizational/production aspects of a manufacturing company are discussed. One company has begun the process by automating the engineering department, with all final design products subject to one vice-president's approval before being sent to the production line, which will eventually become an integrated part of the automated process. Another firm has established a CAE team within the engineering department to refine preliminary work and recommendations from other sources and fit them into manufacturing specifications. It is recommended that all managers and users be familiarized with CAD/CAM systems and that all defect-tendencies induced into people working under production pressure be anticipated and eliminated. It is emphasized that incorporating CAD/CAM into a company is as much a matter of the people involved as the technical considerations.

  15. Formal Management of CAD/CAM Processes

    NASA Astrophysics Data System (ADS)

    Kohlhase, Michael; Lemburg, Johannes; Schröder, Lutz; Schulz, Ewaryst

    Systematic engineering design processes have many aspects in common with software engineering, with CAD/CAM objects replacing program code as the implementation stage of the development. They are, however, currently considerably less formal. We propose to draw on the mentioned similarities and transfer methods from software engineering to engineering design in order to enhance in particular the reliability and reusability of engineering processes. We lay out a vision of a document-oriented design process that integrates CAD/CAM documents with requirement specifications; as a first step towards supporting such a process, we present a tool that interfaces a CAD system with program verification workflows, thus allowing for completely formalised development strands within a semi-formal methodology.

  16. Automated CAD design for sculptured airfoil surfaces

    NASA Astrophysics Data System (ADS)

    Murphy, S. D.; Yeagley, S. R.

    1990-11-01

    The design of tightly tolerated sculptured surfaces such as those for airfoils requires a significant design effort in order to machine the tools to create these surfaces. Because of the quantity of numerical data required to describe the airfoil surfaces, a CAD approach is required. Although this approach will result in productivity gains, much larger gains can be achieved by automating the design process. This paper discusses an application which resulted in an eightfold improvement in productivity by automating the design process on the CAD system.

  17. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  18. Mechanical Drafting with CAD. Teacher Edition.

    ERIC Educational Resources Information Center

    McClain, Gerald R.

    This instructor's manual contains 13 units of instruction for a course on mechanical drafting with options for using computer-aided drafting (CAD). Each unit includes some or all of the following basic components of a unit of instruction: objective sheet, suggested activities for the teacher, assignment sheets and answers to assignment sheets,…

  19. DeviceEditor visual biological CAD canvas

    PubMed Central

    2012-01-01

    Background Biological Computer Aided Design (bioCAD) assists the de novo design and selection of existing genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of combinatorial library design, design rule specification, and scar-less multi-part DNA assembly. Results We report the development and deployment of web-based bioCAD software, DeviceEditor, which provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the creation and modification of design specification rules. We demonstrate how biological designs are rendered on the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial variations within complex designs. Conclusions DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create successful prototypes using standardized, functional, and visual abstractions. Open and documented software interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor saves researcher time and institutional resources through correct-by-construction design, the automation of tedious tasks, design reuse, and the minimization of DNA assembly costs. PMID:22373390

  20. Some Workplace Effects of CAD and CAM.

    ERIC Educational Resources Information Center

    Ebel, Karl-H.; Ulrich, Erhard

    1987-01-01

    Examines the impact of computer-aided design (CAD) and computer-aided manufacturing (CAM) on employment, work organization, working conditions, job content, training, and industrial relations in several countries. Finds little evidence of negative employment effects since productivity gains are offset by various compensatory factors. (Author/CH)

  1. Pipe Drafting with CAD. Teacher Edition.

    ERIC Educational Resources Information Center

    Smithson, Buddy

    This teacher's guide contains nine units of instruction for a course on computer-assisted pipe drafting. The course covers the following topics: introduction to pipe drafting with CAD (computer-assisted design); flow diagrams; pipe and pipe components; valves; piping plans and elevations; isometrics; equipment fabrication drawings; piping design…

  2. CAD for 4-step braided fabric composites

    SciTech Connect

    Pandey, R.; Hahn, H.T.

    1994-12-31

    A general framework is provided to predict thermoelastic properties of three dimensional 4-step braided fabric composites. Three key steps involved are (1) the development of a CAD model for yarn architecture, (2) the extraction of a unit cell (3) the prediction of the thermoelastic properties based on micromechanics. Main features of each step are summarized and experimental correlations are provided in the paper.

  3. A Case Study in CAD Design Automation

    ERIC Educational Resources Information Center

    Lowe, Andrew G.; Hartman, Nathan W.

    2011-01-01

    Computer-aided design (CAD) software and other product life-cycle management (PLM) tools have become ubiquitous in industry during the past 20 years. Over this time they have continuously evolved, becoming programs with enormous capabilities, but the companies that use them have not evolved their design practices at the same rate. Due to the…

  4. Use of CAD systems in design of Space Station and space robots

    NASA Technical Reports Server (NTRS)

    Dwivedi, Suren N.; Yadav, P.; Jones, Gary; Travis, Elmer W.

    1988-01-01

    The evolution of CAD systems is traced. State-of-the-art CAD systems are reviewed and various advanced CAD facilities and supplementing systems being used at NASA-Goddard are described. CAD hardware, computer software, and protocols are detailed.

  5. A CAD (Classroom Assessment Design) of a Computer Programming Course

    ERIC Educational Resources Information Center

    Hawi, Nazir S.

    2012-01-01

    This paper presents a CAD (classroom assessment design) of an entry-level undergraduate computer programming course "Computer Programming I". CAD has been the product of a long experience in teaching computer programming courses including teaching "Computer Programming I" 22 times. Each semester, CAD is evaluated and modified for the subsequent…

  6. PC Board Layout and Electronic Drafting with CAD. Teacher Edition.

    ERIC Educational Resources Information Center

    Bryson, Jimmy

    This teacher's guide contains 11 units of instruction for a course on computer electronics and computer-assisted drafting (CAD) using a personal computer (PC). The course covers the following topics: introduction to electronic drafting with CAD; CAD system and software; basic electronic theory; component identification; basic integrated circuit…

  7. CAD/CAM. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Zuleger, Robert

    This high technology training module is an advanced course on computer-assisted design/computer-assisted manufacturing (CAD/CAM) for grades 11 and 12. This unit, to be used with students in advanced drafting courses, introduces the concept of CAD/CAM. The content outline includes the following seven sections: (1) CAD/CAM software; (2) computer…

  8. Education and Training Packages for CAD/CAM.

    ERIC Educational Resources Information Center

    Wright, I. C.

    1986-01-01

    Discusses educational efforts in the fields of Computer Assisted Design and Manufacturing (CAD/CAM). Describes two educational training initiatives underway in the United Kingdom, one of which is a resource materials package for teachers of CAD/CAM at the undergraduate level, and the other a training course for managers of CAD/CAM systems. (TW)

  9. Long-range micro-pulse aerosol lidar at 1.5  μm with an upconversion single-photon detector.

    PubMed

    Xia, Haiyun; Shentu, Guoliang; Shangguan, Mingjia; Xia, Xiuxiu; Jia, Xiaodong; Wang, Chong; Zhang, Jun; Pelc, Jason S; Fejer, M M; Zhang, Qiang; Dou, Xiankang; Pan, Jian-Wei

    2015-04-01

    A micro-pulse lidar at eye-safe wavelength is constructed based on an upconversion single-photon detector. The ultralow-noise detector enables using integration technique to improve the signal-to-noise ratio of the atmospheric backscattering even at daytime. With pulse energy of 110 μJ, pulse repetition rate of 15 kHz, optical antenna diameter of 100 mm and integration time of 5 min, a horizontal detection range of 7 km is realized. In the demonstration experiment, atmospheric visibility over 24 h is monitored continuously, with results in accordance with the weather forecasts. PMID:25831389

  10. CAD/CAM of braided preforms for advanced composites

    NASA Astrophysics Data System (ADS)

    Yang, Gui; Pastore, Christopher; Tsai, Yung Jia; Soebroto, Heru; Ko, Frank

    A CAD/CAM system for braiding to produce preforms for advanced textile structural composites is presented in this paper. The CAD and CAM systems are illustrated in detail. The CAD system identifies the fiber placement and orientation needed to fabricate a braided structure over a mandrel, for subsequent composite formation. The CAM system uses the design parameters generated by the CAD system to control the braiding machine. Experimental evidence demonstrating the success of combining these two technologies to form a unified CAD/CAM system for the manufacture of braided fabric preforms with complex structural shapes is presented.

  11. ProperCAD: A portable object-oriented parallel environment for VLSI CAD

    NASA Technical Reports Server (NTRS)

    Ramkumar, Balkrishna; Banerjee, Prithviraj

    1993-01-01

    Most parallel algorithms for VLSI CAD proposed to date have one important drawback: they work efficiently only on machines that they were designed for. As a result, algorithms designed to date are dependent on the architecture for which they are developed and do not port easily to other parallel architectures. A new project under way to address this problem is described. A Portable object-oriented parallel environment for CAD algorithms (ProperCAD) is being developed. The objectives of this research are (1) to develop new parallel algorithms that run in a portable object-oriented environment (CAD algorithms using a general purpose platform for portable parallel programming called CARM is being developed and a C++ environment that is truly object-oriented and specialized for CAD applications is also being developed); and (2) to design the parallel algorithms around a good sequential algorithm with a well-defined parallel-sequential interface (permitting the parallel algorithm to benefit from future developments in sequential algorithms). One CAD application that has been implemented as part of the ProperCAD project, flat VLSI circuit extraction, is described. The algorithm, its implementation, and its performance on a range of parallel machines are discussed in detail. It currently runs on an Encore Multimax, a Sequent Symmetry, Intel iPSC/2 and i860 hypercubes, a NCUBE 2 hypercube, and a network of Sun Sparc workstations. Performance data for other applications that were developed are provided: namely test pattern generation for sequential circuits, parallel logic synthesis, and standard cell placement.

  12. AutoCAD-To-GIFTS Translator Program

    NASA Technical Reports Server (NTRS)

    Jones, Andrew

    1989-01-01

    AutoCAD-to-GIFTS translator program, ACTOG, developed to facilitate quick generation of small finite-element models using CASA/GIFTS finite-element modeling program. Reads geometric data of drawing from Data Exchange File (DXF) used in AutoCAD and other PC-based drafting programs. Geometric entities recognized by ACTOG include points, lines, arcs, solids, three-dimensional lines, and three-dimensional faces. From this information, ACTOG creates GIFTS SRC file, which then reads into GIFTS preprocessor BULKM or modified and reads into EDITM to create finite-element model. SRC file used as is or edited for any number of uses. Written in Microsoft Quick-Basic (Version 2.0).

  13. Cost reduction advantages of CAD/CAM

    NASA Astrophysics Data System (ADS)

    Parsons, G. T.

    1983-05-01

    Features of the CAD/CAM system implemented at the General Dynamics Convair division are summarized. CAD/CAM was initiated in 1976 to enhance engineering, manufacturing and quality assurance and thereby the company's competitive bidding position. Numerical models are substituted for hardware models wherever possible and numerical criteria are defined in design for guiding computer-controlled parts manufacturing machines. The system comprises multiple terminals, a data base, digitizer, printers, disk and tape drives, and graphics displays. The applications include the design and manufacture of parts and components for avionics, structures, scientific investigations, and aircraft structural components. Interfaces with other computers allow structural analyses by finite element codes. Although time savings have not been gained compared to manual drafting, components of greater complexity than could have been designed by hand have been designed and manufactured.

  14. Generating Composite Overlapping Grids on CAD Geometries

    SciTech Connect

    Henshaw, W.D.

    2002-02-07

    We describe some algorithms and tools that have been developed to generate composite overlapping grids on geometries that have been defined with computer aided design (CAD) programs. This process consists of five main steps. Starting from a description of the surfaces defining the computational domain we (1) correct errors in the CAD representation, (2) determine topology of the patched-surface, (3) build a global triangulation of the surface, (4) construct structured surface and volume grids using hyperbolic grid generation, and (5) generate the overlapping grid by determining the holes and the interpolation points. The overlapping grid generator which is used for the final step also supports the rapid generation of grids for block-structured adaptive mesh refinement and for moving grids. These algorithms have been implemented as part of the Overture object-oriented framework.

  15. Computer-aided-diagnosis (CAD) for colposcopy

    NASA Astrophysics Data System (ADS)

    Lange, Holger; Ferris, Daron G.

    2005-04-01

    Uterine cervical cancer is the second most common cancer among women worldwide. Colposcopy is a diagnostic method, whereby a physician (colposcopist) visually inspects the lower genital tract (cervix, vulva and vagina), with special emphasis on the subjective appearance of metaplastic epithelium comprising the transformation zone on the cervix. Cervical cancer precursor lesions and invasive cancer exhibit certain distinctly abnormal morphologic features. Lesion characteristics such as margin; color or opacity; blood vessel caliber, intercapillary spacing and distribution; and contour are considered by colposcopists to derive a clinical diagnosis. Clinicians and academia have suggested and shown proof of concept that automated image analysis of cervical imagery can be used for cervical cancer screening and diagnosis, having the potential to have a direct impact on improving women"s health care and reducing associated costs. STI Medical Systems is developing a Computer-Aided-Diagnosis (CAD) system for colposcopy -- ColpoCAD. At the heart of ColpoCAD is a complex multi-sensor, multi-data and multi-feature image analysis system. A functional description is presented of the envisioned ColpoCAD system, broken down into: Modality Data Management System, Image Enhancement, Feature Extraction, Reference Database, and Diagnosis and directed Biopsies. The system design and development process of the image analysis system is outlined. The system design provides a modular and open architecture built on feature based processing. The core feature set includes the visual features used by colposcopists. This feature set can be extended to include new features introduced by new instrument technologies, like fluorescence and impedance, and any other plausible feature that can be extracted from the cervical data. Preliminary results of our research on detecting the three most important features: blood vessel structures, acetowhite regions and lesion margins are shown. As this is a new

  16. Intelligent CAD approach for modular design

    NASA Astrophysics Data System (ADS)

    Ouyang, Miao-an; Li, Chenggang; Zhong, Yifang; Yu, Jun; Zhou, Ji

    1996-03-01

    In this paper, the technology of Artificial Intelligence is introduced into a modular design and manufacturing for machine tools. The authors present a methodology to realize the modular conceptual design combined with traditional CAD, and develop an intelligent machine tools modular conceptual system. The problem-solving strategies are described in detail. The design model and system architecture are set up. Techniques and their incorporation of expert system, case-based reasoning and artificial neural networks are clarified.

  17. Computer-aided diagnosis (CAD) for colonoscopy

    NASA Astrophysics Data System (ADS)

    Gu, Jia; Poirson, Allen

    2007-03-01

    Colorectal cancer is the second leading cause of cancer deaths, and ranks third for new cancer cases and cancer mortality for both men and women. However, its death rate can be dramatically reduced by appropriate treatment when early detection is available. The purpose of colonoscopy is to identify and assess the severity of lesions, which may be flat or protruding. Due to the subjective nature of the examination, colonoscopic proficiency is highly variable and dependent upon the colonoscopist's knowledge and experience. An automated image processing system providing an objective, rapid, and inexpensive analysis of video from a standard colonoscope could provide a valuable tool for screening and diagnosis. In this paper, we present the design, functionality and preliminary results of its Computer-Aided-Diagnosis (CAD) system for colonoscopy - ColonoCAD TM. ColonoCAD is a complex multi-sensor, multi-data and multi-algorithm image processing system, incorporating data management and visualization, video quality assessment and enhancement, calibration, multiple view based reconstruction, feature extraction and classification. As this is a new field in medical image processing, our hope is that this paper will provide the framework to encourage and facilitate collaboration and discussion between industry, academia, and medical practitioners.

  18. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery.

    PubMed

    Messay, Temesguen; Hardie, Russell C; Rogers, Steven K

    2010-06-01

    Early detection of lung nodules is extremely important for the diagnosis and clinical management of lung cancer. In this paper, a novel computer aided detection (CAD) system for the detection of pulmonary nodules in thoracic computed tomography (CT) imagery is presented. The paper describes the architecture of the CAD system and assesses its performance on a publicly available database to serve as a benchmark for future research efforts. Training and tuning of all modules in our CAD system is done using a separate and independent dataset provided courtesy of the University of Texas Medical Branch (UTMB). The publicly available testing dataset is that created by the Lung Image Database Consortium (LIDC). The LIDC data used here is comprised of 84 CT scans containing 143 nodules ranging from 3 to 30mm in effective size that are manually segmented at least by one of the four radiologists. The CAD system uses a fully automated lung segmentation algorithm to define the boundaries of the lung regions. It combines intensity thresholding with morphological processing to detect and segment nodule candidates simultaneously. A set of 245 features is computed for each segmented nodule candidate. A sequential forward selection process is used to determine the optimum subset of features for two distinct classifiers, a Fisher Linear Discriminant (FLD) classifier and a quadratic classifier. A performance comparison between the two classifiers is presented, and based on this, the FLD classifier is selected for the CAD system. With an average of 517.5 nodule candidates per case/scan (517.5+/-72.9), the proposed front-end detector/segmentor is able to detect 92.8% of all the nodules in the LIDC/testing dataset (based on merged ground truth). The mean overlap between the nodule regions delineated by three or more radiologists and the ones segmented by the proposed segmentation algorithm is approximately 63%. Overall, with a specificity of 3 false positives (FPs) per case/patient on

  19. CAD in the processing plant environment or managing the CAD revolution

    SciTech Connect

    Woolbert, M.A.; Bennett, R.S.; Haring, W.I.

    1985-10-01

    The author presents a case report on the use of a Computer Aided Design/Computer Aided Drafting (CAD) system. Illustrated is a four-work station system, in addition to which there are two 70 megabyte disk drives, a check plotter and a 24-inch wide electrostatic plotter, a 300 megabyte disk for on-line storage, a tape drive for archive and backup, and a 1-megabyte network process server. It is a distributed logic system. The author states that the CAD system both inexpensive enough and powerful enough for the plant environment is relatively new on the market, made possible by the advent of super microcomputers. Also discussed is the impact the CAD system has had on productivity.

  20. Determination of water-soluble vitamins in infant milk and dietary supplement using a liquid chromatography on-line coupled to a corona-charged aerosol detector.

    PubMed

    Márquez-Sillero, Isabel; Cárdenas, Soledad; Valcárcel, Miguel

    2013-10-25

    A simple and rapid method for the simultaneous determination of seven water-soluble vitamins (thiamine, folic acid, nicotinic acid, ascorbic acid, pantothenic acid, pyridoxine and biotin) was developed by high performance liquid chromatographic separation and corona-charged aerosol detection. The water-soluble vitamins were separated on a Lichrosorb RP-C18 column under isocratic conditions with a mobile phase consisting of 0.05 M ammonium acetate:methanol 90:10 (v/v) at the flow rate 0.5 mL min(-1). The vitamins were extracted from the infant milk (liquid and powder format) using a precipitation step with 2.5 M acetic acid remaining the analyte in the supernatant. As far as dietary supplements are concerned, only a dilution with distilled water was required. The detection limits ranged from 0.17 to 0.62 mg L(-1) for dietary supplements and 1.7 to 6.5 mg L(-1) for milk samples. The precision of the method was evaluated in terms of relative standard deviation (%, RSD) under repeatability and reproducibility conditions, being the average values for each parameter 2.6 and 2.7 for dietary supplements and 4.3 and 4.6 for milk samples. The optimized method was applied to different infant milk samples and dietary supplements. The results of the analysis were in good agreement with the declared values. PMID:23726354

  1. MHDL CAD tool with fault circuit handling

    NASA Astrophysics Data System (ADS)

    Espinosa Flores-Verdad, Guillermo; Altamirano Robles, Leopoldo; Osorio Roque, Leticia

    2003-04-01

    Behavioral modeling and simulation, with Analog Hardware and Mixed Signal Description High Level Languages (MHDLs), have generated the development of diverse simulation tools that allow handling the requirements of the modern designs. These systems have million of transistors embedded and they are radically diverse between them. This tendency of simulation tools is exemplified by the development of languages for modeling and simulation, whose applications are the re-use of complete systems, construction of virtual prototypes, realization of test and synthesis. This paper presents the general architecture of a Mixed Hardware Description Language, based on the standard 1076.1-1999 IEEE VHDL Analog and Mixed-Signal Extensions known as VHDL-AMS. This architecture is novel by consider the modeling and simulation of faults. The main modules of the CAD tool are briefly described in order to establish the information flow and its transformations, starting from the description of a circuit model, going throw the lexical analysis, mathematical models generation and the simulation core, ending at the collection of the circuit behavior as simulation"s data. In addition, the incorporated mechanisms to the simulation core are explained in order to realize the handling of faults into the circuit models. Currently, the CAD tool works with algebraic and differential descriptions for the circuit models, nevertheless the language design is open to be able to handle different model types: Fuzzy Models, Differentials Equations, Transfer Functions and Tables. This applies for fault models too, in this sense the CAD tool considers the inclusion of mutants and saboteurs. To exemplified the results obtained until now, the simulated behavior of a circuit is shown when it is fault free and when it has been modified by the inclusion of a fault as a mutant or a saboteur. The obtained results allow the realization of a virtual diagnosis for mixed circuits. This language works in a UNIX system

  2. A CAD approach to magnetic bearing design

    NASA Technical Reports Server (NTRS)

    Jeyaseelan, M.; Anand, D. K.; Kirk, J. A.

    1988-01-01

    A design methodology has been developed at the Magnetic Bearing Research Laboratory for designing magnetic bearings using a CAD approach. This is used in the algorithm of an interactive design software package. The package is a design tool developed to enable the designer to simulate the entire process of design and analysis of the system. Its capabilities include interactive input/modification of geometry, finding any possible saturation at critical sections of the system, and the design and analysis of a control system that stabilizes and maintains magnetic suspension.

  3. CAD-driven microassembly and visual servoing

    SciTech Connect

    Feddema, J.T.; Simon, R.W.

    1998-03-10

    This paper describes current research and development on a robotic visual servoing system for assembly of LIGA (Lithography Galvonoforming Abforming) parts. The workcell consists of an AMTI robot, precision stage, long working distance microscope, and LIGA fabricated tweezers for picking up the parts. Fourier optics methods are used to generate synthetic microscope images from CAD drawings. These synthetic images are used off-line to test image processing routines under varying magnifications and depths of field, They also provide reference image features which are used to visually servo the part to the desired position.

  4. CAD/CAM in packaging aerospace electronics

    NASA Astrophysics Data System (ADS)

    Gargione, F.

    1980-04-01

    It is noted that hard-wired, welded circuits hold an important place in aerospace systems because they allow short production runs to be prepared quickly. However, the electronic system designs are very complicated and demanding to work on manually. The article describes a design process which saves time and effort without reducing the designer's freedom. It is shown that the CAD/CAM equipment produces all the drawings and extracts from the data needed to generate NC tapes for drilling and welding boards. In addition, it produces the artwork for etching the boards. Discussion covers the advance the system represents in cost effectiveness, versatility, and reliability.

  5. Development of intelligent CAD/CAM systems for progressive dies

    NASA Astrophysics Data System (ADS)

    Wang, Fengyin; Xiao, Xia; Li, Jianjun

    1995-08-01

    This paper focuses on the fundamental issues related to the development of intelligent CAD/CAM systems for progressive dies which are used for manufacturing sheet metal parts in mass production. The CAD/CAM functions for sheet metal product design and those for design and manufacture of progressive dies are defined by studying the sheet-metal-product life cycle. The procedures of industrial design and manufacture of progressive dies are reviewed, and the need for intelligent CAD/CAM systems identified. The platforms, environment, and key technologies for the systems design and implementation are discussed. Finally, a prototype CAD/CAM system for progressive dies is introduced.

  6. SPICE models for simulating BDJ and BTJ detectors

    NASA Astrophysics Data System (ADS)

    Alexandre, Annick; Lu, Guo N.; Sedjil, Mohamed

    1999-03-01

    We have recently reported two novel integrated optical detectors called BDJ detector and BTJ detector. The BDJ detector elaborated in CMOS process can be applied for wavelength detection while the BTJ detector based on a bipolar structure finds its applications in colorimetry. In order to use electronic CAD tools for designing micro- systems we have developed SPICE models for these detectors. The device modeling with physical approach has allowed us to determine photocurrents, which are functions of physical, geometrical, electrical, technological parameters. We have also defined schematic diagram and small signal models and integrated them in the HSPICE program. Simulations and measurements have validated these models.

  7. CAD/CAM-assisted breast reconstruction.

    PubMed

    Melchels, Ferry; Wiggenhauser, Paul Severin; Warne, David; Barry, Mark; Ong, Fook Rhu; Chong, Woon Shin; Hutmacher, Dietmar Werner; Schantz, Jan-Thorsten

    2011-09-01

    The application of computer-aided design and manufacturing (CAD/CAM) techniques in the clinic is growing slowly but steadily. The ability to build patient-specific models based on medical imaging data offers major potential. In this work we report on the feasibility of employing laser scanning with CAD/CAM techniques to aid in breast reconstruction. A patient was imaged with laser scanning, an economical and facile method for creating an accurate digital representation of the breasts and surrounding tissues. The obtained model was used to fabricate a customized mould that was employed as an intra-operative aid for the surgeon performing autologous tissue reconstruction of the breast removed due to cancer. Furthermore, a solid breast model was derived from the imaged data and digitally processed for the fabrication of customized scaffolds for breast tissue engineering. To this end, a novel generic algorithm for creating porosity within a solid model was developed, using a finite element model as intermediate. PMID:21900731

  8. Mammogram CAD, hybrid registration and iconic analysis

    NASA Astrophysics Data System (ADS)

    Boucher, A.; Cloppet, F.; Vincent, N.

    2013-03-01

    This paper aims to develop a computer aided diagnosis (CAD) based on a two-step methodology to register and analyze pairs of temporal mammograms. The concept of "medical file", including all the previous medical information on a patient, enables joint analysis of different acquisitions taken at different times, and the detection of significant modifications. The developed registration method aims to superimpose at best the different anatomical structures of the breast. The registration is designed in order to get rid of deformation undergone by the acquisition process while preserving those due to breast changes indicative of malignancy. In order to reach this goal, a referent image is computed from control points based on anatomical features that are extracted automatically. Then the second image of the couple is realigned on the referent image, using a coarse-to-fine approach according to expert knowledge that allows both rigid and non-rigid transforms. The joint analysis detects the evolution between two images representing the same scene. In order to achieve this, it is important to know the registration error limits in order to adapt the observation scale. The approach used in this paper is based on an image sparse representation. Decomposed in regular patterns, the images are analyzed under a new angle. The evolution detection problem has many practical applications, especially in medical images. The CAD is evaluated using recall and precision of differences in mammograms.

  9. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  10. An Instructional Method for the AutoCAD Modeling Environment.

    ERIC Educational Resources Information Center

    Mohler, James L.

    1997-01-01

    Presents a command organizer for AutoCAD to aid new uses in operating within the 3-D modeling environment. Addresses analyzing the problem, visualization skills, nonlinear tools, a static view of a dynamic model, the AutoCAD organizer, environment attributes, and control of the environment. Contains 11 references. (JRH)

  11. CAD/CAM: Practical and Persuasive in Canadian Schools

    ERIC Educational Resources Information Center

    Willms, Ed

    2007-01-01

    Chances are that many high school students would not know how to use drafting instruments, but some might want to gain competence in computer-assisted design (CAD) and possibly computer-assisted manufacturing (CAM). These students are often attracted to tech courses by the availability of CAD/CAM instructions, and many go on to impress employers…

  12. An Evaluation of Internet-Based CAD Collaboration Tools

    ERIC Educational Resources Information Center

    Smith, Shana Shiang-Fong

    2004-01-01

    Due to the now widespread use of the Internet, most companies now require computer aided design (CAD) tools that support distributed collaborative design on the Internet. Such CAD tools should enable designers to share product models, as well as related data, from geographically distant locations. However, integrated collaborative design…

  13. A MathCAD Exploration: Hunting for Hidden Roots.

    ERIC Educational Resources Information Center

    Levy, Benjamin N.

    1990-01-01

    Discussed is the use of a program called MathCAD which allows students to solve higher order polynomial equations and geometry problems. The use of cooperative learning is emphasized. Included are graphs and part of a printout generated while solving problems with MathCAD. (KR)

  14. Making a Case for CAD in the Curriculum.

    ERIC Educational Resources Information Center

    Threlfall, K. Denise

    1995-01-01

    Computer-assisted design (CAD) technology is transforming the apparel industry. Students of fashion merchandising and clothing design must be prepared on state-of-the-art equipment. ApparelCAD software is one example of courseware for instruction in pattern design and production. (SK)

  15. Teach CAD and Measuring Skills through Reverse Engineering

    ERIC Educational Resources Information Center

    Board, Keith

    2012-01-01

    This article describes a reverse engineering activity that gives students hands-on, minds-on experience with measuring tools, machine parts, and CAD. The author developed this activity to give students an abundance of practical experience with measuring tools. Equally important, it provides a good interface between the virtual world of CAD 3D…

  16. Preparing Students for Computer Aided Drafting (CAD). A Conceptual Approach.

    ERIC Educational Resources Information Center

    Putnam, A. R.; Duelm, Brian

    This presentation outlines guidelines for developing and implementing an introductory course in computer-aided drafting (CAD) that is geared toward secondary-level students. The first section of the paper, which deals with content identification and selection, includes lists of mechanical drawing and CAD competencies and a list of rationales for…

  17. From Bad to CAD: Maintaining Records of Maintenance Projects.

    ERIC Educational Resources Information Center

    Shea, Diane C.

    1994-01-01

    A computer-assisted design (CAD) software program is used in a Connecticut school district to graphically provide information on maintenance projects by school and category of project over time. CAD supplies a computerized building plan, a "foot-print," used as a recordkeeping system for maintenance projects. (MLF)

  18. Evaluating the Learning Process of Mechanical CAD Students

    ERIC Educational Resources Information Center

    Hamade, R. F.; Artail, H. A.; Jaber, M. Y.

    2007-01-01

    There is little theoretical or experimental research on how beginner-level trainees learn CAD skills in formal training sessions. This work presents findings on how trainees develop their skills in utilizing a solid mechanical CAD tool (Pro/Engineer version 2000i[squared] and later version Wildfire). Exercises at the beginner and intermediate…

  19. Biochemical and Genetic Characterization of Three Switchgrass CADs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin content of switchgrass (Panicum virgatum L.) cell walls is a negative trait for conversion of biomass into liquid fuels. One of the key enzymes in lignin biosynthesis is cinnamyl alcohol dehydrogenase (CAD). In this study, we have shown that CAD activity and protein levels decrease minimall...

  20. Practical CAD/CAM aspects of CNC prepreg cutting

    NASA Astrophysics Data System (ADS)

    Connolly, Michael L.

    1991-01-01

    The use of CAD/CAM in cutting large quantities of complex shapes out of prepregs is addressed. The advantages of CAD/CAM includes reduction of prototype cycles from weeks to days, improved part quality resulting from accurately cut plies, safer and more efficient cutting operations, and lower direct labor costs.

  1. Micro UV detector

    NASA Astrophysics Data System (ADS)

    Cabalo, Jerry B.; Sickenberger, Richard; Underwood, William J.; Sickenberger, David W.

    2004-09-01

    A lightweight, tactical biological agent detection network offers the potential for a detect-to-warn capability against biological aerosol attacks. Ideally, this capability can be achieved by deploying the sensors upwind from the protected assets. The further the distance upwind, the greater the warning time. The technological challenge to this concept is the biological detection technology. Here, cost, size and power are major factors in selecting acceptable technologies. This is in part due to the increased field densities needed to cover the upwind area and the fact that the sensors, when deployed forward, must operate autonomously for long periods of time with little or no long-term logistical support. The Defense Advanced Research Project Agency"s (DARPA) Solid-state Ultraviolet Optical Source (SUVOS) program offers an enabling technology to achieving a detector compatible with this mission. As an optical source, these devices emit excitation wavelengths known to be useful in the detection of biological aerosols. The wavelength band is absorbed by the biological aerosol and results in visible fluorescence. Detection of a biological aerosol is based on the observed intensity of this fluorescence signal compared to a background reference. Historically this has been accomplished with emission sources that are outside the boundaries for low cost, low power sensors. The SUVOS technology, on the other hand, provides the same basic wavelengths needed for the detection process in a small, low power package. ECBC has initiated an effort to develop a network array based on micro UV detectors that utilize the SUVOS technology. This paper presents an overview of the micro UV detector and some of the findings to date. This includes the overall design philosophy, fluid flow calculations to maximize presentation of aerosol particles to the sources, and the fluorescence measurements.

  2. Micro-UV detector

    NASA Astrophysics Data System (ADS)

    Cabalo, Jerry B.; Sickenberger, Richard; Underwood, William J.; Sickenberger, David W.

    2004-12-01

    A lightweight, tactical biological agent detection network offers the potential for a detect-to-warn capability against biological aerosol attacks. Ideally, this capability can be achieved by deploying the sensors upwind from the protected assets. The further the distance upwind, the greater the warning time. The technological challenge to this concept is the biological detection technology. Here, cost, size and power are major factors in selecting acceptable technologies. This is in part due to the increased field densities needed to cover the upwind area and the fact that the sensors, when deployed forward, must operate autonomously for long periods of time with little or no long-term logistical support. The Defense Advanced Research Project Agency"s (DARPA) Solid-state Ultraviolet Optical Source (SUVOS) program offers an enabling technology to achieving a detector compatible with this mission. As an optical source, these devices emit excitation wavelengths known to be useful in the detection of biological aerosols. The wavelength band is absorbed by the biological aerosol and results in visible fluorescence. Detection of a biological aerosol is based on the observed intensity of this fluorescence signal compared to a background reference. Historically this has been accomplished with emission sources that are outside the boundaries for low cost, low power sensors. The SUVOS technology, on the other hand, provides the same basic wavelengths needed for the detection process in a small, low power package. ECBC has initiated an effort to develop a network array based on micro UV detectors that utilize the SUVOS technology. This paper presents an overview of the micro UV detector and some of the findings to date. This includes the overall design philosophy, fluid flow calculations to maximize presentation of aerosol particles to the sources, and the fluorescence measurements.

  3. CAD-CAM printed circuit board design

    NASA Astrophysics Data System (ADS)

    Agy, W. E.

    A step-by-step procedure for a printed circuit design achieved by CAD is presented. The operator at the interactive CRT station moves a stylus across a graphics tablet and intersperses commands which result in computer-generated pictorial forms on the screen that were drawn on the pad. Standard symbols are used for commands allowing, for instance, connections to be made of specific types in certain locations, which can be automatically edited from a materials list. An entire network of drawn lines can be referenced by a signal name for recall, and a finished circuit schematic can be checked for designs rules compliance, including fault reporting in terms of designator/pin number. A map may be present delineating the boundaries of the circuitry area, and previously completed circuitry segments can be recalled for piece-by-piece assembly of the circuit board.

  4. Bendix CAD-CAM site plan

    SciTech Connect

    Smith, M.L.

    1982-12-01

    The Bendix Site Plan for CAD-CAM encompasses the development and integration of interactive graphics systems, factory data management systems, robotics, direct numerical control, automated inspection, factory automation, and shared data bases to achieve significant plant-wide gains in productivity. This plan does not address all current or planned computerization projects within our facility. A summary of planning proposals and rationale is presented in the following paragraphs. Interactive Graphics System (IGS) capability presently consists of two Applicon CAD systems and the CD-2000 software program processing on a time-shared CYBER 174 computer and a dedicated CYBER 173. Proposed plans include phased procurment through FY85 of additional computers and sufficient graphics terminals to support projected needs in drafting, tool/gage design, N/C programming, and process engineering. Planned procurement of additional computer equipment in FY86 and FY87 will provide the capacity necessary for a comprehensive graphics data base management system, computer-aided process planning graphics, and special graphics requirements in facilities and test equipment design. The overall IGS plan, designated BICAM (Bendix Integrated Computer Aided Manufacturing), will provide the capability and capacity to integrate manufacturing activities through a shared product data base and standardized data exchange format. Planned efforts in robotics will result in productive applications of low to medium technology robots beginning in FY82, and extending by FY85 to work cell capabilities utilizing higher technology robots with sensors such as vision and instrumented remote compliance devices. A number of robots are projected to be in service by 1990.

  5. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  6. CAD-centric Computation Management System for a Virtual TBM

    SciTech Connect

    Ramakanth Munipalli; K.Y. Szema; P.Y. Huang; C.M. Rowell; A.Ying; M. Abdou

    2011-05-03

    HyPerComp Inc. in research collaboration with TEXCEL has set out to build a Virtual Test Blanket Module (VTBM) computational system to address the need in contemporary fusion research for simulating the integrated behavior of the blanket, divertor and plasma facing components in a fusion environment. Physical phenomena to be considered in a VTBM will include fluid flow, heat transfer, mass transfer, neutronics, structural mechanics and electromagnetics. We seek to integrate well established (third-party) simulation software in various disciplines mentioned above. The integrated modeling process will enable user groups to interoperate using a common modeling platform at various stages of the analysis. Since CAD is at the core of the simulation (as opposed to computational meshes which are different for each problem,) VTBM will have a well developed CAD interface, governing CAD model editing, cleanup, parameter extraction, model deformation (based on simulation,) CAD-based data interpolation. In Phase-I, we built the CAD-hub of the proposed VTBM and demonstrated its use in modeling a liquid breeder blanket module with coupled MHD and structural mechanics using HIMAG and ANSYS. A complete graphical user interface of the VTBM was created, which will form the foundation of any future development. Conservative data interpolation via CAD (as opposed to mesh-based transfer), the regeneration of CAD models based upon computed deflections, are among the other highlights of phase-I activity.

  7. Investigation of IGES for CAD/CAE data transfer

    NASA Technical Reports Server (NTRS)

    Zobrist, George W.

    1989-01-01

    In a CAD/CAE facility there is always the possibility that one may want to transfer the design graphics database from the native system to a non-native system. This may occur because of dissimilar systems within an organization or a new CAD/CAE system is to be purchased. The Initial Graphics Exchange Specification (IGES) was developed in an attempt to solve this scenario. IGES is a neutral database format into which the CAD/CAE native database format can be translated to and from. Translating the native design database format to IGES requires a pre-processor and transling from IGES to the native database format requires a post-processor. IGES is an artifice to represent CAD/CAE product data in a neutral environment to allow interfacing applications, archive the database, interchange of product data between dissimilar CAD/CAE systems, and other applications. The intent here is to present test data on translating design product data from a CAD/CAE system to itself and to translate data initially prepared in IGES format to various native design formats. This information can be utilized in planning potential procurement and developing a design discipline within the CAD/CAE community.

  8. A new CAD approach for improving efficacy of cancer screening

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Qian, Wei; Li, Lihua; Pu, Jiantao; Kang, Yan; Lure, Fleming; Tan, Maxine; Qiu, Yuchen

    2015-03-01

    Since performance and clinical utility of current computer-aided detection (CAD) schemes of detecting and classifying soft tissue lesions (e.g., breast masses and lung nodules) is not satisfactory, many researchers in CAD field call for new CAD research ideas and approaches. The purpose of presenting this opinion paper is to share our vision and stimulate more discussions of how to overcome or compensate the limitation of current lesion-detection based CAD schemes in the CAD research community. Since based on our observation that analyzing global image information plays an important role in radiologists' decision making, we hypothesized that using the targeted quantitative image features computed from global images could also provide highly discriminatory power, which are supplementary to the lesion-based information. To test our hypothesis, we recently performed a number of independent studies. Based on our published preliminary study results, we demonstrated that global mammographic image features and background parenchymal enhancement of breast MR images carried useful information to (1) predict near-term breast cancer risk based on negative screening mammograms, (2) distinguish between true- and false-positive recalls in mammography screening examinations, and (3) classify between malignant and benign breast MR examinations. The global case-based CAD scheme only warns a risk level of the cases without cueing a large number of false-positive lesions. It can also be applied to guide lesion-based CAD cueing to reduce false-positives but enhance clinically relevant true-positive cueing. However, before such a new CAD approach is clinically acceptable, more work is needed to optimize not only the scheme performance but also how to integrate with lesion-based CAD schemes in the clinical practice.

  9. CAD Model Retrieval Based on Graduated Assignment Algorithm

    NASA Astrophysics Data System (ADS)

    Tao, Songqiao

    2015-06-01

    A retrieval approach for CAD models based on graduated assignment algorithm is proposed in this paper. First, CAD models are transformed into face adjacency graphs (FAGs). Second, the vertex compatibility matrix and edge compatibility matrix between the FAGs of the query and data models are calculated, and the similarity metric for the two comparison models is established from their compatibility matrices, which serves as the optimization objective function for selecting vertex mapping matrix M between the two comparison models. Finally, Sinkhorn's alternative normalization approach for M's rows and columns is adopted to find the optimal vertex mapping matrix M. Experimental results have shown that the proposed approach supports CAD model retrieval.

  10. CAD/CAM ceramic restorations in the operatory and laboratory.

    PubMed

    Fasbinder, Dennis J

    2003-08-01

    Computer assisted design/computer assisted machining (CAD/CAM) technology has received considerable clinical and research interest from modern dental practices as a means of delivering all-ceramic restorations. The CEREC, System offers CAD/CAM dental technology designed for clinical use by dentists, as well as a separate system designed for dental laboratory technicians. The CEREC 3 system is indicated for dental operatory applications, and the CEREC inLab, system is indicated for dental laboratory applications. Although both systems rely on similar CAD/CAM technology, several significant differences exist in the processing techniques involved, restorative materials used, and types of restoration provided. PMID:14692164

  11. Turnkey CAD/CAM systems' integration with IPAD systems

    NASA Technical Reports Server (NTRS)

    Blauth, R. E.

    1980-01-01

    Today's commercially available turnkey CAD/CAM systems provide a highly interactive environment, and support many specialized application functions for the design/drafting/manufacturing process. This paper presents an overview of several aerospace companies which have successfully integrated turnkey CAD/CAM systems with their own company wide engineering and manufacturing systems. It also includes a vendor's view of the benefits as well as the disadvantages of such integration efforts. Specific emphasis is placed upon the selection of standards for representing geometric engineering data and for communicating such information between different CAD/CAM systems.

  12. Overview of NASA MSFC IEC Multi-CAD Collaboration Capability

    NASA Technical Reports Server (NTRS)

    Moushon, Brian; McDuffee, Patrick

    2005-01-01

    This viewgraph presentation provides an overview of a Design and Data Management System (DDMS) for Computer Aided Design (CAD) collaboration in order to support the Integrated Engineering Capability (IEC) at Marshall Space Flight Center (MSFC).

  13. Resin-composite blocks for dental CAD/CAM applications.

    PubMed

    Ruse, N D; Sadoun, M J

    2014-12-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. PMID:25344335

  14. CDMS - CAD data set management system test plan

    SciTech Connect

    Gray, E.L.

    1994-11-01

    This document will define the system test plan for the necessary modifications made to a commercial software product that manages and controls engineering drawings. Modifications include the ability to interface with the final plotting of CAD Data Sets.

  15. Today's CAD/CAM: flexible digital technologies expanding workflow options.

    PubMed

    Ferencz, Jonathan L

    2015-03-01

    CAD/CAM and digital scanning technologies have become essential components of dentistry. Digital impression scanning, restoration design, and manufacturing techniques yield greater treatment predictability, high-level esthetics, and functional accuracy using a variety of materials. PMID:25822749

  16. Refocusing CAD and CAE on O and M

    SciTech Connect

    Podczerwinski, C.A.; Wittenauer, J.P.; Irish, J.D.

    1995-09-01

    In the late 1980s, computer-aided design (CAD) software started to migrate from larger computer equipment to personal computers. Since then, competition in the desktop computer market transformed the personal computer (PC) into an office equipment commodity. The technological improvements accompanying that change transformed CAD from an expensive, specialized tool to an office software commodity that is a graphical counterpart to the word processor. The cost reductions and performance improvements have made many application concepts, previously too cumbersome to apply, cost effective and helpful. Applying these ideas has increased the level of CAD usage in their offices dramatically. Part of that growth has been an increasing number of projects directly aimed at helping reduce operation and maintenance (O and M) costs. This paper describes those projects and discusses the application of CAD to O and M work.

  17. CAD/CAM approach to improving industry productivity gathers momentum

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1982-01-01

    Recent results and planning for the NASA/industry Integrated Programs for Aerospace-Vehicle Design (IPAD) program for improving productivity with CAD/CAM methods are outlined. The industrial group work is being mainly done by Boeing, and progress has been made in defining the designer work environment, developing requirements and a preliminary design for a future CAD/CAM system, and developing CAD/CAM technology. The work environment was defined by conducting a detailed study of a reference design process, and key software elements for a CAD/CAM system have been defined, specifically for interactive design or experiment control processes. Further work is proceeding on executive, data management, geometry and graphics, and general utility software, and dynamic aspects of the programs being developed are outlined

  18. CAD-CAE in Electrical Machines and Drives Teaching.

    ERIC Educational Resources Information Center

    Belmans, R.; Geysen, W.

    1988-01-01

    Describes the use of computer-aided design (CAD) techniques in teaching the design of electrical motors. Approaches described include three technical viewpoints, such as electromagnetics, thermal, and mechanical aspects. Provides three diagrams, a table, and conclusions. (YP)

  19. Voice I/O: an effective option for CAD systems

    SciTech Connect

    Gill, S.P.

    1983-01-01

    The current state of speech recognition and compression technology is examined. The application of this technology to input/output in the CAD environment is then considered. Human factors are discussed.

  20. CAD/CAM improves productivity in nonaerospace job shops

    NASA Astrophysics Data System (ADS)

    Koenig, D. T.

    1982-12-01

    Business cost improvements that can result from Computer Aided Design/Computer Aided Manufacturing (CAD/CAM), when properly applied, are discussed. Emphasis is placed on the use of CAD/CAM for machine and process control, design and planning control, and production and measurement control. It is pointed out that the implementation of CAD/CAM should be based on the following priorities: (1) recognize interrelationships between the principal functions of CAD/CAM; (2) establish a Systems Council to determine overall strategy and specify the communications/decision-making system; (3) implement the communications/decision-making system to improve productivity; and (4) implement interactive graphics and other additions to further improve productivity.

  1. CAD/CAM-Interface For Optical Systems And Optical Drawings

    NASA Astrophysics Data System (ADS)

    Wieder, Eckart

    1989-04-01

    It is explained why a general interface for optical data between CAD/CAM-Systems is necessary. The requirements for the interface are discussed. The philosophy of a solution is demonstrated and it is shown how to proceed.

  2. Resin-composite Blocks for Dental CAD/CAM Applications

    PubMed Central

    Ruse, N.D.; Sadoun, M.J.

    2014-01-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. PMID:25344335

  3. YAG aerosol lidar

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1988-01-01

    The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

  4. A systematic review of CAD/CAM fit restoration evaluations.

    PubMed

    Boitelle, P; Mawussi, B; Tapie, L; Fromentin, O

    2014-11-01

    The evolution and development of CAD/CAM systems have led to the production of prosthetic reconstructions by going beyond the use of traditional techniques. Precision adjustment of prosthetic elements is considered essential to ensure sustainable restoration and dental preparation. The purpose of this article was to summarise the current literature on the fitting quality of fixed prostheses obtained by CAD/CAM technology. PMID:24952991

  5. A SINDA thermal model using CAD/CAE technologies

    NASA Technical Reports Server (NTRS)

    Rodriguez, Jose A.; Spencer, Steve

    1992-01-01

    The approach to thermal analysis described by this paper is a technique that incorporates Computer Aided Design (CAD) and Computer Aided Engineering (CAE) to develop a thermal model that has the advantages of Finite Element Methods (FEM) without abandoning the unique advantages of Finite Difference Methods (FDM) in the analysis of thermal systems. The incorporation of existing CAD geometry, the powerful use of a pre and post processor and the ability to do interdisciplinary analysis, will be described.

  6. CAD/CAM designer - Jack of all trades

    NASA Astrophysics Data System (ADS)

    Herndon, C. F.; Gallo, R. L.

    1986-01-01

    Aerospace design engineers are increasingly required to have more extensive knowledge of CAD/CAM tooling and manufacturing methods, in order to ensure that datasets can yield error-free components and assemblies. For structural concept design, engineers will work at the same CAD/CAM workstation on which the final component will be defined, controlling methods that yield the optimum solution for each member of a structural system from the viewpoints of both weight (for given strength) and producibility.

  7. Keeping ahead of the CAD/CAM curve

    NASA Astrophysics Data System (ADS)

    Daues, Jim; Meeker, Jay L.

    1993-06-01

    CAD/CAM tools can not only perform such major functions as analysis during the developmental phase of aerospace components; they also allow the design data to be passed directly to the user for access to numerically controlled (NC) programming, thereby shortening the product-delivery cycle. State-of-the-art commercial CAD/CAM systems support such advanced applications as solid modeling, feature-based design, and automation of key parts of the NC programming process.

  8. Complete denture fabrication with CAD/CAM record bases.

    PubMed

    McLaughlin, J Bryan; Ramos, Van

    2015-10-01

    One of the primary goals of new materials and processes for complete denture fabrication has been to reduce polymerization shrinkage. The introduction of computer-aided design and computer-aided manufacturing (CAD/CAM) technology into complete denture fabrication has eliminated polymerization shrinkage in the definitive denture. The use of CAD/CAM record bases for complete denture fabrication can provide a better-fitting denture with fewer postprocessing occlusal errors. PMID:26139040

  9. CAD-CAM at Bendix Kansas city: the BICAM system

    SciTech Connect

    Witte, D.R.

    1983-04-01

    Bendix Kansas City Division (BEKC) has been involved in Computer Aided Manufacturing (CAM) technology since the late 1950's when the numerical control (N/C) analysts installed computers to aid in N/C tape preparation for numerically controlled machines. Computer Aided Design (CAD) technology was introduced in 1976, when a number of 2D turnkey drafting stations were procured for printed wiring board (PWB) drawing definition and maintenance. In June, 1980, CAD-CAM Operations was formed to incorporate an integrated CAD-CAM capability into Bendix operations. In March 1982, a ninth division was added to the existing eight divisions at Bendix. Computer Integrated Manufacturing (CIM) is a small organization, reporting directly to the general manager, who has responsibility to coordinate the overall integration of computer aided systems at Bendix. As a long range plan, CIM has adopted a National Bureau of Standards (NBS) architecture titled Factory of the Future. Conceptually, the Bendix CAD-CAM system has a centrally located data base which can be accessed by both CAD and CAM tools, processes, and personnel thus forming an integrated Computer Aided Engineering (CAE) System. This is a key requirement of the Bendix CAD-CAM system that will be presented in more detail.

  10. An Algorithm for Projecting Points onto a Patched CAD Model

    SciTech Connect

    Henshaw, W D

    2001-05-29

    We are interested in building structured overlapping grids for geometries defined by computer-aided-design (CAD) packages. Geometric information defining the boundary surfaces of a computation domain is often provided in the form of a collection of possibly hundreds of trimmed patches. The first step in building an overlapping volume grid on such a geometry is to build overlapping surface grids. A surface grid is typically built using hyperbolic grid generation; starting from a curve on the surface, a grid is grown by marching over the surface. A given hyperbolic grid will typically cover many of the underlying CAD surface patches. The fundamental operation needed for building surface grids is that of projecting a point in space onto the closest point on the CAD surface. We describe an fast algorithm for performing this projection, it will make use of a fairly coarse global triangulation of the CAD geometry. We describe how to build this global triangulation by first determining the connectivity of the CAD surface patches. This step is necessary since it often the case that the CAD description will contain no information specifying how a given patch connects to other neighboring patches. Determining the connectivity is difficult since the surface patches may contain mistakes such as gaps or overlaps between neighboring patches.

  11. Direct determination of amino acids by hydrophilic interaction liquid chromatography with charged aerosol detection.

    PubMed

    Socia, Adam; Foley, Joe P

    2016-05-13

    A chromatographic analytical method for the direct determination of amino acids by hydrophilic interaction liquid chromatography (HILIC) was developed. A dual gradient simultaneously varying the pH 3.2 ammonium formate buffer concentration and level of acetonitrile (ACN) in the mobile phase was employed. Using a charged aerosol detector (CAD) and a 2(nd) order regression analysis, the fit of the calibration curve showed R(2) values between 0.9997 and 0.9985 from 1.5mg/mL to 50μg/mL (600ng to 20ng on column). Analyte chromatographic parameters such as the sensitivity of retention to the water fraction in the mobile phase values (mHILIC) were determined as part of method development. A degradation product of glutamine (5-pyrrolidone-2-carboxylic acid; pGlu) was observed and resolved chromatographically with no method modifications. The separation was used to quantitate amino acid content in acid hydrolysates of various protein samples. PMID:27059400

  12. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM

    PubMed Central

    Giger, Maryellen L.; Chan, Heang-Ping; Boone, John

    2008-01-01

    The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists’ goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities that are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists—as opposed to a completely automatic computer interpretation—focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous—from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects—collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the

  13. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM

    SciTech Connect

    Giger, Maryellen L.; Chan, Heang-Ping; Boone, John

    2008-12-15

    The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists' goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities that are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists--as opposed to a completely automatic computer interpretation--focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous--from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects--collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the

  14. Anniversary paper: History and status of CAD and quantitative image analysis: the role of Medical Physics and AAPM.

    PubMed

    Giger, Maryellen L; Chan, Heang-Ping; Boone, John

    2008-12-01

    The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists' goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities that are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists-as opposed to a completely automatic computer interpretation-focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous-from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects-collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms

  15. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  16. Role of computer aided detection (CAD) integration: case study with meniscal and articular cartilage CAD applications

    NASA Astrophysics Data System (ADS)

    Safdar, Nabile; Ramakrishna, Bharath; Saiprasad, Ganesh; Siddiqui, Khan; Siegel, Eliot

    2008-03-01

    Knee-related injuries involving the meniscal or articular cartilage are common and require accurate diagnosis and surgical intervention when appropriate. With proper techniques and experience, confidence in detection of meniscal tears and articular cartilage abnormalities can be quite high. However, for radiologists without musculoskeletal training, diagnosis of such abnormalities can be challenging. In this paper, the potential of improving diagnosis through integration of computer-aided detection (CAD) algorithms for automatic detection of meniscal tears and articular cartilage injuries of the knees is studied. An integrated approach in which the results of algorithms evaluating either meniscal tears or articular cartilage injuries provide feedback to each other is believed to improve the diagnostic accuracy of the individual CAD algorithms due to the known association between abnormalities in these distinct anatomic structures. The correlation between meniscal tears and articular cartilage injuries is exploited to improve the final diagnostic results of the individual algorithms. Preliminary results from the integrated application are encouraging and more comprehensive tests are being planned.

  17. Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Aerosols, defined as particles and droplets suspended in air, are always present in the atmosphere. They are part of the earth-atmosphere climate system, because they interact with both incoming solar and outgoing terrestrial radiation. They do this directly through scattering and absorption, and indirectly through effects on clouds. Submicrometer aerosols usually predominate in terms of number of particles per unit volume of air. They have dimensions close to the wavelengths of visible light, and thus scatter radiation from the sun very effectively. They are produced in the atmosphere by chemical reactions of sulfur-, nitrogen- and carbon-containing gases of both natural and anthropogenic origins. Light absorption is dominated by particles containing elemental carbon (soot), produced by incomplete combustion of fossil fuels and by biomass burning. Light-scattering dominates globally, although absorption can be significant at high latitudes, particularly over highly reflective snow- or ice-covered surfaces. Other aerosol substances that may be locally important are those from volcanic eruptions, wildfires and windblown dust.

  18. PIXE Analysis of Indoor Aerosols

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher; Turley, Colin; Moore, Robert; Battaglia, Maria; Labrake, Scott; Vineyard, Michael

    2011-10-01

    We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol samples collected in academic buildings at Union College to investigate the air quality in these buildings and the effectiveness of their air filtration systems. This is also the commissioning experiment for a new scattering chamber in the Union College Ion-Beam Analysis Laboratory. The aerosol samples were collected on Kapton foils using a nine-stage cascade impactor that separates particles according to their aerodynamic size. The foils were bombarded with beams of 2.2-MeV protons from the Union College 1.1-MV Pelletron Accelerator and the X-ray products were detected with an Amptek silicon drift detector. After subtracting the contribution from the Kapton foils, the X-ray energy spectra of the aerosol samples were analyzed using GUPIX software to determine the elemental concentrations of the samples. We will describe the collection of the aerosol samples, discuss the PIXE analysis, and present the results.

  19. Concerns of Hydrothermal Degradation in CAD/CAM Zirconia

    PubMed Central

    Kim, J.-W.; Covel, N.S.; Guess, P.C.; Rekow, E.D.; Zhang, Y.

    2010-01-01

    Zirconia-based restorations are widely used in prosthetic dentistry; however, their susceptibility to hydrothermal degradation remains elusive. We hypothesized that CAD/CAM machining and subsequent surface treatments, i.e., grinding and/or grit-blasting, have marked effects on the hydrothermal degradation behavior of Y-TZP. CAD/CAM-machined Y-TZP plates (0.5 mm thick), both with and without subsequent grinding with various grit sizes or grit-blasting with airborne alumina particles, were subjected to accelerated aging tests in a steam autoclave. Results showed that the CAD/CAM-machined surfaces initially exhibited superior hydrothermal degradation resistance, but deteriorated at a faster rate upon prolonged autoclave treatment compared with ground and grit-blasted surfaces. The accelerated hydrothermal degradation of CAD/CAM surfaces is attributed to the CAD/CAM machining damage and the absence of surface compressive stresses in the fully sintered material. Clinical relevance for surface treatments of zirconia frameworks in terms of hydrothermal and structural stabilities is addressed. PMID:19966039

  20. Performance and value of CAD-deficient pine- Final Report

    SciTech Connect

    Bailian Li; Houmin Chang; Hasan Jameel

    2007-02-28

    The southern US produces 58% of the nation's timber, much of it grown in intensively managed plantations of genetically improved loblolly pine. One of the fastest-growing loblolly pine selections made by the NCSU-Industry Cooperative Tree Improvement Program, whose progeny are widely planted, is also the only known natural carrier of a rare gene, cadn1. This allele codes for deficiency in an enzyme, cinnamyl alcohol dehydrogenase, which catalyzes the last step in the biosynthesis of lignin precursors. This study is to characterize this candidate gene for marker-assisted selection and deployment in the breeding program. This research will enhance the sustainability of forest production in the South, where land-use pressures will limit the total area available in the future for intensively managed plantations. Furthermore, this research will provide information to establish higher-value plantation forests with more desirable wood/fiber quality traits. A rare mutant allele (cad-n1) of the cad gene in loblolly pine (Pinus taeda L.) causes a deficiency in the production of cinnamyl alcohol dehydrogenase (CAD). The effects of this allele were examined by comparing wood density and growth traits of cad-n1 heterozygous trees with those of wild-type trees in a 10-year-old open-pollinated family trial growing under two levels of fertilization in Scotland County, North Carolina. In all, 200 trees were sampled with 100 trees for each treatment. Wood density measurements were collected from wood cores at breast height using x-ray densitometry. We found that the substitution of cad-n1 for a wild-type allele (Cad) was associated with a significant effect on wood density. The cad-n1 heterozygotes had a significantly higher wood density (+2.6%) compared to wild-type trees. The higher density was apparently due to the higher percentage of latewood in the heterozygotes. The fertilization effect was highly significant for both growth and wood density traits. While no cad genotype x

  1. Comparison between charged aerosol detection and light scattering detection for the analysis of Leishmania membrane phospholipids.

    PubMed

    Ramos, R Godoy; Libong, D; Rakotomanga, M; Gaudin, K; Loiseau, P M; Chaminade, P

    2008-10-31

    The performance of charged aerosol detection (CAD) was compared to evaporative light scattering detection (ELSD) for the analysis of Leishmania membrane phospholipid (PL) classes by NP-HPLC. In both methods, a PVA-Sil column was used for the determination of the major Leishmania membrane PLs, phosphatidic acid, phosphatidylglycerol, cardiolipin, phosphatidylinositol, phosphatidylethathanolamine, phosphatidylserine, lysophosphatidylethathanolamine, phosphatidylcholine, sphingomyelin and lysophosphatidylcholine in the same analysis. Although the response of both detection methods can be fitted to a power function, CAD response can also be described by a linear model with determination coefficients (R(2)) ranging from 0.993 to 0.998 for an injected mass of 30 ng to 20.00 microg. CAD appeared to be directly proportional when a restricted range was used and it was found to be more sensitive at lowest mass range than ELSD. With HPLC-ELSD the limits of detection (LODs) were between 71 and 1195 ng and the limits of quantification (LOQs) were between 215 and 3622 ng. With HPLC-CAD, the LODs were between 15 and 249 ng whereas the limits of quantification (LOQs) were between 45 and 707 ng. The accuracy of the methods ranged from 62.8 to 115.8% and from 58.4 to 110.5% for ELSD and CAD, respectively. The HPLC-CAD method is suitable to assess the influence of miltefosine on the composition of Leishmania membrane phospholipids. PMID:18823632

  2. Matrix removal in state of the art sample preparation methods for serum by charged aerosol detection and metabolomics-based LC-MS.

    PubMed

    Schimek, Denise; Francesconi, Kevin A; Mautner, Anton; Libiseller, Gunnar; Raml, Reingard; Magnes, Christoph

    2016-04-01

    Investigations into sample preparation procedures usually focus on analyte recovery with no information provided about the fate of other components of the sample (matrix). For many analyses, however, and particularly those using liquid chromatography-mass spectrometry (LC-MS), quantitative measurements are greatly influenced by sample matrix. Using the example of the drug amitriptyline and three of its metabolites in serum, we performed a comprehensive investigation of nine commonly used sample clean-up procedures in terms of their suitability for preparing serum samples. We were monitoring the undesired matrix compounds using a combination of charged aerosol detection (CAD), LC-CAD, and a metabolomics-based LC-MS/MS approach. In this way, we compared analyte recovery of protein precipitation-, liquid-liquid-, solid-phase- and hybrid solid-phase extraction methods. Although all methods provided acceptable recoveries, the highest recovery was obtained by protein precipitation with acetonitrile/formic acid (amitriptyline 113%, nortriptyline 92%, 10-hydroxyamitriptyline 89%, and amitriptyline N-oxide 96%). The quantification of matrix removal by LC-CAD showed that the solid phase extraction method (SPE) provided the lowest remaining matrix load (48-123 μg mL(-1)), which is a 10-40 fold better matrix clean-up than the precipitation- or hybrid solid phase extraction methods. The metabolomics profiles of eleven compound classes, comprising 70 matrix compounds showed the trends of compound class removal for each sample preparation strategy. The collective data set of analyte recovery, matrix removal and matrix compound profile was used to assess the effectiveness of each sample preparation method. The best performance in matrix clean-up and practical handling of small sample volumes was showed by the SPE techniques, particularly HLB SPE. CAD proved to be an effective tool for revealing the considerable differences between the sample preparation methods. This detector

  3. CAD-model-based vision for space applications

    NASA Technical Reports Server (NTRS)

    Shapiro, Linda G.

    1988-01-01

    A pose acquisition system operating in space must be able to perform well in a variety of different applications including automated guidance and inspections tasks with many different, but known objects. Since the space station is being designed with automation in mind, there will be CAD models of all the objects, including the station itself. The construction of vision models and procedures directly from the CAD models is the goal of this project. The system that is being designed and implementing must convert CAD models to vision models, predict visible features from a given view point from the vision models, construct view classes representing views of the objects, and use the view class model thus derived to rapidly determine the pose of the object from single images and/or stereo pairs.

  4. Passivity of conventional and CAD/CAM fabricated implant frameworks.

    PubMed

    de Araújo, Gabriela Monteiro; de França, Danilo Gonzaga Bernardo; Silva Neto, João Paulo; Barbosa, Gustavo Augusto Seabra

    2015-01-01

    The objective of this research was to evaluate the passivity by measuring the passive fit and strain development of frameworks screwed on abutments, made by CAD/CAM technology, and to compare these parts with samples manufactured by conventional casting. Using CAD/CAM technology, four samples were made from zirconia (Zircad) and four samples were manufactured from cobalt-chrome (CoCrcad). The control groups were four specimens of cobalt-chrome, made by one-piece casting (CoCrci), with a total of 12 frameworks. To evaluate the passive fit, the vertical misfit at the abutment-framework interface was measured with scanning electron microscopy (250×) when only one screw was tightened. The mean strain in these frameworks was analyzed by photoelasticity test. A significant difference in the passive fit was observed between the control and sample groups. CoCrcad exhibited the best value of passive fit (48.76±13.45 µm) and CoCrci the worst (187.55±103.63 µm); Zircad presented an intermediate value (103.81±43.15 µm). When compared to the other groups, CoCrci showed the highest average stress around the implants (17.19±7.22 kPa). It was concluded that CAD/CAM-fabricated frameworks exhibited better passivity compared with conventionally fabricated frameworks. CAD/CAM-fabricated Co-Cr frameworks may exhibit better passive fit compared with CAD/CAM-fabricated zirconia frameworks. Even so, similar levels of stress were achieved for CAD/CAM-fabricated frameworks. PMID:26200153

  5. Longitudinal myocardial blood flow gradient and CAD detection.

    PubMed

    Valenta, Ines; Wahl, Richard L; Schindler, Thomas H

    2015-01-01

    Conventional myocardial perfusion scintigraphy with SPECT/CT or with PET/CT has been established as pivotal clinical imaging modality for the identification of hemodynamically obstructive coronary artery disease (CAD) and risk stratification of patients with suspected or known CAD. While the assessment of the relative distribution of radiotracer uptake in the left-ventricular (LV) myocardium during vasomotor stress identifies the "culprit" or most severe CAD lesion in multivessel disease, flow-limiting effects of remaining but less severe epicardial lesions may be missed. This limitation principally may be overcome by the possibility of PET/CT with radiotracer-kinetic modeling to concurrently assess left-ventricular (LV) myocardial blood flow (MBF) in ml/g/min at rest and during vasomotor stress and the resulting myocardial flow reserve (MFR). While a stress-induced regional reduction in radiotracer uptake or perfusion identifies the most advanced epicardial lesion, flow-limiting effects of the other epicardial lesions may principally be identified by regional reductions in MFR. Conversely, reductions in MFR in CAD may be appreciated as suboptimal as they reflect not only the consequences of flow-limiting effects of epicardial stenosis but also of microvascular dysfunction. The relatively low specificity of a reduced therefore MFR may hamper a clear identification of the downstream hemodynamic effects of an epicardial lesion on hyperemic coronary flow increases. In this scenario, there is increasing evidence that the PET assessment of an abnormal decrease in MBF from the base to the apex of the LV during hyperemic flows, a so-called longitudinal flow gradient, is primarily related to fluid dynamic consequences of CAD-induced diffuse luminal and/or focal narrowing of the epicardial artery. The combined evaluation of the MFR and corresponding longitudinal MBF gradient could emerge as new a novel analytic concept to further optimize the identification and

  6. Selective reduction of CAD false-positive findings

    NASA Astrophysics Data System (ADS)

    Camarlinghi, N.; Gori, I.; Retico, A.; Bagagli, F.

    2010-03-01

    Computer-Aided Detection (CAD) systems are becoming widespread supporting tools to radiologists' diagnosis, especially in screening contexts. However, a large amount of false positive (FP) alarms would inevitably lead both to an undesired possible increase in time for diagnosis, and to a reduction in radiologists' confidence in CAD as a useful tool. Most CAD systems implement as final step of the analysis a classifier which assigns a score to each entry of a list of findings; by thresholding this score it is possible to define the system performance on an annotated validation dataset in terms of a FROC curve (sensitivity vs. FP per scan). To use a CAD as a supportive tool for most clinical activities, an operative point has to be chosen on the system FROC curve, according to the obvious criterion of keeping the sensitivity as high as possible, while maintaining the number of FP alarms still acceptable. The strategy proposed in this study is to choose an operative point with high sensitivity on the CAD FROC curve, then to implement in cascade a further classification step, constituted by a smarter classifier. The key issue of this approach is that the smarter classifier is actually a meta-classifier of more then one decision system, each specialized in rejecting a particular type of FP findings generated by the CAD. The application of this approach to a dataset of 16 lung CT scans previously processed by the VBNACAD system is presented. The lung CT VBNACAD performance of 87.1% sensitivity to juxtapleural nodules with 18.5 FP per scan is improved up to 10.1 FP per scan while maintaining the same value of sensitivity. This work has been carried out in the framework of the MAGIC-V collaboration.

  7. Study of medium beta elliptical cavities for CADS

    NASA Astrophysics Data System (ADS)

    Wen, Liangjian; Zhang, Shenghu; Li, Yongming; Wang, Ruoxu; Guo, Hao; Zhang, Cong; Jia, Huan; Jiang, Tiancai; Li, Chunlong; He, Yuan

    2016-02-01

    The China Accelerator-Driven Sub-critical System (CADS) is a high intensity proton facility to dispose of nuclear waste and generate electric power. CADS is based on a 1.5 GeV, 10 mA CW superconducting (SC) linac as a driver. The high energy section of the linac is composed of two families of SC elliptical cavities which are designed with geometrical beta 0.63 and 0.82. In this paper, the 650 MHz β=0.63 SC elliptical cavity is studied, including cavity optimization, multipacting, high order modes (HOMs) and generator RF power calculation. Supported by National Natural Science Foundation of China (91426303)

  8. How to Quickly Import CAD Geometry into Thermal Desktop

    NASA Technical Reports Server (NTRS)

    Wright, Shonte; Beltran, Emilio

    2002-01-01

    There are several groups at JPL (Jet Propulsion Laboratory) that are committed to concurrent design efforts, two are featured here. Center for Space Mission Architecture and Design (CSMAD) enables the practical application of advanced process technologies in JPL's mission architecture process. Team I functions as an incubator for projects that are in the Discovery, and even pre-Discovery proposal stages. JPL's concurrent design environment is to a large extent centered on the CAD (Computer Aided Design) file. During concurrent design sessions CAD geometry is ported to other more specialized engineering design packages.

  9. How to Quickly Import CAD Geometry into Thermal Desktop

    NASA Astrophysics Data System (ADS)

    Wright, Shonte; Beltran, Emilio

    2002-07-01

    There are several groups at JPL (Jet Propulsion Laboratory) that are committed to concurrent design efforts, two are featured here. Center for Space Mission Architecture and Design (CSMAD) enables the practical application of advanced process technologies in JPL's mission architecture process. Team I functions as an incubator for projects that are in the Discovery, and even pre-Discovery proposal stages. JPL's concurrent design environment is to a large extent centered on the CAD (Computer Aided Design) file. During concurrent design sessions CAD geometry is ported to other more specialized engineering design packages.

  10. Development to integrate conceptual design tools and a CAD system

    NASA Astrophysics Data System (ADS)

    Torres, V. H.; Ríos, J.; Vizán, A.; Pérez, J. M.

    2012-04-01

    The information supported by PLM/CAD systems is mainly related to Embodiment and Detail Design Phases. Information related to the Conceptual Design Phase is mainly limited to requirement specification documents and system architecture diagram documents. This work aims helping in the integration of the Conceptual Design process and its associated information flow into a commercial software system. It proposes a development framework to integrate Quality Function Deployment, Axiomatic Design, and Failure Mode and Effects Analysis into a PLM/CAD system. This communication presents the methodology used in the development, the software development environment, the modeling of the proposed application and the first results of a pilot implementation.

  11. Impact of IPAD on CAD/CAM database university research

    NASA Technical Reports Server (NTRS)

    Leach, L. M.; Wozny, M. J.

    1984-01-01

    IPAD program has provided direction, focus and software products which impacted on CAD/CAM data base research and follow-on research. The relationship of IPAD to the research projects which involve the storage of geometric data in common data ase facilities such as data base machines, the exchange of data between heterogeneous data bases, the development of IGES processors, the migration of lrge CAD/CAM data base management systems to noncompatible hosts, and the value of RIM as a research tool is described.

  12. CAD/CAM in the Brazilian aeronautical industry

    NASA Astrophysics Data System (ADS)

    Lampi, L. H.; Embraer, S. A.

    Features, applications and progress in the usage of CAD/CAM since 1980 by an aircraft manufacturer in Brazil are described. The system comprises 34 graphics work stations dedicated to structural design, lofting, electrical cable routing, finite element modeling and quality control. Standardized work methods have been devised to enhance productivity. Programs have been defined for finite element stress analysis and generating wiring diagrams. The computerized design capabilities have increased productivity for hole boring accuracy through work on digitized controllers. Psychological testing has been initiated to identify users who can adapt more easily to CAD/CAM utilization.

  13. Productivity improvements through the use of CAD/CAM

    NASA Astrophysics Data System (ADS)

    Wehrman, M. D.

    This paper focuses on Computer Aided Design/Computer Aided Manufacturing (CAD/CAM) productivity improvements that occurred in the Boeing Commercial Airplane Company (BCAC) between 1979 and 1983, with a look at future direction. Since the introduction of numerically controlled machinery in the 1950s, a wide range of engineering and manufacturing applications has evolved. The main portion of this paper includes a summarized and illustrated cross-section of these applications, touching on benefits such as reduced tooling, shortened flow time, increased accuracy, and reduced labor hours. The current CAD/CAM integration activity, directed toward capitalizing on this productivity in the future, is addressed.

  14. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  15. Annotation and retrieval system of CAD models based on functional semantics

    NASA Astrophysics Data System (ADS)

    Wang, Zhansong; Tian, Ling; Duan, Wenrui

    2014-11-01

    CAD model retrieval based on functional semantics is more significant than content-based 3D model retrieval during the mechanical conceptual design phase. However, relevant research is still not fully discussed. Therefore, a functional semantic-based CAD model annotation and retrieval method is proposed to support mechanical conceptual design and design reuse, inspire designer creativity through existing CAD models, shorten design cycle, and reduce costs. Firstly, the CAD model functional semantic ontology is constructed to formally represent the functional semantics of CAD models and describe the mechanical conceptual design space comprehensively and consistently. Secondly, an approach to represent CAD models as attributed adjacency graphs(AAG) is proposed. In this method, the geometry and topology data are extracted from STEP models. On the basis of AAG, the functional semantics of CAD models are annotated semi-automatically by matching CAD models that contain the partial features of which functional semantics have been annotated manually, thereby constructing CAD Model Repository that supports model retrieval based on functional semantics. Thirdly, a CAD model retrieval algorithm that supports multi-function extended retrieval is proposed to explore more potential creative design knowledge in the semantic level. Finally, a prototype system, called Functional Semantic-based CAD Model Annotation and Retrieval System(FSMARS), is implemented. A case demonstrates that FSMARS can successfully botain multiple potential CAD models that conform to the desired function. The proposed research addresses actual needs and presents a new way to acquire CAD models in the mechanical conceptual design phase.

  16. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  17. Particle Detectors

    NASA Astrophysics Data System (ADS)

    Grupen, Claus; Shwartz, Boris

    2011-09-01

    Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.

  18. Real-time determination and suppression of bio-aerosol constituents

    NASA Astrophysics Data System (ADS)

    Henshaw, Philip D.; Trepagnier, Pierre C.

    2006-10-01

    We describe algorithm development for a trigger system for bio-aerosol detection using bulk collection of aerosols. Two key problems inherent to any system which collects or probes a volume of air are presented - the "mixture" problem and the "spike" problem. We describe a background suppression and detection algorithm and show why knowledge of background endmembers is important. We present an endmember selection algorithm and show examples. Integrating these two algorithms solves both the mixture and spike problems and has applications to both bio-aerosol point detectors which collect samples from a volume of air, and to bio-aerosol stand-off detectors which probe a column of air.

  19. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  20. Correlating Trainee Attributes to Performance in 3D CAD Training

    ERIC Educational Resources Information Center

    Hamade, Ramsey F.; Artail, Hassan A.; Sikstrom, Sverker

    2007-01-01

    Purpose: The purpose of this exploratory study is to identify trainee attributes relevant for development of skills in 3D computer-aided design (CAD). Design/methodology/approach: Participants were trained to perform cognitive tasks of comparable complexity over time. Performance data were collected on the time needed to construct test models, and…

  1. The design and construction of the CAD-1 airship

    NASA Technical Reports Server (NTRS)

    Kleiner, H. J.; Schneider, R.; Duncan, J. L.

    1975-01-01

    The background history, design philosophy and Computer application as related to the design of the envelope shape, stress calculations and flight trajectories of the CAD-1 airship, now under construction by Canadian Airship Development Corporation are reported. A three-phase proposal for future development of larger cargo carrying airships is included.

  2. Introduction to CAD/Computers. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Lockerby, Hugh

    This learning module for an eighth-grade introductory technology course is designed to help teachers introduce students to computer-assisted design (CAD) in a communications unit on graphics. The module contains a module objective and five specific objectives, a content outline, suggested instructor methodology, student activities, a list of six…

  3. CAD programs: a tool for crime scene processing and reconstruction

    NASA Astrophysics Data System (ADS)

    Boggiano, Daniel; De Forest, Peter R.; Sheehan, Francis X.

    1997-02-01

    Computer aided drafting (CAD) programs have great potential for helping the forensic scientist. One of their most direct and useful applications is crime scene documentation, as an aid in rendering neat, unambiguous line drawings of crime scenes. Once the data has been entered, it can easily be displayed, printed, or plotted in a variety of formats. Final renditions from this initial data entry can take multiple forms and can have multiple uses. As a demonstrative aid, a CAD program can produce two dimensional (2-D) drawings of the scene from one's notes to scale. These 2-D renditions are court display quality and help to make the forensic scientists's testimony easily understood. Another use for CAD is as an analytical tool for scene reconstruction. More than just a drawing aid, CAD can generate useful information from the data input. It can help reconstruct bullet paths or locations of furniture in a room when it is critical to the reconstruction. Data entry at the scene, on a notebook computer, can assist in framing and answering questions so that the forensic scientist can test hypotheses while actively documenting the scene. Further, three dimensional (3-D) renditions of items can be viewed from many 'locations' by using the program to rotate the object and the observers' viewpoint.

  4. Right approach to 3D modeling using CAD tools

    NASA Astrophysics Data System (ADS)

    Baddam, Mounica Reddy

    The thesis provides a step-by-step methodology to enable an instructor dealing with CAD tools to optimally guide his/her students through an understandable 3D modeling approach which will not only enhance their knowledge about the tool's usage but also enable them to achieve their desired result in comparatively lesser time. In the known practical field, there is particularly very little information available to apply CAD skills to formal beginners' training sessions. Additionally, advent of new software in 3D domain cumulates updating into a more difficult task. Keeping up to the industry's advanced requirements emphasizes the importance of more skilled hands in the field of CAD development, rather than just prioritizing manufacturing in terms of complex software features. The thesis analyses different 3D modeling approaches specified to the varieties of CAD tools currently available in the market. Utilizing performance-time databases, learning curves have been generated to measure their performance time, feature count etc. Based on the results, improvement parameters have also been provided for (Asperl, 2005).

  5. Present State of CAD Teaching in Spanish Universities

    ERIC Educational Resources Information Center

    Garcia, Ramon Rubio; Santos, Ramon Gallego; Quiros, Javier Suarez; Penin, Pedro I. Alvarez

    2005-01-01

    During the 1990s, all Spanish Universities updated the syllabuses of their courses as a result of the entry into force of the new Organic Law of Universities ("Ley Organica de Universidades") and, for the first time, "Computer Assisted Design" (CAD) appears in the list of core subjects (compulsory teaching content set by the government) in many of…

  6. Alternatives for Saving and Viewing CAD Graphics for the Web.

    ERIC Educational Resources Information Center

    Harris, La Verne Abe; Sadowski, Mary A.

    2001-01-01

    Introduces some alternatives for preparing and viewing computer aided design (CAD) graphics for Internet output on a budget, without the fear of copyright infringement, and without having to go back to college to learn a complex graphic application. (Author/YDS)

  7. Parametric Design Optimization By Integrating CAD Systems And Optimization Tools

    NASA Astrophysics Data System (ADS)

    Rehan, M.; Olabi, A. G.

    2009-11-01

    Designing a cost effective product in minimum time is a complex process. In order to achieve this goal the requirement of optimum designs are becoming more important. One of the time consuming factor in the design optimization cycle is the modifications of Computer Aided Design (CAD) model after optimization. In conventional design optimization techniques the design engineer has to update the CAD model after receiving optimum design from optimization tools. It is worthwhile using parametric design optimization process to minimize the optimization cycle time. This paper presents a comprehensive study to integrate the optimization parameters between CAD system and optimization tools which were driven from a single user environment. Finally, design optimization of a Compressed Natural Gas (CNG) cylinder was implemented as case study. In this case study the optimization tools were fully integrated with CAD system, therefore, all the deliverables including; part design, drawings and assembly can be automatically updated after achieving the optimum geometry having minimum volume and satisfying all imposed constraints.

  8. Program Evolves from Basic CAD to Total Manufacturing Experience

    ERIC Educational Resources Information Center

    Cassola, Joel

    2011-01-01

    Close to a decade ago, John Hersey High School (JHHS) in Arlington Heights, Illinois, made a transition from a traditional classroom-based pre-engineering program. The new program is geared towards helping students understand the entire manufacturing process. Previously, a JHHS student would design a project in computer-aided design (CAD) software…

  9. Schools (Students) Exchanging CAD/CAM Files over the Internet.

    ERIC Educational Resources Information Center

    Mahoney, Gary S.; Smallwood, James E.

    This document discusses how students and schools can benefit from exchanging computer-aided design/computer-aided manufacturing (CAD/CAM) files over the Internet, explains how files are exchanged, and examines the problem of selected hardware/software incompatibility. Key terms associated with information search services are defined, and several…

  10. Optical properties of manually and CAD/CAM-fabricated polymers.

    PubMed

    Güth, Jan-Frederik; Zuch, Timo; Zwinge, Sebastian; Engels, Jörg; Stimmelmayr, Michael; Edelhoff, Daniel

    2013-01-01

    The aim of this study was to compare the light translucency and fluorescence 5 manually and 11 CAD/CAM polymer materials to a glass-ceramic material. Light-transmission was measured using a spectrophotometer. Overall light transmission (n=40) was calculated as the integration (tc (λ) dλ [10(-5)]) of all tc values for the wavelengths from 400 to 700 nm. One-Way-ANOVA, (Scheffe's post hoc) revealed following light transmission values: Artbloc Temp (33.1%; A), Polycon ae (33.6%; A), Cercon base PMMA (38.3%; B), Luxatemp Fluorescence (40.7%; C), Protemp 4 (41.6%; C), Structur 2 SC (43.1%; D), CAD Temp (45.0%; E), Paradigm MZ 100 (45.4%; E), New Outline (45.6%,E), Ambarino High-Class (45.9%; E, F), Fixtemp C&B (46.1%; E, F, G), Lava Ultimate (47.1%; F, G), Telio-CAD (47.3%; G), glass-ceramic Vita Mark II (50.8%; H), New Outline CAD (52.1%; H, I), QUATTRO DISC Eco PMMA (53.0%; I) and Zenotec PMMA (54.5%, J). Polymers from conventional and industrial polymerization show widely varying translucent and fluorescent properties when compared with glass-ceramics of the same color. PMID:24240888

  11. Research on remote sensing image pixel attribute data acquisition method in AutoCAD

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyang; Sun, Guangtong; Liu, Jun; Liu, Hui

    2013-07-01

    The remote sensing image has been widely used in AutoCAD, but AutoCAD lack of the function of remote sensing image processing. In the paper, ObjectARX was used for the secondary development tool, combined with the Image Engine SDK to realize remote sensing image pixel attribute data acquisition in AutoCAD, which provides critical technical support for AutoCAD environment remote sensing image processing algorithms.

  12. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  13. Cam Design Projects in an Advanced CAD Course for Mechanical Engineers

    ERIC Educational Resources Information Center

    Ault, H. K.

    2009-01-01

    The objective of this paper is to present applications of solid modeling aimed at modeling of complex geometries such as splines and blended surfaces in advanced CAD courses. These projects, in CAD-based Mechanical Engineering courses, are focused on the use of the CAD system to solve design problems for applications in machine design, namely the…

  14. CAD-II: the second version current-mode readout ASIC for high-resolution timing measurements

    NASA Astrophysics Data System (ADS)

    Yuan, Z. X.; Deng, Z.; Wang, Y.; Liu, Y. N.

    2016-07-01

    This paper presents the second version of a fully current-mode front-end ASIC, CAD (Current Amplifier and Discriminator), for MRPC detectors for TOF applications. Several upgrades have been made in this new version, including: 1). Using differential input stages with input impedance down to 30 Ω and LVDS compatible outputs; 2). Much higher current gain and bandwidth of 4.5 A/A and 380 MHz 3). Fabricated in 0.18 μ m CMOS process instead of 0.35 μ m CMOS technology used in CAD-I. The detailed design of the ASIC will be described as well as the measurement results. The single-ended input impedance could be as low as 32 Ω and the power consumption was measured to be 15 mW per channel. Input referred RMS noise current was about 0.56 μ A. The threshold could be set as low as 4.5 μ A referred to input, corresponding to 9 fC for the typical MRPC detector signal with 2 ns width. Sub-10 ps resolution has been measured for input signal above 200 μ A.

  15. A Search for Correlations Between Four Different Atmospheric Aerosol Measurement Systems Atop Rattlesnake Mountain, Washington

    NASA Astrophysics Data System (ADS)

    Milbrath, Brian

    2004-05-01

    Accurate atmospheric aerosol transport measurements are important to international nuclear test monitoring, emergency response, health and ecosystem toxicology, and climate change. An International Monitoring System (IMS) is being established which will include a suite of aerosol radionuclide sensors. To explore the possibility of using the IMS sites to improve the understanding of global atmospheric aerosol transport, four state-of-the-art aerosol measurement systems were placed atop Rattlesnake Mountain at Pacific Northwest National Laboratory. The Radionuclide Aerosol Sampler/Analyzer measures radionuclide concentration via gamma-ray spectroscopy. The Cascade Impactor Beam Analyzer Technique measures 30 elements in three aerosol sizes using PNNLâ's Ion Beams Materials Analysis Laboratory. The Tapered Element Oscillating Microbalance provides time-averaged aerosol mass concentrations for a range of sizes. The Multi-Filter Rotating Shadowband Radiometer measures the solar irradiance to derive an aerosol optical depth. Results and correlations from the four different detectors will be presented.

  16. Numerical calculation of aerosol transmittance on transmission route

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Xie, Xiao-fang

    2015-02-01

    The aerosol transmittance on the transmission route can not be ignored in atmosphere transmittance calculation. The classical mathematic models at present just calculate the vertical transmittance. MODTRAN is a good choice, but it is difficult called in users own project. In this paper, we build a model of the vertical transmittance for aerosol patterns by exponential regression analysis, and calculate aerosol transmittance on slant route by the simple mathematical relationship of vertical transmittance and horizontal transmittance. In this way, the aerosol transmittance on common route can be calculated just by the altitude of detector and slant angle of the route. We suggest the method in this paper can be easily used for the calculation in users project of real-time infrared simulation of missile-borne or airborne detector. According to the experiments, the average residuals of transmittance on slant route is less than 0.0005, while that on horizontal route is less than 0.0003.

  17. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  18. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  19. Aerosols and environmental pollution

    NASA Astrophysics Data System (ADS)

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues; ranging from the Earth’s radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  20. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  1. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  2. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  3. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  4. A comparative analysis of 2D and 3D CAD for calcifications in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Acciavatti, Raymond J.; Ray, Shonket; Keller, Brad M.; Maidment, Andrew D. A.; Conant, Emily F.

    2015-03-01

    Many medical centers offer digital breast tomosynthesis (DBT) and 2D digital mammography acquired under the same compression (i.e., "Combo" examination) for screening. This paper compares a conventional 2D CAD algorithm (Hologic® ImageChecker® CAD v9.4) for calcification detection against a prototype 3D algorithm (Hologic® ImageChecker® 3D Calc CAD v1.0). Due to the newness of DBT, the development of this 3D CAD algorithm is ongoing, and it is currently not FDA-approved in the United States. For this study, DBT screening cases with suspicious calcifications were identified retrospectively at the University of Pennsylvania. An expert radiologist (E.F.C.) reviewed images with both 2D and DBT CAD marks, and compared the marks to biopsy results. Control cases with one-year negative follow-up were also studied; these cases either possess clearly benign calcifications or lacked calcifications. To allow the user to alter the sensitivity for cancer detection, an operating point is assigned to each CAD mark. As expected from conventional 2D CAD, increasing the operating point in 3D CAD increases sensitivity and reduces specificity. Additionally, we showed that some cancers are occult to 2D CAD at all operating points. By contrast, 3D CAD allows for detection of some cancers that are missed on 2D CAD. We also demonstrated that some non-cancerous CAD marks in 3D are not present at analogous locations in the 2D image. Hence, there are additional marks when using both 2D and 3D CAD in combination, leading to lower specificity than with conventional 2D CAD alone.

  5. Three dimensional CAD model of the Ignitor machine

    NASA Astrophysics Data System (ADS)

    Orlandi, S.; Zanaboni, P.; Macco, A.; Sioli, V.; Risso, E.

    1998-11-01

    defind The final, global product of all the structural and thermomechanical design activities is a complete three dimensional CAD (AutoCAD and Intergraph Design Review) model of the IGNITOR machine. With this powerful tool, any interface, modification, or upgrading of the machine design is managed as an integrated part of the general effort aimed at the construction of the Ignitor facility. ind The activities that are underway, to complete the design of the core of the experiment and that will be described, concern the following: ind - the cryogenic cooling system, ind - the radial press, the center post, the mechanical supports (legs) of the entire machine, ind - the inner mechanical supports of major components such as the plasma chamber and the outer poloidal field coils.

  6. AutoCAD discipline layering convention. Revision 1

    SciTech Connect

    Nielsen, B.L.

    1995-05-17

    This document is a user`s guide to establishing layering standards for drawing development. Uniform layering standards are established to exchange of AutoCAD datasets between organizations and companies. Consistency in the layering conventions assists the user through logical separation and identification of drawing data. This allows the user to view and plot related aspects of a drawing separately or in combination. The use of color and Linetype by layer is the preferred layering convention method, however to accommodate specific needs, colors and linetypes can also be assigned on an entity basis. New drawing setup files (also identified in AutoCAD documentation as Prototype drawings) use this layering convention to establish discipline drawing layers that are routinely used. Additions, deletions or revisions to the layering conventions are encourage.

  7. On the Design of a CADS for Shoulder Pain Pathology

    NASA Astrophysics Data System (ADS)

    de Ipiña, K. López; Hernández, M. C.; Martínez, E.; Vaquero, C.

    A musculoskeletal disorder is a condition of the musculoskeletal system, which consists in part of it being injured continuously over time. Shoulder disorders are one of the most common musculoskeletal cases attended in primary health care services. Shoulder disorders cause pain and limit the ability to perform many routine activities, affecting about 15-25 % of the general population. Several clinical tests have been described to aid diagnosis of shoulder disorders. However, the current literature acknowledges a lack of concordance in clinical assessment, even among musculoskeletal specialists. We are working on the design of a Computer-Aided Decision Support (CADS) system for Shoulder Pain Pathology. The paper presents the results of our efforts to build a CADS system testing several classical classification paradigms, feature reduction methods (PCA) and K-means unsupervised clustering. The small database size imposes the use of robust covariance matrix estimation methods to improve the system performance. Finally, the system was evaluated by a medical specialist.

  8. Tooth-colored CAD/CAM monolithic restorations.

    PubMed

    Reich, S

    2015-01-01

    A monolithic restoration (also known as a full contour restoration) is one that is manufactured from a single material for the fully anatomic replacement of lost tooth structure. Additional staining (followed by glaze firing if ceramic materials are used) may be performed to enhance the appearance of the restoration. For decades, monolithic restoration has been the standard for inlay and partial crown restorations manufactured by both pressing and computer-aided design and manufacturing (CAD/CAM) techniques. A limited selection of monolithic materials is now available for dental crown and bridge restorations. The IDS (2015) provided an opportunity to learn about and evaluate current trends in this field. In addition to new developments, established materials are also mentioned in this article to complete the picture. In line with the strategic focus of the IJCD, the focus here is naturally on CAD/CAM materials. PMID:26110926

  9. Productivity increase through implementation of CAD/CAE workstation

    NASA Technical Reports Server (NTRS)

    Bromley, L. K.

    1985-01-01

    The tracking and communication division computer aided design/computer aided engineering system is now operational. The system is utilized in an effort to automate certain tasks that were previously performed manually. These tasks include detailed test configuration diagrams of systems under certification test in the ESTL, floorplan layouts of future planned laboratory reconfigurations, and other graphical documentation of division activities. The significant time savings achieved with this CAD/CAE system are examined: (1) input of drawings and diagrams; (2) editing of initial drawings; (3) accessibility of the data; and (4) added versatility. It is shown that the Applicon CAD/CAE system, with its ease of input and editing, the accessibility of data, and its added versatility, has made more efficient many of the necessary but often time-consuming tasks associated with engineering design and testing.

  10. Integration of a CAD System Into an MDO Framework

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.; Samareh, J. A.; Weston, R. P.; Zorumski, W. E.

    1998-01-01

    NASA Langley has developed a heterogeneous distributed computing environment, called the Framework for Inter-disciplinary Design Optimization, or FIDO. Its purpose has been to demonstrate framework technical feasibility and usefulness for optimizing the preliminary design of complex systems and to provide a working environment for testing optimization schemes. Its initial implementation has been for a simplified model of preliminary design of a high-speed civil transport. Upgrades being considered for the FIDO system include a more complete geometry description, required by high-fidelity aerodynamics and structures codes and based on a commercial Computer Aided Design (CAD) system. This report presents the philosophy behind some of the decisions that have shaped the FIDO system and gives a brief case study of the problems and successes encountered in integrating a CAD system into the FEDO framework.

  11. Impact of CAD-deficiency in flax on biogas production.

    PubMed

    Wróbel-Kwiatkowska, Magdalena; Jabłoński, Sławomir; Szperlik, Jakub; Dymińska, Lucyna; Łukaszewicz, Marcin; Rymowicz, Waldemar; Hanuza, Jerzy; Szopa, Jan

    2015-12-01

    Global warming and the reduction in our fossil fuel reservoir have forced humanity to look for new means of energy production. Agricultural waste remains a large source for biofuel and bioenergy production. Flax shives are a waste product obtained during the processing of flax fibers. We investigated the possibility of using low-lignin flax shives for biogas production, specifically by assessing the impact of CAD deficiency on the biochemical and structural properties of shives. The study used genetically modified flax plants with a silenced CAD gene, which encodes the key enzyme for lignin synthesis. Reducing the lignin content modified cellulose crystallinity, improved flax shive fermentation and optimized biogas production. Chemical pretreatment of the shive biomass further increased biogas production efficiency. PMID:26178244

  12. Group technology methods for integrated CAD/CAM

    NASA Astrophysics Data System (ADS)

    Propen, M.; Jacko, J.

    1984-10-01

    The use of a single product definition and comprehensive database are key factors in integrating CAD and CAM. This paper describes one approach for investigating the scope of developing a full scale Group Technology (GT) system. The prototype GT system discussed required the integration of a decision logic processor, relational database, and design/drafting system, and demonstrated a generative process planning system for a family of gas turbine engine components.

  13. Integrated CAD/CAM: Problems, prognosis, and role of IPAD

    NASA Technical Reports Server (NTRS)

    Nilson, E. N.

    1980-01-01

    Major technology problems impede the development and evolution of totally integrated interactive CAD/CAM systems. IPAD is playing an important role in the identification of these problems and is contributing significantly to their solution. It is the purpose of this presentation to examine some of these issues, look at the prognosis of obtaining effective solutions, and point up some of the past and expected contributions of IPAD to this technology.

  14. Complete denture fabrication supported by CAD/CAM.

    PubMed

    Wimmer, Timea; Gallus, Korbinian; Eichberger, Marlis; Stawarczyk, Bogna

    2016-05-01

    The inclusion of computer-aided design/computer-aided manufacturing (CAD/CAM) technology into complete denture fabrication facilitates the procedures. The presented workflow for complete denture fabrication combines conventional and digitally supported treatment steps for improving dental care. With the presented technique, the registration of the occlusal plane, the determination of the ideal lip support, and the verification of the maxillomandibular relationship record are considered. PMID:26774323

  15. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  16. Ovulation leads women to perceive sexy cads as good dads.

    PubMed

    Durante, Kristina M; Griskevicius, Vladas; Simpson, Jeffry A; Cantú, Stephanie M; Li, Norman P

    2012-08-01

    Why do some women pursue relationships with men who are attractive, dominant, and charming but who do not want to be in relationships--the prototypical sexy cad? Previous research shows that women have an increased desire for such men when they are ovulating, but it is unclear why ovulating women would think it is wise to pursue men who may be unfaithful and could desert them. Using both college-age and community-based samples, in 3 studies we show that ovulating women perceive charismatic and physically attractive men, but not reliable and nice men, as more committed partners and more devoted future fathers. Ovulating women perceive that sexy cads would be good fathers to their own children but not to the children of other women. This ovulatory-induced perceptual shift is driven by women who experienced early onset of puberty. Taken together, the current research identifies a novel proximate reason why ovulating women pursue relationships with sexy cads, complementing existing research that identifies the ultimate, evolutionary reasons for this behavior. PMID:22582900

  17. Use of Existing CAD Models for Radiation Shielding Analysis

    NASA Technical Reports Server (NTRS)

    Lee, K. T.; Barzilla, J. E.; Wilson, P.; Davis, A.; Zachman, J.

    2015-01-01

    The utility of a radiation exposure analysis depends not only on the accuracy of the underlying particle transport code, but also on the accuracy of the geometric representations of both the vehicle used as radiation shielding mass and the phantom representation of the human form. The current NASA/Space Radiation Analysis Group (SRAG) process to determine crew radiation exposure in a vehicle design incorporates both output from an analytic High Z and Energy Particle Transport (HZETRN) code and the properties (i.e., material thicknesses) of a previously processed drawing. This geometry pre-process can be time-consuming, and the results are less accurate than those determined using a Monte Carlo-based particle transport code. The current work aims to improve this process. Although several Monte Carlo programs (FLUKA, Geant4) are readily available, most use an internal geometry engine. The lack of an interface with the standard CAD formats used by the vehicle designers limits the ability of the user to communicate complex geometries. Translation of native CAD drawings into a format readable by these transport programs is time consuming and prone to error. The Direct Accelerated Geometry -United (DAGU) project is intended to provide an interface between the native vehicle or phantom CAD geometry and multiple particle transport codes to minimize problem setup, computing time and analysis error.

  18. A CAD system based on spherical dual representations

    SciTech Connect

    Roach, J.W.; Paripati, P.K.; Wright, J.S.

    1987-08-01

    Computer-aided design (CAD) systems typically have many different functions: drafting, two-dimensional modeling, three-dimensional modeling, finite element analysis, and fit and tolerancing of parts. The authors report on the construction of a CAD system based on shape representation ideas used in the vision community to determine the shape of an object from its image. In the long term, they propose to construct a combined CAD and sensing system based on the same underlying object models. Considerable advantages follow from building a model-driven sensor fusion system that uses a common geometric model. In a manufacturing environment, for example, a library of objects can be built up and its models used in a vision and touch sensing system integrated into an automated assembly line to discriminate between objects and determine orientation and distance. If such a system could be made robust and highly reliable, then some of the most difficult problems that plague attempts to create a fully flexible automated environment would be solved.

  19. Centerline-based colon segmentation for CAD of CT colonography

    NASA Astrophysics Data System (ADS)

    Näppi, Janne; Frimmel, Hans; Yoshida, Hiroyuki

    2006-03-01

    We developed a fast centerline-based segmentation (CBS) algorithm for the extraction of colon in computer-aided detection (CAD) for CT colonography (CTC). CBS calculates local centerpoints along thresholded components of abdominal air, and connects the centerpoints iteratively to yield a colon centerline. A thick region encompassing the colonic wall is extracted by use of region-growing around the centerline. The resulting colonic wall is employed in our CAD scheme for the detection of polyps, in which polyps are detected within the wall by use of volumetric shape features. False-positive detections are reduced by use of a Bayesian neural network. The colon extraction accuracy of CBS was evaluated by use of 38 clinical CTC scans representing various preparation conditions. On average, CBS covered more than 96% of the visible region of colon with less than 1% extracolonic components in the extracted region. The polyp detection performance of the CAD scheme was evaluated by use of 121 clinical cases with 42 colonoscopy-confirmed polyps 5-25 mm. At a 93% by-polyp detection sensitivity for polyps >=5 mm, a leave-one-patient-out evaluation yielded 1.4 false-positive polyp detections per CT scan.

  20. Modern halogen leak detectors /Review/

    NASA Astrophysics Data System (ADS)

    Evlampiev, A. I.; Karpov, V. I.; Levina, L. E.

    1981-04-01

    The halogen method is one of the basic techniques of leak detection for monitoring airtightness in such objects as refrigeration equipment and aerosol containers. Sensitivity has been improved by heated platinum emitters which stabilize background currents. Methods for protecting the region in which the gas is selected include placing the sensitive element in a new flow gauge and keeping the chamber at a certain distance from the tested surface. Chromatograph separating columns both increase sensitivity and distinguish test materials on a background of extraneous halogen-containing materials. Solid-state platinum diodes have been used as the sensitive elements of halogen leak detectors. Leak detectors based on electron-capture practically eliminate the effect of contamination of the surrounding atmosphere on leak detector sensitivity. A technique of vacuum testing is based on the high affinity of halogen-containing materials for electrons.

  1. Modern halogen leak detectors /Review/

    NASA Astrophysics Data System (ADS)

    Evlampiev, A. I.; Karpov, V. I.; Levina, L. E.

    1980-09-01

    The halogen method is one of the basic techniques of leak detection for monitoring airtightness in such objects as refrigeration equipment and aerosol containers. Sensitivity has been improved by heated platinum emitters which stabilize background currents. Methods for protecting the region in which the gas is selected include placing the sensitive element in a new flow gauge and keeping the chamber at a certain distance from the tested surface. Chromatograph separating columns both increase sensitivity and distinguish test materials on a background of extraneous halogen-containing materials. Solid-state platinum diodes have been used as the sensitive elements of halogen leak detectors. Leak detectors based on electron-capture practically eliminate the effect of contamination of the surrounding atmosphere on leak detector sensitivity. A technique of vacuum testing is based on the high affinity of halogen-containing materials for electrons.

  2. Myc versus USF: discrimination at the cad gene is determined by core promoter elements.

    PubMed Central

    Boyd, K E; Farnham, P J

    1997-01-01

    Carbamoyl-phosphate synthase/aspartate carbamoyltransferase/dihydroorotase, which is encoded by the cad gene, is required for the first three rate-limiting steps of de novo pyrimidine biosynthesis. It has been previously demonstrated that cad transcription increases at the G1/S-phase boundary, as quiescent cells reenter the proliferative cell cycle. The growth-responsive element has been mapped to an E box at +65 in the hamster cad promoter. Using an in vivo UV cross-linking and immunoprecipitation assay, we show that Myc, Max, and upstream stimulatory factor (USF) bind to the chromosomal cad promoter. To determine whether binding of Myc-Max or USF is critical for cad growth regulation, we analyzed promoter constructs which contain mutations in the nucleotides flanking the E box. We demonstrate that altering nucleotides which flank the cad E box to sequences which decrease Myc-Max binding in vitro correlates with a loss of cad G1/S-phase transcriptional activation. This result supports the conclusion that binding of Myc-Max, but not USF, is essential for cad regulation. Our investigations demonstrate that the endogenous cad E box can be bound by more than one transcription factor, but growth-induced cad expression is achieved only by Myc. PMID:9111322

  3. A method for assurance of image integrity in CAD-PACS integration

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng

    2007-03-01

    Computer Aided Detection/Diagnosis (CAD) can greatly assist in the clinical decision making process, and therefore, has drawn tremendous research efforts. However, integrating independent CAD workstation results with the clinical diagnostic workflow still remains challenging. We have presented a CAD-PACS integration toolkit that complies with DICOM standard and IHE profiles. One major issue in CAD-PACS integration is the security of the images used in CAD post-processing and the corresponding CAD result images. In this paper, we present a method for assuring the integrity of both DICOM images used in CAD post-processing and the CAD image results that are in BMP or JPEG format. The method is evaluated in a PACS simulator that simulates clinical PACS workflow. It can also be applied to multiple CAD applications that are integrated with the PACS simulator. The successful development and evaluation of this method will provide a useful approach for assuring image integrity of the CAD-PACS integration in clinical diagnosis.

  4. Fire Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.

  5. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  6. Metal Detectors.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  7. Gridgen`s synergistic implementation of CAD and grid geometry modeling

    SciTech Connect

    Steinbrenner, J.P.; Chawner, J.R.

    1996-12-31

    The concept of dual-use CAD and grid data was implemented in Gridgen. A common data format was developed; point, curve, and surface creation capabilities that are applicable to both grid and model geometry were developed and implemented; geometry modification utilities applicable to both grid and model geometry were developed and implemented; and these capabilities were demonstrated through the repair and idealization of a real-world geometry. The results show that by using a common toolkit for CAD and grid geometry, programming effort is reduced, users can repair CAD without access to a CAD system, and grids could be generated using many of the powerful functions available within CAD systems without the CAD overhead.

  8. CAD data exchange with Martin Marietta Energy Systems, Inc., Oak Ridge, TN

    SciTech Connect

    Smith, K.L.

    1994-10-01

    This document has been developed to provide guidance in the interchange of electronic CAD data with Martin Marietta Energy Systems, Inc., Oak Ridge, Tennessee. It is not meant to be as comprehensive as the existing standards and specifications, but to provide a minimum set of practices that will enhance the success of the CAD data exchange. It is now a Department of Energy (DOE) Oak Ridge Field Office requirement that Architect-Engineering (A-E) firms prepare all new drawings using a Computer Aided Design (CAD) system that is compatible with the Facility Manager`s (FM) CAD system. For Oak Ridge facilities, the CAD system used for facility design by the FM, Martin Marietta Energy Systems, Inc., is Intregraph. The format for interchange of CAD data for Oak Ridge facilities will be the Intergraph MicroStation/IGDS format.

  9. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  10. CAD framework concept for the design of integrated microsystems

    NASA Astrophysics Data System (ADS)

    Poppe, Andras; Rencz, Marta; Szekely, Vladimir; Karam, Jean Michel; Courtois, Bernard; Hofmann, K.; Glesner, M.

    1995-09-01

    Besides foundry facilities, CAD-tools are also required to move microsystems from research prototypes to an industrial market. CAD tools of microelectronics have been developed for more than 20 years, both in the field of circuit design tools and in the area of TCAD tools. Usually a microelectronics engineer is involved only in one side of the design: either he deals with application design or he participates in the manufacturing design, but not in both. This is one point that is to be followed in case of microsystem design, if higher level of design productivity is expected. Another point is that certain standards should also be established in case of microsystem design too: based on selected technologies a set of standard components should be predesigned and collected in a standard component library. This component library should be available from within microsystem design frameworks which might well be established by a proper configuration and extension of existing IC design frameworks. A very important point is the development of proper simulation models of microsystem components that are based on e.g. the FEM results of the predesign phase and are provided in the form of an analog VHDL script. After detailing the above mentioned considerations we discuss the development work concerning a microsystem design framework. Its goal is to provide a set of powerful tools for microsystem application designers. This future framework will be composed of different industry-standard CAD programs and different design databases which in certain cases are completed with special interfaces and special purpose simulation tools.

  11. An image database management system for conducting CAD research

    NASA Astrophysics Data System (ADS)

    Gruszauskas, Nicholas; Drukker, Karen; Giger, Maryellen L.

    2007-03-01

    The development of image databases for CAD research is not a trivial task. The collection and management of images and their related metadata from multiple sources is a time-consuming but necessary process. By standardizing and centralizing the methods in which these data are maintained, one can generate subsets of a larger database that match the specific criteria needed for a particular research project in a quick and efficient manner. A research-oriented management system of this type is highly desirable in a multi-modality CAD research environment. An online, webbased database system for the storage and management of research-specific medical image metadata was designed for use with four modalities of breast imaging: screen-film mammography, full-field digital mammography, breast ultrasound and breast MRI. The system was designed to consolidate data from multiple clinical sources and provide the user with the ability to anonymize the data. Input concerning the type of data to be stored as well as desired searchable parameters was solicited from researchers in each modality. The backbone of the database was created using MySQL. A robust and easy-to-use interface for entering, removing, modifying and searching information in the database was created using HTML and PHP. This standardized system can be accessed using any modern web-browsing software and is fundamental for our various research projects on computer-aided detection, diagnosis, cancer risk assessment, multimodality lesion assessment, and prognosis. Our CAD database system stores large amounts of research-related metadata and successfully generates subsets of cases that match the user's desired search criteria.

  12. A Proposal of CAD Mechanism for Design Knowledge Management

    NASA Astrophysics Data System (ADS)

    Nomaguchi, Yutaka; Yoshioka, Masaharu; Tomiyama, Tetsuo

    In this paper, we propose a fundamental idea of a new CAD mechanism to facilitate design knowledge management. This mechanism encourages a designer to externalise his/her knowledge during a design process and facilitates sharing and reuse of such externalised design knowledge in later stages. We also describe the implementation of this idea called DDMS (Design Documentation Management System). DDMS works as a front end to KIEF (Knowledge Intensive Engineering Framework), which we have been developing. We also illustrate an example of machining tool design to demonstrate the features of DDMS.

  13. Getting into CAD at the Savannah River Plant

    SciTech Connect

    Scoggins, W.R.

    1984-01-01

    In 1978, the Savannah River Plant (SRP) Project Department was producing approximately 1100 new drawings and 3000 revisions per year, with a force of 30 draftsmen. Design services for the Plant were increasing due to changing programs, obsolescent equipment replacements and added security requirements. This increasing workload greatly increased the engineering drafting backlog. At the same time, many draftsmen were approaching retirement age and were to be replaced with unskilled draftsman trainees. A proposal was presented to management to acquire a Computer Aided Drafting (CAD) system to produce instrument and electrical drawings which comprised 30% of the work load.

  14. Automated knowledge base development from CAD/CAE databases

    NASA Technical Reports Server (NTRS)

    Wright, R. Glenn; Blanchard, Mary

    1988-01-01

    Knowledge base development requires a substantial investment in time, money, and resources in order to capture the knowledge and information necessary for anything other than trivial applications. This paper addresses a means to integrate the design and knowledge base development process through automated knowledge base development from CAD/CAE databases and files. Benefits of this approach include the development of a more efficient means of knowledge engineering, resulting in the timely creation of large knowledge based systems that are inherently free of error.

  15. CAD/CAM and scientific data management at Dassault

    NASA Technical Reports Server (NTRS)

    Bohn, P.

    1984-01-01

    The history of CAD/CAM and scientific data management at Dassault are presented. Emphasis is put on the targets of the now commercially available software CATIA. The links with scientific computations such as aerodynamics and structural analysis are presented. Comments are made on the principles followed within the company. The consequences of the approximative nature of scientific data are examined. Consequence of the new history function is mainly its protection against copy or alteration. Future plans at Dassault for scientific data appear to be in opposite directions compared to some general tendencies.

  16. Interfacing WIPL-D with Mechanical CAD Software

    NASA Technical Reports Server (NTRS)

    Bliznyuk, Nataliya; Janic, Bojan

    2007-01-01

    of almost any popular CAD format, e.g. IGES, Parasolid, DXF, ACIS etc. The solid models are processed (simplified) and meshed in GiD(R), and then converted into WIPL-D Pro input file by simple Fortran or Matlab code. This algorithm allows the user to control the mesh of imported geometry, and to assign electric pperties to metalic and dielectric surfaces. Implementation of the algorithm is demonstrated by examples obtained from the NASA Discovery mission, Phoenix Lander 2008. Results for radiation pattern of Phoenix Lander UHF relay antenna with effect of Martian surface, both simulated in WIPL-D Pro and measured, are shown for comparison.

  17. Thermoluminescent aerosol analysis

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Long, E. R., Jr. (Inventor)

    1977-01-01

    A method for detecting and measuring trace amounts of aerosols when reacted with ozone in a gaseous environment was examined. A sample aerosol was exposed to a fixed ozone concentration for a fixed period of time, and a fluorescer was added to the exposed sample. The sample was heated in a 30 C/minute linear temperature profile to 200 C. The trace peak was measured and recorded as a function of the test aerosol and the recorded thermoluminescence trace peak of the fluorescer is specific to the aerosol being tested.

  18. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  19. HDL subfractions and very early CAD: novel findings from untreated patients in a Chinese cohort.

    PubMed

    Zhang, Yan; Zhu, Cheng-Gang; Xu, Rui-Xia; Li, Sha; Li, Xiao-Lin; Guo, Yuan-Lin; Wu, Na-Qiong; Gao, Ying; Qing, Ping; Cui, Chuan-Jue; Sun, Jing; Li, Jian-Jun

    2016-01-01

    Coronary artery disease (CAD) in very young individuals is a rare disease associated with poor prognosis. However, the role of specific lipoprotein subfractions in very young CAD patients (≤45 years) is not established yet. A total of 734 consecutive CAD subjects were enrolled and were classified as very early (n = 81, ≤45), early (n = 304, male: 45-55; female: 45-65), and late (n = 349, male: >55; female: >65) groups. Meanwhile, a group of non-CAD subjects were also enrolled as controls (n = 56, ≤45). The lipoprotein separation was performed using Lipoprint System. As a result, the very early CAD patients have lower large high-density lipoprotein (HDL) subfraction and higher small low-density lipoprotein (LDL) subfraction (p < 0.05). Although body mass index was inversely related to large HDL subfraction, overweight did not influence its association with very early CAD. In the logistic regression analysis, large HDL was inversely [OR 95% CI: 0.872 (0.825-0.922)] while small LDL was positively [1.038 (1.008-1.069)] related to very early CAD. However, after adjusting potential confounders, the association was only significant for large HDL [0.899 (0.848-0.954)]. This study firstly demonstrated that large HDL subfraction was negatively related to very early CAD suggestive of its important role in very early CAD incidence. PMID:27489174

  20. Creation of Anatomically Accurate Computer-Aided Design (CAD) Solid Models from Medical Images

    NASA Technical Reports Server (NTRS)

    Stewart, John E.; Graham, R. Scott; Samareh, Jamshid A.; Oberlander, Eric J.; Broaddus, William C.

    1999-01-01

    Most surgical instrumentation and implants used in the world today are designed with sophisticated Computer-Aided Design (CAD)/Computer-Aided Manufacturing (CAM) software. This software automates the mechanical development of a product from its conceptual design through manufacturing. CAD software also provides a means of manipulating solid models prior to Finite Element Modeling (FEM). Few surgical products are designed in conjunction with accurate CAD models of human anatomy because of the difficulty with which these models are created. We have developed a novel technique that creates anatomically accurate, patient specific CAD solids from medical images in a matter of minutes.

  1. HDL subfractions and very early CAD: novel findings from untreated patients in a Chinese cohort

    PubMed Central

    Zhang, Yan; Zhu, Cheng-Gang; Xu, Rui-Xia; Li, Sha; Li, Xiao-Lin; Guo, Yuan-Lin; Wu, Na-Qiong; Gao, Ying; Qing, Ping; Cui, Chuan-Jue; Sun, Jing; Li, Jian-Jun

    2016-01-01

    Coronary artery disease (CAD) in very young individuals is a rare disease associated with poor prognosis. However, the role of specific lipoprotein subfractions in very young CAD patients (≤45 years) is not established yet. A total of 734 consecutive CAD subjects were enrolled and were classified as very early (n = 81, ≤45), early (n = 304, male: 45–55; female: 45–65), and late (n = 349, male: >55; female: >65) groups. Meanwhile, a group of non-CAD subjects were also enrolled as controls (n = 56, ≤45). The lipoprotein separation was performed using Lipoprint System. As a result, the very early CAD patients have lower large high-density lipoprotein (HDL) subfraction and higher small low-density lipoprotein (LDL) subfraction (p < 0.05). Although body mass index was inversely related to large HDL subfraction, overweight did not influence its association with very early CAD. In the logistic regression analysis, large HDL was inversely [OR 95% CI: 0.872 (0.825–0.922)] while small LDL was positively [1.038 (1.008–1.069)] related to very early CAD. However, after adjusting potential confounders, the association was only significant for large HDL [0.899 (0.848–0.954)]. This study firstly demonstrated that large HDL subfraction was negatively related to very early CAD suggestive of its important role in very early CAD incidence. PMID:27489174

  2. MS Detectors

    SciTech Connect

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  3. Interoperation of heterogeneous CAD tools in Ptolemy II

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Wu, Bicheng; Liu, Xiaojun; Lee, Edward A.

    1999-03-01

    Typical complex systems that involve microsensors and microactuators exhibit heterogeneity both at the implementation level and the problem level. For example, a system can be modeled using discrete events for digital circuits and SPICE-like analog descriptions for sensors. This heterogeneity exist not only in different implementation domains, but also at different level of abstraction. This naturally leads to a heterogeneous approach to system design that uses domain-specific models of computation (MoC) at various levels of abstractions to define a system, and leverages multiple CAD tools to do simulation, verification and synthesis. As the size and scope of the system increase, the integration becomes too difficult and unmanageable if different tools are coordinated using simple scripts. In addition, for MEMS devices and mixed-signal circuits, it is essential to integrate tools with different MoC to simulate the whole system. Ptolemy II, a heterogeneous system-level design tool, supports the interaction among different MoCs. This paper discusses heterogeneous CAD tool interoperability in the Ptolemy II framework. The key is to understand the semantic interface and classify the tools by their MoC and their level of abstraction. Interfaces are designed for each domain so that the external tools can be easily wrapped. Then the interoperability of the tools becomes the interoperability of the semantics. Ptolemy II can act as the standard interface among different tools to achieve the overall design modeling. A micro-accelerometer with digital feedback is studied as an example.

  4. Refining a brief decision aid in stable CAD: cognitive interviews

    PubMed Central

    2014-01-01

    Background We describe the results of cognitive interviews to refine the “Making Choices©” Decision Aid (DA) for shared decision-making (SDM) about stress testing in patients with stable coronary artery disease (CAD). Methods We conducted a systematic development process to design a DA consistent with International Patient Decision Aid Standards (IPDAS) focused on Alpha testing criteria. Cognitive interviews were conducted with ten stable CAD patients using the “think aloud” interview technique to assess the clarity, usefulness, and design of each page of the DA. Results Participants identified three main messages: 1) patients have multiple options based on stress tests and they should be discussed with a physician, 2) take care of yourself, 3) the stress test is the gold standard for determining the severity of your heart disease. Revisions corrected the inaccurate assumption of item number three. Conclusions Cognitive interviews proved critical for engaging patients in the development process and highlighted the necessity of clear message development and use of design principles that make decision materials easy to read and easy to use. Cognitive interviews appear to contribute critical information from the patient perspective to the overall systematic development process for designing decision aids. PMID:24521210

  5. Development of CAD prototype system for Crohn's disease

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Goto, Hidemi; Mori, Kensaku

    2010-03-01

    The purpose of this paper is to present a CAD prototype system for Crohn's disease. Crohn's disease causes inflammation or ulcers of the gastrointestinal tract. The number of patients of Crohn's disease is increasing in Japan. Symptoms of Crohn's disease include intestinal stenosis, longitudinal ulcers, and fistulae. Optical endoscope cannot pass through intestinal stenosis in some cases. We propose a new CAD system using abdominal fecal tagging CT images for efficient diagnosis of Crohn's disease. The system displays virtual unfolded (VU), virtual endoscopic, curved planar reconstruction, multi planar reconstruction, and outside views of both small and large intestines. To generate the VU views, we employ a small and large intestines extraction method followed by a simple electronic cleansing method. The intestine extraction is based on the region growing process, which uses a characteristic that tagged fluid neighbor air in the intestine. The electronic cleansing enables observation of intestinal wall under tagged fluid. We change the height of the VU views according to the perimeter of the intestine. In addition, we developed a method to enhance the longitudinal ulcer on views of the system. We enhance concave parts on the intestinal wall, which are caused by the longitudinal ulcer, based on local intensity structure analysis. We examined the small and the large intestines of eleven CT images by the proposed system. The VU views enabled efficient observation of the intestinal wall. The height change of the VU views helps finding intestinal stenosis on the VU views. The concave region enhancement made longitudinal ulcers clear on the views.

  6. CAD/CAM in the French automobile industry

    NASA Astrophysics Data System (ADS)

    Bezier, Pierre E.

    1990-08-01

    The French aircraft industry began paying attention to CAD/CAM before 1960, and the car builders soon followed suit, but their problem was somewhat different It can be said that, from the start, the aim was to obtain a complete description of the shape of the heet-metal parts , i.e. car body elements, and to use it to carry information throughout the entire process, fromstyling to inspection of stamped and assembled parts One of the first and foremost conditions was to adopt a mathemtical solution that could be easily understood and operated by designers, draughtsmen and machine-tool operators Consequently, the system should not be used to translate an already existing set of' drawings, but to directly express with figures and numbers the shape previously defined, be it scantly, by small or large scale sketches and 3D mockups Now, numerical data are carried from R.& D. division to those of Production Engineering and tool shops; it is compulsory, too, that the system be compatible with those of subcontractors and suppliers To get full advanta9e of CAD/CAM, it is often necessary to bring important and radical change in the functioning of R..& D. and Production of' the company , and sometimes to other divisions

  7. CAD/CAM software for an industrial laser manufacturing tool

    NASA Astrophysics Data System (ADS)

    Stassen Boehlen, Ines; Fieret, Jim; Holmes, Andrew S.; Lee, Kin W.

    2003-07-01

    A facility for rapid prototyping of MEMS devices is crucial for the development of novel miniaturized components in all sectors of high-tech industry, e.g. telecommunications, information technology, micro-optics and aerospace. To overcome the disadvantages of existing techniques in terms of cost and flexibility, a new approach has been taken to provide a tool for rapid prototyping and small-scale production: Complex CAD/CAM software has been developed that automatically generates the tool paths according to a CAD drawing of the MEMS device. As laser ablation is a much more complicated process than mechanical machining, for which such software has already been in use for many years, the generation of these tool paths relies not only on geometric considerations, but also on a sophisticated simulation module taking into account various material and laser parameters and micro-effects. The following laser machining options have been implemented: cutting, hole drilling, slot cutting, 2D area clearing, pocketing and 2½D surface machining. Once the tool paths are available, a post processor translates this information into CNC commands that control a scanner head. This scanner head then guides the beam of a UV solid-state laser to machine the desired structure by direct laser ablation.

  8. Generation and use of human 3D-CAD models

    NASA Astrophysics Data System (ADS)

    Grotepass, Juergen; Speyer, Hartmut; Kaiser, Ralf

    2002-05-01

    Individualized Products are one of the ten mega trends of the 21st Century with human modeling as the key issue for tomorrow's design and product development. The use of human modeling software for computer based ergonomic simulations within the production process increases quality while reducing costs by 30- 50 percent and shortening production time. This presentation focuses on the use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production. Today, the entire production chain can be designed, individualized models generated and analyzed in 3D computer environments. Anthropometric design for ergonomics is matched to human needs, thus preserving health. Ergonomic simulation includes topics as human vision, reachability, kinematics, force and comfort analysis and international design capabilities. In German more than 17 billions of Mark are moved to other industries, because clothes do not fit. Individual clothing tailored to the customer's preference means surplus value, pleasure and perfect fit. The body scanning technology is the key to generation and use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production.

  9. HOUSTON AEROSOL CHARACTERIZATION STUDY

    EPA Science Inventory

    An intensive field study of ambient aerosols was conducted in Houston between September 14 and October 14, 1978. Measurements at 12 sites were made using (1) two relocatable monitoring systems instrumented for aerosol and gaseous pollutants, (2) a network of high volume samplers ...

  10. Global Aerosol Observations

    Atmospheric Science Data Center

    2013-04-19

    ... atmosphere, directly influencing global climate and human health. Ground-based networks that accurately measure column aerosol amount and ... being used to improve Air Quality Models and for regional health studies. To assess the human-health impact of chronic aerosol exposure, ...

  11. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  12. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  13. Discriminating olive and non-olive oils using HPLC-CAD and chemometrics.

    PubMed

    de la Mata-Espinosa, P; Bosque-Sendra, J M; Bro, R; Cuadros-Rodríguez, L

    2011-02-01

    This work presents a method for an efficient differentiation of olive oil and several types of vegetable oils using chemometric tools. Triacylglycerides (TAGs) profiles of 126 samples of different categories and varieties of olive oils, and types of edible oils, including corn, sunflower, peanut, soybean, rapeseed, canola, seed, sesame, grape seed, and some mixed oils, have been analyzed. High-performance liquid chromatography coupled to a charged aerosol detector was used to characterize TAGs. The complete chromatograms were evaluated by PCA, PLS-DA, and MCR in combination with suitable preprocessing. The chromatographic data show two clusters; one for olive oil samples and another for the non-olive oils. Commercial oil blends are located between the groups, depending on the concentration of olive oil in the sample. As a result, a good classification among olive oils and non-olive oils and a chemical justification of such classification was achieved. PMID:21060998

  14. Pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Haller, Eugene E.; Beeman, Jeffrey; Hansen, William L.; Hubbard, G. Scott; Mcmurray, Robert E., Jr.

    1990-01-01

    The multi-agency, long-term Global Change programs, and specifically NASA's Earth Observing system, will require some new and advanced photon detector technology which must be specifically tailored for long-term stability, broad spectral range, cooling constraints, and other parameters. Whereas MCT and GaAs alloy based photovoltaic detectors and detector arrays reach most impressive results to wavelengths as long as 12 microns when cooled to below 70 K, other materials, such as ferroelectrics and pyroelectrics, appear to offer special opportunities beyond 12 microns and above 70 K. These materials have found very broad use in a wide variety of room temperature applications. Little is known about these classes of materials at sub-room temperatures and no photon detector results have been reported. From the limited information available, researchers conclude that the room temperature values of D asterisk greater than or equal to 10(exp 9) cm Hz(exp 1/2)/W may be improved by one to two orders of magnitude upon cooling to temperatures around 70 K. Improvements of up to one order of magnitude appear feasible for temperatures achievable by passive cooling. The flat detector response over a wavelength range reaching from the visible to beyond 50 microns, which is an intrinsic advantage of bolometric devices, makes for easy calibration. The fact that these materials have been developed for reduced temperature applications makes ferro- and pyroelectric materials most attractive candidates for serious exploration.

  15. The cell adhesion molecule DdCAD-1 regulates morphogenesis through differential spatiotemporal expression in Dictyostelium discoideum.

    PubMed

    Sriskanthadevan, Shrivani; Zhu, Yingyue; Manoharan, Kumararaaj; Yang, Chunxia; Siu, Chi-Hung

    2011-06-01

    During development of Dictyostelium, multiple cell types are formed and undergo a coordinated series of morphogenetic movements guided by their adhesive properties and other cellular factors. DdCAD-1 is a unique homophilic cell adhesion molecule encoded by the cadA gene. It is synthesized in the cytoplasm and transported to the plasma membrane by contractile vacuoles. In chimeras developed on soil plates, DdCAD-1-expressing cells showed greater propensity to develop into spores than did cadA-null cells. When development was performed on non-nutrient agar, wild-type cells sorted from the cadA-null cells and moved to the anterior zone. They differentiated mostly into stalk cells and eventually died, whereas the cadA-null cells survived as spores. To assess the role of DdCAD-1 in this novel behavior of wild-type and mutant cells, cadA-null cells were rescued by the ectopic expression of DdCAD-1-GFP. Morphological studies have revealed major spatiotemporal changes in the subcellular distribution of DdCAD-1 during development. Whereas DdCAD-1 became internalized in most cells in the post-aggregation stages, it was prominent in the contact regions of anterior cells. Cell sorting was also restored in cadA(-) slugs by exogenous recombinant DdCAD-1. Remarkably, DdCAD-1 remained on the surface of anterior cells, whereas it was internalized in the posterior cells. Additionally, DdCAD-1-expressing cells migrated slower than cadA(-) cells and sorted to the anterior region of chimeric slugs. These results show that DdCAD-1 influences the sorting behavior of cells in slugs by its differential distribution on the prestalk and prespore cells. PMID:21561987

  16. Comparison of ultraviolet detection and charged aerosol detection methods for liquid-chromatographic determination of protoescigenin.

    PubMed

    Filip, Katarzyna; Grynkiewicz, Grzegorz; Gruza, Mariusz; Jatczak, Kamil; Zagrodzki, Bogdan

    2014-01-01

    Escin, a complex mixture of pentacyclic triterpene saponins obtained from horse chestnut seeds extract (HCSE; Aesculus hippocastanum L.), constitutes a traditional herbal active substance of preparations (drugs) used for a treatment of chronic venous insufficiency and capillary blood vessel leakage. A new approach to exploitation of pharmacological potential of this saponin complex has been recently proposed, in which the β-escin mixture is perceived as a source of a hitherto unavailable raw material, pentacyclic triterpene aglycone-protoescigenin. Although many liquid chromatography methods are described in the literature for saponins determination, analysis of protoescigenin is barely mentioned. In this work, a new ultra-high performance liquid chromatography (UHPLC) method developed for protoescigenin quantification has been described. CAD (charged aerosol detection), as a relatively new detection method based on aerosol charging, has been applied in this method as an alternative to ultraviolet (UV) detection. The influence of individual parameters on CAD response and sensitivity was studied. The detection was performed using CAD and UV (200 nm) simultaneously and the results were compared with reference to linearity, accuracy, precision and limit of detection. PMID:25745765

  17. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  18. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  19. MAMA Detector

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart

    1998-01-01

    Work carried out under this grant led to fundamental discoveries and over one hundred publications in the scientific literature. Fundamental developments in instrumentation were made including all the instrumentation on the EUVE satellite, the invention of a whole new type of grazing instrument spectrometer and the development of fundamentally new photon counting detectors including the Wedge and Strip used on EUVE and many other missions and the Time Delay detector used on OREFUS and FUSE. The Wedge and Strip and Time Delay detectors were developed under this grant for less than two million dollars and have been used in numerous missions most recently for the FUSE mission. In addition, a fundamentally new type of diffuse spectrometer has been developed under this grant which has been used in instrumentation on the MMSAT spacecraft and the Lewis spacecraft. Plans are underway to use this instrumentation on several other missions as well.

  20. The Use of a Parametric Feature Based CAD System to Teach Introductory Engineering Graphics.

    ERIC Educational Resources Information Center

    Howell, Steven K.

    1995-01-01

    Describes the use of a parametric-feature-based computer-aided design (CAD) System, AutoCAD Designer, in teaching concepts of three dimensional geometrical modeling and design. Allows engineering graphics to go beyond the role of documentation and communication and allows an engineer to actually build a virtual prototype of a design idea and…

  1. Development of CAD/CAM software used in laser direct manufacture

    NASA Astrophysics Data System (ADS)

    Wang, Yun-shan; Yang, Xi-chen; Wang, Jian-jun; Jin, Xiao-shu

    2005-01-01

    This paper presents a special CAD/CAM software for rapid manufacturing thin wall metal parts by laser cladding, which is based on the developing of AutoCAD. It mainly consists of solid modeling, layering and section data processing, NC code generation module, processing path simulating and data transferring module.

  2. Mobile Technology and CAD Technology Integration in Teaching Architectural Design Process for Producing Creative Product

    ERIC Educational Resources Information Center

    Bin Hassan, Isham Shah; Ismail, Mohd Arif; Mustafa, Ramlee

    2011-01-01

    The purpose of this research is to examine the effect of integrating the mobile and CAD technology on teaching architectural design process for Malaysian polytechnic architectural students in producing a creative product. The website is set up based on Caroll's minimal theory, while mobile and CAD technology integration is based on Brown and…

  3. Computer Use and CAD in Assisting Schools in the Creation of Facilities.

    ERIC Educational Resources Information Center

    Beach, Robert H.; Essex, Nathan

    1987-01-01

    Computer-aided design (CAD) programs are powerful drafting tools, but are also able to assist with many other facility planning functions. Describes the hardware, software, and the learning process that led to understanding the CAD software at the University of Alabama. (MLF)

  4. A Multidisciplinary Research Team Approach to Computer-Aided Drafting (CAD) System Selection. Final Report.

    ERIC Educational Resources Information Center

    Franken, Ken; And Others

    A multidisciplinary research team was assembled to review existing computer-aided drafting (CAD) systems for the purpose of enabling staff in the Design Drafting Department at Linn Technical College (Missouri) to select the best system out of the many CAD systems in existence. During the initial stage of the evaluation project, researchers…

  5. 21 CFR 872.3661 - Optical Impression Systems for CAD/CAM.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Optical Impression Systems for CAD/CAM. 872.3661 Section 872.3661 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Design and Manufacturing (CAD/CAM) of Dental Restorations; Guidance for Industry and FDA.” For...

  6. Teaching an Introductory CAD Course with the System-Engineering Approach.

    ERIC Educational Resources Information Center

    Pao, Y. C.

    1985-01-01

    Advocates that introductory computer aided design (CAD) courses be incorporated into engineering curricula in close conjunction with the system dynamics course. Block diagram manipulation/Bode analysis and finite elementary analysis are used as examples to illustrate the interdisciplinary nature of CAD teaching. (JN)

  7. 3D-CAD Effects on Creative Design Performance of Different Spatial Abilities Students

    ERIC Educational Resources Information Center

    Chang, Y.

    2014-01-01

    Students' creativity is an important focus globally and is interrelated with students' spatial abilities. Additionally, three-dimensional computer-assisted drawing (3D-CAD) overcomes barriers to spatial expression during the creative design process. Does 3D-CAD affect students' creative abilities? The purpose of this study was to…

  8. Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns

    PubMed Central

    Kwon, Taek-Ka; Pak, Hyun-Soon; Han, Jung-Suk; Lee, Jai-Bong; Kim, Sung-Hun

    2013-01-01

    PURPOSE All-ceramic crowns are subject to fracture during function. To minimize this common clinical complication, zirconium oxide has been used as the framework for all-ceramic crowns. The aim of this study was to compare the fracture strengths of two computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia crown systems: Lava and Digident. MATERIALS AND METHODS Twenty Lava CAD/CAM zirconia crowns and twenty Digident CAD/CAM zirconia crowns were fabricated. A metal die was also duplicated from the original prepared tooth for fracture testing. A universal testing machine was used to determine the fracture strength of the crowns. RESULTS The mean fracture strengths were as follows: 54.9 ± 15.6 N for the Lava CAD/CAM zirconia crowns and 87.0 ± 16.0 N for the Digident CAD/CAM zirconia crowns. The difference between the mean fracture strengths of the Lava and Digident crowns was statistically significant (P<.001). Lava CAD/CAM zirconia crowns showed a complete fracture of both the veneering porcelain and the core whereas the Digident CAD/CAM zirconia crowns showed fracture only of the veneering porcelain. CONCLUSION The fracture strengths of CAD/CAM zirconia crowns differ depending on the compatibility of the core material and the veneering porcelain. PMID:23755332

  9. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  10. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  11. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  12. Contemporary dental CAD/CAM: modern chairside/lab applications and the future of computerized dentistry.

    PubMed

    Patel, Neal

    2014-01-01

    CAD/CAM in dentistry has been particularly useful in enabling the fabrication of custom, patient-specific restorations and prosthetics without the need for traditional analog dental laboratory methods. While the optimal use of CAD/CAM technology must be determined on a case-by-case basis, it is important for clinicians to recognize the opportunity to utilize computerized technology in patient therapy to provide more highly efficient, accurate, and potentially ideal outcomes. This article will discuss and evaluate the state-ofthe- art of CAD/CAM dentistry for both chairside and laboratory-based solutions. Current options for CAD/CAM technology in the treatment of patients for comprehensive dentistry along with the most common uses of chairside and laboratory-based applications will be explored. The discussion will also identify recent and future trends in CAD/CAM applications in dentistry. PMID:25454527

  13. Effect of space exposure on pyroelectric infrared detectors (A0135)

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Clark, I. O.; Crouch, R. K.

    1984-01-01

    The effects of long-duration space exposure and launch environment on the performance of pyroelectric detectors which is important for the prediction of performance degradation, setting exposure limits, or determining shielding requirements was investigated. Air pollution monitoring and thermal mapping of the Earth, which includes the remote sensing of aerosols and limb scanning infrared radiometer projects, requires photodetection in the 6- to 20 micro m region of the spectrum. Pyroelectric detectors can detect radiation in the 1- to 100 micro m region while operating at room temperature. This makes tahe pyroelectric detector a prime candidate to fill the thermal infrared detector requirements.

  14. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  15. CAD system for automatic analysis of CT perfusion maps

    NASA Astrophysics Data System (ADS)

    Hachaj, T.; Ogiela, M. R.

    2011-03-01

    In this article, authors present novel algorithms developed for the computer-assisted diagnosis (CAD) system for analysis of dynamic brain perfusion, computer tomography (CT) maps, cerebral blood flow (CBF), and cerebral blood volume (CBV). Those methods perform both quantitative analysis [detection and measurement and description with brain anatomy atlas (AA) of potential asymmetries/lesions] and qualitative analysis (semantic interpretation of visualized symptoms). The semantic interpretation (decision about type of lesion: ischemic/hemorrhagic, is the brain tissue at risk of infraction or not) of visualized symptoms is done by, so-called, cognitive inference processes allowing for reasoning on character of pathological regions based on specialist image knowledge. The whole system is implemented in.NET platform (C# programming language) and can be used on any standard PC computer with.NET framework installed.

  16. CAD and CAE Analysis for Siphon Jet Toilet

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Xiu, Guoji; Tan, Haishu

    The high precision 3D laser scanner with the dual CCD technology was used to measure the original design sample of a siphon jet toilet. The digital toilet model was constructed from the cloud data measured with the curve and surface fitting technology and the CAD/CAE systems. The Realizable k - ɛ double equation model of the turbulence viscosity coefficient method and the VOF multiphase flow model were used to simulate the flushing flow in the toilet digital model. Through simulating and analyzing the distribution of the flushing flow's total pressure, the flow speed at the toilet-basin surface and the siphoning bent tube, the toilet performance can be evaluated efficiently and conveniently. The method of "establishing digital model, flushing flow simulating, performances evaluating, function shape modifying" would provide a high efficiency approach to develop new water-saving toilets.

  17. CAD-based radiation protection and shielding in space

    SciTech Connect

    Appleby, M.H.

    1991-01-01

    In the not-too-distant future, astronauts will begin living and working on space station Freedom (SSF), eventually establishing a permanent presence in space. Beyond Freedom, the National Aeronautics and Space Administration (NASA) has set its sights on returning to and eventually establishing outposts on the moon and Mars. Without appropriate methods of identifying protection deficiencies, spacecraft designers often overestimate or defer shielding solutions in both cases burdening the program. To avoid possible penalties such as increased mass, complexity, and cost, radiation analysis should be conducted as part of the preliminary design process. An innovative radiation assessment system combining computer-aided design (CAD) capabilities with established NASA transport codes has been developed permitting fast, accurate analysis of spacecraft. The use of this automated analytical tool the Boeing Radiation Exposure Model (Brem) is discussed in this paper, relative to spacecraft design and the optimization of radiation shielding. Results obtained from recently completed radiation analysis of space station Freedom are also discussed.

  18. Custom hip prostheses by integrating CAD and casting technology

    NASA Astrophysics Data System (ADS)

    Silva, Pedro F.; Leal, Nuno; Neto, Rui J.; Lino, F. Jorge; Reis, Ana

    2012-09-01

    Total Hip Arthroplasty (THA) is a surgical intervention that is being achieving high rates of success, leaving room to research on long run durability, patient comfort and costs reduction. Even so, up to the present, little research has been done to improve the method of manufacturing customized prosthesis. The common customized prostheses are made by full machining. This document presents a different approach methodology which combines the study of medical images, through CAD (Computer Aided Design) software, SLadditive manufacturing, ceramic shell manufacture, precision foundry with Titanium alloys and Computer Aided Manufacturing (CAM). The goal is to achieve the best comfort for the patient, stress distribution and the maximum lifetime of the prosthesis produced by this integrated methodology. The way to achieve this desiderate is to make custom hip prosthesis which are adapted to each patient needs and natural physiognomy. Not only the process is reliable, but also represents a cost reduction comparing to the conventional full machined custom hip prosthesis.

  19. Using CAD/CAM to improve productivity - The IPAD approach

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1981-01-01

    Progress in designing and implementing CAD/CAM systems as a result of the NASA Integrated Programs for Aerospace-Vehicle Design is discussed. Essential software packages have been identified as executive, data management, general user, and geometry and graphics software. Data communication, as a means to integrate data over a network of computers of different vendors, provides data management with the capability of meeting design and manufacturing requirements of the vendors. Geometry software is dependent on developmental success with solid geometry software, which is necessary for continual measurements of, for example, a block of metal while it is being machined. Applications in the aerospace industry, such as for design, analysis, tooling, testing, quality control, etc., are outlined.

  20. Using CAD/CAM to improve productivity - The IPAD approach

    NASA Astrophysics Data System (ADS)

    Fulton, R. E.

    1981-11-01

    Progress in designing and implementing CAD/CAM systems as a result of the NASA Integrated Programs for Aerospace-Vehicle Design is discussed. Essential software packages have been identified as executive, data management, general user, and geometry and graphics software. Data communication, as a means to integrate data over a network of computers of different vendors, provides data management with the capability of meeting design and manufacturing requirements of the vendors. Geometry software is dependent on developmental success with solid geometry software, which is necessary for continual measurements of, for example, a block of metal while it is being machined. Applications in the aerospace industry, such as for design, analysis, tooling, testing, quality control, etc., are outlined.

  1. CAD/CAM for MEMS and BioMEMS

    NASA Astrophysics Data System (ADS)

    Hargrave, Brian; Irwin, Bryan; Parkhill, Robert; Church, Kenneth H.; Nguyen, Michael N.; Kachurin, Anatoly; Warren, William L.

    2004-07-01

    Novel devices can be relatively simple in theory and modeling, but difficult and many times unfeasible to fabricate in a traditional cleanroom environment. We have developed a CAD/CAM tool capable of integrating multiple materials in the electronic, photonic, and biological regimes for applications in both MEMS and BioMEMS devices. Some materials are known and more fully characterized, such as thick film resistors or conductors, while other materials such as biodegradable scaffolding are new but showing promise to realize heterogenous tissue engineered constructs and drug delivery devices. The tool does not discriminate, but rather places these materials in specified locations with precision volumetric control, gently, conformally, and in 3-D. This paper will describe the enabling aspect of true 3-D maskless fabrication as well as describe multiple device structures and demonstrations.

  2. Vertex detectors

    SciTech Connect

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.

  3. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (<0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. Samples were collected on quartz fiber filters with high volume impactor samplers. Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples. These continuous spectra have also been used to obtain the

  4. Astronaut EVA exposure estimates from CAD model spacesuit geometry.

    PubMed

    De Angelis, Giovanni; Anderson, Brooke M; Atwell, William; Nealy, John E; Qualls, Garry D; Wilson, John W

    2004-03-01

    Ongoing assembly and maintenance activities at the International Space Station (ISS) require much more extravehicular activity (EVA) than did the earlier U.S. Space Shuttle missions. It is thus desirable to determine and analyze, and possibly foresee, as accurately as possible what radiation exposures crew members involved in EVAs will experience in order to minimize risks and to establish exposure limits that must not to be exceeded. A detailed CAD model of the U.S. Space Shuttle EVA Spacesuit, developed at NASA Langley Research Center (LaRC), is used to represent the directional shielding of an astronaut; it has detailed helmet and backpack structures, hard upper torso, and multilayer space suit fabric material. The NASA Computerized Anatomical Male and Female (CAM and CAF) models are used in conjunction with the space suit CAD model for dose evaluation within the human body. The particle environments are taken from the orbit-averaged NASA AP8 and AE8 models at solar cycle maxima and minima. The transport of energetic particles through space suit materials and body tissue is calculated by using the NASA LaRC HZETRN code for hadrons and a recently developed deterministic transport code, ELTRN, for electrons. The doses within the CAM and CAF models are determined from energy deposition at given target points along 968 directional rays convergent on the points and are evaluated for several points on the skin and within the body. Dosimetric quantities include contributions from primary protons, light ions, and electrons, as well as from secondary brehmsstrahlung and target fragments. Directional dose patterns are displayed as rays and on spherical surfaces by the use of a color relative intensity representation. PMID:15133283

  5. Marginal Integrity of CAD/CAM Fixed Partial Dentures

    PubMed Central

    Rosentritt, Martin; Behr, Michael; Kolbeck, Carola; Handel, Gerhard

    2007-01-01

    Objectives Computer-aided design (CAD) and manufacturing (CAM) allows the milling of high strength zirconia fixed partial dentures (FPD), however bonding to an inert ZrO2 ceramic surface may effect the marginal integrity of the FPDs. The aim of this investigation was to evaluate the marginal adaptation of zirconia FPDs at the interfaces between zirconia, cement, and tooth. Methods 32 3-unit FPDs were fabricated of the CAD/CAM Y-TZP zirconia (Lava, 3M Espe, Germany) according to the manufacturers’ instructions. Resin cements with corresponding primer and bonding systems were used to lute the FPDs: Compolute/EBS multi (3M Espe, Germany), Panavia F/ED (Kuraray, Japan), Variolink 2/Syntac classic (Ivoclar-Vivadent, FL) and RelyX Unicem/without treatment (3M Espe, Germany). Aualloy FPDs (BioPontostar, Bego, Germany) were cemented with RelyX Unicem and Harvard (Harvard, Germany) as the control. Marginal adaptation was evaluated with scanning electron microscopy using replica specimen before and after artificial aging. After aging, microleakage tests were performed with fuchsine solution. The interfaces between cement-tooth and cement-FPD were examined. Results At the interfaces (cement-tooth and cement-FPD), the systems showed a 95% or higher perfect margin before and after aging. Only Variolink2/Syntac had a marginal adaptation, lower than a 70% perfect margin. Generally, the fuchsine penetration was below 20%, only BioPontstar/Harvard andLava/Variolink2 showed penetration results between 80% and 100%. Conclusion The success of the adhesive cementation of zirconia FPDs depends on the cement system. Under the conditions of this study, zirconia FPDs showed good to sufficient marginal integrity in combination with Panavia/ED, Compolute/EBS and RelyX Unicem. PMID:19212494

  6. Comparison of Lidar and In-Situ Measurements of Stratospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Northam, G. B.; Rosen, J. M.; Pepin, T. J.; Hofmann, D. H.; McCormick, M. P.

    1973-01-01

    This paper will present the results of a comparative study conducted in Laramie, Wyoming, during the summer and fall of 1972, as part of the Department of Transportation's Climatic Impact Assessment Program (ClAP). The study included independent, and nearly simultaneous, measurements of stratospheric aerosols using a LIDAR system and a balloon-borne in-situ particle counter. The LIDAR provides a remote measurement of volume backscatter (aerosols and molecules) in a narrow wavelength region centered at the ruby wavelength (6943R); whereas the balloon-borne in-situ counter measures aerosol concentration by counting aerosols greater than approx. 0.30 microns in diameter as they are pumped through a chamber and scatter white light forward into photo-detectors. The comparison of measurements that will be discussed using the two techniques involves formulating the LIDAR data so that it is compatible with the counter data. The formulation includes separation of the scattering due to aerosols from the total and displaying this in terms of aerosol scattering function. Aerosol scattering function is proportional to aerosol concentration if the aerosol parameters, such as size distribution and composition, are constant with altitude. In separating the aerosol scattering from the total, the need for real atmospheric number density over the Standard Atmosphere is also discussed.

  7. Field Studies of Broadband Aerosol Optical Extinction in the Ultraviolet Spectral Region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A.; Brock, C. A.; Brown, S. S.

    2013-12-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. In the case of brown carbon, its wavelength-dependent absorption in the ultraviolet spectral region has been suggested as an important component of aerosol radiative forcing. We describe a new field instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We deployed this instrument during the Fire Lab at Missoula Experiment during Fall 2012 to measure biomass burning aerosol, and again during the Southern Oxidant and Aerosol Study in summer 2013 to measure organic aerosol in the Southeastern U.S. In both field experiments, we determined aerosol optical extinction as a function of wavelength and can interpret this together with size distribution and composition measurements to characterize the aerosol optical properties and radiative forcing.

  8. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  9. Palaeoclimate: Aerosols and rainfall

    NASA Astrophysics Data System (ADS)

    Partin, Jud

    2015-03-01

    Instrumental records have hinted that aerosol emissions may be shifting rainfall over Central America southwards. A 450-year-long precipitation reconstruction indicates that this shift began shortly after the Industrial Revolution.

  10. Aerosol lenses propagation model.

    PubMed

    Tremblay, Grégoire; Roy, Gilles

    2011-09-01

    We propose a model based on the properties of cascading lenses modulation transfer function (MTF) to reproduce the irradiance of a screen illuminated through a dense aerosol cloud. In this model, the aerosol cloud is broken into multiple thin layers considered as individual lenses. The screen irradiance generated by these individual layers is equivalent to the point-spread function (PSF) of each aerosol lens. Taking the Fourier transform of the PSF as a MTF, we cascade the lenses MTF to find the cloud MTF. The screen irradiance is found with the Fourier transform of this MTF. We show the derivation of the model and we compare the results with the Undique Monte Carlo simulator for four aerosols at three optical depths. The model is in agreement with the Monte Carlo for all the cases tested. PMID:21886230

  11. Development and validation of a stability-indicating RP-HPL C-CAD method for gabapentin and its related impurities in presence of degradation products.

    PubMed

    Ragham, Pramod Kumar; Chandrasekhar, Kothapalli B

    2016-06-01

    The objective of the current study was to develop and validate a sensitive and specific LC-MS compatible stability indicating reversed phase liquid chromatographic method for the quantitative determination of Gabapentin and its related substances using Corona charged aerosol detection (CAD). The chromatographic conditions were optimized using a Kinetix Biphenyl column with gradient elution using a mobile phase composed of pH 4.2 ammonium acetate, acetonitrile, and methanol. Forced degradation was observed in basic and peroxide conditions and the major degradants were identified by LC-MS/MS analysis. The developed RP-HPLC CAD method was validated according to ICH guidelines. The LOD and LOQ values for Gabapentin and all its related impurities ranged from 0.075μg/mL to 0.18μg/mL and 0.25μg/mL to 0.60μg/mL, respectively. The recovery for all impurities ranged from 91.0 to 105.6%w/w. Solutions were stable for 7days at room temperature. The validated method produced acceptable precision, linearity, accuracy, robustness and ruggedness. PMID:27018505

  12. Emergency Protection from Aerosols

    SciTech Connect

    Cristy, G.A.

    2001-11-13

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  13. MISR Aerosol Typing

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2014-01-01

    AeroCom is an open international initiative of scientists interested in the advancement of the understanding of global aerosol properties and aerosol impacts on climate. A central goal is to more strongly tie and constrain modeling efforts to observational data. A major element for exchanges between data and modeling groups are annual meetings. The meeting was held September 20 through October 2, 1014 and the organizers would like to post the presentations.

  14. Monodisperse aerosol generator

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  15. Probabilistic framework for reliability analysis of information-theoretic CAD systems in mammography.

    PubMed

    Habas, Piotr A; Zurada, Jacek M; Elmaghraby, Adel S; Tourassi, Georgia D

    2006-01-01

    The purpose of this study is to develop and evaluate a probabilistic framework for reliability analysis of information-theoretic computer-assisted detection (IT-CAD) systems in mammography. The study builds upon our previous work on a feature-based reliability analysis technique tailored to traditional CAD systems developed with a supervised learning scheme. The present study proposes a probabilistic framework to facilitate application of the reliability analysis technique for knowledge-based CAD systems that are not feature-based. The study was based on an information-theoretic CAD system developed for detection of masses in screening mammograms from the Digital Database for Screening Mammography (DDSM). The experimental results reveal that the query-specific reliability estimate provided by the proposed probabilistic framework is an accurate predictor of CAD performance for the query case. It can also be successfully applied as a base for stratification of CAD predictions into clinically meaningful reliability groups (i.e., HIGH, MEDIUM, and LOW). Based on a leave-one-out sampling scheme and ROC analysis, the study demonstrated that the diagnostic performance of the IT-CAD is significantly higher for cases with HIGH reliability (A(z) = 0.92 +/- 0.03) than for those stratified as MEDIUM (A(z) = 0.84 +/- 0.02) or LOW reliability predictions (A(z) = 0.78 +/- 0.02). PMID:17946741

  16. Cadherin Cad99C is regulated by Hedgehog signaling in Drosophila.

    PubMed

    Schlichting, Karin; Demontis, Fabio; Dahmann, Christian

    2005-03-01

    The subdivision of the Drosophila wing imaginal disc into anterior and posterior compartments requires a transcriptional response to Hedgehog signaling. However, the genes regulated by Hedgehog signal transduction that mediate the segregation of anterior and posterior cells have not been identified. Here, we molecularly characterize the previously predicted gene cad99C and show that it is regulated by Hedgehog signaling. Cad99C encodes a transmembrane protein with a molecular weight of approximately 184 kDa that contains 11 cadherin repeats in its extracellular domain and a conserved type I PDZ-binding site at its C-terminus. The levels of cad99C RNA and protein are low throughout the wing imaginal disc. However, in the pouch region, these levels are elevated in a strip of anterior cells along the A/P boundary where the Hedgehog signal is transduced. Ectopic expression of Hedgehog, or the Hedgehog-regulated transcription factor Cubitus interruptus, induces high-level expression of Cad99C. Conversely, blocking Hedgehog signal transduction by either inactivating Smoothened or Cubitus interruptus reduces high-level Cad99C expression. Finally, by analyzing mutant clones of cells, we show that Cad99C is not essential for cell segregation at the A/P boundary. We conclude that cad99C is a novel Hedgehog-regulated gene encoding a member of the cadherin superfamily in Drosophila. PMID:15708564

  17. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  18. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  19. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  20. RACORO aerosol data processing

    SciTech Connect

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  1. Dental students' preferences and performance in crown design: conventional wax-added versus CAD.

    PubMed

    Douglas, R Duane; Hopp, Christa D; Augustin, Marcus A

    2014-12-01

    The purpose of this study was to evaluate dental students' perceptions of traditional waxing vs. computer-aided crown design and to determine the effectiveness of either technique through comparative grading of the final products. On one of twoidentical tooth preparations, second-year students at one dental school fabricated a wax pattern for a full contour crown; on the second tooth preparation, the same students designed and fabricated an all-ceramic crown using computer-aided design (CAD) and computer-aided manufacturing (CAM) technology. Projects were graded for occlusion and anatomic form by three faculty members. On completion of the projects, 100 percent of the students (n=50) completed an eight-question, five-point Likert scalesurvey, designed to assess their perceptions of and learning associated with the two design techniques. The average grades for the crown design projects were 78.3 (CAD) and 79.1 (wax design). The mean numbers of occlusal contacts were 3.8 (CAD) and 2.9(wax design), which was significantly higher for CAD (p=0.02). The survey results indicated that students enjoyed designing afull contour crown using CAD as compared to using conventional wax techniques and spent less time designing the crown using CAD. From a learning perspective, students felt that they learned more about position and the size/strength of occlusal contacts using CAD. However, students recognized that CAD technology has limits in terms of representing anatomic contours and excursive occlusion compared to conventional wax techniques. The results suggest that crown design using CAD could be considered as an adjunct to conventional wax-added techniques in preclinical fixed prosthodontic curricula. PMID:25480282

  2. Improving CAD performance by fusion of the bilateral mammographic tissue asymmetry information

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Li, Lihua; Liu, Wei; Xu, Weidong; Lederman, Dror; Zheng, Bin

    2012-03-01

    Bilateral mammographic tissue density asymmetry could be an important factor in assessing risk of developing breast cancer and improving the detection of the suspicious lesions. This study aims to assess whether fusion of the bilateral mammographic density asymmetrical information into a computer-aided detection (CAD) scheme could improve CAD performance in detecting mass-like breast cancers. A testing dataset involving 1352 full-field digital mammograms (FFDM) acquired from 338 cases was used. In this dataset, half (169) cases are positive containing malignant masses and half are negative. Two computerized schemes were first independently applied to process FFDM images of each case. The first single-image based CAD scheme detected suspicious mass regions on each image. The second scheme detected and computed the bilateral mammographic tissue density asymmetry for each case. A fusion method was then applied to combine the output scores of the two schemes. The CAD performance levels using the original CAD-generated detection scores and the new fusion scores were evaluated and compared using a free-response receiver operating characteristic (FROC) type data analysis method. By fusion with the bilateral mammographic density asymmetrical scores, the case-based CAD sensitivity was increased from 79.2% to 84.6% at a false-positive rate of 0.3 per image. CAD also cued more "difficult" masses with lower CAD-generated detection scores while discarded some "easy" cases. The study indicated that fusion between the scores generated by a single-image based CAD scheme and the computed bilateral mammographic density asymmetry scores enabled to increase mass detection sensitivity in particular to detect more subtle masses.

  3. Aerosol mass spectrometry systems and methods

    SciTech Connect

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  4. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  5. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns

    PubMed Central

    ABDULLAH, Adil Othman; TSITROU, Effrosyni A; POLLINGTON, Sarah

    2016-01-01

    ABSTRACT Objective This study compared the marginal gap, internal fit, fracture strength, and mode of fracture of CAD/CAM provisional crowns with that of direct provisional crowns. Material and Methods An upper right first premolar phantom tooth was prepared for full ceramic crown following tooth preparation guidelines. The materials tested were: VITA CAD-Temp®, Polyetheretherketone “PEEK”, Telio CAD-Temp, and Protemp™4 (control group). The crowns were divided into four groups (n=10), Group1: VITA CAD-Temp®, Group 2: PEEK, Group 3: Telio CAD-Temp, and Group 4: Protemp™4. Each crown was investigated for marginal and internal fit, fracture strength, and mode of fracture. Statistical analysis was performed using GraphPad Prism software version 6.0. Results The average marginal gap was: VITA CAD-Temp® 60.61 (±9.99) µm, PEEK 46.75 (±8.26) µm, Telio CAD-Temp 56.10 (±5.65) µm, and Protemp™4 193.07(±35.96) µm (P<0.001). The average internal fit was: VITA CAD-Temp® 124.94 (±22.96) µm, PEEK 113.14 (±23.55) µm, Telio CAD-Temp 110.95 (±11.64) µm, and Protemp™4 143.48(±26.74) µm. The average fracture strength was: VITA CAD-Temp® 361.01 (±21.61) N, PEEK 802.23 (±111.29) N, Telio CAD-Temp 719.24 (±95.17) N, and Protemp™4 416.40 (±69.14) N. One-way ANOVA test showed a statistically significant difference for marginal gap, internal gap, and fracture strength between all groups (p<0.001). However, the mode of fracture showed no differences between the groups (p>0.05). Conclusions CAD/CAM fabricated provisional crowns demonstrated superior fit and better strength than direct provisional crowns. PMID:27383707

  6. CYBERSECURITY AND USER ACCOUNTABILITY IN THE C-AD CONTROL SYSTEM

    SciTech Connect

    MORRIS,J.T.; BINELLO, S.; D OTTAVIO, T.; KATZ, R.A.

    2007-10-15

    A heightened awareness of cybersecurity has led to a review of the procedures that ensure user accountability for actions performed on the computers of the Collider-Accelerator Department (C-AD) Control System. Control system consoles are shared by multiple users in control rooms throughout the C-AD complex. A significant challenge has been the establishment of procedures that securely control and monitor access to these shared consoles without impeding accelerator operations. This paper provides an overview of C-AD cybersecurity strategies with an emphasis on recent enhancements in user authentication and tracking methods.

  7. A Software Demonstration of 'rap': Preparing CAD Geometries for Overlapping Grid Generation

    SciTech Connect

    Anders Petersson, N.

    2002-02-15

    We demonstrate the application code ''rap'' which is part of the ''Overture'' library. A CAD geometry imported from an IGES file is first cleaned up and simplified to suit the needs of mesh generation. Thereafter, the topology of the model is computed and a water-tight surface triangulation is created on the CAD surface. This triangulation is used to speed up the projection of points onto the CAD surface during the generation of overlapping surface grids. From each surface grid, volume grids are grown into the domain using a hyperbolic marching procedure. The final step is to fill any remaining parts of the interior with background meshes.

  8. On the Use of CAD-Native Predicates and Geometry in Surface Meshing

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.

    1999-01-01

    Several paradigms for accessing computer-aided design (CAD) geometry during surface meshing for computational fluid dynamics are discussed. File translation, inconsistent geometry engines, and nonnative point construction are all identified as sources of nonrobustness. The paper argues in favor of accessing CAD parts and assemblies in their native format, without translation, and for the use of CAD-native predicates and constructors in surface mesh generation. The discussion also emphasizes the importance of examining the computational requirements for exact evaluation of triangulation predicates during surface meshing.

  9. CAD-Based Aerodynamic Design of Complex Configurations using a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2003-01-01

    A modular framework for aerodynamic optimization of complex geometries is developed. By working directly with a parametric CAD system, complex-geometry models are modified nnd tessellated in an automatic fashion. The use of a component-based Cartesian method significantly reduces the demands on the CAD system, and also provides for robust and efficient flowfield analysis. The optimization is controlled using either a genetic or quasi-Newton algorithm. Parallel efficiency of the framework is maintained even when subject to limited CAD resources by dynamically re-allocating the processors of the flow solver. Overall, the resulting framework can explore designs incorporating large shape modifications and changes in topology.

  10. Spatial data software integration - Merging CAD/CAM/mapping with GIS and image processing

    NASA Technical Reports Server (NTRS)

    Logan, Thomas L.; Bryant, Nevin A.

    1987-01-01

    The integration of CAD/CAM/mapping with image processing using geographic information systems (GISs) as the interface is examined. Particular emphasis is given to the development of software interfaces between JPL's Video Image Communication and Retrieval (VICAR)/Imaged Based Information System (IBIS) raster-based GIS and the CAD/CAM/mapping system. The design and functions of the VICAR and IBIS are described. Vector data capture and editing are studied. Various software programs for interfacing between the VICAR/IBIS and CAD/CAM/mapping are presented and analyzed.

  11. Model-Based Engineering and Manufacturing CAD/CAM Benchmark

    SciTech Connect

    Domm, T.D.; Underwood, R.S.

    1999-04-26

    The Benehmark Project was created from a desire to identify best practices and improve the overall efficiency and performance of the Y-12 Plant's systems and personnel supprting the manufacturing mission. The mission of the benchmark team was to search out industry leaders in manufacturing and evaluate lheir engineering practices and processes to determine direction and focus fm Y-12 modmizadon efforts. The companies visited included several large established companies and anew, small, high-tech machining firm. As a result of this efforL changes are recommended that will enable Y-12 to become a more responsive cost-effective manufacturing facility capable of suppordng the needs of the Nuclear Weapons Complex (NW@) and Work Fw Others into the 21' century. The benchmark team identified key areas of interest, both focused and gencml. The focus arm included Human Resources, Information Management, Manufacturing Software Tools, and Standarda/ Policies and Practices. Areas of general interest included Inhstructure, Computer Platforms and Networking, and Organizational Structure. The method for obtaining the desired information in these areas centered on the creation of a benchmark questionnaire. The questionnaire was used throughout each of the visits as the basis for information gathering. The results of this benchmark showed that all companies are moving in the direction of model-based engineering and manufacturing. There was evidence that many companies are trying to grasp how to manage current and legacy data. In terms of engineering design software tools, the companies contacted were using both 3-D solid modeling and surfaced Wire-frame models. The manufacturing computer tools were varie4 with most companies using more than one software product to generate machining data and none currently performing model-based manufacturing (MBM) ftom a common medel. The majority of companies were closer to identifying or using a single computer-aided design (CAD) system than a

  12. AEROSOL CHARACTERIZATION WITH CENTRIFUCAL AEROSOL SPECTROMETERS: THEORY AND EXPERIMENT

    EPA Science Inventory

    A general mathematical model describing the motion of particles in aerosol centrifuges has been developed. t has been validated by comparisons of theoretically predicted calibration sites with experimental data from tests sizing aerosols in instruments of three different spiral d...

  13. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-01-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross-sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross-sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross-sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (±0.03) + 0.19 (±0.08) i at 360 nm and 1.53 (±0.03) + 0.21 (±0.05) i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (±0.02) + 0.07 (±0.06) i at 360 nm and 1.66 (±0.02) + 0.06 (±0.04) i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross-section, and complex refractive index as a function of wavelength.

  14. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-04-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03) + 0.19 (± 0.08)i at 360 nm and 1.63 (± 0.03) + 0.21 (± 0.05)i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02) + 0.07 (± 0.06)i at 360 nm and 1.66 (± 0.02) + 0.06 (± 0.04)i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  15. Dust Detector

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    2001-01-01

    We discuss a recent sounding rocket experiment which found charged dust in the Earth's tropical mesosphere. The dust detector was designed to measure small (5000 - 10000 amu.) charged dust particles, most likely of meteoric origin. A 5 km thick layer of positively charged dust was found at an altitude of 90 km, in the vicinity of an observed sporadic sodium layer and sporadic E layer. The observed dust was positively charged in the bulk of the dust layer, but was negatively charged near the bottom.

  16. Ion detector

    DOEpatents

    Tullis, Andrew M.

    1987-01-01

    An improved ion detector device of the ionization detection device chamber ype comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  17. From CAD to Digital Modeling: the Necessary Hybridization of Processes

    NASA Astrophysics Data System (ADS)

    Massari, G. A.; Bernardi, F.; Cristofolini, A.

    2011-09-01

    The essay deals with the themes of digital representation of architecture starting from several years of teaching activity which is growing within the course of Automatic Design of the degree course in Engineering/Architecture in the University of Trento. With the development of CAD systems, architectural representation lies less in the tracking of a simple graph and drawn deeper into a series of acts of building a complex digital model, which can be used as a data base on which to report all the stages of project and interpretation work, and from which to derive final drawings and documents. The advent of digital technology has led to increasing difficulty in finding explicit connections between one type of operation and the subsequent outcome; thereby increasing need for guidelines, the need to understand in order to precede the changes, the desire not to be overwhelmed by uncontrollable influences brought by technological hardware and software systems to use only in accordance with the principle of maximum productivity. Formation occupies a crucial role because has the ability to direct the profession toward a thoughtful and selective use of specific applications; teaching must build logical routes in the fluid world of info-graphics and the only way to do so is to describe its contours through method indications: this will consist in understanding, studying and divulging what in its mobility does not change, as procedural issues, rather than what is transitory in its fixity, as manual questions.

  18. Differences in computer exposure between university administrators and CAD draftsmen.

    PubMed

    Wu, Hsin-Chieh; Liu, Yung-Ping; Chen, Hsieh-Ching

    2010-10-01

    This study utilized an external logger system for onsite measurements of computer activities of two professional groups-twelve university administrators and twelve computer-aided design (CAD) draftsmen. Computer use of each participant was recorded for 10 consecutive days-an average of 7.9+/-1.8 workdays and 7.8+/-1.5 workdays for administrators and draftsmen, respectively. Quantitative parameters computed using recorded data were daily dynamic duration (DD) and static duration, daily keystrokes, mouse clicks, wheel scrolling counts, mouse movement and dragged distance, average typing and clicking rates, and average time holding down keys and mouse buttons. Significant group differences existed in the number of daily keystrokes (p<0.0005) and mouse clicks (p<0.0005), mouse distance moved (p<0.0005), typing rate (p<0.0001), daily mouse DD (p<0.0001), and keyboard DD (p<0.005). Both groups had significantly longer mouse DD than keyboard DD (p<0.0001). Statistical analysis indicates that the duration of computer use for different computer tasks cannot be represented by a single formula with same set of quantitative parameters as those associated with mouse and keyboard activities. Results of this study demonstrate that computer exposure during different tasks cannot be estimated solely by computer use duration. Quantification of onsite computer activities is necessary when determining computer-associated risk of musculoskeletal disorders. Other significant findings are discussed. PMID:20392434

  19. [Clinical evaluation CAD/CAM crowns with a natural layering].

    PubMed

    van der Zel, J M; Dekker, J W J M; Balfoort, P W

    2014-02-01

    Around the year 2000, zirconia was introduced in dentistry. It is a material with great strength and attractive aesthetic properties, such as translucency and colour. Recent advances in digital dentistry are aimed at veneering the supporting structure ofzirconia with a layer of glass ceramics by means of an automated process. With the Primero process, a transparent outer layer of glass ceramic is applied directly onto the zirconia core, milled in the green stage and sintered. Because the restorations produced in this way have a two-layer structure like natural teeth, they obtain an aesthetic look similar to natural dental elements. The aim ofthis prospective study was to evaluate fit, marginal adaptation, contact with antagonists and neighbouring dental elements, aesthetics and colour. Clinical performance of Primero restorations were evaluated over a period of6 months and the results were compared with a previous study of CAD/CAM copings which were produced with the same method, but were veneered by hand in the traditional way. PMID:24640297

  20. Learning from imbalanced data: a comparative study for colon CAD

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyun; Zheng, Yalin; Siddique, Musib; Beddoe, Gareth

    2008-03-01

    Classification plays an important role in the reduction of false positives in many computer aided detection and diagnosis methods. The difficulty of classifying polyps lies in the variation of possible polyp shapes and sizes and the imbalance between the number of polyp and non-polyp regions available in the training data. CAD schemes for medical applications demand high levels of sensitivity even at the expense of keeping a certain number of false positives. In this paper, we investigate some state-of-the-art solutions to the imbalanced data problem: Synthetic Minority Over-sampling Technique (SMOTE) and weighted Support Vector Machines (SVM). We tested these methods using a diverse database of CT colonography, which included a wide spectrum of dificult cases to detect polyps. We performed several experiments with different combinations of over-sampling techniques on training data. The results demonstrated that SVMs have achieved much better performance over C4.5 with different over-sampling techniques. Also, the results show that weighted SVM without over-sampling can achieve comparable performance in terms of sensitivity and specificity to conventional SVM combined with the over-sampling approach.

  1. No-fault assurance: linking fast process CAD and EDA

    NASA Astrophysics Data System (ADS)

    Neureuther, Andrew R.; Gennari, Frank E.

    2002-12-01

    A prototype system is proposed for incorporating fast process models with EDA management of layout to identify and help arbitrate locations in a chip that are likely subject to less than ideal process effects. The approach uses pattern matching to find those locations in a layout that have the greatest impact from residual imperfections in manufacturing. For each process under study, the maximal lateral test pattern that maximizes the spillover from the surrounding pattern is first determined. The quantitative impact of the spillover for an actual layout is then assessed through comparing the degree of similarity of the actual pattern in a neighborhood about a critical point to the maximal lateral test pattern and scaling the impact accordingly. This fast-CAD pattern-matching approach is shown to be applicable for analysis of yield reduction due to combined effects of defects and alignment tolerances among mask levels as well as for identifying layout areas affected by reflective notching, CMP dishing and, with less accuracy, heating in laser assisted processing.

  2. CAD and mesh repair with Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Marchandise, E.; Piret, C.; Remacle, J.-F.

    2012-03-01

    In this paper we present a process that includes both model/mesh repair and mesh generation. The repair algorithm is based on an initial mesh that may be either an initial mesh of a dirty CAD model or STL triangulation with many errors such as gaps, overlaps and T-junctions. This initial mesh is then remeshed by computing a discrete parametrization with Radial Basis Functions (RBF's). We showed in [1] that a discrete parametrization can be computed by solving Partial Differential Equations (PDE's) on an initial correct mesh using finite elements. Paradoxically, the meshless character of the RBF's makes it an attractive numerical method for solving the PDE's for the parametrization in the case where the initial mesh contains errors or holes. In this work, we implement the Orthogonal Gradients method to be described in [2], as a RBF solution method for solving PDE's on arbitrary surfaces. Different examples show that the presented method is able to deal with errors such as gaps, overlaps, T-junctions and that the resulting meshes are of high quality. Moreover, the presented algorithm can be used as a hole-filling algorithm to repair meshes with undesirable holes. The overall procedure is implemented in the open-source mesh generator Gmsh [3].

  3. Lung partitioning for x-ray CAD applications

    NASA Astrophysics Data System (ADS)

    Annangi, Pavan; Raja, Anand

    2011-03-01

    Partitioning the inside region of lung into homogeneous regions becomes a crucial step in any computer-aided diagnosis applications based on chest X-ray. The ribs, air pockets and clavicle occupy major space inside the lung as seen in the chest x-ray PA image. Segmenting the ribs and clavicle to partition the lung into homogeneous regions forms a crucial step in any CAD application to better classify abnormalities. In this paper we present two separate algorithms to segment ribs and the clavicle bone in a completely automated way. The posterior ribs are segmented based on Phase congruency features and the clavicle is segmented using Mean curvature features followed by Radon transform. Both the algorithms work on the premise that the presentation of each of these anatomical structures inside the left and right lung has a specific orientation range within which they are confined to. The search space for both the algorithms is limited to the region inside the lung, which is obtained by an automated lung segmentation algorithm that was previously developed in our group. Both the algorithms were tested on 100 images of normal and patients affected with Pneumoconiosis.

  4. CAD-CAM database management at Bendix Kansas City

    SciTech Connect

    Witte, D.R.

    1985-05-01

    The Bendix Kansas City Division of Allied Corporation began integrating mechanical CAD-CAM capabilities into its operations in June 1980. The primary capabilities include a wireframe modeling application, a solid modeling application, and the Bendix Integrated Computer Aided Manufacturing (BICAM) System application, a set of software programs and procedures which provides user-friendly access to graphic applications and data, and user-friendly sharing of data between applications and users. BICAM also provides for enforcement of corporate/enterprise policies. Three access categories, private, local, and global, are realized through the implementation of data-management metaphors: the desk, reading rack, file cabinet, and library are for the storage, retrieval, and sharing of drawings and models. Access is provided through menu selections; searching for designs is done by a paging method or a search-by-attribute-value method. The sharing of designs between all users of Part Data is key. The BICAM System supports 375 unique users per quarter and manages over 7500 drawings and models. The BICAM System demonstrates the need for generalized models, a high-level system framework, prototyping, information-modeling methods, and an understanding of the entire enterprise. Future BICAM System implementations are planned to take advantage of this knowledge.

  5. Performance evaluation of the NASA/KSC CAD/CAE and office automation LAN's

    NASA Technical Reports Server (NTRS)

    Zobrist, George W.

    1994-01-01

    This study's objective is the performance evaluation of the existing CAD/CAE (Computer Aided Design/Computer Aided Engineering) network at NASA/KSC. This evaluation also includes a similar study of the Office Automation network, since it is being planned to integrate this network into the CAD/CAE network. The Microsoft mail facility which is presently on the CAD/CAE network was monitored to determine its present usage. This performance evaluation of the various networks will aid the NASA/KSC network managers in planning for the integration of future workload requirements into the CAD/CAE network and determining the effectiveness of the planned FDDI (Fiber Distributed Data Interface) migration.

  6. Understanding dental CAD/CAM for restorations--the digital workflow from a mechanical engineering viewpoint.

    PubMed

    Tapie, L; Lebon, N; Mawussi, B; Fron Chabouis, H; Duret, F; Attal, J-P

    2015-01-01

    As digital technology infiltrates every area of daily life, including the field of medicine, so it is increasingly being introduced into dental practice. Apart from chairside practice, computer-aided design/computer-aided manufacturing (CAD/CAM) solutions are available for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental solutions can be considered a chain of digital devices and software for the almost automatic design and creation of dental restorations. However, dentists who want to use the technology often do not have the time or knowledge to understand it. A basic knowledge of the CAD/CAM digital workflow for dental restorations can help dentists to grasp the technology and purchase a CAM/CAM system that meets the needs of their office. This article provides a computer-science and mechanical-engineering approach to the CAD/CAM digital workflow to help dentists understand the technology. PMID:25911827

  7. Using High-Performance Graphics Machines in an Undergraduate CAD Course.

    ERIC Educational Resources Information Center

    Kirkpatrick, Allan; And Others

    1987-01-01

    Explains the approach taken at Colorado State University in a collegewide undergraduate computer-aided design (CAD) course. Reviews the topic areas covered, project requirements, and assesses the use of high-performance graphics devices. (ML)

  8. Functional Versus Anatomic Imaging of CAD: Lessons Learned from Recent Clinical Trials.

    PubMed

    Gewirtz, Henry

    2016-01-01

    Recent clinical trials directed at imaging of coronary artery disease (CAD) have demonstrated a paradigm shift away from endpoints related to detection of CAD in favor of those related to clinical outcomes. The objective of such trials has been to determine whether physiological metrics are superior to anatomical ones for guiding therapy and improving outcomes in patients with known or suspected CAD. The present review focuses on selected trials in this area in particular DEFER, FAME 1 and 2, a meta-analysis comparing FFR to anatomically guided treatment outcomes and COURAGE SPECT MPI sub study. The rationale for using physiological as opposed to anatomical endpoints to optimize patient management, in particular coronary revascularization decisions, is emphasized. The results of the FFR-based trials are concordant and indicate physiological metrics are superior to anatomical ones for guiding therapy and improving clinical outcomes in patients with known or suspected CAD. PMID:26699631

  9. IFEMS, an Interactive Finite Element Modeling System Using a CAD/CAM System

    NASA Technical Reports Server (NTRS)

    Mckellip, S.; Schuman, T.; Lauer, S.

    1980-01-01

    A method of coupling a CAD/CAM system with a general purpose finite element mesh generator is described. The three computer programs which make up the interactive finite element graphics system are discussed.

  10. [National disease management guidelines (NVL) for chronic CAD : What is new, what is particularly important?].

    PubMed

    Werdan, K

    2016-09-01

    Coronary heart disease (CAD) is widespread and affects 1 in 10 of the population in the age group 40-79 years in Germany. The German national management guidelines on chronic CAD comprise evidence and expert-based recommendations for the diagnostics of chronic stable CAD as well as for interdisciplinary/multidisciplinary therapy and care of patients with stable CAD. The focus is on the diagnostics, prevention, medication therapy, revascularization, rehabilitation, general practitioner care and coordination of care. Recommendations for optimizing cooperation between all medical specialties involved as well as the definition of mandatory and appropriate measures are essential aims of the guidelines both to improve the quality of care and to strengthen the position of the patient. PMID:27586137

  11. rCAD: A Novel Database Schema for the Comparative Analysis of RNA.

    PubMed

    Ozer, Stuart; Doshi, Kishore J; Xu, Weijia; Gutell, Robin R

    2011-12-31

    Beyond its direct involvement in protein synthesis with mRNA, tRNA, and rRNA, RNA is now being appreciated for its significance in the overall metabolism and regulation of the cell. Comparative analysis has been very effective in the identification and characterization of RNA molecules, including the accurate prediction of their secondary structure. We are developing an integrative scalable data management and analysis system, the RNA Comparative Analysis Database (rCAD), implemented with SQL Server to support RNA comparative analysis. The platformagnostic database schema of rCAD captures the essential relationships between the different dimensions of information for RNA comparative analysis datasets. The rCAD implementation enables a variety of comparative analysis manipulations with multiple integrated data dimensions for advanced RNA comparative analysis workflows. In this paper, we describe details of the rCAD schema design and illustrate its usefulness with two usage scenarios. PMID:24772454

  12. Aerosol chemistry in GLOBE

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Rothermel, Jeffry; Jarzembski, Maurice A.

    1993-01-01

    This task addresses the measurement and understanding of the physical and chemical properties of aerosol in remote regions that are responsible for aerosol backscatter at infrared wavelengths. Because it is representative of other clean areas, the remote Pacific is of extreme interest. Emphasis is on the determination size dependent aerosol properties that are required for modeling backscatter at various wavelengths and upon those features that may be used to help understand the nature, origin, cycling and climatology of these aerosols in the remote troposphere. Empirical relationships will be established between lidar measurements and backscatter derived from the aerosol microphysics as required by the NASA Doppler Lidar Program. This will include the analysis of results from the NASA GLOBE Survey Mission Flight Program. Additional instrument development and deployment will be carried out in order to extend and refine this data base. Identified activities include participation in groundbased and airborne experiments. Progress to date includes participation in, analysis of, and publication of results from Mauna Loa Backscatter Intercomparison Experiment (MABIE) and Global Backscatter Experiment (GLOBE).

  13. SURVIVAL OF BACTERIA DURING AEROSOLIZATION

    EPA Science Inventory

    One form of commercial application of microorganisms, including genetically engineered microorganisms is as an aerosol. To study the effect of aerosol-induced stress on bacterial survival, nonrecombinant spontaneous antibiotic-resistant mutants of four organisms, Enterobacter clo...

  14. Other medications for aerosol delivery.

    PubMed

    Rubin, Bruce K

    2006-01-01

    Although aerosol therapy is most commonly used to treat asthma and COPD, there are a large number of aerosol medications now used or in development for other diseases. Mucoactive agents have long been available by aerosol, but now we have truly effective drugs to improve effective airway clearance including dornase alfa, hyperosmolar saline, and aerosol surfactant. Inhaled antibiotics are available for the treatment of cystic fibrosis, bronchiectasis and other chronic airway infections. With the development of devices that can target aerosol to the deep lung, the opportunity to deliver medications systemically by the aerosol route has become a reality. Insulin, recently approved in the US as aerosol therapy, and other peptides are systemically absorbed from the distal airway and alveolus. Aerosol gene transfer therapy to correct abnormalities associated with cystic fibrosis, primary ciliary dyskinesia and other airway diseases also holds great potential. PMID:16798603

  15. Atmospheric Chemistry: Nature's plasticized aerosols

    NASA Astrophysics Data System (ADS)

    Ziemann, Paul J.

    2016-01-01

    The structure of atmospheric aerosol particles affects their reactivity and growth rates. Measurements of aerosol properties over the Amazon rainforest indicate that organic particles above tropical rainforests are simple liquid drops.

  16. The Association between Androgenic Hormone Levels and the Risk of Developing Coronary Artery Disease (CAD)

    PubMed Central

    ALLAMEH, Farzad; POURMAND, Gholamreza; BOZORGI, Ali; NEKUIE, Sepideh; NAMDARI, Farshad

    2016-01-01

    Background: The aim of the study was to evaluate the relationship between the serum levels of androgens and Coronary Artery Disease (CAD) in an Iranian population. Methods: Male individuals admitted to Tehran Heart Center and Sina Hospital, Tehran, Iran from 2011–2012 were categorized into CAD and control groups based on selective coronary angiography. Baseline demographic data, including age, BMI, diabetes, and a history of hypertension were recorded. Patients were also assessed for their serum levels of total testosterone, free testosterone, estradiol, dehydroepi and rosterone sulfate (DHEA-S), and Sex Hormone Binding Globulin (SHBG). Data analysis was carried out chi-square and ANOVA tests as well as logistic regression analysis. Results: Two hundred patients were in the CAD group and 135 individuals in control group. In the CAD group, 69 had single-vessel disease, 49 had two-vessel diseases, and 82 had three-vessel diseases. Statistically significant differences were observed between the individuals in the two groups with respect to age (P<0.0001), diabetes (P<0.0001), and a history of hypertension (P=0.018). The serum levels of free testosterone (P=0.048) and DHEA-S (P<0.0001) were significantly higher in the control group than in the CAD group; however, the serum level of SHBG was higher in the CAD group than in the control group (P=0.007). Results of the logistic regression analysis indicated that only age (P=0.042) and diabetes (P=0.003) had significant relationships with CAD. Conclusion: Although the serum levels of some of the androgens were significantly different between the two groups, no association was found between androgenic hormone levels and the risk of CAD, due mainly to the effect of age and diabetes. PMID:27057516

  17. Collection and analysis of inorganic and water soluble organic aerosols over Maryland and Virginia

    NASA Astrophysics Data System (ADS)

    Brent, L. C.; Ziemba, L. D.; Beyersdorf, A. J.; Phinney, K.; Conny, J.; Dickerson, R. R.

    2012-12-01

    Aerosols aloft have slower removal than those near the ground, in part, because dry and wet deposition rates result in longer lifetimes and greater range of influence. Knowledge of deposition rates and range of transport for different species are important for developing local and regional air quality policy. Currently, the vertical distribution of organic aerosols (OA's) and their polar, oxidized fraction is largely unknown. Comprehensive methods to analyze aerosol composition collected in the boundary layer and the lower free troposphere are lacking. During DISCOVER AQ 2011, both the NASA P3 and Cessna 402B collected aerosols, through shrouded aerosol inlets, onto Teflon and quartz fiber filters. Collection occurred in both the boundary layer and lower free troposphere over Maryland and Virginia, USA. After extraction with water and optimizing separation via ion chromatography, commonly identified secondary organic aerosols can be separated based on their functionality as mono-, di-, or polycarboxylic acids. Inorganic aerosol components can simultaneously be separated and identified with the same method. Individual organic acid compound analysis with detection limits in the low ppb range can be achieved when conductivity/ultraviolet/ and mass spectrometric detectors are placed in tandem. Additionally, thermo optical analysis can be used to determine the mass fraction of water soluble organic carbon versus the total collected mass. This research is designed to provide information on the vertical distribution of particulate organic carbon in the atmosphere, its optical properties, information on aerosol transport in the lower free troposphere, and to provide water soluble organic aerosol structural characterization.

  18. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  19. Format conversion between CAD data and GIS data based on ArcGIS

    NASA Astrophysics Data System (ADS)

    Xie, Qingqing; Wei, Bo; Zhang, Kailin; Wang, Zhichao

    2015-12-01

    To make full use of the data resources and realize a sharing for the different types of data in different industries, a method of format conversion between CAD data and GIS data based on ArcGIS was proposed. To keep the integrity of the converted data, some key steps to process CAD data before conversion were made in AutoCAD. For examples, deleting unnecessary elements such as title, border and legend avoided the appearance of unnecessary elements after conversion, as layering data again by a national standard avoided the different types of elements to appear in a same layer after conversion. In ArcGIS, converting CAD data to GIS data was executed by the correspondence of graphic element classification between AutoCAD and ArcGIS. In addition, an empty geographic database and feature set was required to create in ArcGIS for storing the text data of CAD data. The experimental results show that the proposed method avoids a large amount of editing work in data conversion and maintains the integrity of spatial data and attribute data between before and after conversion.

  20. A CAD system and quality assurance protocol for bone age assessment utilizing digital hand atlas

    NASA Astrophysics Data System (ADS)

    Gertych, Arakadiusz; Zhang, Aifeng; Ferrara, Benjamin; Liu, Brent J.

    2007-03-01

    Determination of bone age assessment (BAA) in pediatric radiology is a task based on detailed analysis of patient's left hand X-ray. The current standard utilized in clinical practice relies on a subjective comparison of the hand with patterns in the book atlas. The computerized approach to BAA (CBAA) utilizes automatic analysis of the regions of interest in the hand image. This procedure is followed by extraction of quantitative features sensitive to skeletal development that are further converted to a bone age value utilizing knowledge from the digital hand atlas (DHA). This also allows providing BAA results resembling current clinical approach. All developed methodologies have been combined into one CAD module with a graphical user interface (GUI). CBAA can also improve the statistical and analytical accuracy based on a clinical work-flow analysis. For this purpose a quality assurance protocol (QAP) has been developed. Implementation of the QAP helped to make the CAD more robust and find images that cannot meet conditions required by DHA standards. Moreover, the entire CAD-DHA system may gain further benefits if clinical acquisition protocol is modified. The goal of this study is to present the performance improvement of the overall CAD-DHA system with QAP and the comparison of the CAD results with chronological age of 1390 normal subjects from the DHA. The CAD workstation can process images from local image database or from a PACS server.

  1. Understanding dental CAD/CAM for restorations--accuracy from a mechanical engineering viewpoint.

    PubMed

    Tapie, Laurent; Lebon, Nicolas; Mawussi, Bernardin; Fron-Chabouis, Hélène; Duret, Francois; Attal, Jean-Pierre

    2015-01-01

    As is the case in the field of medicine, as well as in most areas of daily life, digital technology is increasingly being introduced into dental practice. Computer-aided design/ computer-aided manufacturing (CAD/CAM) solutions are available not only for chairside practice but also for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental practice can be considered as the handling of devices and software processing for the almost automatic design and creation of dental restorations. However, dentists who want to use dental CAD/CAM systems often do not have enough information to understand the variations offered by such technology practice. Knowledge of the random and systematic errors in accuracy with CAD/CAM systems can help to achieve successful restorations with this technology, and help with the purchasing of a CAD/CAM system that meets the clinical needs of restoration. This article provides a mechanical engineering viewpoint of the accuracy of CAD/ CAM systems, to help dentists understand the impact of this technology on restoration accuracy. PMID:26734668

  2. Rationale for the Use of CAD/CAM Technology in Implant Prosthodontics

    PubMed Central

    Abduo, Jaafar; Lyons, Karl

    2013-01-01

    Despite the predictable longevity of implant prosthesis, there is an ongoing interest to continue to improve implant prosthodontic treatment and outcomes. One of the developments is the application of computer-aided design and computer-aided manufacturing (CAD/CAM) to produce implant abutments and frameworks from metal or ceramic materials. The aim of this narrative review is to critically evaluate the rationale of CAD/CAM utilization for implant prosthodontics. To date, CAD/CAM allows simplified production of precise and durable implant components. The precision of fit has been proven in several laboratory experiments and has been attributed to the design of implants. Milling also facilitates component fabrication from durable and aesthetic materials. With further development, it is expected that the CAD/CAM protocol will be further simplified. Although compelling clinical evidence supporting the superiority of CAD/CAM implant restorations is still lacking, it is envisioned that CAD/CAM may become the main stream for implant component fabrication. PMID:23690778

  3. Diagnostic performance of radiologists with and without different CAD systems for mammography

    NASA Astrophysics Data System (ADS)

    Lauria, Adele; Fantacci, Maria E.; Bottigli, Ubaldo; Delogu, Pasquale; Fauci, Francesco; Golosio, Bruno; Indovina, Pietro L.; Masala, Giovanni L.; Oliva, Piernicola; Palmiero, Rosa; Raso, Giuseppe; Stumbo, Simone; Tangaro, Sabina

    2003-05-01

    The purpose of this study is the evaluation of the variation of performance in terms of sensitivity and specificity of two radiologists with different experience in mammography, with and without the assistance of two different CAD systems. The CAD considered are SecondLookTM (CADx Medical Systems, Canada), and CALMA (Computer Assisted Library in MAmmography). The first is a commercial system, the other is the result of a research project, supported by INFN (Istituto Nazionale di Fisica Nucleare, Italy); their characteristics have already been reported in literature. To compare the results with and without these tools, a dataset composed by 70 images of patients with cancer (biopsy proven) and 120 images of healthy breasts (with a three years follow up) has been collected. All the images have been digitized and analysed by two CAD, then two radiologists with respectively 6 and 2 years of experience in mammography indipendently made their diagnosis without and with, the support of the two CAD systems. In this work sensitivity and specificity variation, the Az area under the ROC curve, are reported. The results show that the use of a CAD allows for a substantial increment in sensitivity and a less pronounced decrement in specificity. The extent of these effects depends on the experience of the readers and is comparable for the two CAD considered.

  4. Surgical retained foreign object (RFO) prevention by computer aided detection (CAD)

    NASA Astrophysics Data System (ADS)

    Marentis, Theodore C.; Hadjiiyski, Lubomir; Chaudhury, Amrita R.; Rondon, Lucas; Chronis, Nikolaos; Chan, Heang-Ping

    2014-03-01

    Surgical Retained Foreign Objects (RFOs) cause significant morbidity and mortality. They are associated with $1.5 billion annually in preventable medical costs. The detection accuracy of radiographs for RFOs is a mediocre 59%. We address the RFO problem with two complementary technologies: a three dimensional (3D) Gossypiboma Micro Tag (μTa) that improves the visibility of RFOs on radiographs, and a Computer Aided Detection (CAD) system that detects the μTag. The 3D geometry of the μTag produces a similar 2D depiction on radiographs regardless of its orientation in the human body and ensures accurate detection by a radiologist and the CAD. We create a database of cadaveric radiographs with the μTag and other common man-made objects positioned randomly. We develop the CAD modules that include preprocessing, μTag enhancement, labeling, segmentation, feature analysis, classification and detection. The CAD can operate in a high specificity mode for the surgeon to allow for seamless workflow integration and function as a first reader. The CAD can also operate in a high sensitivity mode for the radiologist to ensure accurate detection. On a data set of 346 cadaveric radiographs, the CAD system performed at a high specificity (85.5% sensitivity, 0.02 FPs/image) for the OR and a high sensitivity (96% sensitivity, 0.73 FPs/image) for the radiologists.

  5. Optical sensors based on the molecular condensation nuclei detector

    NASA Astrophysics Data System (ADS)

    Kuptsov, Vladimir D.; Katelevsky, Vadim Y.; Valyukhov, Vladimir P.

    2015-05-01

    Molecular condensation nuclei (MCN) detector is a specialized optical sensor which provides for monitoring of various chemicals impurity in the environment and diagnosis of diseases in human exhaled air ("electronic nose" biosensor). Structurally MCN detector is included in the highly sensitive gas analyzers based on MCN method. The article describes the fundamental principles, specific features and application fields of the advanced highly sensitive MCN method. The MCN method is based on the application of various physico-chemical processes to the flow of a gas containing impurities. As a result of these processes aerosol particle that are about 106 times larger than the original molecule of the impurity are produced. The ability of the aerosol particle to scatter incident light also increases ~1014÷1016 times compared with the original molecule and the aerosol particle with the molecule of the impurity in the center is easily detected by light scattering inside a photometer. By measuring of the light scattering intensity is determined concentration of chemical impurities in the air. Aerosol particles in the MCN detector are formed in the condensing devices through overgrowth of the molecule detectable impurity by molecules so-called «developer» substance. At the final stage of the analysis in the MCN detector is measured light scattering by aerosol particles which is proportional to the concentration of determined impurities in the environment. For calculations of the scattered radiation is applicable Mie's theory considering the scattering of light by spherical particles whose size is comparable to the wavelength of light. We have determined that the light scattering by aerosol particles is interferometric and is comparable within an order of magnitude with light scattering by the air inside a photometer. The detection threshold for the target component of the gas analyzer is attained at the spontaneous ionization background level and not at the limiting

  6. Mexico City Aerosol Transect

    NASA Astrophysics Data System (ADS)

    Lewandowski, P. A.; Eichinger, W. E.; Prueger, J.; Holder, H. L.

    2007-12-01

    A radiative impact study was conducted in Mexico City during MILAGRO/MIRAGE campaign in March of 2006. On a day when the predominant wind was from the north to the south, authors measured radiative properties of the atmosphere in six locations across the city ranging from the city center, through the city south limits and the pass leading out of the city (causing pollutants to funnel through the area). A large change in aerosol optical properties has been noticed. The aerosol optical depth has generally increased outside of the city and angstrom coefficient has changed significantly towards smaller values. Aerosol size distribution was calculated using SkyRadPack. The total optical depths allowed coincidental lidar data to calculate total extinction profiles for all the locations for 1064nm.

  7. Aerosol Quality Monitor (AQUAM)

    NASA Astrophysics Data System (ADS)

    Liang, X.; Ignatov, A.

    2011-12-01

    The Advanced Clear-Sky Processor for Oceans (ACSPO) developed at NESDIS generates three products from AVHRR, operationally: clear sky radiances in all bands, and sea surface temperature (SST) derived from clear-sky brightness temperatures (BT) in Ch3B (centered at 3.7 μm), Ch4 (11 μm) and Ch5 (12 μm), and aerosol optical depths (AOD) derived from clear-sky reflectances in Ch1 (0.63), Ch2 (0.83) and Ch3A (1.61 μm). An integral part of ACSPO is the fast Community Radiative Transfer Model (CRTM), which calculates first-guess clear-sky BTs using global NCEP forecast atmospheric and Reynolds SST fields. Simulated BTs are employed in ACSPO for improved cloud screening, physical (RTM-based) SST inversions, and to monitor and validate satellite BTs. The model minus observation biases are monitored online in near-real time using the Monitoring IR Clear-sky radiances over Oceans for SST (MICROS; http://www.star.nesdis.noaa.gov/sod/sst/micros/). A persistent positive M-O bias is observed in MICROS, partly attributed to missing aerosol in CRTM input, causing "M" to be warmer than "O". It is thus necessary to include aerosols in CRTM and quantify their effects on AVHRR BTs and SSTs. However, sensitivity of thermal bands to aerosol is only minimal, and use of solar reflectance bands is preferable to evaluate the accuracy of CRTM modeling, with global aerosol fields as input (from e.g. Goddard Chemistry Aerosol Radiation and Transport, GOCART, or Navy Aerosol Analysis and Prediction System, NAAPS). Once available, the corresponding M-O biases in solar reflectance bands will be added to MICROS. Also, adding CRTM simulated reflectances in ACSPO would greatly improve cloud detection, help validate CRTM in the solar reflectance bands, and assist aerosol retrievals. Running CRTM with global aerosol as input is very challenging, computationally. While CRTM is being optimized to handle such global scattering computations, a near-real time web-based Aerosol Quality Monitor (AQUAM

  8. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions. PMID:12492171

  9. Compact Efficient Lidar Receiver for Measuring Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Gili, Christopher; De Young, Russell

    2006-01-01

    A small, light weight, and efficient aerosol lidar receiver was constructed and tested. Weight and space savings were realized by using rigid optic tubes and mounting cubes to package the steering optics and detectors in a compact assembly. The receiver had a 1064nm channel using an APD detector. The 532nm channel was split (90/10) into an analog channel (90%) and a photon counting channel (10%). The efficiency of the 1064nm channel with optical filter was 44.0%. The efficiency of the analog 532nm channel was 61.4% with the optical filter, and the efficiency of the 532nm photon counting channel was 7.6% with the optical filter. The results of the atmospheric tests show that the detectors were able to consistently return accurate results. The lidar receiver was able to detect distinct cloud layers, and the lidar returns also agreed across the different detectors. The use of a light weight fiber-coupled telescope reduced weight and allowed great latitude in detector assembly positioning due to the flexibility enabled by the use of fiber optics. The receiver is now ready to be deployed for aircraft or ground based aerosol lidar measurements.

  10. Global Aerosol Climatology Project.

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael; Penner, Joyce; Anderson, Donald

    2002-02-01

    This paper is concerned with uncertainties in the Advanced Very High Resolution Radiometer (AVHRR)-based retrieval of optical depth for heavy smoke aerosol plumes generated from forest fires that occurred in Canada due to a lack of knowledge on their optical properties (single-scattering albedo and asymmetry parameter). Typical values of the optical properties for smoke aerosols derived from such field experiments as Smoke, Clouds, and Radiation-Brazil (SCAR-B); Transport and Atmospheric Chemistry near the Equator-Atlantic (TRACE-A); Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A); and Boreal Ecosystem-Atmosphere Study (BOREAS) were first assumed for retrieving smoke optical depths. It is found that the maximum top-of-atmosphere (TOA) reflectance values calculated by models with these aerosol parameters are less than observations whose values are considerably higher. A successful retrieval would require an aerosol model that either has a substantially smaller asymmetry parameter (g < 0.4 versus g > 0.5), or higher single-scattering albedo ( 0.9 versus < 0.9), or both (e.g., g = 0.39 and = 0.91 versus g = 0.57 and = 0.87) than the existing models. Several potential causes were examined including small smoke particle size, low black carbon content, humidity effect, calibration errors, inaccurate surface albedo, mixture of cloud and aerosol layers, etc. A more sound smoke aerosol model is proposed that has a lower content of black carbon (mass ratio = 0.015) and smaller size (mean radius = 0.02 m for dry smoke particles), together with consideration of the effect of relative humidity. Ground-based observations of smoke suggest that for < 2.5 there is an increasing trend in and a decreasing trend in g with increases in , which is consistent with the results of satellite retrievals. Using these relationships as constraints, more plausible values of can be obtained for heavy smoke aerosol. The possibility of smoke-cloud mixtures is also

  11. Highly stable aerosol generator

    DOEpatents

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  12. Highly stable aerosol generator

    DOEpatents

    DeFord, Henry S.; Clark, Mark L.

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  13. Oscillator detector

    SciTech Connect

    Potter, B.M.

    1980-05-13

    An alien liquid detector employs a monitoring element and an oscillatory electronic circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. The output wave form, eg., frequency of oscillation or wave shape, of the oscillatory circuit depends upon the temperaturedependent electrical characteristic of the monitoring element. A predetermined change in the output waveform allows water to be discriminated from another liquid, eg., oil. Features of the invention employing two thermistors in two oscillatory circuits include positioning one thermistor for contact with water and the other thermistor above the oil-water interface to detect a layer of oil if present. Unique oscillatory circuit arrangements are shown that achieve effective thermistor action with an economy of parts and energizing power. These include an operational amplifier employed in an astable multivibrator circuit, a discrete transistor-powered tank circuit, and use of an integrated circuit chip.

  14. Ice detector

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1988-01-01

    An ice detector is provided for the determination of the thickness of ice on the outer surface on an object (e.g., aircraft) independently of temperature or the composition of the ice. First capacitive gauge, second capacitive gauge, and temperature gauge are embedded in embedding material located within a hollowed out portion of the outer surface. This embedding material is flush with the outer surface to prevent undesirable drag. The first capacitive gauge, second capacitive gauge, and the temperature gauge are respectively connected to first capacitive measuring circuit, second capacitive measuring circuit, and temperature measuring circuit. The geometry of the first and second capacitive gauges is such that the ratio of the voltage outputs of the first and second capacitance measuring circuits is proportional to the thickness of ice, regardless of ice temperature or composition. This ratio is determined by offset and dividing circuit.

  15. Model-Based Engineering and Manufacturing CAD/CAM Benchmark.

    SciTech Connect

    Domm, T.C.; Underwood, R.S.

    1999-10-13

    The Benchmark Project was created from a desire to identify best practices and improve the overall efficiency and performance of the Y-12 Plant's systems and personnel supporting the manufacturing mission. The mission of the benchmark team was to search out industry leaders in manufacturing and evaluate their engineering practices and processes to determine direction and focus for Y-12 modernization efforts. The companies visited included several large established companies and a new, small, high-tech machining firm. As a result of this effort, changes are recommended that will enable Y-12 to become a more modern, responsive, cost-effective manufacturing facility capable of supporting the needs of the Nuclear Weapons Complex (NWC) into the 21st century. The benchmark team identified key areas of interest, both focused and general. The focus areas included Human Resources, Information Management, Manufacturing Software Tools, and Standards/Policies and Practices. Areas of general interest included Infrastructure, Computer Platforms and Networking, and Organizational Structure. The results of this benchmark showed that all companies are moving in the direction of model-based engineering and manufacturing. There was evidence that many companies are trying to grasp how to manage current and legacy data. In terms of engineering design software tools, the companies contacted were somewhere between 3-D solid modeling and surfaced wire-frame models. The manufacturing computer tools were varied, with most companies using more than one software product to generate machining data and none currently performing model-based manufacturing (MBM) from a common model. The majority of companies were closer to identifying or using a single computer-aided design (CAD) system than a single computer-aided manufacturing (CAM) system. The Internet was a technology that all companies were looking to either transport information more easily throughout the corporation or as a conduit for

  16. CAD tool environment for MEMS process design support

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Wagener, A.; Popp, J.; Hahn, K.; Bruck, R.

    2005-07-01

    MEMS fabrication processes are characterized by a numerous useable process steps, materials and effects to fabricate the intended microstructure. Up to now CAD support in this domain concentrates mainly on the structural design (e.g. simulation programs on FEM basis). These tools often assume fixed interfaces to fabrication process like material parameters or design rules. Taking into account that MEMS design requires concurrently structural design (defining the lateral 2-dim shapes) as well as process design (responsible for the third dimension) it turns out that technology interfaces consisting only of sets of static data are no longer sufficient. For successful design flows in these areas it is necessary to incorporate a higher degree of process related data. A broader interface between process configuration on the one side and the application design on the other side seems to be needed. This paper proposes a novel approach. A process management system is introduced. It allows the specification of processes for specific applications. The system is based on a dedicated database environment that is able to store and manage all process related design constraints linked to the fabrication process data itself. The interdependencies between application specific processes and all stages of the design flow will be discussed and the complete software system PRINCE will be introduced meeting the requirements of this new approach. Based on a concurrent design methodology presented in the beginning of this paper, a system is presented that supports application specific process design. The paper will highlight the incorporated tools and the present status of the software system. A complete configuration of an Si-thin film process example will demonstrate the usage of PRINCE.

  17. Dental scanning in CAD/CAM technologies: laser beams

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda; Faur, Nicolae; Negru, Radu; Romînu, Mihai; Cozarov, Dalibor

    2008-02-01

    Scanning, also called digitizing, is the process of gathering the requisite data from an object. Many different technologies are used to collect three dimensional data. They range from mechanical and very slow, to radiation-based and highly-automated. Each technology has its advantages and disadvantages, and their applications and specifications overlap. The aims of this study are represented by establishing a viable method of digitally representing artifacts of dental casts, proposing a suitable scanner and post-processing software and obtaining 3D Models for the dental applications. The method is represented by the scanning procedure made by different scanners as the implicated materials. Scanners are the medium of data capture. 3D scanners aim to measure and record the relative distance between the object's surface and a known point in space. This geometric data is represented in the form of point cloud data. The contact and no contact scanners were presented. The results show that contact scanning procedures uses a touch probe to record the relative position of points on the objects' surface. This procedure is commonly used in Reverse engineering applications. Its merits are represented by efficiency for objects with low geometric surface detail. Disadvantages are represented by time consuming, this procedure being impractical for artifacts digitization. The non contact scanning procedure implies laser scanning (laser triangulation technology) and photogrammetry. As a conclusion it can be drawn that different types of dental structure needs different types of scanning procedures in order to obtain a competitive complex 3D virtual model that can be used in CAD/CAM technologies.

  18. Geometrical Optics of Dense Aerosols

    SciTech Connect

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

  19. ACID AEROSOL MEASUREMENT WORKSHOP

    EPA Science Inventory

    This report documents the discussion and results of the U.S. EPA Acid Aerosol Measurement Workshop, conducted February 1-3, 1989, in Research Triangle Park, North Carolina. t was held in response to recommendations by the Clean Air Scientific Advisory Committee (CASAC) regarding ...

  20. EXPOSURES TO ACIDIC AEROSOLS

    EPA Science Inventory

    Ambient monitoring of acid aerosol in four U.S. cities and in a rural region of southern Ontario clearly show distinct periods of strong acidity. easurements made in Kingston, TN, and Stuebenville, OH, resulted in 24-hr H+ ion concentrations exceeding 100 nmole/m3 more than 10 ti...

  1. FORMATION OF PHOTOCHEMICAL AEROSOLS

    EPA Science Inventory

    The objective was to develop a better understanding of smog aerosol formation with particular reference to haze in the Southern California area. This study combined laboratory work with ambient air studies. Counting of particles by light scattering was the principle physical tech...

  2. Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant

    SciTech Connect

    Weinstein-Lloyd, Judith B

    2009-05-04

    This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

  3. Association of human erythrocyte membrane glycoproteins with blood-group Cad specificity.

    PubMed Central

    Cartron, J P; Blanchard, D

    1982-01-01

    Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of erythrocyte membranes from a blood-group-B individual with the rare Cad phenotype indicates a lower-than-normal mobility of the main sialoglycoproteins, suggesting an increase in apparent molecular mass of 3kDa and 2kDa respectively for glycoprotein alpha (synonym glycophorin A) and glycoprotein delta (synonym glycophorin B). Since the chief structural determinant of Cad specificity is N-acetylgalactosamine, the membrane receptors have been isolated by affinity binding on immobilized Dolichos biflorus (horse gram) lectin. The predominant species eluted from the gel was the abnormal glycoprotein alpha, whereas in control experiments no material could be recovered from the adsorbent incubated with group-B Cad-negative erythrocyte membranes. After partition of the membranes with organic solvents, the blood-group-Cad activity was found in aqueous phases containing the sialoglycoproteins, but not in the organic phases containing simple or complex glycolipids, which, however, retained the blood-group-B activity. The carbohydrate composition of highly purified lipid-free glycoprotein alpha molecules prepared from Cad and control erythrocytes was determined. Interestingly the molar ratio of N-acetylneuraminic acid to N-acetylgalactosamine was equal to 2:1 in the case of controls and equal to 1:1 in the case of Cad erythrocytes. Taken together these results suggest that Cad specificity is defined by N-acetylgalactosamine residues carried by the alkali-labile oligosaccharide chains attached to the erythrocyte membrane sialo-glycoproteins. Images Fig. 1. Fig. 2. PMID:6187337

  4. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network

    PubMed Central

    Pascual, Agustín; Camps, Isabel; Grau-Benitez, María

    2015-01-01

    Background The field of dental ceramics for CAD-CAM is enriched with a new innovative material composition having a porous three-dimensional structure of feldspathic ceramic infiltrated with acrylic resins.The aim of this study is to determine the mechanical properties of Polymer-Infiltrated-Ceramic-Network (PICN) and compare its performance with other ceramics and a nano-ceramic resin available for CAD-CAM systems. Material and Methods In this study a total of five different materials for CAD-CAM were investigated. A polymer-infiltrated ceramic (Vita Enamic), a nano-ceramic resin (Lava Ultimate), a feldspathic ceramic (Mark II), a lithium disilicate ceramic (IPS-e max CAD) and finally a Leucite based ceramic (Empress - CAD). From CAD-CAM blocks, 120 bars (30 for each material cited above) were cut to measure the flexural strength with a three-point-bending test. Strain at failure, fracture stress and Weibull modulus was calculated. Vickers hardness of each material was also measured. Results IPS-EMAX presents mechanical properties significantly better from the other materials studied. Its strain at failure, flexural strength and hardness exhibited significantly higher values in comparison with the others. VITA ENAMIC and LAVA ULTIMATE stand out as the next most resistant materials. Conclusions The flexural strength, elastic modulus similar to a tooth as well as having less hardness than ceramics make PICN materials an option to consider as a restorative material. Key words:Ceramic infiltrated with resin, CAD-CAM, Weibull modulus, flexural strength, micro hardness. PMID:26535096

  5. Expression of cadR Enhances its Specific Activity for Cd Detoxification and Accumulation in Arabidopsis.

    PubMed

    Li, Jingrui; Wei, Xuezhi; Yu, Pengli; Deng, Xin; Xu, Wenxiu; Ma, Mi; Zhang, Haiyan

    2016-08-01

    Cadmium (Cd) is a transition metal that is highly toxic in biological systems. Anthropogenic emissions of Cd have increased biogeochemical cycling and the amount of Cd in the biosphere. Here we studied the utility of a bacterial Cd-binding protein, CadR, for the remediation of Cd contamination. CadR was successfully targeted to chloroplasts using a constitutive Cauliflower mosaic virus (CaMV) 35S promoter or a shoot-specific Chl a/b-binding protein 2 gene (CAB2) promoter and an RbcS (small subunit of the Rubisco complex) transit peptide. Under short-term (2 d) exposure to Cd, the cadR transgenic plants showed up to a 2.9-fold Cd accumulation in roots compared with untransformed plants. Under medium term (7 d) exposure to Cd, the concentrations of Cd in leaves began to increase but there were no differences between the wild type and the cadR transgenic plants. Under long-term (16 d) exposure to Cd, the cadR transgenic plants accumulated greater amounts of Cd in leaves than the untransformed plants. Total Cd accumulation (µg per plant) in shoots and roots of the plants expressing cadR were significantly higher (up to 3.5-fold in shoots and 5.2-fold in roots) than those of the untransformed plants. We also found that targeting CadR to chloroplasts facilitated chloroplastic metal homeostasis and Chl b accumulation. Our results demonstrate that manipulating chelating capacity in chloroplasts or in the cytoplasm may be effective in modifying both the accumulation of and resistance to Cd. PMID:27382127

  6. Quantitative assessment of multiple sclerosis lesion load using CAD and expert input

    NASA Astrophysics Data System (ADS)

    Gertych, Arkadiusz; Wong, Alexis; Sangnil, Alan; Liu, Brent J.

    2008-03-01

    Multiple sclerosis (MS) is a frequently encountered neurological disease with a progressive but variable course affecting the central nervous system. Outline-based lesion quantification in the assessment of lesion load (LL) performed on magnetic resonance (MR) images is clinically useful and provides information about the development and change reflecting overall disease burden. Methods of LL assessment that rely on human input are tedious, have higher intra- and inter-observer variability and are more time-consuming than computerized automatic (CAD) techniques. At present it seems that methods based on human lesion identification preceded by non-interactive outlining by CAD are the best LL quantification strategies. We have developed a CAD that automatically quantifies MS lesions, displays 3-D lesion map and appends radiological findings to original images according to current DICOM standard. CAD is also capable to display and track changes and make comparison between patient's separate MRI studies to determine disease progression. The findings are exported to a separate imaging tool for review and final approval by expert. Capturing and standardized archiving of manual contours is also implemented. Similarity coefficients calculated from quantities of LL in collected exams show a good correlation of CAD-derived results vs. those incorporated as expert's reading. Combining the CAD approach with an expert interaction may impact to the diagnostic work-up of MS patients because of improved reproducibility in LL assessment and reduced time for single MR or comparative exams reading. Inclusion of CAD-generated outlines as DICOM-compliant overlays into the image data can serve as a better reference in MS progression tracking.

  7. Nanoleakage for Self-Adhesive Resin Cements used in Bonding CAD/CAD Ceramic Material to Dentin

    PubMed Central

    El-Badrawy, Wafa; Hafez, Randa Mohamed; El Naga, Abeer Ibrahim Abo; Ahmed, Doaa Ragai

    2011-01-01

    Objectives: To determine nanoleakage of CAD/CAM ceramic blocks bonded to dentin with self-adhesive resin cement. Methods: Eighteen sound extracted human molars were sterilized and sectioned into 3 mm-thick dentin sections. Trilux Cerec Vitablocks (Vita) were also sectioned into 3 mm sections, surface-treated using 5% hydrofluoric acid-etchant, and then coated with silane primer (Vita). Trilux and dentin sections were cemented together by means of three resin cements: Rely-X Unicem (3M/ESPE), BisCem (Bisco), and Calibra (Dentsply), according to manufacturers’ recommendations. Calibra was used in conjunction with Prime/Bond-NT adhesive (Dentsply), while the other two are self-adhesive. The bonded specimens were stored for 24h in distilled water at 37°C. Specimens were vertically sectioned into 1 mm-thick slabs, yielding up to six per specimen. Two central slabs were randomly chosen from each specimen making up the cement groups (n=12). Each group was subdivided into two subgroups (n=6), a control and a thermocycled subgroup (5–55°C) for 500 cycles. Slabs were coated with nail polish up to 1 mm from the interface, immersed in a 50% silver nitrate solution for 24h, and tested for nanoleakage using Quanta Environmental SEM and EDAX. Data were statistically analyzed using two-way ANOVA and Tukey’s post-hoc tests. Results: Rely-X Unicem and Calibra groups demonstrated no significant difference in the percentage of silver penetration, while the BisCem group revealed a significantly higher percentage (P≤.05). Thermocycling (500 cycles) did not have a statistically significant effect on the percentage of silver penetration (P>.05). Conclusions: One self-adhesive-resin cement demonstrated a similar sealing ability when compared with a standard resin cement. Thermo-cycling did not significantly increase dye penetration under the test conditions. PMID:21769269

  8. An Analysis of Computer Aided Design (CAD) Packages Used at MSFC for the Recent Initiative to Integrate Engineering Activities

    NASA Technical Reports Server (NTRS)

    Smith, Leigh M.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    This paper analyzes the use of Computer Aided Design (CAD) packages at NASA's Marshall Space Flight Center (MSFC). It examines the effectiveness of recent efforts to standardize CAD practices across MSFC engineering activities. An assessment of the roles played by management, designers, analysts, and manufacturers in this initiative will be explored. Finally, solutions are presented for better integration of CAD across MSFC in the future.

  9. Results and code prediction comparisons of lithium-air reaction and aerosol behavior tests

    SciTech Connect

    Jeppson, D.W.

    1986-03-01

    The Hanford Engineering Development Laboratory (HEDL) Fusion Safety Support Studies include evaluation of potential safety and environmental concerns associated with the use of liquid lithium as a breeder and coolant for fusion reactors. Potential mechanisms for volatilization and transport of radioactive metallic species associated with breeder materials are of particular interest. Liquid lithium pool-air reaction and aerosol behavior tests were conducted with lithium masses up to 100 kg within the 850-m/sup 3/ containment vessel in the Containment Systems Test Facility. Lithium-air reaction rates, aerosol generation rates, aerosol behavior and characterization, as well as containment atmosphere temperature and pressure responses were determined. Pool-air reaction and aerosol behavior test results were compared with computer code calculations for reaction rates, containment atmosphere response, and aerosol behavior. The volatility of potentially radioactive metallic species from a lithium pool-air reaction was measured. The response of various aerosol detectors to the aerosol generated was determined. Liquid lithium spray tests in air and in nitrogen atmospheres were conducted with lithium temperatures of about 427/sup 0/ and 650/sup 0/C. Lithium reaction rates, containment atmosphere response, and aerosol generation and characterization were determined for these spray tests.

  10. CAD/CAM interface design of excimer laser micro-processing system

    NASA Astrophysics Data System (ADS)

    Jing, Liang; Chen, Tao; Zuo, Tiechuan

    2005-12-01

    Recently CAD/CAM technology has been gradually used in the field of laser processing. The excimer laser micro-processing system just identified G instruction before CAD/CAM interface was designed. However the course of designing a part with G instruction for users is too hard. The efficiency is low and probability of making errors is high. By secondary development technology of AutoCAD with Visual Basic, an application was developed to pick-up each entity's information in graph and convert them to each entity's processing parameters. Also an additional function was added into former controlling software to identify these processing parameters of each entity and realize continue processing of graphic. Based on the above CAD/CAM interface, Users can design a part in AutoCAD instead of using G instruction. The period of designing a part is sharply shortened. This new way of design greatly guarantees the processing parameters of the part is right and exclusive. The processing of complex novel bio-chip has been realized by this new function.

  11. A new data integration approach for AutoCAD and GIS

    NASA Astrophysics Data System (ADS)

    Ye, Hongmei; Li, Yuhong; Wang, Cheng; Li, Lijun

    2006-10-01

    GIS has its advantages both on spatial data analysis and management, particularly on the geometric and attributive information management, which has also attracted lots attentions among researchers around world. AutoCAD plays more and more important roles as one of the main data sources of GIS. Various work and achievements can be found in the related literature. However, the conventional data integration from AutoCAD to GIS is time-consuming, which also can cause the information loss both in the geometric aspects and the attributive aspects for a large system. It is necessary and urgent to sort out new approach and algorithm for the efficient high-quality data integration. In this paper, a novel data integration approach from AutoCAD to GIS will be introduced based on the spatial data mining technique through the data structure analysis both in the AutoCAD and GIS. A practicable algorithm for the data conversion from CAD to GIS will be given as well. By a designed evaluation scheme, the accuracy of the conversion both in the geometric and the attributive information will be demonstrated. Finally, the validity and feasibility of the new approach will be shown by an experimental analysis.

  12. Web-based computer-aided-diagnosis (CAD) system for bone age assessment (BAA) of children

    NASA Astrophysics Data System (ADS)

    Zhang, Aifeng; Uyeda, Joshua; Tsao, Sinchai; Ma, Kevin; Vachon, Linda A.; Liu, Brent J.; Huang, H. K.

    2008-03-01

    Bone age assessment (BAA) of children is a clinical procedure frequently performed in pediatric radiology to evaluate the stage of skeletal maturation based on a left hand and wrist radiograph. The most commonly used standard: Greulich and Pyle (G&P) Hand Atlas was developed 50 years ago and exclusively based on Caucasian population. Moreover, inter- & intra-observer discrepancies using this method create a need of an objective and automatic BAA method. A digital hand atlas (DHA) has been collected with 1,400 hand images of normal children from Asian, African American, Caucasian and Hispanic descends. Based on DHA, a fully automatic, objective computer-aided-diagnosis (CAD) method was developed and it was adapted to specific population. To bring DHA and CAD method to the clinical environment as a useful tool in assisting radiologist to achieve higher accuracy in BAA, a web-based system with direct connection to a clinical site is designed as a novel clinical implementation approach for online and real time BAA. The core of the system, a CAD server receives the image from clinical site, processes it by the CAD method and finally, generates report. A web service publishes the results and radiologists at the clinical site can review it online within minutes. This prototype can be easily extended to multiple clinical sites and will provide the foundation for broader use of the CAD system for BAA.

  13. Potential reasons for differences in CAD effectiveness evaluated using laboratory and clinical studies

    NASA Astrophysics Data System (ADS)

    He, Xin; Samuelson, Frank; Zeng, Rongping; Sahiner, Berkman

    2015-03-01

    Research studies have investigated a number of factors that may impact the performance assessment of computer aided detection (CAD) effectiveness, such as the inherent design of the CAD, the image and reader samples, and the assessment methods. In this study, we focused on the effect of prevalence on cue validity (co-occurrence of cue and signal) and learning as potentially important factors in CAD assessment. For example, the prevalence of cases with breast cancer is around 50% in laboratory CAD studies, which is 100 times higher than that in breast cancer screening. Although ROC is prevalence-independent, an observer's use of CAD involves tasks that are more complicated than binary classification, including: search, detection, classification, cueing and learning. We developed models to investigate the potential impact of prevalence on cue validity and the learning of cue validity tasks. We hope this work motivates new studies that investigate previously under-explored factors involved in image interpretation with a new modality in its assessment.

  14. Overview of the TAC-BIO detector

    NASA Astrophysics Data System (ADS)

    Cabalo, Jerry; DeLucia, Marla; Goad, Aime; Lacis, John; Narayanan, Fiona; Sickenberger, David

    2008-10-01

    Ultra Violet (UV) induced fluorescence remains a core technique for the real time detection of biological aerosols. With this approach, the detection of an aerosolized biological event is based on the fluorescent and scattering signals observed from biological particles when exposed to one or more UV sources. In 2004, the Edgewood Chemical Biological Center (ECBC) initiated an effort to develop a low cost, small, lightweight, low power biological agent detector, identified as the TAC-BIO, based on this principle. Unlike previous laser based detectors, this program has capitalized on Semiconductor UV Optical Sources (SUVOS) being developed by the Defense Advanced Research Projects Agency (DARPA). Compared to the existing UV lasers, these SUVOS devices and their commercial counter-parts offered a means of achieving small, low cost, low power UV excitation sources. A general design philosophy of incorporating these devices with other low cost components has allowed ECBC to develop a detector that provides a credible degree of performance while maintaining the target size weight and power attributes. This paper presents an overview of the TAC-BIO and some of the findings to date.

  15. Near-highway aerosol and gas-phase measurements in a high-diesel environment

    NASA Astrophysics Data System (ADS)

    DeWitt, H. L.; Hellebust, S.; Temime-Roussel, B.; Ravier, S.; Polo, L.; Jacob, V.; Buisson, C.; Charron, A.; André, M.; Pasquier, A.; Besombes, J. L.; Jaffrezo, J. L.; Wortham, H.; Marchand, N.

    2015-04-01

    Diesel-powered passenger cars currently outnumber gasoline-powered cars in many countries, particularly in Europe. In France, diesel cars represented 61% of light duty vehicles in 2011 and this percentage is still increasing (French Environment and Energy Management Agency, ADEME). As part of the September 2011 joint PM-DRIVE (Particulate Matter - DiRect and Indirect on-road Vehicular Emissions) and MOCOPO (Measuring and mOdeling traffic COngestion and POllution) field campaign, the concentration and high-resolution chemical composition of aerosols and volatile organic carbon species were measured adjacent to a major urban highway south of Grenoble, France. Alongside these atmospheric measurements, detailed traffic data were collected from nearby traffic cameras and loop detectors, which allowed the vehicle type, traffic concentration, and traffic speed to be quantified. Six aerosol age and source profiles were resolved using the positive matrix factorization model on real-time high-resolution aerosol mass spectra. These six aerosol source/age categories included a hydrocarbon-like organic aerosol (HOA) commonly associated with primary vehicular emissions, a nitrogen-containing aerosol with a diurnal pattern similar to that of HOA, oxidized organic aerosol (OOA), and biomass burning aerosol. While quantitatively separating the influence of diesel from that of gasoline proved impossible, a low HOA : black carbon ratio, similar to that measured in other high-diesel environments, and high levels of NOx, also indicative of diesel emissions, were observed. Although the measurement site was located next to a large source of primary emissions, which are typically found to have low oxygen incorporation, OOA was found to comprise the majority of the measured organic aerosol, and isotopic analysis showed that the measured OOA contained mainly modern carbon, not fossil-derived carbon. Thus, even in this heavily vehicular-emission-impacted environment, photochemical processes

  16. Application of matrix calculation 1: Design and adjustment of a tandem mass spectrometer for Collision-Activated Dissociation (CAD)

    NASA Astrophysics Data System (ADS)

    1982-02-01

    A matrix representation of the ion optics of the analyzing stage has been used in a computer model of a tandem mass spectrometer with simultaneous detection for CAD. The matrix algorithm of this model is discussed here as an elegant way of describing the ion optics in a first-order approximation. The accuracy of the calculations is illustrated by comparing calculated and measured adjustments of the instrument under normal experiment conditions. The ion-optical possibilities with respect to transmission, mass resolution influence of several ion optical parameters on the shape and position of the mass focal plane is discussed. The experimental values of mass range, mass resolution and ion transmission agree very well with the calculations. Moreover, the computer model appears to be a useful tool for giving clear insight into the operation of the rather complex ion optics of the instrument. The calculations have been further developed towards higher accuracy, making possible automatic focusing of the mass focal plane onto the detector.

  17. Multi-Parameter Aerosol Scattering Sensor

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Fischer, David G.

    2011-01-01

    This work relates to the development of sensors that measure specific aerosol properties. These properties are in the form of integrated moment distributions, i.e., total surface area, total mass, etc., or mathematical combinations of these moment distributions. Specifically, the innovation involves two fundamental features: a computational tool to design and optimize such sensors and the embodiment of these sensors in actual practice. The measurement of aerosol properties is a problem of general interest. Applications include, but are not limited to, environmental monitoring, assessment of human respiratory health, fire detection, emission characterization and control, and pollutant monitoring. The objectives for sensor development include increased accuracy and/or dynamic range, the inclusion in a single sensor of the ability to measure multiple aerosol properties, and developing an overall physical package that is rugged, compact, and low in power consumption, so as to enable deployment in harsh or confined field applications, and as distributed sensor networks. Existing instruments for this purpose include scattering photometers, direct-reading mass instruments, Beta absorption devices, differential mobility analyzers, and gravitational samplers. The family of sensors reported here is predicated on the interaction of light and matter; specifically, the scattering of light from distributions of aerosol particles. The particular arrangement of the sensor, e.g. the wavelength(s) of incident radiation, the number and location of optical detectors, etc., can be derived so as to optimize the sensor response to aerosol properties of practical interest. A key feature of the design is the potential embodiment as an extremely compact, integrated microsensor package. This is of fundamental importance, as it enables numerous previously inaccessible applications. The embodiment of these sensors is inherently low maintenance and high reliability by design. The novel and

  18. Detector simulation needs for detector designers

    SciTech Connect

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers.

  19. Graphical aerosol classification method using aerosol relative optical depth

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Xiang; Yuan, Yuan; Shuai, Yong; Tan, He-Ping

    2016-06-01

    A simple graphical method is presented to classify aerosol types based on a combination of aerosol optical thickness (AOT) and aerosol relative optical thickness (AROT). Six aerosol types, including maritime (MA), desert dust (DD), continental (CO), sub-continental (SC), urban industry (UI) and biomass burning (BB), are discriminated in a two dimensional space of AOT440 and AROT1020/440. Numerical calculations are performed using MIE theory based on a multi log-normal particle size distribution, and the AROT ranges for each aerosol type are determined. More than 5 years of daily observations from 8 representative aerosol sites are applied to the method to confirm spatial applicability. Finally, 3 individual cases are analyzed according to their specific aerosol status. The outcomes indicate that the new graphical method coordinates well with regional characteristics and is also able to distinguish aerosol variations in individual situations. This technique demonstrates a novel way to estimate different aerosol types and provide information on radiative forcing calculations and satellite data corrections.

  20. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  1. Using AutoCAD for descriptive geometry exercises. in undergraduate structural geology

    NASA Astrophysics Data System (ADS)

    Jacobson, Carl E.

    2001-02-01

    The exercises in descriptive geometry typically utilized in undergraduate structural geology courses are quickly and easily solved using the computer drafting program AutoCAD. The key to efficient use of AutoCAD for descriptive geometry involves taking advantage of User Coordinate Systems, alternative angle conventions, relative coordinates, and other aspects of AutoCAD that may not be familiar to the beginning user. A summary of these features and an illustration of their application to the creation of structure contours for a planar dipping bed provides the background necessary to solve other problems in descriptive geometry with the computer. The ease of the computer constructions reduces frustration for the student and provides more time to think about the principles of the problems.

  2. Mechanical design productivity using CAD graphics - A user's point of view

    NASA Astrophysics Data System (ADS)

    Boltz, R. J.; Avery, J. T., Jr.

    1985-02-01

    The present investigation is concerned with the mechanical design productivity resulting from the use of Computer-Aided Design (CAD) graphics as a design tool. The considered studies had been conducted by a company which is involved in the design, development, and manufacture of government and defense products. Attention is given to CAD graphics for mechanical design, productivity, an overall productivity assessment, the use of CAD graphics for basic mechanical design, productivity in engineering-related areas, and an overall engineering productivity assessment. The investigation shows that there was no appreciable improvement in productivity with respect to basic mechanical design. However, rather substantial increases could be realized in productivity for engineering-related activities.

  3. On the Use of Parmetric-CAD Systems and Cartesian Methods for Aerodynamic Design

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2004-01-01

    Automated, high-fidelity tools for aerodynamic design face critical issues in attempting to optimize real-life geometry arid in permitting radical design changes. Success in these areas promises not only significantly shorter design- cycle times, but also superior and unconventional designs. To address these issues, we investigate the use of a parmetric-CAD system in conjunction with an embedded-boundary Cartesian method. Our goal is to combine the modeling capabilities of feature-based CAD with the robustness and flexibility of component-based Cartesian volume-mesh generation for complex geometry problems. We present the development of an automated optimization frame-work with a focus on the deployment of such a CAD-based design approach in a heterogeneous parallel computing environment.

  4. Aerodynamic Design of Complex Configurations Using Cartesian Methods and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2003-01-01

    The objective for this paper is to present the development of an optimization capability for the Cartesian inviscid-flow analysis package of Aftosmis et al. We evaluate and characterize the following modules within the new optimization framework: (1) A component-based geometry parameterization approach using a CAD solid representation and the CAPRI interface. (2) The use of Cartesian methods in the development Optimization techniques using a genetic algorithm. The discussion and investigations focus on several real world problems of the optimization process. We examine the architectural issues associated with the deployment of a CAD-based design approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute nodes. In addition, we study the influence of noise on the performance of optimization techniques, and the overall efficiency of the optimization process for aerodynamic design of complex three-dimensional configurations. of automated optimization tools. rithm and a gradient-based algorithm.

  5. Study on the integration approaches to CAD/CAPP/FMS in garment CIMS

    NASA Astrophysics Data System (ADS)

    Wang, Xiankui; Tian, Wensheng; Liu, Chengying; Li, Zhizhong

    1995-08-01

    Computer integrated manufacturing system (CIMS), as an advanced methodology, has been applied in many industry fields. There is, however, little research on the application of CIMS in the garment industry, especially on the integrated approach to CAD, CAPP, and FMS in garment CIMS. In this paper, the current situations of CAD, CAPP, and FMS in the garment industry are discussed, and information requirements between them as well as the integrated approaches are also investigated. The representation of the garments' product data by the group technology coding is proposed. Based on the group technology, a shared data base as an integration element can be constructed, which leads to the integration of CAD/CAPP/FMS in garment CIMS.

  6. Development of CAD/CAM System for Cross Section’s Changing Hole Electrical Discharge Machining

    NASA Astrophysics Data System (ADS)

    Ishida, Tohru; Ishiguro, Eiki; Kita, Masahiko; Nakamoto, Keiichi; Takeuchi, Yoshimi

    This study deals with the development of a new CAD/CAM system for fabricating holes whose cross sections change variously. The cross sections of machined holes are generally constant. The limitations in the shapes of holes that can be machined make obstacles in the design stage of industrial products. A new device that utilizes electrical discharge machining has been developed that can create holes with various cross sections to solve this problem. However, it has been impossible to put the device into practical use since there has been no software that has enabled the designed shapes to be easily machined. Therefore, we aimed at developing a new CAD/CAM system for machining the beforehand designed holes with changing cross sections by using the device. As the first step in developing the CAD/CAM system, the post processor in the CAM system is formulated in this paper.

  7. Utilization of CAD/CAE for concurrent design of structural aircraft components

    NASA Technical Reports Server (NTRS)

    Kahn, William C.

    1993-01-01

    The feasibility of installing the Stratospheric Observatory for Infrared Astronomy telescope (named SOFIA) into an aircraft for NASA astronomy studies is investigated using CAD/CAE equipment to either design or supply data for every facet of design engineering. The aircraft selected for the platform was a Boeing 747, chosen on the basis of its ability to meet the flight profiles required for the given mission and payload. CAD models of the fuselage of two of the aircraft models studied (747-200 and 747 SP) were developed, and models for the component parts of the telescope and subsystems were developed by the various concurrent engineering groups of the SOFIA program, to determine the requirements for the cavity opening and for design configuration. It is noted that, by developing a plan to use CAD/CAE for concurrent engineering at the beginning of the study, it was possible to produce results in about two-thirds of the time required using traditional methods.

  8. Elevated Glucose Oxidation, Reduced Insulin Secretion, and a Fatty Heart May Be Protective Adaptions in Ischemic CAD

    PubMed Central

    Hannukainen, J. C.; Lautamäki, R.; Mari, A.; Pärkkä, J. P.; Bucci, M.; Guzzardi, M. A.; Kajander, S.; Tuokkola, T.; Knuuti, J.

    2016-01-01

    Background: Insulin resistance, β-cell dysfunction, and ectopic fat deposition have been implicated in the pathogenesis of coronary artery disease (CAD) and type 2 diabetes, which is common in CAD patients. We investigated whether CAD is an independent predictor of these metabolic abnormalities and whether this interaction is influenced by superimposed myocardial ischemia. Methods and Results: We studied CAD patients with (n = 8) and without (n = 14) myocardial ischemia and eight non-CAD controls. Insulin sensitivity and secretion and substrate oxidation were measured during fasting and oral glucose tolerance testing. We used magnetic resonance imaging/spectroscopy, positron emission and computerized tomography to characterize CAD, cardiac function, pericardial and abdominal adipose tissue, and myocardial, liver, and pancreatic triglyceride contents. Ischemic CAD was characterized by elevated oxidative glucose metabolism and a proportional decline in β-cell insulin secretion and reduction in lipid oxidation. Cardiac function was preserved in CAD groups, whereas cardiac fat depots were elevated in ischemic CAD compared to non-CAD subjects. Liver and pancreatic fat contents were similar in all groups and related with surrounding adipose masses or systemic insulin sensitivity. Conclusions: In ischemic CAD patients, glucose oxidation is enhanced and correlates inversely with insulin secretion. This can be seen as a mechanism to prevent glucose lowering because glucose is required in oxygen-deprived tissues. On the other hand, the accumulation of cardiac triglycerides may be a physiological adaptation to the limited fatty acid oxidative capacity. Our results underscore the urgent need of clinical trials that define the optimal/safest glycemic range in situations of myocardial ischemia. PMID:27045985

  9. Assimilation of Aerosol Optical Depths

    NASA Astrophysics Data System (ADS)

    Verver, Gé; Henzing, Bas

    Climate predictions are hampered by the large uncertainties involved in the estima- tion of the effects of atmospheric aerosol (IPCC,2001). These uncertainties are caused partly because sources and sinks as well as atmospheric processing of the different types of aerosol are not accurately known. Moreover, the climate impact (especially the indirect effect) of a certain distribution of aerosol is hard to quantify. There have been different approaches to reduce these uncertainties. In recent years intensive ob- servational campaigns such as ACE and INDOEX have been carried out, aiming to in- crease our knowledge of atmospheric processes that determine the fate of atmospheric aerosols and to quantify the radiation effects. With the new satellite instruments such as SCIAMACHY and OMI it will be possible in the near future to derive the ge- ographical distribution of the aerosol optical depths (AOD) and perhaps additional information on the occurrence of different aerosol types. The goal of the ARIA project (started in 2001) is to assimilate global satellite de- rived aerosol optical depth (AOD) in an off-line chemistry/transport model TM3. The TM3 model (Jeuken et al. 2001) describes sources, sinks, transformation and transport processes of different types of aerosol (mineral dust, carbon, sulfate, nitrate) that are relevant to radiative forcing. All meteorological input is provided by ECMWF. The assimilation procedure constrains the aerosol distribution produced by the model on the basis of aerosol optical depths observed by satellite. The product, i.e. an optimal estimation of global aerosol distribution, is then available for the calculation of radia- tive forcing. Error analyses may provide valuable information on deficiencies of the model. In the ARIA project it is tried to extract additional information on the type of aerosol present in the atmosphere by assimilating AOD at multiple wavelengths. First results of the ARIA project will be presented. The values

  10. An open source implementation of colon CAD in 3D slicer

    NASA Astrophysics Data System (ADS)

    Xu, Haiyong; Gage, H. Donald; Santago, Pete

    2010-03-01

    Most colon CAD (computer aided detection) software products, especially commercial products, are designed for use by radiologists in a clinical environment. Therefore, those features that effectively assist radiologists in finding polyps are emphasized in those tools. However, colon CAD researchers, many of whom are engineers or computer scientists, are working with CT studies in which polyps have already been identified using CT Colonography (CTC) and/or optical colonoscopy (OC). Their goal is to utilize that data to design a computer system that will identify all true polyps with no false positive detections. Therefore, they are more concerned with how to reduce false positives and to understand the behavior of the system than how to find polyps. Thus, colon CAD researchers have different requirements for tools not found in current CAD software. We have implemented a module in 3D Slicer to assist these researchers. As with clinical colon CAD implementations, the ability to promptly locate a polyp candidate in a 2D slice image and on a 3D colon surface is essential for researchers. Our software provides this capability, and uniquely, for each polyp candidate, the prediction value from a classifier is shown next to the 3D view of the polyp candidate, as well as its CTC/OC finding. This capability makes it easier to study each false positive detection and identify its causes. We describe features in our colon CAD system that meets researchers' specific requirements. Our system uses an open source implementation of a 3D Slicer module, and the software is available to the pubic for use and for extension (http://www2.wfubmc.edu/ctc/download/).

  11. On the Use of CAD-Native Predicates and Geometry in Surface Meshing

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.

    1999-01-01

    Several paradigms for accessing CAD geometry during surface meshing for CFD are discussed. File translation, inconsistent geometry engines and non-native point construction are all identified as sources of non-robustness. The paper argues in favor of accessing CAD parts and assemblies in their native format, without translation, and for the use of CAD-native predicates and constructors in surface mesh generation. The discussion also emphasizes the importance of examining the computational requirements for exact evaluation of triangulation predicates during surface meshing. The native approach is demonstrated through an algorithm for the generation of closed manifold surface triangulations from CAD geometry. CAD parts and assemblies are used in their native format, and a part's native geometry engine is accessed through a modeler-independent application programming interface (API). In seeking a robust and fully automated procedure, the algorithm is based on a new physical space manifold triangulation technique specially developed to avoid robustness issues associated with poorly conditioned mappings. In addition, this approach avoids the usual ambiguities associated with floating-point predicate evaluation on constructed coordinate geometry in a mapped space. The technique is incremental, so that each new site improves the triangulation by some well defined quality measure. The algorithm terminates after achieving a prespecified measure of mesh quality and produces a triangulation such that no angle is less than a given angle bound, a or greater than pi - 2alpha. This result also sets bounds on the maximum vertex degree, triangle aspect-ratio and maximum stretching rate for the triangulation. In addition to the output triangulations for a variety of CAD parts, the discussion presents related theoretical results which assert the existence of such an angle bound, and demonstrate that maximum bounds of between 25 deg and 30 deg may be achieved in practice.

  12. CAD CAM trans-tibial temporary prosthesis: analysis and comparison with an established technique.

    PubMed

    Ruder, G K

    1992-12-01

    The purpose of this study was to evaluate the application of CAD CAM in the production of temporary trans-tibial prostheses. The CAD CAM system was assessed based on the number of socket attempts, number of prosthetic appointments, and temporary prosthesis rehabilitation time. These parameters were considered to be related to the quality of socket fit and were influenced by the entire interdisciplinary team including the patient. A concurrent prospective comparison between the CAD CAM system and an established fiberglass/pelite liner technique was also performed. Patients (n = 30), were fitted with either a conventional or a CAD CAM socket. Records were kept before and after discharge until the interdisciplinary team considered the patient ready for definitive prosthesis casting. After approximately 90 postoperative days, patients were deemed fit to proceed from their initial plaster cast prostheses to their temporary prostheses. The group fitted with conventional sockets had an in-patient rehabilitation phase of 10.5 +/- 15.0 days and required 2.9 +/- 1.1 prosthetic appointments. In-patients fitted with CAD CAM sockets required 5.1 +/- 1.8 appointments and were hospitalised for 23.6 +/- 15.0 days. The significantly increased rehabilitation duration and number of appointments (p = 0.01), were generally due to incorrect socket volume and/or inadequately modified relief/loading areas. In this study 67% of the patients fitted with CAD CAM sockets required at least one additional attempt. The clinical evaluation and modification of the temporary prostheses, including the decision to remake a particular socket, were carried out by the same prosthetist who cast the patients.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1491953

  13. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  14. Stratospheric aerosols - Observation and theory

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Whitten, R. C.; Toon, O. B.

    1982-01-01

    Important chemical and physical roles of aerosols are discussed, and properties of stratospheric aerosols as revealed by experimental data are described. In situ measurements obtained by mechanical collection and scattered-light detection yield the overall size distribution of the aerosols, and analyses of preserved aerosol precursor gases by wet chemical, cryogenic and spectroscopic techniques indicate the photochemical sources of particle mass. Aerosol chemical reactions including those of gaseous precursors, those in aqueous solution, and those on particle surfaces are discussed, in addition to aerosol microphysical processes such as nucleation, condensation/evaporation, coagulation and sedimentation. Models of aerosols incorporating such chemical and physical processes are presented, and simulations are shown to agree with measurements. Estimates are presented for the potential aerosol changes due to emission of particles and gases by aerospace operations and industrial consumption of fossil fuels, and it is demonstrated that although the climatic effects of existing levels of stratospheric aerosol pollution are negligible, potential increases in those levels might pose a future threat.

  15. Volcanic aerosols and lunar eclipses.

    PubMed

    Keen, R A

    1983-12-01

    The moon is visible during total lunar eclipses due to sunlight refracted into the earth's shadow by the atmosphere. Stratospheric aerosols can profoundly affect the brightness of the eclipsed moon. Observed brightnesses of 21 lunar eclipses during 1960-1982 are compared with theoretical calculations based on refraction by an aerosol-free atmosphere to yield globally averaged aerosol optical depths. Results indicate the global aerosol loading from the 1982 eruption of El Chichón is similar in magnitude to that from the 1963 Agung eruption. PMID:17776243

  16. Computer Aided Detection (CAD) Systems for Mammography and the Use of GRID in Medicine

    NASA Astrophysics Data System (ADS)

    Lauria, Adele

    It is well known that the most effective way to defeat breast cancer is early detection, as surgery and medical therapies are more efficient when the disease is diagnosed at an early stage. The principal diagnostic technique for breast cancer detection is X-ray mammography. Screening programs have been introduced in many European countries to invite women to have periodic radiological breast examinations. In such screenings, radiologists are often required to examine large numbers of mammograms with a double reading, that is, two radiologists examine the images independently and then compare their results. In this way an increment in sensitivity (the rate of correctly identified images with a lesion) of up to 15% is obtained.1,2 In most radiological centres, it is a rarity to find two radiologists to examine each report. In recent years different Computer Aided Detection (CAD) systems have been developed as a support to radiologists working in mammography: one may hope that the "second opinion" provided by CAD might represent a lower cost alternative to improve the diagnosis. At present, four CAD systems have obtained the FDA approval in the USA. † Studies3,4 show an increment in sensitivity when CAD systems are used. Freer and Ulissey in 2001 5 demonstrated that the use of a commercial CAD system (ImageChecker M1000, R2 Technology) increases the number of cancers detected up to 19.5% with little increment in recall rate. Ciatto et al.,5 in a study simulating a double reading with a commercial CAD system (SecondLook‡), showed a moderate increment in sensitivity while reducing specificity (the rate of correctly identified images without a lesion). Notwithstanding these optimistic results, there is an ongoing debate to define the advantages of the use of CAD as second reader: the main limits underlined, e.g., by Nishikawa6 are that retrospective studies are considered much too optimistic and that clinical studies must be performed to demonstrate a statistically

  17. Space crew radiation exposure analysis system based on a commercial stand-alone CAD system

    NASA Astrophysics Data System (ADS)

    Appleby, Matthew H.; Golightly, Michael J.; Hardy, Alva C.

    1992-07-01

    Major improvements have recently been completed in the approach to spacecraft shielding analysis. A Computer-Aided Design (CAD)-based system has been developed for determining the shielding provided to any point within or external to the spacecraft. Shielding analysis is performed using a commercially available stand-alone CAD system and a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design projects such as a Mars transfer habitat, pressurized lunar rover, and the redesigned Space Station. Results of these analyses are provided to demonstrate the applicability and versatility of the system.

  18. Space crew radiation exposure analysis system based on a commercial stand-alone CAD system

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew H.; Golightly, Michael J.; Hardy, Alva C.

    1992-01-01

    Major improvements have recently been completed in the approach to spacecraft shielding analysis. A Computer-Aided Design (CAD)-based system has been developed for determining the shielding provided to any point within or external to the spacecraft. Shielding analysis is performed using a commercially available stand-alone CAD system and a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design projects such as a Mars transfer habitat, pressurized lunar rover, and the redesigned Space Station. Results of these analyses are provided to demonstrate the applicability and versatility of the system.

  19. New Algorithm for CAD Solid Model Direct Slicing on Rapid Prototyping

    NASA Astrophysics Data System (ADS)

    Zhou, Huiqun; Wu, Jianjun

    In the paper, a new algorithm for CAD solid model direct slicing has been given. The three-dimensional CAD solid models have been divided into a series of layer which meeting tolerance required on the basis of rapid prototyping. Section contour extraction method has been adopted, then, section contour has been into line, arc, free curves, and the data is stored in a specific file format. In the contour interior, scanning area has been formed. The examples show that the algorithm can better achieve layered manufacturing to rapid prototyping.

  20. 3-D Human body models in C.A.D. : Anthropometric Aspects

    NASA Astrophysics Data System (ADS)

    Renaud, C.; Steck, R.; Pineau, J. C.

    1986-07-01

    Modeling and simulation methods of man-machine systems are developed at the laboratory by interactive infography and C.A.D. technics. In order to better apprehend the morphological variability of populations we have enriched the 3-D model with a parametric function using classical anthropometric dimensions. We have selected reference, associate and complementary dimensions : lengths, breadths, circumferences and depths, which depend on operator's tasks and characteristics of workplaces. All anthropometric values come from the International Data Bank of Human Biometry of ERGODATA System. The utilization of the parametric function brings a quick and accurate description of morphology for theoretic subjects and can be used in C.A.D. analysis.

  1. Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties

    PubMed Central

    2014-01-01

    Background In recent decades cultivation of flax and its application have dramatically decreased. One of the reasons for this is unpredictable quality and properties of flax fibre, because they depend on environmental factors, retting duration and growing conditions. These factors have contribution to the fibre composition, which consists of cellulose, hemicelluloses, lignin and pectin. By far, it is largely established that in flax, lignin reduces an accessibility of enzymes either to pectin, hemicelluloses or cellulose (during retting or in biofuel synthesis and paper production). Therefore, in this study we evaluated composition and properties of flax fibre from plants with silenced CAD (cinnamyl alcohol dehydrogenase) gene, which is key in the lignin biosynthesis. There is evidence that CAD is a useful tool to improve lignin digestibility and/or to lower the lignin levels in plants. Results Two studied lines responded differentially to the introduced modification due to the efficiency of the CAD silencing. Phylogenetic analysis revealed that flax CAD belongs to the “bona-fide” CAD family. CAD down-regulation had an effect in the reduced lignin amount in the flax fibre cell wall and as FT-IR results suggests, disturbed lignin composition and structure. Moreover introduced modification activated a compensatory mechanism which was manifested in the accumulation of cellulose and/or pectin. These changes had putative correlation with observed improved fiber’s tensile strength. Moreover, CAD down-regulation did not disturb at all or has only slight effect on flax plants’ development in vivo, however, the resistance against flax major pathogen Fusarium oxysporum decreased slightly. The modification positively affected fibre possessing; it resulted in more uniform retting. Conclusion The major finding of our paper is that the modification targeted directly to block lignin synthesis caused not only reduced lignin level in fibre, but also affected amount and

  2. Online mammographic images database for development and comparison of CAD schemes.

    PubMed

    Matheus, Bruno Roberto Nepomuceno; Schiabel, Homero

    2011-06-01

    Considering the difficulties in finding good-quality images for the development and test of computer-aided diagnosis (CAD), this paper presents a public online mammographic images database free for all interested viewers and aimed to help develop and evaluate CAD schemes. The digitalization of the mammographic images is made with suitable contrast and spatial resolution for processing purposes. The broad recuperation system allows the user to search for different images, exams, or patient characteristics. Comparison with other databases currently available has shown that the presented database has a sufficient number of images, is of high quality, and is the only one to include a functional search system. PMID:20480383

  3. Correlation between C677T MTHFR gene polymorphism, plasma homocysteine levels and the incidence of CAD.

    PubMed

    Nakai, K; Itoh, C; Nakai, K; Habano, W; Gurwitz, D

    2001-01-01

    The lesions of coronary atherosclerosis represent the result of a complex, multicellular, inflammatory-healing response in the coronary arterial wall. In vivo and in vitro cellular and molecular studies have suggested a role for tissue homocysteine in endothelial cell injury and adverse extra-cellular matrix remodeling. Gene polymorphisms in relation with numerous risk factors might increase the incidence of coronary artery disease (CAD). In this review we have focused on the correlations between plasma homocysteine levels, the incidence of cardiovascular disease and the cytosine-to-thymidine substitution at nucleotide 677 (C677T) of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene, coding for a key enzyme in methionine-homocysteine metabolism. The role of the C677T MTHFR gene polymorphism in the causation of CAD is controversial. We reviewed 12 recent case-control studies comprising 5370 genotyped patients with CAD and 4961 genotyped participants without CAD. There was no significant difference between those with and without CAD in the frequency of the C677T polymorphism (34.9 vs 33.6%). The frequency of homozygous C677T polymorphism in these groups was 10.9 versus 12.8%, respectively, although there were some ethnic differences in the C677T MTHFR polymorphism. In the analysis of the 12 studies, the odds ratio of CAD associated with the TT genotype (homozygous C677T polymorphism) was 1.18. Only slightly higher plasma homocysteine levels were observed in participants with the val/val (TT) genotype (14.4+/-2.9 micro mol/L in TT genotype vs 11.1+/-1.9 and 11.9+/-2 micro mol/L in CC and CT genotype, respectively). In addition, the relation between homocysteine increase after methionine loading and MTHFR genotypes is also controversial. However, hyperhomocysteinemia because of the C677T MTHFR allele may be corrected with oral folic acid therapy. Further investigations on the relationships between MTHFR genotypes and the incidence of CAD should be based on

  4. USE OF CONTINUOUS MEASUREMENTS OF INTEGRAL AEROSOL PARAMETERS TO ESTIMATE PARTICLE SURFACE AREA

    EPA Science Inventory

    This study was undertaken because of interest in using particle surface area as an indicator for studies of the health effects of particulate matter. First, we wished to determine the integral parameter of the size distribution measured by the electrical aerosol detector. Secon...

  5. Powerful eyesafe infrared aerosol lidar: Application of stimulated Raman backscattering of 1.06 micron radiation

    NASA Astrophysics Data System (ADS)

    Carnuth, W.; Trickl, T.

    1994-11-01

    Usually, lidar investigations of light backscattering and extinction by aerosols are most commonly carried out near infrared. In the study, the background noise from Rayleigh backscattering is substantially reduced, there is a sufficiently large number of wavelength windows with high atmospheric transmittance, powerful pulsed laser sources exist, and efficient detectors are available.

  6. Westinghouse Idaho Nuclear Company, Inc. (WINCO) CAD activities at the Idaho Chemical Processing Plant (ICPP) (Idaho Engineering Laboratory)

    SciTech Connect

    Jensen, B.

    1989-04-18

    June 1985 -- The drafting manager obtained approval to implement a cad system at the ICPP. He formed a committee to evaluate the various cad systems and recommend a system that would most benefit the ICPP. A PC'' (personal computer) based system using Autocad software was recommended in lieu of the much more expensive main frame based systems.

  7. Westinghouse Idaho Nuclear Company, Inc. (WINCO) CAD activities at the Idaho Chemical Processing Plant (ICPP) (Idaho Engineering Laboratory)

    SciTech Connect

    Jensen, B.

    1989-04-18

    June 1985 -- The drafting manager obtained approval to implement a cad system at the ICPP. He formed a committee to evaluate the various cad systems and recommend a system that would most benefit the ICPP. A ``PC`` (personal computer) based system using Autocad software was recommended in lieu of the much more expensive main frame based systems.

  8. An Educational Exercise Examining the Role of Model Attributes on the Creation and Alteration of CAD Models

    ERIC Educational Resources Information Center

    Johnson, Michael D.; Diwakaran, Ram Prasad

    2011-01-01

    Computer-aided design (CAD) is a ubiquitous tool that today's students will be expected to use proficiently for numerous engineering purposes. Taking full advantage of the features available in modern CAD programs requires that models are created in a manner that allows others to easily understand how they are organized and alter them in an…

  9. Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258.

    PubMed Central

    Yoon, K P; Misra, T K; Silver, S

    1991-01-01

    Regulation of the cadA cadmium and zinc resistance determinant of Staphylococcus aureus plasmid pI258 was demonstrated by using gene fusions and direct measurements of transcription. In growth experiments, cells harboring the intact cadA operon were induced with different cations and challenged by an inhibitory concentration of ZnCl2, a substrate of the CadA resistance system. Uninduced cells did not grow for 8 h after Zn2+ addition, whereas induced cells grew in the presence Zn2+. Cd2+ was a strong inducer, and Bi3+ and Pb2+ also induced well; Co2+ and Zn2+ were weak inducers. A translational beta-lactamase fusion to the cadA gene showed the same induction specificity as that seen with growth experiments with the intact cadA operon. A short beta-lactamase transcriptional fusion to the cadC gene also showed the same pattern of induction, establishing that the cadC gene was not involved in regulation. In Northern (RNA) blot hybridization experiments, a cadmium-inducible, 2.6-kb, operon-length transcript was detected. Primer extension experiments determined that Cd(2+)-inducible transcription of the cadA operon begins at nucleotides 676 and 677 of the published sequence (G. Nucifora, L. Chu, T. K. Misra, and S. Silver, Proc. Natl. Acad. Sci. USA 86: 3544-3548, 1989). Images FIG. 6 FIG. 7 PMID:1938960

  10. Cad74A is regulated by BR and is required for robust dorsal appendage formation in Drosophila oogenesis

    PubMed Central

    Zartman, Jeremiah J.; Yakoby, Nir; Bristow, Chris A.; Zhou, Xiaofeng; Schlichting, Karin; Dahmann, Christian; Shvartsman, Stanislav Y.

    2008-01-01

    Drosophila egg development is an established model for studying epithelial patterning and morphogenesis, but the connection between signaling pathways and egg morphology is still incompletely understood. We have identified a non-classical cadherin, Cad74A, as a putative adhesion gene that bridges epithelial patterning and morphogenesis in the follicle cells. Starting in mid-oogenesis, Cad74A is expressed in the follicle cells that contact the oocyte, including the border cells and most of the columnar follicle cells. However, Cad74A is repressed in two dorsolateral patches of follicle cells, which participate in the formation of tubular respiratory appendages. We show genetically that Cad74A is downstream of the EGFR and BMP signaling pathways and is repressed by the Zn-finger transcription factor Broad. The correlation of Cad74A repression in the cells that bend out of the plane of the follicular epithelium is preserved across Drosophila species and mutant backgrounds exhibiting a range of eggshell phenotypes. Complete removal of Cad74A from the follicle cells causes defects in dorsal appendage formation. Ectopic expression of Cad74A in the roof cells results in shortened, flattened appendages due to the hindered migration of the roof cells. Based on these results, we propose that Cad74A is part of the adhesive machinery that enables robust dorsal appendage formation, and as such provides a link between the patterning of the follicle cells and eggshell morphogenesis. PMID:18708045

  11. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  12. Studies of organic aerosol and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Duong, Hanh To

    Atmospheric aerosols can influence society and the environment in many ways including altering the planet's energy budget, the hydrologic cycle, and public health. However, the Fourth Assessment Report of the Intergovernmental Panel on Climate Change indicates that the anthropogenic radiative forcing associated with aerosol effects on clouds has the highest uncertainty in the future climate predictions. This thesis focuses on the nature of the organic fraction of ambient particles and how particles interact with clouds using a combination of tools including aircraft and ground measurements, models, and satellite data. Fine aerosol particles typically contain between 20 - 90% organic matter by mass and a major component of this fraction includes water soluble organic carbon (WSOC). Consequently, water-soluble organic species can strongly influence aerosol water-uptake and optical properties. However, the chemical composition of this fraction is not well-understood. PILS-TOC was used to characterize WSOC in ambient aerosol in Los Angeles, California. The spatial distribution of WSOC was found to be influenced by (i) a wide range of aerosol sources within this urban metropolitan area, (ii) transport of pollutants by the characteristic daytime sea breeze trajectory, (iii) topography, and (iv) secondary production during transport. Meteorology is linked with the strength of many of these various processes. Many methods and instruments have been used to study aerosol-cloud interactions. Each observational platform is characterized by different temporal/spatial resolutions and operational principles, and thus there are disagreements between different studies for the magnitude of mathematical constructs used to represent the strength of aerosol-cloud interactions. This work points to the sensitivity of the magnitude of aerosol-cloud interactions to cloud lifetime and spatial resolution of measurements and model simulations. Failure to account for above-cloud aerosol layers

  13. Use of analytical electron microscopy for the individual particle analysis of the Arctic haze aerosol

    SciTech Connect

    Sheridan, P.J.

    1986-01-01

    To explore the usefulness of the analytical electron microscope for the analysis and source apportionment of individual aerosol particles, aerosol samples amenable to individual particle analysis were collected from a remote region. These samples were from the Arctic haze aerosol, and were collected on board a research aircraft during the Arctic Gas and Aerosol Sampling Program in spring 1983. Before elemental analysis by analytical electron microscopy (AEM) could be performed, an extensive relative sensitivity factor study was undertaken to calibrate the microscope/detector system for quanitative x-ray microanalysis. Subsequently determined elemental data, along with morphological information, were used to group the particles into classes with similar characteristics. Forty-seven classes of particles were found in the Arctic samples, the most populous classes containing H/sub 2/SO/sub 4/ droplets, carbonaceous particles, lithophilic particles, CaSO/sub 4/ or NaCl. Several classes containing anthropogenic particles were also identified.

  14. Project Integration Architecture (PIA) and Computational Analysis Programming Interface (CAPRI) for Accessing Geometry Data from CAD Files

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2002-01-01

    Integration of a supersonic inlet simulation with a computer aided design (CAD) system is demonstrated. The integration is performed using the Project Integration Architecture (PIA). PIA provides a common environment for wrapping many types of applications. Accessing geometry data from CAD files is accomplished by incorporating appropriate function calls from the Computational Analysis Programming Interface (CAPRI). CAPRI is a CAD vendor neutral programming interface that aids in acquiring geometry data directly from CAD files. The benefits of wrapping a supersonic inlet simulation into PIA using CAPRI are; direct access of geometry data, accurate capture of geometry data, automatic conversion of data units, CAD vendor neutral operation, and on-line interactive history capture. This paper describes the PIA and the CAPRI wrapper and details the supersonic inlet simulation demonstration.

  15. AEROSOL EXPOSURE, PHYSICS, AND CHEMISTRY

    EPA Science Inventory

    A brief review is given of the "Knowledge" and the "Gaps in Knowledge" of aerosol exposure, physics and chemistry relevant to health effects of aerosols, and presented or discussed in platform or poster presentations at the Symposium on Particulate Air Pollution - Associations wi...

  16. Nanotechnology and pharmaceutical inhalation aerosols.

    PubMed

    Patel, A R; Vavia, P R

    2007-02-01

    Pharmaceutical inhalation aerosols have been playing a crucial role in the health and well being of millions of people throughout the world for many years. The technology's continual advancement, the ease of use and the more desirable pulmonary-rather-than-needle delivery for systemic drugs has increased the attraction for the pharmaceutical aerosol in recent years. But administration of drugs by the pulmonary route is technically challenging because oral deposition can be high, and variations in inhalation technique can affect the quantity of drug delivered to the lungs. Recent advances in nanotechnology, particularly drug delivery field have encouraged formulation scientists to expand their reach in solving tricky problems related to drug delivery. Moreover, application of nanotechnology to aerosol science has opened up a new category of pharmaceutical aerosols (collectively known as nanoenabled-aerosols) with added advantages and effectiveness. In this review, some of the latest approaches of nano-enabled aerosol drug delivery system (including nano-suspension, trojan particles, bioadhesive nanoparticles and smart particle aerosols) that can be employed successfully to overcome problems of conventional aerosol systems have been introduced. PMID:17375556

  17. Mount Saint Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  18. Preliminary aerosol generator design studies

    NASA Technical Reports Server (NTRS)

    Stampfer, J. F., Jr.

    1976-01-01

    The design and construction of a prototype vaporization generator for highly dispersed sodium chloride aerosols is described. The aerosol generating system is to be used in the Science Simulator of the Cloud Physics Laboratory Project and as part of the Cloud Physics Laboratory payload to be flown on the shuttle/spacelab.

  19. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  20. INDOOR AEROSOLS AND EXPOSURE ASSESSMENT

    EPA Science Inventory

    This chapter provides an overview of both indoor aerosol concentration measurements, and the considerations for assessment of exposure to aerosols in non-occupational settings. The fixed-location measurements of concentration at an outdoor location, while commuting inside an a...

  1. Mount St. Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Fong, W.; Snetsinger, K. G.; Ferry, G. V.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  2. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.; Fong, W.; Snetsinger, K.G.; Ferry, G.V.; Hayes, D.M.

    1982-09-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples show that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  3. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.

    1982-08-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  4. A distributed data base management facility for the CAD/CAM environment

    NASA Technical Reports Server (NTRS)

    Balza, R. M.; Beaudet, R. W.; Johnson, H. R.

    1984-01-01

    Current/PAD research in the area of distributed data base management considers facilities for supporting CAD/CAM data management in a heterogeneous network of computers encompassing multiple data base managers supporting a variety of data models. These facilities include coordinated execution of multiple DBMSs to provide for administration of and access to data distributed across them.

  5. A visual LISP program for voxelizing AutoCAD solid models

    NASA Astrophysics Data System (ADS)

    Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz

    2015-01-01

    AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.

  6. Extending Engineering Design Graphics Laboratories to Have a CAD/CAM Component: Implementation Issues.

    ERIC Educational Resources Information Center

    Juricic, Davor; Barr, Ronald E.

    1996-01-01

    Reports on a project that extended the Engineering Design Graphics curriculum to include instruction and laboratory experience in computer-aided design, analysis, and manufacturing (CAD/CAM). Discusses issues in project implementation, including introduction of finite element analysis to lower-division students, feasibility of classroom prototype…

  7. Automatic CAD of meniscal tears on MR imaging: a morphology-based approach

    NASA Astrophysics Data System (ADS)

    Ramakrishna, Bharath; Liu, Weimin; Safdar, Nabile; Siddiqui, Khan; Kim, Woojin; Juluru, Krishna; Chang, Chein-I.; Siegel, Eliot

    2007-03-01

    Knee-related injuries, including meniscal tears, are common in young athletes and require accurate diagnosis and appropriate surgical intervention. Although with proper technique and skill, confidence in the detection of meniscal tears should be high, this task continues to be a challenge for many inexperienced radiologists. The purpose of our study was to automate detection of meniscal tears of the knee using a computer-aided detection (CAD) algorithm. Automated segmentation of the sagittal T1-weighted MR imaging sequences of the knee in 28 patients with diagnoses of meniscal tears was performed using morphologic image processing in a 3-step process including cropping, thresholding, and application of morphological constraints. After meniscal segmentation, abnormal linear meniscal signal was extracted through a second thresholding process. The results of this process were validated by comparison with the interpretations of 2 board-certified musculoskeletal radiologists. The automated meniscal extraction algorithm process was able to successfully perform region of interest selection, thresholding, and object shape constraint tasks to produce a convex image isolating the menisci in more than 69% of the 28 cases. A high correlation was also noted between the CAD algorithm and human observer results in identification of complex meniscal tears. Our initial investigation indicates considerable promise for automatic detection of simple and complex meniscal tears of the knee using the CAD algorithm. This observation poses interesting possibilities for increasing radiologist productivity and confidence, improving patient outcomes, and applying more sophisticated CAD algorithms to orthopedic imaging tasks.

  8. Use of MathCAD in a Pharmacokinetics Course for PharmD Students.

    ERIC Educational Resources Information Center

    Sullivan, Timothy J.

    1992-01-01

    This paper describes the application of the Student Edition of MathCAD as a computational aid in an introductory graduate level pharmacokinetics course. The program allows the student to perform mathematical calculations and analysis on a computer screen. The advantages and disadvantages of this application are discussed. (GLR)

  9. Utilizing CAD/CAM to Measure Total Occlusal Convergence of Preclinical Dental Students' Crown Preparations.

    PubMed

    Mays, Keith A; Crisp, H Alex; Vos, Paul

    2016-01-01

    Traditionally, faculty assessment of preclinical crown preparations occurs by visualizing preparation features. However, contemporary CAD/CAM tools have the ability to more precisely evaluate preparation features, which is beneficial for psychomotor development. Taper is one of the most challenging features to objectively assess. The aim of this study was twofold: first, to validate the software's ability to distinguish differences in taper, and second, to compare traditional faculty assessment with digital assessment of taper. In the study, 30 all-metal crown preparations were created on typodont teeth with varying degrees of axial reduction and placed into three groups based on amount of taper (minimum, moderate, or excessive). Each tooth was scanned with the D4D scanner, and the taper was analyzed using E4D Compare. A second experiment used 50 crown preparations of tooth #19, which were done as a formative exercise. A comparison faculty assessment with CAD/CAM assessments of taper was performed. The results showed that when the taper was varied, E4D Compare was able to distinguish those differences; the Tukey post-hoc test revealed a significant difference (p=0.001). The qualitative analysis comparing faculty grading to CAD/CAM grading demonstrated a trend for CAD/CAM to be more precise. These results suggest that E4D Compare is an effective means of quantitatively measuring the amount of total occlusal convergence or taper on a crown preparation and that digital assessment may be more precise than faculty visual grading. PMID:26729690

  10. Preparing for High Technology: CAD/CAM Programs. Research & Development Series No. 234.

    ERIC Educational Resources Information Center

    Abram, Robert; And Others

    This guide is one of three developed to provide information and resources to assist in planning and developing postsecondary technican training programs in high technology areas. It is specifically intended for vocational-technical educators and planners in the initial stages of planning a specialized training option in computer-aided design (CAD)…

  11. 21 CFR 872.3661 - Optical Impression Systems for CAD/CAM.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Optical Impression Systems for CAD/CAM. 872.3661 Section 872.3661 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... dental restorative prosthetic devices. Such systems may consist of a camera, scanner, or equivalent...

  12. Classroom Experiences in an Engineering Design Graphics Course with a CAD/CAM Extension.

    ERIC Educational Resources Information Center

    Barr, Ronald E.; Juricic, Davor

    1997-01-01

    Reports on the development of a new CAD/CAM laboratory experience for an Engineering Design Graphics (EDG) course. The EDG curriculum included freehand sketching, introduction to Computer-Aided Design and Drafting (CADD), and emphasized 3-D solid modeling. Reviews the project and reports on the testing of the new laboratory components which were…

  13. Using Claris CAD To Develop a Floor Plan. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Pawlowicz, Bruce; Johnson, Tom

    This learning module for a high school architectural drafting course introduces students to the use of Claris CAD (Computer Aided Drafting) to develop a floor plan. The six sections of the module are the following: module objectives, content outline, teaching methods, student activities, resource list, and evaluation (pretest, posttest). Student…

  14. Improving CAD performance by seamless insertion of pulmonary nodules in chest CT exams

    NASA Astrophysics Data System (ADS)

    Pezeshk, Aria; Sahiner, Berkman; Chen, Weijie; Petrick, Nicholas

    2015-03-01

    The availability of large medical image datasets is critical in training and testing of computer aided diagnosis (CAD) systems. However, collection of data and establishment of ground truth for medical images are both costly and difficult. To address this problem, we have developed an image composition tool that allows users to modify or supplement existing datasets by seamlessly inserting a clinical lesion extracted from a source image into a different location on a target image. In this study we focus on the application of this tool to the training of a CAD system designed to detect pulmonary nodules in chest CT. To compare the performance of a CAD system without and with the use of our image composition tool, we trained the system on two sets of data. The first training set was obtained from original CT cases, while the second set consisted of the first set plus nodules in the first set inserted into new locations. We then compared the performance of the two CAD systems in differentiating nodules from normal areas by testing each trained system against a fixed dataset containing natural nodules, and using the area under the ROC curve (AUC) as the figure of merit. The performance of the system trained with the augmented dataset was found to be significantly better than that trained with the original dataset under several training scenarios.

  15. C.A.D. representation of ternary and quaternary phase diagrams

    NASA Technical Reports Server (NTRS)

    Delao, James D.

    1986-01-01

    This work is concerned with the utilization of C.A.D. solid-modeling software for the computer representation of three-dimensional phase diagrams. The work was undertaken in two parts. First, the C.A.D. software (I-DEAS, by Structural Dynamics Research Corp.) was integrated with a variety of auxiliary Fortran 77 and I-DEAS language programs which were written specifically for the purpose of phase diagram representation. The capabilities of the resulting suite of software for three-dimensional phase diagram representation were developed and illustrated by the construction, display and manipulation of solid-model phase diagrams for a hypothetical quaternary eutectic system. The results of this work are discussed in some detail in the attached publication ('Solid-modeling: a C.A.D. Alternative for Three-dimensional Phase Diagram Representation'). Such a technique is of general applicability, having utility in both research and education. Secondly, using the C.A.D. technique, data from the literature (gleaned from some 70 separate publications), which represent experimentally determined phase boundaries, were combined to form solid-model representations of the CMS2-M2S-S ternary space diagram and the CMS2-CAS2-M2S-S quaternary liquidus projection (where C=CaO, M=MgO, A=Al2O3, and S=SiO2). These diagrams were utilized in a concurrent study of solidification in the CMAS system.

  16. An accelerated technique for a ceramic-pressed-to-metal restoration with CAD/CAM technology.

    PubMed

    Lee, Ju-Hyoung

    2014-11-01

    The conventional fabrication of metal ceramic restorations depends on an experienced dental technician and requires a long processing time. However, complete-contour digital waxing and digital cutback with computer-aided design and computer-aided manufacturing (CAD/CAM) technology can overcome these disadvantages and provide a correct metal framework design and space for the ceramic material. PMID:24952883

  17. Education & Training for CAD/CAM: Results of a National Probability Survey. Krannert Institute Paper Series.

    ERIC Educational Resources Information Center

    Majchrzak, Ann

    A study was conducted of the training programs used by plants with Computer Automated Design/Computer Automated Manufacturing (CAD/CAM) to help their employees adapt to automated manufacturing. The study sought to determine the relative priorities of manufacturing establishments for training certain workers in certain skills; the status of…

  18. Longitudinal Study of Factors Impacting the Implementation of Notebook Computer Based CAD Instruction

    ERIC Educational Resources Information Center

    Goosen, Richard F.

    2009-01-01

    This study provides information for higher education leaders that have or are considering conducting Computer Aided Design (CAD) instruction using student owned notebook computers. Survey data were collected during the first 8 years of a pilot program requiring engineering technology students at a four year public university to acquire a notebook…

  19. Bridging CAGD knowledge into CAD/CG applications: Mathematical theories as stepping stones of innovations

    NASA Astrophysics Data System (ADS)

    Gobithaasan, R. U.; Miura, Kenjiro T.; Hassan, Mohamad Nor

    2014-07-01

    Computer Aided Geometric Design (CAGD) which surpasses the underlying theories of Computer Aided Design (CAD) and Computer Graphics (CG) has been taught in a number of Malaysian universities under the umbrella of Mathematical Sciences' faculty/department. On the other hand, CAD/CG is taught either under the Engineering or Computer Science Faculty. Even though CAGD researchers/educators/students (denoted as contributors) have been enriching this field of study by means of article/journal publication, many fail to convert the idea into constructive innovation due to the gap that occurs between CAGD contributors and practitioners (engineers/product/designers/architects/artists). This paper addresses this issue by advocating a number of technologies that can be used to transform CAGD contributors into innovators where immediate impact in terms of practical application can be experienced by the CAD/CG practitioners. The underlying principle of solving this issue is twofold. First would be to expose the CAGD contributors on ways to turn mathematical ideas into plug-ins and second is to impart relevant CAGD theories to CAD/CG to practitioners. Both cases are discussed in detail and the final section shows examples to illustrate the importance of turning mathematical knowledge into innovations.

  20. THE MAN&RSQUO;S JACKET DESIGN FOR DISASSEMBLY: AN IMPLEMENTATION OF C2CAD FRAMEWORK

    EPA Science Inventory

    The C2CAD model served as the basis in the man’s jacket design and production. In man’s jackets, both natural and synthetic materials are commonly used for fabrics, threads, and buttons. To promote disassembly and value retention, we minimized material diversity an...

  1. Switchgrass PviCAD1: Understanding residues important for substrate preferences and activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin is a major component of plant cell walls and is a complex aromatic heteropolymer. Reducing lignin content improves conversion efficiency into liquid fuels, and enzymes involved in lignin biosynthesis are attractive targets for bioengineering. Cinnamyl alcohol dehydrogenase (CAD) catalyzes t...

  2. Defeaturing CAD models using a geometry-based size field and facet-based reduction operators.

    SciTech Connect

    Quadros, William Roshan; Owen, Steven James

    2010-04-01

    We propose a method to automatically defeature a CAD model by detecting irrelevant features using a geometry-based size field and a method to remove the irrelevant features via facet-based operations on a discrete representation. A discrete B-Rep model is first created by obtaining a faceted representation of the CAD entities. The candidate facet entities are then marked for reduction by using a geometry-based size field. This is accomplished by estimating local mesh sizes based on geometric criteria. If the field value at a facet entity goes below a user specified threshold value then it is identified as an irrelevant feature and is marked for reduction. The reduction of marked facet entities is primarily performed using an edge collapse operator. Care is taken to retain a valid geometry and topology of the discrete model throughout the procedure. The original model is not altered as the defeaturing is performed on a separate discrete model. Associativity between the entities of the discrete model and that of original CAD model is maintained in order to decode the attributes and boundary conditions applied on the original CAD entities onto the mesh via the entities of the discrete model. Example models are presented to illustrate the effectiveness of the proposed approach.

  3. The Role of Flow Experience and CAD Tools in Facilitating Creative Behaviours for Architecture Design Students

    ERIC Educational Resources Information Center

    Dawoud, Husameddin M.; Al-Samarraie, Hosam; Zaqout, Fahed

    2015-01-01

    This study examined the role of flow experience in intellectual activity with an emphasis on the relationship between flow experience and creative behaviour in design using CAD. The study used confluence and psychometric approaches because of their unique abilities to depict a clear image of creative behaviour. A cross-sectional study…

  4. Management of CAD/CAM information: Key to improved manufacturing productivity

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Brainin, J.

    1984-01-01

    A key element to improved industry productivity is effective management of CAD/CAM information. To stimulate advancements in this area, a joint NASA/Navy/Industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) is underway with the goal of raising aerospace industry productivity through advancement of technology to integrate and manage information involved in the design and manufacturing process. The project complements traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer-Aided Manufacturing (ICAM) program to advance CAM technology. IPAD research is guided by an Industry Technical Advisory Board (ITAB) composed of over 100 repesentatives from aerospace and computer companies. The IPAD accomplishments to date in development of requirements and prototype software for various levels of company-wide CAD/CAM data management are summarized and plans for development of technology for management of distributed CAD/CAM data and information required to control future knowledge-based CAD/CAM systems are discussed.

  5. Novel CAD-ALK gene rearrangement is drugable by entrectinib in colorectal cancer

    PubMed Central

    Amatu, Alessio; Somaschini, Alessio; Cerea, Giulio; Bosotti, Roberta; Valtorta, Emanuele; Buonandi, Pasquale; Marrapese, Giovanna; Veronese, Silvio; Luo, David; Hornby, Zachary; Multani, Pratik; Murphy, Danielle; Shoemaker, Robert; Lauricella, Calogero; Giannetta, Laura; Maiolani, Martina; Vanzulli, Angelo; Ardini, Elena; Galvani, Arturo; Isacchi, Antonella; Sartore-Bianchi, Andrea; Siena, Salvatore

    2015-01-01

    Background: Activated anaplastic lymphoma kinase (ALK) gene fusions are recurrent events in a small fraction of colorectal cancers (CRCs), although these events have not yet been exploited as in other malignancies. Methods: We detected ALK protein expression by immunohistochemistry and gene rearrangements by fluorescence in situ hybridisation in the ALKA-372-001 phase I study of the pan-Trk, ROS1, and ALK inhibitor entrectinib. One out of 487 CRCs showed ALK positivity with a peculiar pattern that prompted further characterisation by targeted sequencing using anchored multiplex PCR. Results: A novel ALK fusion with the carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) gene (CAD-ALK fusion gene) was identified. It resulted from inversion within chromosome 2 and the fusion of exons 1–35 of CAD with exons 20–29 of ALK. After failure of previous standard therapies, treatment of this patient with the ALK inhibitor entrectinib resulted in a durable objective tumour response. Conclusions: We describe the novel CAD-ALK rearrangement as an oncogene and provide the first evidence of its drugability as a new molecular target in CRC. PMID:26633560

  6. On the Use of CAD and Cartesian Methods for Aerodynamic Optimization

    NASA Technical Reports Server (NTRS)

    Nemec, M.; Aftosmis, M. J.; Pulliam, T. H.

    2004-01-01

    The objective for this paper is to present the development of an optimization capability for Curt3D, a Cartesian inviscid-flow analysis package. We present the construction of a new optimization framework and we focus on the following issues: 1) Component-based geometry parameterization approach using parametric-CAD models and CAPRI. A novel geometry server is introduced that addresses the issue of parallel efficiency while only sparingly consuming CAD resources; 2) The use of genetic and gradient-based algorithms for three-dimensional aerodynamic design problems. The influence of noise on the optimization methods is studied. Our goal is to create a responsive and automated framework that efficiently identifies design modifications that result in substantial performance improvements. In addition, we examine the architectural issues associated with the deployment of a CAD-based approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute engines. We demonstrate the effectiveness of the framework for a design problem that features topology changes and complex geometry.

  7. Computer-aided detection (CAD) of breast masses in mammography: combined detection and ensemble classification

    NASA Astrophysics Data System (ADS)

    Choi, Jae Young; Kim, Dae Hoe; Plataniotis, Konstantinos N.; Ro, Yong Man

    2014-07-01

    We propose a novel computer-aided detection (CAD) framework of breast masses in mammography. To increase detection sensitivity for various types of mammographic masses, we propose the combined use of different detection algorithms. In particular, we develop a region-of-interest combination mechanism that integrates detection information gained from unsupervised and supervised detection algorithms. Also, to significantly reduce the number of false-positive (FP) detections, the new ensemble classification algorithm is developed. Extensive experiments have been conducted on a benchmark mammogram database. Results show that our combined detection approach can considerably improve the detection sensitivity with a small loss of FP rate, compared to representative detection algorithms previously developed for mammographic CAD systems. The proposed ensemble classification solution also has a dramatic impact on the reduction of FP detections; as much as 70% (from 15 to 4.5 per image) at only cost of 4.6% sensitivity loss (from 90.0% to 85.4%). Moreover, our proposed CAD method performs as well or better (70.7% and 80.0% per 1.5 and 3.5 FPs per image respectively) than the results of mammography CAD algorithms previously reported in the literature.

  8. Computer-aided detection (CAD) of breast masses in mammography: combined detection and ensemble classification.

    PubMed

    Choi, Jae Young; Kim, Dae Hoe; Plataniotis, Konstantinos N; Ro, Yong Man

    2014-07-21

    We propose a novel computer-aided detection (CAD) framework of breast masses in mammography. To increase detection sensitivity for various types of mammographic masses, we propose the combined use of different detection algorithms. In particular, we develop a region-of-interest combination mechanism that integrates detection information gained from unsupervised and supervised detection algorithms. Also, to significantly reduce the number of false-positive (FP) detections, the new ensemble classification algorithm is developed. Extensive experiments have been conducted on a benchmark mammogram database. Results show that our combined detection approach can considerably improve the detection sensitivity with a small loss of FP rate, compared to representative detection algorithms previously developed for mammographic CAD systems. The proposed ensemble classification solution also has a dramatic impact on the reduction of FP detections; as much as 70% (from 15 to 4.5 per image) at only cost of 4.6% sensitivity loss (from 90.0% to 85.4%). Moreover, our proposed CAD method performs as well or better (70.7% and 80.0% per 1.5 and 3.5 FPs per image respectively) than the results of mammography CAD algorithms previously reported in the literature. PMID:24923292

  9. Challenges facing developers of CAD/CAM models that seek to predict human working postures

    NASA Astrophysics Data System (ADS)

    Wiker, Steven F.

    2005-11-01

    This paper outlines the need for development of human posture prediction models for Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) design applications in product, facility and work design. Challenges facing developers of posture prediction algorithms are presented and discussed.

  10. Application of advanced CAD/CAM procedures in areas other than air transport technology

    NASA Astrophysics Data System (ADS)

    Nagel, J.

    1983-05-01

    Current applications of CAD/CAM in various branches of industry other than aircraft technology, including production of gear wheels, ship drives, automobiles, machines, and electric parts are described. Problems of training personnel in the use of this technology are briefly considered.

  11. Integrating conventional and CAD/CAM digital techniques for establishing canine protected articulation: A clinical report.

    PubMed

    El Kerdani, Tarek; Nimmo, Arthur

    2016-05-01

    Canine protected articulation is widely accepted for patients requiring extensive oral rehabilitation. Computer-aided design and computer-aided manufacturing (CAD/CAM) restorations have been primarily designed in occlusion at the maximum intercuspal position. Designing a virtual articulator that is capable of accepting excursive occlusal records and duplicating the mandibular movements is a challenge for CAD/CAM technology. Modifying tooth shape using composite resin trial restorations to produce esthetic results and later scanning the modified teeth to create milled crowns is becoming a popular use of the CAD/CAM technology. This report describes a technique that combines conventional and CAD/CAM prosthodontic techniques for milling crowns for canine teeth that are designed to establish or improve canine protected articulation. This technique involves designing and fabricating interim restorations based on diagnostic waxing, scanning the designs intraorally, and storing them in software as pretreatment digital records. The scanned designs are then applied to the digital representation of the prepared teeth to fabricate the definitive restorations. PMID:26774319

  12. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  13. Wind Turbine Blade CAD Models Used as Scaffolding Technique to Teach Design Engineers

    ERIC Educational Resources Information Center

    Irwin, John

    2013-01-01

    The Siemens PLM CAD software NX is commonly used for designing mechanical systems, and in complex systems such as the emerging area of wind power, the ability to have a model controlled by design parameters is a certain advantage. Formula driven expressions based on the amount of available wind in an area can drive the amount of effective surface…

  14. Determination of aerosol yields from 3-methylcatechol and 4-methylcatechol ozonolysis in a simulation chamber

    NASA Astrophysics Data System (ADS)

    Coeur-Tourneur, Cécile; Foulon, Valentine; Laréal, Michel

    2010-02-01

    Secondary Organic Aerosol (SOA) formation during the ozonolysis of 3-methylcatechol (3-methyl-1,2-dihydroxybenzene) and 4-methylcatechol (3-methyl-1,2-dihydroxybenzene) was investigated using a simulation chamber (8 m 3) at atmospheric pressure, room temperature (294 ± 2 K) and low relative humidity (5-10%). The initial mixing ratios were as follows (in ppb): 3-methylcatechol (194-1059), 4-methylcatechol (204-1188) and ozone (93-531). The ozone and methylcatechol concentrations were followed by UV photometry and GC-FID (Gas chromatography-Flame ionization detector), respectively and the aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer). The SOA yields (Y) were determined as the ratio of the suspended aerosol mass corrected for wall losses (M o) to the total reacted methylcatechol concentrations assuming a particle density of 1.4 g cm -3. The aerosol formation yield increases as the initial methylcatechol concentration increases, and leads to aerosol yields ranging from 32% to 67% and from 30% to 64% for 3-methylcatechol and 4-methylcatechol, respectively. Y is a strong function of M o and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. These data are comparable to those published in a recent study on secondary organic aerosol formation from catechol ozonolysis. To our knowledge, this work represents the first investigation of SOA formation from the ozone reaction with methylcatechols.

  15. Secondary Organic Aerosol formation from the gas-phase ozonolysis of 3-methylcatechol and 4-methylcatechol

    NASA Astrophysics Data System (ADS)

    Coeur-Tourneur, Cécile; Foulon, Valentine; Laréal, Michel; Cassez, Andy; Zhao, Weixiong

    2010-05-01

    Secondary Organic Aerosol (SOA) formation during the ozonolysis of 3-methylcatechol (3-methyl-1,2-dihydroxybenzene) and 4-methylcatechol (3-methyl-1,2-dihydroxybenzene) was investigated using a simulation chamber (8 m3) at atmospheric pressure, room temperature (294 ± 2 K) and low relative humidity (5-10%). The initial mixing ratios were as follows (in ppb): 3-methylcatechol (194-1059), 4-methylcatechol (204-1188) and ozone (93-531). The ozone and methylcatechol concentrations were followed by UV photometry and GC-FID (Gas Chromatography - Flame ionization detector), respectively and the aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer). The SOA yields (Y) were determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted methylcatechol concentrations assuming a particle density of 1.4 g cm-3. The aerosol formation yield increases as the initial methylcatechol concentration increases, and leads to aerosol yields ranging from 32% to 67% and from 30% to 64% for 3-methylcatechol and 4-methylcatechol, respectively. Y is a strong function of Mo and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. These data are comparable to those published in a recent study on secondary organic aerosol formation from catechol ozonolysis. To our knowledge, this work represents the first investigation of SOA formation from the ozone reaction with methylcatechols.

  16. X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)

    ScienceCinema

    None

    2014-06-03

    This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.

  17. X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)

    SciTech Connect

    2012-10-22

    This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.

  18. GADRAS Detector Response Function.

    SciTech Connect

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  19. The MINOS detectors

    SciTech Connect

    Habig, A.; Grashorn, E.W.; /Minnesota U., Duluth

    2005-07-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  20. The upgraded DØ detector

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, D. L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S. N.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Andeen, T.; Anderson, J. T.; Anderson, S.; Andrieu, B.; Angstadt, R.; Anosov, V.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Assis Jesus, A. C. S.; Atramentov, O.; Autermann, C.; Avila, C.; Babukhadia, L.; Bacon, T. C.; Badaud, F.; Baden, A.; Baffioni, S.; Bagby, L.; Baldin, B.; Balm, P. W.; Banerjee, P.; Banerjee, S.; Barberis, E.; Bardon, O.; Barg, W.; Bargassa, P.; Baringer, P.; Barnes, C.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bhattacharjee, M.; Baturitsky, M. A.; Bauer, D.; Bean, A.; Baumbaugh, B.; Beauceron, S.; Begalli, M.; Beaudette, F.; Begel, M.; Bellavance, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Besson, A.; Beuselinck, R.; Beutel, D.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Binder, M.; Biscarat, C.; Bishoff, A.; Black, K. M.; Blackler, I.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Blumenschein, U.; Bockenthien, E.; Bodyagin, V.; Boehnlein, A.; Boeriu, O.; Bolton, T. A.; Bonamy, P.; Bonifas, D.; Borcherding, F.; Borissov, G.; Bos, K.; Bose, T.; Boswell, C.; Bowden, M.; Brandt, A.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Busato, E.; Buszello, C. P.; Butler, D.; Butler, J. M.; Cammin, J.; Caron, S.; Bystricky, J.; Canal, L.; Canelli, F.; Carvalho, W.; Casey, B. C. K.; Casey, D.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapin, D.; Charles, F.; Cheu, E.; Chevalier, L.; Chi, E.; Chiche, R.; Cho, D. K.; Choate, R.; Choi, S.; Choudhary, B.; Chopra, S.; Christenson, J. H.; Christiansen, T.; Christofek, L.; Churin, I.; Cisko, G.; Claes, D.; Clark, A. R.; Clément, B.; Clément, C.; Coadou, Y.; Colling, D. J.; Coney, L.; Connolly, B.; Cooke, M.; Cooper, W. E.; Coppage, D.; Corcoran, M.; Coss, J.; Cothenet, A.; Cousinou, M.-C.; Cox, B.; Crépé-Renaudin, S.; Cristetiu, M.; Cummings, M. A. C.; Cutts, D.; da Motta, H.; Das, M.; Davies, B.; Davies, G.; Davis, G. A.; Davis, W.; De, K.; de Jong, P.; de Jong, S. J.; De La Cruz-Burelo, E.; De La Taille, C.; De Oliveira Martins, C.; Dean, S.; Degenhardt, J. D.; Déliot, F.; Delsart, P. A.; Del Signore, K.; DeMaat, R.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doets, M.; Doidge, M.; Dong, H.; Doulas, S.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dvornikov, O.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Edwards, T.; Ellison, J.; Elmsheuser, J.; Eltzroth, J. T.; Elvira, V. D.; Eno, S.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, D.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fagan, J.; Fast, J.; Fatakia, S. N.; Fein, D.; Feligioni, L.; Ferapontov, A. V.; Ferbel, T.; Ferreira, M. J.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fleck, I.; Fitzpatrick, T.; Flattum, E.; Fleuret, F.; Flores, R.; Foglesong, J.; Fortner, M.; Fox, H.; Franklin, C.; Freeman, W.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Gao, M.; Garcia, C.; Garcia-Bellido, A.; Gardner, J.; Gavrilov, V.; Gay, A.; Gay, P.; Gelé, D.; Gelhaus, R.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Geurkov, G.; Ginther, G.; Gobbi, B.; Goldmann, K.; Golling, T.; Gollub, N.; Golovtsov, V.; Gómez, B.; Gomez, G.; Gomez, R.; Goodwin, R.; Gornushkin, Y.; Gounder, K.; Goussiou, A.; Graham, D.; Graham, G.; Grannis, P. D.; Gray, K.; Greder, S.; Green, D. R.; Green, J.; Green, J. A.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groer, L.; Grünendahl, S.; Grünewald, M. W.; Gu, W.; Guglielmo, J.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haggard, E.; Haggerty, H.; Hagopian, S.; Hall, I.; Hall, R. E.; Han, C.; Han, L.; Hance, R.; Hanagaki, K.; Hanlet, P.; Hansen, S.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, C.; Hays, J.; Hazen, E.; Hebbeker, T.; Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hong, S. J.; Hooper, R.; Hou, S.; Houben, P.; Hu, Y.; Huang, J.; Huang, Y.; Hynek, V.; Huffman, D.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jacquier, Y.; Jaffré, M.; Jain, S.; Jain, V.; Jakobs, K.; Jayanti, R.; Jenkins, A.; Jesik, R.; Jiang, Y.; Johns, K.; Johnson, M.; Johnson, P.; Jonckheere, A.; Jonsson, P.; Jöstlein, H.; Jouravlev, N.; Juarez, M.; Juste, A.; Kaan, A. P.; Kado, M. M.; Käfer, D.; Kahl, W.; Kahn, S.; Kajfasz, E.

    2006-09-01

    The DØ experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DØ.

  1. Thermophoretically Dominated Aerosol Coagulation

    NASA Astrophysics Data System (ADS)

    Rosner, Daniel E.; Arias-Zugasti, Manuel

    2011-01-01

    A theory of aerosol coagulation due to size-dependent thermophoresis is presented. This previously overlooked effect is important when local temperature gradients are large, the sol population is composed of particles of much greater thermal conductivity than the carrier gas, with mean diameters much greater than the prevailing gas mean free path, and an adequate “spread” in sizes (as in metallurgical mists or fumes). We illustrate this via a population-balance analysis of the evolution of an initially log-normal distribution when this mechanism dominates ordinary Brownian diffusion.

  2. Aerosol Remote Sensing

    NASA Technical Reports Server (NTRS)

    Lenoble, Jacqueline (Editor); Remer, Lorraine (Editor); Tanre, Didier (Editor)

    2012-01-01

    This book gives a much needed explanation of the basic physical principles of radia5tive transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. For the first time, an easy path from theory to practical algorithms is available in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing. In addition, the specifics and intercomparison of all current and historical methods are explained and clarified.

  3. From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites.

    PubMed

    Mainjot, A K; Dupont, N M; Oudkerk, J C; Dewael, T Y; Sadoun, M J

    2016-05-01

    Indirect composites have been undergoing an impressive evolution over the last few years. Specifically, recent developments in computer-aided design-computer-aided manufacturing (CAD-CAM) blocks have been associated with new polymerization modes, innovative microstructures, and different compositions. All these recent breakthroughs have introduced important gaps among the properties of the different materials. This critical state-of-the-art review analyzes the strengths and weaknesses of the different varieties of CAD-CAM composite materials, especially as compared with direct and artisanal indirect composites. Indeed, new polymerization modes used for CAD-CAM blocks-especially high temperature (HT) and, most of all, high temperature-high pressure (HT-HP)-are shown to significantly increase the degree of conversion in comparison with light-cured composites. Industrial processes also allow for the augmentation of the filler content and for the realization of more homogeneous structures with fewer flaws. In addition, due to their increased degree of conversion and their different monomer composition, some CAD-CAM blocks are more advantageous in terms of toxicity and monomer release. Finally, materials with a polymer-infiltrated ceramic network (PICN) microstructure exhibit higher flexural strength and a more favorable elasticity modulus than materials with a dispersed filler microstructure. Consequently, some high-performance composite CAD-CAM blocks-particularly experimental PICNs-can now rival glass-ceramics, such as lithium-disilicate glass-ceramics, for use as bonded partial restorations and crowns on natural teeth and implants. Being able to be manufactured in very low thicknesses, they offer the possibility of developing innovative minimally invasive treatment strategies, such as "no prep" treatment of worn dentition. Current issues are related to the study of bonding and wear properties of the different varieties of CAD-CAM composites. There is also a crucial

  4. The Aerosol Coarse Mode Initiative

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Adhikari, N.; Air, D.; Kassianov, E.; Barnard, J.

    2014-12-01

    Many areas of the world show an aerosol volume distribution with a significant coarse mode and sometimes a dominant coarse mode. The large coarse mode is usually due to dust, but sea salt aerosol can also play an important role. However, in many field campaigns, the coarse mode tends to be ignored, because it is difficult to measure. This lack of measurements leads directly to a concomitant "lack of analysis" of this mode. Because, coarse mode aerosols can have significant effects on radiative forcing, both in the shortwave and longwave spectrum, the coarse mode -- and these forcings -- should be accounted for in atmospheric models. Forcings based only on fine mode aerosols have the potential to be misleading. In this paper we describe examples of large coarse modes that occur in areas of large aerosol loading (Mexico City, Barnard et al., 2010) as well as small loadings (Sacramento, CA; Kassianov et al., 2012; and Reno, NV). We then demonstrate that: (1) the coarse mode can contribute significantly to radiative forcing, relative to the fine mode, and (2) neglecting the coarse mode may result in poor comparisons between measurements and models. Next we describe -- in general terms -- the limitations of instrumentation to measure the coarse mode. Finally, we suggest a new initiative aimed at examining coarse mode aerosol generation mechanisms; transport and deposition; chemical composition; visible and thermal IR refractive indices; morphology; microphysical behavior when deposited on snow and ice; and specific instrumentation needs. Barnard, J. C., J. D. Fast, G. Paredes-Miranda, W. P. Arnott, and A. Laskin, 2010: Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign, Atmospheric Chemistry and Physics, 10, 7325-7340. Kassianov, E. I., M. S. Pekour, and J. C. Barnard, 2012: Aerosols in Central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing

  5. Aerosol Optical Properties over the Oceans: Summary and Interpretation of Shadow-Band Radiometer Data from Six Cruises. Chapter 19

    NASA Technical Reports Server (NTRS)

    Miller, Mark A.; Reynolds, R. M.; Bartholomew, Mary Jane

    2001-01-01

    The aerosol scattering component of the total radiance measured at the detectors of ocean color satellites is determined with atmospheric correction algorithms. These algorithms are based on aerosol optical thickness measurements made in two channels that lie in the near-infrared portion of the electromagnetic spectrum. The aerosol properties in the near-infrared region are used because there is no significant contribution to the satellite-measured radiance from the underlying ocean surface in that spectral region. In the visible wavelength bands, the spectrum of radiation scattered from the turbid atmosphere is convolved with the spectrum of radiation scattered from the surface layers of the ocean. The radiance contribution made by aerosols in the visible bands is determined from the near-infrared measurements through the use of aerosol models and radiation transfer codes. Selection of appropriate aerosol models from the near-infrared measurements is a fundamental challenge. There are several challenges with respect to the development, improvement, and evaluation of satellite ocean-color atmospheric correction algorithms. A common thread among these challenges is the lack of over-ocean aerosol data. Until recently, one of the most important limitations has been the lack of techniques and instruments to make aerosol measurements at sea. There has been steady progress in this area over the past five years, and there are several new and promising devices and techniques for data collection. The development of new instruments and the collection of more aerosol data from over the world's oceans have brought the realization that aerosol measurements that can be directly compared with aerosol measurements from ocean color satellite measurements are difficult to obtain. There are two problems that limit these types of comparisons: the cloudiness of the atmosphere over the world's oceans and the limitations of the techniques and instruments used to collect aerosol data from

  6. Marginal and internal fit of nano-composite CAD/CAM restorations

    PubMed Central

    Park, So-Hyun; Shin, Yoo-Jin

    2016-01-01

    Objectives The purpose of this study was to compare the marginal and internal fit of nano-composite CAD-CAM restorations. Materials and Methods A full veneer crown and an mesio-occluso-distal (MOD) inlay cavity, which were prepared on extracted human molars, were used as templates of epoxy resin replicas. The prepared teeth were scanned and CAD-CAM restorations were milled using Lava Ultimate (LU) and experimental nano-composite CAD/CAM blocks (EB) under the same milling parameters. To assess the marginal and internal fit, the restorations were cemented to replicas and were embedded in an acrylic mold for sectioning at 0.5 mm intervals. The measured gap data were pooled according to the block types and measuring points for statistical analysis. Results Both the block type and measuring point significantly affected gap values, and their interaction was significant (p = 0.000). In crowns and inlays made from the two blocks, gap values were significantly larger in the occlusal area than in the axial area, while gap values in the marginal area were smallest (p < 0.001). Among the blocks, the restorations milled from EB had a significantly larger gap at all measuring points than those milled from LU (p = 0.000). Conclusions The marginal and internal gaps of the two nano-composite CAD/CAM blocks differed according to the measuring points. Among the internal area of the two nano-composite CAD/CAM restorations, occlusal gap data were significantly larger than axial gap data. The EB crowns and inlays had significantly larger gaps than LU restorations. PMID:26877989

  7. Marginal and Internal Fit of CAD/CAM and Slip-Cast Made Zirconia Copings

    PubMed Central

    Torabi Ardekani, Kianoosh; Ahangari, Ahmad Hassan; Farahi, Leila

    2012-01-01

    Background and aims CAD/CAM systems facilitate the use of zirconia substructure materials for all-ceramic copings. This in vitro study investigated the marginal and internal fit of zirconia copings made with CAD/CAM system and slip-casting method. Materials and methods Sixteen CAD/CAM made zirconia copings and 16 slip-cast made zirconia copings were fabri-cated and cemented with glass-ionomer cement to their respective master abutment models, and thickness of the cement layer was measured at specific measuring points with stereomicroscope. Results In the left wall, the mean axial internal gap was greater in group one than group two (62.49 vs. 48.14) (P =0.007), in the right wall the mean axial internal gap was greater in group one than group two (44.87 vs. 40.91) (P = 0.465). The oc-clusal internal gap was greater in group one than group two (118.81 vs. 102.11) (P =0.423). The mean marginal gap also was greater in group one than group two (46.67 vs. 44.29) (P = 0.863). The differences in marginal fit between these two methods were not statistically significant, except for left axial internal gap that was significantly greater in the CAD/CAM system than conventional slip-cast technique (P =0.007). Conclusion It was concluded that this CAD/CAM system can compete well with conventional systems for clinical fit, and can achieve good in vitro marginal fit. PMID:22991635

  8. TopoCad - A unified system for geospatial data and services

    NASA Astrophysics Data System (ADS)

    Felus, Y. A.; Sagi, Y.; Regev, R.; Keinan, E.

    2013-10-01

    "E-government" is a leading trend in public sector activities in recent years. The Survey of Israel set as a vision to provide all of its services and datasets online. The TopoCad system is the latest software tool developed in order to unify a number of services and databases into one on-line and user friendly system. The TopoCad system is based on Web 1.0 technology; hence the customer is only a consumer of data. All data and services are accessible for the surveyors and geo-information professional in an easy and comfortable way. The future lies in Web 2.0 and Web 3.0 technologies through which professionals can upload their own data for quality control and future assimilation with the national database. A key issue in the development of this complex system was to implement a simple and easy (comfortable) user experience (UX). The user interface employs natural language dialog box in order to understand the user requirements. The system then links spatial data with alpha-numeric data in a flawless manner. The operation of the TopoCad requires no user guide or training. It is intuitive and self-taught. The system utilizes semantic engines and machine understanding technologies to link records from diverse databases in a meaningful way. Thus, the next generation of TopoCad will include five main modules: users and projects information, coordinates transformations and calculations services, geospatial data quality control, linking governmental systems and databases, smart forms and applications. The article describes the first stage of the TopoCad system and gives an overview of its future development.

  9. Preliminary Results from the Smoke Aerosol Measurement Experiment - Reflight

    NASA Astrophysics Data System (ADS)

    Urban, D. L.; Ruff, G. A.; Mulholland, G. W.; Yuan, Z.; Cleary, T.; Yang, J.; Meyer, M. E.; Bryg, V. M.

    2012-01-01

    Preliminary results are presented from the Reflight of the Smoke Aerosol Measurement Experiment (SAME- R) which was conducted during Expedition 24 (July- September 2010). The reflight experiment built upon the results of the original flight during Expedition 15 by adding diagnostic measurements and expanding the test matrix. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. Particle size determinations were made using aerosol instruments and by capturing particles for ground based examination in a Transmission Electron Microscope (TEM). Overall the majority of the average smoke particle sizes were found to be in the 200 to 400 nanometer range with the some of the quiescent cases producing substantially larger particles. When combined with particle morphology data from the TEM analysis, these results can be used to guide the design of future smoke detectors.

  10. Mount St. Helens related aerosol properties from solar extinction measurements

    NASA Technical Reports Server (NTRS)

    Michalsky, J. J.; Kleckner, E. W.; Stokes, G. M.

    1982-01-01

    A network of solar radiometers, operated on the North American Continent for an average of 2 years before the first major eruption of Mount St. Helens, Washington, continues to collect direct solar data through the eruptive phase of this volcano. The radiometers collect spectral data through 12 interference filters spanning the sensitivity of the photodiode used as detector. The data are collected every 5 minutes in seven filters and every 15 minutes in five additional filters. A variant of the classical Langley method has been used to measure the optical depth of the aerosols as a function of wavelength. The network, which is the nearest station, is located some 180 kilometers east of the volcano, well within range of noticeable effects during much of the minor as well as major activity. The wavelength dependence of the aerosol-optical depth before and after the 22 July 1980 major eruption, which was well characterized because of favorable meteorological conditions is discussed.

  11. Tin Can Radiation Detector.

    ERIC Educational Resources Information Center

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  12. Spectropolarimetric Imaging of Aerosols Using Tandem Photoelastic Modulators

    NASA Astrophysics Data System (ADS)

    Davis, A.; Diner, D. J.; Gutt, G.; Hancock, B.; Wang, Y.; Chipman, R.; Hirschy, L.

    2006-12-01

    Passive multiangular, multispectral, and polarimetric sensing approaches each have unique strengths for the measurement of tropospheric aerosol column abundances and microphysical properties. Current spaceborne multispectral and multiangular aerosol sensors (e.g., MISR and MODIS) operate at spatial resolutions of ~1 km. Under NASA's Instrument Incubator Program, we are developing an electro-optic imaging approach that will supplement such observations with high-accuracy imaging polarimetry. Polarization adds sensitivity to particle real refractive index and size distribution. To achieve a degree of linear polarization (DOLP) uncertainty of 0.5%, our approach temporally modulates the linear-polarization component of incoming light at a rapid rate, enabling each detector within a focal-plane array, combined with polarization analyzers, to measure the relative proportions of the linear Stokes components Q or U to the total intensity. This results in a "self- calibrating" approach that is independent of detector gain variations or changes in optical transmittance. Our system uses tandem photoelastic modulators (PEMs) within a reflective camera design. The two PEMs vibrate at slightly different resonant frequencies, leading to modulation of the polarized light at a heterodyne frequency of ~25 Hz. High-speed (1 kHz) readout of the detector arrays samples the output waveforms from which Q/I and U/I are derived. We report on experimental and theoretical analyses of PEM and optical system performance, along with plans for developing ruggedized PEMs capable of withstanding launch and on-orbit stresses.

  13. Inorganic Components of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Wexler, Anthony Stein

    The inorganic components comprise 15% to 50% of the mass of atmospheric aerosols. For about the past 10 years the mass of these components was predicted assuming thermodynamic equilibrium between the volatile aerosol -phase inorganic species NH_4NO _3 and NH_4Cl and their gas-phase counterparts NH_3, HNO_3, and HCl. In this thesis I examine this assumption and prove that (1) the time scales for equilibration between the gas and aerosol phases are often too long for equilibrium to hold, and (2) even when equilibrium holds, transport considerations often govern the size distribution of these aerosol components. Water can comprise a significant portion of atmospheric aerosols under conditions of high relative humidity, whereas under conditions of sufficiently low relative humidity atmospheric aerosols tend to be dry. The deliquescence point is the relative humidity where the aerosol goes from a solid dry phase to an aqueous or mixed solid-aqueous phase. In this thesis I derive the temperature dependence of the deliquescence point and prove that in multicomponent solutions the deliquescence point is lower than for corresponding single component solutions. These theories of the transport, thermodynamic, and deliquescent properties of atmospheric aerosols are integrated into an aerosol inorganics model, AIM. The predictions of AIM compare well to fundamental thermodynamic measurements. Comparison of the prediction of AIM to those of other aerosol equilibrium models shows substantial disagreement in the predicted water content at lower relative humidities. The disagreement is due the improved treatment in AIM of the deliquescence properties of multicomponent solutions. In the summer and fall of 1987 the California Air Resources Board conducted the Southern California Air Quality Study, SCAQS, during which atmospheric aerosols were measured in Los Angeles. The size and composition of the aerosol and the concentrations of their gas phase counterparts were measured. When the

  14. Aerosol Climate Interactions in Climate System Models

    NASA Astrophysics Data System (ADS)

    Kiehl, J. T.

    2002-12-01

    Aerosols are widely recognized as an important process in Earth's climate system. Observations over the past decade have improved our understanding of the physical and chemical properties of aerosols. Recently, field observations have highlighted the pervasiveness of absorbing aerosols in the atmosphere. These aerosols are of particular interest, since they alter the vertical distribution of shortwave radiative heating between the surface and atmosphere. Given this increased knowledge of aerosols from various field programs, interest is focusing on how to integrate this understanding into global climate models. These types of models provide the best tool available to comprehensively study the potential effects of aerosols on Earth's climate system. Results from climate system model simulations that include aerosol effects will be presented to illustrate key aerosol climate interactions. These simulations employ idealized and realistic distributions of absorbing aerosols. The idealized aerosol simulations provide insight into the role of aerosol shortwave absorption on the global hydrologic cycle. The realistic aerosol distributions provide insight into the local response of aerosol forcing in the Indian subcontinent region. Emphasis from these simulations will be on the hydrologic cycle, since water availability is of emerging global environmental concern. This presentation will also consider what more is needed to significantly improve our ability to model aerosol processes in climate system models. Uncertainty in aerosol climate interactions remains a major source of uncertainty in our ability to project future climate change. Focus will be on interactions between aerosols and various physical, chemical and biogeochemical aspects of the Earth system.

  15. International Cooperative for Aerosol Prediction Workshop on Aerosol Forecast Verification

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.

    2011-01-01

    The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.

  16. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  17. 500 MHz neutron detector

    SciTech Connect

    Yen, Yi-Fen; Bowman, J.D.; Matsuda, Y.

    1993-12-01

    A {sup 10}B-loaded scintillation detector was built for neutron transmission measurements at the Los Alamos Neutron Scattering Center. The efficiency of the detector is nearly 100% for neutron energies from 0 to 1 keV. The neutron moderation time in the scintillator is about 250 ns and is energy independent. The detector and data processing system are designed to handle an instantaneous rate as high as 500 MHz. The active area of the detector is 40 cm in diameter.

  18. Segmented pyroelector detector

    DOEpatents

    Stotlar, S.C.; McLellan, E.J.

    1981-01-21

    A pyroelectric detector is described which has increased voltage output and improved responsivity over equivalent size detectors. The device comprises a plurality of edge-type pyroelectric detectors which have a length which is much greater than the width of the segments between the edge-type electrodes. External circuitry connects the pyroelectric detector segments in parallel to provide a single output which maintains 50 ohm impedance characteristics.

  19. New apparatus of single particle trap system for aerosol visualization

    NASA Astrophysics Data System (ADS)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  20. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  1. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2010-09-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  2. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2011-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  3. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Ely, Justin

    2012-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  4. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Ely, Justin

    2013-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  5. Drosophila melanogaster Cad99C, the orthologue of human Usher cadherin PCDH15, regulates the length of microvilli

    PubMed Central

    D'Alterio, Cecilia; Tran, Dao D.D.; Yeung, Maggie W.Y. Au; Hwang, Michael S.H.; Li, Michelle A.; Arana, Claudia J.; Mulligan, Vikram K.; Kubesh, Mary; Sharma, Praveer; Chase, Maretta; Tepass, Ulrich; Godt, Dorothea

    2005-01-01

    Actin-based protrusions can form prominent structures on the apical surface of epithelial cells, such as microvilli. Several cytoplasmic factors have been identified that control the dynamics of actin filaments in microvilli. However, it remains unclear whether the plasma membrane participates actively in microvillus formation. In this paper, we analyze the function of Drosophila melanogaster cadherin Cad99C in the microvilli of ovarian follicle cells. Cad99C contributes to eggshell formation and female fertility and is expressed in follicle cells, which produce the eggshells. Cad99C specifically localizes to apical microvilli. Loss of Cad99C function results in shortened and disorganized microvilli, whereas overexpression of Cad99C leads to a dramatic increase of microvillus length. Cad99C that lacks most of the cytoplasmic domain, including potential PDZ domain–binding sites, still promotes excessive microvillus outgrowth, suggesting that the amount of the extracellular domain determines microvillus length. This study reveals Cad99C as a critical regulator of microvillus length, the first example of a transmembrane protein that is involved in this process. PMID:16260500

  6. Trend towards low cost, low power, ultra-violet (UV) based biological agent detectors

    NASA Astrophysics Data System (ADS)

    Sickenberger, David

    2005-11-01

    Ultra-violet fluorescence remains a corner stone technique for the detection of biological agent aerosols. Historically, these UV based detectors have employed relatively costly and power demanding lasers that have influenced the exploitation of the technology to wider use. Recent advancements from the Defense Advanced Research Project Agency's (DARPA) Solid-state Ultra Violet Optical Sources (SUVOS) program has changed this. The UV light emitting diode (LED) devices based on Gallium Nitride offer a unique opportunity to produce small, low power, and inexpensive detectors. It may, in fact, be possible to extend the SUVOS technology into detectors that are potentially disposable. This report will present ongoing efforts to explore this possibility. It will present candidate UV fluorescence based detector designs along with the biological aerosol responses obtained from these designs.

  7. AERONET: The Aerosol Robotic Network

    DOE Data Explorer

    The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and is greatly expanded by collaborators from national agencies, institutes, universities, individual scientists, and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, mircrophysical and radiative properties for aerosol research and characterization, validation of satellite retrievals, and synergism with other databases. The network imposes standardization of instruments, calibration, processing and distribution. AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  8. Role of Bound Zn(II) in the CadC Cd(II)/Pb(II)/Zn(II)-Responsive Repressor

    SciTech Connect

    Kandegedara, A.; Thiyagarajan, S; Kondapalli, K; Stemmler, T; Rosen, B

    2009-01-01

    The Staphylococcus aureus plasmid pI258 cadCA operon encodes a P-type ATPase, CadA, that confers resistance to Cd(II)/Pb(II)/Zn(II). Expression is regulated by CadC, a homodimeric repressor that dissociates from the cad operator/promoter upon binding of Cd(II), Pb(II), or Zn(II). CadC is a member of the ArsR/SmtB family of metalloregulatory proteins. The crystal structure of CadC shows two types of metal binding sites, termed Site 1 and Site 2, and the homodimer has two of each. Site 1 is the physiological inducer binding site. The two Site 2 metal binding sites are formed at the dimerization interface. Site 2 is not regulatory in CadC but is regulatory in the homologue SmtB. Here the role of each site was investigated by mutagenesis. Both sites bind either Cd(II) or Zn(II). However, Site 1 has higher affinity for Cd(II) over Zn(II), and Site 2 prefers Zn(II) over Cd(II). Site 2 is not required for either derepression or dimerization. The crystal structure of the wild type with bound Zn(II) and of a mutant lacking Site 2 was compared with the SmtB structure with and without bound Zn(II). We propose that an arginine residue allows for Zn(II) regulation in SmtB and, conversely, a glycine results in a lack of regulation by Zn(II) in CadC. We propose that a glycine residue was ancestral whether the repressor binds Zn(II) at a Site 2 like CadC or has no Site 2 like the paralogous ArsR and implies that acquisition of regulatory ability in SmtB was a more recent evolutionary event.

  9. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  10. A fixed frequency aerosol albedometer.

    PubMed

    Thompson, Jonathan E; Barta, Nick; Policarpio, Danielle; Duvall, Richard

    2008-02-01

    A new method for the measurement of aerosol single scatter albedo (omega) at 532 nm was developed. The method employs cavity ring-down spectroscopy (CRDS) for measurement of aerosol extinction coefficient (b(ext)) and an integrating sphere nephelometer for determination of aerosol scattering coefficient (b(scat)). A unique feature of this method is that the extinction and scattering measurements are conducted simultaneously, on the exact same sample volume. Limits of detection (3s) for the extinction and scattering channel were 0.61 Mm(-1) and 2.7 Mm(-1) respectively. PMID:18542299

  11. eDPS Aerosol Collection

    SciTech Connect

    Venzie, J.

    2015-10-13

    The eDPS Aerosol Collection project studies the fundamental physics of electrostatic aerosol collection for national security applications. The interpretation of aerosol data requires understanding and correcting for biases introduced from particle genesis through collection and analysis. The research and development undertaken in this project provides the basis for both the statistical correction of existing equipment and techniques; as well as, the development of new collectors and analytical techniques designed to minimize unwanted biases while improving the efficiency of locating and measuring individual particles of interest.

  12. Compositional Analysis of Aerosols Using Calibration-Free Laser-Induced Breakdown Spectroscopy.

    PubMed

    Boudhib, Mohamed; Hermann, Jörg; Dutouquet, Christophe

    2016-04-01

    We demonstrate that the elemental composition of aerosols can be measured using laser-induced breakdown spectroscopy (LIBS) without any preliminary calibration with standard samples. Therefore, a nanosecond Nd:YAG laser beam was focused into a flux of helium charged with alumina aerosols of a few micrometers diameter. The emission spectrum of the laser-generated breakdown plasma was recorded with an echelle spectrometer coupled to a gated detector. The spectral features including emission from both the helium carrier gas and the Al2O3 aerosols were analyzed on the base of a partial local thermodynamic equilibrium. Thus, Boltzmann equilibrium distributions of population number densities were assumed for all plasma species except of helium atoms and ions. By analyzing spectra recorded for different delays between the laser pulse and the detector gate, it is shown that accurate composition measurements are only possible for delays ≤1 μs, when the electron density is large enough to ensure collisional equilibrium for the aerosol vapor species. The results are consistent with previous studies of calibration-free LIBS measurements of solid alumina and glass and promote compositional analysis of aerosols via laser-induced breakdown in helium. PMID:26974717

  13. Multi-segment detector

    NASA Technical Reports Server (NTRS)

    George, Peter K. (Inventor)

    1978-01-01

    A plurality of stretcher detector segments are connected in series whereby detector signals generated when a bubble passes thereby are added together. Each of the stretcher detector segments is disposed an identical propagation distance away from passive replicators wherein bubbles are replicated from a propagation path and applied, simultaneously, to the stretcher detector segments. The stretcher detector segments are arranged to include both dummy and active portions thereof which are arranged to permit the geometry of both the dummy and active portions of the segment to be substantially matched.

  14. Wavelength dependence of aerosol extinction coefficient for stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.

    1986-01-01

    A simple empirical formula for the wavelength dependence of the aerosol extinction coefficient is proposed. The relationship between the constants in the formula and the variable parameter in the aerosol size distribution is explicitly expressed. Good agreement is found between the extinction coefficients calculated from the proposed formula and that calculated from Mie theory. The proposed expression is shown to be better than the Angstroem formula commonly used by atmospheric scientists.

  15. Aerosol Transmission of Filoviruses.

    PubMed

    Mekibib, Berhanu; Ariën, Kevin K

    2016-01-01

    Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013-2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses. PMID:27223296

  16. Aerosol Transmission of Filoviruses

    PubMed Central

    Mekibib, Berhanu; Ariën, Kevin K.

    2016-01-01

    Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013–2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses. PMID:27223296

  17. Aerosol lidar ``M4``

    SciTech Connect

    Shelevoy, C.D.; Andreev, Y.M. |

    1994-12-31

    Small carrying aerosol lidar in which is used small copper vapor laser ``Malachite`` as source of sounding optical pulses is described. The advantages of metal vapor laser and photon counting mode in acquisition system of lidar gave ability to get record results: when lidar has dimensions (1 x .6 x .3 m) and weight (65 kg), it provides the sounding of air industrial pollutions at up to 20 km range in scanning sector 90{degree}. Power feed is less than 800 Wt. Lidar can be disposed as stationary so on the car, helicopter, light plane. Results of location of smoke tails and city smog in situ experiments are cited. Showed advantages of work of acquisition system in photon counting mode when dynamic range of a signal is up to six orders.

  18. Stratospheric aerosol geoengineering

    SciTech Connect

    Robock, Alan

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  19. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E.; Camarda, Giuseppe; Cui, Yonggang; James, Ralph B.

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  20. Background stratospheric aerosol reference model

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Wang, P.

    1989-01-01

    In this analysis, a reference background stratospheric aerosol optical model is developed based on the nearly global SAGE 1 satellite observations in the non-volcanic period from March 1979 to February 1980. Zonally averaged profiles of the 1.0 micron aerosol extinction for the tropics and the mid- and high-altitudes for both hemispheres are obtained and presented in graphical and tabulated form for the different seasons. In addition, analytic expressions for these seasonal global zonal means, as well as the yearly global mean, are determined according to a third order polynomial fit to the vertical profile data set. This proposed background stratospheric aerosol model can be useful in modeling studies of stratospheric aerosols and for simulations of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.